

의학석사 학위논문

메타 분석을 이용한 유방암과 그에 따른 생식요인들의 연관성 연구

Association between breast cancer and reproductive factors: meta-analysis

2020 년 8 월

서울대학교 대학원 협동과정 종양생물학전공 홍 유 진

Abstract

Association between breast cancer and

reproductive factors: meta-analysis

Youjin Hong

Interdisciplinary Program in Cancer Biology

Seoul National University

College of Medicine

Introduction: It is well known that breast cancer (BC) is a main risk for women and its association between reproductive and exogenous hormone factors have already undergone many progressions. Also, there have been many meta-analysis studies of breast cancer and each risk factor. However, contemporary research for each factors is needed, especially for the South Korean (hereafter, Korean) population. The purposes of this study are to systematically review the literature of corresponding studies to define a new estimation of a Korean meta-analysis, and to confirm continuous variables into a categorical status.

Methods: Firsts, systematic and comprehensive research of a systematic review was conducted. Second, statistical analysis of the meta-analysis was sequentially conducted. Third, PICO (**P**opulation, Intervention, Comparison, and **O**utcome) statements were used for search strategies and update searching was performed in the journal PubMed until the publication of April 30, 2020. The literature representing the relative risk ratio (RR), odds ratio (OR) or hazard ratio (HR) of the association between breast cancer and reproductive factors and 95% confidential intervals (CIs) were selected. Pooling the effect size was estimated by using the

random effect model. A subgroup analysis was performed according to the study design, country and publication date.

Results: For the results of the Korean population, we set the reference in the direction of larger than 1 to calculate the population attributable risk (PAF) later. As a result, most of the reproductive variables were significant except for parity, duration of breastfeeding and oral contraceptive use. However, the trend of breast cancer and reproductive factors was the same as the global trend. For the Global population, the risk of medication of an oral contraceptive was approximately 10% higher than the general healthy women. On the other hand, the use of the combination of hormone replacement therapy (HRT) had approximately 30% higher risk than the general healthy women. Furthermore, in the subgroup analysis by country of the Global population, if the reproductive factors were at the risk point, the risk was sporadic by the various reproductive factors. Also if the reproductive factors were at the protective point, then Asian countries were more protective to breast cancer then Western countries (age at menarche, parity, number of childbirths, and duration of breastfeeding). In subgroup analysis by publication date, the relation of publication date has revealed in some reproductive factors, but it was difficult to calculate the rationale due to the lack of 1990s publication study.

Conclusions: This study summarized the modifiable factors and unmodifiable factors of breast cancer and confirmed the trend of the risk of breast cancer. Also, in order to calculate the Korean PAF model, we conducted a Korean meta-analysis to produce the latest indicators. Furthermore, we categorized and identified appropriate categories of continuous reproductive variables.

Keywords: Breast cancer, systematic review, meta-analysis, reproductive factors, exogenous hormone, random model effect

Student Number: 2018-26695

CONTENTS

Abstr	acti
Conte	entsiv
List c	f tablesvi
List c	f figures viii
I. Int	roduction1
1.	Epidemiology of breast cancer1
2.	The relationship between reproductive factors and exogenous hormone factors1
3.	Breast cancer of Korean population attributable risk (PAF)2
4.	Objectives
II. M	aterials and Methods5
1.	Search and selection of literature for systematic review and meta-analysis5
2.	Study group for raw data analysis
3.	Data Extraction7
4.	Statistical analysis7
A.	Systematic review and meta-analysis7
B.	Raw data analysis
III. R	2esults
1.	Results of Korean meta-analysis to estimate the summary RR of each reproductive factors
A.	Incidence of breast cancer
B.	Mortality of breast cancer14
2.	Meta-analysis of the Global population19
3.	Subgroup analysis of Global population23
A.	Study design

В.	Country (Continent)	26
C.	Publication date	35
IV. I	Discussion	39
1.	Summary of the results	39
A.	Korean meta-analysis: 1 st objective	39
B.	Global population meta-analysis: 2 nd & 3 rd objective	40
2.	Biological plausible mechanism	42
3.	Limitations and strengths of our study	44
V. C	onclusion	45
VI. F	Reference	97
초	록	111

LIST OF TABLES

Table 1. Study designing based on the PICO definition for systematic literature reviews5
Table 2. Inclusion criteria and exclusion criteria of selection literature
Table 3. Summary relative risks of breast cancer related to each reproductive factors in Korean women (Incidence)
Table 4. Summary relative risks of breast cancer related to each reproductive factors in Korean women (mortality) 16
Table 5. Subgroup analysis of summary relative risks of breast cancer related to eachreproductive factors in Korean women as in study design (Incidence)18
Table 6. Summary relative risks of breast cancer related to each reproductive factors in Global population .22
Table 7. Summary relative risks of breast cancer related to each reproductive factors inGlobal population of subgroup analysis by study design
Table 8. Summary relative risks of breast cancer related to each reproductive factors inGlobal population of subgroup analysis by country (continent)31
Table 9. Summary relative risks of breast cancer related to each reproductive factors inGlobal population of subgroup analysis by publication date
Supplementary table 1. Search strategies for each reproductive factor and breast cancer in PubMed
Supplementary table 2. Systematic review of association with age at menarche on breast cancer risk in Global population
Supplementary table 3. Systematic review of association with age at menopause on breast cancer risk in postmenopausal women in Global population
Supplementary table 4. Systematic review of association with family history on breast cancer risk in Global population
Supplementary table 5. Systematic review of association with parity on breast cancer risk in Global population
Supplementary table 6. Systematic review of association with age at first-full term pregnancy on breast cancer risk in Global population
Supplementary table 7. Systematic review of association with number of childbirths among parous women on breast cancer risk in Global population
Supplementary table 8. Systematic review of association with duration of breastfeeding on breast cancer risk in Global population
Supplementary table 9. Systematic review of association with use of oral contraceptives on breast cancer risk in Global population
Supplementary table 10. Systematic review of association with duration of oral contraceptives on breast cancer risk in Global population

Supplementary table 11. Systematic review of association with combination of HRT use on breast cancer risk in Global population74
Supplementary table 12. Systematic review of association with estrogen only HRT use on breast cancer risk in Global population
Supplementary table 13. Association between age at menarche and breast cancer in Korean women
Supplementary table 14. Association between age at menopause and breast cancer in Korean women
Supplementary table 15. Association between parity and breast cancer in Korean women.80
Supplementary table 16. Association between age at first-full term pregnancy and breast cancer in Korean women
Supplementary table 17. Association between number of childbirths and breast cancer in Korean women
Supplementary table 18. Association between breastfeeding and breast cancer in Korean women
Supplementary table 19. Association between duration of breastfeeding and breast cancer in Korean women
Supplementary table 20. Association between use of oral contraceptives and breast cancer in Korean women
Supplementary table 21. Association between use of hormone replacement therapy (HRT) and breast cancer in Korean women

LIST OF FIGURES

Figure 1. Association between age at menarche and breast cancer in Korea population. (Left: $\leq 14 \text{ vs.} \geq 17$ [reference], Right: 15-16 vs. ≥ 17 [reference])
Figure 2. Association between age at menopause and breast cancer in Korean population. (Left: 48-52 vs. < 48 [reference], Right: ≥ 53 vs. < 48 [reference])
Figure 3. Association between parity and breast cancer in Korean population (Nulliparous vs. Parous [reference])
Figure 4. Association between number of childbirths and breast cancer among parous women in Korea population. (Left: 1 vs. ≥3 [reference], Right: 2 vs. ≥3 [reference])88
Figure 5. Association between age at first full-term pregnancy and breast cancer in Korean population. (Left: 20-30 vs. < 20 [reference], Right: ≥ 30 vs. < 20 [reference])89
Figure 6. Association between breastfeeding and breast cancer in Korean population. (Never vs. Ever [reference])
Figure 7. Association between duration of breastfeeding and breast cancer in Korean population. (Left: Never vs. \geq 6 months [reference], Right: < 6 months vs. \geq 6 months [reference])
Figure 8. Association between oral contraceptives and breast cancer in Korean population. (Ever vs. Never [reference])
Figure 9. Association between hormone replacement therapy (combination) and breast cancer in Korean population. (Ever vs. Never [reference])
Figure 10. Summary relative risks of breast cancer related to each reproductive factors in Korean population
Figure 11. Summary relative risks of breast cancer related to each reproductive factors in Global population
Supplementary figure 1. Flow chart for systematic review of association between age at menarche and breast cancer in Global population
Supplementary Figure 2. Flow chart for systematic review of association between age at menopause and breast cancer in Global population
Supplementary figure 3. Flow chart for systematic review of association between family history and breast cancer in Global population94
Supplementary figure 4. Flow chart for systematic review of association between age at first-full term pregnancy and breast cancer in Global population
Supplementary figure 5. Flow chart for systematic review of association between the number of childbirths and breast cancer in Global population
Supplementary figure 6. Flow chart for systematic review of association between the duration of breastfeeding and breast cancer in Global population
Supplementary figure 7. Flow chart for systematic review of association between use of oral contraceptives and breast cancer in Global population

Supplementary figure 8. Flow chart for systematic review of association between hormone
replacement therapy use and breast cancer in Global population. (Combination of estrogen
and progestin)

I. Introduction

1. Epidemiology of breast cancer

According to World Health Organization (WHO) cancer statistics, the incidence of 18,078,957 new cancer cases was reported in 2018 and 9,555,027 cases were reported as a mortality of cancer. Especially for breast cancer, even with improvements and the early detection, breast cancer is still the most common and malignant cancer among women worldwide. In 2018, 2,088,849 women developed breast cancer (1).

Breast cancer incidence is known to vary by race. The incidence rates for breast cancer are higher among non-Hispanic white and non-Hispanic black women than other racial and ethnic groups. Asian/Pacific Islander women have the lowest incidence rates, which was 90.7 per 100,000 (2). According to *Breast Cancer Facts & Figures 2017-2018* (3), the incidences of non-Hispanic White and non-Hispanic Black women were 128.7 and 125.5 per 100,000, respectively.

2. The relationship between reproductive factors and exogenous hormone factors

Breast cancer is the combination of many known factors. Factors that cannot be changed by humans are called unmodifiable factors and factors that can be changed by humans are called modifiable factors. Unmodifiable factors include the increasing of age as a natural flow, having genetic mutations of BRCA1 and BRCA2 (Breast Cancer genes 1 and 2), and reproductive histories of early menstrual periods or late menopause, having dense breast and a family history of breast cancer, and so on. For modifiable factors, risk factors are being physically inactive, being overweight or obese after menopause, taking hormones such as oral contraceptives or hormone replacement therapy (HRT) (both estrogen and progesterone), reproductive histories with late age of first full-term pregnancy, no breastfeeding, or never pregnant and alcohol consumption. These factors were confirm in *Al-Ajmi K et al. (2018)* (4) and many other studies. Therefore, these studies include unmodifiable factors such as age at menarche, age at menopause, family history of breast cancer and modifiable factors such as age at first-full term pregnancy, number of children, duration of breastfeeding, and the use of oral contraceptives HRT.

3. Breast cancer in the Korean population and population attributable risk (PAF)

As already mentioned in breast cancer epidemiology, in particular, the incidence of breast cancer in South Korea (hereafter, Korea) increased continuously for five years since 2010. According to Statistics Korea, the incidence rate rose 24.5 to 37.7 per 100,000 people from 2010 to 2015 (5).

Despite the increasing incidence of breast cancer in Korea, there are still few papers on breast cancer and its related risk factors due to the lack of Korean-specific data. *Boyoung Park et al. (2016)* (6), a study of breast cancer and its associated risk factors, was the most recent meta-analysis for Korea. As mentioned in a previous study, very few studies were added. Furthermore, there were only four risk factors (pregnancy/ age at first birth, total period of breastfeeding, oral contraceptive use, and HRT use) of breast cancer. From the estimated prevalence of exposures in the Korean population and the total summary relative risks (RRs) for each particular risk factor, population attributable risk (PAR) factors can be calculated. PAR, or PAF as mentioned in this research, is the proportion of the incidence of a disease in the population that is due to exposure or the incidence of a disease in the population that would be eliminated if exposure were eliminated.

4. Objectives

There are several objectives for this research. There are 2 research of systematic review and meta-analysis based on Korean-specific data, which are BMI (7) and diet (8) between the risk of breast cancer, but the association of reproductive factors and breast cancer research is still lack in Korean-specific data. There is one research, which is association of hormone replacement therapy (HRT) (9) and risk of breast cancer in Korean-specific data, but it is based on the hospital case-control studies and the population of research is composed with breast cancer patients. Therefore, we decided to redeem the research. The first objective of this study is to collect the reliable results of summary RR of the Korean population by using the literature review and the analysis of raw data, which will be introduced later. Due to the shortage of Korean studies, the available data were analyzed and supplemented to a systematic review. With the addition of the additional cohort studies, which are Korean National Cancer Center (KNCC), Korean Cancer Prevention Study (KCSP II), Healthcare System Gangnam Center, Kangbuk Samsung Hospital, and Namwon cohort, we expected the heterogeneity of the studies to be lower. Furthermore, we can calculate the PAF of each risk factor to estimate the representative value of Koreans.

The second, objective of this study is to research the previous research studies that represent the association between breast cancer and reproductive factors and to conduct comprehensive systematic reviews for confirming the trend of breast cancer risks. We aim to compare the difference of Koreans and Global population breast cancer risk trends. The hypotheses of breast cancer and its risk factors according to the systematic literature review are as follows: breast cancer risk increases an early menarche age, a late menopause age, having a family history of breast cancer, a late age of full-term pregnancy, fewer children, no breastfeeding, and a long exposure or ever exposure of an exogenous hormone, especially oral contraceptives and HRT.

The third objective of this study is to integrate the subgroup analysis. The various categories of each risk factors were integrated through a meta-analysis to detect the risks ratio by increasing age.

We will establish the above mentioned goals to obtain Korean breast cancer meta results and to further identify the best categories of Global population, which can be useful to interpret the risk of breast cancer and reproductive factors.

II. Materials and methods

1. Search and selection of literature for systematic review and meta-analysis

This study is quantitative research of a systematic review analysis. Therefore, sensitive search strategies were needed. Using the PICO statements, Global population as P (population), breast cancer risk factor exposures as I (intervention), non- breast cancer population as C (comparison) and breast cancer as O (outcome) were designated (Table 1, Supplementary table 1). Studies included in the systematic review were from the journals PubMed and KoreaMed published between 1990 and April 2020. The inclusion criteria and exclusion criteria are listed in Table 2.

The procedure of selection of the literature will be shown in the flow charts.

The study was funded by the Korean Foundation for Cancer Research. (Grant Number: CB-2017-A-2)

Objective				
P (Population)	• The population of research is based on the general population.*			
I (Intervention)	• The intervention of this research is the exposure risk factors of breast			
	cancer. Reproductive factors which were age at menarche, age at menopause, parity, age at first full-term pregnancies, number of children, breastfeeding, duration of breastfeeding and exogenous hormone which were use of oral contraceptives/duration, and use of hormone replacement therapy/ duration included.			
C (Comparison)	• The research compares the breast cancer patients and the general			
	population of breast cancer free population.			
O (Outcome)	• The outcome of this research is breast cancer which were diagnosed			
	in the breast cancer screening center, hospital or National Health insurance service.			
T (Time)	• The research time is the paper publication by 2020/04/30.			
SD	• This research includes the observational studies which are cohort			
(Study design)	studies and case-control studies. For case-control studies, population- based or community-based case-control studies were included. For cohort studies, nested case-control studies were also included.			

 Table 1. Study designing based on the PICO definition for systematic literature reviews

 Objective

* The population stands for Korea, East Asia (China, Japan), South/West Asia, North

America (United States), Central/South America, Europe, Australia/New Zealand, and Africa.

Categories	Contents						
	• Research that represents the association of reproductive factors (age at menarche, age at menopause, parity, age at first full-term pregnancy, number of children, breastfeeding/ duration of breastfeeding) and usage of exogenous hormone (oral contraceptives and hormone replacement therapy) and breast cancer						
Inclusion criteria	• Observational studies that are based on the epidemiology study which are cohort studies and case-control studies						
	• Literatures that included the odds ratios (ORs), hazard ratios (HRs), and relative risks (RRs)						
	• Population that included the Korean, Asian, and Global populations						
	• Literatures that are based on the human research						
Exclusion criteria	• Non-original research (appraisal, letter, comments), researches on cell and animal experiments, research on effects and techniques of radiation therapy						
	• Literature that are written in Korean and English						
	• Literature that doesn't represent HR, OR, RR and that doesn't involve the effect size						

 Table 2. Inclusion criteria and exclusion criteria of selection literature

2. Study group for raw data analysis

The Korean Multi-Center Cancer study (KMCC) participants were recruited from the urban and rural areas of Haman, Chungju, Uljin and Pohang from 1993 to 2004. The cohort is based on the cancer-free cohort of the general community population. For cancer case ascertainment, an active surveillance system, which is cancer diagnosed by a physician at hospitals and a passive surveillance system, use the unique ID of the Korea system. The median follow-up year is 12.9 years and the person-year is 155,711. Total 12,401 women were analyzed.

The Korean Breast Cancer Society (KBCS) is population-based case-control study conducted from 2004 to 2013. The cases were newly diagnosed breast cancer cases who enrolled in the KBCS Registry Program from 1974 to 2016. The controls were breast cancer-free female health examinees from 2004 to 2015 in the Korean Genome and Epidemiology Study-Health Examinees (KoGES-HEXA). The controls

and cases were restricted to the age of 40 and above from 2004 to 2013. For analysis, 124,065 cases and 110,729 controls were included.

Also, five additional cohorts, which is mentioned previously, are included in as Korean-specific data. The additional cohorts are Korean National Cancer Center (KNCC), Korean Cancer Prevention Study (KCSP II), Healthcare System Gangnam Center, Kangbuk Samsung Hospital, and Namwon cohort.

3. Data Extraction

We chose observational studies, particularly cohort studies and case-controls studies (population-based case-control study and nested case-control study). Especially for the PCCS definition, we newly define PCCS for this research. There are three different definitions of PCCS. First, breast cancer cases and controls were randomly selected by the cancer registry. Second, the selection of breast cancer patients in the multicenter study and the selection of controls were population based or community based or large multicenter based. Third, the selection of breast cancer patients at one center with the number more than 500 patients. Fourth, for the Korean population, the hospital-based case-control (community) studies were included because of the shortage of Korean studies that analyze according to the corresponding subject. The literature listing the association between breast cancer and reproductive factors of relative risk (RRs, HRs, and ORs) were chosen as the final study collection for systematic review.

4. Statistical analysis

A. Systematic review and meta-analysis

In this study, the estimation of summary relative risk (RRs) and 95% confidential intervals (95% CIs) and forest plots were used by using random-effects models for

the association between breast cancer and reproductive factors. The total estimation RRs were calculated at first, and then the subgroup analysis were conducted. Subgroup analysis results were presented in the study design as cohort and case-control studies and by the countries (or continents) such as N/S America, Europe, and Asia. For country subgroup analysis, the variables of a family history of breast cancer and the use of estrogen only HRT do not have literature review results of the Korean population. As a way to reduce the heterogeneity of each result, subgroup analysis of publication date was further conducted.

Heterogeneity among articles was estimated using the I² statistic and *P* values associated with *Q* statistics. The I² statistic indicates the percentage of total variability explained by heterogeneity. In this research, the value of $0\% \le I^2 \le 25\%$ was assigned as low heterogeneity, $25\% \le I^2 \le 50\%$ as moderate heterogeneity, $50\% \le I^2 \le 75\%$ as relative high heterogeneity and $75\% \le I^2 \le 100\%$ as high heterogeneity. The study plotted funnel plots and calculated the publication bias by using the Begg and Egger test. All statistical analyses were conducted with R (version 3.5.2) statistical software.

B. Raw data analysis

The available data analysis for the additional Korean data were derived from the KMCC study, which is a cohort study of an observational study, and KBCS which are population-based case-control study of an observational study. The factors associated with the breast cancer risk of the cohort study were analyzed using the Cox proportional hazards regression model by adjusting confounding factors of age, enrollment year, smoking status, alcohol consumption, weekly exercising, and body mass index (BMI). For the case-control studies, data were analyzed using the logistic regression model by adjusting confounding factors of age, at menarche, age at menopause, age at first child birth among parous women, number of children, duration of breastfeeding, and exercising, smoking, and drinking status.

The available data are analyzed into three groups: total women, premenopausal women, and postmenopausal women because of some reproductive factors that are linked to the women's menstrual cycles. For data that does not have the variable of menstrual information, we randomly assigned the menopausal status at the age of 50 years old.

The additional cohorts were analyzed by each cohort researcher using the same statistical technique presented above. However, if there is less than 5 or no breast cancer patients corresponding to each reproductive factor variables, we decided to use the Poisson regression, especially the calculation of binary outcome. Also some of the cohort have the mortality data of breast cancer patients, which are KMCC, Korean Genome and Epidemiology Study (KoGES), and Korean National Health and Nutrition Examination Survey (KNHANES), were analyzed by using the Poisson regression.

All statistical analyses were two-sided and were performed using the SAS statistical package (version 9.4; SAS institute, Cary, NC).

III. Results

1. Results of the Korean meta-analysis for estimating the summary RR of each reproductive factors

A. Incidence of breast cancer

The following tables show the raw data analysis and the systematic review of the Korean population. Each of the reproductive factors of breast cancer are listed in the appearance in a direction greater than 1, which indicates the risk. The reason is that when calculating the PAF value, this mechanism prevents of getting the negative values.

For the overall analysis of ' ≤ 14 ' vs. ' ≥ 17 ' [reference] of age at menarche and breast cancer, the estimation of summary RR of BC was 1.39 (95% CI=1.08-1.77) with high heterogeneity (I²=92%). No significant publication bias was founded (Begg's test *p*=0.24, Egger's test *p*=0.22). For the overall analysis of '15-16' vs. ' ≥ 17 ' [reference] of age at menarche and breast cancer, the estimation of summary RR of BC was 1.18 (95% CI=1.04-1.33) with high heterogeneity (I²=78%). No significant publication bias was founded (Begg's test *p*=0.33, Egger's test *p*=0.66). (Table 3)

For the overall analysis of '48-52' vs. '< 48' [reference] of age at menopause and breast cancer, the estimation of summary RR of BC was 1.25 (95% CI=1.15-1.37) with moderate heterogeneity (I²=36%). No significant publication bias was founded (Begg's test p=0.83, Egger's test p=0.72). For the overall analysis of ' \geq 53' vs. '< 48' [reference] of age at menopause and breast cancer, the estimation of summary RR of BC was 1.36 (95% CI=1.29-1.45) with no heterogeneity (I²=0%). No significant publication bias was founded (Begg's test p=0.68, Egger's test p=0.30). (Table 3)

For the overall analysis of 'Nulliparous' *vs.* 'Parous' [reference] of parity and breast cancer, the estimation of summary RR of BC was 1.28 (95% CI=0.90-1.81) with

high heterogeneity (I²=96%). No significant publication bias was founded (Begg's test p=0.45, Egger's test p=0.62). (Table 3)

For the overall analysis of '1' vs. ' \geq 3' [reference] of number of childbirths and breast cancer among parous women, the estimation of summary RR of BC was 2.11 (95% CI=1.61-2.77) with moderate heterogeneity (I²=48%). No significant publication bias was founded (Begg's test *p*=0.09, Egger's test *p*=0.17). For the overall analysis of '2' vs. ' \geq 3' [reference] of number of childbirths and breast cancer among parous women, the estimation of summary RR of BC was 1.74 (95% CI=1.27-2.38) with high heterogeneity (I²=79%). No significant publication bias was founded (Begg's test *p*=0.57, Egger's test *p*=0.03). (Table 3)

For the overall analysis of '20-30' *vs.* '< 20' [reference] of age at first-full term pregnancy and breast cancer among parous women, the estimation of summary RR of BC was 1.08 (95% CI=0.99-1.18) with low heterogeneity (I²=15%). No significant publication bias was founded (Begg's test *p*=0.02, Egger's test *p*=0.04). For the overall analysis of ' \geq 30' *vs.* '< 20' [reference] of age at first-full term pregnancy and breast cancer among parous women, the estimation of summary RR of BC was 1.42 (95% CI=1.35-1.51) with no heterogeneity (I²=0%). No significant publication bias was founded (Begg's test *p*=0.00, Egger's test *p*=0.27). (Table 3)

For the overall analysis of 'Never' *vs.* 'Ever' [reference] of breastfeeding and breast cancer, the estimation of summary RR of BC was 1.42 (95% CI=1.27-1.60) with low heterogeneity (I²=14%). No significant publication bias was founded (Begg's test p=0.19, Egger's test p=0.19). (Table 3)

For the overall analysis of 'Never' vs. ' ≥ 6 months' [reference] of duration of breastfeeding and breast cancer, the estimation of summary RR of BC was 1.85 (95% CI=0.54-6.35) with high heterogeneity (I²=99%). No significant publication bias was founded (Begg's test p=0.60, Egger's test p=0.36). For the overall analysis of 'Never' vs. '< 6 months' [reference] of duration of breastfeeding and breast cancer, the estimation of summary RR of BC was 1.32 (95% CI=1.17-1.50) with moderate heterogeneity (I²=39%). No significant publication bias was founded (Begg's test p=0.12, Egger's test p=0.44). (Table 3)

For the overall analysis of 'Ever' *vs.* 'Never' [reference] of use of oral contraceptives and breast cancer, the estimation of summary RR of BC was 1.10 (95% CI=0.83-1.46) with high heterogeneity (I²=87%). No significant publication bias was founded (Begg's test p=0.88, Egger's test p=0.01). (Table 3)

For the overall analysis of 'Ever' *vs.* 'Never' [reference] of use of hormone replacement therapy and breast cancer, the estimation of summary RR of BC was 1.50 (95% CI=1.18-1.90) with high heterogeneity (I²=71%). No significant publication bias was founded (Begg's test p=0.35, Egger's test p=0.56). (Table 3)

Derme der ettige for et erer	Studies	Summary	Heterogeneity	Publication bias			
Reproductive factors	Ν	RR (95% CI) ¹	I ² (%)	P _{Begg}	PEgger		
Age at menarche							
≤ 14	10	1.39 (1.08-1.77)	92%, <i>p</i> < 0.01	0.24	0.02		
15-16		1.18 (1.04-1.33)	78%, p < 0.01	0.33	0.06		
≥ 17		1.00					
Age at menopause*							
< 48	9	1.00					
48-52		1.25 (1.15-1.37)	36%, <i>p</i> =0.13	0.83	0.72		
≥ 53		1.36 (1.29-1.45)	0%, <i>p</i> =0.73	0.68	0.30		
Parity							
Nulliparous	7	1.28 (0.90-1.81)	96%, <i>p</i> < 0.01	0.45	0.62		
Parous		1.00					
Number of childbirths							
1	6	2.11 (1.61-2.77)	48%, <i>p</i> =0.09	0.09	0.17		
2		1.74 (1.27-2.38)	79%, <i>p</i> < 0.01	0.57	0.03		
\geq 3		1.00					
Age at first-full term pro							
< 20	7	1.00					
20-30		1.08 (0.99-1.18)	15%, <i>p</i> =0.31	0.02	0.04		
\geq 30		1.42 (1.35-1.51)	0%, <i>p</i> =0.49	0.00	0.27		
Breastfeeding							
Never	6	1.42 (1.27-1.60)	14%, <i>p</i> =0.32	0.19	0.19		
Ever		1.00					
Duration of breastfeeding	ng						
Never	3	1.85 (0.54-6.35)	99%, <i>p</i> < 0.01	0.60	0.36		
< 6 months		1.32 (1.17-1.50)	39%, <i>p</i> =0.19	0.12	0.44		
≥ 6 months		1.00					
Oral contraceptives							
Never**	7	1.00					
Ever		1.10 (0.83-1.46)	87%, p < 0.01	0.88	0.01		
Hormone replacement therapy*							
Never	6	1.00					
Ever		1.50 (1.18-1.90)	71%, <i>p</i> < 0.01	0.35	0.56		

Table 3. Summary relative risks of breast cancer related to each reproductive factors in Korean women (Incidence)

1. Estimation of summary relative risks (RRs) are calculated by random effect model.

*Corresponding variables are evaluated only in postmenopausal women. **The cohort study, which is conducted in the hospital of Gangnam Center, was excluded by the sensitivity analysis.

B. Mortality of breast cancer

The following tables show the raw data analysis and the systematic review of the Korean population. Each of the reproductive factors of breast cancer are listed in the appearance in a direction greater than 1, which indicates the risk of breast cancer. There is few research of breast cancer mortality results.

For the overall analysis of ' ≤ 14 ' vs. ' ≥ 17 ' [reference] of age at menarche and breast cancer, the estimation of summary RR of BC was 1.72 (95% CI=0.97-3.05) with no heterogeneity (I²=0%). For the overall analysis of '15-16' vs. ' ≥ 17 ' [reference] of age at menarche and breast cancer, the estimation of summary RR of BC was 1.16 (95% CI=0.70-1.91) with high heterogeneity (I²=0%). No significant publication bias was founded (Begg's test *p*=0.85, Egger's test *p*=0.33). (Table 4)

For the overall analysis of '48-52' vs. '< 48' [reference] of age at menopause and breast cancer, the estimation of summary RR of BC was 0.48 (95% CI=0.12-1.88) with no heterogeneity (I²=0%). For the overall analysis of ' \geq 53' vs. '< 48' [reference] of age at menopause and breast cancer, the estimation of summary RR of BC was 0.92 (95% CI=0.18-4.80) with no heterogeneity (I²=0%). No significant publication bias was founded (Begg's test *p*=0.17, Egger's test *p*=0.59). (Table 4)

For the overall analysis of 'Nulliparous' *vs.* 'Parous' [reference] of parity and breast cancer, the estimation of summary RR of BC was 2.22 (95% CI=0.96-5.12). There was 1 study analyzed, which was KoGES. Therefore, publication bias was not available to calculate. (Table 4)

For the overall analysis of '1' vs. ' \geq 3' [reference] of number of childbirths and breast cancer among parous women, the estimation of summary RR of BC was 1.44 (95% CI=0.51-4.03) with no heterogeneity (I²=0%). For the overall analysis of '2' vs. ' \geq 3' [reference] of number of childbirths and breast cancer among parous women, the estimation of summary RR of BC was 2.34 (95% CI=0.58-9.38) with moderate heterogeneity (I²=62%). No significant publication bias was founded (Begg's test

p=1.00, Egger's test *p*=0.81). (Table 4)

For the overall analysis of '20-30' vs. '< 20' [reference] of age at first-full term pregnancy and breast cancer among parous women, the estimation of summary RR of BC was 1.61 (95% CI=0.79-3.26) with low heterogeneity (I²=13%). For the overall analysis of ' \geq 30' vs. '< 20' [reference] of age at first-full term pregnancy and breast cancer among parous women, the estimation of summary RR of BC was 2.50 (95% CI=1.04-6.03) with low heterogeneity (I²=16%). No significant publication bias was founded (Begg's test *p*=0.35, Egger's test *p*=0.14). (Table 4)

For the overall analysis of 'Never' *vs.* 'Ever' [reference] of breastfeeding and breast cancer, the estimation of summary RR of BC was 1.59 (95% CI=1.27-1.60) with no heterogeneity (I²=0%). (Table 4)

For the overall analysis of 'Never' **vs.** ' \geq 12 months' [reference] of duration of breastfeeding and breast cancer, the estimation of summary RR of BC was 0.91 (95% CI=0.18-4.68). For the overall analysis of 'Never' **vs.** '< 12 months' [reference] of duration of breastfeeding and breast cancer, the estimation of summary RR of BC was 0.28 (95% CI=0.03-2.42). There was 1 study analyzed, which was KNHANES. Therefore, publication bias was not available to calculate. (Table 4)

For the overall analysis of 'Ever' *vs.* 'Never' [reference] of use of oral contraceptives and breast cancer, the estimation of summary RR of BC was 1.06 (95% CI=0.29-3.82) with moderate heterogeneity (I²=68%). No significant publication bias was founded (Begg's test p=0.60, Egger's test p=0.89). (Table 4)

For the overall analysis of 'Ever' vs. 'Never' [reference] of use of hormone replacement therapy and breast cancer, the estimation of summary RR of BC was 0.87 (95% CI=0.44-1.71) with no heterogeneity (I²=0%). No significant publication bias was founded (Begg's test p=0.60, Egger's test p=0.23). (Table 4)

Damma dra stima fo stama	Studies	Summary	Heterogeneity	eity Publication bias			
Reproductive factors	N	RR (95% CI) ¹	$I^{2}(\%)$	PBegg	P _{Egger}		
Age at menarche							
≤ 14	3	1.72 (0.97-3.05)	0%, <i>p</i> =0.98	0.85	0.33		
15-16		1.16 (0.70-1.91)	0%, p=0.92				
≥ 17		1.00					
Age at menopause*							
< 48	2	1.00					
48-52		0.48 (0.12-1.88)	0%, <i>p</i> =0.99	0.17	0.59		
≥ 53		0.92 (0.18-4.80)	0%, <i>p</i> =0.57				
Parity			-				
Nulliparous	1	2.22 (0.96-5.12)	-	-	-		
Parous		1.00					
Number of childbirths							
1	2	1.44 (0.51-4.03)	0%, p=0.51	1.00	0.81		
2		2.34 (0.58-9.38)	62%, p=0.11				
\geq 3		1.00					
Age at first-full term pregnancy							
< 20	3	1.00					
20-30		1.61 (0.79-3.26)	13%, <i>p</i> =0.32	0.35	0.14		
\geq 30		2.50 (1.04-6.03)	16%, p=0.30				
Breastfeeding							
Never	2	1.59 (0.52-4.82)	0%, <i>p</i> =0.73	1.00	0.81		
Ever		1.00	-				
Duration of breastfeeding	ng						
Never	1	0.91 (0.18-4.68)	-	-	-		
< 12 months		0.28 (0.03-2.42)					
\geq 12 months		1.00					
Oral contraceptives							
Never	3	1.00					
Ever		1.06 (0.29-3.82)	68%, <i>p</i> =0.05	0.60	0.89		
Hormone replacement t	herapy*		-				
Never	3	1.00					
Ever		0.87 (0.44-1.71)	0%, <i>p</i> =0.76	0.60	0.23		

Table 4. Summary relative risks of breast cancer related to each reproductive factors in Korean women (Mortality) _

1. Estimation of summary relative risks (RRs) are calculated by random effect model. *Corresponding variables are evaluated only in postmenopausal women.

Furthermore, the subgroup analysis was conducted as the division of the study design. In subgroup analysis of study design, six reproductive factors, which are age at menarche, age at menopause, parity, age at first full term pregnancy, breastfeeding, and use of HRT, were significant in the cohort study design. To give you one example, for the analysis of ' \leq 14yrs' *vs.* ' \geq 17yrs' [reference] age at menarche and breast cancer, the estimation of summary RR of BC was 1.44 (95% CI=1.32-1.58) and the analysis of '15-16yrs' *vs.* ' \geq 17yrs' [reference] age at menarche and breast cancer, the estimation of summary RR of BC was 1.21 (95% CI=1.12-1.31).

In subgroup analysis of study design, five reproductive factors, which are age at menopause, number of childbirths, age at first-full term pregnancy, breastfeeding, and use of OC, were significant in the case-control study design. (Table 5)

Cohort study Case-control study							
Reproductive	Study	Summary	Summary $I^2(\%)$		Summary	I ² (%)	
factors	Ν	RR (95% CI) ¹		Ν	RR (95% CI) ¹		
Age at menarche							
≤ 14	7	1.44 (1.32-1.58)	0%	3	1.39 (0.81-2.39)	93%	
15-16		1.21 (1.12-1.31)	0%		1.19 (0.93-1.52)	91%	
≥ 17		1.00			1.00		
Age at menopause							
< 48	6	1.00		3	1.00		
48-52		1.36 (1.14-1.63)	0%		1.21 (1.06-1.39)	81%	
≥ 53		1.66 (1.33-2.08)	0%		1.34 (1.26-1.43)	0%	
Parity							
Nulliparous	4	1.12 (1.08-1.16)	0%	3	1.38 (0.76-2.51)	94%	
Parous		1.00			1.00		
Number of chil	ldbirths						
1	4	3.03 (2.10-4.39)	0%	2	1.79 (1.72-1.86)	0%	
2		2.27 (1.72-2.99)	0%		1.28 (1.08-1.53)	47%	
\geq 3		1.00			1.00		
Age at first-ful	l term pro	egnancy					
< 20	5	1.00		2	1.00		
20-30		1.26 (1.00-1.58)	16%		1.05 (1.00-1.10)	0%	
\geq 30		1.66 (1.33-2.06)	0%		1.34 (1.10-1.62)	50%	
Breastfeeding							
Never	4	1.35 (1.14-1.60)	6%	2	1.51 (1.25-1.81)	36%	
Ever		1.00			1.00		
Duration of BF	7						
Never	1	1.24 (0.79-1.94)	-	2	2.25 (0.49-10.32)	100%	
< 6 months		1.96 (1.25-3.07)	-		1.29 (1.22-1.37)	0%	
\geq 6 months		1.00			1.00		
Use of OC							
Never**	4	1.00	0%	3	1.00	78%	
Ever		0.91 (0.76-1.09)			1.37 (1.06-1.78)		
Use of HRT							
Never	3	1.00	5%	3	1.00	86%	
Ever		1.81 (1.33-2.44)			1.36 (0.97-1.92)		

Table 5. Subgroup analysis of summary relative risks of breast cancer related to each reproductive factors in Korean women as in study design (Incidence)

Abbreviation: BF; breastfeeding, OC; oral contraceptives, HRT; hormone replacement therapy 1. Estimation of summary relative risks (RRs) are calculated by random effect model.

*Corresponding variables are evaluated only in postmenopausal women.

**The cohort study, which is conducted in the hospital of Gangnam Center, was excluded by the sensitivity analysis.

2. Meta-analysis of the Global population

The results listed below are the estimation of summary RR of each reproductive factors and breast cancer in Global population. In this analysis, the first categories of each reproductive variable is the reference.

For the overall analysis of the menarche age and breast cancer, we included 44 studies. For the analysis of the association between age at menarche and breast cancer, the '15-16 years' vs. ' \leq 14 years' [reference] risks ratio was 0.95 (95% CI=0.90-0.99) with high heterogeneity (I²=80%, p<0.01). The category of ' \geq 17years' vs. ' \leq 14 years' [reference] risks ratio was 0.85 (95% CI=0.79-0.91) with high heterogeneity (I²=87%, p<0.01).

For the overall analysis of the menopause age and breast cancer, we included 28 studies. For the analysis of the association between age at menopause and breast cancer, '48-52 years' *vs.* '< 48years' [reference] risk ratio was 1.21 (95% CI=1.13-1.25) with moderate heterogeneity (I²=27%, *p*=0.09). The category of ' \geq 53 years' *vs.* '< 48years' [reference] risk ratio was 1.32 (95% CI=1.25-1.40) with moderate heterogeneity (I²=38%, *p*=0.02).

For the overall analysis of family history and breast cancer, we included 31 studies. For the overall analysis of 'Ever' *vs.* 'Never' [reference] of family history and breast cancer, the estimation of summary RR of BC was 1.58 (95% CI=1.48-1.69) with high heterogeneity ($I^2=84\%$, p<0.01).

For the overall analysis of the parity and breast cancer, we included 42 studies. For the overall analysis of 'Parous' *vs.* 'Nulliparous' [reference] of parity and breast cancer, the estimation of summary RR of BC was 0.79 (95% CI=0.74-0.85) with high heterogeneity (I^2 =89%, p<0.01).

For the overall analysis of number of childbirths and breast cancer among parous women, we included 40 studies. For the analysis of the association between number of childbirths and breast cancer, '2' vs. '1' [reference] risk ratio was 0.91 (95% CI=0.86-0.96) with high heterogeneity (I²=84%, p<0.01). The category of ' \geq 3' vs. '1' [reference] risk ratio was 0.77 (95% CI=0.71-0.83) with high heterogeneity (I²=86%, p<0.01).

For the overall analysis of age at first full-term pregnancy and breast cancer among parous women, we included 53 studies. The category of '20-30 years' vs. '<20 years' [reference] risk ratio was 1.10 (95% CI=1.06-1.14) with relatively high heterogeneity (I²=72%, p<0.01). The category of ' \geq 30 years' vs. '< 20 years' [reference] risk ratio was 1.31 (95% CI=1.24-1.38) with moderate heterogeneity (I²=68%, p<0.01).

For the overall analysis of duration of breastfeeding and breast cancer, we included 20 studies. The category of '< 6 months' *vs*. 'Never' [reference] risk ratio was 0.82 (95% CI=0.64-1.06) with high heterogeneity (I²=99%, p<0.01). The category of '≥ 6 months' *vs*. 'Never' [reference] risk ratio was 0.80 (95% CI=0.58-1.11) with high heterogeneity (I²=99%, p=0.00).

For the overall analysis of use of oral contraceptives and breast cancer, we included 45 studies. For the overall analysis of 'Ever' *vs.* 'Never' [reference] of oral contraceptives and breast cancer, the estimation of summary RR of BC was 1.07 (95% CI=0.99-1.15) with high heterogeneity (I^2 =90%, p<0.01).

For the overall analysis of duration of oral contraceptives and breast cancer, we included 29 studies. The category of '< 5 years' vs. 'Never' [reference] risk ratio was 1.07 (95% CI=1.02-1.13) with relatively high heterogeneity (I²=52%, p<0.01). The category of '≥ 5 years' vs. 'Never' [reference] risk ratio was 1.10 (95% CI=1.04-1.17) with relatively high heterogeneity (I²=58%, p<0.01).

For the overall analysis of use of combination HRT and breast cancer, we included 42 studies. For the overall analysis of 'Ever' *vs.* 'Never' [reference] of combination

of HRT and breast cancer, the estimation of summary RR of BC was 1.29 (95% CI=1.18-1.41) with high heterogeneity (I²=86%, p<0.01). For the overall analysis of use of estrogen only HRT and breast cancer, we included 30 studies. For the overall analysis of 'Ever' *vs.* 'Never' [reference] of estrogen only HRT and breast cancer, the estimation of summary RR of BC was 1.11 (95% CI=1.04-1.18) with moderate heterogeneity (I²=52%, p<0.01). (Table 6)

Donna du ativa fa atana	Studies	Summary	Heterogeneity	Publication bias		
Reproductive factors	Ν	RR (95% CI) ¹	I ² (%)	P _{Begg}	PEgger	
Age at menarche						
≤ 14	44	1.00				
15-16		0.95 (0.90-0.99)	80%, <i>p</i> < 0.01	0.13	0.06	
≥17		0.85 (0.79-0.91)	87%, p < 0.01	0.72	0.00	
Age at menopause*						
< 48	28	1.00				
48-52		1.21 (1.16-1.25)	27%, <i>p</i> =0.09	0.53	0.90	
≥ 53		1.32 (1.25-1.40)	38%, <i>p</i> =0.02	0.04	0.26	
Family history of BC						
Never	31	1.00				
Ever		1.58 (1.48-1.69)	84%, <i>p</i> < 0.01	0.85	0.88	
Parity						
Nulliparous	42	1.00				
Parous		0.79 (0.74-0.85)	89%, <i>p</i> < 0.01	0.91	0.34	
Number of childbirths						
1	40	1.00				
2		0.91 (0.86-0.96)	84%, p < 0.01	0.23	0.94	
\geq 3		0.77 (0.71-0.83)	86%, <i>p</i> < 0.01	0.07	0.65	
Age at first-full term pr	egnancy					
< 20	53	1.00				
20-30		1.10 (1.06-1.14)	72%, p < 0.01	0.02	0.92	
\geq 30		1.31 (1.24-1.38)	68%, <i>p</i> < 0.01	0.06	0.38	
Duration of breastfeeding	ng					
Never	20	1.00				
< 6 months		0.82 (0.64-1.06)	99%, <i>p</i> < 0.01	0.03	0.22	
\geq 6 months		0.80 (0.58-1.11)	99%, <i>p</i> =0.00	0.00	0.33	
Oral contraceptives						
Never	45	1.00				
Ever		1.07 (0.99-1.15)	90%, <i>p</i> < 0.01	0.14	0.22	
Duration of OC use						
Never	29	1.00				
< 5 years		1.07 (1.02-1.13)	52%, <i>p</i> < 0.01	0.71	0.26	
\geq 5 years		1.10 (1.04-1.17)	58%, <i>p</i> < 0.01	0.27	0.71	
Hormone replacement therapy*						
Combination HRT		1.00				
Never	42	1.00				
Ever		1.29 (1.18-1.41)	86%, <i>p</i> < 0.01	0.45	0.17	
Estrogen only HRT	•	1.00				
Never	30	1.00		0.45		
Ever		1.11 (1.04-1.18)	52%, <i>p</i> < 0.01	0.68	0.14	

 Table 6. Summary relative risks of breast cancer related to each reproductive factors in Global population

Abbreviation: OC; oral contraceptive, HRT; hormone replacement therapy

1. Estimation of summary relative risks (RRs) are calculated by random effect model.

*Corresponding variables are evaluated only in postmenopausal women.

3. Subgroup analysis of Global population

Furthermore, to reduce the high heterogeneity of each reproductive factors, subgroup analysis was conducted. Total studies, which are collected for systematic review, were analyzed as subgroup using study design, country (continent), and publication year. For the subgroup analysis of the publication date, raw data were excluded.

A. Study design

As shown in Table 7, subgroup analysis by study design was conducted. For the analysis of the association between age at menarche and breast cancer, only the cohort study design was significant in the study of subgroup design. For the analysis of the association between age at menarche and breast cancer, the '15-16 years' vs. ' \leq 14 years' [reference] risks ratio was 0.94 (95% CI=0.89-0.99) with moderate heterogeneity (I²=65%, p<0.01). The category of ' \geq 17years' vs. ' \leq 14 years' [reference] risks ratio was 0.84 (95% CI=0.76-0.92) with high heterogeneity (I²=79%, p<0.01).

For the analysis of the association between number of childbirths and breast cancer among parous women, only the case-control study design was significant in the study of subgroup design. For the analysis of the association between number of childbirths and breast cancer, '2' vs. '1' [reference] risk ratio was 0.90 (95% CI=0.84-0.97) with high heterogeneity (I²=89%, p<0.01). The category of ' \geq 3' vs. '1' [reference] risk ratio was 0.74 (95% CI=0.68-0.81) with high heterogeneity (I²=84%, p<0.01).

For the overall analysis of use of oral contraceptives and breast cancer, only the cohort study design was significant in the study of subgroup design. For the overall analysis of 'Ever' *vs.* 'Never' [reference] of oral contraceptives and breast cancer, the estimation of summary RR of BC was 1.06 (95% CI=1.00-1.12) with moderate heterogeneity (I²=52%, p<0.01). The risk value was marginally significant.

For the overall analysis of duration of oral contraceptives and breast cancer, only the case-control study design was significant in the study of subgroup design. The
category of '< 5 years' vs. 'Never' [reference] risk ratio was 1.07 (95% CI=1.00-1.15) with relatively high heterogeneity (I²=59%, p<0.01). The category of ' \geq 5 years' vs. 'Never' [reference] risk ratio was 1.16 (95% CI=1.00-1.14) with relatively high heterogeneity (I²=51%, p<0.01).

For the overall analysis of use of estrogen only HRT and breast cancer, only the cohort study design was significant in the study of subgroup design. For the overall analysis of 'Ever' *vs.* 'Never' [reference] of estrogen only HRT and breast cancer, the estimation of summary RR of BC was 1.16 (95% CI=1.09-1.22) with no heterogeneity ($I^2=0\%$, p<0.01).

For the analysis of the association between age at menopause, family history of BC, parity, age at first full-term pregnancy, combination HRT and breast cancer, both study design, which are cohort and case-control study, was significant in the study of subgroup design.

For the analysis of the association between duration of breastfeeding and breast cancer neither the study design was significant (Table 7).

		Cohort stud	ły		Case-control s	tudy
Reproductive	Studies	Summary RR	Heterogeneity	Studies	Summary RR	Heterogeneity
	IN	(95% CI) ²	I ⁻ (%)	IN	(95% CI) ²	I ⁻ (%)
Age at menarche	10	1.00		24	1.00	
≤ 14	18	1.00		26	1.00	0.104
15-16		0.94 (0.89-0.99)	65%, p < 0.01		0.96 (0.89-1.02)	81%, <i>p</i> < 0.01
≥ 17/		0.84 (0.76-0.92)	79%, p < 0.01		0.86 (0.78-0.95)	$8^{\prime}/\%, p < 0.01$
Age at menopause*	1.5	1.00		12	1.00	
< 48	15	1.00	00/ 0.62	13	1.00	500/ 0.02
48-52		1.19 (1.14-1.24)	0%, p = 0.62		1.22 (1.15-1.29)	50%, p = 0.02
≥ 33		1.30 (1.23-1.51)	48%, <i>p</i> =0.02		1.31 (1.22-1.40)	25%, <i>p</i> =0.20
Family history of BC	16	1.00		15	1.00	
INO X	10	1.00	0.00/ .0.01	15	1.00	700/ .0.01
Y es		1.59 (1.40-1.72)	88%, <i>p</i> < 0.01		1.50 (1.38-1.70)	/8%, <i>p</i> < 0.01
	20	1.00		22	1.00	
Numparous	20	1.00	920/	22	1.00	000/ < 0.01
Parous		0.85 (0.80-0.92)	83%, <i>p</i> < 0.01		0.75 (0.67-0.84)	90%, p < 0.01
Number of childbirths	16	1.00		24	1.00	
1	10	1.00	(20) = (0.01)	24		200/
2		0.93(0.80-1.01)	63%, p < 0.01		0.90 (0.84-0.97)	89%, p < 0.01
≤ 3		0.82 (0.72-0.93)	85%, <i>p</i> < 0.01		0.74 (0.08-0.81)	84%, p < 0.01
Age at first-full term pr		1.00		21	1.00	
< 20	22	1.00	670/m < 0.01	51	1.00	750/m < 0.01
> 20-30		$1.12(1.03 \cdot 1.21)$ 1.24(1.23, 1.47)	67%, p < 0.01		1.09(1.04-1.15) 1.20(1.21,1.20)	73%, p < 0.01 74%, p < 0.01
≥ 30	na	1.34 (1.23-1.47)	4 <i>3%</i> , <i>p</i> =0.01		1.50 (1.21-1.59)	74%, p < 0.01
Never	ug 6	1.00		14	1.00	
s 6 months	0	1.00	56% n = 0.05	14	1.00 0.78 (0.55, 1.11)	0.004 m < 0.01
< 0 months		0.93(0.89-1.02) 0.05(0.87,1.02)	50%, p = 0.05		0.78(0.33-1.11) 0.78(0.40, 1.22)	99%, p < 0.01
≥ 0 months		0.95 (0.87-1.05)	00%, <i>p</i> =0.01		0.78 (0.49-1.23)	99%, p < 0.01
Navar	20	1.00		25	1.00	
Ever	20	1.00 1.06(1.00, 1.12)	52% n < 0.01	25	1.00 1.08(0.96, 1.23)	0.4% n < 0.01
Duration of OC use		1.00 (1.00-1.12)	52%, p < 0.01		1.08 (0.90-1.23)	94%, p < 0.01
Never	8	1.00		21	1.00	
< 5 vears	0	1.00 1.08(0.00, 1.17)	26% n = 0.22	21	1.00 1.07(1.00, 1.15)	50% n < 0.01
< 5 years		1.08 (0.99-1.17)	20%, p = 0.22 30%, p = 0.19		1.07 (1.00 - 1.13) 1.06 (1.00 - 1.14)	59%, p < 0.01
<u>- 5 years</u>	herany*	1.10 (1.10-1.27)	30%, <i>p</i> =0.19		1.00 (1.00-1.14)	51%, p < 0.01
Combination HRT	nerapy					
Never	24	1.00		18	1.00	
Ever		1.36 (1.18-1.56)	87%, p < 0.01		1.21 (1.06-1.38)	85%, <i>p</i> < 0.01
Estrogen only HRT						
Never	15	1.00		15	1.00	
Ever		1.16 (1.09-1.22)	0%, p = 0.52		1.06 (0.95-1.17)	70%, p < 0.01

Table 7. Summary relative risks of breast cancer related to each reproductive factors in Global population of subgroup analysis by study design

Abbreviation: OC; oral contraceptive, HRT; hormone replacement therapy 1. Estimation of summary relative risks (RRs) are calculated by random effect model.

*Corresponding variables are evaluated only in postmenopausal women.

B. Country (Continent)

As shown in Table 8, subgroup analysis by country was conducted. For the analysis of the association between age at menarche and breast cancer, the result of Europe and N/S America was significant. For the analysis of the association between age at menarche and breast cancer of subgroup analysis by country in Europe, the '15-16 years' *vs.* ' \leq 14 years' [reference] risks ratio was 0.94 (95% CI=0.90-0.99) and the category of ' \geq 17years' *vs.* ' \leq 14 years' [reference] risks ratio was 0.94 (95% CI=0.90-0.99) and the category of ' \geq 17years' *vs.* ' \leq 14 years' [reference] risks ratio was 0.89 (95% CI=0.82-0.96). For the analysis of the association between age at menarche and breast cancer of subgroup analysis by country in N/S America, the '15-16 years' *vs.* ' \leq 14 years' [reference] risks ratio was 0.96 (95% CI=0.93-0.99) and the category of ' \geq 17years' *vs.* ' \leq 14 years' [reference] risks ratio was 0.87 (95% CI=0.81-0.93). Further analysis of secondary subgroups by study design from primary subgroup results, the result of Asia was significant in the cohort study design and the result of Europe was significant in the case-control study design.

For the analysis of the association between age at menopause and breast cancer, all results were significant. For the analysis of the association between age at menopause and breast cancer of subgroup analysis by country in Europe, the '48-52 years' *vs.* '< 48 years' [reference] risks ratio was 1.13 (95% CI=1.08-1.19) and the category of ' \geq 53years' *vs.* '< 48 years' [reference] risks ratio was 1.18 (95% CI=1.10-1.27). For the analysis of the association between age at menopause and breast cancer of subgroup analysis by country in N/S America, the '48-52 years' *vs.* '< 48 years' [reference] risks ratio was 1.23 (95% CI=1.18-1.29) and the category of ' \geq 53years' *vs.* '< 48 years' [reference] risks ratio was 1.35 (95% CI=1.23-1.48). For the analysis of the association between age at menarche and breast cancer of subgroup analysis by country in Asia, the '48-52 years' *vs.* '< 48 years' [reference] risks ratio was 1.25 (95% CI=1.16) and the category of ' \geq 53years' *vs.* '< 48 years'

[reference] risks ratio was 1.38 (95% CI=1.30-1.46). Further analysis of secondary subgroups by study design from primary subgroup results, all results were also significant in both study design.

For the analysis of the association between family history and breast cancer, all results were significant. For the analysis of the association between family history and breast cancer of subgroup analysis by country in Europe, the 'Yes' *vs.* 'No' [reference] risks ratio was 1.69 (95% CI=1.49-1.92). For the analysis of the association between family history and breast cancer of subgroup analysis by country in N/S America, the 'Yes' *vs.* 'No' [reference] risks ratio was 1.51 (95% CI=1.43-1.60). For the analysis of the association between family history in Asia, the 'Yes' *vs.* 'No' [reference] risks ratio was 2.42 (95% CI=1.64-3.57). Further analysis of secondary subgroups by study design from primary subgroup results, all results were also significant in both study design.

For the analysis of the association between parity and breast cancer, all results were significant. For the analysis of the association between parity and breast cancer of subgroup analysis by country in Europe, the 'Parous' *vs.* 'Nulliparous' [reference] risks ratio was 0.84 (95% CI=0.77-0.91). For the analysis of the association between parity and breast cancer of subgroup analysis by country in N/S America, the 'Parous' *vs.* 'Nulliparous' [reference] risks ratio was 0.81 (95% CI=0.74-0.88). For the analysis of the association between parity and breast cancer of subgroup analysis by country in N/S America, the 'Parous' *vs.* 'Nulliparous' [reference] risks ratio was 0.81 (95% CI=0.74-0.88). For the analysis of the association between parity and breast cancer of subgroup analysis by country in Asia, the 'Parous' *vs.* 'Nulliparous' [reference] risks ratio was 0.72 (95% CI=0.55-0.93). Further analysis of secondary subgroups by study design from primary subgroup results, the result of Europe was significant in the cohort study design and the result of N/S America and Asia were significant in the case-control study design.

For the analysis of the association between number of childbirths and breast cancer among parous women, the result of Europe was significant. For the analysis of the association between number of childbirths and breast cancer of subgroup analysis by country in Europe, the '2 children' *vs.* '1 child' [reference] risks ratio was 0.91 (95% CI=0.88-0.95) and the category of ' \geq 3 children' *vs.* '1 child' [reference] risks ratio was 0.80 (95% CI=0.74-0.86). Further analysis of secondary subgroups by study design from primary subgroup results, the result of Europe was significant in the cohort study design and the result of Europe and N/S America was significant in the case-control study design.

For the analysis of the association between age at first full-term pregnancy and breast cancer, all results were significant. For the analysis of the association between age at first full-term pregnancy and breast cancer of subgroup analysis by country in Europe, the '20-30 years' vs. '< 20 years' [reference] risks ratio was 1.09 (95% CI=1.02-1.17) and the category of the ' \geq 30 years' vs. '< 20 years' [reference] risks ratio was 1.26 (95% CI=1.15-1.38). For the analysis of the association between age at first full-term pregnancy and breast cancer of subgroup analysis by country in N/S America, the '20-30 years' vs. '< 20 years' [reference] risks ratio was 1.09 (95%) CI=1.03-1.17) and the category of the ' \geq 30 years' vs. '< 20 years' [reference] risks ratio was 1.34 (95% CI=1.23-1.46). For the analysis of the association between age at first full-term pregnancy and breast cancer of subgroup analysis by country in Asia, the '20-30 years' vs. '< 20 years' [reference] risks ratio was 1.12 (95% CI=1.03-1.22) and the category of the ' \geq 30 years' vs. '< 20 years' [reference] risks ratio was 1.36 (95% CI=1.23-1.51). Further analysis of secondary subgroups by study design from primary subgroup results, the result of Europe and Asia was significant in the cohort study design and the result of N/S America was significant in the case-control study design.

For the analysis of the association between duration of breastfeeding and breast cancer, the result of N/S America was significant. For the analysis of the association between duration of breastfeeding and breast cancer of subgroup analysis by country in N/S America, the '< 6 months' *vs.* 'Never' [reference] risks ratio was 0.91 (95% CI=0.88-0.95) and the category of the ' \geq 6 months' *vs.* 'Never' [reference] risks ratio was 0.89 (95% CI=0.82-0.96). Further analysis of secondary subgroups by study design from primary subgroup results, the result of Asia was significant in the cohort study design and the result of N/S America was significant in the case-control study design.

For the analysis of the association between oral contraceptive use and breast cancer, none of the result was significant. However, further analysis of secondary subgroups by study design from primary subgroup results, the result of Europe was significant in the cohort study design and the result of Asia was significant in the case-control study design. For the analysis of the association between duration of oral contraceptives and breast cancer, the result of Europe was significant. For the analysis of the association between duration of oral contraceptive and breast cancer duration between duration of oral contraceptive and breast cancer of subgroup analysis by country in N/S America, the '< 5 years' vs. 'Never' [reference] risks ratio was 1.13 (95% CI=1.04-1.23) and the category of the ' \geq 5 years' vs. 'Never' [reference] risks ratio was 1.12 (95% CI=1.05-1.20). Further analysis of secondary subgroups by study design from primary subgroup results, the result of Europe was significant in the cohort study design.

For the analysis of the association between combination HRT use and breast cancer, all result was significant. For the analysis of the association between combination HRT and breast cancer of subgroup analysis by country in Europe, the 'Ever' *vs.* 'Never' [reference] risks ratio was 1.38 (95% CI=1.18-1.60). For the analysis of the association between combination HRT and breast cancer of subgroup analysis by

country in N/S America, the 'Ever' vs. 'Never' [reference] risks ratio was 1.18 (95% CI=1.03-1.34). For the analysis of the association between combination HRT and breast cancer of subgroup analysis by country in Asia, the 'Ever' vs. 'Never' [reference] risks ratio was 1.50 (95% CI=1.18-1.90). Further analysis of secondary subgroups by study design from primary subgroup results, the result of Europe and Asia was significant in the cohort study design and the result of Europe was significant in case-control study design. For the analysis of the association between estrogen only HRT use and breast cancer, the result of Europe and N/S America was significant. For the analysis of the association between estrogen only HRT and breast cancer of subgroup analysis by country in Europe, the 'Ever' vs. 'Never' [reference] risks ratio was 1.17 (95% CI=1.03-1.32). For the analysis of the association between estrogen only HRT and breast cancer of subgroup analysis by country in N/S America, the 'Ever' vs. 'Never' [reference] risks ratio was 1.07 (95% CI=1.01-1.14). Further analysis of secondary subgroups by study design from primary subgroup results, the result of Europe and N/S America was significant in the cohort study design (Table 8).

Table 8. Summary rela	tive ris	ks of breast cancer re Europe	lated to each repro	ductive	<u>: factors in Global pc</u> N/S Americ	<u>pulation of subgr(</u> ca	oup ana	<u>lysis by country (cc</u> Asia	ontinents)
Reproductive factors	Z	Summary RR (95%, CT) ¹	Heterogeneity 1 ² (%)	z	Summary RR (95%, CD ¹	Heterogeneity 1 ² (%)	Z	Summary RR (95%, CT) ¹	Heterogeneity 1 ² (%)
Age at menarche									
< 14	14	1.00		18	1.00		12	1.00	
15-16		$0.94 \ (0.90-0.99)$	41%, p = 0.05		0.96 (0.93-0.99)	10%, p = 0.34		0.89 (0.76-1.03)	90%, $p < 0.01$
≥ 17		0.89 (0.82 - 0.96)	61%, p < 0.01		0.87 (0.81 - 0.93)	53%, $p < 0.01$		0.78 (0.63-0.96)	94%, p < 0.01
Cohort study			4			•			4
∧ 14	4	1.00		7	1.00		7	1.00	
15-16		0.98(0.89-1.08)	72%, p = 0.01		0.96(0.90-1.01)	38%, p = 0.14		0.82 (0.68-0.99)	68%, p < 0.01
≥ 17		0.90 (0.77-1.06)	78%, p < 0.01		0.90(0.85 - 0.96)	25%, p = 0.24		0.70 (0.65-0.88)	61%, p = 0.02
Case-control study									4
≤ 14	10	1.00		11	1.00		5	1.00	
15-16		$0.93 \ (0.88-0.99)$	22%, p = 0.24		0.97 (0.91-1.02)	0%, p = 0.52		0.97 (0.80-1.17)	91%, p < 0.01
≥ 17		0.88 (0.80 - 0.98)	54%, p = 0.02		$0.84\ (0.74-0.96)$	60%, $p < 0.01$		0.86(0.69-1.08)	95%, p < 0.01
Age at menopause*									
< 48	×	1.00		6	1.00		11	1.00	
48-52		1.13 (1.08-1.19)	0%, p = 0.63		1.23 (1.18-1.29)	0%, p = 0.63		1.25 (1.16-1.34)	22%, p=0.23
≥ 53		1.18 (1.10-1.27)	2%, p = 0.41		1.35 (1.23-1.48)	36%, p = 0.13		1.38 (1.30-1.46)	0%, p = 0.55
Cohort study									
< 48	S	1.00		0	1.00		8	1.00	
48-52		1.11 (1.03-1.19)	0%, p = 0.89		1.19 (1.05-1.35)	46%, p = 0.18		1.31 (1.13-1.52)	0%, p = 0.94
≥ 53		1.17 (1.05-1.30)	4%, p = 0.39		1.32 (1.10-1.58)	80%, p = 0.02		1.73 (1.42-2.10)	0%, p = 0.93
Case-control study									
< 48	б	1.00		٢	1.00		б	1.00	
48-52 > 52		1.18 (1.06-1.31)	43%, p = 0.17		1.25 (1.16-1.34)	0%, p = 0.65		1.21 (1.06-1.39)	81%, p < 0.01
Equily history of BC		(14-1-/0-1) (7-1	+7.0- d .0000		(cc.1-02.1) UC.1	10%, p - 0.27		(04-11-07-11) +0-1	0.10, P -0.12
	0	1.00		10	1.00		-	1 00	
Ves	0	1.00 1 60 (1 40-1 02)	88% <i>n</i> < 0.01	IJ	1.00 1.51 (1.42-1.60)	$70\% \ n < 0.01$	4	2.42 (1.64-3.57)	36% n=0.20
Cohort study						10:0 < 1:000			07:0-d.000
No	4	1.00		10	1.00		6	1.00	
Yes		1.76 (1.52-2.04)	89%, p < 0.01		1.48 (1.42-1.53)	$18\%, p{=}0.28$		3.02 (1.93-4.73)	$0\%, p{=}0.84$
Case-control study	4								
No		1.00		6	1.00		7	1.00	
Yes		1.57 (1.18-2.11)	86%, p < 0.01		1.51 (1.29-1.76)	80%, p < 0.01		2.04 (1.06-3.96)	$49\%, p{=}0.16$

0.89 (0.82-0.96)	
≥ 17	

Parity**									
Nulliparous	13	1.00		17	1.00		12	1.00	
Parous		$0.84 \ (0.77 - 0.91)$	80%, p < 0.01		$0.81 \ (0.74 - 0.88)$	88%, p < 0.01		0.72 (0.55-0.93)	93%, p < 0.01
Cohort study									
Nulliparous	٢	1.00		S	1.00		×	1.00	
Parous		0.81 (0.76-0.87)	43%, p=0.01		0.92 (0.77-1.09)	95%, p < 0.01		0.80 (0.61-1.04)	57%, p=0.02
Case-control study									
Nulliparous	9	1.00		12	1.00		4	1.00	
Parous		0.85(0.69-1.04)	90%, p < 0.01		$0.76\ (0.68-0.84)$	79%, p < 0.01		0.53 (0.46 - 0.61)	28%, p=0.24
Number of childbirths*	*								
1	17	1.00		16	1.00		7	1.00	
2		$0.91 \ (0.88-0.95)$	$37\%. \ p = 0.06$		0.95 (0.90-1.01)	$23\%. \ p = 0.19$		0.78 (0.60-1.02)	83%. $p < 0.01$
$\widetilde{\omega}$		0.80(0.74-0.86)	56%, $p < 0.01$		0.80 (0.72-0.89)	84%, $p < 0.01$		0.58(0.48-0.71)	59%, p = 0.02
Cohort study		~			~			~	
1	7	1.00		4	1.00		5	1.00	
5		$0.88 \ (0.83-0.94)$	17%, $p = 0.30$		1.04 (0.96-1.14)	$7\%. \ p = 0.36$		0.78 (0.53-1.16)	77%. $p < 0.01$
\\ 3		0.78 (0.74-0.82)	0%, p = 0.51		1.03 (0.92-1.15)	57%, p = 0.07		0.53(0.33-0.84)	72%, p < 0.01
Case-control study					~				
1	10	1.00		12	1.00		0	1.00	
2		0.94 (0.91-0.97)	$8\%. \ n = 0.37$		0.91 (0.86-0.97)	0%. $n = 0.54$		0.75 (0.56-1.00)	66%, $n = 0.09$
· ^		0.79 (0.70-0.90)	67%, p < 0.01		0.74 (0.68-0.81)	58%, $p < 0.01$		0.59 (0.56-0.62)	0%, p = 0.80
Age at first-full term pr	egnand	cy**							
< 20	16	1.00		22	1.00		15	1.00	
20-30		1.09 (1.02-1.17)	79%, $p < 0.01$		1.09 (1.03-1.17)	72%, $p < 0.01$		1.12 (1.03-1.22)	43%, p = 0.04
≥ 30		1.26 (1.15-1.38)	83%, p < 0.01		1.34 (1.23-1.46)	57%, p < 0.01		1.36 (1.23-1.51)	28%, p = 0.15
Cohort study									
< 20	9	1.00		9	1.00		10	1.00	
20-30		1.16 (1.11-1.22)	0%, p = 0.58		1.02 (0.86-1.21)	84%, $p < 0.01$		1.28 (1.10-1.48)	14%, p = 0.31
≥ 30		1.34 (1.17-1.53)	59%, p = 0.03		1.23 (1.02-1.49)	61%, p = 0.03		1.60 (1.34-1.91)	0%, p = 0.78
Case-control study									
< 20	10	1.00		16	1.00		S	1.00	
20-30		1.06(0.95 - 1.19)	87%, p < 0.01		1.12 (1.06-1.20)	56%, p < 0.01		1.05 (0.98-1.13)	43%, p = 0.13
≥ 30		1.22 (1.05-1.43)	86%, p < 0.01		1.38 (1.25-1.52)	56%, p < 0.01		1.25 (1.07-1.46)	64%, p = 0.03
Duration of breastfeedin	gu								
Never	4	1.00		12	1.00		4	1.00	
< 6 months		1.00 (0.85-1.17)	78%, p < 0.01		$0.91\ (0.88-0.95)$	0%, p = 0.71		0.59(0.30-1.16)	99%, $p < 0.01$
≥ 6 months		0.96 (0.81-1.15)	80%, p < 0.01		0.89 (0.82 - 0.96)	68%, p < 0.01		0.56 (0.22-1.38)	99%, p < 0.01

Cohort study Never < 6 months 26 months	7	1.00 1.04 (0.94-1.15) 1.00 (0.92-1.08)	43%, p = 0.19 0%, p = 0.81	ε	1.00 0.93 (0.89-0.97) 0.94 (0.84-1.06)	0%, p = 0.71 79%, p < 0.01	н	1.00 0.80 (0.67-0.96) 0.67 (0.48-0.93)	
<i>Case-control stuay</i> Never < 6 months ≥ 6 months	7	$\begin{array}{c} 1.00\\ 0.90\ (0.51-1.58)\\ 0.90\ (0.52-1.55)\end{array}$	92%, $p < 0.01$ 93%, $p < 0.01$	6	1.00 0.87 (0.82-0.93) 0.86 (0.78-0.95)	0%, $p = 0.7545%$, $p = 0.07$	ς	$\begin{array}{c} 1.00\\ 0.54\ (0.24\text{-}1.18)\\ 0.52\ (0.18\text{-}1.52)\end{array}$	100%, $p < 0.01100%$, $p < 0.01$
Oral contraceptives	19	1 00		9	, 1 OU		10	1 00	
Ever	2	1.06(0.96-1.18)	88%, p < 0.01	01	1.07 (1.00-1.14)	48%, p = 0.02	01	1.04 (0.82-1.33)	92%, p < 0.01
Cohort study Never	1		,	ç	1 00	,	Г	1 00	,
Ever		1.09 (1.01-1.17)	62%, $p < 0.01$	1	1.10(0.94-1.29)	47%, p = 0.17	-	0.93 (0.84-1.02)	0%, p = 0.60
Case-control study									
Never	8	1.00		14	1.00		\mathfrak{c}	1.00	
Ever		1.01 (0.82-1.26)	93%, p < 0.01		I.06(0.99 - I.14)	50%, p = 0.02		1.37 (1.06-1.78)	78%, p = 0.01
Duration of OC use									
Never	11	1.00		15	1.00		ε	1.00	
< 5 years		1.13 (1.04-1.23)	53%, p = 0.22		1.04 (0.96-1.12)	54%, $p < 0.01$		0.86 (0.65-1.12)	0%, p = 0.94
≥ 5 years		1.12 (1.05-1.20)	31%, p = 0.15		1.10 (1.01-1.20)	65%, $p < 0.01$		1.08 (0.76-1.52)	30%, p = 0.24
Cohort study									
Never	4	1.00		0	1.00		0	1.00	
< 5 years		1.11 (1.02-1.22)	33%, p = 0.21		0.96 (0.76-1.22)	36%, p = 0.21		0.90(0.53 - 1.55)	0%, p = 0.78
≥ 5 years		1.18 (1.09-1.27)	47%, p = 0.13		1.31 (1.08-1.58)	0%, p = 0.49		0.86(0.53 - 1.39)	0%, p = 0.34
Case-control study									
Never	7	1.00		13	1.00		-	1.00	
< 5 years		1.16 (1.00-1.34)	64%, p = 0.01		1.05(0.97 - 1.14)	57%, p < 0.01		0.84 (0.61-1.15)	
≥ 5 years		1.05(0.96-1.14)	0%, p = 0.58		I.08(0.99-I.17)	65%, $p < 0.01$		1.27 (0.97-1.67)	
Hormone replacement	therap	y*							
Combination HRT									
Never	17	1.00		19	1.00		9	1.00	
Ever		1.38(1.18-1.60)	87%, p < 0.01		1.18 (1.03-1.34)	80%, p < 0.01		1.50 (1.18-1.90)	71%, p < 0.01
Cohort study									
Never	11	1.00		10	1.00		б	1.00	
Ever		1.48 (1.19-1.84)	88%, p < 0.01		1.20(0.98-1.46)	87%, $p < 0.01$		1.81 (1.33-2.44)	5%, p = 0.35
Case-control study									

Never	9	1.00		6	1.00		ю	1.00	
Ever		1.21 (1.03-1.43)	69%, p < 0.01		1.16 (0.98-1.37)	60%, p = 0.01		1.36 (0.97-1.92)	86%, p < 0.01
Estrogen only HRT									
Never	13	1.00		16	1.00		-	1.00	
Ever		1.17 (1.03-1.32)	67%, $p < 0.01$		1.07 (1.01-1.14)	20%, p = 0.22		1.40(0.53-3.69)	
Cohort study									
Never	7	1.00		٢	1.00		1	1.00	
Ever		1.19 (1.02-1.39)	29%, p = 0.21		1.13 (1.06-1.21)	0%, p = 0.75		1.40 (0.53-3.69)	
Case-control study									
Never	9	1.00		6	1.00		0		
Ever		1.14(0.93-1.40)	82%, p < 0.01		1.01 (0.92-1.11)	34%, p = 0.15			
*Corresponding variable	was and	alysis only in postmeno	pausal women.						

**Corresponding variable was analysis only in parous women. Estimation of summary relative risk (RRs) are calculated by random effect model.

C. Publication date

As shown in Table 9, subgroup analysis by publication date was conducted. Most of the reproductive factors, which were collected for systematic review, were divided based on publication in 2010. For the analysis of the association between age at menarche and breast cancer of subgroup analysis by publication date after 2010, the '15-16 years' vs. ' \leq 14 years' [reference] risks ratio was 0.94 (95% CI=0.90-0.98) and the category of ' \geq 17 years' vs. ' \leq 14 years' [reference] risks ratio was 0.84 (95%) CI=0.77-0.92). For the analysis of the association between age at menarche and breast cancer of subgroup analysis by publication date before 2010, the '15-16 years' vs. ' \leq 14 years' [reference] risks ratio was 0.94 (95% CI=0.90-0.98) and the category of ' \geq 17 years' vs. ' \leq 14 years' [reference] risks ratio was 0.85 (95% CI=0.79-0.91). For the analysis of the association between age at menopause and breast cancer of subgroup analysis by publication date after 2010, the '48-52 years' vs. '< 48 years' [reference] risks ratio was 1.17 (95% CI=1.13-1.22) and the category of ≤ 53 years' vs. '< 48 years' [reference] risks ratio was 1.33 (95% CI=1.22-1.47). For the analysis of the association between age at menopause and breast cancer of subgroup analysis by publication date before 2010, the '48-52 years' vs. '< 48 years' [reference] risks ratio was 1.24 (95% CI=1.15-1.33) and the category of \geq 53 years' vs. \leq 48 years' [reference] risks ratio was 1.31 (95% CI=1.18-1.45).

For the analysis of the association between family history and breast cancer of subgroup analysis by publication date after 2010, the 'Yes' *vs.* 'No' [reference] risks ratio was 1.57 (95% CI=1.46-1.67). For the analysis of the association between family history and breast cancer of subgroup analysis by publication date before 2010, the 'Yes' *vs.* 'No' [reference] risks ratio was 1.58 (95% CI=1.40-1.78).

For the analysis of the association between parity and breast cancer of subgroup analysis by publication date after 2000, the 'Parous' *vs.* 'Nulliparous' [reference] risks ratio was 0.82 (95% CI=0.77-0.87). For the analysis of the association between

parity and breast cancer of subgroup analysis by publication date before 2000, the 'Parous' *vs.* 'Nulliparous' [reference] risks ratio was 0.77 (95% CI=0.60-1.00).

For the analysis of the association between number of childbirths and breast cancer of subgroup analysis by publication date after 2010, the '2 children' *vs.* '1 child' [reference] risks ratio was 0.93 (95% CI=0.89-0.97) and the category of ' \geq 3 children' *vs.* '1 child' [reference] risks ratio was 0.80 (95% CI=0.72-0.89). For the analysis of the association between number of childbirths and breast cancer of subgroup analysis by publication date before 2010, the '2 children' *vs.* '1 child' [reference] risks ratio was 0.91 (95% CI=0.87-0.95) and the category of ' \geq 3 children' *vs.* '1 child' [reference] risks ratio was 0.77 (95% CI=0.71-0.83).

For the analysis of the association between age at first full-term pregnancy and breast cancer of subgroup analysis by publication date after 2010, the '20-30 years' vs. '< 20 years' [reference] risks ratio was 1.12 (95% CI=1.07-1.18) and the category of ' \geq 30 years' vs. '< 20 years' [reference] risks ratio was 1.24 (95% CI=1.12-1.37). For the analysis of the association between age at first full-term pregnancy and breast cancer of subgroup analysis by publication date before 2010, the '20-30 years' vs. '< 20 years' [reference] risks ratio was 1.08 (95% CI=1.02-1.15) and the category of ' \geq 30 years' vs. '< 20 years' [reference] risks ratio was 1.34 (95% CI=1.25-1.44).

For the analysis of the association between duration of breastfeeding and breast cancer of subgroup analysis by publication date after 2010, the '< 6 months' vs. 'Never' [reference] risks ratio was 0.88 (95% CI=0.78-1.00) and the category of ' \geq 6 months' vs. 'Never' [reference] risks ratio was 0.92 (95% CI=0.86-0.99). For the analysis of the association between duration of breastfeeding and breast cancer of subgroup analysis by publication date before 2010, the '< 6 months' vs. 'Never' [reference] risks ratio was 0.89 (95% CI=0.80-0.98) and the category of ' \geq 6 months' vs. 'Never' [reference] risks ratio was 0.89 (95% CI=0.80-0.98) and the category of ' \geq 6 months' vs. 'Never' [reference] risks ratio was 0.86 (95% CI=0.75-0.98).

For the analysis of the association between oral contraceptive use and breast cancer

of subgroup analysis by publication date before 2005, the 'Ever' vs. 'Never' [reference] risks ratio was 1.07 (95% CI=0.99-1.15) which was only marginally significant. For the analysis of the association between duration of oral contraceptive and breast cancer of subgroup analysis by publication date after 2005, the '< 5 years' vs. 'Never' [reference] risks ratio was 1.09 (95% CI=1.02-1.16) and the category of ' \geq 5 years' vs. 'Never' [reference] risks ratio was 1.14 (95% CI=1.05-1.24).

For the analysis of the association between combination HRT use and breast cancer of subgroup analysis by publication date after 2010, the 'Ever' *vs.* 'Never' [reference] risks ratio was 1.13 (95% CI=1.15-1.49). For the analysis of the association between combination HRT use and breast cancer of subgroup analysis by publication date before 2010, the 'Ever' *vs.* 'Never' [reference] risks ratio was 1.20 (95% CI=1.04-1.38). For the analysis of the association between estrogen only HRT use and breast cancer of subgroup analysis by publication date before 2010, the 'Ever' *vs.* 'Never' [reference] risks ratio was 1.20 (95% CI=1.04-1.38). For the analysis of the association between estrogen only HRT use and breast cancer of subgroup analysis by publication date before 2010, the 'Ever' *vs.* 'Never' [reference] risks ratio was 1.15 (95% CI=1.05-1.27) which was only significant (Table 9).

		Publication date	1		Publication date	2
Reproductive	Studies	Summary RR	Heterogeneity	Studies	Summary RR	Heterogeneity
factor	Ν	(95% CI) ¹	$I^{2}(\%)$	Ν	(95% CI) ¹	$I^{2}(\%)$
Age at menarche		After 2010			Before 2010	
≤ 14	23	1.00		19	1.00	
15-16		0.94 (0.90-0.98)	54%, p < 0.01		0.94 (0.90-0.98)	30%, <i>p</i> =0.11
≥ 17		0.84 (0.77-0.92)	81%, <i>p</i> < 0.01		0.85 (0.79-0.91)	40%, <i>p</i> =0.04
Age at menopause*		After 2010			Before 2010	
< 48	14	1.00		8	1.00	
48-52		1.17 (1.13-1.22)	13%, <i>p</i> =0.31		1.24 (1.15-1.33)	0%, <i>p</i> =0.61
\geq 53		1.33 (1.21-1.47)	60%, p < 0.01		1.31 (1.18-1.45)	16%, <i>p</i> =0.31
Family history of BC		After 2010			Before 2010	
No	20	1.00		11	1.00	
Yes		1.57 (1.46-1.67)	71%, $p < 0.01$		1.58 (1.40-1.78)	88%, <i>p</i> < 0.01
Parity		After 2000			Before 2000	
Nulliparous	28	1.00		9	1.00	
Parous		0.82 (0.77-0.87)	83%, <i>p</i> < 0.01		0.77 (0.60-1.00)	89%, <i>p</i> < 0.01
Number of childbirths		After 2010			Before 2010	
1	19	1.00		18	1.00	
2		0.93 (0.89-0.97)	29%, <i>p</i> =0.12		0.91 (0.87-0.95)	10%, <i>p</i> =0.34
\geq 3		0.80 (0.72-0.89)	77%, p < 0.01		0.77 (0.71-0.83)	67%, <i>p</i> < 0.01
Age at first-full term pre	gnancy	After 2010			Before 2010	
< 20	19	1.00		29	1.00	
20-30		1.12 (1.07-1.18)	53%, <i>p</i> < 0.01		1.08 (1.02-1.15)	76%, $p < 0.01$
\geq 30		1.24 (1.12-1.37)	76%, p < 0.01		1.34 (1.25-1.44)	60%, p < 0.01
Duration of breastfeeding	g	After 2010			Before 2010	
Never	9	1.00		10	1.00	
< 6 months		0.88 (0.78-1.00)	84%, p < 0.01		0.89 (0.80-0.98)	71%, <i>p</i> < 0.01
\geq 6 months		0.92 (0.86-0.99)	64%, p < 0.01		0.86 (0.75-0.98)	78%, <i>p</i> < 0.01
Oral contraceptives		After 2005			Before 2005	
Never	26	1.00		15	1.00	
Ever		1.05 (0.97-1.14)	84%, <i>p</i> < 0.01		1.07 (0.99-1.15)	62%, <i>p</i> < 0.01
Duration of OC use		After 2005			Before 2005	
Never	14	1.00		14	1.00	
< 5 years		1.09 (1.02-1.16)	17%, <i>p</i> =0.26		1.07 (0.98-1.16)	67%, p < 0.01
\geq 5 years		1.14 (1.05-1.24)	57%, p < 0.01		1.06 (0.97-1.16)	64%, p < 0.01
Hormone replacement th	erapy*					
Combination HRT		After 2010			Before 2010	
Never	21	1.00		17	1.00	
Ever		1.31 (1.15-1.49)	87%, p < 0.01		1.20 (1.04-1.38)	73%, <i>p</i> < 0.01
Estrogen only HRT		After 2010			Before 2010	
Never	16	1.00		14	1.00	
Ever		1.07 (0.98-1.17)	61%, p < 0.01		1.15 (1.05-1.27)	42%, <i>p</i> =0.05

Table 9. Summary relative risks of breast cancer related to each reproductive factors in Global population of subgroup analysis by publication date

Abbreviation: OC; oral contraceptive, HRT; hormone replacement therapy

1. Estimation of summary relative risks (RRs) are calculated by random effect model.

*Corresponding variables are evaluated only in postmenopausal women.

IV. Discussion

1. Summary of the results

A. Korean meta-analysis: 1st objective

In the case of the Korean meta-analysis, we set the reference in the direction of larger than 1 to calculate the population attributable risk (PAF) later. Thus, we used different or reverse reproductive variables criteria in the Korean meta-analysis. As a result, we newly re-calculated the risk factor when we aggregated the Korean metaanalysis results and the global population meta-analysis. The reproductive variables which were parity, age at first full-term pregnancy (the category of '20-30' *vs.* '< 20' [reference]), duration of breastfeeding (the category of 'Never' *vs.* ' \geq 6 months' [reference]) and oral contraceptives were not significant. However, the trend of the breast cancer and reproductive factors was the same as the global trend.

For the analysis of mortality and breast cancer, all reproductive factors were not significant due to the lack of raw data. Reproductive factors, which are age at menopause, duration of breastfeeding, and use of HRT, got the reverse results compared between Global trends. To make matter worse, the relation of the duration of breastfeeding and breast cancer study had only one paper.

For the subgroup analysis of the study design, the cohort design was reliable. The corresponding variables, which were age at menarche, age at menopause, parity, number of childbirths, age at first full-term pregnancy, breastfeeding, and use of HRT, had lower heterogeneity (approximately 10% or less). In the process of changing the risk reference, *Lee SY et al. (2003)* with an indicator of number of childbirths was excluded. During the calculation of the number of presented in paper, the calculated risk excluding the adjusting factors was too different to use in the meta analysis.

This research will be further used in the PAF project by calculating the representative exposure rate of Koreans according to each reproductive factors.

B. Global population meta-analysis: 2nd & 3rd objective

The trend of the results showed earlier menarche age, later menopause age, having a family history of breast cancer, later age of first-full term pregnancy, lower number of children, short breastfeeding duration, ever use of an oral contraceptives (OC) or HRT, and the longer use of HRT duration. For total estimation of Global population, reproductive factors except for the duration of breastfeeding and oral contraceptive use, were significant.

For the subgroup analysis by study design in Global population, the cohort study design was reliable for the results because of the lower heterogeneity than the case-control study design (Table 7).

For the subgroup analysis by the country (continent) in Global population, we analyzed the results based on Asian countries including Korea. The association between age at menarche and breast cancer, the risk of Asia was more protective than Europe and N/S America. The category of '15-16 years' *vs.* ' \leq 14 years' [reference] had 0.89 (95% CI=0.76-1.03) risk ratio and the category of ' \geq 17 years' *vs.* ' \leq 14 years' [reference] had 0.78 (95% CI=0.63-0.96) risk ratio, which indicate that later the menarche is protective to the risk of breast cancer. The reason is that women of East Asian ancestry are reported to have a lower circulation level of sex steroid hormone, such as an estrogen, compared to their age matching those of European/Western women (10). The association between age at menopause and breast cancer, the risk of Asia was similar with N/S America. It can be interpreted that the pattern of Asia becomes similar to the pattern of the United States over time is the influx of the Western culture. If you look at the other papers published in Asia,

such as *Liu R. et al. (2019), Kawai M et al. (2010) or Shin AS. et al. (2011)*, has the risk above 1.72 in the menopause. The association between family history and breast cancer, the risk of Asia was the highest ('Yes' *vs.* 'No' [reference]: 2.42 (95% CI=1.64-3.57)). Also the association between parity and breast cancer, the risk of Asia was most protective ('Parous' *vs.* 'Nulliparous' [reference]: 0.72 (95% CI=10.55-0.93)). The association between age at first full-term pregnancy and breast cancer, the risk of Asia was the highest. Combination of HRT use was all significant in three continents and Asia had the highest risk of breast cancer. In the case of estrogen only HRT use, Asians are relatively less likely to use than Westerns, judging from the small number of papers. Comparing within the cohort study design, the risk of breast cancer in Europeans was higher than in N/S Americans (Table 8).

For the subgroup analysis by the publication date in Global population, most of the studies were divided in the publication of 2010. The three reproductive factors, which are under genetic control and are known as unmodifiable factors, such as 'age at menarche', 'age at menopause', and 'family history of BC', did not differ depending on the year of publication of the paper. Pregnancy/ parity variables, which act as a protective factor for breast cancer risk, tend to decrease as of 2000, which can be inferred that they reflect fewer children over the years (Publication date before 2000: 0.77 (95% CI=0.60-1.00), publication date after 2000: 0.82 (95% CI=0.77-0.87)). In the case of use of oral contraceptives, the meta-analysis before 2005 suggested that is has been used in the past. In the case of HRT use, the combination of HRT was more reliable risk than estrogen only HRT (11) (Table 9).

After interpreting the result of the subgroup analysis, it seems that the risk of breast cancer is different depending on the density of breast, the race/ethnicity and the type of breast cancer rather than the reproductive factors (12).

2. Biological plausible mechanism

Except for the genetic effects in the family history of breast cancer, the rest of the reproductive variables are affected by the female hormones, especially for estrogen and progesterone that remain in the human body. It was mentioned that the large number of undifferentiated cells in the breast might increase the breast cancer risk and that estrogen increases cell proliferation, which increases the mutation risk during DNA replications (13). As a result, because of early menarche, late menopause and using an OC or HRT, the estrogen might affect the DNA replication step and increase the chance of acquiring breast cancer. Among many of the reproductive variables, age at first-full term pregnancy and the number of childbirths are correlated. If parous women had a delivery, the protection of breast cancer works due to the pregnancy. Also, previous research found that the transient increase in risk shortly after birth was strongest after a late first birth. The differentiation of breast cells after first full-term births is assumed to develop breast tissue less vulnerable to cancer and thus result in a less pronounced or even no adverse effect of subsequent births (14). For breastfeeding, lactation inhibits ovulation and decreases the hormones effect on the breast cells. As a result, during the breastfeeding to children, breast cells were less exposed to hormones. Thus, the longer the duration of breastfeeding, the less exposed of hormones to the breast cells and the reduced chance of cell mutations (15).

In regard to the reason of different risk ratios of countries, the difference between breast density in ethnicity or many other types of hormone replacement for each country might be considered. Having a dense breast can increase the breast cancer risk as shown in the World Cancer Research Fund (WCRF) report. However, some research suggested that breast density is not a major cancer risk. Cancer risk for 40% of women with heterogeneously dense breasts is only about 1.2 times greater than women with non-dense breasts, and the risk for 10% of women with extremely dense breasts is only about 2 times greater than women with none dense breasts. For the corresponding studies, the research proposed that breast density might depend on the race or where the population inhabits (16). Also, the type of HRT in Korea has only the combination of estrogen and progesterone, but in Europe the type of HRT varies. Therefore, the sub-analysis by country might be inconsistent because of the lack of studies in the Asian population and the type of hormone therapy in Western countries.

3. Limitations and strengths of our study

This study had several limitations. First, we only searched the literature of general breast cancer. Breast cancer can be categorized into many subtypes. For example, there have been many ongoing studies that are analyzed using hormone receptors such as the estrogen receptor (ER) and the progesterone receptor (PR). Second, there was a shortage of Korean and Asian population research because the exclusion type of study was a hospital-based case-control study.

There are the strengths of this studies. First, we re-evaluated the Korean representative meta-analysis by using the literature and the raw data analysis. Second, due to the additional cohort, the heterogeneity of each reproductive factors were reduced. Therefore, the quality of the study was upgraded.

V. Conclusion

This study summarized the modifiable factors and unmodifiable factors of breast cancer and confirmed the trend of the risk of breast cancer. In order to calculate the Korean PAF model, we conducted a Korean meta-analysis to produce the latest indicators. Furthermore, we confirmed the association between publication date and the biological age in each reproductive variable.

This study is based on the meta analysis, so it can produce high level evidence of the link between breast cancer and reproductive factors in the clinical trial. Furthermore, based on the above evidence, the medical staff can recommend women's life style, which are related to the modifiable factors. This results can also calculate Korean's population attributable risk fractions (PAF) and guess the contribution of reproductive factors to breast cancer and further produce the preventive indicators.

Reproductive factors	Reproductive factors key words	Cancer key words	Study design	Publication year
Age at menarche	Reproductive factor*[Text words] OR Risk factor*[Text words] OR "menarche"[Mesh terms] OR age at menarche[Text words] OR age of menarche[Text words]	"Breast neoplasms"[Mesh terms] OR Breast cancer*[Text words] OR Breast tumor*[Text words] OR Breast malignant neoplasm*[Text words]	"Cohort studies"[Mesh terms] OR Cohort*[Text words] OR "Case-Control Studies"[Mesh terms] OR Case-control*[Text words]	"1990/01/01"[Date- Publication] : "2020/04/30" [Date- Publication]
Age at menopause	Reproductive factor*[Text words] OR Risk factor*[Text words] OR "Menopause.Premature"[Mesh terms] OR age at menopause[Text words] OR age of menopause[Text words]	"Breast neoplasms"[Mesh terms] OR Breast cancer*[Text words] OR Breast tumor*[Text words] OR Breast malignant neoplasm*[Text words]	"Cohort studies"[Mesh terms] OR Cohort*[Text words] OR "Case-Control Studies"[Mesh terms] OR Case-control*[Text words]	"1990/01/01"[Date- Publication] : "2020/04/30"[Date- Publication]
Family history	Family history[Text words] OR first-degree relative[Text words] OR second-degree relatives[Text words] OR third-degree relatives[Text words]	"Breast neoplasms"[Mesh terms] OR Breast cancer*[Text words] OR Breast tumor*[Text words] OR Breast malignant neoplasm*[Text words]	"Cohort studies" [Mesh terms] OR Cohort* [Text words] OR "Case-Control Studies" [Mesh terms] OR Case-control* [Text words]	"1990/01/01"[Date- Publication] : "2020/04/30"[Date- Publication]
Breastfeeding/ Duration	"Breastfeeding"[Mesh terms] OR "Lactation"[Mesh terms] OR duration of breastfeeding[Text words] OR breastfeeding duration[Text words] OR period of breastfeeding[Text words]	"Breast neoplasms"[Mesh terms] OR Breast cancer*[Text words] OR Breast tumor*[Text words] OR Breast malignant neoplasm*[Text words]	"Cohort studies" [Mesh terms] OR Cohort* [Text words] OR "Case-Control Studies" [Mesh terms] OR Case-control* [Text words]	"1990/01/01"[Date- Publication] : "2020/04/30"[Date- Publication]
Parity/ age at first full-term pregnancy	"parity"[Mesh terms] OR nulliparous[Text words] OR "pregnancy"[Mesh terms] OR age at first full- term pregnancy[Text words] OR FTTP[Text words] OR age at first childbirth[Text words]	"Breast neoplasms"[Mesh terms] OR Breast cancer*[Text words] OR Breast tumor*[Text words] OR Breast malignant neoplasm*[Text words]	"Cohort studies" [Mesh terms] OR Cohort* [Text words] OR "Case-Control Studies" [Mesh terms] OR Case-control* [Text words]	"1990/01/01"[Date- Publication] : "2020/04/30"[Date- Publication]
Parity/ number of children	"parity"[Mesh terms] OR nulliparous[Text words] OR "pregnancy"[Mesh terms] OR number of children[Text words] OR number of live birth[Text words]	"Breast neoplasms"[Mesh terms] OR Breast cancer*[Text words] OR Breast tumor*[Text words] OR Breast malignant neoplasm*[Text words]	"Cohort studies" [Mesh terms] OR Cohort* [Text words] OR "Case-Control Studies" [Mesh terms] OR Case-control* [Text words]	"1990/01/01"[Date- Publication] : "2020/04/30"[Date- Publication]

Sunnlementary table 1 S	earch strategies for each r	enroductive factor and brea	st concor in PubMed
Supplementary table 1. S	carch shanging for cach r	cproductive factor and brea	st cancer in r uppricu

Oral contraceptives	Oral contraceptive*[Text word] OR Oral contraceptive Agent*[Text word] OR oral contraceptive pill*[Text word] OR combined oral contraceptive*[Text word]	"Breast neoplasms"[Mesh terms] OR Breast cancer*[Text words] OR Breast tumor*[Text words] OR Breast malignant neoplasm*[Text words]	"Cohort studies"[Mesh terms] OR Cohort*[Text words] OR "Case-Control Studies"[Mesh terms] OR Case-control*[Text words]	"1990/01/01"[Date- Publication] : "2020/04/30"[Date- Publication]
Hormone replacement therapy	"Hormone replacement therapy" [Mesh terms] OR HRT[Text words] OR MRT[Text words] OR Menopausal hormone therap*[Text words] OR Postmenopausal hormone therapy[Text words] OR replacement therap*[Text words] OR hormone therap*[Text words] OR estrogen replacement therapy[Text words] OR estrogen-progestin therapy[Text words]	"Breast neoplasms"[Mesh terms] OR Breast cancer*[Text words] OR Breast tumor*[Text words] OR Breast malignant neoplasm*[Text words]	"Cohort studies"[Mesh terms] OR Cohort*[Text words] OR "Case-Control Studies"[Mesh terms] OR Case-control*[Text words]	"1990/01/01"[Date- Publication] : "2020/04/30"[Date- Publication]

1. For Korean population research, we included extra key words in the search strategies. ("Korea" [Mesh terms] OR Korea* [All fields])

2. For other countries, which are East Asia (China, Japan), South/West Asia, North America (United States), Central/South America, Europe, Australia/New Zealand, and Africa, we use search strategies in corresponding table.

Author (year)	Country	Study design	Study period	Category of reproductive factors	Control Cohort/PY	Cases	RR/OR/HR (95% CI)
Cohort studies							
Azam S. et al. (2020)	Europe	Cohort	2011-	<13	14,666	174	1.00
(17)			2013	≥13	27,470	372	1.06 (0.88-1.27)
Peila R. et al.	Europe	Cohort	2006-	≤11	50,854	175	1.00
(2020)(18)			2010	12-13	118,210	484	1.21 (1.01-1.43)
				≥14	93,708	357	1.12 (0.94-1.34)
Sandvei M. S. et al.	Europe	Cohort	2006-	≤12	102,842	1,809	1.00
(2019)(19)			2013	13	95,616	1,570	0.92 (0.86-0.98)
				14	84,951	1,388	0.90 (0.84-0.96)
M-11-11- M 1	I.I. Sec. 4	Calant	1005	<u>≥15</u>	63,210	1.027	0.90 (0.84-0.98)
(2017)(20) M. et al.	States	Conort	1995-	≤12 12.14	ND	ND	1.00
(2017)(20)	States		1990	13-14	ND	ND	0.85(0.62-1.16)
Dominand V.A. at al	United	Cohort	1005	215	ND /200.514	ND 552	1.20 (1.12, 1.50)
(2017)(21)	States	Conort	1995	≤11 12.12	/500,514	065 065	1.30(1.12-1.50) 1.22(1.07, 1.30)
(2017)(21)	Blates			12-13 >14	/108.045	202	1.22 (1.07-1.39)
Dertois at al	Europa	Cohort	1000	≥14	205	2	1.00
(2016)(22)	Europe	Conort	1990-	<10	203	2	1.45 (0.55-5.61)
(2010)(22)			1770	12-14	33 177	201	1.26 (0.99-1.00)
				>14	17 859	106	1.00
Warner E.T. et al	United	Cohort	1976	<12	/507 748	732	1.10 (0.99-1.23)
(2013)(23)	States	Conort	1989	12	/636 302	849	1.00
()	~~~~~			12	/622 504	839	0.92 (0.73-1.16)
				>14	/391 196	487	0.87 (0.78-0.98)
Ritte R et al	Europe	Cohort	1992-	<13	ND	1 749	1.00
(2013)(24)	Europe	Conort	2000	14	ND	2 198	0.96 (0.90-1.03)
				>15	ND	574	0.78 (0.71-0.86)
Povnter I N et al	United	Cohort	1986-	<12	/175 292	725	1.00
(2013)(25)	States	conore	2008	>12	/232.907	855	0.90 (0.81-1.00)
Setiawan V.W. et al.	United	Cohort	1993-	<12	42,213	1,700	1.00*
(2009)(26)	States		1996	13-14	32,082	1,242	0.96 (0.85-1.09)
				≥15	10,132	328	0.80 (0.64-1.00)
Lacev J.V. et al.	United	Cohort	1993-	<12	/76.987	457	1.00
(2009)(27)	States		2001	12-13	/209.082	1.099	0.86 (0.77-0.97)
				14-15	/84,595	439	0.85 (0.74-0.97)
				≥16	/17,874	88	0.81 (0.65-1.02)
Henderson K.D. et al.	United	Cohort	1993-	<11	ND	ND	1.00
(2008)(28)	States		1996	11-12	ND	ND	0.96 (0.92-0.99)
				13-14	ND	ND	0.95 (0.91-0.98)
				15-16	ND	ND	0.93 (0.89-0.97)
				≥17	ND	ND	0.92 (0.86-0.99)
Heuch I. et al.	Europe	Cohort	1956-	≤12	ND	42	1.06 (0.75-1.50)
(2008)(29)			1959	13	ND	82	1.15 (0.87-1.52)
				14	ND	131	1.00
				15	ND	102	1.08 (0.83-1.40)
				≥16	ND	73	1.02 (0.77-1.36)
Li C.I. et al.	United	Cohort	2000-	≤11	ND	136	1.40 (1.10-1.70)
(2007)(30)	States		2002	12	ND	167	1.10 (0.90-1.40)
				13	ND	165	1.10 (0.90-1.40)
				≥14	ND	117	1.00
Ha M. et al.	United	Cohort	1983-	≤11	/113,250	165	1.00
(2007)(31)	States		1998	12	/154,745	243	1.15 (0.94-1.40)
				13	/172,570	268	1.12 (0.92-1.36)
				≥14	/120,264	202	1.09 (0.89-1.34)
Stahlberg C et al.	Europe	Cohort	1993-	≤12	2,039	51	1.00
(2005)(32)			1999	>12	8,555	188	0.85 (0.62-1.16)

Supplementary table 2. Systematic review of association with age at menarche on breast cancer risk in Global population

Liu R. et al. (2019)	Asia	Cohort	1984-	≤13	/73,925	75	1.00
(33)	(Japan)		1992	14	/69,044	57	0.84 (0.59-1.18)
			1985-	15	/68,959	71	1.06 (0.76-1.47)
			2000	≥16	/91,023	59	0.69 (0.48-0.99)
Sepandi M. et al.	Asia	Cohort	2004-	<12	896	33	1.00
(2014)(34)			2012	12-15	10.028	155	0.34 (0.21-0.55)
				>15	729	9	0.40 (0.16-0.95)
Kawai Matal	Acia	Cohort	1000	<12	/66 211	60	1.00
(2010)(35)	(Janan)	Colloit	2003	≤13 14	/60,211	66	1.00
(2010)(33)	(Japan)		2005	14	/04,347	59	1.02 (0.75-1.45)
				15	/58,406	58	1.03 (0.72-1.48)
		~ .		216	//3,495	56	0.89 (0.61-1.32)
Iwasaki M. et al.	Asia	Cohort	1990-	<14	/145,749	134	1.00
(2007)(36)	(Japan)		1993	14	/129,722	111	0.92 (0.71-1.18)
				15	/116,264	87	0.79 (0.60-1.05)
				≥16	/155,064	96	0.69 (0.51-0.93)
Tamakoshi K. et al.	Asia	Cohort	1988-	≤12	/17,524	9	1.00
(2005)(37)	(Japan)		1997	13-14	/99,163	51	1.05 (0.51-2.15)
				15-16	/102,068	51	1.15 (0.55-2.41)
				≥17	/50,030	23	1.27 (0.56-2.85)
Yoo T.K. et al.	Korea	Cohort	2009-	<14	ND	ND	1.25 (1.21-1.29)
(2020)(38)			2014	>14	ND	ND	1.28 (1.15-1.42)
Lee SY et al	Korea	Cohort	1992-	<14	465 340	264	1.00
(2003)(39)	Rorea	Conort	2000	>14	117.012	96	0.80 (0.70-1.00)
Chin AS at al	Vona	Cohort	1002	<u>~14</u>	02 221	90 810	1.52 (1.26 1.70)
Snin AS et al.	Korea	Conort	1995-	≤14 15.16	95,521	819	1.52 (1.36-1.70)
(2011)(40)			2004	15-16	187,703	1,272	1.24 (1.13-1.36)
				≥17	162,885	762	1.00
Case-control studies							
Figueroa J.D. et al.	Europe	PCCS	2013-	<15	568	266	1.00
(2020)(41)			2015	15	548	255	0.88 (0.70-1.10)
				16	383	223	1.13 (0.89-1.44)
				≥17	395	228	1.08 (0.85-1.37)
Hamdi-Cherif M. et	Africa	PCCS	2012-	<13	225	213	1.00
al. (2020)(42)			2017	13-14	276	271	1.06 (0.82-1.37)
				≥15	103	115	1.20 (0.56-1.66)
Bravi F. et al.	Europe	NCCS	2003-	<11	2,355	827	1.00
(2018)(43)	1		2007	12-13	4,750	1.641	1.00 (0.90-1.10)
				>14	2.552	755	0.88 (0.78-0.98)
Al-Aimi K et al	Furope	PCCS	2006-	>13	20.785	198	1.00
(2018)(4)	Lurope	reeb	2010	>13	24,501	407	1.00 1.23 (1.04-1.45)
Banagas M.B. at al	United	DCCS	1005	<12	140	196	1.68 (1.26.2.25)
(2017)(44)	States	rccs	2002	<12 12 12	248	201	1.00(1.20-2.23) 1.20(1.12, 1.50)
(2017)(44)	Builds		2002	>14	165	370	1.00 (1.12=1.50)
	F	NGGG	2006	214	105	370	1.00
ellingjord-Dale M. et	Europe	NCCS	2006-	9-12	7,015	1,081	1.00
al. $(2017)(43)$			2014	15	6 420	1,4/1	0.93(0.86-1.01)
				14	0,439	1,205	0.89(0.82-0.97)
Vaiou A at al	Europe	DCCS	1092	13-10	4,721	933	1.00
(2015)(46) versus A. et al.	Europe	PCCS	1985-	<13	247	307	1.00
(2013)(40)			1904	13	292	374	1.05 (0.84-1.32)
				14	346	389	0.90 (0.71-1.12)
				15	217	197	0.73 (0.57-0.95)
				≥16	175	161	0.75 (0.57-0.98)
Sisti J.S. et al.	United	PCCS	1985-	≤11	305	437	1.00
(2015)(47)	States		2009	12	419	528	1.16 (0.93-1.44)
				13	404	589	0.96 (0.77-1.19)
				≥14	387	650	0.82 (0.65-1.03)
Warren Anderson S.	United	PCCS	1995-	<12	355	317	1.00
et al. (2013)(23)	States		2000	12-13	668	799	0.96 (0.79-1.17)
				≥14	374	350	0.75 (0.60-0.94)
Barnes B.B et al	Europe	PCCS	2001-	<12	259	512	1.16 (0.97-1.39)
(2011)(48)	r-		2005	12-14	1.996	4,050	1.11 (1.00-1.23)
				>15	819	1.824	1.00
						-,	

Hines L.M. et al.	United	PCCS	2000-	≤11	138	160	1.38 (1.02-1.88)
(2010)(49)	States		2005	12-13	416	476	1.39 (1.10-1.76)
				>14	262	180	1.00
Phillins I.S. et al	United	PCCS	1993-		393	503	1 00**
(2009)(50)	States	rees	2001	12	549	647	0.93 (0.78-1.11)
(,(,				13	562	589	0.80 (0.63-1.01)
				>14	510	512	0.80 (0.60-1.06)
Sprague BI et al	United	PCCS	1006	<12	863	770	1 37 (1 15 1 63)
(2008)(51)	States	rees	2000	12	024	822	1.37(1.13-1.03) 1.22(1.12, 1.58)
(2000)(31)	States		2000	12 14	924	822 1.480	1.33(1.12-1.36) 1.20(1.02, 1.40)
				13-14	1,820	1,460	1.20 (1.02-1.40)
L: CL et el	TT:::t: d	DCCC	1004	213	1 109	533	1.00
(2008)(20) et al.	Chited	PCCS	1994-	<12	1,108	1,184	1.00
(2008)(30)	States		1990	13-14	/5/	/40	0.92 (0.74-1.13)
~				≥15	1/4	160	0.90 (0.71-1.14)
Shantakumar S. et al.	United	PCCS	1996-	<12	412	382	1.00
(2007)(52)	States		1997	12	390	412	1.10 (0.90-1.36)
				13	345	368	1.07 (0.84-1.37)
				≥14	340	304	0.94 (0.76-1.17)
Li C.I. et al.	United	PCCS	1997-	8-11	173	182	1.00
(2003)(53)	States		1999	12-13	520	525	1.00 (0.80-1.20)
				≥14	313	261	0.80 (0.60-1.00)
Mangusson C.M. et	Europe	PCCS	1993-	≤11	156	199	1.33 (1.06-1.67)
al. (1999)(54)			1995	12	445	429	1.00 (0.86-1.17)
				13-14	1,627	1,484	1.00
				15-16	609	551	1.00 (0.87-1.15)
				≥17	99	68	0.74 (0.54-1.03)
Rockhill B. et al.	United	PCCS	1993-	<12	81	108	1.24 (0.83-1.86)
(1998)(55)	States		1996	12-13	260	294	1.08 (0.78-1.49)
				≥14	104	111	1.00
Rockhill B. et al.	United	PCCS	1993-	<11	51	62	1.40 (0.90-2.10)
(1998)(56)	States		1996	11	107	131	1.30 (1.00-1.90)
				12	205	229	1 20 (0 90-1 60)
				13	196	225	1 30 (1 00-1 70)
				>14	199	183	1.00
McCradia M at al	New	PCCS	1083	<12	280	153	1.00
(1998)(57)	Zealand	rees	1985-	12	388	194	0.93 (0.70, 1.20)
(1))0)(01)	Louinu		1907	12	549	243	0.99 (0.61 1.00)
				13	222	161	0.80 (0.50 1 10)
				14	302	101	0.80 (0.59-1.10)
D 1 1 C 1	5	DOOD	1076	215	302	140	0.79 (0.39-1.10)
(1000)(58)	Europe	PCCS	1976-	<12	208	121	1.30 (0.90-1.90)
(1990)(38)			1980	12	364	194	1.20 (0.90-1.70)
				13	479	282	1.30 (1.00-1.80)
				14	4/4	236	1.10 (0.80-1.50)
				15	212	83	0.90 (0.60-1.30)
				≥16	189	85	1.00
Ewertz M. et al.	Europe	PCCS	1983-	<13	247	307	1.00
(1988)(59)			1984	13	292	374	1.05 (0.84-1.32)
				14	346	389	0.90 (0.71-1.12)
				15	217	197	0.73 (0.57-0.95)
				≥16	175	161	0.75 (0.57-0.98)
Bergkvist L. et al.	Europe	NCCS	1977-	≤11	43	25	1.20 (0.70-2.30)
(1988)(60)			1980	12	146	88	1.20 (0.70-1.90)
				13	220	175	1.50 (1.00-2.40)
				14	269	184	1.30 (0.90-2.10)
				15	125	96	1.50 (0.90-2.40)
				≥16	81	41	1.00
Brignone G. et al.	Europe	PCCS	1972-	<11	27	29	1.00**
(1987)(61)	1		1983	11-15	777	780	0.95 (0.55-1.64)
				>15	45	44	0.78 (0.21-2.92)
Bruzzi P. et al	United	PCCS	1973-	<12	138	175	1.00*
(1985)(62)	States		1977	12-13	521	515	0.78 (0.58-1.05)
	0					010	

				≥14	289	258	0.70 (0.50-1.00)
Wang J.M. et al.	Asia	PCCS	2012-	≤13	1,505	1,291	1.00
(2020)	(China)		2017	14	931	784	0.91 (0.82-1.01)
				≥15	1,746	1,722	0.98 (0.90-1.06)
Gao Y.T. et al.	Asia	PCCS	1996-	≤12	133	139	1.00
(2000)(63)	(China)		1998	13	281	323	1.20 (0.90-1.60)
				14	337	309	0.90 (0.70-1.20)
				15	305	304	1.00 (0.70-1.30)
				16	276	231	0.80 (0.60-1.10)
				≥17	224	153	0.70 (0.50-0.90)
Park BY et al.	Korea	PCCS	2007-	≤13	470	163	1.00
(2018)(64)			2015	14-16	3,258	871	0.77 (0.62-0.96)
				≥17	2,113	454	0.62 (0.48-0.80)

Abbreviation: PCCS; Population-based case-control study, NCCS; Nested case-control study, SeBCS; Seoul Breast Cancer Society, KBCS; Korean Breast Cancer Study, KMCC; Korean Multi-center cancer cohort *Calculated RR; Calculation of crude RR (95% CI) by the population of each data set.

**Summary RR; Recalculation of adjusted RR (95% CI) by the meta-analysis.

Author (year)	Country	Study design	Study period	Category of reproductive	Control Cohort/PY	Cases	RR/OR/HR (95% CI)
Cohort studies				Tactors			
Peila R et al	Furope	Cohort	2006-	<11	/27 192	9/	1.00
(2020)(18)	Lutope	Conort	2000-	45-54	/35 391	540	1.00
(2020)(10)			2010	>55	/22 215	100	1 20 (0 90-1 59)
Xu X et al	Australia	Cohort	1996-	<40	35	84	1.98 (1.31-2.98)
(2020)	rustrana	Conort	2016	41-45	190	266	1.50(1.51-2.50) 1.15(0.92-1.42)
(65)			2010	46-49	313	427	1 11 (0 92-1 34)
(00)				50-51	545	662	1.00
				52-53	483	526	0.89 (0.75-1.05)
				>54	727	849	0.95 (0.82-1.11)
Sandvei M. S.	Europe	Cohort	2006-	<45	ND	316	0.99 (0.87-1.12)
et al.	1		2013	46-48	ND	359	0.92 (0.81-1.04)
(2019)(19)				49-51	ND	865	1.00
				52-54	ND	647	1.12 (1.01-1.24)
				≥55	ND	341	1.22 (1.07-1.39)
Mullolly M.	United	Cohort	1995-	<45	ND	ND	0.71 (0.37-1.34)
et al.	States		1996	45-49	ND	ND	0.61 (0.39-0.96)
(2017)(20)				50-54	ND	ND	1.00
				≥55	ND	ND	0.70 (0.37-1.33)
Tamimi et al.	United	Cohort	1980	<45	ND	ND	1.00
(2016)(66)	States			45-52	ND	ND	1.24 (1.17-1.32)
				≥52	ND	ND	1.43 (1.34-1.53)
Dartois et al.	Europe	Cohort	1990-	<48	10,426	489	1.00
(2016)(22)			1993	48-50	10,275	548	1.09 (0.97-1.23)
				50-52	18,587	993	1.11 (1.00-1.24)
				52-54	13,251	623	1.03 (0.92-1.16)
				≥54	9,673	485	1.17 (1.03-1.34)
Poynter J. N	United	Cohort	1986-	<50	/215,226	778	1.00
et al. (2013) (25)	States		2008	≥50	/197,407	815	1.15 (1.04-1.27)
Horn L. et al.	Europe	Cohort	1961-	<45	28,642	26	1.00
(2013)(67)			1980	45-49	65,173	84	1.26 (0.80-1.98)
				50-54	60,909	90	1.38 (0.87-2.19
				≥55	3,617	8	2.16 (0.95-4.89)
Lacey J.V. et	United	Cohort	1993-	<45	/25,254	123	1.00
al.(2009)(27)	States		2001	45-49	/64,113	340	1.07 (0.87-1.31)
				50-54	/126,080	700	1.12 (0.92-1.35)
				≥55	/32,192	211	1.29 (1.03-1.62)
Heuch I. et	Europe	Cohort	1956-	≤47	ND	57	1.00
al.(2008)(29)			1959	48-49	ND	33	1.05 (0.68-1.63)
				50-51	ND	58	1.47 (1.02-2.14)
		~ .		≥52	ND	44	1.37 (0.92-2.06)
Chang-	Europe	Cohort	1997-	Pre-meno	57,459	665	1.00
Claude et al.			2002	<35	274	8	0.60 (0.25-1.44)
(2007)(68)				33-44 45 54	525 1.000	30 62	1.02 (0.05-2.04)
				45-54	1,000	62	1.13(0.03-1.00) 1.12(0.25,5,02)
Stahlberg C	Furope	Cohort	1996-	~44	1 334	25	1.00
standerg C. (2004)	Europe	Conort	2001	<44 45 49	3 886	23 76	1.00
(69)			2001	43-49 50-54	3,000 4 368	102	1.02(0.03-1.01) 1.16(0.74-1.82)
(0))				>55	514	102	1.10(0.74-1.02) 1.70(0.92-3.14)
Liu Retal	Δsia	Cohort	1984-	<17	ND	42	1.00
(2019)	(Ianan)	Conort	1992	48-50	ND	34	1.18 (0.79-1.77)
(33)	(Japan)		1985-	51-53	ND	53	1.16(0.72-1.81)
(55)			2000	>54	ND	45	1.72 (0.98-3.02)
Kawai M et	Asia	Cohort	1990-	<47	/22.914	10	1.00
al. (2010)	(Japan)	Conort	2003	48-50	/40.518	28	1.40 (0.67-2.93)
(35)	(oupuit)		2000	51-53	/29.193	31	2.46 (1.19-5.08)
()				>54	/8,939	8	1.96 (0.73-5.27)
Shin AS et	Korea	Cohort	1993-	<45	23,311	69	1.00
al.(2011)(40)			2004	45-49	59,556	239	1.27 (1.22-2.05)
. //				50-54	79,872	404	1.58 (1.22-2.05)
				≥55	16,952	83	1.80 (1.31-2.49)
Case-control s	tudies						

Supplementary table 3. Systematic review of association with age at menopause on breast cancer risk in postmenopausal women in Global population

Hamdi-	Africa	PCCS	2012-	<46	83	135	1.00
Cherif M. et			2017	≥46	148	144	0.75 (0.51-1.11)
al.(2020)(42)							
Ellingjord-	Europe	NCCS	2006-	<47	4,595	817	1.00
Dale M. et al.	-		2014	47-49	4,324	827	1.10 (0.99-1.22)
(2017)(45)				50-52	8,218	1,613	1.13 (1.03-1.24)
				>52	5,508	1,155	1.15 (1.04-1.28)
Veisy A. et	Europe	PCCS	1983-	<45	77	56	1.00
al.(2015)(46)			1984	45	194	185	1.30 (0.87-1.96)
				50	252	297	1.60 (1.08-2.38)
				≥55	41	57	1.67 (0.98-2.87)
Warren	United	PCCS	1995-	<45	130	123	1.00
Anderson S.	States		2000	45-49	173	171	1.04 (0.75-1.44)
et al.(2013)				50-54	220	255	1.22 (0.89-1.66)
(70)				≥55	59	91	1.60 (1.05-2.43)
Pfeiffer R.M.	United	PCCS	1993-	<50	/459	2,850	1.00
et al. (2013)	States		2001	50-54	/388	4,069	1.18 (1.14-1.22)
(71)				≥55	/570	876	-
Barnes B.B et	Europe	PCCS	2001-	<45	727	300	1.00
al. (2011)			2005	45-49	1,672	760	1.12 (0.95-1.33)
(48)				50-54	1,992	1,013	1.28 (1.09-1.51)
				≥55	492	263	1.32 (1.07-1.64)
Hines L.M. et	United	PCCS	2000-	<50	1,124	913	1.00
al. (2010)	States		2005	≥50	564	533	1.16 (0.98-1.38)
(49)							
Berstad P. et	United	PCCS	1994-	<35	180	117	1.00*
al. (2010)	States		1998	35-39	225	147	1.01 (0.66-1.53)
(72)				40-44	369	288	1.20 (0.85-1.69)
Phillips L.S.	United	PCCS	1993-	<40	280	232	0.66 (0.54-0.82)
et al. (2009)	States		2001	40-49	511	578	1.00**
(50)				>50	317	401	1.09 (0.79-1.51)
Sprague B.L.	United	PCCS	1997-	<45	1,176	780	1.00
et al. (2008)	States		2001	1 . 10			
(51)	States		2001	45-49	966	783	1.22 (1.06-1.40)
	States		2001	45-49 50-54	966 1,279	783 1,124	1.22 (1.06-1.40) 1.25 (1.09-1.42)
	States		2001	45-49 50-54 ≥55	966 1,279 415	783 1,124 409	1.22 (1.06-1.40) 1.25 (1.09-1.42) 1.40 (1.18-1.68)
Shantakumar	United	PCCS	1996-	45-49 50-54 ≥ 55 < 48	966 1,279 415 306	783 1,124 409 305	1.22 (1.06-1.40) 1.25 (1.09-1.42) 1.40 (1.18-1.68) 1.00**
Shantakumar S. et al.	United States	PCCS	2001 1996- 1997	45-49 50-54 ≥55 <48 48-51	966 1,279 415 306 278	783 1,124 409 305 308	1.22 (1.06-1.40) 1.25 (1.09-1.42) 1.40 (1.18-1.68) 1.00** 1.16 (0.86-1.56)
Shantakumar S. et al. (2007)(52)	United States	PCCS	1996- 1997	$45-49 50-54 \ge 55 <48 48-51 \ge 52$	966 1,279 415 306 278 246	783 1,124 409 305 308 260	1.22 (1.06-1.40) 1.25 (1.09-1.42) 1.40 (1.18-1.68) 1.00** 1.16 (0.86-1.56) 1.06 (0.82-1.39)
Shantakumar S. et al. (2007)(52) Nelson D.A.	United States United	PCCS PCCS	1996- 1997 ND	$ \begin{array}{r} 45-49 \\ 50-54 \\ \geq 55 \\ <48 \\ 48-51 \\ \geq 52 \\ <45 \\ \end{array} $	966 1,279 415 306 278 246 ND	783 1,124 409 305 308 260 ND	1.22 (1.06-1.40) 1.25 (1.09-1.42) 1.40 (1.18-1.68) 1.00** 1.16 (0.86-1.56) 1.06 (0.82-1.39) 1.00
Shantakumar S. et al. (2007)(52) Nelson D.A. et al. (2004)	United States United States	PCCS PCCS	1996- 1997 ND	$ \begin{array}{r} 45-49\\ 50-54\\ \geq 55\\ <48\\ 48-51\\ \geq 52\\ <45\\ 45-49\\ \end{array} $	966 1,279 415 306 278 246 ND ND	783 1,124 409 305 308 260 ND ND	$\begin{array}{c} 1.22 \ (1.06\mathchar`-1.40) \\ 1.25 \ (1.09\mathchar`-1.42) \\ 1.40 \ (1.18\mathchar`-1.68) \\ 1.00^{**} \\ 1.16 \ (0.86\mathchar`-1.56) \\ 1.06 \ (0.82\mathchar`-1.39) \\ 1.00 \\ 1.40 \ (0.69\mathchar`-2.84) \end{array}$
Shantakumar S. et al. (2007)(52) Nelson D.A. et al. (2004) (73)	United States United States	PCCS PCCS	1996- 1997 ND	$\begin{array}{r} 45-49\\ 50-54\\ \geq 55\\ <48\\ 48-51\\ \geq 52\\ <45\\ 45-49\\ 50-54\\ \end{array}$	966 1,279 415 306 278 246 ND ND ND	783 1,124 409 305 308 260 ND ND ND ND	1.22 (1.06-1.40) 1.25 (1.09-1.42) 1.40 (1.18-1.68) 1.00** 1.16 (0.86-1.56) 1.06 (0.82-1.39) 1.00 1.40 (0.69-2.84) 1.10 (0.57-2.12)
Shantakumar S. et al. (2007)(52) Nelson D.A. et al. (2004) (73)	United States United States	PCCS PCCS	2001 1996- 1997 ND	$\begin{array}{r} 45-49\\ 50-54\\ \geq 55\\ <48\\ 48-51\\ \geq 52\\ <45\\ 45-49\\ 50-54\\ \geq 55\end{array}$	966 1,279 415 306 278 246 ND ND ND ND	783 1,124 409 305 308 260 ND ND ND ND ND	$\begin{array}{c} 1.22 \ (1.06\ -1.40) \\ 1.25 \ (1.09\ -1.42) \\ 1.40 \ (1.18\ -1.68) \\ 1.00 \ast \ast \\ 1.16 \ (0.86\ -1.56) \\ 1.06 \ (0.82\ -1.39) \\ 1.00 \\ 1.40 \ (0.69\ -2.84) \\ 1.10 \ (0.57\ -2.12) \\ 2.70 \ (1.00\ -7.26) \end{array}$
Shantakumar S. et al. (2007)(52) Nelson D.A. et al. (2004) (73) Li C.I. et al.	United States United States United	PCCS PCCS PCCS	2001 1996- 1997 ND 1997-	$\begin{array}{r} 45-49\\ 50-54\\ \geq 55\\ <48\\ 48-51\\ \geq 52\\ <45\\ 45-49\\ 50-54\\ \geq 55\\ \leq 44\end{array}$	966 1,279 415 306 278 246 ND ND ND ND ND 171	783 1,124 409 305 308 260 ND ND ND ND ND 117	$\begin{array}{c} 1.22 \ (1.06\ -1.40) \\ 1.25 \ (1.09\ -1.42) \\ 1.40 \ (1.18\ -1.68) \\ 1.00^{**} \\ 1.16 \ (0.86\ -1.56) \\ 1.06 \ (0.82\ -1.39) \\ 1.00 \\ 1.40 \ (0.69\ -2.84) \\ 1.10 \ (0.57\ -2.12) \\ 2.70 \ (1.00\ -7.26) \\ 1.00 \end{array}$
Shantakumar S. et al. (2007)(52) Nelson D.A. et al. (2004) (73) Li C.I. et al. (2003)(53)	United States United States United States	PCCS PCCS PCCS	2001 1996- 1997 ND 1997- 1999	$\begin{array}{r} 45-49\\ 50-54\\ \geq 55\\ <48\\ 48-51\\ \geq 52\\ <45\\ 45-49\\ 50-54\\ \geq 55\\ \leq 44\\ 45-49\\ =55\\ \leq 44\\ 45-49\\ =56\\ =56\\ \leq 44\\ =56\\ =56\\ =56\\ =56\\ =56\\ =56\\ =56\\ =56$	966 1,279 415 306 278 246 ND ND ND ND ND ND 171 191	783 1,124 409 305 308 260 ND ND ND ND ND 117 187	$\begin{array}{c} 1.22 \ (1.06-1.40) \\ 1.25 \ (1.09-1.42) \\ 1.40 \ (1.18-1.68) \\ 1.00^{**} \\ 1.16 \ (0.86-1.56) \\ 1.06 \ (0.82-1.39) \\ 1.00 \\ 1.40 \ (0.69-2.84) \\ 1.10 \ (0.57-2.12) \\ 2.70 \ (1.00-7.26) \\ 1.00 \\ 1.50 \ (1.10-2.00)$
Shantakumar S. et al. (2007)(52) Nelson D.A. et al. (2004) (73) Li C.I. et al. (2003)(53)	United States United States United States	PCCS PCCS PCCS	2001 1996- 1997 ND 1997- 1999	$\begin{array}{r} 45-49\\ 50-54\\ \geq 55\\ <48\\ 48-51\\ \geq 52\\ <45\\ 45-49\\ 50-54\\ \geq 55\\ \leq 44\\ 45-49\\ 50-54\\ \end{array}$	966 1,279 415 306 278 246 ND ND ND ND ND 171 191 239	783 1,124 409 305 308 260 ND ND ND ND ND 117 187 232	$\begin{array}{c} 1.22 \ (1.06\mathchar`-1.40) \\ 1.25 \ (1.09\mathchar`-1.42) \\ 1.40 \ (1.18\mathchar`-1.68) \\ 1.00^{**} \\ 1.16 \ (0.86\mathchar`-1.56) \\ 1.06 \ (0.82\mathchar`-1.39) \\ 1.00 \\ 1.40 \ (0.69\mathchar`-2.12) \\ 2.70 \ (1.00\mathchar`-2.6) \\ 1.00 \\ 1.50 \ (1.10\mathchar`-2.00) \\ 1.40 \ (1.00\mathchar`-1.90) \\$
Shantakumar S. et al. (2007)(52) Nelson D.A. et al. (2004) (73) Li C.I. et al. (2003)(53)	United States United States United States	PCCS PCCS PCCS	2001 1996- 1997 ND 1997- 1999	$\begin{array}{r} 45-49\\ 50-54\\ \geq 55\\ <48\\ 48-51\\ \geq 52\\ <45\\ 45-49\\ 50-54\\ \geq 55\\ \leq 44\\ 45-49\\ 50-54\\ \geq 55\\ \end{array}$	966 1,279 415 306 278 246 ND ND ND ND 171 191 239 98	783 1,124 409 305 308 260 ND ND ND ND ND 117 187 232 92	$\begin{array}{c} 1.22 \ (1.06\mathcal{-}1.40) \\ 1.25 \ (1.09\mathcal{-}1.42) \\ 1.40 \ (1.18\mathcal{-}1.68) \\ 1.00\mathcal{-}1.06 \ (0.86\mathcal{-}1.56) \\ 1.06 \ (0.82\mathcal{-}1.39) \\ 1.00 \\ 1.40 \ (0.69\mathcal{-}2.84) \\ 1.10 \ (0.57\mathcal{-}2.12) \\ 2.70 \ (1.00\mathcal{-}7.26) \\ 1.00 \\ 1.50 \ (1.10\mathcal{-}2.00) \\ 1.40 \ (1.00\mathcal{-}1.90) \\ 1.50 \ (1.00\mathcal{-}2.20) \\ \end{array}$
Shantakumar S. et al. (2007)(52) Nelson D.A. et al. (2004) (73) Li C.I. et al. (2003)(53) Park BY et	United States United States United States Korea	PCCS PCCS PCCS PCCS	2001 1996- 1997 ND 1997- 1999 2007-	$\begin{array}{r} 45-49\\ 50-54\\ \geq 55\\ <48\\ 48-51\\ \geq 52\\ <45\\ 45-49\\ 50-54\\ \geq 55\\ \leq 44\\ 45-49\\ 50-54\\ \geq 55\\ \hline \\ Pre-meno\\ \end{array}$	966 1,279 415 306 278 246 ND ND ND ND 171 191 239 98 1,613	783 1,124 409 305 308 260 ND ND ND ND 117 187 232 92 369	1.22 (1.06-1.40) 1.25 (1.09-1.42) 1.40 (1.18-1.68) 1.00** 1.16 (0.86-1.56) 1.06 (0.82-1.39) 1.00 1.40 (0.69-2.84) 1.10 (0.57-2.12) 2.70 (1.00-7.26) 1.00 1.50 (1.10-2.00) 1.40 (1.00-1.90) 1.50 (1.00-2.20)
Shantakumar S. et al. (2007)(52) Nelson D.A. et al. (2004) (73) Li C.I. et al. (2003)(53) Park BY et al.(2018)(64)	United States United States United States Korea	PCCS PCCS PCCS PCCS	2001 1996- 1997 ND 1997- 1999 2007- 2015	$\begin{array}{r} 45-49\\ 50-54\\ \geq 55\\ <48\\ 48-51\\ \geq 52\\ <45\\ 45-49\\ 50-54\\ \geq 55\\ \leq 44\\ 45-49\\ 50-54\\ \geq 55\\ \leq 44\\ 45-49\\ 50-54\\ \geq 55\\ \end{array}$	966 1,279 415 306 278 246 ND ND ND ND 171 191 239 98 1,613 336	783 1,124 409 305 308 260 ND ND ND ND 117 187 232 92 369 76	$\begin{array}{c} 1.22 \ (1.06-1.40) \\ 1.25 \ (1.09-1.42) \\ 1.40 \ (1.18-1.68) \\ \hline 1.00^{**} \\ 1.16 \ (0.86-1.56) \\ 1.06 \ (0.82-1.39) \\ \hline 1.00 \\ 1.40 \ (0.69-2.84) \\ 1.10 \ (0.57-2.12) \\ 2.70 \ (1.00-7.26) \\ \hline 1.00 \\ 1.50 \ (1.10-2.00) \\ 1.40 \ (1.00-1.90) \\ 1.50 \ (1.00-2.20) \\ \hline - \\ 1.00 \end{array}$
Shantakumar S. et al. (2007)(52) Nelson D.A. et al. (2004) (73) Li C.I. et al. (2003)(53) Park BY et al. (2018)(64)	United States United States United States Korea	PCCS PCCS PCCS PCCS	2001 1996- 1997 ND 1997- 1999 2007- 2015	$\begin{array}{r} 45-49\\ 50-54\\ \geq 55\\ <48\\ 48-51\\ \geq 52\\ <45\\ 45-49\\ 50-54\\ \geq 55\\ \leq 44\\ 45-49\\ 50-54\\ \geq 55\\ \hline \\ Pre-meno\\ <45\\ 45-54\\ \end{array}$	966 1,279 415 306 278 246 ND ND ND ND 171 191 239 98 1,613 336 3,316	783 1,124 409 305 308 260 ND ND ND ND ND 117 187 232 92 369 76 868	$\begin{array}{c} 1.22 \ (1.06\ -1.40) \\ 1.25 \ (1.09\ -1.42) \\ 1.40 \ (1.18\ -1.68) \\ \hline 1.00^{**} \\ 1.16 \ (0.86\ -1.56) \\ 1.06 \ (0.82\ -1.39) \\ \hline 1.00 \\ 1.40 \ (0.69\ -2.84) \\ 1.10 \ (0.57\ -2.12) \\ 2.70 \ (1.00\ -7.26) \\ \hline 1.00 \\ 1.50 \ (1.10\ -2.00) \\ 1.40 \ (1.00\ -1.90) \\ 1.50 \ (1.00\ -2.20) \\ \hline - \\ 1.00 \\ 1.16 \ (1.07\ -1.25) \end{array}$

Abbreviation: PCCS; Population-based case-control study, NCCS; Nested case-control study, SeBCS; Seoul Breast Cancer Society, KBCS; Korean Breast Cancer Study, KMCC; Korean Multi-center cancer cohort *Calculated RR; Calculation of crude RR (95% CI) by the population of each data set. **Summary RR; Recalculation of adjusted RR (95% CI) by the meta-analysis.

Author (year)	Country	Study design	Study period	Category of reproductive factors	Control Cohort/PY	Cases	RR/OR/HR (95% CI)
Cohort studies							
Peila R. et al.	Europe	Cohort	2006-	No	ND	ND	1.00
(2020)(18)			2010	Yes	ND	ND	1.63 (1.46-1.81)
Zhang D. et al.	United	Cohort	2003-	1st degree	/282,615	1,810	1.00
(2019)(74)	States		2009	2 nd degree	/89,425.3	849	1.45 (1.34-1.58)
				3rd degree	/11,968.1	150	1.86 (1.58-2.20)
Mullolly M. et al.	United	Cohort	1995-	No	ND	ND	1.00
(2017)(20)	States		1996	Yes	ND	ND	1.63 (1.42-1.86)
Miller M.E. et al.	United	Cohort	1978-	No	1,661	271	1.00
(2017)(75)	States		2011	Yes	1,056	184	1.11 (0.78-1.57)
Tamimi et al.	United	Cohort	1980	No	ND	ND	1.00
(2016)(66)	States			Yes	ND	ND	1.50 (1.42-1.51)
Dartois et al.	Europe	Cohort	1990-	No	49,746	386	1.00
(2010)(22)	TT 1. 1	0.1	1995	Yes	4,587	46	1.37 (1.01-1.86)
(2015)(76)	States	Conort	1995	NO Not	/302,203	598	1.00
(2013)(70)	Butes			res	(42 700	152	1.95 (1.27.2.(0)**
				1 th degree	/43,709	155	1.85 (1.27-2.69)***
Deate Dimension	This	Calant	1002	2 nd degree	/66,008	145	1.35 (1.12-2.08)
IL et al	States	Conort	1993-	NO Not	03,770	2,787	1.00
(2015)(77)	Butes		1770	res	0.706	626	1 42 (1 20 1 55)
				1 th degree	9,796	030	1.42(1.30-1.55)
Describer I. Mart al	The face of	Calant	1096	+2 nd degree	1,095	0.5	1.00 (1.52-2.08)
(2013)(25)	States	Conort	2008	NO Not	/318,/33	1,138	1.00
Weleb M L et al	United	Calant	2000	Yes	/93,899	455	1.35 (1.21-1.51)
(2009)(78)	States	Conort	2001-2005	INO	44,421	214	1.00
(200))(70)	Butes		2005	+1 st degree	14,075	314 191	1.54 (1.54-1.77)
				1st only	8,333	181	1.52 (1.28-1.80)
Lease IV at al	United	Cohort	1002	1 and 2	0,320	155	1.38 (1.30-1.90)
(2009)(27)	States	Conort	2001	NO	/530,410	1,090	1.00
Granstorm C et	Europe	Cohort	1993-	No	ND	23 745	1.00
al. (2008)(79)	Lutope	Conort	1995	1 st degree**	ND .	23,743	1.00
				Mother	ND	2 222	1.64 (1.27-1.72)
				Sister	ND	1 276	1.77 (1.67-1.87)
Reinier KS et	United	Cohort	1996-	No	ND	ND	1.00
al. (2007)(80)	States	conore	2001	Yes	ND	ND	1.48 (1.30-1.69)
Albrektsen G et	Furone	Cohort	1955-	No	/18 446 000	6 549	1.00
al (2006)(81)	Luiope	conort	1999	Yes	/927 000	828	2 14 (1 99-2 30)
				Mother only	/778.000	651	2.1.1 (1.55 2.650)
				Sister	/149.000	177	
Liu R et al	Asia	Cohort	1984-	No	/323 338	280	1.00
(2019)	(Japan)		1992				
(33)			1985- 2000	Yes (Mother)	/2,503	7	3.22 (1.52-6.84)
Kawai M. et al.	Asia	Cohort	1990-	No	/304,417	272	1.00
(2010)(35)	(Japan)		2003	Yes	/5,007	13	2.92 (1.67-5.10)
Case-control stud	ies						
Hamdi-Cherif M.	Africa	PCCS	2012-	No	602	564	1.00
et al. (2020)(42)			2017	Yes	13	48	4.15 (2.22-7.77)
Al-Ajmi K. et al.	Europe	PCCS	2006-	No	51,547	520	1.00
(2018)(4)			2010	First degree	5,184	93	1.76 (1.41-2.19)
Baglia M.L. et al.	United	NCCS	1995-	No	729	365	1.00
(2018)(82)	States		2013	Yes	265	174	1.33 (1.05-1.69)

Supplementary table 4. Systematic review of association with family history on breast cancer risk in Global population

Engmann N.J. et	United	PCCS	1996-	No	40,020	4,181	1.00
al. (2017)(83)	States		2015	Yes	6,840	1,105	1.71 (1.59-1.84)
Banegas M.P. et	United	PCCS	1995-	No	396	445	1.00
al. (2017)(44)	States		2002	First degree	68	88	1.18 (0.83-1.68)
Masala G. et al.	Europe	NCCS	1993-	No	583	699	1.00*
(2017)(84)			1998	Yes	52	72	0.87 (0.58-1.29)
Trentham-Dietz	United	PCCS	1988-	No	24,285	18,737	1.00
A. et al.	States		2008	1st degree	3,255	4,145	1.61 (1.53-1.69)
(2014)(85)				2nd degree	255	528	2.44 (2.10-2.84)
				+3rd degree	28	72	3.04 (1.97-4.69)
Petracci E. et al.	Europe	PCCS	1991-	No	2,387	2,268	1.00
(2011)(86)			1994	+1st degree	117	255	2.35 (1.86-2.96)
Barnes B.B et al.	Europe	PCCS	2002-	No	5,280	2,368	1.00
(2011)(48)			2005	Yes	746	534	1.49 (1.32-1.69)
Sprague B.L. et	United	PCCS	1997-	No	3,500	2,636	1.00
al. (2008)(51)	States		2000	Yes	585	746	1.66 (1.46-1.88)
Risendal B. et al.	United	PCCS	1999-	No	2,106	1,793	1.00**
(2008)	States		2002	Yes	346	164	1.70 (1.37-2.10)
Li C.I. et al.	United	PCCS	1997-	No	771	703	1.00*
(2003)(53)	States		1999	Yes	159	208	0.84 (0.59-1.19)
McCredie M. et	Australia/	PCCS	1983-	No	1,563	645	1.00
al. (1997)(87)	NZ		1987	1st degree	86	101	2.60 (1.90-3.50)
				2nd degree	191	132	1.70 (1.30-2.20)
Siskind V. et al.	Australia/	PCCS	1981-	No	942	347	1.00
(1989)(88)	NZ		1985	1st degree	66	54	2.20 (1.49-3.30)
				+2nd degree	83	58	1.90 (1.31-2.80)
McTiernan A. et	United	PCCS	1981-	No	786	789	1.00**
al. (1986)(89)	States		1982	Yes	67	63	0.96 (0.68-1.37)
Hislop T.G. et al.	Canada	PCCS	1980-	No	501	449	1.00**
(1986)(90)			1982	Yes	39	63	1.81 (1.18-2.76)
Bain C. et al.	United	PCCS	1972-	No	ND	ND	1.00
(1980)(91)	States		1976	Mother	ND	106	1.80 (1.50-2.20)
				Sister	ND	65	2.50 (1.90-3.30)
				Either	ND	161	2.00 (1.70-2.40)
				Both	ND	10	5.60 (2.80-11.20)
Wang L. et al	Asia	PCCS	2008-	No	219	637	1.00
(2019)(92)	(China)		2012	Yes	9	19	3.25 (1.34-7.89)
Sanderson M. et	Asia	PCCS	1996-	No	1,459	1,333	1.00
al. (2001)(93)	(China)		1998	Yes	36	52	1.60 (1.00-2.40)

Abbreviation: PCCS; Population-based case-control study, NCCS; Nested case-control study, SeBCS; Seoul Breast Cancer Society, KBCS; Korean Breast Cancer Study, KMCC; Korean Multi-center cancer cohort, ND; No data *Calculated RR; Calculated by the population of each data set. *Summary RR; Recalculation of adjusted RR (95% CI) by the meta-analysis.

	Author (year)	Country	Study design	Study period	Category of reproductive factors	Control Cohort/PY	Cases	RR/OR/HR (95% CI)
I	Cohort studies							
	Fortner R.T. et	United	Cohort	1989-	Nulliparous	/742,502	1,498	1.00
	al. (2019)(94)	States		2013	Parous	/4,540,107	10,954	0.84 (0.80-0.89)
	Kullberg C. et	Europe	Cohort	1991-	Nulliparous	1,896	132	1.00**
	al. (2017)(95)			1996	Parous	11,973	743	0.88 (0.74-1.05)
	Bertrand K.A. et	United	Cohort	1995-	Nulliparous	/248,039	431	1.00*
	al. (2017)(96)	States		2013	Parous	/628,360	1,631	1.49 (1.30-1.71)
	Horn J. et al.	Europe	Cohort	1961-	Nulliparous	ND	154	1.00**
	(2014)(97)			2008	Parous	ND	655	0.88 (0.54-1.42)
	Warner E.T. et	United	Cohort	1976-	Nulliparous	/338,434	399	1.00**
	al. (2013)(23)	States		1989	Parous	/1,882,333	2,382	0.91 (0.85-0.99)
	Lacey J.V. et al.	United	Cohort	1993-	Nulliparous	/35,545	240	1.00**
	(2009)(27)	States		2001	Parous	/353,497	1,842	0.72 (0.65-0.79)
	Granstorm C. et	Europe	Cohort	1993-	Nulliparous	/1,320,991	3,844	1.00*
	al. (2009)(79)			1993	Parous	/9,745,986	23,399	0.83 (0.79-0.86)
	Mellemkjaer L.	Europe	Cohort	1993-	Nulliparous	2,926	94	1.00**
	et al. (2006)(98)			1997	Parous	20,862	539	0.83 (0.62-1.11)
	Clavel-	Europe	Cohort	1988-	Nulliparous	/75,732	271	1.00**
	al. (2002)(99)			1991 1992-	Parous	/503,793	1,177	0.71 (0.64-0.79)
				1995				
	de Vries E. et al.	Europe	Cohort	1982-	Nulliparous	1,126	ND	1.00**
	(2001)(100)			1985	Parous	7,575	ND	0.81 (0.74-0.89)
	Mellemgaard A.	Europe	Cohort	1967-	Nulliparous	1,283	23	1.00*
	et al. $(1990)(101)$			1984	Parous	11,541	247	1.19 (0.74-1.93)
•	Wohlfahrt J. et	United	Cohort	1978-	Nulliparous	ND	ND	1.00**
	al. (1999)(102)	States		1994	Parous	ND	ND	0.81 (0.71-0.92)
•	Liu R. et al.	Asia	Cohort	1984-	Nulliparous	/38,122	47	1.00
	(2019)	(Japan)		2000	Parous	/283,679	239	0.72 (0.52-0.99)
	Tamakochi K. et	Asia	Cohort	1988-	Nulliparous	/13,307	8	1.00
	al. (2005)(37)	(Japan)		1997	Parous	/254,025	132	0.95 (0.38-2.32)
	Gajalakshmi	Asia	Cohort	1960-	Nulliparous	/3,199	6	1.00**
	C.K et al.	(Japan)		1989	Parous	/13,993	32	1.82 (0.82-4.06)
•	(1998)(103) Goodman M T	Asia	Cohort	1979-	Nulliparous	/14 048	26	1.00
	et al.	(Janan)	Conort	1981	Parous	/160 555	124	0.43 (0.28-0.65)
	(1997)(104)	(oupuii)			T droub	,100,000	121	0.15 (0.20 0.05)
ļ	Case-control stud	ies						
	Hamdi-Cherif	Africa	PCCS	2012-	Nulliparous	86	106	1.00
	(2020)(42)			2017	Parous	509	487	0.89 (0.72-1.09)
	Figueroa J.D. et	Europe	PCCS	2013-	Nulliparous	228	107	1.00
	al. (2020)(41)			2015	Parous	1,870	1,015	0.85 (0.68-1.05)
1	Al-Ajmi K. et al.	Europe	PCCS	2006-	Nulliparous	33,879	514	1.00**
	(2018)(4)			2010	Parous	135,859	1,754	0.80 (0.72-0.88)
	John E.M. et al	United	PCCS	1995-	Nulliparous	746	124	1.00**
	(2018)(105)	States		2002	Parous	4,365	434	0.88 (0.66-1.19)
	Ellingjord-Dale	Europe	NCCS	2006-	Nulliparous	2,144	586	1.00**
	M. et al. $(2017)(45)$			2014	Parous	23,590	4,766	0.72 (0.63-0.82)
-	(2017)(45) Brinton I. A. et	Africa	PCCS	2012	Nullinarous	232	111	1 00**
	al. (2017)(106)	2111104	1000	2012	Parous	1 921	1.085	0.85 (0.68-1.07)
•	O'Brien K.M. et	United	PCCS	2008-	Nulliparous	352	252	1.00**
					r			

Supplementary table 5. Systematic review of association with parity on breast cancer risk in Global population

al. (2015)(107)	States		2010	Parous	1,295	933	1.07 (0.92-1.24)
Work M.E. et al.	United	PCCS	1995-	Nulliparous	531	902	1.00**
(2014)(108)	States		2004	Parous	2,466	3,109	0.79 (0.71-0.89)
Li C.I. et al.	United	PCCS	2004-	Nulliparous	188	269	1.00**
(2013)(109)	States		2010	Parous	753	756	0.73 (0.60-0.88)
Barnes B.B. et	Europe	PCCS	2002-	Nulliparous	1,007	525	1.00*
al. (2011)(48)			2005	Parous	5,379	2,549	0.91 (0.80-1.04)
Poynter J.N. et	United	PCCS	1985-	Nulliparous	225	133	1.00**
al. (2010)(110)	States		1999	Parous	1,171	572	0.79 (0.52-1.20)
Ma H. et al.	United	PCCS	1995-	Nulliparous	/92,927	493	1.00**
(2010)(111)	States		2007	Parous	/433,263	2,197	0.90 (0.84-0.96)
Sweeney C. et	United	PCCS	1999-	Nulliparous	312	337	1.00*
al. (2008)(112)	States		2004	Parous	2,117	1,804	0.79 (0.66-0.95)
Beaber E.F. et	United	PCCS	2000-	Nulliparous	36	143	1.00**
al. (2008)(113)	States		2004	Parous	433	901	0.50 (0.38-0.65)
Ursin G. et al.	United	PCCS	1994-	Nulliparous	481	588	1.00**
(2004)(114)	States		1998	Parous	3,865	3,680	0.73 (0.63-0.85)
Tavani A. et al.	Europe	PCCS	1992-	Nulliparous	220	130	1.00**
(1999)(115)			1995	Parous	448	452	1.54 (1.25-1.91)
Mangusson	Europe	PCCS	1993-	Nulliparous	313	413	1.00**
C.M. et al. (1999)(54)			1995	Parous	2,623	2,318	0.52 (0.39-0.69)
Wu A.H. et al.	United	PCCS	1983-	Nulliparous	94	91	1.00
(1996)(116)	States		1987	Parous	674	401	0.57 (0.41-0.80)
Mayberry R.M.	United	PCCS	1980-	Nulliparous	558	327	1.00**
et al. (1992)(117)	States		1982	Parous	3,828	4,097	0.65 (0.51-0.83)
Layde P.M. et al.	United	PCCS	1980-	Nulliparous	603	769	1.00**
(1989)(118)	States		1982	Parous	3,931	3,830	0.66 (0.56-0.78)
Wang J.M. et al.	Asia	PCCS	2012-	Nulliparous	109	86	1.00
(2020)(119)	(China)		2017	Parous	4,073	3,624	0.53 (0.43-0.65)

Abbreviation: PCCS; Population-based case-control study, NCCS; Nested case-control study, SeBCS; Seoul Breast Cancer Society, KBCS; Korean Breast Cancer Study, KMCC; Korean Multi-center cancer cohort *Calculated RR; Calculation of crude RR (95% CI) by the population of each data set. **Summary RR; Recalculation of adjusted RR (95% CI) by the meta-analysis.

Author (year)	Country	Study design	Study period	Category of reproductive factors	Control Cohort/PY	Cases	RR/OR/HR (95% CI)
Cohort studies							
Kullberg C. et	Europe	Cohort	1991-	<20	1,457	83	1.00*
al.(2017)(95)			1996	20-24	4,683	301	0.75 (0.53-1.08)
				25-29	4,056	240	1.04 (0.74-1.46)
				30-34	1,341	85	1.11 (0.68-1.80)
				≥35	1,896	33	0.30 (0.14-0.63)
Crandall CJ. et	United	Cohort	1993-	Never	11,886	ND	1.00
al. (2017)(120)	States		2005	<20	10,458	ND	0.86 (0.62-1.20)
				20-29	54,529	ND	0.87 (0.71-1.07)
				≥30	7,195	ND	1.08 (0.82-1.42)
Bertrand K.A. et	United	Cohort	1995-	<20	/190,355	483	1.00**
al.(2017)(96)	States		2013	20-24	/205,055	522	1.00 (0.88-1.14)
				≥25	/221,970	602	1.24 (0.99-1.54)
Horn J. et al.	Europe	Cohort	1961-	<25	ND	241	1.00**
(2014)(97)			2008	≥25	ND	372	1.13 (0.94-1.36)
Warner E.T. et	United	Cohort	1976-	<25	/760,507	978	0.86 (0.78-0.94)
al.(2013)(23)	States		1989	25-29	/742,025	1,013	1.00**
				≥30	/379,668	493	1.14 (1.02-1.28)
Horn J. et al.	Europe	Cohort	1961-	<20	/27,340	87	1.00**
(2013)(97)			1980	20-24	/193,249	668	1.05 (0.84-1.31)
				25-29	/204,217	806	1.19 (0.90-1.56)
				30-34	/89,688	412	1.39 (0.93-2.08)
		~ .		≥35	/35,131	195	1.59 (1.23-2.05)
Lacey J.V. et al.	United	Cohort	1993-	Nulliparous	/35,545	240	1.00
(2009)(27)	States		2001	<20	/62,165	267	0.68 (0.53-0.86)
				20-24	/181,709	901	0.74 (0.59-0.91)
				25-29	/80,523	4/1	0.83 (0.66-1.03)
				30-35 >25	/20,822	148	1.03(0.81-1.31) 1.02(0.74, 1.41)
Constants Const	F	Calaart	1002	≥33 12.00	/0,894	4/	1.02 (0.74-1.41)
(2008)(79)	Europe	Conort	1995-	21.24	ND	4,571	0.78(0.74-0.81) 0.80(0.77, 0.82)
ui. (2000)(77)			1775	21-24	ND	7,501	0.86 (0.83 0.90)
				>30	ND	3 713	1.00
Reinier KS et	United	Cohort	1996-	21	4 526	ND	1.00
al. (2007)(80)	States	Conort	2001	21-30	4,520	ND	1.05 (0.86-1.27)
				>30	3 464	ND	1 44 (1 09-1 89)
				Nulliparous	4 512	ND	1 25 (0 92-1 71)
Li CL et al	United	Cohort	2000-	<19	4 990	86	1.00
(2007)(30)	States	Conort	2000	20-24	11.518	236	1.20 (1.00-1.50)
				25-29	5.419	116	1.30 (1.00-1.70)
				30-34	1.899	39	1.50 (1.00-2.10)
				≥35	586	17	2.10 (1.30-3.30)
				Nulliparous	3,484	91	1.70 (1.30-2.30)
Mellemkjaer L.	Europe	Cohort	1993-	≤19	3,163	72	1.00*
et al. (2006)(98)			1997	20-24	9,929	243	1.12 (0.93-1.35)
				25-29	5,963	166	1.21 (0.98-1.49)
				30-34	1,420	46	1.50 (1.00-2.10)
				≥35	386	12	2.10 (1.30-3.30)
Clavel-Chapelon	Europe	Cohort	1988-	<22	/94,468	232	1.00
F. et al.	-		1991	22-24	/171,850	461	1.07 (0.91-1.25)
(2002)(99)			1992-	25-27	/129,234	382	1.16 (0.98-1.38)
			1995	28-30	/62,741	201	1.25 (1.03-1.52)
				≥31	/45,500	171	1.46 (1.18-1.81)
Vatten L.J. et al.	Europe	Cohort	1974-	<25	15,350	141	1.00
(1992)(121)			1978	25-29	8,270	111	1.17 (1.02-1.34)
				30-34	2,458	26	0.96 (0.76-1.22)
				≥35	900	16	1.20 (0.86-1.67)

Supplementary table 6. Systematic review of association with age at first-full term pregnancy on breast cancer risk in Global population

Mellemgaard A.	Europe	Cohort	1967-	≤19	2,508	39	0.82 (0.58-1.12)
et al.(1990)(101)			1984	20-24	6,452	109	0.87 (0.71-1.05)
				25-29	3,185	76	1.20 (0.94-1.50)
				>30	956	23	1.20 (0.76-1.78)
Liu R. et al.	Asia	Cohort	1984-	<21	/44.677	30	1.00
(2019)(33)	(Janan)		1992	22-25	/144 724	111	1.07 (0.71-1.61)
(2017)(55)	(Japan)		1085	22-23	/65 507	67	$1.07(0.71^{-1.01})$ 1.30(0.83, 2.04)
			2000	>20=2.9	/05,507	25	1.30(0.33-2.04) 1.27(0.72,2.21)
Kanal Martal	A	Calart	2000	230	/22,493	23	1.27 (0.73-2.21)
Kawai M et al. $(2010)(25)$	Asia	Conort	1990	≤21 22.25	/46,518	27	1.00
(2010)(33)	(Japan)			22-25	/160,129	142	1.43 (0.94-2.16)
				26-29	/56,433	58	1.53 (0.96-2.44)
				≥30	/13,859	13	1.21 (0.61-2.44)
Tamakoshi K. et	Asia	Cohort	1988-	<25	/105,682	48	1.00
al. (2005)(37)	(Japan)		1997	25-30	/105,347	51	1.02 (0.67-1.56)
				30-35	/15,527	17	1.99 (1.09-3.66)
				>35	/3,228	4	2.12 (0.72-6.21)
Gajalakshmi	Asia	Cohort	1960-	<21	/6,448	11	1.00
C.K. et al.			1989	21-25	/3,660	15	2.80 (1.20-6.70)
(1998)(103)				>25	/1,714	2	0.50 (0.10-2.60)
				Nulliparous	/3,199	6	0.50 (0.00-40.00)
Goodman M.T.	Asia	Cohort	1979-	<21	/14.384	8	1.00
et al. (1997)(104)	(Japan)		1981	21-23	/42.679	27	1 12 (0 51-2 40)
	(oupuil)			24-26	/46 639	44	1.82 (0.84-3.91)
				27-29	/20 593	12	1.14 (0.46-2.83)
				>20	/12 228	12	1.14 (0.40-2.03)
T GX / 1	17	<u> </u>	1002	230	/12,220	15	1.09 (0.78-4.00)
Lee SY et al. $(2002)(20)$	Korea	Conort	1992-	<26	/99,968	22	1.00
(2003)(39)			2000	26-28	/312,409	170	1.20 (0.80-1.60)
				≥29	/169,975	135	1.60 (1.10-2.20)
Case-controls stu	dies						
Figueroa J.D. et	Europe	PCCS	2013-	<19	555	235	1.00
al. (2020)(41)			2015	19-21	510	265	1.14 (0.90-1.43)
				22-25	412	260	1.27 (1.00-1.62)
				≥26	322	197	1.18 (0.91-1.54)
Troisi R. et al.	Europe	PCCS	1967-	<20	54,485	4,588	0.83 (0.80-0.86)
(2018)(122)			2013	20-29	477,222	48,678	1.00
				30-39	157,058	19,564	1.22 (1.19-1.24)
				≥40	8,259	1,074	1.26 (1.18-1.34)
Ma H. et al.						1 202	1 00**
(2017)(123)	United	PCCS	1998-	≤20	799	1,392	1.00
(2017)(123)	United States	PCCS	1998- 2003	≤20 21-24	799 510	1,392 487	1.14 (0.98-1.32)
(2017)(125)	United States	PCCS	1998- 2003	≤20 21-24 25-29	799 510 348	1,392 487 449	1.14 (0.98-1.32) 1.30 (1.03-1.64)
(2017)(123)	United States	PCCS	1998- 2003	≤20 21-24 25-29 ≥30	799 510 348 333	1,392 487 449 442	1.14 (0.98-1.32) 1.30 (1.03-1.64) 1.03 (0.85-1.25)
Engmann N.J. et	United States United	PCCS	1998- 2003	≤20 21-24 25-29 ≥30 Nulliparous	799 510 348 333 11.729	1,392 487 449 442 1,240	1.14 (0.98-1.32) 1.30 (1.03-1.64) 1.03 (0.85-1.25) 1.14 (1.05-1.22)
Engmann N.J. et al. (2017)(83)	United States United States	PCCS PCCS	1998- 2003 1996- 2015	≤ 20 $21-24$ $25-29$ ≥ 30 Nulliparous ≤ 30	799 510 348 333 11,729 29,060	1,392 487 449 442 1,240 2,615	1.14 (0.98-1.32) 1.30 (1.03-1.64) 1.03 (0.85-1.25) 1.14 (1.05-1.22) 1.00
Engmann N.J. et al. (2017)(83)	United States United States	PCCS PCCS	1998- 2003 1996- 2015	≤20 21-24 25-29 ≥30 Nulliparous ≤30 >30	799 510 348 333 11,729 29,060 12,071	1,392 487 449 442 1,240 2,615 1,431	$\begin{array}{c} 1.14 & (0.98-1.32) \\ 1.30 & (1.03-1.64) \\ 1.03 & (0.85-1.25) \\ \hline 1.14 & (1.05-1.22) \\ 1.00 \\ 1.28 & (1.19-1.37) \\ \end{array}$
Engmann N.J. et al. (2017)(83)	United States United States	PCCS PCCS	1998- 2003 1996- 2015	≤20 21-24 25-29 ≥30 Nulliparous ≤30 >30	799 510 348 333 11,729 29,060 12,071 134	1,392 487 449 442 1,240 2,615 1,431	1.14 (0.98-1.32) 1.30 (1.03-1.64) 1.03 (0.85-1.25) 1.14 (1.05-1.22) 1.00 1.28 (1.19-1.37)
Engmann N.J. et al. (2017)(83) Banegas M.P. et al. (2017)(44)	United States United States United States	PCCS PCCS PCCS	1998- 2003 1996- 2015 1995- 2002	≤ 20 21-24 25-29 ≥ 30 Nulliparous ≤ 30 > 30 < 20 20-29	799 510 348 333 11,729 29,060 12,071 134 242	1,392 487 449 442 1,240 2,615 1,431 124 280	1.14 (0.98-1.32) 1.30 (1.03-1.64) 1.03 (0.85-1.25) 1.14 (1.05-1.22) 1.00 1.28 (1.19-1.37) 1.00 1.26 (1.05-1.52)
Engmann N.J. et al. (2017)(83) Banegas M.P. et al. (2017)(44)	United States United States United States	PCCS PCCS PCCS	1998- 2003 1996- 2015 1995- 2002	≤ 20 21-24 25-29 ≥ 30 Nulliparous ≤ 30 > 30 < 20 20-29 ≥ 30	799 510 348 333 11,729 29,060 12,071 134 242 88	1,392 487 449 442 1,240 2,615 1,431 124 280 129	1.14 (0.98-1.32) 1.30 (1.03-1.64) 1.03 (0.85-1.25) 1.14 (1.05-1.22) 1.00 1.28 (1.19-1.37) 1.00 1.26 (1.05-1.52) 1.59 (1.10, 2, 31)
Engmann N.J. et al. (2017)(83) Banegas M.P. et al. (2017)(44)	United States United States United States	PCCS PCCS PCCS	1998- 2003 1996- 2015 1995- 2002	≤ 20 21-24 25-29 ≥ 30 Nulliparous ≤ 30 > 30 < 20 20-29 ≥ 30 = 25	799 510 348 333 11,729 29,060 12,071 134 242 88 88	1,392 487 449 442 1,240 2,615 1,431 124 280 129 707	1.14 (0.98-1.32) 1.30 (1.03-1.64) 1.03 (0.85-1.25) 1.14 (1.05-1.22) 1.00 1.28 (1.19-1.37) 1.00 1.26 (1.05-1.52) 1.59 (1.10-2.31) 0.70 (0.70.0.00)
Engmann N.J. et al. (2017)(83) Banegas M.P. et al. (2017)(44) Hajiebrahimi M. et al. (2016)(124)	United States United States United States Europe	PCCS PCCS PCCS NCCS	1998- 2003 1996- 2015 1995- 2002 1973- 2010	≤ 20 21-24 25-29 ≥ 30 Nulliparous ≤ 30 > 30 < 20 20-29 ≥ 30 < 25 25 25 25 25 20	799 510 348 333 11,729 29,060 12,071 134 242 88 827 2,501	1,392 487 449 442 1,240 2,615 1,431 124 280 129 797 2,618	1.14 (0.98-1.32) 1.30 (1.03-1.64) 1.03 (0.85-1.25) 1.14 (1.05-1.22) 1.00 1.28 (1.19-1.37) 1.00 1.26 (1.05-1.52) 1.59 (1.10-2.31) 0.79 (0.70-0.90) 0.80 (0.82 0.07)
Engmann N.J. et al. (2017)(83) Banegas M.P. et al. (2017)(44) Hajiebrahimi M. et al.(2016)(124)	United States United States Europe	PCCS PCCS PCCS NCCS	1998- 2003 1996- 2015 1995- 2002 1973- 2010	≤ 20 21-24 25-29 ≥ 30 Nulliparous ≤ 30 >30 < 20 20-29 ≥ 30 < 25 25-29 20, 24	799 510 348 333 11,729 29,060 12,071 134 242 88 827 2,591 2,098	1,392 487 449 442 1,240 2,615 1,431 124 280 129 797 2,618 2,122	1.14 (0.98-1.32) 1.30 (1.03-1.64) 1.03 (0.85-1.25) 1.14 (1.05-1.22) 1.00 1.28 1.26 (1.05-1.52) 1.59 (1.10-2.31) 0.79 (0.70-0.90) 0.89 (0.82-0.97)
Engmann N.J. et al. (2017)(83) Banegas M.P. et al. (2017)(44) Hajiebrahimi M. et al.(2016)(124)	United States United States United States Europe	PCCS PCCS PCCS NCCS	1998- 2003 1996- 2015 1995- 2002 1973- 2010	≤ 20 21-24 25-29 ≥ 30 Nulliparous ≤ 30 >30 < 20 20-29 ≥ 30 < 25 25-29 30-34 < 20	799 510 348 333 11,729 29,060 12,071 134 242 88 827 2,591 2,998 1,575	1,392 487 449 442 1,240 2,615 1,431 124 280 129 797 2,618 3,122 1,510	1.14 (0.98-1.32) 1.30 (1.03-1.64) 1.03 (0.85-1.25) 1.14 (1.05-1.22) 1.00 1.28 (1.19-1.37) 1.00 1.26 (1.05-1.52) 1.59 (1.10-2.31) 0.79 (0.70-0.90) 0.89 (0.82-0.97) 1.00
Engmann N.J. et al. (2017)(83) Banegas M.P. et al. (2017)(44) Hajiebrahimi M. et al.(2016)(124)	United States United States United States Europe	PCCS PCCS PCCS NCCS	1998- 2003 1996- 2015 1995- 2002 1973- 2010	≤ 20 21-24 25-29 ≥ 30 Nulliparous ≤ 30 > 30 < 20 20-29 ≥ 30 < 25 25-29 30-34 35-39 ≥ -40	799 510 348 333 11,729 29,060 12,071 134 242 88 827 2,591 2,998 1,575 227	1,392 487 449 442 1,240 2,615 1,431 124 280 129 797 2,618 3,122 1,540 250	1.14 (0.98-1.32) 1.30 (1.03-1.64) 1.03 (0.85-1.25) 1.14 (1.05-1.22) 1.00 1.28 (1.19-1.37) 1.00 1.26 (1.05-1.52) 1.59 (1.10-2.31) 0.79 (0.70-0.90) 0.89 (0.82-0.97) 1.00 1.02 (0.95-1.15)
Engmann N.J. et al. (2017)(83) Banegas M.P. et al. (2017)(44) Hajiebrahimi M. et al.(2016)(124)	United States United States Europe	PCCS PCCS PCCS NCCS	1998- 2003 1996- 2015 1995- 2002 1973- 2010	≤ 20 21-24 25-29 ≥ 30 Nulliparous ≤ 30 > 30 < 20 20-29 ≥ 30 < 25 25-29 30-34 35-39 ≥ 40	799 510 348 333 11,729 29,060 12,071 134 242 88 827 2,591 2,998 1,575 336 271	1,392 487 449 442 1,240 2,615 1,431 124 280 129 797 2,618 3,122 1,540 250	1.14 (0.98-1.32) 1.30 (1.03-1.64) 1.03 (0.85-1.25) 1.14 (1.05-1.22) 1.00 1.28 1.28 (1.19-1.37) 1.00 1.26 1.26 (1.05-1.52) 1.59 (1.10-2.31) 0.79 (0.70-0.90) 0.89 (0.82-0.97) 1.00 1.05 1.05 (0.95-1.15) 0.92 (0.76-1.10)
Engmann N.J. et al. (2017)(83) Banegas M.P. et al. (2017)(44) Hajiebrahimi M. et al.(2016)(124) Sisti J.S. et al.	United States United States Europe United	PCCS PCCS PCCS NCCS PCCS	1998- 2003 1996- 2015 1995- 2002 1973- 2010	≤ 20 21-24 25-29 ≥ 30 Nulliparous ≤ 30 >30 < 20 20-29 ≥ 30 < 25 25-29 30-34 35-39 ≥ 40 < 20 < 20	799 510 348 333 11,729 29,060 12,071 134 242 88 827 2,591 2,998 1,575 336 276 276	1,392 487 449 442 1,240 2,615 1,431 124 280 129 797 2,618 3,122 1,540 250 175	1.14 (0.98-1.32) 1.30 (1.03-1.64) 1.03 (0.85-1.25) 1.14 (1.05-1.22) 1.00 1.28 1.28 (1.19-1.37) 1.00 1.26 1.59 (1.10-2.31) 0.79 (0.70-0.90) 0.89 (0.82-0.97) 1.00 1.05 1.05 (0.95-1.15) 0.92 (0.76-1.10)
Engmann N.J. et al. (2017)(83) Banegas M.P. et al. (2017)(44) Hajiebrahimi M. et al.(2016)(124) Sisti J.S. et al. (2015)(47)	United States United States Europe United States	PCCS PCCS PCCS NCCS PCCS	1998- 2003 1996- 2015 1995- 2002 1973- 2010 1985- 2009	≤ 20 21-24 25-29 ≥ 30 Nulliparous ≤ 30 > 30 < 20 20-29 ≥ 30 < 25 25-29 30-34 35-39 ≥ 40 < 20 20-24	799 510 348 333 11,729 29,060 12,071 134 242 88 827 2,591 2,998 1,575 336 276 667	$\begin{array}{c} 1,392\\ 487\\ 449\\ 442\\ 1,240\\ 2,615\\ 1,431\\ 124\\ 280\\ 129\\ 797\\ 2,618\\ 3,122\\ 1,540\\ 250\\ 175\\ 444\\ \end{array}$	1.14 (0.98-1.32) 1.30 (1.03-1.64) 1.03 (0.85-1.25) 1.14 (1.05-1.22) 1.00 1.28 (1.19-1.37) 1.00 1.26 (1.05-1.52) 1.59 (1.10-2.31) 0.79 (0.70-0.90) 0.89 (0.82-0.97) 1.00 1.05 (0.95-1.15) 0.92 (0.76-1.10) 1.00 1.9 (0.90-1.58)
Engmann N.J. et al. (2017)(83) Banegas M.P. et al. (2017)(44) Hajiebrahimi M. et al.(2016)(124) Sisti J.S. et al. (2015)(47)	United States United States Europe United States	PCCS PCCS PCCS NCCS PCCS	1998- 2003 1996- 2015 1995- 2002 1973- 2010 1985- 2009	≤ 20 21-24 25-29 ≥ 30 Nulliparous ≤ 30 >30 < 20 20-29 ≥ 30 < 25 25-29 30-34 35-39 ≥ 40 < 20 20-24 25-29	799 510 348 333 11,729 29,060 12,071 134 242 88 827 2,591 2,998 1,575 336 276 667 550	$\begin{array}{c} 1,392\\ 487\\ 449\\ 442\\ 1,240\\ 2,615\\ 1,431\\ 124\\ 280\\ 129\\ 797\\ 2,618\\ 3,122\\ 1,540\\ 250\\ 175\\ 444\\ 355\\ \end{array}$	1.14 (0.98-1.32) 1.30 (1.03-1.64) 1.03 (0.85-1.25) 1.14 (1.05-1.22) 1.00 1.28 (1.19-1.37) 1.00 1.26 (1.05-1.52) 1.59 (1.10-2.31) 0.79 (0.70-0.90) 0.89 (0.82-0.97) 1.00 1.05 (0.95-1.15) 0.92 (0.76-1.10) 1.00 1.19 (0.90-1.58) 1.01 (0.75-1.35)
Engmann N.J. et al. (2017)(83) Banegas M.P. et al. (2017)(44) Hajiebrahimi M. et al.(2016)(124) Sisti J.S. et al. (2015)(47)	United States United States Europe United States	PCCS PCCS PCCS NCCS PCCS	1998- 2003 1996- 2015 1995- 2002 1973- 2010 1985- 2009	≤ 20 21-24 25-29 ≥ 30 Nulliparous ≤ 30 >30 < 20 20-29 ≥ 30 < 25 25-29 30-34 35-39 ≥ 40 < 20 20-24 25-29 ≥ 30	799 510 348 333 11,729 29,060 12,071 134 242 88 827 2,591 2,998 1,575 336 276 667 550 317	$\begin{array}{r} 1,392 \\ 487 \\ 449 \\ 442 \\ 1,240 \\ 2,615 \\ 1,431 \\ 124 \\ 280 \\ 129 \\ 797 \\ 2,618 \\ 3,122 \\ 1,540 \\ 250 \\ 175 \\ 444 \\ 355 \\ 234 \end{array}$	1.14 (0.98-1.32) 1.30 (1.03-1.64) 1.03 (0.85-1.25) 1.14 (1.05-1.22) 1.00 1.28 1.28 (1.19-1.37) 1.00 1.26 1.26 (1.05-1.52) 1.59 (1.10-2.31) 0.79 (0.70-0.90) 0.89 (0.82-0.97) 1.00 1.05 1.05 (0.95-1.15) 0.92 (0.76-1.10) 1.00 1.19 1.01 (0.75-1.35) 1.20 (0.84-1.70)
Engmann N.J. et al. (2017)(83) Banegas M.P. et al. (2017)(44) Hajiebrahimi M. et al.(2016)(124) Sisti J.S. et al. (2015)(47) O'Brien K.M. et	United States United States Europe United States United States	PCCS PCCS PCCS NCCS PCCS	1998- 2003 1996- 2015 1995- 2002 1973- 2010 1985- 2009 2008-	≤ 20 21-24 25-29 ≥ 30 Nulliparous ≤ 30 >30 < 20 20-29 ≥ 30 < 25 25-29 30-34 35-39 ≥ 40 < 20 20-24 25-29 ≥ 30 < 25 < 25-29 $\geq 30-34$ < 25-29 < 25-29 $\geq 30-34$ < 25-29 < 25-29 < 30-34 < 25-29 < 30-34 < 25-29 < 30-34 < 20-24 < 25-29 ≥ 300 < 25-29 < 30-24 < 25-29 < 30-25 < 30-25-29 < 30-25-29-29 < 30-25-29-29 < 30-25-29-29-29-29-29-29-29-29-2	799 510 348 333 11,729 29,060 12,071 134 242 88 827 2,591 2,998 1,575 336 276 667 550 317 465	1,392 487 449 442 1,240 2,615 1,431 124 280 129 797 2,618 3,122 1,540 250 175 444 355 234 324	1.14 (0.98-1.32) 1.30 (1.03-1.64) 1.03 (0.85-1.25) 1.14 (1.05-1.22) 1.00 1.28 (1.19-1.37) 1.00 1.26 (1.05-1.52) 1.59 (1.10-2.31) 0.79 (0.70-0.90) 0.89 (0.82-0.97) 1.00 1.05 (0.95-1.15) 0.92 (0.76-1.10) 1.00 1.19 (0.90-1.58) 1.01 (0.75-1.35) 1.20 (0.84-1.70)
Engmann N.J. et al. (2017)(83) Banegas M.P. et al. (2017)(44) Hajiebrahimi M. et al.(2016)(124) Sisti J.S. et al. (2015)(47) O'Brien K.M. et al. (2015)(107)	United States United States Europe United States United States	PCCS PCCS PCCS NCCS PCCS	1998- 2003 1996- 2015 1995- 2002 1973- 2010 1985- 2009 2008- 2010	≤ 20 21-24 25-29 ≥ 30 Nulliparous ≤ 30 > 30 < 20 20-29 ≥ 30 < 25 25-29 30-34 35-39 ≥ 40 < 20 20-24 25-29 ≥ 30 < 25 25-29 ≥ 30 < 25 25-29 > 30 < 25 25-29 > 25 > 25-29 > 25 > 25-29 > 25-29	799 510 348 333 11,729 29,060 12,071 134 242 88 827 2,591 2,998 1,575 336 276 667 550 317 465 456	1,392 487 449 442 1,240 2,615 1,431 124 280 129 797 2,618 3,122 1,540 250 175 444 355 234 324 393	1.14 (0.98-1.32) 1.30 (1.03-1.64) 1.03 (0.85-1.25) 1.14 (1.05-1.22) 1.00 1.28 1.28 (1.19-1.37) 1.00 1.26 1.26 (1.05-1.52) 1.59 (1.10-2.31) 0.79 (0.70-0.90) 0.89 (0.82-0.97) 1.00 1.05 1.05 (0.95-1.15) 0.92 (0.76-1.10) 1.00 1.19 1.20 (0.84-1.70) 1.00 1.28 1.20 (0.84-1.66)
Engmann N.J. et al. (2017)(83) Banegas M.P. et al. (2017)(44) Hajiebrahimi M. et al. (2016)(124) Sisti J.S. et al. (2015)(47) O'Brien K.M. et al. (2015)(107)	United States United States Europe United States United States	PCCS PCCS PCCS PCCS PCCS	1998- 2003 1996- 2015 1995- 2002 1973- 2010 1985- 2009 2008- 2010	≤ 20 21-24 25-29 ≥ 30 Nulliparous ≤ 30 > 30 < 20 20-29 ≥ 30 < 25 25-29 30-34 < 20 20-24 25-29 ≥ 30 < 20 < 20 < 25 25-29 > 30-34 < 25 > 25-29 ≥ 30 < 25 > 25-29 ≥ 30 < 25 > 25-29 ≥ 30 < 25 > 25-29 ≥ 30 < 25 > 25-29 > 30-24 > 25-29 ≥ 30 < 25 > 25-29 ≥ 30 < 25 > 25-29 > 30-24 > 25-29 ≥ 30 < 25 > 25-29 ≥ 30 < 25-29 $\geq 30-34$ < 25-29 > 30-34 < 25-30 > 30-34 < 25-29 > 30-34 > 30-34	799 510 348 333 11,729 29,060 12,071 134 242 88 827 2,591 2,998 1,575 336 276 667 550 317 465 456 233	1,392 487 449 442 1,240 2,615 1,431 124 280 129 797 2,618 3,122 1,540 250 175 444 355 234 324 393 254	1.14 (0.98-1.32) 1.30 (1.03-1.64) 1.03 (0.85-1.25) 1.14 (1.05-1.22) 1.00 1.28 (1.19-1.37) 1.00 1.26 (1.05-1.52) 1.00 1.26 (1.05-1.52) 1.00 1.26 (1.05-1.52) 1.00 1.26 (1.05-1.52) 0.07 (0.70-0.90) 0.89 (0.82-0.97) 1.00 1.05 (0.95-1.15) 0.92 (0.76-1.10) 1.00 1.91 (0.90-1.58) 1.01 (0.75-1.35) 1.20 (0.84-1.70) 1.00 1.28 (0.98-1.66) 1.65 (1.20-2.28)
Engmann N.J. et al. (2017)(83) Banegas M.P. et al. (2017)(44) Hajiebrahimi M. et al. (2016)(124) Sisti J.S. et al. (2015)(47) O'Brien K.M. et al. (2015)(107)	United States United States Europe United States United States	PCCS PCCS PCCS PCCS PCCS	1998- 2003 1996- 2015 1995- 2002 1973- 2010 1985- 2009 2008- 2010	≤ 20 21-24 25-29 ≥ 30 Nulliparous ≤ 30 > 30 < 20 20-29 ≥ 30 < 25 25-29 30-34 35-39 ≥ 40 < 20 20-24 25-29 ≥ 30 < 25 25-29 30-34 ≥ 30 < 25 25-29 ≥ 30 < 25 25-29 $\ge 30-24$ $\geq 25-29$ $\ge 30-24$ $\ge 30-34$ $\ge 30-34$ = 30-34 = 30-34	799 510 348 333 11,729 29,060 12,071 134 242 88 827 2,591 2,998 1,575 336 276 667 550 317 465 456 233 100	$\begin{array}{c} 1,392\\ 487\\ 449\\ 442\\ 1,240\\ 2,615\\ 1,431\\ 124\\ 280\\ 129\\ 797\\ 2,618\\ 3,122\\ 1,540\\ 250\\ 175\\ 444\\ 355\\ 234\\ 325\\ 444\\ 393\\ 254\\ 86\\ \end{array}$	1.14 (0.98-1.32) 1.30 (1.03-1.64) 1.03 (0.85-1.25) 1.14 (1.05-1.22) 1.00 1.28 1.28 (1.19-1.37) 1.00 1.26 1.29 (1.00-1.52) 1.59 (1.10-2.31) 0.79 (0.70-0.90) 0.89 (0.82-0.97) 1.00 1.05 1.05 (0.95-1.15) 0.92 (0.76-1.10) 1.00 1.19 1.01 (0.90-1.58) 1.01 (0.75-1.35) 1.20 (0.84-1.70) 1.00 1.28 1.22 (0.98-1.66) 1.65 (1.20-2.28) 1.22 (0.80-1.87)
Engmann N.J. et al. (2017)(83) Banegas M.P. et al. (2017)(44) Hajiebrahimi M. et al. (2016)(124) Sisti J.S. et al. (2015)(47) O'Brien K.M. et al. (2015)(107) Li C. et al.	United States United States Europe United States United States United	PCCS PCCS PCCS PCCS PCCS PCCS	1998- 2003 1996- 2015 1995- 2002 1973- 2010 1985- 2009 2008- 2010 2008- 2010	≤ 20 21-24 25-29 ≥ 30 Nulliparous ≤ 30 >30 < 20 20-29 ≥ 30 < 25 25-29 30-34 35-39 ≥ 40 < 20 20-24 25-29 ≥ 30 < 25 25-29 30-34 ≥ 35 < 25 25-29 ≥ 30 < 20 < 20 < 20 < 25 < 25-29 > 30-34 < 25 < 25-29 > 30-34 < 25-29 > 30-24 < 25-29 > 30-24 < 25-29 > 30-24 < 25-29 > 30-24 < 25-29 > 30-24 < 25-29 > 30-24 < 25-29 > 30-34 > 35-39 < 25-29 > 30-34 > 35-39 < 25-29 > 30-34 > 35-39 < 25-29 > 30-34 > 35-39 < 25-29 > 30-34 > 35-39 > 35-39 > 20-24 > 25-29 > 30-34 > 35-39 > 25-29 > 30-34 > 35-39 > 25-29 > 30-34 > 35-39 > 25-29 > 30-34 > 35-39 > 20-24 > 25-29 > 30-34 > 35-39 > 20-24 > 25-29 > 30-34 > 35-39 > 20-24 > 25-29 > 30-34 > 35-39 < 20	799 510 348 333 11,729 29,060 12,071 134 242 88 827 2,591 2,998 1,575 336 276 667 550 317 465 456 233 100 82	1,392 487 449 442 1,240 2,615 1,431 124 280 129 797 2,618 3,122 1,540 250 175 444 355 234 324 393 254 86 59	1.14 (0.98-1.32) 1.30 (1.03-1.64) 1.03 (0.85-1.25) 1.14 (1.05-1.22) 1.00 1.28 (1.19-1.37) 1.00 1.28 (1.05-1.52) 1.59 (1.10-2.31) 0.79 (0.70-0.90) 0.89 (0.82-0.97) 1.00 1.05 (0.95-1.15) 0.92 (0.76-1.10) 1.00 1.19 (0.90-1.58) 1.01 (0.75-1.35) 1.20 (0.84-1.70) 1.00 1.28 (0.98-1.66) 1.65 (1.20-2.28) 1.22 (0.80-1.87) 1.56 (1.32-1.84)
(2013)(109)	States		2010	20-24	166	162	1.00**
---	--	--------------------------------------	--	--	---	--	---
				25-29	243	228	0.89 (0.58-1.37)
				30-34	181	204	0.65 (0.47-0.92)
				≥35	84	100	0.58 (0.40-0.84)
Ma H. et al.	United	PCCS	1995-	<21	/48,165	203	1.00
(2010)(111)	States		2007	21-24	/150,692	727	1.07 (0.92-1.25)
				25-29	/163,749	888	1.22 (1.05-1.43)
				30-34	/52.784	281	1.22 (1.01-1.47)
				>35	/16.644	94	1.27 (0.99-1.65)
Sweeney C et	United	PCCS	1999-	<20	240	179	1.00
al.(2008)(112)	States		2004	20-24	362	317	1 16 (0 90-1 51)
				25-29	167	135	1 15 (0 83-1 58)
				>30	62	88	1.99 (1.32-3.00)
				Nulliparous	88	77	1 30 (0 88-1 92)
Sprague B L et	United	PCCS	1007	<20	827	507	1.00
al $(2008)(51)$	States	rees	2000	20 24	2 010	1 568	1.00
un (2000)(01)	Builds		2000	20-24	740	654	1.02 (0.89-1.10)
				>20	202	226	1.13(0.96-1.30) 1.42(1.11, 1.90)
Dealers E.E. et al.	TT-: t- 4	DCCC	2000	≥30	202	230	1.42 (1.11-1.60)
(2008)(113)	States	PCCS	2000-	≤19	8/	189	1.00**
(2008)(113)	States		2004	20-24	216	423	0.86 (0.69-1.08)
				25-29	100	191	0.89 (0.67-1.18)
				≥30	28	95	1.02 (0.84-2.39)
Ursin G. et al.	United	PCCS	1994-	≤19	1,493	1,044	1.00**
(2004)(114)	States		1998	20-24	1,460	1,367	1.04 (0.92-1.18)
				25-29	718	777	1.22 (0.98-1.53)
				≥30	497	492	1.15 (0.95-1.38)
Chie W.C. et al.	United	PCCS	1992-	<20	1,607	1,087	1.00
(2000)(125)	States		1995	20-24	4,969	3,741	1.00 (0.90-1.10)
				25-29	2,396	2,038	1.03 (0.90-1.18)
				30-34	523	530	1.16 (0.96-1.18)
				≥35	92	105	1.19 (0.86-1.66)
Newcomb P.A.	United	PCCS	1992-	<20	655	468	1.00
Newcomb P.A. et al. (1999)	United States	PCCS	1992- 1995	<20 20-24	655 1,935	468 1,763	1.00 1.27 (1.10-1.47)
Newcomb P.A. et al. (1999) (126)	United States	PCCS	1992- 1995	<20 20-24 25-29	655 1,935 891	468 1,763 972	1.00 1.27 (1.10-1.47) 1.45 (1.24-1.71)
Newcomb P.A. et al. (1999) (126)	United States	PCCS	1992- 1995	<20 20-24 25-29 ≥30	655 1,935 891 301	468 1,763 972 420	1.00 1.27 (1.10-1.47) 1.45 (1.24-1.71) 1.69 (1.38-2.08)
Newcomb P.A. et al. (1999) (126) Mangusson C.M.	United States Europe	PCCS PCCS	1992- 1995 1993-	<20 20-24 25-29 ≥30 <20	655 1,935 891 301 299	468 1,763 972 420 229	1.00 1.27 (1.10-1.47) 1.45 (1.24-1.71) 1.69 (1.38-2.08) 1.00
Newcomb P.A. et al. (1999) (126) Mangusson C.M. et al. (1999)(54)	United States Europe	PCCS PCCS	1992- 1995 1993- 1995	<20 20-24 25-29 ≥30 <20 20-24	655 1,935 891 301 299 1,138	468 1,763 972 420 229 906	1.00 1.27 (1.10-1.47) 1.45 (1.24-1.71) 1.69 (1.38-2.08) 1.00 1.01 (0.83-1.23)
Newcomb P.A. et al. (1999) (126) Mangusson C.M. et al. (1999)(54)	United States Europe	PCCS PCCS	1992- 1995 1993- 1995	$ \begin{array}{c} <20\\ 20\text{-}24\\ 25\text{-}29\\ \geq 30\\ <20\\ 20\text{-}24\\ 25\text{-}29\\ \end{array} $	655 1,935 891 301 299 1,138 841	468 1,763 972 420 229 906 766	1.00 1.27 (1.10-1.47) 1.45 (1.24-1.71) 1.69 (1.38-2.08) 1.00 1.01 (0.83-1.23) 1.08 (0.88-1.33)
Newcomb P.A. et al. (1999) (126) Mangusson C.M. et al. (1999)(54)	United States Europe	PCCS PCCS	1992- 1995 1993- 1995	$ \begin{array}{c} <20\\ 20\text{-}24\\ 25\text{-}29\\ \geq 30\\ <20\\ 20\text{-}24\\ 25\text{-}29\\ 30\text{-}34\\ \end{array} $	655 1,935 891 301 299 1,138 841 258	468 1,763 972 420 229 906 766 295	1.00 1.27 (1.10-1.47) 1.45 (1.24-1.71) 1.69 (1.38-2.08) 1.00 1.01 (0.83-1.23) 1.08 (0.88-1.33) 1.37 (1.06-1.76)
Newcomb P.A. et al. (1999) (126) Mangusson C.M. et al. (1999)(54)	United States Europe	PCCS PCCS	1992- 1995 1993- 1995	$ \begin{array}{r} <20\\ 20-24\\ 25-29\\ \ge 30\\ <20\\ 20-24\\ 25-29\\ 30-34\\ \ge 35\\ \end{array} $	655 1,935 891 301 299 1,138 841 258 87	468 1,763 972 420 229 906 766 295 122	$\begin{array}{c} 1.00\\ 1.27\ (1.10\text{-}1.47)\\ 1.45\ (1.24\text{-}1.71)\\ 1.69\ (1.38\text{-}2.08)\\ 1.00\\ 1.01\ (0.83\text{-}1.23)\\ 1.08\ (0.88\text{-}1.33)\\ 1.37\ (1.06\text{-}1.76)\\ 1.49\ (1.06\text{-}2.11)\\ \end{array}$
Newcomb P.A. et al. (1999) (126) Mangusson C.M. et al. (1999)(54) Rockhill B. et al.	United States Europe United	PCCS PCCS PCCS	1992- 1995 1993- 1995 1993-	$ \begin{array}{c} <20\\ 20\-24\\ 25\-29\\ \ge 30\\ <20\\ 20\-24\\ 25\-29\\ 30\-34\\ \ge 35\\ <20\\ \end{array} $	655 1,935 891 301 299 1,138 841 258 87 94	468 1,763 972 420 229 906 766 295 122 95	$\begin{array}{c} 1.00\\ 1.27\ (1.10\text{-}1.47)\\ 1.45\ (1.24\text{-}1.71)\\ 1.69\ (1.38\text{-}2.08)\\ 1.00\\ 1.01\ (0.83\text{-}1.23)\\ 1.08\ (0.88\text{-}1.33)\\ 1.37\ (1.06\text{-}1.76)\\ 1.49\ (1.06\text{-}2.11)\\ 1.00\\ \end{array}$
Newcomb P.A. et al. (1999) (126) Mangusson C.M. et al. (1999)(54) Rockhill B. et al. (1998)(55)	United States Europe United States	PCCS PCCS PCCS	1992- 1995 1993- 1995 1995	$\begin{array}{c} <20\\ 20\-24\\ 25\-29\\ \geq 30\\ <20\\ 20\-24\\ 25\-29\\ 30\-34\\ \geq 35\\ <20\\ 20\-24\\ \end{array}$	655 1,935 891 301 299 1,138 841 258 87 94 163	468 1,763 972 420 229 906 766 295 122 95 167	$\begin{array}{c} 1.00\\ 1.27\ (1.10\text{-}1.47)\\ 1.45\ (1.24\text{-}1.71)\\ 1.69\ (1.38\text{-}2.08)\\ 1.00\\ 1.01\ (0.83\text{-}1.23)\\ 1.08\ (0.88\text{-}1.33)\\ 1.37\ (1.06\text{-}1.76)\\ 1.49\ (1.06\text{-}2.11)\\ 1.00\\ 1.08\ (0.74\text{-}1.56)\\ \end{array}$
Newcomb P.A. et al. (1999) (126) Mangusson C.M. et al. (1999)(54) Rockhill B. et al. (1998)(55)	United States Europe United States	PCCS PCCS PCCS	1992- 1995 1993- 1995 1993- 1996	$ \begin{array}{r} <20\\ 20-24\\ 25-29\\ \geq 30\\ <20\\ 20-24\\ 25-29\\ 30-34\\ \geq 35\\ <20\\ 20-24\\ 25-29\\ 30-34\\ \geq 35\\ <20\\ 20-24\\ 25-29\\ \end{array} $	655 1,935 891 301 299 1,138 841 258 87 94 163 97	468 1,763 972 420 229 906 766 295 122 95 167 99	$\begin{array}{c} 1.00\\ 1.27\ (1.10\text{-}1.47)\\ 1.45\ (1.24\text{-}1.71)\\ 1.69\ (1.38\text{-}2.08)\\ 1.00\\ 1.01\ (0.83\text{-}1.23)\\ 1.08\ (0.88\text{-}1.33)\\ 1.37\ (1.06\text{-}1.76)\\ 1.49\ (1.06\text{-}2.11)\\ 1.00\\ 1.08\ (0.74\text{-}1.56)\\ 1.02\ (0.67\text{-}1.54)\\ \end{array}$
Newcomb P.A. et al. (1999) (126) Mangusson C.M. et al. (1999)(54) Rockhill B. et al. (1998)(55)	United States Europe United States	PCCS PCCS PCCS	1992- 1995 1993- 1995 1995 1993- 1996	$\begin{array}{c} <20\\ 20\-24\\ 25\-29\\ \geq 30\\ <20\\ 20\-24\\ 25\-29\\ 30\-34\\ \geq 35\\ \hline <20\\ 20\-24\\ 25\-29\\ >30\\ \end{array}$	655 1,935 891 301 299 1,138 841 258 87 94 163 97 42	468 1,763 972 420 229 906 766 295 122 95 167 99 61	$\begin{array}{c} 1.00\\ 1.27\ (1.10\text{-}1.47)\\ 1.45\ (1.24\text{-}1.71)\\ 1.69\ (1.38\text{-}2.08)\\ 1.00\\ 1.01\ (0.83\text{-}1.23)\\ 1.08\ (0.88\text{-}1.33)\\ 1.37\ (1.06\text{-}1.76)\\ 1.49\ (1.06\text{-}2.11)\\ 1.00\\ 1.08\ (0.74\text{-}1.56)\\ 1.02\ (0.67\text{-}1.54)\\ 1.35\ (0.81\text{-}2.25)\\ \end{array}$
Newcomb P.A. et al. (1999) (126) Mangusson C.M. et al. (1999)(54) Rockhill B. et al. (1998)(55)	United States Europe United States	PCCS PCCS PCCS	1992- 1995 1993- 1995 1993- 1993- 1996	<20 20-24 25-29 ≥30 <20 20-24 25-29 30-34 ≥35 <20 20-24 20-24 25-29 ≥30 20-24 25-29 ≥30 Nulliparous	655 1,935 891 301 299 1,138 841 258 87 94 163 97 42 49	468 1,763 972 420 229 906 766 295 122 95 167 99 61 91	$\begin{array}{c} 1.00\\ 1.27\ (1.10\text{-}1.47)\\ 1.45\ (1.24\text{-}1.71)\\ 1.69\ (1.38\text{-}2.08)\\ 1.00\\ 1.01\ (0.83\text{-}1.23)\\ 1.08\ (0.88\text{-}1.33)\\ 1.37\ (1.06\text{-}1.76)\\ 1.49\ (1.06\text{-}2.11)\\ 1.00\\ 1.08\ (0.74\text{-}1.56)\\ 1.02\ (0.67\text{-}1.54)\\ 1.35\ (0.81\text{-}2.25)\\ 1.53\ (0.96\text{-}2.46)\\ \end{array}$
Newcomb P.A. et al. (1999) (126) Mangusson C.M. et al. (1999)(54) Rockhill B. et al. (1998)(55)	United States Europe United States	PCCS PCCS PCCS	1992- 1995 1993- 1995 1993- 1996	<20 20-24 25-29 ≥30 <20 20-24 25-29 30-34 ≥35 <20 20-24 25-29 ≥30 20-24 25-29 ≥30 Nulliparous <20	655 1,935 891 301 299 1,138 841 258 87 94 163 97 42 49 953	468 1,763 972 420 229 906 766 295 122 95 167 99 61 91 162	$\begin{array}{c} 1.00\\ 1.27\ (1.10\text{-}1.47)\\ 1.45\ (1.24\text{-}1.71)\\ 1.69\ (1.38\text{-}2.08)\\ 1.00\\ 1.01\ (0.83\text{-}1.23)\\ 1.08\ (0.88\text{-}1.33)\\ 1.37\ (1.06\text{-}1.76)\\ 1.49\ (1.06\text{-}2.11)\\ 1.00\\ 1.08\ (0.74\text{-}1.56)\\ 1.02\ (0.67\text{-}1.54)\\ 1.35\ (0.81\text{-}2.25)\\ 1.53\ (0.96\text{-}2.46)\\ 1.00\\ \end{array}$
Newcomb P.A. et al. (1999) (126) Mangusson C.M. et al. (1999)(54) Rockhill B. et al. (1998)(55) Lambe M. et al. (1998)(127)	United States Europe United States Europe	PCCS PCCS PCCS NCCS	1992- 1995 1993- 1995 1993- 1996 1943- 1960	$\begin{array}{c} <20\\ 20-24\\ 25-29\\ \geq 30\\ <20\\ 20-24\\ 25-29\\ 30-34\\ \geq 35\\ <20\\ 20-24\\ 25-29\\ \geq 30\\ Nulliparous\\ <20\\ 20-24\\ \end{array}$	655 1,935 891 301 299 1,138 841 258 87 94 163 97 42 49 953 2,600	468 1,763 972 420 229 906 766 295 122 95 167 99 61 91 162 465	$\begin{array}{c} 1.00\\ 1.27\ (1.10\text{-}1.47)\\ 1.45\ (1.24\text{-}1.71)\\ 1.69\ (1.38\text{-}2.08)\\ 1.00\\ 1.01\ (0.83\text{-}1.23)\\ 1.08\ (0.88\text{-}1.33)\\ 1.37\ (1.06\text{-}1.76)\\ 1.37\ (1.06\text{-}1.76)\\ 1.49\ (1.06\text{-}2.11)\\ 1.00\\ 1.08\ (0.74\text{-}1.56)\\ 1.02\ (0.67\text{-}1.54)\\ 1.35\ (0.81\text{-}2.25)\\ 1.53\ (0.96\text{-}2.46)\\ 1.00\\ 0.96\ (0.79\text{-}1.18)\\ \end{array}$
Newcomb P.A. et al. (1999) (126) Mangusson C.M. et al. (1999)(54) Rockhill B. et al. (1998)(55) Lambe M. et al. (1998)(127)	United States Europe United States Europe	PCCS PCCS PCCS NCCS	1992- 1995 1993- 1995 1993- 1996 1993- 1996	$\begin{array}{c} <20\\ 20-24\\ 25-29\\ \geq 30\\ <20\\ 20-24\\ 25-29\\ 30-34\\ \geq 35\\ <20\\ 20-24\\ 25-29\\ \geq 30\\ \text{Nulliparous}\\ <20\\ 20-24\\ 25-29\\ \geq 30\\ \end{array}$	655 1,935 891 301 299 1,138 841 258 87 94 163 97 42 49 953 2,600 1,675	468 1,763 972 420 229 906 766 295 122 95 167 99 61 91 162 465 358	$\begin{array}{c} 1.00\\ 1.27\ (1.10\text{-}1.47)\\ 1.45\ (1.24\text{-}1.71)\\ 1.69\ (1.38\text{-}2.08)\\ 1.00\\ 1.01\ (0.83\text{-}1.23)\\ 1.08\ (0.88\text{-}1.33)\\ 1.37\ (1.06\text{-}1.76)\\ 1.49\ (1.06\text{-}2.11)\\ 1.00\\ 1.08\ (0.74\text{-}1.56)\\ 1.02\ (0.67\text{-}1.54)\\ 1.35\ (0.81\text{-}2.25)\\ 1.53\ (0.96\text{-}2.46)\\ 1.00\\ 0.96\ (0.79\text{-}1.18)\\ 1.12\ (0.90\text{-}1.38)\\ \end{array}$
Newcomb P.A. et al. (1999) (126) Mangusson C.M. et al. (1999)(54) Rockhill B. et al. (1998)(55) Lambe M. et al. (1998)(127)	United States Europe United States Europe	PCCS PCCS PCCS NCCS	1992- 1995 1993- 1995 1993- 1996 19943- 1960	$\begin{array}{c} <20\\ 20-24\\ 25-29\\ \geq 30\\ <20\\ 20-24\\ 25-29\\ 30-34\\ \geq 35\\ <20\\ 20-24\\ 25-29\\ \geq 30\\ \text{Nulliparous}\\ <20\\ 20-24\\ 25-29\\ \geq 30\\ \text{Nulliparous}\\ <20\\ 20-24\\ 25-29\\ 30-34\\ \end{array}$	655 1,935 891 301 299 1,138 841 258 87 94 163 97 42 49 953 2,600 1,675 511	468 1,763 972 420 229 906 766 295 122 95 167 99 61 91 162 465 358 108	$\begin{array}{c} 1.00\\ 1.27\ (1.10\text{-}1.47)\\ 1.45\ (1.24\text{-}1.71)\\ 1.69\ (1.38\text{-}2.08)\\ 1.00\\ 1.01\ (0.83\text{-}1.23)\\ 1.08\ (0.88\text{-}1.33)\\ 1.37\ (1.06\text{-}1.76)\\ 1.49\ (1.06\text{-}2.11)\\ 1.00\\ 1.08\ (0.74\text{-}1.56)\\ 1.02\ (0.67\text{-}1.54)\\ 1.35\ (0.81\text{-}2.25)\\ 1.53\ (0.96\text{-}2.46)\\ 1.00\\ 0.96\ (0.79\text{-}1.18)\\ 1.12\ (0.90\text{-}1.38)\\ 1.12\ (0.90\text{-}1.38)\\ 1.10\ (0.83\text{-}145)\\ \end{array}$
Newcomb P.A. et al. (1999) (126) Mangusson C.M. et al. (1999)(54) Rockhill B. et al. (1998)(55) Lambe M. et al. (1998)(127)	United States Europe United States Europe	PCCS PCCS PCCS NCCS	1992- 1995 1993- 1995 1993- 1996 1943- 1960	$\begin{array}{c} <20\\ 20-24\\ 25-29\\ \geq 30\\ <20\\ 20-24\\ 25-29\\ 30-34\\ \geq 35\\ <20\\ 20-24\\ 25-29\\ \geq 30\\ \text{Nulliparous}\\ <20\\ 20-24\\ 25-29\\ \geq 30\\ \text{Nulliparous}\\ <20\\ 20-24\\ 25-29\\ 30-34\\ \geq 35\\ \end{array}$	655 1,935 891 301 299 1,138 841 258 87 94 163 97 42 49 953 2,600 1,675 511 149	468 1,763 972 420 229 906 766 295 122 95 167 99 61 91 162 465 358 108 37	$\begin{array}{c} 1.00\\ 1.27\ (1.10\text{-}1.47)\\ 1.45\ (1.24\text{-}1.71)\\ 1.69\ (1.38\text{-}2.08)\\ 1.00\\ 1.01\ (0.83\text{-}1.23)\\ 1.08\ (0.88\text{-}1.33)\\ 1.37\ (1.06\text{-}1.76)\\ 1.49\ (1.06\text{-}2.11)\\ 1.00\\ 1.08\ (0.74\text{-}1.56)\\ 1.02\ (0.67\text{-}1.54)\\ 1.35\ (0.81\text{-}2.25)\\ 1.53\ (0.96\text{-}2.46)\\ 1.00\\ 0.96\ (0.79\text{-}1.18)\\ 1.12\ (0.90\text{-}1.38)\\ 1.10\ (0.83\text{-}1.45)\\ 1.49\ (0.93\text{-}17)\\ \end{array}$
Newcomb P.A. et al. (1999) (126) Mangusson C.M. et al. (1999)(54) Rockhill B. et al. (1998)(55) Lambe M. et al. (1998)(127)	United States Europe United States Europe	PCCS PCCS PCCS NCCS	1992- 1995 1993- 1995 1993- 1996 1993- 1996 1943- 1960	<20 20-24 25-29 ≥30 <20 20-24 25-29 30-34 ≥35 <20 20-24 25-29 ≥30 Nulliparous <20 20-24 25-29 ≥30 Nulliparous <20 20-24 25-29 ≥30 Nulliparous <20 20-24 25-29 >30 Nulliparous <20 20-24 25-29 >30 Nulliparous <20 20-24 25-29 >30 >31 >35 >31 >35 >31 >325 >325 >30 >31 >325 >30 >31 >35 >31 >325 >30 >31 >35 >35 >31 >35 >31 >35 >35 >31 >35 >35 >35 >31 >35 >	655 1,935 891 301 299 1,138 841 258 87 94 163 97 42 49 953 2,600 1,675 511 149 ND	468 1,763 972 420 229 906 766 295 122 95 167 99 61 91 162 465 358 108 37 ND	$\begin{array}{c} 1.00\\ 1.27\ (1.10\text{-}1.47)\\ 1.45\ (1.24\text{-}1.71)\\ 1.69\ (1.38\text{-}2.08)\\ 1.00\\ 1.01\ (0.83\text{-}1.23)\\ 1.08\ (0.88\text{-}1.33)\\ 1.08\ (0.88\text{-}1.33)\\ 1.37\ (1.06\text{-}1.76)\\ 1.49\ (1.06\text{-}2.11)\\ 1.00\\ 1.08\ (0.74\text{-}1.56)\\ 1.02\ (0.67\text{-}1.54)\\ 1.35\ (0.81\text{-}2.25)\\ 1.53\ (0.96\text{-}2.46)\\ 1.00\\ 0.96\ (0.79\text{-}1.18)\\ 1.12\ (0.90\text{-}1.38)\\ 1.10\ (0.83\text{-}1.45)\\ 1.42\ (0.93\text{-}2.17)\\ 0.92\ (0.80\text{-}1.06)\\ \end{array}$
Newcomb P.A. et al. (1999) (126) Mangusson C.M. et al. (1999)(54) Rockhill B. et al. (1998)(55) Lambe M. et al. (1998)(127) Kroman N. et al. (1998)(128)	United States Europe United States Europe Europe	PCCS PCCS PCCS NCCS PCCS	1992- 1995 1995 1993- 1995 1993- 1996 1994 1943- 1960	<20 20-24 25-29 ≥30 <20 20-24 25-29 30-34 ≥35 <20 20-24 25-29 ≥30 Nulliparous <20 20-24 25-29 ≥30 Nulliparous <20 20-24 25-29 ≥30 Nulliparous <20 20-24 25-29 ≥30 Nulliparous <20 20-24 25-29 ≥30 >20-24 25-29 ≥30 >20-24 25-29 ≥30 >20-24 25-29 ≥30 >20-24 25-29 ≥30 >20-24 25-29 ≥30 >20-24 25-29 ≥30 >20-24 25-29 ≥30 >20-24 25-29 ≥30 >20-24 25-29 >30-34 ≥35 >20-24 25-29 >20-24 25-29 >20-24 25-29 >30-34 ≥35 >20-24	655 1,935 891 301 299 1,138 841 258 87 94 163 97 42 49 953 2,600 1,675 511 149 ND	468 1,763 972 420 229 906 766 295 122 95 167 99 61 91 162 465 358 108 37 ND ND	$\begin{array}{c} 1.00\\ 1.27\ (1.10\text{-}1.47)\\ 1.45\ (1.24\text{-}1.71)\\ 1.69\ (1.38\text{-}2.08)\\ 1.00\\ 1.01\ (0.83\text{-}1.23)\\ 1.08\ (0.88\text{-}1.33)\\ 1.37\ (1.06\text{-}1.76)\\ 1.49\ (1.06\text{-}2.11)\\ 1.00\\ 1.08\ (0.74\text{-}1.56)\\ 1.02\ (0.67\text{-}1.54)\\ 1.35\ (0.81\text{-}2.25)\\ 1.53\ (0.96\text{-}2.46)\\ 1.00\\ 0.96\ (0.79\text{-}1.18)\\ 1.12\ (0.90\text{-}1.38)\\ 1.10\ (0.83\text{-}1.45)\\ 1.42\ (0.93\text{-}2.17)\\ 0.92\ (0.80\text{-}1.06)\\ 1.00\\ 1$
Newcomb P.A. et al. (1999) (126) Mangusson C.M. et al. (1999)(54) Rockhill B. et al. (1998)(55) Lambe M. et al. (1998)(127) Kroman N. et al. (1998)(128)	United States Europe United States Europe Europe	PCCS PCCS PCCS NCCS	1992- 1995 1995 1995 1993- 1996 1996 1943- 1960 1978- 1994	<20 20-24 25-29 ≥30 <20 20-24 25-29 30-34 ≥35 <20 20-24 25-29 ≥30 Nulliparous <20 20-24 25-29 ≥30 Nulliparous <20 20-24 25-29 >30-34 ≥35 Nulliparous <20 20-24 25-29 30-34 ≥35 >35 >35 >35 >32	655 1,935 891 301 299 1,138 841 258 87 94 163 97 42 49 953 2,600 1,675 511 149 ND ND	468 1,763 972 420 229 906 766 295 122 95 167 99 61 91 162 465 358 108 37 ND ND	$\begin{array}{c} 1.00\\ 1.27\ (1.10\text{-}1.47)\\ 1.45\ (1.24\text{-}1.71)\\ 1.69\ (1.38\text{-}2.08)\\ \hline 1.00\\ 1.01\ (0.83\text{-}1.23)\\ 1.08\ (0.88\text{-}1.33)\\ 1.37\ (1.06\text{-}1.76)\\ 1.49\ (1.06\text{-}2.11)\\ \hline 1.00\\ 1.08\ (0.74\text{-}1.56)\\ 1.02\ (0.67\text{-}1.54)\\ 1.35\ (0.81\text{-}2.25)\\ 1.53\ (0.96\text{-}2.46)\\ \hline 1.00\\ 0.96\ (0.79\text{-}1.18)\\ 1.12\ (0.90\text{-}1.38)\\ 1.10\ (0.83\text{-}1.45)\\ 1.42\ (0.93\text{-}2.17)\\ \hline 0.92\ (0.80\text{-}1.06)\\ 1.00\\ 0.95\ (0.78\ 0.98\\ \hline 1.00\\ \hline 1.00\\$
Newcomb P.A. et al. (1999) (126) Mangusson C.M. et al. (1999)(54) Rockhill B. et al. (1998)(55) Lambe M. et al. (1998)(127) Kroman N. et al. (1998)(128)	United States Europe United States Europe Europe	PCCS PCCS PCCS NCCS PCCS	1992- 1995 1995 1995 1993- 1996 1993- 1996 1943- 1960 1978- 1994	<20 20-24 25-29 ≥30 <20 20-24 25-29 30-34 ≥35 <20 20-24 25-29 ≥30 Nulliparous <20 20-24 25-29 ≥30 Nulliparous <20 20-24 25-29 >30-34 ≥35 Nulliparous <20 20-24 25-29 30-34 ≥35 Nulliparous <20 20-24 25-29 30-34 ≥35 >20-24 >25-29 >30-34 >20-24	655 1,935 891 301 299 1,138 841 258 87 94 163 97 42 49 953 2,600 1,675 511 149 ND ND ND	468 1,763 972 420 229 906 766 295 122 95 167 99 61 91 162 465 358 108 37 ND ND ND ND	$\begin{array}{c} 1.00\\ 1.27\ (1.10\text{-}1.47)\\ 1.45\ (1.24\text{-}1.71)\\ 1.69\ (1.38\text{-}2.08)\\ 1.00\\ 1.01\ (0.83\text{-}1.23)\\ 1.08\ (0.88\text{-}1.33)\\ 1.37\ (1.06\text{-}1.76)\\ 1.49\ (1.06\text{-}2.11)\\ 1.00\\ 1.08\ (0.74\text{-}1.56)\\ 1.02\ (0.67\text{-}1.54)\\ 1.35\ (0.81\text{-}2.25)\\ 1.53\ (0.96\text{-}2.46)\\ 1.00\\ 0.96\ (0.79\text{-}1.18)\\ 1.12\ (0.90\text{-}1.38)\\ 1.10\ (0.83\text{-}1.45)\\ 1.42\ (0.93\text{-}2.17)\\ 0.92\ (0.80\text{-}1.06)\\ 1.00\\ 0.87\ (0.78\text{-}0.98\\ 0.70\ 0.70\ 0.90)\\ \end{array}$
Newcomb P.A. et al. (1999) (126) Mangusson C.M. et al. (1999)(54) Rockhill B. et al. (1998)(55) Lambe M. et al. (1998)(127) Kroman N. et al. (1998)(128)	United States Europe United States Europe Europe	PCCS PCCS PCCS NCCS PCCS	1992- 1995 1995 1995 1993- 1996 1993- 1996 1994 1994 1978- 1994	$\begin{array}{c} <20\\ 20-24\\ 25-29\\ \geq 30\\ <20\\ 20-24\\ 25-29\\ 30-34\\ \geq 35\\ <20\\ 20-24\\ 25-29\\ \geq 30\\ \mbox{Nulliparous}\\ <20\\ 20-24\\ 25-29\\ \equiv 30\\ \mbox{Nulliparous}\\ <20\\ 20-24\\ 25-29\\ \mbox{30}\\ <35\\ \mbox{Nulliparous}\\ <20\\ 20-24\\ 25-29\\ \mbox{30}\\ <20\\ 20-24\\ 25-29\\ \mbox{30}\\ <20\\ 20-24\\ \mbox{30}\\ <20\\ 20-24\\ \mbox{30}\\ <20\\ 20-24\\ \mbox{30}\\ <20\\ 20-24\\ \mbox{30}\\ <20\\ $	655 1,935 891 301 299 1,138 841 258 87 94 163 97 42 49 953 2,600 1,675 511 149 ND ND ND ND ND	468 1,763 972 420 229 906 766 295 122 95 167 99 61 91 162 465 358 108 37 ND ND ND ND ND ND	$\begin{array}{c} 1.00\\ 1.27\ (1.10\text{-}1.47)\\ 1.45\ (1.24\text{-}1.71)\\ 1.69\ (1.38\text{-}2.08)\\ 1.00\\ 1.01\ (0.83\text{-}1.23)\\ 1.08\ (0.88\text{-}1.33)\\ 1.37\ (1.06\text{-}1.76)\\ 1.49\ (1.06\text{-}1.76)\\ 1.49\ (1.06\text{-}2.11)\\ 1.00\\ 1.08\ (0.74\text{-}1.56)\\ 1.02\ (0.67\text{-}1.54)\\ 1.35\ (0.81\text{-}2.25)\\ 1.53\ (0.96\text{-}2.46)\\ 1.00\\ 0.96\ (0.79\text{-}1.18)\\ 1.12\ (0.90\text{-}1.38)\\ 1.12\ (0.90\text{-}1.38)\\ 1.12\ (0.90\text{-}1.38)\\ 1.142\ (0.93\text{-}2.17)\\ 0.92\ (0.80\text{-}1.06)\\ 1.00\\ 0.87\ (0.78\text{-}0.98\\ 0.79\ (0.70\text{-}0.90)\\ 0.96\ (0.9\ 0.111)\\ 1.00\\ 0.80\ (0.74\text{-}1.59)\\ 1.00\\ 0.87\ (0.78\text{-}0.98\\ 0.79\ (0.70\text{-}0.90)\\ 0.96\ (0.90\ 1111)\\ 1.111\\ 1.00\\ 0.80\ (0.90\ 1111)\\ 1.00\\ 0.80\ (0.90\ 1111)\\ 1.00\\ 0.90\ (0.90\ 1111)\\ 1.00\\ 0.90\ (0.90\ 1111)\\ 1.00\\ 0.90\ (0.90\ 1111)\\ 1.00\\ 0.90\ (0.90\ 1111)\\ 1.00\\ 0.90\ (0.90\ 1111)\\ 1.00\\ 0.90\ (0.90\ 1111)\\ 1.00\\ 0.90\ (0.90\ 1111)\\ 1.00\\ 0.90\ (0.90\ 1111)\\ 1.00\\ 0.90\ (0.90\ 1111)\\ 1.00\\ 0.90\ (0.90\ 1111)\\ 1.00\\ 0.90\ (0.90\ 1111)\\ 1.00\\ 0.90\ (0.90\ 1111)\\ 1.00\\ 0.90\ (0.90\ 11111)\\ 1.00\\ 0.90\ (0.90\ 11111)\\ 1.00\\ 0.90\ (0.90\ 11111)\\ 1.00\\ 0.90\ (0.90\ 11111)\\ 1.00\\ 0.90\ (0.90\ 11111)\\ 1.00\\ 0.90\ (0.90\ 11111)\\ 1.00\\ 0.90\ (0.90\ 11111)\\ 1.00\\ 0.90\ (0.90\ 11111)\\ 1.00\ (0.90\ 11111)\\ 1.00\ (0.90\ 11111)\\ 1.00\ (0.90\ 1111)\\ 1.00\ (0.90\ 111111)\\ 1.00\ (0.90\ 11111)\\ 1.00\ (0.90\ 11111)\\ 1.00\ (0.90\ 11111)\\ 1.00\ (0.90\ 11111)\\ 1.00\ (0.90\ 11111)\\ 1.00\ (0.90\ 11111)\\ 1.00\ (0.90\ 11111)\\ 1.00\ (0.90\ 11111)\\ 1.00\ (0.90\ 11111)\\ 1.00\ (0.90\ 11111)\\ 1.00\ (0.90\ 11111)\\ 1.00\ (0.90\ 11111)\\ 1.00\ (0.90\ 11111)\\ 1.00\ (0.90\ 111111)\\ 1.00\ (0.90\ 111111)\\ 1.00\ (0.90\ 111111)\\ 1$
Newcomb P.A. et al. (1999) (126) Mangusson C.M. et al. (1999)(54) Rockhill B. et al. (1998)(55) Lambe M. et al. (1998)(127) Kroman N. et al. (1998)(128)	United States Europe United States Europe Europe	PCCS PCCS PCCS PCCS PCCS	1992- 1995 1995 1995 1993- 1996 1993- 1996 1994 1994 1994 1994	<20 20-24 25-29 ≥30 <20 20-24 25-29 30-34 ≥35 <20 20-24 25-29 ≥30 Nulliparous <20 20-24 25-29 >30-34 ≥35 Nulliparous <20 20-24 25-29 >30-34 ≥35 >20-24 25-29 >30-34 ≥35 >20-24 >25-29 >30-34 ≥35 >20-24 >25-29 >30-34 ≥35 >20-24 >25-29 >30-34 >25-29 >30-34 >25-29 >30-34 >25-29 >30-34 >25-29 >30-34 >25-29 >30-34 >25-29 >30-34 >25-29 >30-34 >25-29 >30-34 >25-29 >30-34 >25-29 >30-34 >25-29 >30-34 >25-29 >30-34 >25-29 >30-34 >25-29 >30-24 >20-24	655 1,935 891 301 299 1,138 841 258 87 94 163 97 42 49 953 2,600 1,675 511 149 ND ND ND ND ND ND ND ND	468 1,763 972 420 229 906 766 295 122 95 167 99 61 91 162 465 358 108 37 ND ND ND ND ND ND ND	$\begin{array}{c} 1.00\\ 1.27\ (1.10\text{-}1.47)\\ 1.45\ (1.24\text{-}1.71)\\ 1.69\ (1.38\text{-}2.08)\\ 1.00\\ 1.01\ (0.83\text{-}1.23)\\ 1.08\ (0.88\text{-}1.33)\\ 1.37\ (1.06\text{-}1.76)\\ 1.49\ (1.06\text{-}2.11)\\ 1.00\\ 1.08\ (0.74\text{-}1.56)\\ 1.02\ (0.67\text{-}1.54)\\ 1.35\ (0.81\text{-}2.25)\\ 1.53\ (0.96\text{-}2.46)\\ 1.00\\ 0.96\ (0.79\text{-}1.18)\\ 1.12\ (0.90\text{-}1.38)\\ 1.12\ (0.90\text{-}1.38)\\ 1.142\ (0.93\text{-}2.17)\\ 0.92\ (0.80\text{-}1.06)\\ 1.00\\ 0.87\ (0.78\text{-}0.98\\ 0.79\ (0.70\text{-}0.90)\\ 0.94\ (0.80\text{-}1.11)\\ 1.00\\ 0.94\ (0.80\text{-}1.11)\\ 1.00\\ 0.94\ (0.80\text{-}1.11)\\ 0.00\\ 0.87\ (0.78\text{-}0.98)\\ 0.79\ (0.70\text{-}0.90)\\ 0.94\ (0.80\text{-}1.11)\\ 0.00\\ 0.87\ (0.78\text{-}0.98)\\ 0.79\ (0.78\text{-}0.98)\\ 0.90\ (0.78\text{-}0.98)\\ 0.90\ (0.78\text{-}0.98)\\ 0.90\ (0.78\text{-}0.98)\\ 0.90\ (0.80\text{-}1.11)\\ 0.90\$
Newcomb P.A. et al. (1999) (126) Mangusson C.M. et al. (1999)(54) Rockhill B. et al. (1998)(55) Lambe M. et al. (1998)(127) Kroman N. et al. (1998)(128) Enger S.M. et al. (1997)(120)	United States Europe United States Europe Europe	PCCS PCCS PCCS PCCS PCCS	1992- 1995 1995 1995 1995 1996 1993- 1996 1994 1996 1978- 1994 1994	<20 20-24 25-29 ≥30 <20 20-24 25-29 30-34 ≥35 <20 20-24 25-29 ≥30 Nulliparous <20 20-24 25-29 ≥30 Nulliparous <20 20-24 25-29 >30-34 ≥35 Nulliparous <20 20-24 25-29 ≥30 Nulliparous <20 20-24 25-29 ≥30 <20-24 25-29 ≥30 <20-24 25-29 ≥30 <20-24 25-29 ≥30 <20-24 25-29 ≥30 <20-24 25-29 ≥30 <20-24 $25-29>30-34≥35>30-34≥35>30-24>20-$	655 1,935 891 301 299 1,138 841 258 87 94 163 97 42 49 953 2,600 1,675 511 149 ND ND ND ND ND ND ND ND 141 140	468 1,763 972 420 229 906 766 295 122 95 167 99 61 91 162 465 358 108 37 ND ND ND ND ND ND 146 442	$\begin{array}{c} 1.00\\ 1.27 \ (1.10\text{-}1.47)\\ 1.45 \ (1.24\text{-}1.71)\\ 1.69 \ (1.38\text{-}2.08)\\ 1.00\\ 1.01 \ (0.83\text{-}1.23)\\ 1.08 \ (0.88\text{-}1.33)\\ 1.37 \ (1.06\text{-}1.76)\\ 1.49 \ (1.06\text{-}2.11)\\ 1.00\\ 1.08 \ (0.74\text{-}1.56)\\ 1.02 \ (0.67\text{-}1.54)\\ 1.35 \ (0.81\text{-}2.25)\\ 1.53 \ (0.96\text{-}2.46)\\ 1.00\\ 0.96 \ (0.79\text{-}1.18)\\ 1.12 \ (0.90\text{-}1.38)\\ 1.10 \ (0.83\text{-}1.45)\\ 1.42 \ (0.93\text{-}2.17)\\ 0.92 \ (0.80\text{-}1.06)\\ 1.00\\ 0.87 \ (0.78\text{-}0.98\\ 0.79 \ (0.70\text{-}0.90)\\ 0.94 \ (0.80\text{-}1.11)\\ 1.00\\ \end{array}$
Newcomb P.A. et al. (1999) (126) Mangusson C.M. et al. (1999)(54) Rockhill B. et al. (1998)(55) Lambe M. et al. (1998)(127) Kroman N. et al. (1998)(128) Enger S.M. et al. (1997)(129)	United States Europe United States Europe Europe United States	PCCS PCCS NCCS PCCS PCCS	1992- 1995 1995 1995 1995 1996 1993- 1996 1994 1994 1978- 1994 1994	<20 20-24 25-29 ≥30 <20 20-24 25-29 30-34 ≥35 <20 20-24 25-29 ≥30 Nulliparous <20 20-24 25-29 ≥30 Nulliparous <20 20-24 25-29 >30-34 ≥35 Nulliparous <20 20-24 25-29 ≥30 Nulliparous <20 20-24 25-29 ≥30 <20-24 25-29 ≥30 <20-24 25-29 ≥30 <20-24 25-29 ≥30 <20-24 25-29 ≥30 <20-24 25-29 >30-34 ≥35 <20 20-24 25-29 >30-34 ≥35 <20 20-24 25-29 >30-34 ≥35 <20 20-24 25-29 ≥30 <20-24 25-29 >30-34 ≥35 <20 20-24 25-29 >30-34 >35 <20 20-24 25-29 >30-34 >20 20-24 25-29 >30-34 >20 20-24 25-29 >30-34 >20 20-24 25-29 >30-34 >20 20-24 25-29 >30-24 25-29 >30-24 25-29 >30-24 25-29 >30-24 25-29 >30-24 25-29 >30-24 25-29 >30-24 25-29 >30-24 25-29 >30-24 25-29 >30-24 25-29 >30-24 >20-24 25-29 >30-24 >20-24	655 1,935 891 301 299 1,138 841 258 87 94 163 97 42 49 953 2,600 1,675 511 149 ND ND ND ND ND ND ND 141 499 226	468 1,763 972 420 229 906 766 295 122 95 167 99 61 91 162 465 358 108 37 ND ND ND ND ND ND ND ND 146 448 248	$\begin{array}{c} 1.00\\ 1.27 \ (1.10-1.47)\\ 1.45 \ (1.24-1.71)\\ 1.69 \ (1.38-2.08)\\ 1.00\\ 1.01 \ (0.83-1.23)\\ 1.08 \ (0.88-1.33)\\ 1.37 \ (1.06-1.76)\\ 1.49 \ (1.06-2.11)\\ 1.00\\ 1.08 \ (0.74-1.56)\\ 1.02 \ (0.67-1.54)\\ 1.35 \ (0.81-2.25)\\ 1.53 \ (0.96-2.46)\\ 1.00\\ 0.96 \ (0.79-1.18)\\ 1.12 \ (0.90-1.38)\\ 1.10 \ (0.83-1.45)\\ 1.42 \ (0.93-2.17)\\ 0.92 \ (0.80-1.06)\\ 1.00\\ 0.87 \ (0.78-0.98\\ 0.79 \ (0.70-0.90)\\ 0.94 \ (0.80-1.11)\\ 1.00\\ 0.90 \ (0.68-1.19)\\ 1.02 \ (0.75-1.42)\\ 1.07 \ 1.42 \ (0.75-1.42)\\ 1.00\\ 0.97 \ (0.75-1.42)\\ 1.00\\ 0.90 \ (0.68-1.19)\\ 1.00\\ 0.97 \ (0.75-1.42)\\ 1.07 \ (0.75-1.42)\\ 1.07 \ (0.75-1.42)\\ 1.00\\$
Newcomb P.A. et al. (1999) (126) Mangusson C.M. et al. (1999)(54) Rockhill B. et al. (1998)(55) Lambe M. et al. (1998)(127) Kroman N. et al. (1998)(128) Enger S.M. et al. (1997)(129)	United States Europe United States Europe United States	PCCS PCCS PCCS PCCS PCCS	1992- 1995 1995 1995 1993- 1996 1993- 1996 1994 1987- 1987- 1989	$\begin{array}{c} <20\\ 20-24\\ 25-29\\ \geq 30\\ <20\\ 20-24\\ 25-29\\ 30-34\\ \geq 35\\ <20\\ 20-24\\ 25-29\\ \geq 30\\ \text{Nulliparous}\\ <20\\ 20-24\\ 25-29\\ \geq 30\\ \text{Nulliparous}\\ <20\\ 20-24\\ 25-29\\ 30-34\\ \geq 35\\ \text{Nulliparous}\\ <20\\ 20-24\\ 25-29\\ \geq 30\\ <20\\ 20-24\\ 25-29\\ > 30\\ <20\\ 20-24\\ 25-29\\ > 30\\ <20\\ 20-24\\ 25-29\\ > 30\\ <20\\ 20-24\\ 25-29\\ > 30\\ <20\\ 20-24\\ 25-29\\ > 30\\ <20\\ 20-24\\ 25-29\\ > 30\\ <20\\ 20-24\\ 25-29\\ > 30\\ <20\\ 20-24\\ 25-29\\ > 30\\ <20\\ 20-24\\ 25-29\\ > 30\\ <20\\ 20-24\\ 25-29\\ > 30\\ <20\\ 20-24\\ 25-29\\ > 30\\ <20\\ 20-24\\ 25-29\\ > 30\\ <20\\ 20-24\\ 25-29\\ > 30\\ <20\\ 20-24\\ 25-29\\ > 30\\ <20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ $	655 1,935 891 301 299 1,138 841 258 87 94 163 97 42 49 953 2,600 1,675 511 149 ND ND ND ND ND ND ND ND ND ND	468 1,763 972 420 229 906 766 295 122 95 167 99 61 91 162 465 358 108 37 ND ND ND ND ND ND ND ND 146 448 248 122	$\begin{array}{c} 1.00\\ 1.27 (1.10-1.47)\\ 1.45 (1.24-1.71)\\ 1.69 (1.38-2.08)\\ 1.00\\ 1.01 (0.83-1.23)\\ 1.08 (0.88-1.33)\\ 1.37 (1.06-1.76)\\ 1.49 (1.06-2.11)\\ 1.00\\ 1.08 (0.74-1.56)\\ 1.02 (0.67-1.54)\\ 1.35 (0.81-2.25)\\ 1.53 (0.96-2.46)\\ 1.00\\ 0.96 (0.79-1.18)\\ 1.12 (0.90-1.38)\\ 1.10 (0.83-1.45)\\ 1.42 (0.93-2.17)\\ 0.92 (0.80-1.06)\\ 1.00\\ 0.87 (0.78-0.98\\ 0.79 (0.70-0.90)\\ 0.94 (0.80-1.11)\\ 1.00\\ 0.90 (0.68-1.19)\\ 1.03 (0.75-1.43)\\ 1.20 (0.81+177)\\ \end{array}$
Newcomb P.A. et al. (1999) (126) Mangusson C.M. et al. (1999)(54) Rockhill B. et al. (1998)(55) Lambe M. et al. (1998)(127) Kroman N. et al. (1998)(127) Enger S.M. et al. (1997)(129)	United States Europe United States Europe United States	PCCS PCCS PCCS PCCS PCCS	1992- 1995 1995 1995 1993- 1995 1993- 1996 1993- 1996 1994 1994 1978- 1994 1994	<20 20-24 25-29 ≥30 <20 20-24 25-29 30-34 ≥35 <20 20-24 25-29 ≥30 Nulliparous <20 20-24 25-29 ≥35 Nulliparous <20 20-24 25-29 ≥35 Nulliparous <20 20-24 25-29 ≥35 >30 >34 ≥35 >35 >20 20-24 25-29 ≥30 >30 >20 20-24 25-29 ≥30 >30 >20 20-24 25-29 ≥30 >31 >20 20-24 25-29 ≥30 >20-24 25-29 ≥35 >30 >20 20-24 25-29 ≥30 >20-24 >20-24	655 1,935 891 301 299 1,138 841 258 87 94 163 97 42 49 953 2,600 1,675 511 149 ND ND ND ND ND ND 236 97 236 97 04	468 1,763 972 420 229 906 766 295 122 95 167 99 61 91 162 465 358 108 37 ND ND ND ND ND ND ND 146 448 248 132 01	$\begin{array}{c} 1.00\\ 1.27\ (1.10\text{-}1.47)\\ 1.45\ (1.24\text{-}1.71)\\ 1.69\ (1.38\text{-}2.08)\\ 1.00\\ 1.01\ (0.83\text{-}1.23)\\ 1.08\ (0.88\text{-}1.33)\\ 1.08\ (0.88\text{-}1.33)\\ 1.37\ (1.06\text{-}1.76)\\ 1.49\ (1.06\text{-}2.11)\\ 1.00\\ 1.08\ (0.74\text{-}1.56)\\ 1.02\ (0.67\text{-}1.54)\\ 1.35\ (0.81\text{-}2.25)\\ 1.53\ (0.96\text{-}2.46)\\ 1.00\\ 0.96\ (0.79\text{-}1.18)\\ 1.12\ (0.90\text{-}1.38)\\ 1.10\ (0.83\text{-}1.45)\\ 1.42\ (0.93\text{-}2.17)\\ 0.92\ (0.80\text{-}1.06)\\ 1.00\\ 0.87\ (0.78\text{-}0.98\\ 0.79\ (0.70\text{-}0.90)\\ 0.94\ (0.80\text{-}1.11)\\ 1.00\\ 0.90\ (0.68\text{-}1.19)\\ 1.03\ (0.75\text{-}1.43)\\ 1.20\ (0.81\text{-}1.77)\\ 1.00\\ 1.00\\ 0.87\ (0.81\text{-}1.77)\\ 1.00\\ 1.00\\ 0.81\ (0.81\text{-}1.77)\\ 0.91\ (0.81\text{-}1.81\ (0.81$
Newcomb P.A. et al. (1999) (126) Mangusson C.M. et al. (1999)(54) Rockhill B. et al. (1998)(55) Lambe M. et al. (1998)(127) Kroman N. et al. (1998)(127) Enger S.M. et al. (1997)(129) Wu A.H. et al. (1997)(129)	United States Europe United States United States	PCCS PCCS PCCS PCCS PCCS PCCS	1992- 1995 1995 1995 1993- 1996 1993- 1996 1994 1983- 1987- 1989 1983- 1983- 1983-	<20 20-24 25-29 ≥30 <20 20-24 25-29 30-34 ≥35 <20 20-24 25-29 ≥30 Nulliparous <20 20-24 25-29 ≥30 Nulliparous <20 20-24 25-29 ≥35 Nulliparous <20 20-24 25-29 ≥35 Nulliparous <20 20-24 25-29 ≥30 Nulliparous <20 20-24 25-29 ≥35 Nulliparous <20 20-24 25-29 ≥35 Nulliparous <20 20-24 25-29 ≥30 Nulliparous <20 20-24 25-29 ≥30 Nulliparous <20 20-24 25-29 ≥30 Nulliparous <20 20-24 25-29 ≥30 <20 20-24 25-29 ≥30 <20 20-24 25-29 ≥30 <20 20-24 25-29 ≥30 <20 20-24 25-29 ≥30 <20 <20-24 $>2-29≥30<20<20<20-24>2-29≥30<20<20<20-24>2-29≥30<20<20<20<20<20<20-24>2-29≥30<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20-24<25-29>30<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20$	655 1,935 891 301 299 1,138 841 258 87 94 163 97 42 49 953 2,600 1,675 511 149 ND ND ND ND ND ND ND ND ND ND	468 1,763 972 420 229 906 766 295 122 95 167 99 61 91 162 465 358 108 37 ND ND ND ND ND ND ND ND 146 448 248 132 91	$\begin{array}{c} 1.00\\ 1.27\ (1.10\text{-}1.47)\\ 1.45\ (1.24\text{-}1.71)\\ 1.69\ (1.38\text{-}2.08)\\ 1.00\\ 1.01\ (0.83\text{-}1.23)\\ 1.08\ (0.88\text{-}1.33)\\ 1.08\ (0.88\text{-}1.33)\\ 1.37\ (1.06\text{-}1.76)\\ 1.49\ (1.06\text{-}2.11)\\ 1.00\\ 1.08\ (0.74\text{-}1.56)\\ 1.02\ (0.67\text{-}1.54)\\ 1.35\ (0.81\text{-}2.25)\\ 1.53\ (0.96\text{-}2.46)\\ 1.00\\ 0.96\ (0.79\text{-}1.18)\\ 1.12\ (0.90\text{-}1.38)\\ 1.10\ (0.83\text{-}1.45)\\ 1.42\ (0.93\text{-}2.17)\\ 0.92\ (0.80\text{-}1.06)\\ 1.00\\ 0.87\ (0.78\text{-}0.98\\ 0.79\ (0.70\text{-}0.90)\\ 0.94\ (0.80\text{-}1.11)\\ 1.00\\ 0.90\ (0.68\text{-}1.19)\\ 1.03\ (0.75\text{-}1.43)\\ 1.20\ (0.81\text{-}1.77)\\ 1.00\\ 0.91\ (0.81\text{-}1.77)\\ 0.91\ (0.81-$
Newcomb P.A. et al. (1999) (126) Mangusson C.M. et al. (1999)(54) Rockhill B. et al. (1998)(55) Lambe M. et al. (1998)(127) Kroman N. et al. (1998)(128) Enger S.M. et al. (1997)(129) Wu A.H. et al. (1996)(116)	United States Europe United States Europe Europe United States United States	PCCS PCCS PCCS PCCS PCCS PCCS	1992- 1995 1995 1995 1995 1996 1993- 1996 1994 1980 1987- 1989 1983- 1987	<20 20-24 25-29 ≥30 <20 20-24 25-29 30-34 ≥35 <20 20-24 25-29 ≥30 Nulliparous <20 20-24 25-29 30-34 ≥35 Nulliparous <20 20-24 25-29 30-34 ≥35 Nulliparous <20 20-24 25-29 >30-34 ≥35 Nulliparous <20 20-24 25-29 ≥30 Nulliparous <20 20-24 25-29 ≥30 Nulliparous <20 20-24 25-29 ≥30 Nulliparous <20 20-24 25-29 ≥30 Nulliparous <20 20-24 25-29 ≥30 <20 20-24 25-29 ≥30 <20 20-24 25-29 ≥30 <20 20-24 25-29 ≥30 <20 20-24 25-29 ≥30 <20 20-24 25-29 ≥30 <20 20-24 25-29 ≥30 <20 >20-24 25-29 ≥30 <20 >20-24 25-29 ≥30 <20 >20-24 25-29 ≥30 <20 >20-24 25-29 ≥30 <20 >20-24 25-29 ≥30 <20 >20-24 25-29 ≥30 <20 >20-24 25-29 ≥30 <20 >20-24 25-29 ≥30 >20-24 25-29 ≥30 >20-24 25-29 ≥30 >20-24 25-29 ≥30 >20-24 25-29 ≥30 >20-24	655 1,935 891 301 299 1,138 841 258 87 94 163 97 42 49 953 2,600 1,675 511 149 ND ND ND 141 499 236 97 94 40	468 1,763 972 420 229 906 766 295 122 95 167 99 61 91 162 465 358 108 37 ND ND ND ND ND ND ND ND 146 448 248 132 91 14	$\begin{array}{c} 1.00\\ 1.27\ (1.10\text{-}1.47)\\ 1.45\ (1.24\text{-}1.71)\\ 1.69\ (1.38\text{-}2.08)\\ 1.00\\ 1.01\ (0.83\text{-}1.23)\\ 1.08\ (0.88\text{-}1.33)\\ 1.37\ (1.06\text{-}1.76)\\ 1.49\ (1.06\text{-}2.11)\\ 1.00\\ 1.08\ (0.74\text{-}1.56)\\ 1.02\ (0.67\text{-}1.54)\\ 1.35\ (0.81\text{-}2.25)\\ 1.53\ (0.96\text{-}2.46)\\ 1.00\\ 0.96\ (0.79\text{-}1.18)\\ 1.12\ (0.90\text{-}1.38)\\ 1.10\ (0.83\text{-}1.45)\\ 1.42\ (0.93\text{-}2.17)\\ 0.92\ (0.80\text{-}1.06)\\ 1.00\\ 0.87\ (0.78\text{-}0.98\\ 0.79\ (0.70\text{-}0.90)\\ 0.94\ (0.80\text{-}1.11)\\ 1.00\\ 0.90\ (0.68\text{-}1.19)\\ 1.03\ (0.75\text{-}1.43)\\ 1.20\ (0.81\text{-}1.77)\\ 1.00\\ 0.24\ (0.12\text{-}0.50)\\ 0.24\ (0.12\text{-}0.50)\\ \end{array}$

				25-29	238	143	0.58 (0.40-0.84)
				30-34	117	70	0.58 (0.37-0.89)
				≥35	34	34	1.06 (0.59-1.90)
Alberktsen G. et	Europe	PCCS	1960-	≤19	ND	ND	1.00
al. (1995)(130)	•		1991	20-24	ND	ND	1.05 (0.96-1.14)
				25-29	ND	ND	1.19 (1.06-1.34)
				≥30	ND	ND	1.26 (1.05-1.51)
Mavberry R.M.	United	PCCS	1980-	<20	994	876	1.00**
et al.(1992)(117)	States		1982	20-24	1.842	1.946	1.17 (1.09-1.24)
				25-29	775	917	1.35 (1.19-1.54)
				>30	206	352	1.57 (1.30-1.90)
Lund E (1989)	Europe	PCCS	1984-	<19	ND	ND	1.00
(131)			1985	20-24	ND	ND	1.10 (0.50-2.30)
				>25	ND	ND	2.10 (1.00-4.40)
				Nulliparous	ND	ND	1.40 (0.60-3.30)
Siskind V. et al.	Australia	PCCS	1981-	<20	132	46	1.00
(1989)			1985	20-24	517	196	1.07 (0.70-1.63)
				25-29	333	137	1.15 (0.74-1.79)
				30-34	76	62	2.30 (1.33-3.90)
				35-44	30	18	1.57 (0.73-3.40)
Lavde P.M. et al.	United	PCCS	1980-	<18	342	268	1.00
(1989)(118)	States		1982	18-19	680	566	1.02 (0.83-1.24)
				20-21	845	766	1.01 (0.83-1.23)
				22-23	727	716	1.06 (0.87-1.30)
				24-25	353	574	1.09 (0.88-1.34)
				26-27	212	383	1.04 (0.83-1.31)
				28-29	94	245	1.20 (0.93-1.55)
				30-31	34	130	1.41 (1.02-1.94)
				32-34	82	130	1.51 (1.08-2.11)
				≥35	43	76	1.58 (1.03-2.42)
Ewertz M. et al.	Europe	PCCS	1983-	<20	136	144	1.00
(1988)(59)			1984	20-24	565	538	0.92 (0.71-1.20)
				25-29	358	423	1.12 (0.85-1.48)
				30-34	114	125	1.04 (0.74-1.78)
				≥35	29	25	0.77 (0.43-1.39)
Brignone G. et	Europe	PCCS	1974-	<20	103	70	1.00**
al. (1987)(61)			1983	20-24	312	226	1.02 (0.72-1.46)
				25-29	197	208	1.52 (1.06-2.17)
				>29	129	141	1.61 (1.09-2.38)
Wang J.M. et al.	Asia	PCCS	2012-	<25	1,987	1,809	1.00
(2020)(119)	(China)			25-29	1,793	1,545	0.96 (0.85-1.10)
				≥30	293	270	0.96 (0.74-1.25)
Huang Z. et al.	Asia	PCCS	1996-	<25	1.246	1.067	1.00
(2014)(132)	(China)		1998	25-29	1,721	1,732	1.04 (0.92-1.17)
			2002-	30-34	326	400	1.22 (1.01-1.47)
			2005	≥35	48	70	1.49 (1.00-2.20)
Liu Y.T. et al	Asia	PCCS	2004-	<25	530	454	1.00
(2011)(133)	(China)	1000	2007	26-29	127	169	1.46 (1.10-1.94)
	()			>30	18	30	1.68 (0.90-3.14)
				Nulliparous	7	16	2.61 (1.05-6.50)
				1		-	

Abbreviation: PCCS; Population-based case-control study, NCCS; Nested case-control study, SeBCS; Seoul Breast Cancer Society, KBCS; Korean Breast Cancer Study, KMCC; Korean Multi-center cancer cohort *Calculated RR; Calculation of crude RR (95% CI) by the population of each data set. **Summary RR; Recalculation of adjusted RR (95% CI) by the meta-analysis.

Author (year)	Country	Study design	Study period	Category of reproductive factors	Control Cohort/PY	Cases	RR/OR/HR (95% CI)
Cohort studies							
Kullberg C. et al.	Europe	Cohort	1991-	Nulliparous	1,896	132	1.00*
(2017)(95)			1996	1	3,065	172	0.81 (0.57-1.14)
				2	5,802	393	0.97 (0.75-1.27)
				3	2,275	140	0.88 (0.61-1.29)
				≥4	831	38	0.66 (0.34-1.28)
Bertrand K.A. et	United	Cohort	1995-	Nulliparous	/248,039	431	1.04 (0.88-1.23)
al. (2017)(106)	States		2013	1	/217,057	525	1.00**
				2	/224,278	584	0.96 (0.85-1.09)
				≥3	/187,025	522	1.00 (0.70-1.44)
Tamimi et al.	United	Cohort	1980	Nulliparous	ND	ND	1.23 (1.12-1.35)
(2016)(66)	States			<1	ND	ND	1.00
				1-4	ND	ND	1.13 (1.07-1.19)
				≥5	ND	ND	1.06 (0.96-1.18)
Palmer J.R. et al.	United	Cohort	1995-	1	2,948	844	1.00**
(2014)(134)	States		2001	2	3,541	1,113	1.13 (0.94-1.35)
				3	2,140	723	1.14 (1.01-1.28)
				≥4	2,842	900	1.11 (0.87-1.42)
Horn J. et al.	Europe	Cohort	1961-	1	ND	124	1.00
(2014)(97)			2008	2	ND	159	0.76 (0.60-0.96)
				3	ND	122	0.73 (0.57-0.94)
				≥4	ND	101	0.53 (0.40-0.70)
Horn J. et al.	Europe	Cohort	1961-	1	/233,128	529	1.00**
(2013)(67)			1980	2	/377,763	778	0.94 (0.84-1.05)
				3	/249,219	481	0.90 (0.79-1.02)
				4	/129,564	220	0.79 (0.66-0.95)
				≥5	/116,434	160	0.69 (0.57-0.82)
Lacey J.V. et al.	United	Cohort	1993-	0	/35,545	240	1.00
(2009)(27)	States		2001	1	/28,296	160	0.70 (0.55-0.89)
				2	/88,510	524	0.76 (0.62-0.92)
				3	/96,130	526	0.75 (0.62-0.91)
				4	/66,673	331	0.72 (0.59-0.88)
				≥5	/73,888	301	0.65 (0.53-0.80)
Granstorm C. et	Europe	Cohort	1993-	0	/1,320,991	3,844	1.10 (1.04-1.16)
al. (2008)(79)			1995	1	/1,781,455	4,977	1.20 (1.16-1.25)
				2	/4,828,863	11,808	1.11 (1.08-1.15)
				≥3	/3,135,668	6,614	1.00
Mellemkjaer L.	Europe	Cohort	1993-	Nulliparous	2,926	94	1.00*
et al. (2006)(98)			1997	1	3,632	126	1.08 (0.72-1.62)
				2-3	15,582	383	0.77 (0.57-1.02)
				≥4	1,648	30	0.57 (0.27-1.19)
Clavel-Chapelon	Europe	Cohort	1988-	0	/75,732	271	1.00
F. et al. $(2002)(00)$			1991	1	/92,361	265	0.76 (0.61-0.95)
(2002)(99)			1992-	2	/245,718	705	0.73 (0.60-0.89)
			1770	3	/121,610	326	0.68 (0.55-0.83)
		<u></u>	1000	≥4	/44,104	121	0.68 (0.53-0.87)
de Vries E. et al. $(2001)(100)$	Europe	Cohort	1982-	Nulliparous	1,126	ND	1.00
(2001)(100)			1963	1-2	3,961	ND	0.85 (0.78-0.93)
				≥3	3,614	ND	0.77 (0.70-0.85)
Mellemgaard A.	Europe	Cohort	1967-	0	1,283	23	0.96 (0.61-1.44)
et al. (1990)(101)			1984	1	1,738	37	1.06 (0.75-1.46)
				2	3,991	78	1.02 (0.81-1.27)
				3	3,286	62	0.98 (0.75-1.26)
				4	2,024	38	0.96 (0.68-1.31)
				5	1,020	1/	0.85 (0.49-1.34)
				<u>≥</u> 0	1,036	15	0.70 (0.39-1.16)

Supplementary table 7. Systematic review of association with number of childbirths among parous women on breast cancer risk in Global population

Liu R. et al.	Asia	Cohort	1984-	1	/18,008	22	1.00
(2019)(33)	(Japan)		1992	2	/66.708	57	0.70 (0.42-1.17)
	(1985-	3	/48 581	33	0.57 (0.33-1.00)
			2000	4	/20.724	9	0.37 (0.16-0.83)
					/20,724	12	0.43 (0.10-0.05)
Kamai M. at al	Asia	Cabort	1000	1	/24,320	25	1.00
(2010)(25)	Asia	Conort	1990	1	/20,517	23	1.00
(2010)(33)	(Japan)			2	/11/,058	110	0.80 (0.51-1.26)
				3	/99,686	80	0.70 (0.43-1.12)
				4	/30,648	16	0.50 (0.26-0.96)
				≥5	/11,124	4	0.35 (0.12-1.04)
Tamakoshi K. et	Asia	Cohort	1988-	1	/18,984	17	1.00
al. (2005)(37)	(Japan)		1990	2	/96,954	59	0.78 (0.42-1.44)
				3	/86,679	45	0.68 (0.36-1.31)
				≥4	/51,408	11	0.31 (0.13-0.76)
Gaialakshmi	Asia	Cohort	1960-	Nulliparous	/3 199	6	1.00
CK et al	1 loitt	conon	1989	1.3	/7.686	15	1.50 (0.50 4.90)
(1998)(103)			.,,	1-5 >4	/6.207	17	1.50(0.50-4.90)
Les CV et el	V	Calcart	1002	24	/0,507	17	2.20 (0.70-0.00)
Lee SY et al. $(2002)(20)$	Korea	Conort	2000	1	/227,955	95	1.00
(2003)(39)			2000	2	/309,641	224	1.30 (1.00-1.60)
				≥3	/44,758	41	1.10 (0.70-1.70)
Case-control studi	ies						
Figueroa J.D. et	Europe	PCCS	2013-	Nulliparous	228	107	1.00
al. (2020)(41)			2015	1-2	533	319	1.04 (0.72-1.51)
				3-4	685	365	0.80 (0.55-1.15)
				>5	652	331	0.73 (0.50-1.07)
Troisi P et al	Furope	PCCS	1067	1	155 046	17.811	1.06 (1.04.1.08)
(2018)(122)	Europe	rees	2013	1	133,940	51 954	1.00 (1.04-1.08)
(2010)(122)			2015	2	479,498	31,634	1.00
				3	315,014	30,594	0.89 (0.88-0.91)
				≥4	196,574	15,937	0.74 (0.72-0.75)
John E.M. et al.	United	PCCS	1995-	Nulliparous	746	124	1.00**
(2018)(105)	States		2002	1	743	99	1.17 (0.36-3.81)
				2	1,458	151	0.78 (0.54-1.14)
				3	992	110	1.26 (0.58-2.71)
				≥4	1,172	74	0.94 (0.43-2.05)
Ellingiord-Dale	Europe	NCCS	2006-	0	2,144	586	1.00
M. et al. (2017)			2014	1	2.911	673	0.83 (0.73-0.94)
(45)				2	11,000	2 301	0 76 (0 68-0 84)
(45)				3	6 956	1 351	0.71 (0.63 0.79)
				5	0,950	1,551	0.71(0.03-0.79) 0.50(0.51,0.68)
		baaa	2012	24	2,725	441	0.39 (0.31-0.08)
Brinton L.A. et	Africa	PCCS	2012	Nulliparous	232	111	1.00
al. (2017)(106)				1-2	565	342	1.05 (0.79-1.40)
				3-4	698	392	0.81 (0.60-1.08)
				≥5	658	351	0.71 (0.52-0.97)
Hajiebrahimi M.	Europe	NCCS	1973-	1	1,209	1,439	1.00
et al. (2016)			2010	2	3,986	4,210	0.87 (0.79-0.95)
(124)				3	2,214	2,066	0.74 (0.67-0.82)
				≥4	918	612	0.54 (0.47-0.62)
Sisti IS et al	United	PCCS	1985-	1	314	264	1.00
(2015)(47)	States	1000	2009	2	847	572	0.97 (0.75 1.25)
()()				2	200	260	0.97(0.75 - 1.23)
				5	390	200	0.67 (0.05-1.17)
				≥4	232	112	0.60 (0.41-0.88)
O'Brien K.M. et	United	PCCS	2008-	Nulliparous	352	252	1.00
al. (2015)(107)	States		2010	1	256	186	0.91 (0.69-1.22)
				2	613	458	1.12 (0.88-1.42)
				≥3	426	289	1.15 (0.88-1.50)
Li C. et al.	United	PCCS	2004-	1	192	208	1.00**
(2013)(109)	States		2010	2	363	373	0.91 (0.74-1.10)
				>3	198	175	0.69 (0.54-0.89)
Barnes B B et al	Europe	PCCS	2002-	0	1.007	525	1 10 (0 91-1 32)
(2011)(48)	Lurope	1005	2005	1	1,007	890	1 30 (1 13-1 50)
(=011)(70)			2000	2	2 452	1 1 21	1.00(1.13-1.00) 1.08(0.05, 1.22)
				2	2,433	1,121	1.06 (0.95-1.25)

				≥3	1,302	538	1.00
Poynter J.N. et al.	United	PCCS	1985-	Nulliparous	225	133	1.00
(2010)(110)	States		1999	1-2	749	388	0.97 (0.73-1.29)
				≥3	422	184	0.63 (0.45-0.87)
Ma H. et al.	United	PCCS	1995-	Nulliparous	/92,927	493	1.00
(2010)(111)	States		2007	1	/70,615	355	0.95 (0.83-1.09)
				2	/170,385	878	0.94 (0.84-1.04)
				3	/115,629	591	0.88 (0.78-0.99)
				≥4	/76,634	373	0.82 (0.72-0.94)
Sweenev C, et al.	United	PCCS	1999-	Nulliparous	312	337	1.07 (0.88-1.29)
(2008)(112)	States		2004	1-2	880	1.016	1.00**
				3-4	888	759	0.86 (0.75-0.99)
				>5	349	209	0.62 (0.49-0.77)
Sprague B.L. et	United	PCCS	1997-	0-1	756	767	1.35 (1.12-1.65)
al. (2008)(51)	States		2000	2	948	854	1 26 (1 10-1 44)
				3	1.020	810	1.13 (0.00 1.28)
				>1	1,020	1 051	1.00
Bashar E E at al	United	PCCS	2000	1	1,475	1,051	1.00
(2008)(113)	States	rccs	2000-	1	42	208	0.66 (0.40.0.80)
(2000)(115)	States		2004	2	117	240	0.00(0.49-0.89)
				5	117	249	0.67 (0.49 - 0.92)
	** • •	baaa	100.4	24	112	222	0.07 (0.48-0.93)
Ursin G. et al. $(2004)(114)$	United	PCCS	1994-	Nulliparous	481	588	1.00**
(2004)(114)	States		1998	1	717	770	0.88 (0.75-1.03)
				2	1,355	1,371	0.83 (0.72-0.96)
				3	905	841	0.73 (0.63-0.86)
				4	443	381	0.65 (0.49-0.87)
				≥5	445	317	0.55 (0.44-0.68)
Tavani A. et al.	Europe	PCCS	1983-	Nulliparous	220	130	1.00
(1999)(115)			1994	1	180	181	1.53 (1.09-2.13)
				2	196	215	1.70 (1.21-2.40)
				3	55	46	1.42 (0.86-2.36)
				≥4	17	10	1.13 (0.47-2.71)
Newcomb P.A. et	United	PCCS	1992-	1	351	434	1.00
al.	States		1995	2	895	967	0.91 (0.76-1.09)
(1999)(126)				3	954	888	0.81 (0.67-0.97)
				≥ 4	1,590	1,344	0.75 (0.63-0.89)
Mangusson C.M.	Europe	PCCS	1993-	Nulliparous	313	413	1.00
et al. (1999)(54)			1995	1	536	573	0.69 (0.53-0.90)
				2	1,065	1,032	0.63 (0.49-0.81)
				3-4	891	655	0.50 (0.40-0.64)
				5-6	106	56	0.39 (0.26-0.58)
				≥7	25	2	0.06 (0.01-0.26)
Kroman N. et al.	Europe	PCCS	1978-	Nulliparous	ND	ND	1.04 (0.90-1.19)
(1998)(128)	1		1994	1	ND	ND	1.00
				2	ND	ND	0.96 (0.86-1.07)
				3	ND	ND	0.99 (0.88-1.12)
				>4	ND	ND	1.07 (0.90-1.28)
Enger S.M. et al.	United	PCCS	1987-	1	106	152	1.00
(1998)(135)	States	1005	1989	2	298	332	0.80 (0.59-1.09)
				3	273	263	0.60 (0.50 0.95)
				5	215	203	0.09(0.30-0.95) 0.54(0.39, 0.75)
Maybarry P.M	United	DCCS	1080	0	290 ND	ND	1.00**
et al (1992)(117)	States	rtts	1980-	12	ND	ND	0.84 (0.65.1.09)
or al. (1772)(117)	States		1702	1-2		ND	0.64 (0.05 - 1.08)
				J-4 \5	ND	ND	0.01(0.30-0.70) 0.45(0.39,0.54)
Louis DM (1	TTute 1	DCCC	1000	<u>≥</u> 3	ND (02	7(0	1.00
Layde P.M. et al. $(1080)(118)$	United	PCCS	1980-	Numparous	003	/09	1.00
(1707)(110)	States		1702	1	485	300	0.92 (0.78-1.09)
				2	1,134	1,273	0.83 (0.73-0.95)
				3	1,029	994	0.70 (0.61-0.81)
				4	622	520	0.55 (0.44-0.67)
				5	308	243	0.52 (0.40-0.67)
				6	172	124	0.41 (0.31-0.53)

				≥7	181	110	0.73 (0.65-0.83)
Ewertz M. et al.	Europe	PCCS	1983-	1	185	217	1.00
(1988)(59)			1984	2	505	568	0.98 (0.78-1.23)
				3	299	304	0.89 (0.69-1.15)
				≥4	221	117	0.71 (0.54-0.95)
Brignone G. et al.	Europe	PCCS	1974-	1-2	326	264	1.00**
(1987)(61)			1983	3-4	289	276	1.19 (0.86-1.66)
				>4	126	105	1.25 (0.53-2.96)
Wang J.M. et al.	Asia	PCCS	2012-	1	2,121	1,914	1.00
(2020)(119)	(China)		2017	≥2	1,952	1,710	0.88 (0.80-0.97)
Park BY et al.	Korea	PCCS	2007-	0	271	106	1.64 (1.10-2.45)
(2018)(64)			2015	1	581	208	1.50 (1.12-2.01)
				≥2	5,065	1,208	1.00

Abbreviation: PCCS; Population-based case-control study, NCCS; Nested case-control study, SeBCS; Seoul Breast Cancer Society, KBCS; Korean Breast Cancer Study, KMCC; Korean Multi-center cancer cohort *Calculated RR; Calculation of crude RR (95% CI) by the population of each data set.

**Summary RR; Recalculation of adjusted RR (95% CI) by the meta-analysis.

Author (year)	Country	Study design	Study period	Category of reproductive factors	Control Cohort/PY	Cases	RR/OR/HR (95% CI)
Cohort studies							
Fortner R.T. et	United	Cohort	1989-2013	Never	/2,100,966	5,101	1.00
al. (2019)(94)	States			≤ 6 months	/1,255,908	3,242	0.93 (0.88-0.97)
				7-11	/535,074	1,203	0.96 (0.90-1.03)
				≥12	/1,390,661	2,906	0.96 (0.91-1.01)
Kwan M.L. et al.	United	Cohort	1997-2000	Never	ND	192	1.00
(2015)(136)	States			<6 months	ND	77	0.81 (0.58-1.14)
				≥6	ND	116	0.63 (0.46-0.87)
Butts S. et al.	Europe	Cohort	1991-1996	<4 months	270	80	1.00
(2014)(137)				4-8	288	108	1.04 (0.77-1.40)
				8-13	304	109	1.09 (0.80-1.48)
				≥13	293	103	1.10 (0.78-1.54)
Ritte R. et al.	Europe	Cohort	1992-2000	<1 months	ND	321	1.00
(2013)(24)				1-3	ND	757	1.01 (0.89-1.15)
				4-6	ND	597	0.97 (0.85-1.12)
				7-12	ND	619	0.96 (0.83-1.10)
				13-17	ND	244	0.97 (0.81-1.15)
				≥18	ND	370	1.10 (0.94-1.30)
Ma H. et al.	United	Cohort	1995-2007	Never	/131,753	688	1.00
(2010)(111)	States			<6 months	/117,111	571	0.94 (0.84-1.05)
				6-11	/75,315	402	1.05 (0.93-1.19)
				12-23	/69,112	352	1.02 (0.90-1.17)
				≥24	/38,744	180	0.99 (0.84-1.18)
Andrieu N. et al.	Europe	Cohort	1997-2002	0 months	/6,843	197	1.00
(2000)(138)				1-5	/6,039	202	1.10 (0.82-1.47)
				6-12	/4,430	150	1.05 (0.76-1.46)
				13-24	/2,778	70	0.83 (0.56-1.23)
				>24	/1,093	28	1.08 (0.62-1.89)
Les CV et al	V	Colored	1002 2000	Nulliparous	/42,135	150	0.80 (0.53-1.21)
(2003)(39)	Korea	Conort	1992-2000	Never	/203,472	101	1.00
(2003)(37)				1-12 monuis	/230,199	22	0.80(0.70-1.00) 0.70(0.50, 1, 10)
				>24	/39,125	18	0.70 (0.30-1.10)
Case-control stud	ies			24	723,350	10	0.00 (0.30-1.00)
Chollet-Hinton	United	PCCS	1993-2013	Never	1.832	668	1.00
L. et al.	States	1005	1775 2015	<3 months	429	126	0.92 (0.61-1.38)
(2017)(139)				>3	1.423	452	0.91 (0.78-1.08)
Ambrosone C B	United	PCCS	2002-2006	Never	442	412	1.00
et al.(2014)(140)	States			<6 months	138	110	0.83 (0.60-1.13)
				≥6	265	249	0.87 (0.69-1.11)
Li C.I. et al.	United	PCCS	2004-2010	Never	60	76	1.00
(2013)(109)	States			<6 months	190	202	0.92 (0.66-1.28)
				6-11	111	119	0.94 (0.60-1.47)
				>12	389	357	0.77 (0.45-1.31)
Palmer J.R. et al.	United	PCCS	1995-2001	Never	/808,893	410	1.00
(2011)(141)	States			<6 months	/335,876	163	1.02 (0.77-1.34)
				≥6	/273,266	129	1.02 (0.77-1.34)
Peterson N.B. et	United	PCCS	1996-1997	Never	680	649	1.00
al. (2008)(142)	States			\leq 3 months	406	357	0.85 (0.70-1.04)
				>3	415	426	1.10 (0.91-1.34)
Tryggvadottir L.	Europe	NCCS	1979-1995	0-4 weeks	483	80	1.00
et al. $(2001)(142)$				5-26	3,606	373	0.67 (0.51-0.89)
(2001)(143)				27-52	2,688	292	0.79 (0.59-1.05)
				53-104	1,917	180	0.70 (0.51-0.97)

Supplementary table 8. Systematic review of association with duration of breastfeeding on breast cancer risk in Global population

				≥105	755	48	0.48 (0.31-0.74)
Newcomb P.A.	United	PCCS	1992-1994	Never	1,988	1,925	1.00
et al.	States			<3 months	775	719	0.89 (0.78-1.02)
(1999)(126)				3-6	367	322	0.77 (0.64-0.93)
				7-12	275	305	1.06 (0.87-1.28)
				13-23	182	175	0.81 (0.63-1.04)
				≥24	170	151	0.73 (0.56-0.94)
Furberg H. et al.	United	PCCS	1993-1996	Never	387	441	1.00
(1999)(144)	States			1-3 months	99	90	0.70 (0.50-0.90)
				4-12	115	95	0.60 (0.40-0.90)
				≥13	100	103	0.80 (0.50-1.10)
Enger S.M. et al.	United	PCCS	1987-1989	Never	433	504	1.00
(1998)(135)	States			1-3 months	208	207	0.86 (0.68-1.09)
				4-6	95	81	0.77 (0.55-1.07)
				7-15	128	102	0.75 (0.55-1.01)
				≥16	109	80	0.73 (0.52-1.01)
Negri E. et al.	Europe	PCCS	1991-1994	Never	500	486	1.00
(1996)(145)				1-5 months	472	537	1.19 (1.00-1.40)
				6-11	574	579	1.15 (1.00-1.40)
				12-17	337	355	1.34 (1.10-1.70)
				18-23	160	114	1.10 (0.80-1.50)
				≥24	131	68	0.86 (0.50-1.30)
Layde P.M. et	United	PCCS	1980-	Never	2,134	2,318	1.00
al. (1989)(118)	States		1982	<6 months	1,228	1,198	0.92 (0.82-1.02)
				6-12	612	562	0.85 (0.73-0.98)
				13-24	381	304	0.75 (0.62-0.90)
				≥25	244	154	0.67 (0.52-0.85)
Gao Y.T. et al.	Asia	PCCS	1996-1998	Never	300	302	1.00
(2000)(63)	(Shanghai)			<12 months	638	593	0.90 (0.80-1.10)
				12-23	307	275	0.90 (0.70-1.10)
				≥24	250	215	1.00 (0.70-1.40)
Park BY et al.	Korea	PCCS	2007-2015	Never	715	247	1.00
(2018)(64)				<12 months	1,777	410	0.67 (0.61-0.73)
				≥12	3,433	876	0.74 (0.63-0.87)

Abbreviation: PCCS; Population-based case-control study, NCCS; Nested case-control study, SeBCS; Seoul Breast Cancer Society, KBCS; Korean Breast Cancer Study, KMCC; Korean Multi-center cancer cohort *Calculated RR; Calculation of crude RR (95% CI) by the population of each data set. **Summary RR; Recalculation of adjusted RR (95% CI) by the meta-analysis.

Author (year)	Country	Study design	Study period	Category of reproductive factors	Control Cohort/PY	Cases	RR/OR/HR (95% CI)
Cohort studies							
Al Ajmi K. et al.	Europe	Cohort	2006-	Never	17,240	561	1.00
(2020)(146)			2010	Ever	71,149	2,165	1.02 (0.93-1.12)
Arriaga M.E. et al.	Australia	Cohort	1990-	Never	ND	ND	1.00
(2019)(147)			2009	Ever	ND	ND	1.29 (1.02-1.63)
Busund M. et al.	Europe	Cohort	1991-	Never	ND	379	1.00
(2018)(148)			2007	Ever	ND	866	1.12 (0.99-1.26)
				Current	ND	129	1.36 (1.09-1.71)
				Former	ND	737	1.09 (0.96-1.24)
Iversen L. et al.	Europe	Cohort	1968-	Never	ND	649	1.00
(2017)(149)			1969	Ever	ND	1,422	1.04 (0.91-1.17)
Hunter D.J. et al.	United	Cohort	1989-	Never	/176,581	162	1.00
(2010)(150)	States		2001	Ever	/1,070,386	1,182	1.19 (1.01-1.39)
Hannaford et al.	Europe	Cohort	1996-	Never	ND	448	1.00
(2007)(151)			2004	Ever	ND	891	0.98 (0.87-1.10)
Vessey et al.	Europe	Cohort	1968-	Never	ND	314	1.00
(2007)(152)			2004	Ever	ND	530	1.00 (0.80-1.10)
Dumeaux V et al.	Europe	Cohort	1990-	Never	ND	951	1.00
(2004)(153)			2000	Ever	ND	454	0.91 (0.81-1.03)
Silvera S.A. et al.	Canada	Cohort	1980-	Never	/182,112	745	1.00
(2005)(154)			1985	Ever	/266,497	962	0.88 (0.73-1.07)
			Former	/255,315	917	0.88 (0.72-1.07)	
				Current	/10,968	45	1.01 (0.56-1.81)
Stahlberg C et al.	Europe	Cohort	1996-	Never	6,687	138	1.00
(2004)(32)	-		2001	Ever	4,083	105	1.37 (1.04-1.80)
Dumeaux V. et al.	Europe	Cohort	1991-	Never	/212,487	305	1.00
(2003)(155)	-		1997	Ever	/324,692	483	1.25 (1.07-1.46)
Kumle M. et al.	Europe	Cohort	1991-	Never	28,171	261	1.00
(2002)(156)	-		1992	Ever	74,856	747	1.30 (1.10-1.50)
				Former	65,557	656	1.20 (1.10-1.40)
				Current	9,299	91	1.60 (1.20-2.10)
Van Hoften C. et	Europe	Cohort	1982-	Never	258	117	1.00
al. (2000)(157)	-		1984	Ever	352	192	1.19 (0.90-1.58)
Kay C.R. et al.	Europe	Cohort	1968-	Never	ND	ND	1.00
(1988)(158)			1967	Former	ND	ND	1.21 (0.89-1.65)
				Current	ND	ND	1.25 (0.84-1.86)
Lipnick R.J. et al.	United	Cohort	1976-	Never	57,047	356	1.00**
(1986)(159)	States		1978	Ever	49,283	214	1.01 (0.85-1.20)
Kawai M et al.	Asia	Cohort	1990-	Never	/243,319	236	1.00
(2010)(35)	(Japan)		2003	Ever	/15,418	12	0.80 (0.45-1.44)
Dorigochoo T. et	Asia	Cohort	1997-	Never	ND	448	1.00
al.(2009)(160)	(China)		2000	Ever	ND	110	1.05 (0.84-1.31)
D	Asia	Cohort	1998-	Never	/20 323 571	1 /06	1.00
(2009)	(China)		1991	Ever	/20,525,571	253	0.90 (0.78-1.03)
Lee SY et al	Korea	Cohort	1992-	Never	/// 170	233	1.00
(2003)			2000	Ever	/49.906	200	0.80 (0.60-1.00)
Case-control studie	s			Livi	/=/,/00	51	0.00 (0.00-1.00)
Hamdi-Cherif M	Africa	PCCS	2012-	Never	222	202	1.00
et al. (2020)(42)				Ever	321	345	1 24 (0 96-1 60)
						0.0	

Supplementary table 9. Systematic review of association with use of oral contraceptives on breast cancer risk in Global population

Al-Ajmi K. et al.	Europe	PCCS	2006-	Never	6,297	53	1.00
(2018)(4)			2010	Ever	50,646	565	1.26 (0.95-1.67)
Brinton L.A. et al.	United	PCCS	1990-	Never	278	283	1.00
(2018)(161)	States		1992	Ever	641	748	1.14 (0.90-1.40)
Ellinjord-Dale M.	Europe	NCCS	2006-	Never	12 000	2 443	1.00
et al. (2017)(45)	1		2014	Ever	11.562	2,386	1.02 (0.93-1.13)
Chollet-Hinton L.	United	PCCS	1993-	Never	716	306	1.00**
et al. (2017)(139)	States		2013	Ever	4.421	1.283	1.19 (1.00-1.41)
Elebro K et al	Europe	PCCS	1991-	Never	ND	358	1.00
(2014)(162)			1996	Ever	ND	388	1.09 (0.93-1.28)
Beaber F F et al	United	PCCS	2004-	Never	103	119	1.00
(2014)(163)	States	rees	2004-2010	Ever	779	866	1.00 (0.70-1.30)
Haves Let al	New	PCCS	2006	Never	ND	ND	1.00 (0.70 1.50)
(2013)(164)	Zealand	rees	2000-	Ever	ND	ND	1.00
Possenharg L at al	United	PCCS	1005	Never	/129 769	177	1.20 (1.20-1.50)
(2010)(165)	States	PCCS	1993	Fuer	/120,700	507	1.00**
Delle IM et el	TT-St-1	DCCC	1092	Ever	/443,824	121	1.23 (0.91-1.00)
(2009)(166)	States	PCCS	1983-	Never $(<1 \text{ yrs})$	299	121	1.00
		Paga	1000	Ever(≥1)	857	469	1.60 (1.10-2.10)
Nyante S.J. et al. $(2008)(167)$	United	PCCS	1990-	Never	425	276	1.00
(2000)(107)	States		1772	Ever	1,076	888	1.21 (1.01-1.45)
				Former	911	750	1.17 (0.97-1.41)
				Recent	165	138	1.45 (1.08-1.96)
Lee E. et al. $(2008)(168)$	United	PCCS	1998-	Never	48	184	1.00
(2008)(108)	States		2003	Ever	394	1,185	0.81 (0.57-1.14)
Sweeney C. et al.	United	PCCS	1999-	Never	1,011	809	1.00
(2007)(109)	States		2004	Ever	1,502	1,494	1.08 (0.94-1.24)
Nichols H.B. et al.	United	PCCS	1997-	Never	3,290	876	1.00
(2007)(170)	States		2001	Ever	3,995	977	1.11 (0.99-1.25)
				Former	3,748	941	1.13 (1.00-1.27)
				Current	247	36	0.75 (0.50-1.11)
Folger S.G. et al.	United	PCCS	1994-	Never	262	253	1.00
(2007)(171)	States		1998	Ever	194	244	1.13 (1.00-1.70)
				Current	3	4	1.20 (0.20-6.10)
				Former	191	239	1.30 (1.00-1.70)
Dinger J.G. et al.	Europe	PCCS	2000-	Never	1,805	1,079	1.00*
(2006)(172)			2004	Ever	7,271	2,508	0.58 (0.52-0.64)
Newcomer L.M. et	United	PCCS	ND	Never	5,864	3,341	1.00
al. (2003)(173)	States			Ever	3,447	1,676	1.00 (0.90-1.10)
				Former	3,306	1,629	1.00 (0.90-1.10)
				Current	141	47	1.20 (0.80-1.90)
Marchbanks P.A.	United	PCCS	1994-	Never	980	1,032	1.00
et al. (2002)(174)	States		1998	Ever	3,658	3,497	0.90 (0.80-1.00)
				Former	3,481	3,289	0.90 (0.80-1.00)
				Current	172	200	1.00 (0.80-1.30)
Ursin G. et al.	United	PCCS	1983-	Never	594	383	1.00
(1999)(175)	States		1987	Ever	351	207	0.91 (0.72-1.15)
Tavani A. et al.	Europe	PCCS	1991-	Never	441	358	1.00
(1999)(115)			1994	Ever	227	221	1.05 (0.81-1.36)
Mangusson et al.	Europe	PCCS	1993-	Never	1,938	1,733	1.00
(1999)(54)	-		1995	Ever	889	898	0.98 (0.86-1.12)
Tavani A. et al.	Europe	PCCS	1983-	Never	1,663	1,938	1.00
(1993)(176)			1991	Ever	265	371	1.20 (1.00-1.40)
Lund E. (1989)	Europe	PCCS	1984-	Never	ND	ND	1.00**
(177)			1985	Ever	ND	ND	1.27 (0.83-1.96)
							/

Rosenbrerg L. et	USA/	PCCS	1976-	Never	2,468	794	1.00**
al. (1984)(178)	Canada		1981	Ever	2,320	338	0.98 (0.80-1.18)
Park BY et al.	Korea	PCCS	2007-	Never	4,061	866	1.00
(0010)(c1)							

Abbreviation: PCCS; Population-based case-control study, NCCS; Nested case-control study, SeBCS; Seoul Breast Cancer Society, KBCS; Korean Breast Cancer Study, KMCC; Korean Multi-center cancer cohort, ND; No data *Calculated RR; Calculated by the population of each data set. **Summary RR; Recalculation of adjusted RR (95% CI) by the meta-analysis.

Author (year)	Country	Study design	Study period	Category of reproductive factors	Control Cohort/PY	Cases	RR/OR/HR (95% CI)
Cohort studies							
Arriaga M.E. et al. (2019)(147)	Australia	Cohort	1990- 2009	Never Current	ND	ND	1.00
				<5years	ND	ND	1.03 (0.57-1.88)
				≥5	ND	ND	1.34 (1.04-1.73
Busund M. et al.	Europe	Cohort	1991-	Never	ND	379	1.00
(2018)(148)			2007	1-4years	ND	451	1.10 (0.96-1.26)
				5-9	ND	216	1.02 (0.86-1.21)
				≥10	ND	178	1.29 (1.09-1.54)
Boggs D.A. et al.	United	Cohort	1995-	<10	/312,506	663	1.00
(2015)(76)	States		2005	≥10	/159,474	233	1.19 (1.01-1.41)
Hunter D.J. et al.	United	Cohort	1989-	Never	/176,581	162	1.00
(2010)(150)	States		2001	0-8years	/55,333	34	1.16 (0.80-1.69)
				≥8	/57,899	57	1.42 (1.05-1.94)
Silvera S.A. et al.	Canada	Cohort	1980-	Never	/182,112	745	1.00
(2005)(154)			1985	1-12months	/54,419	230	1.05 (0.79-1.42)
				12-36	/60,731	226	0.94 (0.70-1.26)
				36-84	/80,230	263	0.85 (0.64-1.12)
		<u> </u>	1001	≥84	/71,101	243	0.74 (0.55-0.99)
Dumeaux V. et al. $(2003)(155)$	Europe	Cohort	1991-	Never	/212,487	305	1.00
(2003)(155)			1997	0-4years	/1/3,321	261	1.25 (1.05-1.49)
				5-9	//5,261	104	1.19 (0.94-1.50)
Kaula Martal	F	Calant	1001	≥10 Norm	/51,055	86	1.40 (1.09-1.79)
(2002)(156)	Europe	Conort	1991-	INEVER	28,171	201	1.00
(2002)(150)			1772	< syears	38,742	384 179	1.20 (1.00-1.50)
				5-9 10-14	10,070	1/0	1.20(1.00-1.30) 1.40(1.10, 1.80)
				>15	5 441	63	1.40(1.10-1.80) 1.30(1.00, 1.80)
de Maire E et el	Europa	Cohort	1982-	Nover	4 195	ND	1.00
(2001)(100)	Europe	Conort	1985	1 2voors	4,105	ND	0.08 (0.00 1.07)
(2001)(100)				1-2years	1,290	ND	0.98(0.90-1.07)
				5-5	1,120	ND	1.08 (0.98-1.18)
				>11	845	ND	1.13 (1.02-1.25)
Lippick R L et al	United	Cohort	1976-	Never	57.047	356	1.00
(1986)(159)	States	Conort	1978	1-11months	11 913	53	0.90 (0.70-1.30)
	Builds			12-35	13 187	41	0.80 (0.60-1.10)
				36-59	8.152	34	1.00 (0.71.40)
				60-119	12,149	59	1.20 (0.80-1.50)
				≥120	3,882	27	1.30 (0.90-1.90)
Kawai M et al.	Asia	Cohort	1990-	Never	/243,319	236	1.00
(2010)(35)	(Japan)		2003	<1 years	/4,965	5	1.00 (0.41-2.45)
				1-5	/5,934	4	0.70 (0.26-1.89)
				≥5	/3,234	1	0.33 (0.05-2.33)
Dorjgochoo T. et	Asia	Cohort	1997-	Never	ND	448	1.00
al. (2009)(160)	(China)		2000	<2years	ND	59	1.18 (0.89-1.56)
				≥2	ND	51	0.93 (0.68-1.25)
Case-controls studi	ies						
Brinton L.A. et al.	United	PCCS	1990-	Never	278	283	1.00
(2018)(161)	States		1992	<5 years	310	344	1.11 (0.90-1.40)
				5-9	204	231	1.09 (0.80-1.40)
				≥10	127	173	1.27 (0.90-1.70)
Ellinjord-Dale M.	Europe	NCCS	2006-	Never	12,000	2,443	1.00
et al. (2017)			2014	<2years	3,405	614	0.89 (0.81-0.99)
(43)				2-5	3,120	638	1.02 (0.92-1.13)
				6-10	2,834	619	1.10 (0.99-1.22)
				>10	2,203	515	1.11 (1.00-1.25)

Supplementary table 10. Systematic review of association with duration of oral contraceptives on breast cancer risk in Global population

Chollet-Hinton L.	United	PCCS	1993-	Never/<1 yrs	1,709	534	1.00**
et al. (2017)	States		2013	1-4	1,638	467	1.05 (0.89-1.23)
(139)				≥5	1,494	590	1.27 (1.09-1.47)
Beaber E.F. et al.	United	PCCS	2004-	Never	103	119	1.00
(2014)	States		2010	<5vears	280	306	1.00 (0.70-1.30)
(163)				5-10	219	213	0.90 (0.60-1.20)
				10-15	178	169	0.90 (0.60-1.20)
				>15	100	174	1 50 (1 20-2 20)
Dolle J.M. et al.	United	PCCS	1983-	Never	299	121	1.00
(2009)(166)	States		1992	1-3vears	242	126	1.50 (1.00-2.20)
				3.6	242	141	1.50(1.00-2.20) 1.60(1.10,2.40)
				5-0	254	202	1.00(1.10-2.40) 1.50(1.10-2.20)
Nuento S. L. ot al	United	PCCS	1000	≥0 Novor	425	202	1.00 (1.10-2.20)
(2008)(167)	States	rees	1990-	slaveene	425	270	1.00
(2000)(107)	Buies		1772		205	70	1.15 (0.80-1.01)
				1-5	595	293	1.11 (0.69-1.56)
L E 1	11	DCCC	1009	24 N	390	325	1.50 (1.00-1.59)
(2008)(168)	States	PCCS	2002	Never	48	184	1.00
(2008)(108)	States		2003	≤4years	181	558	0.80 (0.55-1.16)
				5-9	115	283	0.66 (0.45-0.98)
				≥10	97	331	0.95 (0.64-1.42)
Sweeney C. et al.	United	PCCS	1999-	Never	1,011	809	1.00
(2008)(169)	States		2004	<5years	688	685	1.13 (0.97-1.33)
				5-9	405	392	1.02 (0.84-1.22)
				10-19	351	330	0.97 (0.80-1.18)
				≥20	54	84	1.50 (1.04-2.17)
Nichols H.B. et al.	United	PCCS	1997-	Never	3,290	876	1.00
(2007)(170)	States		2001	1-2years	1,130	283	1.13 (0.96-1.33)
				2-4.5	1,126	297	1.22 (1.04-1.44)
				4.5-9	825	190	1.04 (0.86-1.25)
				≥9	914	207	0.96 (0.89-1.04)
Folger S.G. et al.	United	PCCS	1994-	Never	262	253	1.00
(2007)(171)	States		1998	<10years	21	25	1.20 (0.60-2.30)
				10-20	59	63	1.20 (0.80-1.80)
				>20	114	155	1.30 (1.00-1.80)
Newcomer L.M.	United	PCCS	ND	Never	5,864	3.341	1.00
et al. (2003)(173)	States			<1 years	760	407	1.10 (1.00-1.30)
				1-4	1.344	591	1.00 (0.90-1.10)
				5-9	814	392	1 00 (0 90-1 20)
				10-14	407	222	1.00 (0.90-1.30)
				>15	122	64	1 00 (0 70-1 30)
Marchbanks P A	United	PCCS	1994-	Never	980	1.032	1.00
et al. $(2002)(174)$	States	reeb	1998	<1vere	822	782	0.90 (0.80 1.10)
				1 5	1 280	1 200	0.90 (0.80-1.10)
				5 10	1,200	949	0.90 (0.80-1.00)
				10.15	002 166	426	0.90 (0.80-1.00)
				>15	202	734	1.00 (0.80 1.30)
Urein G. et al	United	PCCS	1083	Never	504	202	1.00 (0.80-1.50)
(1999)(175)	States	rccs	1985-	1 10 11	594	383	1.00
(1)))(1)0)	Builds		1707	1-12months	111	83	1.20 (0.80-1.69)
				13-60	153	/9	0.81 (0.58-1.12)
	~	baaa	1001	>60	8/	45	0.71 (0.47-1.07)
Tavani A. et al. $(1000)(115)$	Europe	PCCS	1991-	Never	441	358	1.00
(1999)(115)			1994	≤2years	120	128	1.19 (0.87-1.62)
				2-5	59	53	0.96 (0.63-1.48)
		B.C.C.C.	10.55	>5	46	40	0.86 (0.53-1.40)
Mangusson et al.	Europe	PCCS	1993-	Never	1,938	1,733	1.00
(1999)			1995	<5years	492	509	1.00 (0.86-1.17)
(54)				≥5	353	357	0.98 (0.82-1.18)
Tryggvadottir L. et	Europe	PCCS	1991-	Never	ND	ND	1.00**
al. (1997)			1992	0-4	ND	ND	0.96 (0.63-1.47)
(179)				4-8	ND	ND	1.12 (0.54-2.33)
				>8years	ND	ND	1.46 (0.40-5.31)

Tavani A. et al.	Europe	PCCS	1983-	Never	1,663	1,938	1.00
(1993)(176)			1991	<24months	109	185	1.50 (1.20-2.00)
				24-59	70	103	1.30 (0.90-1.80)
				≥60	84	82	0.80 (0.50-1.00)
Lund E. (1989)	Europe	PCCS	1984-	Never	ND	ND	1.00
(177)			1985	1-3years	ND	ND	1.40 (0.80-2.50)
				4-7	ND	ND	1.20 (0.50-2.50)
				≥ 8	ND	ND	1.00 (0.30-2.80)
Kay C.R. et al.	United	PCCS	1968-	Never	ND	ND	1.00
(1988)(158)	Kingdom		1977	<2years	ND	ND	1.04 (0.69-1.58)
				2-3	ND	ND	1.60 (1.10-2.33)
				4-5	ND	ND	1.48 (0.98-2.23)
				6-7	ND	ND	0.80 (0.45-1.43)
				8-9	ND	ND	0.85 (0.46-1.59)
				≥10	ND	ND	1.44 (0.91-2.29)
Rosenberg L. et al.	USA/	PCCS	1976-	Never	2,468	794	1.00
(1984)(178)	Canada		1981	<1 years	717	98	0.90 (0.70-1.10)
				1-4	1,018	127	0.90 (0.80-1.20)
				5-9	457	88	1.30 (1.00-1.70)
				≥10	128	25	0.80 (0.50-1.30)
Park BY et al.	Korea	PCCS	2007-	Never	4,061	866	1.00
(2018)(64)			2015	<12 months	519	92	0.84 (0.73-1.37)
				≥12	258	70	1.27 (0.84-1.45)

Abbreviation: PCCS; Population-based case-control study, NCCS; Nested case-control study, SeBCS; Seoul Breast Cancer Society, KBCS; Korean Breast Cancer Study, KMCC; Korean Multi-center cancer cohort *Calculated RR; Calculation of crude RR (95% CI) by the population of each data set. **Summary RR; Recalculation of adjusted RR (95% CI) by the meta-analysis.

Author (year)	Country	Study design	Study period	Category of reproductive factors	Control Cohort/PY	Cases	RR/OR/HR (95% CI)
Cohort studies							
Al Ajmi K. et al.	Europe	Cohort	2006-	Never	66,093	1,895	1.00
(2020)(146)			2010	Ever	22,244	826	1.23 (1.13-1.34)
Sandvei M.S. et al.	Europe	Cohort	2006-	Never	/252,353	3,271	1.00
(2019)(19)			2013	Ever**			1.53 (0.77-3.05)
				Former	/80,173	1,471	1.08 (1.00-1.17)
				Current	/33,886	1,091	2.18 (2.01-2.37)
Holm M. et al.	Europe	Cohort	1993-	Never	ND	ND	1.00
(2018)(180)			1997	Ever	ND	ND	1.98 (1.78-2.21)
Azam S. et al.	Europe	Cohort	1993-	Never	/32,635	84	1.00**
(2018)(181)			1997	Ever	/13,034	85	2.62 (1.63-4.20)
Mullooly M. et al.	United	Cohort	1995-	Never	ND	ND	1.00
(2017)(20)	States		1996	Former	ND	ND	1.14 (0.93-1.39)
				Current**	ND	ND	1.59 (1.42-1.77)
Dartois et al.	Europe	Cohort	1990-	Never	23,728	2,322	1.00
(2016)(22)			1993	E+P	4,621	296	1.20 (1.09-1.32)
				E+ other P	5,253	412	1.72 (1.57-1.88)
Thorbjarnardottir T.	Europe	Cohort	1987-	Never	4,390	ND	1.00
et al. (2014)(182)			2006	Ever	4,344	ND	2.61 (2.00-3.41)
Fournier A. et al.	Europe	Cohort	1992-	Never	ND	890	1.00
(2014)(183)			2008	Former	ND	552	0.96 (0.87-1.06)
				Current	ND	638	1.22 (1.11-1.35)
Saxena T. et al.	United	Cohort	1995	Never	/120,039	493	1.00
(2010)(184)	States			Ever	/15,135	1,153	1.59 (1.42-1.78)
Lacey J.V. et al.	United	Cohort	1993-	Never	/134,329	571	1.00
(2009)(27)	States		2001	Former	/64,773	280	1.02 (0.88-1.18)
				Current**	/186,937	1,219	1.56 (1.35-1.80)
Calle E.E. et al.	United	Cohort	1992	Never	ND	780	1.00
(2009)(185)	States			Former	ND	289	1.08 (0.86-1.35)
	_			Current	ND	364	1.75 (1.54-1.99)
Lund E. et al. $(2007)(186)$	Europe	Cohort	1991-	Never	11,147	158	1.00
(2007)(180)			1992	Former	659	5	0.54 (0.22-1.33)
		~ .		Current	3,453	91	1.95 (1.49-2.56)
Brewster A.M. et al. (2007)(187)	Unites	Cohort	1985- 2000	Never	ND	1,301	1.00
(2007)(187)	States		2000	Ever	ND	735	0.63 (0.48-0.81)
Rosenberg L. et al.	United	Cohort	1995	Never	ND	ND	1.00
(2000)(188)	States	~ .	1000	Ever	/13,961	67	1.28 (0.97-1.70)
Lee S. et al. (2006)	United	Cohort	1993-	Never	ND	642	1.00**
(109)	States		1990	Former	ND	126	1.28 (0.74-2.22)
			1000	Current	ND (202.250)	467	2.08 (1.53-2.82)
Ewertz M. et al. $(2005)(190)$	Europe	Cohort	1989-	Never	/282.278	561	1.00**
(2005)(190)	5	<u> </u>	1991	Ever	/10.913	19	0.81 (0.48-1.36)
(2004)(191)	Europe	Cohort	2000	Never	/11,801	144	1.00
(2004)(191)			2000	Ever	/1,929	24	1.08 (0.59-1.90)
de Lignieres B. et $(2002)(192)$	Europe	Cohort	1979-	Never	1,436	43	1.00
ai. (2002)(192)	** *. *		1904	Ever	1,545	59	1.10 (0.73-1.66)
Porch et al. $(2002)(193)$	United	Cohort	2000	Never	/38,762	146	1.00
(2002)(193)	States	<u></u>	2000	Ever	/32,885	164	1.37 (1.05-1.78)
Schairer C. et al. $(2000)(194)$	United	Cohort	1980- 1989	Never	/196,666	761	1.00
(2000)(1)4)	Luit 1	0.1	1007	Ever	/1/,428	101	1.50 (1.00-1.60)
Gapstur S.M. et al. (1999)(195)	United	Cohort	1986	Never	ND	ND	1.00
(1)))(1)))	States			Former	ND	ND	0.99 (0.87-1.14)
				Current	ND	ND	1.25 (1.03-1.51)

Supplementary table 11. Systematic review of association with combination of HRT use on breast cancer risk in Global population

Yoo T.K. et al.	Korea	Cohort	2009-	Never	/18,771,852	21,262	1.00
(2020)			2014	Ever	/3,420,942	5,535	1.25 (1.22-1.29)
				<2yrs	/2,014,117	2,792	1.08 (1.04-1.12)
				2-5yrs	/782,356	1,351	1.33 (1.25-1.40)
				>5vrs	/624,468	1,392	1.72 (1.63-1.82)
Case-control studies					,	,	
Shieh M.S. et al.	United	NCCS	1996-	Never	2,089	734	1.00*
(2019)(196)	States		2007	Ever	689	339	1.40 (1.10-1.78)
Ellingjord-Dale M.	Europe	NCCS	2006-	Never	13,000	2,062	1.00
et al. (2018)(197)			2014	Past	8,315	1,612	1.19 (1.10-1.29)
				E+P	661	224	2.23 (1.88-2.65)
Brinton L.A. et al.	United	PCCS	1990-	Never	671	783	1.00
(2018)(161)	States		1992	Ever	248	248	0.89 (0.70-1.20)
				E+P	124	148	0.99 (0.70-1.30)
Al-Ajmi K. et al.	Europe	PCCS	2006-	Never	65,669	943	1.00
(2018)(4)			2010	Ever	46,830	811	1.14 (1.04-1.26)
Salagame U. et al.	Australia	PCCS	2006-	Never	430	595	1.00
(2016)(198)			2014	Ever	23	76	2.62 (1.56-4.38)
Rosenberg L. et al.	United	PCCS	1993-	Never	3,509	949	1.00**
(2016)(199)	States		2013	Ever	1,293	321	1.32 (0.97-1.79)
Cui Y. et al. (2014)	United	PCCS	2001-	Never	ND	ND	1.00
(200)	States		2010	Ever	ND	ND	1.01 (0.88-1.16)
Fei C. et al. (2013)	United	NCCS	ND	Never	1,499	1,346	1.00*
(201)	States			Ever	55	24	0.49 (0.21-1.13)
Cerne J.Z. et al.	Europe	PCCS	2006-	Never	584	465	1.00
(2011)(202)			2008	Ever	147	162	0.89 (0.62-1.28)
Barnes B.B et al.	Europe	PCCS	2002-	Never	2,596	1,020	1.01 (0.89-1.15)
(2011)(48)			2005	Former	1,647	637	1.00
				Current	19	14	1.92 (0.93-3.87)
Hines L.M. et al.	United	PCCS	2000-	Never	793	710	1.00
(2010)(49)	States		2005	Ever	287	390	1.19 (0.54-2.64)
Sprague B.L. et al.	United	PCCS	1997-	Never	2,125	1,583	0.92 (0.77-1.10)
(2008)(51)	States		2000	Former	364	283	1.00
				Current	638	741	1.31 (1.07-1.60)
Rosenberg L.U. et	Europe	PCCS	1993-	Never	1,707	903	1.00
al. (2006)(203)			1995	Ever	350	320	1.60 (1.30-1.90)
Newcomb P.A. et	United	PCCS	1992-	Never	2,919	2,780	1.00
al. (2002)(204)	States		1994	Ever	245	279	1.51 (1.21-1.88)
Chen C.L. et al.	United	NCCS	1990-	Never	271	243	1.00
(2002)(205)	States		1995	Former	189	171	0.92 (0.70-1.22)
				Current	74	112	1.49 (1.04-2.12)
La Vecchia C. et al.	Europe	PCCS	1991-	Never	2,395	2,376	1.00**
(1995)(206)			1994	Ever	31	36	1.32 (0.94-1.84)
Park BY et al.	Korea	PCCS	2007-	Never	2,935	667	1.00
(2018)(64)			2015	Ever	660	169	1.13 (0.87-1.27)

Abbreviation: PCCS; Population-based case-control study, NCCS; Nested case-control study, SeBCS; Seoul Breast Cancer Society, KBCS; Korean Breast Cancer Study, KMCC; Korean Multi-center cancer cohort *Calculated RR; Calculation of crude RR (95% CI) by the population of each data set. **Summary RR; Recalculation of adjusted RR (95% CI) by the meta-analysis.

Author (year)	Country	Study design	Study period	Category of reproductive factors	Control Cohort/PY	Cases	RR/OR/HR (95% CI)
Cohort studies							
Sandvei M.S. et al.	Europe	Cohort	2006-	Never	/252,353	3,271	1.00
(2019)(19)			2013	Former	/90,633	1,623	1.06 (0.98-1.15)
				Current	/47,309	1,327	1.90 (1.76-2.06)
Holm M. et al.	Europe	Cohort	1993-	Never	ND	ND	1.00
(2018)(180)			1997	Ever	ND	ND	1.40 (1.21-1.63)
Azam S. et al.	Europe	Cohort	1993-	Never	/32,635	84	1.00
(2018)(165)		~ .	1997	Ever	/6,635	18	0.99 (0.59-1.65)
Dartois et al. $(2016)(14)$	Europe	Cohort	1990-	Never	23,728	2,322	1.00
(2010)(14)	The face of	Calart	1993	Ever	1,/4/	108	1.07 (0.92-1.23)
(2010)(168)	States	Conort	1995	Fyer	/120,039	493 764	1.00
Calla E E at al	United	Cohort	1002	Never	ND	780	1.21 (1.07-1.30)
(2009)(169)	States	Conort	1992	Formar	ND	780	1.00
(2003)(103)	Builds			Current	ND	365	0.88(0.75-1.04) 0.99(0.84, 1.17)
Brinton I. A. et al	United	Cohort	1005	Never	/5/ 970 5	260	1.00
(2008)(145)	States	Conon	1995-	Ever	/157 479 5	200	1.00
Espie et al. (2007)	Furope	Cohort	2004-	Never	2 004	14	1.00*
(207)	Lutope	Conort	2004-	Ever	2,662	17	0.91 (0.31-2.71)
Lund E et al	Europe	Cohort	1991-	Never	11 147	158	1.00
(2007)	Larope	conon	1992	Former	211	8	0.88 (0.49-1.58)
(170)			1998	Current	938	12	2.38 (1.16-4.85)
Gertig et al. (2006)	Australia	Cohort	1990-	Never	ND	209	1.00
(208)			2002	Former	ND	46	1.19 (0.86-1.64)
				Current	ND	81	1.51 (1.16-1.98)
Rosenberg L. et al.	United	Cohort	1995	Never	ND	ND	1.00
(2006)(172)	States			Ever	/35,406	134	1.10 (0.85-1.41)
Lee S. et al.	United	Cohort	1993-	Never	ND	642	1.00
(2006)(173)	States		1996	Former	ND	237	0.97 (0.79-1.19)
				Current	ND	261	1.42 (1.19-1.70)
Olsson H.L. et al.	Europe	Cohort	1990-	Never	ND	ND	1.00
(2003)(209)			2001	Ever	ND	ND	0.81 (0.34-1.96)
Porch et al. (2002)	United	Cohort	1993-	Never	/38,762	146	1.00
(177)	States		2000	Ever	/33,370	101	0.96 (0.65-1.42)
Schairer C. et al.	United	Cohort	1980-	Never	/196,666	761	1.00
(2000)(178)	States		1989	Ever	/179,401	805	1.10 (1.00-1.30)
Lai J.N. et al. $(2011)(210)$	Asia	Cohort	1997-	Never	49,991	621	1.00
(2011)(210)	(Taiwan)		2008	Former	6,013	61	2.21 (1.54-3.17)
Care and all starker				Current	/91	51	0.82 (0.43-1.57)
Case-control studies	United	NCCS	1006	Nevron	2.080	724	1.00**
(2019)(180)	States	NCCS	2007	Ever	2,089	140	1.00^{44}
Ellipsient Data M	E	NCCC	2007	Ever	433	140	0.92 (0.04-1.51)
et al (2018)	Europe	NCCS	2008-2014	Former	8 315	2,002	1.00
(181)			2011	Current	1 120	1,012	1.08 (0.91-1.28)
DeBono N L et al	United	PCCS	1003-	Never	853	988	1.00**
(2018)(211)	States	rees	2001	Ever	299	251	0.88 (0.65-1.18)
Brinton L.A. et al.	United	PCCS	1990-	Never	671	783	1.00
(2018)(145)	States		1992	Ever	122	98	0.70 (0.50-0.90)
Salagame U. et al.	Australia	PCCS	2006-	Never	430	595	1.00
(2016)(182)			2014	Ever	46	103	1.80 (1.21-2.68)
Rosenberg L. et al.	United	PCCS	1993-	Never	3,509	949	1.00**
(2016)(183)	States		2013	Ever	2,318	475	1.08 (0.93-1.25)
Thorbjarnardottir T.	Europe	PCCS	1987-	Never	4,390	ND	1.00
et al. (2014)(182)	_		2006	Ever	2,722	ND	1.13 (0.85-1.49)

Supplementary table 12. Systematic review of association with estrogen only HRT use on breast cancer risk in Global population

Fei C. et al.	United	NCCS	ND	Never	1,499	1,346	1.00*
(2013)(185)	States			Ever	113	50	0.49 (0.27-1.89)
Cerne J.Z. et al.	Europe	PCCS	2006-	Never	584	465	1.00
(2011) (186)			2008	Ever	53	82	0.51 (0.30-0.87)
Barnes B.B et al.	Europe	PCCS	2002-	Never	2,596	1,020	1.01 (0.89-1.15)
(2011)(36)			2005	Former	1,647	637	1.00
				Current	739	341	1.19 (1.01-1.41)
Hines L.M. et al.	United	PCCS	2000-	Never	793	710	1.00**
(2010)(37)	States		2005	Ever	486	468	1.08 (0.87-1.34)
Sprague B.L. et al.	United	PCCS	1997-	Never	2,125	1,538	0.92 (0.77-1.10)
(2008)(39)	States		2000	Former	364	283	1.00
				Current	839	651	0.96 (0.791.17)
Rosenberg L.U. et	Europe	PCCS	1993-	Never	1,707	903	1.00
al. (2006)(187)			1995	Ever	167	154	1.90(1.50-2.40)
Newcomb P.A. et	United	PCCS	1992-	Never	2,919	2,780	1.00
al. (2002)(188)	States		1994	Ever	303	308	1.11 (0.92-1.34)
Chen C.L. et al.	United	NCCS	1990-	Never	271	243	1.00
(2002)(189)	States		1995	Former	189	171	0.92 (0.70-1.22)
				Current	111	132	1.17 (0.85-1.60)
La Vecchia C. et al.	Europe	PCCS	1991-	Never	2,395	2,376	1.00**
(1995)(190)			1994	Ever	68	62	1.08 (0.75-1.55)
Palmer J.R. et al.	Canada	PCCS	1982-	Never	991	493	1.00
(1991)(212)			1986	Ever	185	94	1.00 (0.80-1.40)

Abbreviation: PCCS; Population-based case-control study, NCCS; Nested case-control study, SeBCS; Seoul Breast Cancer Society, KBCS; Korean Breast Cancer Study, KMCC; Korean Multi-center cancer cohort *Calculated RR; Calculation of crude RR (95% CI) by the population of each data set. **Summary RR; Recalculation of adjusted RR (95% CI) by the meta-analysis.

Age at menarche	Age	RR (95% CI)
BC incidence		
Cohort study		
Korea multi-center cancer cohort (KMCC) ¹	-15	1.36 (0.75-2.45)
	16-17	1.24 (0.70-2.19)
	18+	1.00
Korean National Cancer Center (KNCC)	-13	1.42 (0.99-2.05)
	14-15	1.07 (0.78-1.46)
	16+	1.00
Korean Cancer Prevention Study (KCPS II)	-13	1.20 (0.96-1.49)
	14-15	1.07 (0.84-1.37)
	16+	1.00
Healthcare System Gangnam Center	-14	1.24 (0.65-2.33)
	15-16	1.09 (0.55-2.17)
	17+	1.00
Kangbuk Samsumg Hospital	-11	1.60 (0.81-3.16)
	12-13	1.22 (0.84-1.77)
	14+	1.00
Namwon cohort ¹	-14	1.61 (0.67-3.86)
	15-16	1.36 (0.68-2.72)
	17+	1.00
Shin AS et al. (2011)	-14	1.52 (1.36-1.70)
	15-16	1.24 (1.13-1.36)
	17+	1.00
Case-control study		
Korean Breast Cancer Study (KBCS)	-14	0.91 (0.88-0.94)
	15-16	0.99 (0.96-1.03)
	17+	1.00
Park BY et al. (2016)	-14	1.94 (1.39-2.71)
Seoul Breast Cancer Study (SeBCS)	15-16	1.43 (1.21-1.70)
	17+	1.00
Park BY et al. (2018) (NCSP) ²	-13	1.61 (1.15-2.26)
	14-16	1.24 (1.05-1.48)
	17+	1.00
BC death		
Cohort study		
Korea multi-center cancer cohort (KMCC) ¹	-15	1.87 (0.46-7.54)
	16-17	1.15 (0.27-4.84)
	18+	1.00
Korean Genome and Epidemiology Study	-13	1.66 (0.86-3.19)
(KOGES)'	14-15	1.13 (0.66-1.96)
	10+	1.00
Korean National Health and Nutrition	-13	2.03 (0.21-19.50)
Examination Survey (KNHANES)	14-16	1.79 (0.20-16.03)
	1/+	1.00

Supplementary table 13. Association between age at menarche and breast cancer in Korean women

Corresponding relative risks(RRs) and 95% CI were calculated in Poisson regression.
 Mammographic breast cancer screening through the National Cancer Screening Program (NCSP)

Age at menopause*	Age	RR (95% CI)
BC incidence		
Cohort study		
Korea multi-center cancer cohort (KMCC) ¹	-51	1.00
	52-53	1.68 (0.76-3.71)
	54+	1.15 (0.47-2.81)
Korean National Cancer Center (KNCC)	-49	1.00
	50-54	1.13 (0.63-2.03)
	55+	1.90 (0.89-4.07)
Korean Cancer Prevention Study (KCPS II)	-52	1.00
	53-54	1.06 (0.55-2.01)
	55+	1.46 (0.83-2.57)
Healthcare System Gangnam Center	-48	1.00
	48-52	1.37 (0.56-3.37)
	53+	1.77 (0.60-2.18)
Namwon cohort ¹	-48	1.00
	48-51	1.21 (0.52-2.77)
	52+	1.39 (0.63-3.05)
Shin AS et al. (2011)	-45	1.00
	45-54	1.42 (1.14-1.75)
	55+	1.80 (1.31-2.49)
Case-control study		
Korean Breast Cancer Study (KBCS)	-48	1.00
	48-53	1.34 (1.26-1.42)
	53+	1.35 (1.27-1.45)
Park BY et al. (2018) (NCSP) ²	-45	1.00
	45-54	1.16 (1.07-1.25)
	55+	1.18 (0.78-1.49)
Park BY et al. (2016)	-44	1.00
Seoul Breast Cancer Study (SeBCS)	45-49	1.02 (0.76-1.37)
	50+	1.36 (1.09-1.69)
BC death		
Cohort study		
Korea multi-center cancer cohort (KMCC) ¹	-48	1.00
	48-53	0.48 (0.08-2.67)
	53+	0.47 (0.05-4.21)
Korean National Health and Nutrition	-44	1.00
Examination Survey (KNHANES) ¹	45-49	1.44 (0.15-13.82)
	50+	0.56 (0.05-6.13)

Supplementary table 14. Association between age at menopause and breast cancer in Korean women

*Corresponding variable was calculated only in postmenopausal women.

Corresponding relative risks(RRs) and 95% CI were calculated in Poisson regression.
 Mammographic breast cancer screening through the National Cancer Screening Program (NCSP)

Parity	Category	RR (95% CI)
BC incidence		
Cohort study		
Korea multi-center cancer cohort (KMCC) ¹	Nulliparous	1.21 (0.38-3.88)
	Parous	1.00
Korean National Cancer Center (KNCC)	Nulliparous	1.12 (1.08-1.16)
	Parous	1.00
Healthcare System Gangnam Center	Nulliparous	1.05 (0.53-2.10)
	Parous	1.00
Namwon cohort ¹	Nulliparous	1.65 (0.23-11.84)
	Parous	1.00
Case-control study		
Korean Breast Cancer Study (KBCS)	Nulliparous	2.01 (1.83-2.20)
	Parous	1.00
Park BY et al. (2018) (NCSP) ^{2,3}	Nulliparous	1.56 (1.04-2.33)
	Parous	1.00
Park BY et al. (2016) ⁴	Nulliparous	0.82 (0.62-1.10)
Seoul Breast Cancer Study (SeBCS)	Parous	1.00
BC death		
Cohort study		
Korean Genome and Epidemiology Study	Nulliparous	2.22 (0.96-5.12)
(KoGES) ¹	Parous	1.00

Supplementary table 15. Association between parity and breast cancer in Korean women

1. Corresponding relative risks(RRs) and 95% CI were calculated in Poisson regression.

2. Mammographic breast cancer screening through the National Cancer Screening Program (NCSP).

3. Parity was recalculated using meta-analysis of two or three RRs (95% CIs) on each category of number of childbirths.

4. Parity was recalculated using meta-analysis of two or three RRs (95% CIs) on each category of age at first full-term pregnancy.

Age at first full-term pregnancy*	Age	RR (95% CI)
BC incidence		
Cohort study		
Korea multi-center cancer cohort (KMCC) ¹	-19	1.00
	20-29	1.29 (0.61-2.70)
	30+	2.22 (0.77-6.42)
Korean National Cancer Center (KNCC)	-25	1.00
	26-28	1.04 (0.76-1.42)
	29+	1.55 (1.10-2.18)
Healthcare System Gangnam Center	-25	1.00
	26-28	1.56 (0.91-2.68)
	29+	1.80 (0.97-3.34)
Namwon cohort ¹	-26	1.00
	26-28	2.52 (1.10-5.79)
	29+	2.89 (0.88-9.46)
Lee SY et al. (2003)	-25	1.00
Korean Women's cohort ²	26-28	1.20 (0.80-1.60)
	29+	1.60 (1.10-2.20)
Case-control study		
Korean Breast Cancer Study (KBCS)	-25	1.00
	26-28	1.05 (1.00-1.10)
	29+	1.42 (1.34-1.51)
Park BY et al. (2016)	-23	1.00
Seoul Breast Cancer Study (SeBCS)	24-30	1.06 (0.90-1.26)
	31+	1.14 (0.85-1.54)
BC death		
Cohort study		
Korea multi-center cancer cohort (KMCC) ¹	-22	1.00
	23-27	0.84 (0.27-2.64)
	28+	0.79 (0.10-6.44)
Korean Genome and Epidemiology Study	-19	1.00
(KoGES) ¹	20-29	1.33 (0.18-9.62)
	30+	1.38 (0.17-11.19)
Korean National Health and Nutrition	-22	1.00
Examination Survey (KNHANES) ¹	23-24	2.47 (1.07-5.68)
-	25+	3.76 (1.71-8.27)

Supplementary table 16. Association between age at first-full term pregnancy and breast cancer in Korean women

*Corresponding variable was calculated only in parous women.

1. Corresponding relative risks(RRs) and 95% CI were calculated in Poisson regression.

2. The Korean Women's Cohort (KWC) Study is an ongoing prospective cohort study designed to assess the effects of gender related variables on chronic disease in Korean women using the KMIC (the Korea Medical Insurance Corporation) sample.

Number of childbirths*	Ν	RR (95% CI)
BC incidence		
Cohort study		
Korea multi-center cancer cohort (KMCC) ¹	1	2.26 (0.88-5.77)
	2	2.77 (1.67-4.60)
	3+	1.00
Korean National Cancer Center (KNCC)	1	3.47 (2.13-5.63)
	2	2.27 (1.51-3.41)
	3+	1.00
Healthcare System Gangnam Center	1	2.05 (0.83-5.05)
	2	1.23 (0.55-2.76)
	3+	1.00
Namwon cohort ¹	1	4.29 (1.31-14.05)
	2	2.51 (1.14-5.54)
	3+	1.00
Lee SY et al. (2003)	1	0.46 (0.27-0.75)
Korean Women's cohort ²	2	0.79 (0.53-1.18)
	3+	1.00
Case-control study		
Korean Breast Cancer Study (KBCS)	1	1.79 (1.71-1.86)
	2	1.22 (1.19-1.26)
	3+	1.00
Park BY et al. (2016)	Nulliparous	1.64 (1.10-2.45)
Seoul Breast Cancer Study (SeBCS)	1	1.50 (1.12-2.01)
	2+	1.00
BC death		
Cohort study		
Korea multi-center cancer cohort (KMCC) ¹	1-2	1.19 (0.37-3.85)
	3-4	1.15 (0.34-3.90)
	5+	1.00
Korean Genome and Epidemiology Study	1	2.74 (0.31-23.95)
(KoGES) ¹	2	4.74 (1.42-15.82)
	3+	1.00

Supplementary table 17. Association between number of childbirths and breast cancer in Korean women

*Corresponding variable was calculated only in parous women.

1. Corresponding relative risks(RRs) and 95% CI were calculated in Poisson regression.

2. The Korean Women's Cohort (KWC) Study is an ongoing prospective cohort study designed to assess the effects of gender related variables on chronic disease in Korean women using the KMIC (the Korea Medical Insurance Corporation) sample.

Breastfeeding	Category	RR (95% CI)
BC incidence		
Cohort study		
Korea multi-center cancer cohort (KMCC) ¹	Never	1.43 (0.70-2.89)
	Ever	1.00
Korean National Cancer Center (KNCC)	Never	1.36 (0.91-2.06)
	Ever	1.00
Namwon cohort ¹	Never	3.34 (1.19-9.33)
	Ever	1.00
Lee SY et al. (2003)	Never	1.30 (1.11-1.52)
Korean Women's cohort ²	Ever	1.00
Case-control study		
Korean Breast Cancer Study (KBCS)	Never	1.72 (1.03-1.77)
	Ever	1.00
Park BY et al. (2016)	Never	1.41 (1.20-1.64)
Seoul Breast Cancer Study (SeBCS)	Ever	1.00
BC death		
Cohort study		
Korea multi-center cancer cohort (KMCC) ¹	Never	1.92 (0.41-8.98)
	Ever	1.00
Korean National Health and Nutrition	Never	1.29 (0.26-6.41)
Examination Survey (KNHANES) ¹	Ever	1.00

Supplementary table 18. Association between breastfeeding and breast cancer in Korean women

1. Corresponding relative risks(RRs) and 95% CI were calculated in Poisson regression.

2. The Korean Women's Cohort (KWC) Study is an ongoing prospective cohort study designed to assess the effects of gender related variables on chronic disease in Korean women using the KMIC (the Korea Medical Insurance Corporation) sample.

Duration of breastfeeding	Months	RR (95% CI)
BC incidence		
Cohort study		
Korean National Cancer Center (KNCC)	Never	1.24 (0.79-1.94)
	6	1.96 (1.25-3.07)
	6+	1.00
Lee SY et al. (2003)	Never	0.77 (0.51-1.16)
Korean Women's cohort ²	12	0.73 (0.48-1.11)
	12+	1.00
Case-control study		
Korean Breast Cancer Study (KBCS)	Never	4.88 (4.70-5.07)
	6	1.29 (1.21-1.37)
	6+	1.00
Park BY et al. (2018) (NCSP) ³	Never	1.35 (1.03-1.77)
	12	0.90 (0.73-1.12)
	12+	1.00
Park BY et al. (2016)	Never	1.03 (0.87-1.21)
Seoul Breast Cancer Study (SeBCS)	6	1.28 (1.07-1.53)
• • • •	6+	1.00
BC death		
Cohort study		
Korean National Health and Nutrition	Never	0.91 (0.18-4.68)
Examination Survey (KNHANES) ¹	24	0.28 (0.03-2.42)
	24+	1.00

Supplementary table 19. Association between duration of breastfeeding and breast cancer in Korean women

1. Corresponding relative risks(RRs) and 95% CI were calculated in Poisson regression.

2. The Korean Women's Cohort (KWC) Study is an ongoing prospective cohort study designed to assess the effects of gender related variables on chronic disease in Korean women using the KMIC (the Korea Medical Insurance Corporation) sample.

3. Mammographic breast cancer screening through the National Cancer Screening Program (NCSP).

Oral contraceptive use	Months	RR (95% CI)
BC incidence		
Cohort study		
Korea multi-center cancer cohort (KMCC) ¹	Never	1.00
	Ever	0.99 (0.62-1.60)
Korean National Cancer Center (KNCC)	Never	1.00
	Ever	1.11 (0.81-1.53)
Healthcare System Gangnam Center	Never	1.00
	Ever	0.38 (0.17-0.82)
Namwon cohort ¹	Never	1.00
	Ever	0.72 (0.30-1.72)
Lee SY et al. (2003)	Never	1.00
Korean Women's cohort ²	Ever	0.80 (0.60-1.00)
Case-control study		
Korean Breast Cancer Study (KBCS)	Never	1.00
	Ever	1.65 (1.56-1.75)
Park BY et al. (2018) (NCSP) ³	Never	1.00
	Ever	1.04 (0.69-1.56)
Park BY et al. (2016)	Never	1.00
Seoul Breast Cancer Study (SeBCS)	Ever	1.28 (1.01-1.60)
BC death		
Cohort study		
Korea multi-center cancer cohort (KMCC) ¹	Never	1.00
	Ever	2.76 (0.95-8.00)
Korean Genome and Epidemiology Study	Never	1.00
(KoGES) ¹	Ever	0.46 (0.18-1.15)
Korean National Health and Nutrition	Never	1.00
Examination Survey (KNHANES) ¹	Ever	0.93 (0.11-7.73)

Supplementary table 20. Association between use of oral contraceptives and breast cancer in Korean women

1. Corresponding relative risks(RRs) and 95% CI were calculated in Poisson regression.

2. The Korean Women's Cohort (KWC) Study is an ongoing prospective cohort study designed to assess the effects of gender related variables on chronic diseases in Korean women using the KMIC (the Korea Medical Insurance Corporation) sample.

3. Mammographic breast cancer screening through the National Cancer Screening Program (NCSP).

Hormone replacement therapy use*	Months	RR (95% CI)
BC incidence		
Cohort study		
Korea multi-center cancer cohort (KMCC) ¹	Never	1.00
	Ever	2.02 (0.99-4.10)
Healthcare System Gangnam Center	Never	1.00
	Ever	1.12 (0.55-2.29)
Kangbuk Samsung Hospital	Never	1.00
	Ever	1.99 (1.40-2.81)
Case-control study		
Korean Breast Cancer Study (KBCS)	Never	1.00
	Ever	1.65 (1.56-1.75)
Park BY et al. (2018) (NCSP) ²	Never	1.00
	Ever	1.13 (0.87-1.27)
Park BY et al. (2016)	Never	1.00
Seoul Breast Cancer Study (SeBCS)	Ever	1.16 (0.36-3.78)
BC death		
Cohort study		
Korea multi-center cancer cohort (KMCC) ¹	Never	1.00
	Ever	1.17 (0.13-10.46)
Korean Genome and Epidemiology Study	Never	1.00
(KoGES) ¹	Ever	0.77 (0.36-1.64)
Korean National Health and Nutrition	Never	1.00
Examination Survey (KNHANES) ¹	Ever	1.67 (0.21-13.82)

Supplementary table 21. Association between use of hormone replacement therapy (HRT) and breast cancer in Korean women

* Corresponding variable was calculated only in postmenopausal women.

1. Corresponding relative risks(RRs) and 95% CI were calculated in Poisson regression.

2. Mammographic breast cancer screening through the National Cancer Screening Program (NCSP).

Study	Relative Risk	RR 95% CI	Study	Relative Risk	RR 95% CI
Cohort			Cohort	:	
KMCC		1.36 [0.75; 2.46]	KMCC		 1.24 [0.70; 2.19]
KNCC		1.42 [0.99; 2.04]	KNCC		1.07 [0.78; 1.46]
KCPS2		1.20 [0.96; 1.49]	KCPS2		1.07 [0.84; 1.37]
Gangnam Center		1.24 [0.65; 2.35]	Gangnam Center		1.09 [0.55; 2.17]
Kangbuk Samsung Hospital		1.60 [0.81; 3.16]	Kangbuk Samsung Hospital		1.22 [0.84; 1.77]
Namwon	<u>*</u>	1.61 [0.67; 3.86]	Namwon	·	1.36 [0.68; 2.72]
Shin AS et al. 2011		1.52 [1.36; 1.70]	Shin AS et al. 2011		1.24 [1.13; 1.36]
Random effects model	\diamond	1.44 [1.32; 1.58]	Random effects model	\diamond	1.21 [1.12; 1.31]
Heterogeneity: /2 = 0%, p = 0.68			Heterogeneity: $I^2 = 0\%$, $p = 0.92$		
Case-control			Case-control		
KBCS	•	0.91 [0.88; 0.94]	KBCS	÷:	0.99 [0.96; 1.03]
Park BY et al. (SeBCS) 2016		1.94 [1.39; 2.71]	Park BY et al. (SeBCS) 2016	; 	1.43 [1.21; 1.69]
Pak BY et al. 2018		1.61 [1.15; 2.26]	Pak BY et al. 2018	- <u>-</u>	1.24 [1.04; 1.47]
Random effects model	$\langle \rangle$	1.39 [0.81; 2.39]	Random effects model	</td <td>1.19 [0.93; 1.52]</td>	1.19 [0.93; 1.52]
Heterogeneity: /2 = 93%, p < 0.01			Heterogeneity: I ² = 91%, p < 0.01		
Random effects model	\diamond	1.39 [1.08; 1.77]	Random effects model	\diamond	1.18 [1.04; 1.33]
Heterogeneity: /2 = 92%, p < 0.01	0.5 1 2		Heterogeneity: I ² = 78%, p < 0.01	0.5 1	2

Figure 1. Association between age at menarche and breast cancer in Korea population. (Left: $\leq 14 \text{ vs.} \geq 17$ [reference], Right: 15-16 vs. ≥ 17 [reference])

Study	Relative Risk	RR 95% CI	Study	Relative Risk	RR 95% CI
Cohort			Cohort		
KMCC	_ +	1.68 [0.76; 3.71]	KMCC	++	1.15 [0.47; 2.81]
KNCC		1.13 [0.63; 2.03]	KNCC		1.90 [0.89; 4.06]
KCPS2		1.06 [0.55; 2.03]	KCPS2		1.46 [0.83; 2.57]
Gangnam Center		1.37 [0.56; 3.36]	Gangnam Center		1.77 [0.93; 3.37]
Namwon		 1.21 [0.52; 2.79] 	Namwon	<u></u>	 1.39 [0.63; 3.06]
Shin AS et al. 2011	÷=	1.42 [1.15; 1.76]	Shin AS et al. 2011		1.80 [1.31; 2.48]
Random effects model	$\dot{\diamond}$	1.36 [1.14; 1.63]	Random effects model	\sim	1.66 [1.33; 2.08]
Heterogeneity: $l^2 = 0\%$, $p = 0.92$			Heterogeneity: $l^2 = 0\%$, $p = 0.92$		
Case-control			Case-control		
KBCS	+	1.34 [1.26; 1.42]	KBCS	+	1.35 [1.26; 1.44]
Park BY et al. (SeBCS) 2016	_}÷	1.02 [0.76; 1.37]	Park BY et al. (SeBCS) 2016	_	1.36 [1.09; 1.69]
Pak BY et al. 2018	E	1.16 [1.07; 1.25]	Pak BY et al. 2018	<u> </u>	1.18 [0.85; 1.63]
Random effects model	\diamond	1.21 [1.06; 1.39]	Random effects model	\$	1.34 [1.26; 1.43]
Heterogeneity: I ² = 81%, p < 0.01			Heterogeneity: $l^2 = 0\%$, $p = 0.72$		
Random effects model	$\dot{\diamond}$	1.25 [1.15; 1.37]	Random effects model	\$	1.36 [1.29; 1.45]
Heterogeneity: I ² = 36%, p = 0.13	05 1 2		Heterogeneity: $I^2 = 0\%$, $p = 0.73$	0.5 1 2	

Figure 2. Association between age at menopause and breast cancer in Korean population. (Left: 48-52 vs. < 48 [reference], Right: $\geq 53 vs. < 48$ [reference])

Study	Relative Risk	RR 95% CI
Cohort	:	
KMCC		1.21 [0.38; 3.87]
KNCC	•	1.12 [1.08; 1.16]
Gangnam Center		1.05 [0.53; 2.09]
Namwon	<u>_</u>	1.65 [0.23; 11.84]
Random effects model	٥.	1.12 [1.08; 1.16]
Heterogeneity: $I^2 = 0\%$, $p = 0.98$		
Case-control		
KBCS	: +	2.01 [1.83; 2.20]
Park BY et al. (SeBCS) 2016		1.56 [1.04; 2.33]
Pak BY et al. 2018		0.82 [0.62; 1.09]
Random effects model	< <u>-</u>	1.38 [0.76; 2.51]
Heterogeneity: $I^2 = 94\%$, $p < 0.01$:	
Random effects model	÷	1.28 [0.90; 1.81]
Heterogeneity: $I^2 = 96\%$, $p < 0.01_{0.1}$	0.5 1 2	10

Figure 3. Association between parity and breast cancer in Korean population (Nulliparous vs. Parous [reference])

Figure 4. Association between number of childbirths and breast cancer among parous women in Korea population. (Left: 1 vs. \geq 3 [reference], Right: 2 vs. \geq 3 [reference])

Study	Relative Risk	RR 95% CI Study	Relative Risk	RR 95% CI
Cohort	:	Cohort	:	
KMCC	 +	1.29 [0.61; 2.71] KMCC		2.22 [0.77; 6.41]
KNCC	- [-	1.04 [0.76; 1.42] KNCC		1.55 [1.10; 2.18]
Gangnam Center	- f →	1.56 [0.91; 2.68] Gangnam Center		1.80 [0.97; 3.34]
Namwon	i	2.52 [1.10; 5.78] Namwon		2.89 [0.88; 9.48]
Lee SY et al. 2003	_ ↓	1.20 [0.85; 1.70] Lee SY et al. 2003	 →-	1.60 [1.13; 2.26]
Random effects model	\diamond	1.26 [1.00; 1.58] Random effects model	\diamond	1.66 [1.33; 2.06]
Heterogeneity: I ² = 16%, p = 0.31	÷	Heterogeneity: $l^2 = 0\%$, $p = 0.85$		
Case-control		Case-control		
KBCS	•	1.05 [1.00; 1.10] KBCS	•	1.42 [1.34; 1.51]
Park BY et al. (SeBCS) 2016	+	1.06 [0.90; 1.25] Park BY et al. (SeBCS) 2016	- ++	1.14 [0.85; 1.53]
Random effects model	2	1.05 [1.00; 1.10] Random effects model	\diamond	1.34 [1.10; 1.62]
Heterogeneity: $I^2 = 0\%$, $p = 0.92$		Heterogeneity: / ² = 50%, p = 0.16		
Random effects model	ò	1.08 [0.99; 1.18] Random effects model	\$	1.42 [1.35; 1.51]
Heterogeneity: I ² = 15%, p = 0.31 0.2	0.5 1 2	5 Heterogeneity: I ² = 0%, p = 0.49	0.2 0.5 1 2	5

Figure 5. Association between age at first full-term pregnancy and breast cancer in Korean population. (Left: 20-30 vs. < 20 [reference], Right: ≥ 30 vs. < 20 [reference])

Study	Relative Risk	RR 95% CI
Cohort	:	
KMCC		1.43 [0.70; 2.91]
KNCC		1.36 [0.90; 2.05]
Namwon		3.34 [1.19; 9.35]
Lee SY et al. 2003	+	1.30 [1.11; 1.52]
Random effects model	\diamond	1.35 [1.14; 1.60]
Heterogeneity: $I^2 = 6\%$, $p = 0.36$		
Case-control		
KBCS	:≖-	1.72 [1.31; 2.25]
Park BY et al. (SeBCS) 2016		1.41 [1.21; 1.65]
Random effects model	\diamond	1.51 [1.25; 1.81]
Heterogeneity: $I^2 = 36\%$, $p = 0.21$		
Random effects model	\diamond	1.42 [1.27; 1.60]
Heterogeneity: $I^2 = 14\%$, $p = 0.32$	0.2 0.5 1 2	5

Figure 6. Association between breastfeeding and breast cancer in Korean population. (Never *vs.* Ever [reference])

Study	Relative Risk	RR 95% CI	Study	Relative Risk	RR 95% CI
Cohort			Cohort		
KNCC	- • - i	1.24 [0.79; 1.94]	KNCC		1.96 [1.25; 3.07]
Random effects model	<hr/>	1.24 [0.79; 1.94]	Random effects model	\sim	> 1.96 [1.25; 3.07]
Heterogeneity: not applicable			Heterogeneity: not applicable		
Case-control			Case-control		
KBCS		 4.88 [4.70; 5.07] 	KBCS	+	1.29 [1.21; 1.37]
Park BY et al. (SeBCS) 2016	- + : -	1.03 [0.87; 1.21]	Park BY et al. (SeBCS) 2016		1.28 [1.07; 1.53]
Random effects model		2.25 [0.49; 10.32]	Random effects model	\$	1.29 [1.22; 1.37]
Heterogeneity: I ² = 100%, p < 0.01			Heterogeneity: $I^2 = 0\%$, $p = 0.94$		
Random effects model		4.85 [0.54; 6.35]	Random effects model	$\dot{\diamond}$	1.32 [1.17; 1.50]
Heterogeneity: /2 = 99%, p < 0.01 0.2	0.5 1 2	5	Heterogeneity: I ² = 39%, p = 0.19	0.5 1 2	

Figure 7. Association between duration of breastfeeding and breast cancer in Korean population. (Left: Never $vs. \ge 6$ months [reference], Right: < 6 months $vs. \ge 6$ months [reference])

Study	Relative Risk	RR 95% CI
Cohort	:	
KMCC		0.99 [0.62; 1.59]
KNCC		1.11 [0.81; 1.53]
Namwom		0.72 [0.30; 1.72]
Lee SY et al. 2003		0.80 [0.62; 1.03]
Random effects model	\sim	0.91 [0.76; 1.09]
Heterogeneity: $I^2 = 0\%$, $p = 0.41$	÷	
Case-control	i	
KBCS	: +	1.65 [1.56; 1.75]
Park BY et al. 2018		1.04 [0.69; 1.56]
Park BY et al. (SeBCS) 2016	; • -	1.28 [1.02; 1.61]
Random effects model	\sim	1.37 [1.06; 1.78]
Heterogeneity: $I^2 = 78\%$, $p = 0.01$		
Random effects model		1.10 [0.83; 1.46]
Heterogeneity: $I^2 = 87\%$, $p < 0.01$	0.5 1 2	

Figure 8. Association between oral contraceptives and breast cancer in Korean population. (Ever *vs.* Never [reference])

Study	Relative Risk	RR 95% CI
Cohort	:	
KMCC		2.02 [0.99; 4.11]
Gangnam Center	=	1.12 [0.55; 2.29]
Kangbuk Samsung Hospital		1.99 [1.40; 2.82]
Random effects model	\sim	1.81 [1.33; 2.44]
Heterogeneity: $I^2 = 5\%$, $p = 0.35$		
Case-control		
KBCS	I	1.65 [1.56; 1.75]
Park BY et al. 2018		1.13 [0.94; 1.37]
Park BY et al. (SeBCS) 2016		1.16 [0.36; 3.76]
Random effects model	\sim	1.36 [0.97; 1.92]
Heterogeneity: $I^2 = 86\%$, $p < 0.01$		
Random effects model	·	1.50 [1.18; 1.90]
Heterogeneity: $I^2 = 71\%$, $p < 0.01$	0.5 1 2	

Figure 9. Association between hormone replacement therapy (combination) and breast cancer in Korean population. (Ever *vs.* Never [reference])

Figure 10. Summary relative risks of breast cancer related to each reproductive factors in Korean population.

Reproductive factors category	Summary RR	RR 95% CI	I ² Begg Egger
15-16 <i>vs.</i> ≤ 14 [reference]	Age at menarche	0.95 (0.90-0.99)	80% 0.13 0.06
\geq 17 vs. \leq 14 [reference]	Age at menarche	0.85 (0.79-0.91)	87% 0.72 0.00
48-52 <i>vs.</i> < 48 [reference]	Age at menopaus	e 1.21 (1.16-1.25)	27% 0.53 0.90
\geq 53 vs. < 48 [reference]	Age at menopause	1.32 (1.25-1.40)	38% 0.04 0.26
Ever vs. Never [reference]	Family history of BC	- 1.58 (1.48-1.69)	84% 0.85 0.88
Parous vs. Nulliparous [reference]	Parity	0.79 (0.74-0.85)	89% 0.91 0.34
2 child vs. 1child [reference]	Number of childbirths	0.91 (0.86-0.96)	84% 0.23 0.94
3+ vs. 1child [reference]	 Number of childbitths 	0.77 (0.71-0.83)	86% 0.07 0.65
20-30 vs. < 20 [reference]	Age at first full-term pregnancy	1.10 (1.06-1.14)	72% 0.02 0.92
\geq 30 vs. < 20 [reference]	Age at first full-term pregnancy —	1.31 (1.24-1.38)	68% 0.06 0.38
< 6 months vs. Never [reference]	Duration of breastfeeding	0.82 (0.64-1.06)	99% 0.03 0.22
\geq 6 months <i>vs</i> . Never[reference]	Duration of breastfeeding	0.80 (0.58-1.11)	99% 0.06 0.38
Ever vs. Never [reference]	OC use	1.07 (0.99-1.15)	90% 0.14 0.22
< 5 years vs. Never [reference]	Duration of OC use	1.07 (1.02-1.13)	52% 0.71 0.26
\geq 5 years <i>vs</i> . Never [reference]	- Duration of OC use	1.10 (1.04-1.17)	58% 0.27 0.71
Ever vs. Never [reference]	Combination IIRT	1.29 (1.18-1.41)	86% 0.45 0.17
Ever vs. Never [reference]	Estrogen only HRT	1.11 (1.04-1.18)	52% 0.68 0.14
0.5	0.75 1 1.5	2.0	

Figure 11. Summary relative risks of breast cancer related to each reproductive factors in Global population.

Supplementary figure 1. Flow chart for systematic review of association between age at menarche and breast cancer in Global population.

Supplementary Figure 2. Flow chart for systematic review of association between age at menopause and breast cancer in Global population.

Supplementary figure 3. Flow chart for systematic review of association between family history and breast cancer in Global population.

Supplementary figure 4. Flow chart for systematic review of association between age at first-full term pregnancy and breast cancer in Global population.

Supplementary figure 5. Flow chart for systematic review of association between the number of childbirths and breast cancer in Global population.

Supplementary figure 6. Flow chart for systematic review of association between the duration of breastfeeding and breast cancer in Global population.

Supplementary figure 7. Flow chart for systematic review of association between use of oral contraceptives and breast cancer in Global population.

Supplementary figure 8. Flow chart for systematic review of association between hormone replacement therapy use and breast cancer in Global population. (Combination of estrogen and progestin)

VI. Reference

1. Ghoncheh M, Pournamdar Z, Salehiniya H. Incidence and Mortality and Epidemiology of Breast Cancer in the World. Asian Pacific journal of cancer prevention : APJCP. 2016;17(S3):43-6.

2. Bobby Daly M, MBA and Olufunmilayo I. Olopade, MBBS, FACP. Race, Ethnicity, and the Diagnosis of Breast Cancer JAMA. 2015;313 (2): 141-142.

3. AC. S. Breast cancer Facts&Figures 2017-2018. Atlanta: American Cancer Society 2017;Inc 2017.

4. Al-Ajmi K, Lophatananon A, Ollier W, Muir KR. Risk of breast cancer in the UK biobank female cohort and its relationship to anthropometric and reproductive factors. PloS one. 2018;13(7):e0201097.

5. Kweon S-S. Updated on Cancer Epidemiology in Korea, 2018. Chonnam Med J 2018;54: 90-100.

6. Park B, Park S, Shin HR, Shin A, Yeo Y, Choi JY, et al. Population attributable risks of modifiable reproductive factors for breast and ovarian cancers in Korea. BMC Cancer. 2016;16:5.

7. Jung D, Lee SM. BMI and Breast Cancer in Korean Women: A Meta-Analysis. Asian Nurs Res (Korean Soc Nurs Sci). 2009;3(1):31-40.

8. Woo HD, Park S, Oh K, Kim HJ, Shin HR, Moon HK, et al. Diet and cancer risk in the Korean population: a meta- analysis. Asian Pacific journal of cancer prevention : APJCP. 2014;15(19):8509-19.

9. Bae JM, Kim EH. Hormone Replacement Therapy and Risk of Breast Cancer in Korean Women: A Quantitative Systematic Review. J Prev Med Public Health. 2015;48(5):225-30.

10. Christine S Perry JCO, Jonathan L Palmer, and Annette S Gross Risk factors for breast cancer in East Asian women relative to women in the West. Asia-Pacific Journal of Clinical Oncology 2009;5:219-31.

11. Type and timing of menopausal hormone therapy and breast cancer risk: individual participant meta-analysis of the worldwide epidemiological evidence. The Lancet. 2019;394(10204):1159-68.

12. Leong SPL, Shen Z-Z, Liu T-J, Agarwal G, Tajima T, Paik N-S, et al. Is Breast Cancer the Same Disease in Asian and Western Countries? World Journal of Surgery. 2010;34(10):2308-24.

13. Bodicoat DH, Schoemaker MJ, Jones ME, McFadden E, Griffin J, Ashworth A, et al. Timing of pubertal stages and breast cancer risk: the Breakthrough Generations Study. Breast cancer research : BCR. 2014;16(1):R18.

14. Albrektsen G, Heuch I, Hansen S, Kvale G. Breast cancer risk by age at birth, time since birth and time intervals between births: exploring interaction effects. British journal of cancer. 2005;92(1):167-75.

15. Anothaisintawee T, Wiratkapun C, Lerdsitthichai P, Kasamesup V, Wongwaisayawan S, Srinakarin J, et al. Risk factors of breast cancer: a systematic review and meta-analysis. Asia-Pacific journal of public health. 2013;25(5):368-87.

16. Mariapun S, Li J, Yip CH, Taib NA, Teo SH. Ethnic differences in mammographic densities: an Asian cross-sectional study. PloS one. 2015;10(2):e0117568.

17. Azam S, Eriksson M, Sjolander A, Hellgren R, Gabrielson M, Czene K, et al. Mammographic Density Change and Risk of Breast Cancer. Journal of the National Cancer Institute. 2020;112(4):391-9.

18. Peila R, Arthur R, Rohan TE. Risk factors for ductal carcinoma in situ of the breast in the UK Biobank cohort study. Cancer epidemiology. 2020;64:101648.

19. Sandvei MS, Vatten LJ, Bjelland EK, Eskild A, Hofvind S, Ursin G, et al.

Menopausal hormone therapy and breast cancer risk: effect modification by body mass through life. European journal of epidemiology. 2019;34(3):267-78.

20. Mullooly M, Khodr ZG, Dallal CM, Nyante SJ, Sherman ME, Falk R, et al. Epidemiologic Risk Factors for In Situ and Invasive Breast Cancers Among Postmenopausal Women in the National Institutes of Health-AARP Diet and Health Study. American journal of epidemiology. 2017;186(12):1329-40.

21. Bertrand KA, Gerlovin H, Bethea TN, Palmer JR. Pubertal growth and adult height in relation to breast cancer risk in African American women. International journal of cancer. 2017;141(12):2462-70.

22. Dartois L, Fagherazzi G, Baglietto L, Boutron-Ruault MC, Delaloge S, Mesrine S, et al. Proportion of premenopausal and postmenopausal breast cancers attributable to known risk factors: Estimates from the E3N-EPIC cohort. International journal of cancer. 2016;138(10):2415-27.

23. Warner ET, Colditz GA, Palmer JR, Partridge AH, Rosner BA, Tamimi RM. Reproductive factors and risk of premenopausal breast cancer by age at diagnosis: are there differences before and after age 40? Breast cancer research and treatment. 2013;142(1):165-75.

24. Ritte R, Tikk K, Lukanova A, Tjonneland A, Olsen A, Overvad K, et al. Reproductive factors and risk of hormone receptor positive and negative breast cancer: a cohort study. BMC cancer. 2013;13:584.

25. Poynter JN, Inoue-Choi M, Ross JA, Jacobs DR, Jr., Robien K. Reproductive, lifestyle, and anthropometric risk factors for cancer in elderly women. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2013;22(4):681-7.

26. Setiawan VW, Monroe KR, Wilkens LR, Kolonel LN, Pike MC, Henderson BE. Breast cancer risk factors defined by estrogen and progesterone receptor status: the multiethnic cohort study. American journal of epidemiology. 2009;169(10):1251-9.

27. Lacey JV, Jr., Kreimer AR, Buys SS, Marcus PM, Chang SC, Leitzmann MF, et al. Breast cancer epidemiology according to recognized breast cancer risk factors in the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial Cohort. BMC cancer. 2009;9:84.

28. Henderson KD, Bernstein L, Henderson B, Kolonel L, Pike MC. Predictors of the timing of natural menopause in the Multiethnic Cohort Study. American journal of epidemiology. 2008;167(11):1287-94.

29. Heuch I, Jacobsen BK, Albrektsen G, Kvale G. Reproductive factors and pancreatic cancer risk: a Norwegian cohort study. British journal of cancer. 2008;98(1):189-93.

30. Li CI, Littman AJ, White E. Relationship between age maximum height is attained, age at menarche, and age at first full-term birth and breast cancer risk. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2007;16(10):2144-9.

31. Ha M, Mabuchi K, Sigurdson AJ, Freedman DM, Linet MS, Doody MM, et al. Smoking cigarettes before first childbirth and risk of breast cancer. American journal of epidemiology. 2007;166(1):55-61.

32. Stahlberg C, Lynge E, Andersen ZJ, Keiding N, Ottesen B, Rank F, et al. Breast cancer incidence, case-fatality and breast cancer mortality in Danish women using hormone replacement therapy--a prospective observational study. International journal of epidemiology. 2005;34(4):931-5.

33. Liu R, Kitamura Y, Kitamura T, Sobue T, Sado J, Sugawara Y, et al. Reproductive and lifestyle factors related to breast cancer among Japanese women: An observational cohort study. Medicine. 2019;98(51):e18315.

34. Sepandi M, Akrami M, Tabatabaee H, Rajaeefard A, Tahmasebi S, Angali KA, et al. Breast cancer risk factors in women participating in a breast screening program: a study on 11,850 Iranian females. Asian Pacific journal of cancer prevention : APJCP. 2014;15(19):8499-502.

35. Kawai M, Minami Y, Kuriyama S, Kakizaki M, Kakugawa Y, Nishino Y, et al. Reproductive factors, exogenous female hormone use and breast cancer risk in Japanese: the Miyagi Cohort Study. Cancer causes & control : CCC. 2010;21(1):135-45.

36. Iwasaki M, Otani T, Inoue M, Sasazuki S, Tsugane S. Role and impact of menstrual and reproductive factors on breast cancer risk in Japan. European journal of cancer prevention : the official journal of the European Cancer Prevention Organisation (ECP). 2007;16(2):116-23.

37. Tamakoshi K, Yatsuya H, Wakai K, Suzuki S, Nishio K, Lin Y, et al. Impact of menstrual and reproductive factors on breast cancer risk in Japan: results of the JACC study. Cancer science. 2005;96(1):57-62.

38. Yoo TK, Han KD, Kim D, Ahn J, Park WC, Chae BJ. Hormone replacement therapy, breast cancer risk factors and breast cancer risk: a nationwide population-based cohort. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2020.

39. Lee SY, Kim MT, Kim SW, Song MS, Yoon SJ. Effect of lifetime lactation on breast cancer risk: a Korean women's cohort study. International journal of cancer. 2003;105(3):390-3.

40. Shin A, Song YM, Yoo KY, Sung J. Menstrual factors and cancer risk among Korean women. International journal of epidemiology. 2011;40(5):1261-8.

41. Figueroa JD, Davis Lynn BC, Edusei L, Titiloye N, Adjei E, Clegg-Lamptey JN, et al. Reproductive factors and risk of breast cancer by tumor subtypes among Ghanaian women: A population-based case-control study. International journal of cancer. 2020.

42. Hamdi-Cherif M, Serraino D, Bouad S, Dib A, Boudaoud K, Atoui S, et al. Sociodemographic and Reproductive Risk Factors for Breast Cancer: A Case-Control Study in the Setif Province, Northern Algeria. Asian Pacific journal of cancer prevention : APJCP. 2020;21(2):457-64.

43. Bravi F, Decarli A, Russo AG. Risk factors for breast cancer in a cohort of mammographic screening program: a nested case-control study within the FRiCaM study. Cancer medicine. 2018;7(5):2145-52.

44. Banegas MP, John EM, Slattery ML, Gomez SL, Yu M, LaCroix AZ, et al. Projecting Individualized Absolute Invasive Breast Cancer Risk in US Hispanic Women. Journal of the National Cancer Institute. 2017;109(2).

45. Ellingjord-Dale M, Vos L, Tretli S, Hofvind S, Dos-Santos-Silva I, Ursin G. Parity, hormones and breast cancer subtypes - results from a large nested case-control study in a national screening program. Breast cancer research : BCR. 2017;19(1):10.

46. Veisy A, Lotfinejad S, Salehi K, Zhian F. Risk of breast cancer in relation to reproductive factors in North-West of Iran, 2013-2014. Asian Pacific journal of cancer prevention : APJCP. 2015;16(2):451-5.

47. Sisti JS, Bernstein JL, Lynch CF, Reiner AS, Mellemkjaer L, Brooks JD, et al. Reproductive factors, tumor estrogen receptor status and contralateral breast cancer risk: results from the WECARE study. SpringerPlus. 2015;4:825.

48. Barnes BB, Steindorf K, Hein R, Flesch-Janys D, Chang-Claude J. Population attributable risk of invasive postmenopausal breast cancer and breast cancer subtypes for modifiable and non-modifiable risk factors. Cancer epidemiology. 2011;35(4):345-52.

49. Hines LM, Risendal B, Slattery ML, Baumgartner KB, Giuliano AR, Sweeney C,

et al. Comparative analysis of breast cancer risk factors among Hispanic and non-Hispanic white women. Cancer. 2010;116(13):3215-23.

50. Phillips LS, Millikan RC, Schroeder JC, Barnholtz-Sloan JS, Levine BJ. Reproductive and hormonal risk factors for ductal carcinoma in situ of the breast. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2009;18(5):1507-14.

51. Sprague BL, Trentham-Dietz A, Egan KM, Titus-Ernstoff L, Hampton JM, Newcomb PA. Proportion of invasive breast cancer attributable to risk factors modifiable after menopause. American journal of epidemiology. 2008;168(4):404-11.

52. Shantakumar S, Terry MB, Teitelbaum SL, Britton JA, Millikan RC, Moorman PG, et al. Reproductive factors and breast cancer risk among older women. Breast cancer research and treatment. 2007;102(3):365-74.

53. Li CI, Malone KE, Porter PL, Weiss NS, Tang MT, Daling JR. Reproductive and anthropometric factors in relation to the risk of lobular and ductal breast carcinoma among women 65-79 years of age. International journal of cancer. 2003;107(4):647-51.

54. Magnusson CM, Persson IR, Baron JA, Ekbom A, Bergstrom R, Adami HO. The role of reproductive factors and use of oral contraceptives in the aetiology of breast cancer in women aged 50 to 74 years. International journal of cancer. 1999;80(2):231-6.

55. Rockhill B, Weinberg CR, Newman B. Population attributable fraction estimation for established breast cancer risk factors: considering the issues of high prevalence and unmodifiability. American journal of epidemiology. 1998;147(9):826-33.

56. Rockhill B, Moorman PG, Newman B. Age at menarche, time to regular cycling, and breast cancer (North Carolina, United States). Cancer causes & control : CCC. 1998;9(4):447-53.

57. McCredie M, Paul C, Skegg DC, Williams S. Reproductive factors and breast cancer in New Zealand. International journal of cancer. 1998;76(2):182-8.

58. Bouchardy C, Le MG, Hill C. Risk factors for breast cancer according to age at diagnosis in a French case-control study. Journal of clinical epidemiology. 1990;43(3):267-75.

59. Ewertz M, Duffy SW. Risk of breast cancer in relation to reproductive factors in Denmark. British journal of cancer. 1988;58(1):99-104.

60. Bergkvist L, Persson I, Adami HO, Schairer C. Risk factors for breast and endometrial cancer in a cohort of women treated with menopausal oestrogens. International journal of epidemiology. 1988;17(4):732-7.

61. Brignone G, Cusimano R, Dardanoni G, Gugliuzza M, Lanzarone F, Scibilia V, et al. A case-control study on breast cancer risk factors in a southern European population. International journal of epidemiology. 1987;16(3):356-61.

62. Bruzzi P, Green SB, Byar DP, Brinton LA, Schairer C. Estimating the population attributable risk for multiple risk factors using case-control data. American journal of epidemiology. 1985;122(5):904-14.

63. Gao YT, Shu XO, Dai Q, Potter JD, Brinton LA, Wen W, et al. Association of menstrual and reproductive factors with breast cancer risk: results from the Shanghai Breast Cancer Study. International journal of cancer. 2000;87(2):295-300.

64. Park B, Cho HM, Lee EH, Song S, Suh M, Choi KS, et al. Does breast density measured through population-based screening independently increase breast cancer risk in Asian females? Clinical epidemiology. 2018;10:61-70.

65. Xu X, Jones M, Mishra GD. Age at natural menopause and development of chronic conditions and multimorbidity: results from an Australian prospective cohort. Human reproduction (Oxford, England). 2020;35(1):203-11.

66. Tamimi RM, Spiegelman D, Smith-Warner SA, Wang M, Pazaris M, Willett WC, et al. Population Attributable Risk of Modifiable and Nonmodifiable Breast Cancer Risk Factors in Postmenopausal Breast Cancer. American journal of epidemiology. 2016;184(12):884-93.

67. Horn J, Asvold BO, Opdahl S, Tretli S, Vatten LJ. Reproductive factors and the risk of breast cancer in old age: a Norwegian cohort study. Breast cancer research and treatment. 2013;139(1):237-43.

68. Chang-Claude J, Andrieu N, Rookus M, Brohet R, Antoniou AC, Peock S, et al. Age at menarche and menopause and breast cancer risk in the International BRCA1/2 Carrier Cohort Study. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2007;16(4):740-6.

69. Stahlberg C, Pedersen AT, Andersen ZJ, Keiding N, Hundrup YA, Obel EB, et al. Breast cancer with different prognostic characteristics developing in Danish women using hormone replacement therapy. British journal of cancer. 2004;91(4):644-50.

70. Warren Andersen S, Trentham-Dietz A, Gangnon RE, Hampton JM, Figueroa JD, Skinner HG, et al. The associations between a polygenic score, reproductive and menstrual risk factors and breast cancer risk. Breast cancer research and treatment. 2013;140(2):427-34.

71. Pfeiffer RM, Park Y, Kreimer AR, Lacey JV, Jr., Pee D, Greenlee RT, et al. Risk prediction for breast, endometrial, and ovarian cancer in white women aged 50 y or older: derivation and validation from population-based cohort studies. PLoS medicine. 2013;10(7):e1001492.

72. Berstad P, Coates RJ, Bernstein L, Folger SG, Malone KE, Marchbanks PA, et al. A case-control study of body mass index and breast cancer risk in white and African-American women. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2010;19(6):1532-44.

73. Nelson DA, Darga LL, Simon MS, Severson RK. Radial bone density and breast cancer risk in white and African-American women. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2004;15(7):535-40.

74. Zhang D, Nichols HB, Troester M, Cai J, Bensen JT, Sandler DP. Tea consumption and breast cancer risk in a cohort of women with family history of breast cancer. International journal of cancer. 2019.

75. Miller ME, Muhsen S, Olcese C, Patil S, Morrow M, Van Zee KJ. Contralateral Breast Cancer Risk in Women with Ductal Carcinoma In Situ: Is it High Enough to Justify Bilateral Mastectomy? Annals of surgical oncology. 2017;24(10):2889-97.

76. Boggs DA, Rosenberg L, Adams-Campbell LL, Palmer JR. Prospective approach to breast cancer risk prediction in African American women: the black women's health study model. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2015;33(9):1038-44.

77. Beebe-Dimmer JL, Yee C, Cote ML, Petrucelli N, Palmer N, Bock C, et al. Familial clustering of breast and prostate cancer and risk of postmenopausal breast cancer in the Women's Health Initiative Study. Cancer. 2015;121(8):1265-72.

78. Welsh ML, Buist DS, Aiello Bowles EJ, Anderson ML, Elmore JG, Li CI. Population-based estimates of the relation between breast cancer risk, tumor subtype, and family history. Breast cancer research and treatment. 2009;114(3):549-58.

79. Granstrom C, Sundquist J, Hemminki K. Population attributable risks for breast cancer in Swedish women by morphological type. Breast cancer research and treatment.

2008;111(3):559-68.

80. Reinier KS, Vacek PM, Geller BM. Risk factors for breast carcinoma in situ versus invasive breast cancer in a prospective study of pre- and post-menopausal women. Breast cancer research and treatment. 2007;103(3):343-8.

81. Albrektsen G, Heuch I, Thoresen S, Kvale G. Family history of breast cancer and short-term effects of childbirths on breast cancer risk. International journal of cancer. 2006;119(6):1468-74.

82. Baglia ML, Tang MC, Malone KE, Porter P, Li CI. Family History and Risk of Second Primary Breast Cancer after In Situ Breast Carcinoma. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2018;27(3):315-20.

83. Engmann NJ, Golmakani MK, Miglioretti DL, Sprague BL, Kerlikowske K. Population-Attributable Risk Proportion of Clinical Risk Factors for Breast Cancer. JAMA oncology. 2017;3(9):1228-36.

84. Masala G, Ambrogetti D, Assedi M, Bendinelli B, Caini S, Palli D. Mammographic breast density and breast cancer risk in a Mediterranean population: a nested case-control study in the EPIC Florence cohort. Breast cancer research and treatment. 2017;164(2):467-73.

85. Trentham-Dietz A, Sprague BL, Hampton JM, Miglioretti DL, Nelson HD, Titus LJ, et al. Modification of breast cancer risk according to age and menopausal status: a combined analysis of five population-based case-control studies. Breast cancer research and treatment. 2014;145(1):165-75.

86. Petracci E, Decarli A, Schairer C, Pfeiffer RM, Pee D, Masala G, et al. Risk factor modification and projections of absolute breast cancer risk. Journal of the National Cancer Institute. 2011;103(13):1037-48.

87. McCredie M, Paul C, Skegg DC, Williams S. Family history and risk of breast cancer in New Zealand. International journal of cancer. 1997;73(4):503-7.

88. Siskind V, Schofield F, Rice D, Bain C. Breast cancer and breastfeeding: results from an Australian case-control study. American journal of epidemiology. 1989;130(2):229-36.

89. McTiernan A, Thomas DB. Evidence for a protective effect of lactation on risk of breast cancer in young women. Results from a case-control study. American journal of epidemiology. 1986;124(3):353-8.

90. Hislop TG, Elwood JM. Risk factors for benign breast disease: a 30-year cohort study. Canadian Medical Association journal. 1981;124(3):283-91.

91. Bain C, Speizer FE, Rosner B, Belanger C, Hennekens CH. Family history of breast cancer as a risk indicator for the disease. American journal of epidemiology. 1980;111(3):301-8.

92. Wang L, Liu L, Lou Z, Ding L, Guan H, Wang F, et al. Risk prediction for breast Cancer in Han Chinese women based on a cause-specific Hazard model. BMC cancer. 2019;19(1):128.

93. Sanderson M, Shu XO, Jin F, Dai Q, Wen W, Hua Y, et al. Abortion history and breast cancer risk: results from the Shanghai Breast Cancer Study. International journal of cancer. 2001;92(6):899-905.

94. Fortner RT, Sisti J, Chai B, Collins LC, Rosner B, Hankinson SE, et al. Parity, breastfeeding, and breast cancer risk by hormone receptor status and molecular phenotype: results from the Nurses' Health Studies. Breast cancer research : BCR. 2019;21(1):40.

95. Kullberg C, Selander J, Albin M, Borgquist S, Manjer J, Gustavsson P. Female white-collar workers remain at higher risk of breast cancer after adjustments for individual risk factors related to reproduction and lifestyle. Occupational and environmental medicine.

2017;74(9):652-8.

96. Bertrand KA, Bethea TN, Adams-Campbell LL, Rosenberg L, Palmer JR. Differential Patterns of Risk Factors for Early-Onset Breast Cancer by ER Status in African American Women. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2017;26(2):270-7.

97. Horn J, Opdahl S, Engstrom MJ, Romundstad PR, Tretli S, Haugen OA, et al. Reproductive history and the risk of molecular breast cancer subtypes in a prospective study of Norwegian women. Cancer causes & control : CCC. 2014;25(7):881-9.

98. Mellemkjaer L, Bigaard J, Tjonneland A, Christensen J, Thomsen B, Johansen C, et al. Body composition and breast cancer in postmenopausal women: a Danish prospective cohort study. Obesity (Silver Spring, Md). 2006;14(10):1854-62.

99. Clavel-Chapelon F. Differential effects of reproductive factors on the risk of preand postmenopausal breast cancer. Results from a large cohort of French women. British journal of cancer. 2002;86(5):723-7.

100. de Vries E, den Tonkelaar I, van Noord PA, van der Schouw YT, te Velde ER, Peeters PH. Oral contraceptive use in relation to age at menopause in the DOM cohort. Human reproduction (Oxford, England). 2001;16(8):1657-62.

101. Mellemgaard A, Ewertz M, Lynge E. The association between risk of breast cancer and age at first pregnancy and parity in Maribo County, Denmark. Acta oncologica (Stockholm, Sweden). 1990;29(6):705-8.

102. Wohlfahrt J, Andersen PK, Mouridsen HT, Adami HO, Melbye M. Reproductive history and stage of breast cancer. American journal of epidemiology. 1999;150(12):1325-30.

103. Gajalakshmi CK, Shanta V, Hakama M. Risk factors for contralateral breast cancer in Chennai (Madras), India. International journal of epidemiology. 1998;27(5):743-50.

104. Goodman MT, Cologne JB, Moriwaki H, Vaeth M, Mabuchi K. Risk factors for primary breast cancer in Japan: 8-year follow-up of atomic bomb survivors. Preventive medicine. 1997;26(1):144-53.

105. John EM, Hines LM, Phipps AI, Koo J, Longacre TA, Ingles SA, et al. Reproductive history, breast-feeding and risk of triple negative breast cancer: The Breast Cancer Etiology in Minorities (BEM) study. International journal of cancer. 2018;142(11):2273-85.

106. Brinton LA, Awuah B, Nat Clegg-Lamptey J, Wiafe-Addai B, Ansong D, Nyarko KM, et al. Design considerations for identifying breast cancer risk factors in a populationbased study in Africa. International journal of cancer. 2017;140(12):2667-77.

107. O'Brien KM, Sun J, Sandler DP, DeRoo LA, Weinberg CR. Risk factors for youngonset invasive and in situ breast cancer. Cancer causes & control : CCC. 2015;26(12):1771-8.

108. Work ME, John EM, Andrulis IL, Knight JA, Liao Y, Mulligan AM, et al. Reproductive risk factors and oestrogen/progesterone receptor-negative breast cancer in the Breast Cancer Family Registry. British journal of cancer. 2014;110(5):1367-77.

109. Li CI, Beaber EF, Tang MT, Porter PL, Daling JR, Malone KE. Reproductive factors and risk of estrogen receptor positive, triple-negative, and HER2-neu overexpressing breast cancer among women 20-44 years of age. Breast cancer research and treatment. 2013;137(2):579-87.

110. Poynter JN, Langholz B, Largent J, Mellemkjaer L, Bernstein L, Malone KE, et al. Reproductive factors and risk of contralateral breast cancer by BRCA1 and BRCA2 mutation status: results from the WECARE study. Cancer causes & control : CCC. 2010;21(6):839-46.

111. Ma H, Henderson KD, Sullivan-Halley J, Duan L, Marshall SF, Ursin G, et al. Pregnancy-related factors and the risk of breast carcinoma in situ and invasive breast cancer among postmenopausal women in the California Teachers Study cohort. Breast cancer research : BCR. 2010;12(3):R35.

112. Sweeney C, Baumgartner KB, Byers T, Giuliano AR, Herrick JS, Murtaugh MA, et al. Reproductive history in relation to breast cancer risk among Hispanic and non-Hispanic white women. Cancer causes & control : CCC. 2008;19(4):391-401.

113. Beaber EF, Holt VL, Malone KE, Porter PL, Daling JR, Li CI. Reproductive factors, age at maximum height, and risk of three histologic types of breast cancer. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2008;17(12):3427-34.

114. Ursin G, Bernstein L, Wang Y, Lord SJ, Deapen D, Liff JM, et al. Reproductive factors and risk of breast carcinoma in a study of white and African-American women. Cancer. 2004;101(2):353-62.

115. Tavani A, Gallus S, La Vecchia C, Negri E, Montella M, Dal Maso L, et al. Risk factors for breast cancer in women under 40 years. European journal of cancer (Oxford, England : 1990). 1999;35(9):1361-7.

116. Wu AH, Ziegler RG, Pike MC, Nomura AM, West DW, Kolonel LN, et al. Menstrual and reproductive factors and risk of breast cancer in Asian-Americans. British journal of cancer. 1996;73(5):680-6.

117. Mayberry RM, Stoddard-Wright C. Breast cancer risk factors among black women and white women: similarities and differences. American journal of epidemiology. 1992;136(12):1445-56.

118. Layde PM, Webster LA, Baughman AL, Wingo PA, Rubin GL, Ory HW. The independent associations of parity, age at first full term pregnancy, and duration of breastfeeding with the risk of breast cancer. Cancer and Steroid Hormone Study Group. Journal of clinical epidemiology. 1989;42(10):963-73.

119. Wang JM, Wang J, Zhao HG, Liu TT, Wang FY. Reproductive Risk Factors Associated with Breast Cancer Molecular Subtypes among Young Women in Northern China. BioMed research international. 2020;2020:5931529.

120. Crandall CJ, Liu J, Cauley J, Newcomb PA, Manson JE, Vitolins MZ, et al. Associations of Parity, Breastfeeding, and Fractures in the Women's Health Observational Study. Obstetrics and gynecology. 2017;130(1):171-80.

121. Vatten LJ, Kvinnsland S. Pregnancy-related factors and risk of breast cancer in a prospective study of 29,981 Norwegian women. European journal of cancer (Oxford, England : 1990). 1992;28a(6-7):1148-53.

122. Troisi R, Gulbech Ording A, Grotmol T, Glimelius I, Engeland A, Gissler M, et al. Pregnancy complications and subsequent breast cancer risk in the mother: a Nordic population-based case-control study. International journal of cancer. 2018;143(8):1904-13.

123. Ma H, Ursin G, Xu X, Lee E, Togawa K, Duan L, et al. Reproductive factors and the risk of triple-negative breast cancer in white women and African-American women: a pooled analysis. Breast cancer research : BCR. 2017;19(1):6.

124. Hajiebrahimi M, Cnattingius S, Lambe M, Bahmanyar S. Pregnancy history and risk of premenopausal breast cancer-a nested case-control study. International journal of epidemiology. 2016;45(3):816-24.

125. Chie WC, Hsieh C, Newcomb PA, Longnecker MP, Mittendorf R, Greenberg ER, et al. Age at any full-term pregnancy and breast cancer risk. American journal of epidemiology. 2000;151(7):715-22.

126. Newcomb PA, Egan KM, Titus-Ernstoff L, Trentham-Dietz A, Greenberg ER, Baron JA, et al. Lactation in relation to postmenopausal breast cancer. American journal of epidemiology. 1999;150(2):174-82.

127. Lambe M, Hsieh CC, Tsaih SW, Ekbom A, Trichopoulos D, Adami HO. Parity, age at first birth and the risk of carcinoma in situ of the breast. International journal of cancer. 1998;77(3):330-2.

128. Kroman N, Wohlfahrt J, Andersen KW, Mouridsen HT, Westergaard T, Melbye M. Parity, age at first childbirth and the prognosis of primary breast cancer. British journal of cancer. 1998;78(11):1529-33.

129. Enger SM, Ross RK, Henderson B, Bernstein L. Breastfeeding history, pregnancy experience and risk of breast cancer. British journal of cancer. 1997;76(1):118-23.

130. Albrektsen G, Heuch I, Kvale G. The short-term and long-term effect of a pregnancy on breast cancer risk: a prospective study of 802,457 parous Norwegian women. British journal of cancer. 1995;72(2):480-4.

131. Lund E. Reproductive histories and premenopausal breast cancer: different estimates using population, neighborhood, or hospital controls. Cancer research. 1989;49(14):4015-9.

132. Johnson N, Dudbridge F, Orr N, Gibson L, Jones ME, Schoemaker MJ, et al. Genetic variation at CYP3A is associated with age at menarche and breast cancer risk: a case-control study. Breast cancer research : BCR. 2014;16(3):R51.

133. Liu YT, Gao CM, Ding JH, Li SP, Cao HX, Wu JZ, et al. Physiological, reproductive factors and breast cancer risk in Jiangsu province of China. Asian Pacific journal of cancer prevention : APJCP. 2011;12(3):787-90.

134. Palmer JR, Viscidi E, Troester MA, Hong CC, Schedin P, Bethea TN, et al. Parity, lactation, and breast cancer subtypes in African American women: results from the AMBER Consortium. Journal of the National Cancer Institute. 2014;106(10).

135. Enger SM, Ross RK, Paganini-Hill A, Bernstein L. Breastfeeding experience and breast cancer risk among postmenopausal women. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 1998;7(5):365-9.

136. Kwan ML, Bernard PS, Kroenke CH, Factor RE, Habel LA, Weltzien EK, et al. Breastfeeding, PAM50 tumor subtype, and breast cancer prognosis and survival. Journal of the National Cancer Institute. 2015;107(7).

137. Butt S, Borgquist S, Anagnostaki L, Landberg G, Manjer J. Breastfeeding in relation to risk of different breast cancer characteristics. BMC research notes. 2014;7:216.

138. Andrieu N, Goldgar DE, Easton DF, Rookus M, Brohet R, Antoniou AC, et al. Pregnancies, breast-feeding, and breast cancer risk in the International BRCA1/2 Carrier Cohort Study (IBCCS). Journal of the National Cancer Institute. 2006;98(8):535-44.

139. Chollet-Hinton L, Olshan AF, Nichols HB, Anders CK, Lund JL, Allott EH, et al. Biology and Etiology of Young-Onset Breast Cancers among Premenopausal African American Women: Results from the AMBER Consortium. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2017;26(12):1722-9.

140. Ambrosone CB, Zirpoli G, Ruszczyk M, Shankar J, Hong CC, McIlwain D, et al. Parity and breastfeeding among African-American women: differential effects on breast cancer risk by estrogen receptor status in the Women's Circle of Health Study. Cancer causes & control : CCC. 2014;25(2):259-65.

141. Palmer JR, Boggs DA, Wise LA, Ambrosone CB, Adams-Campbell LL, Rosenberg L. Parity and lactation in relation to estrogen receptor negative breast cancer in African American women. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2011;20(9):1883-91.

142. Peterson NB, Huang Y, Newcomb PA, Titus-Ernstoff L, Trentham-Dietz A, Anic

G, et al. Childbearing recency and modifiers of premenopausal breast cancer risk. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2008;17(11):3284-7.

143. Tryggvadottir L, Tulinius H, Eyfjord JE, Sigurvinsson T. Breastfeeding and reduced risk of breast cancer in an Icelandic cohort study. American journal of epidemiology. 2001;154(1):37-42.

144. Furberg H, Newman B, Moorman P, Millikan R. Lactation and breast cancer risk. International journal of epidemiology. 1999;28(3):396-402.

145. Negri E, Braga C, La Vecchia C, Levi F, Talamini R, Franceschi S. Lactation and the risk of breast cancer in an Italian population. International journal of cancer. 1996;67(2):161-4.

146. Al Ajmi K, Lophatananon A, Mekli K, Ollier W, Muir KR. Association of Nongenetic Factors With Breast Cancer Risk in Genetically Predisposed Groups of Women in the UK Biobank Cohort. JAMA network open. 2020;3(4):e203760.

147. Arriaga ME, Vajdic CM, Canfell K, MacInnis RJ, Banks E, Byles JE, et al. The preventable burden of breast cancers for premenopausal and postmenopausal women in Australia: A pooled cohort study. International journal of cancer. 2019.

148. Busund M, Bugge NS, Braaten T, Waaseth M, Rylander C, Lund E. Progestin-only and combined oral contraceptives and receptor-defined premenopausal breast cancer risk: The Norwegian Women and Cancer Study. International journal of cancer. 2018;142(11):2293-302.

149. Iversen L, Sivasubramaniam S, Lee AJ, Fielding S, Hannaford PC. Lifetime cancer risk and combined oral contraceptives: the Royal College of General Practitioners' Oral Contraception Study. American journal of obstetrics and gynecology. 2017;216(6):580.e1-.e9.

150. Hunter DJ, Colditz GA, Hankinson SE, Malspeis S, Spiegelman D, Chen W, et al. Oral contraceptive use and breast cancer: a prospective study of young women. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2010;19(10):2496-502.

151. Hannaford PC, Selvaraj S, Elliott AM, Angus V, Iversen L, Lee AJ. Cancer risk among users of oral contraceptives: cohort data from the Royal College of General Practitioner's oral contraception study. BMJ (Clinical research ed). 2007;335(7621):651.

152. Vessey M, Yeates D. Oral contraceptives and benign breast disease: an update of findings in a large cohort study. Contraception. 2007;76(6):418-24.

153. Dumeaux V, Lund E, Hjartaker A. Use of oral contraceptives, alcohol, and risk for invasive breast cancer. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2004;13(8):1302-7.

154. Silvera SA, Miller AB, Rohan TE. Oral contraceptive use and risk of breast cancer among women with a family history of breast cancer: a prospective cohort study. Cancer causes & control : CCC. 2005;16(9):1059-63.

155. Dumeaux V, Alsaker E, Lund E. Breast cancer and specific types of oral contraceptives: a large Norwegian cohort study. International journal of cancer. 2003;105(6):844-50.

156. Kumle M, Weiderpass E, Braaten T, Persson I, Adami HO, Lund E. Use of oral contraceptives and breast cancer risk: The Norwegian-Swedish Women's Lifestyle and Health Cohort Study. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2002;11(11):1375-81.

157. Van Hoften C, Burger H, Peeters PH, Grobbee DE, Van Noord PA, Leufkens HG. Long-term oral contraceptive use increases breast cancer risk in women over 55 years of age: the DOM cohort. International journal of cancer. 2000;87(4):591-4.

158. Kay CR, Hannaford PC. Breast cancer and the pill--a further report from the Royal College of General Practitioners' oral contraception study. British journal of cancer. 1988;58(5):675-80.

159. Lipnick RJ, Buring JE, Hennekens CH, Rosner B, Willett W, Bain C, et al. Oral contraceptives and breast cancer. A prospective cohort study. Jama. 1986;255(1):58-61.

160. Dorjgochoo T, Shu XO, Li HL, Qian HZ, Yang G, Cai H, et al. Use of oral contraceptives, intrauterine devices and tubal sterilization and cancer risk in a large prospective study, from 1996 to 2006. International journal of cancer. 2009;124(10):2442-9.

161. Brinton LA, Brogan DR, Coates RJ, Swanson CA, Potischman N, Stanford JL. Breast cancer risk among women under 55 years of age by joint effects of usage of oral contraceptives and hormone replacement therapy. Menopause (New York, NY). 2018;25(11):1195-200.

162. Elebro K, Butt S, Dorkhan M, Jernstrom H, Borgquist S. Age at first childbirth and oral contraceptive use are associated with risk of androgen receptor-negative breast cancer: the Malmo Diet and Cancer Cohort. Cancer causes & control : CCC. 2014;25(8):945-57.

163. Beaber EF, Malone KE, Tang MT, Barlow WE, Porter PL, Daling JR, et al. Oral contraceptives and breast cancer risk overall and by molecular subtype among young women. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2014;23(5):755-64.

164. Hayes J, Richardson A, Frampton C. Population attributable risks for modifiable lifestyle factors and breast cancer in New Zealand women. Internal medicine journal. 2013;43(11):1198-204.

165. Rosenberg L, Boggs DA, Wise LA, Adams-Campbell LL, Palmer JR. Oral contraceptive use and estrogen/progesterone receptor-negative breast cancer among African American women. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2010;19(8):2073-9.

166. Dolle JM, Daling JR, White E, Brinton LA, Doody DR, Porter PL, et al. Risk factors for triple-negative breast cancer in women under the age of 45 years. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2009;18(4):1157-66.

167. Nyante SJ, Gammon MD, Malone KE, Daling JR, Brinton LA. The association between oral contraceptive use and lobular and ductal breast cancer in young women. International journal of cancer. 2008;122(4):936-41.

168. Lee E, Ma H, McKean-Cowdin R, Van Den Berg D, Bernstein L, Henderson BE, et al. Effect of reproductive factors and oral contraceptives on breast cancer risk in BRCA1/2 mutation carriers and noncarriers: results from a population-based study. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2008;17(11):3170-8.

169. Sweeney C, Giuliano AR, Baumgartner KB, Byers T, Herrick JS, Edwards SL, et al. Oral, injected and implanted contraceptives and breast cancer risk among U.S. Hispanic and non-Hispanic white women. International journal of cancer. 2007;121(11):2517-23.

170. Nichols HB, Trentham-Dietz A, Egan KM, Titus-Ernstoff L, Hampton JM, Newcomb PA. Oral contraceptive use and risk of breast carcinoma in situ. Cancer

epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2007;16(11):2262-8.

171. Folger SG, Marchbanks PA, McDonald JA, Bernstein L, Ursin G, Berlin JA, et al. Risk of breast cancer associated with short-term use of oral contraceptives. Cancer causes & control : CCC. 2007;18(2):189-98.

172. Dinger JC, Heinemann LA, Mohner S, Thai do M, Assmann A. Breast cancer risk associated with different HRT formulations: a register-based case-control study. BMC women's health. 2006;6:13.

173. Newcomer LM, Newcomb PA, Trentham-Dietz A, Longnecker MP, Greenberg ER. Oral contraceptive use and risk of breast cancer by histologic type. International journal of cancer. 2003;106(6):961-4.

174. Marchbanks PA, McDonald JA, Wilson HG, Folger SG, Mandel MG, Daling JR, et al. Oral contraceptives and the risk of breast cancer. The New England journal of medicine. 2002;346(26):2025-32.

175. Ursin G, Wu AH, Hoover RN, West DW, Nomura AM, Kolonel LN, et al. Breast cancer and oral contraceptive use in Asian-American women. American journal of epidemiology. 1999;150(6):561-7.

176. Tavani A, Negri E, Franceschi S, Parazzini F, La Vecchia C. Oral contraceptives and breast cancer in northern Italy. Final report from a case-control study. British journal of cancer. 1993;68(3):568-71.

177. Lund E. The validity of different control groups in a case-control study. Oral contraceptive use and breast cancer in young women. Journal of clinical epidemiology. 1989;42(10):987-93.

178. Rosenberg L, Miller DR, Kaufman DW, Helmrich SP, Stolley PD, Schottenfeld D, et al. Breast cancer and oral contraceptive use. American journal of epidemiology. 1984;119(2):167-76.

179. Tryggvadottir L, Tulinius H, Gudmundsdottir GB. Oral contraceptive use at a young age and the risk of breast cancer: an Icelandic, population-based cohort study of the effect of birth year. British journal of cancer. 1997;75(1):139-43.

Holm M, Olsen A, Kyro C, Overvad K, Kroman N, Tjonneland A. The Influence of Menopausal Hormone Therapy and Potential Lifestyle Interactions in Female Cancer Development-a Population-Based Prospective Study. Hormones & cancer. 2018;9(4):254-64.
Azam S, Lange T, Huynh S, Aro AR, von Euler-Chelpin M, Vejborg I, et al. Hormone replacement therapy, mammographic density, and breast cancer risk: a cohort study. Cancer causes & control : CCC. 2018;29(6):495-505.

182. Thorbjarnardottir T, Olafsdottir EJ, Valdimarsdottir UA, Olafsson O, Tryggvadottir L. Oral contraceptives, hormone replacement therapy and breast cancer risk: a cohort study of 16 928 women 48 years and older. Acta oncologica (Stockholm, Sweden). 2014;53(6):752-8.

183. Fournier A, Mesrine S, Dossus L, Boutron-Ruault MC, Clavel-Chapelon F, Chabbert-Buffet N. Risk of breast cancer after stopping menopausal hormone therapy in the E3N cohort. Breast cancer research and treatment. 2014;145(2):535-43.

184. Saxena T, Lee E, Henderson KD, Clarke CA, West D, Marshall SF, et al. Menopausal hormone therapy and subsequent risk of specific invasive breast cancer subtypes in the California Teachers Study. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2010;19(9):2366-78.

185. Calle EE, Feigelson HS, Hildebrand JS, Teras LR, Thun MJ, Rodriguez C. Postmenopausal hormone use and breast cancer associations differ by hormone regimen and

histologic subtype. Cancer. 2009;115(5):936-45.

186. Lund E, Bakken K, Dumeaux V, Andersen V, Kumle M. Hormone replacement therapy and breast cancer in former users of oral contraceptives--The Norwegian Women and Cancer study. International journal of cancer. 2007;121(3):645-8.

187. Brewster AM, Do KA, Thompson PA, Hahn KM, Sahin AA, Cao Y, et al. Relationship between epidemiologic risk factors and breast cancer recurrence. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2007;25(28):4438-44.

188. Rosenberg L, Palmer JR, Wise LA, Adams-Campbell LL. A prospective study of female hormone use and breast cancer among black women. Archives of internal medicine. 2006;166(7):760-5.

189. Lee S, Kolonel L, Wilkens L, Wan P, Henderson B, Pike M. Postmenopausal hormone therapy and breast cancer risk: the Multiethnic Cohort. International journal of cancer. 2006;118(5):1285-91.

190. Ewertz M, Mellemkjaer L, Poulsen AH, Friis S, Sorensen HT, Pedersen L, et al. Hormone use for menopausal symptoms and risk of breast cancer. A Danish cohort study. British journal of cancer. 2005;92(7):1293-7.

191. Tjonneland A, Christensen J, Thomsen BL, Olsen A, Overvad K, Ewertz M, et al. Hormone replacement therapy in relation to breast carcinoma incidence rate ratios: a prospective Danish cohort study. Cancer. 2004;100(11):2328-37.

192. de Lignieres B, de Vathaire F, Fournier S, Urbinelli R, Allaert F, Le MG, et al. Combined hormone replacement therapy and risk of breast cancer in a French cohort study of 3175 women. Climacteric : the journal of the International Menopause Society. 2002;5(4):332-40.

193. Porch JV, Lee IM, Cook NR, Rexrode KM, Burin JE. Estrogen-progestin replacement therapy and breast cancer risk: the Women's Health Study (United States). Cancer causes & control : CCC. 2002;13(9):847-54.

194. Schairer C, Lubin J, Troisi R, Sturgeon S, Brinton L, Hoover R. Menopausal estrogen and estrogen-progestin replacement therapy and breast cancer risk. Jama. 2000;283(4):485-91.

195. Gapstur SM, Morrow M, Sellers TA. Hormone replacement therapy and risk of breast cancer with a favorable histology: results of the Iowa Women's Health Study. Jama. 1999;281(22):2091-7.

196. Shieh Y, Scott CG, Jensen MR, Norman AD, Bertrand KA, Pankratz VS, et al. Body mass index, mammographic density, and breast cancer risk by estrogen receptor subtype. Breast cancer research : BCR. 2019;21(1):48.

197. Ellingjord-Dale M, Vos L, Vik Hjerkind K, Hjartaker A, Russnes HG, Tretli S, et al. Number of Risky Lifestyle Behaviors and Breast Cancer Risk. JNCI cancer spectrum. 2018;2(3):pky030.

198. Salagame U, Banks E, Sitas F, Canfell K. Menopausal hormone therapy use and breast cancer risk in Australia: Findings from the New South Wales Cancer, Lifestyle and Evaluation of Risk study. International journal of cancer. 2016;138(8):1905-14.

199. Rosenberg L, Bethea TN, Viscidi E, Hong CC, Troester MA, Bandera EV, et al. Postmenopausal Female Hormone Use and Estrogen Receptor-Positive and -Negative Breast Cancer in African American Women. Journal of the National Cancer Institute. 2016;108(4).

200. Cui Y, Deming-Halverson SL, Shrubsole MJ, Beeghly-Fadiel A, Fair AM, Sanderson M, et al. Associations of hormone-related factors with breast cancer risk according to hormone receptor status among white and African American women. Clinical breast cancer. 2014;14(6):417-25.

201. Fei C, DeRoo LA, Sandler DP, Weinberg CR. Menopausal symptoms and the risk

of young-onset breast cancer. European journal of cancer (Oxford, England : 1990). 2013;49(4):798-804.

202. Cerne JZ, Ferk P, Leskosek B, Gersak K. Hormone replacement therapy and some risk factors for breast cancer among Slovenian postmenopausal women. Climacteric : the journal of the International Menopause Society. 2011;14(4):458-63.

203. Rosenberg LU, Magnusson C, Lindstrom E, Wedren S, Hall P, Dickman PW. Menopausal hormone therapy and other breast cancer risk factors in relation to the risk of different histological subtypes of breast cancer: a case-control study. Breast cancer research : BCR. 2006;8(1):R11.

204. Newcomb PA, Titus-Ernstoff L, Egan KM, Trentham-Dietz A, Baron JA, Storer BE, et al. Postmenopausal estrogen and progestin use in relation to breast cancer risk. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2002;11(7):593-600.

205. Chen CL, Weiss NS, Newcomb P, Barlow W, White E. Hormone replacement therapy in relation to breast cancer. Jama. 2002;287(6):734-41.

206. La Vecchia C, Negri E, Franceschi S, Favero A, Nanni O, Filiberti R, et al. Hormone replacement treatment and breast cancer risk: a cooperative Italian study. British journal of cancer. 1995;72(1):244-8.

207. Espie M, Mares P, de Reilhac P, Chevallier T, Daures JP. Breast cancer in postmenopausal women with and without hormone replacement therapy: preliminary results of the MISSION study. Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology. 2006;22(8):423-31.

208. Gertig DM, Fletcher AS, English DR, Macinnis RJ, Hopper JL, Giles GG. Hormone therapy and breast cancer: what factors modify the association? Menopause (New York, NY). 2006;13(2):178-84.

209. Olsson HL, Ingvar C, Bladstrom A. Hormone replacement therapy containing progestins and given continuously increases breast carcinoma risk in Sweden. Cancer. 2003;97(6):1387-92.

210. Lai JN, Wu CT, Chen PC, Huang CS, Chow SN, Wang JD. Increased risk for invasive breast cancer associated with hormonal therapy: a nation-wide random sample of 65,723 women followed from 1997 to 2008. PloS one. 2011;6(10):e25183.

211. DeBono NL, Robinson WR, Lund JL, Tse CK, Moorman PG, Olshan AF, et al. Race, Menopausal Hormone Therapy, and Invasive Breast Cancer in the Carolina Breast Cancer Study. Journal of women's health (2002). 2018;27(3):377-86.

212. Palmer JR, Rosenberg L, Clarke EA, Miller DR, Shapiro S. Breast cancer risk after estrogen replacement therapy: results from the Toronto Breast Cancer Study. American journal of epidemiology. 1991;134(12):1386-95; discussion 96-401.

초 록

서론: 유방암은 여성에게 가장 큰 위험을 주는 암이며 이에 따른 위험도는 생식 요인들과 외인성 호르몬에 기인한다는 것은 잘 알려져 있는 사실이다. 또한 유방암과 reproductive factors 간의 연관성에 대한 메타 분석 연구들은 많이 진행되어 있으나 아직까지 전체 reproductive factors 간의 최신 동향을 연구한 연구는 한국인을 포함하여 부족한 현실이다. 따라서 본 연구에서는 체계적 문헌 고찰 및 meta-analysis를 통하여 부족한 한국인의 메타 결과를 재 수립하고 한국인의 결과와 비교를 하기 위하여 전세계인의 결과를 비교 분석을 한 뒤 각 요인들에 걸맞는 범주를 수립하는 것이다.

방법: 연구를 수행하기 위하여 우선 체계적 문헌 고찰을 수행한 뒤, 통계적인 기법을 이용하여 메타 분석을 진행한다. PICO 기법을 이용하여 검색어 전략을 수행하며 검색원으로는 PubMed와 KoreaMed를 이용하였다. 연구논문 중 유방암과 그에 따른 위험 요인들의 위험도 산출 및 신뢰구간 산출에 관한 논문들을 선택하여 random effect model (변량효과 모형)을 이용하여 전체 summary RR을 산출한다. 또한 연구 디자인, 나라별 그리고 출판 연도로 subgroup analysis (하위 그룹 분석)을 수행한다.

결과: 한국 인구집단의 경우 각 요인들에 따른 유방암 한국인들의 메타 결과를 이용하여 각 요인들의 인구집단 기여율 (PAF)를 계산할 예정이기 때문에 모든 결과(RRs)들은 1보다 큰 방향으로 산출되었다. 결론적으로 대부분의 생식요인들이 유의함을 보였으나 임신 여부, 모유

111

수유 여부, 경구피임약 복용 여부에 대해서 유의하지 않음을 보였다. 또한 이 인구집단을 세계로 확장하였을 때, 경구피임약을 복용한 여성이 그렇지 않은 여성에 비해 약 10%정도의 유방암 위험도를 보이는 반면 호르몬치료제를 시행한 여성은 그렇지 않은 여성에 비해 약 30%정도 높은 유방암 위험도를 보인다. 더 나아가, 나라별 하위 그룹 분석을 시행하였을 경우 유럽과 미국 대륙을 서양이라고 하였을 때, 각 요인들에 따른 위험도가 증가한 경우 나라별로 위험도가 산발적 이었으며 각 요인들이 보호 요인인 경우 아시아가 서양보다는 더 보호 요인을 보인다. 추가적인 출판 연도를 이용한 하위 그룹 분석 결과의 경우 출판 연도를 기준으로 한 생식요인들의 차이점을 발견하긴 하였지만 1990년도 이전의 논문들의 부족으로 인하여 유의한 근거를 수립하지는 못하였다.

고찰 및 결론: 본 연구는 modifiable과 unmodifiable 한 생식요인들의 변수를 모아 유방암과 그에 따른 생식요인들의 결과를 확인하며 더 나아가 한국형 PAF 값을 산출하기 위하여 한국인 메타 값을 재정립함이다. 또한 세계 인구로 확장하였을 때에도 각 생식 요인들의 위험도를 재 확인함에 있다.

주요어: 유방암, 생식 요인 및 외인성 호르몬 요인, 체계적 문헌 고찰, 메타 분석, 변량효과 모형

학 번: 2018-26695

112