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Abstract

Clinical Implication of Next Generation Sequencing 

for Patients with Metastatic Breast Cancer

Go-un Woo

Translational Medicine

The Graduate School 

Seoul National University

Next-generation sequencing (NGS) is a method that uses massive 

parallel sequencing and analyzes numerous variations faster than 

conventional sequencing. Because of NGS, many advances have been 

made in cancer treatment through the discovery of disease-related 

mutations and treatments for them. Common genetic variations in 

breast cancer of Korean patients have been previously identified, 

leading to investigations of how this genetic information can be used 

to treat metastatic breast cancer in clinical practice. In this study, 

sequencing results and medical records of 182 patients with primary or 

metastatic breast cancer who underwent in-hospital target sequencing

were retrospectively analyzed from October 2016 to March 2020. A 

total of 1,428 variants were identified in 243 genes, and the median 

number of non-synonymous mutations per sample was 7 (0-22). The 

most common mutations in all samples were found in TP53 (59.8%) and

PIK3CA (31.2%). Frequently altered genes differed according to the 

subtype; ERBB2 amplification (80%) was commonly found in human 

epidermal growth factor receptor 2 (HER2)-positive subtype, while TP53

(66.1%), ROS1 (19.4%), KMT2D (17.7%), and BRCA1 (14.5%) mutations 
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were frequently detected in triple-negative breast cancer. Druggable 

target was detected in 61.5% (112/182) of the cases. Moreover, among 

124 patients with metastatic breast cancer, sequencing results were 

clinically applicable in 21.8% (27/124) of them, and 4.3% (5/124) of 

these patients changed treatment decisions using NGS results, with 

some patients notably benefitting. 

In conclusion, through the NGS-based pan-cancer panel, the mutational 

landscape of breast cancer patients was elucidated, and the practical 

value in their treatment was identified. 

Key words: Breast cancer, NGS, genetic alteration

Student Number: 2018-27457
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Introduction

Breast cancer is the most common cancer in women and 2.1 million new cases were 

diagnosed in 2018, worldwide[1]. In Korea, 22,395 patients were newly diagnosed

with breast cancer, making it the 5th frequent cancer (9.6%) in population, and the 

most common cancer in women (20.3%)[2]. Survival rates vary widely among

countries, but this disease is the leading cause of cancer-related deaths among 

women in most countries[1]. In 2018, 2,473 people died of breast cancer globally, 

and breast cancer was sixth-ranked (8.1%) cause of cancer death[3]. In addition, both 

the incidence and mortality of this diseases is increasing worldwide [4].

The history of systemic therapy in breast cancer began in 1895 by a surgeon named 

Thomas Beatson. This British surgeon performed bilateral oophorectomy in a young 

woman with advanced breast cancer, and the patient experienced a complete 

regression of the tumor[5]. However, not all patients benefited from oophorectomy. 

Stanley Boyd reported a case series of patients undergoing oophorectomy for breast 

cancer. Only a third of the patients benefited from oophorectomy, and in the majority 

of cases, the response lasted 6-12 months[6]. Elwood Jenson reported that estrogen 

receptor (ER)-rich breast cancers were likely to respond to endocrine ablation[7]. 

Among the treatments targeting ER that have been attempted since then, tamoxifen, 

a selective estrogen receptor modulator that targeted the ER, was approved by the 

US Food and Drug Administration (FDA)[8]. Meanwhile, it has been reported that 

the human epidermal growth factor receptor 2 (HER2) gene is overexpressed in some 

breast cancer patients, and trastuzumab, targeted agent for HER2 has significantly 

improved the treatment outcomes for HER2+ breast cancer[9]. Through this process, 
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it became known that breast cancer is a heterogeneous complex of disease, and 

immunohistochemistry (IHC) markers such as ER, progesterone receptor (PR), and 

HER2 began to be used for patient’s management and predict prognosis [10].

In 2000, Perou et al. described the intrinsic subtypes of breast cancer using gene 

expression profiles of breast cancer surgical tissue[11]. These molecular subgroups 

were identified, as luminal A, B, HER2-enriched, basal-like and normal breast-like 

groups[12]. It is a challenging issue to use molecular subtyping based on gene 

expression profile because of feasibility issues including high cost and slow turn-

around-time. Therefore, clinical classification using immunohistochemistry was 

used in daily practice. Based on the immunohistochemistry stain, luminal A breast 

cancer is hormone receptor + (HR+), HER2-, and has low levels of proliferative 

index Ki-67. Luminal B breast cancer is HR+, either HER2+ or HER2 - with high 

levels of Ki-67. HER2-enriched breast cancer is HR- and HER2+. Triple-negative 

breast cancer (TNBC) is HR- and HER2-. This classification has shown prognostic 

value and usefulness for predicting treatment response[13]. Currently, treatment of 

breast cancer is determined based on this molecular subclassification.

Cytotoxic chemotherapy accounts for a large part of the treatment of metastatic 

breast cancer, but targeted therapy plays an important role depending on the subtype.

In breast cancer with HR+/HER2-, endocrine treatment should be considered, and if 

a patient responds to one endocrine treatment and then progresses, the patient could 

respond to subsequent endocrine treatment. Endocrine treatment can be divided into 

four categories. The first is the administration of antiestrogen agents, such as 

selective estrogen receptor modulators including tamoxifen or toremifen. The second 
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method involves estrogen deprivation, administration of aromatase inhibitor (AI) to 

inhibit peripheral conversion of androstenedione to estradiol in postmenopausal 

woman, or luteinizing hormone-releasing hormone agonist to inhibit the production 

of the estradiol from ovary in premenopausal woman, and the third is the 

administration of selective estrogen receptor degradator, fulvestrant which cause 

degradation of ER in breast cancer. The fourth category is sex hormone progestin or 

high dose estrogen, which is rarely used clinically. Endocrine treatment could be 

used until visceral crisis occurs or the patient reaches a endocrine resistance. The 

majority of HR+ breast cancer patients develop resistance to endocrine treatment.

The PI3K/mTOR pathway is frequently altered in HR+ breast cancer and has been 

implicated in resistance to endocrine treatment [14, 15]. In HR+ breast cancer 

patients who failed nonsteroidal AI, it was confirmed that survival gain was obtained 

with steroidal AI exemestane with mTOR inhibitor everolimus combination

treatment. [16]. PIK3CA mutations exist in a large number of HR+ breast cancer 

patients, which induce hyperactivation of the PI3K pathway promotes estrogen-

independent growth of HR+ breast cancer cells[17]. The combination of PI3K 

inhibition and endocrine treatment showed clinical benefit in HR+ breast cancer 

patients with PIK3CA mutation[18]. The growth of HR+ metastatic breast cancer is 

dependent on cyclin D1, a direct transcriptional target of ER, and cyclin D1 activates 

cyclin-dependent kinase 4/6 (CDK4/6) resulting in G1-S phase transition[19]. 

CDK4/6 inhibitors prevent the proliferation of cancer cells by selectively inhibiting 

CDK 4/6 in the G1 cell cycle that regulates cancer cell division and growth[20]. 

Another resistance mechanism of endocrine treatment is the ESR1 gene mutation, 
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which encodes ER protein[21]. ESR1 mutations have been described in 9%–40% of 

patients with advanced HR+ breast cancer resistance to aromatase inhibitors, and 

ESR1 mutation is a biomarker for poor response to AI[22]. However, fulvestrant has 

shown similar efficacy in patients with or without an ESR1 mutation, and other 

selective ER degraders (SERDs) are being developed to overcome AI resistance in 

ESR1 mutant breast cancer. FGFR1 amplification is also a mechanism of resistance 

to endocrine treatment, and is significantly correlated with inferior survival outcome 

in HR+ breast cancer[23]. In particular, breast cancer patients with aberrant FGFR 

also showed resistance to CDK4/6 inhibitors[24], and several FGFR inhibitors have 

been investigated in clinical trials. 

HER2 is one of the receptor tyrosine kinases on the cell surface that activates 

intracellular signaling through receptor dimerization and is involved in cell 

proliferation, survival, invasion, and angiogenesis[25]. HER2 is normally 

overexpressed in 20%–25% of breast cancers by HER2 gene amplification[26], and 

this accelerates breast cancer cell growth, invasion and metastasis. In HER2+ breast 

cancer, introduction of trastuzumab, a monoclonal antibody that binds to the HER2

extracellular domain IV, dramatically improves survival and has become the 

mainstay of treatment[27]. Pertuzumab, a monoclonal antibody, binds to the HER2

extracellular domain II and prevents heterodimerization of HER2 with HER3 or 

other dimerization. Ttrastuzumab and pertuzumab in combination with cytotoxic 

chemotherapy has shown synergistic effects and prolonged survival[28]. Lapatinib 

is an intracellular tyrosine kinase inhibitor of HER1 and HER2, that has shown 

efficacy in combination with cytotoxic chemotherapy for patients with trastuzumab 
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resistance[29]. Trastuzumab emtansine is an antibody drug conjugate that combines 

trastuzumab with chemotherapeutics, DM-1. The chemotherapeutics DM-1 releases 

toxic effects after internalization by binding to the HER2 receptor. With this 

mechanism, T-DM1 demonstrated efficacy in patients previously treated with 

trastuzumab[30]. Another antibody drug conjugate, trastuzumab deruxtecan (DS-

8201) showed anti-tumor activity based on its high potency, including efficacy 

against low HER2-expressing tumors[31]. 

HER2 targeted agents in breast cancer has primarily targeted the HER2

amplification. However, there are few breast cancer patients with non-amplified but 

mutated HER2, and targeted treatment for these patients is being studied. Neratinib 

is an irreversible tyrosine kinase inhibitor of pan-HER (HER1, HER2, HER4) and 

inhibits the PI3K/Akt/MAPK pathway[32]. 

Treatment options are limited for TNBC, and it was previously thought that there 

was no druggable target. Therefore, cytotoxic chemotherapy is the mainstay of 

treatment for TNBC. However, TNBC is a group of heterogeneous diseases, and 

some studies have described specific targets for some TNBC’s.

BRCA mutations (including both germline and somatic mutations) are found in up 

to 20-30% of TNBC patients[33] and 14% of HR+ patients. Poly(ADP-ribose) 

polymerase (PARP) is a DNA repair enzyme that maintains genome stability, DNA 

repair, and cell cycle progression and apoptosis[34]. In BRCA mutant breast cancer, 

BRCA mutation renders an impaired DNA repair mechanism, making it sensitive to 

PARP inhibition[35]. PARP inhibitors, olaparib and talazoparib showed better 

progression free survival compared with single agent chemotherapy in germline 
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BRCA1/2 mutant breast cancer. Germline BRCA1/2 mutation was confirmed using 

MyRIAD genetics Sanger sequencing platform as companion diagnostics in the 

clinical trial. In Korea, the germline BRCA test is mainly performed by Sanger 

sequencing in the clinical diagnostic laboratory department of individual hospital 

and it takes 4 – 6 weeks. Although, it is very important to know the germline BRCA 

mutation status for metastatic breast cancer, the insurance reimbursement was 

limited to the specific conditions in Korea: 1) breast cancer diagnosed at age < 40 

years without a family history, 2) breast cancer, ovarian cancer, metastatic prostate 

cancer or pancreatic cancer family history within 3rd degree relatives, 3) patients 

with breast cancer and ovarian cancer or pancreatic cancer diagnosed simultaneously 

or seqeuentially, 4) male breast cancer, 5) bilateral breast cancer, and 6) triple-

negative breast cancer diagnosed at age < 60 years. Considering the ratio of BRCA 

mutations in TNBC patients, this limitation is a serious pitfall in TNBC treatment. 

Beyond BRCA mutation, as TNBC has been shown to be enriched for homologous-

recombination repair defects[36], multiple other DNA-damage response (DDR) 

inhibitors are being developed. 

Despite a variety of treatments, the development of new drugs in the field of breast 

cancer remains an important issue. Therefore, the importance of detecting rare 

mutations and linkages of clinical trial registration have also emerged. Genetic 

testing is time-consuming and costly, making it challenging to detect rare mutations.

Meanwhile, the emergence of next-generation sequencing (NGS) was a 

breakthrough. By processing multiple DNAs through parallel sequencing, NGS 

detects multiple genes simultaneously with reduced reporting time and cost[37].
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With these benefits, NGS identifies potentially actionable targets, and in some cases, 

these results help patients apply for treatment or participate in clinical research[38].

In breast cancer, NGS testing reports on mutational landscapes[39-41], revealed that 

a mutation in a specific gene was associated with prognosis[42], and various drug 

developments are underway. In Korea, the usefulness of cancer sequencing in 

various carcinomas has been acknowledged, and NGS has been approved as a partial 

benefit in recent years, and it has been actively implemented. Our center has 

experimentally introduced and conducted NGS since 2016, and it has been 

commercially available through continuous improvement. By including druggable 

targets that can be linked to clinical trials in our center, a panel that is useful and 

more closely related to clinics was established. 
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Objectives

The primary objective of this study was to find out the frequency and pattern of 

genetic alterations in metastatic breast cancer cohort using targeted sequencing 

based pan-cancer panel. The secondary objectives of this study include exploring 

the potential clinical effect of targeted sequencing based multigene cancer panel in 

each subtype of metastatic breast cancer patients and application to clinical 

practice.  
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Materials and Methods

Patients and sample collection

Our center had developed a targeted gene sequencing (TGS) panel since 2016. 

During the development process to validate the panel, the TGS named SNUH-FIRST 

pan-cancer panel was conducted. Among patients treated with malignancy at the 

medical oncology department of Seoul National University Hospital (SNUH), Seoul, 

Republic of Korea, sequencing was conducted in patients determined by their 

physician. After obtaining informed consent, primary or metastatic breast cancer 

tissues acquired from surgery or biopsy were sequenced by the SNUH-FIRST pan-

cancer panel. If druggable alteration was detected, the patient received appropriate 

targeted agents or were connected to appropriate clinical trials. 

Patients who underwent TGS with breast cancer from October 2016 to March 2020 

at SNUH were retrospectively reviewed. Sequencing results and clinicopathologic 

characteristics were reviewed. The current study was conducted according to the 

Declaration of Helsinki and approved by the Institutional Review Board of SNUH 

(IRB No. H-1509-047-702).

‘

DNA sequencing and data analysis

DNA sequencing was performed using SNUH-FIRST pan-cancer panel v2, v3, and 

v3.1, which consists of 225 cancer-associated genes (Table 1). Genomic DNA was 

extracted from formalin-fixed and paraffin-embedded (FFPE) or fresh tumor tissue 

using the ReliaPrep TMFFPE gDNA Miniprep system (Promega, Madison, WI, 
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USA), and fragmented using a Covaris Sonicator (Covaris, Woburn, MA, USA). 

Target regions were captured by SNUH-FIRST pan-cancer panels v2, v3, and v3.1, 

including 225 cancer-associated genes (Table 1). Target exons were amplified by 

ligation-mediated PCR and subsequently sequenced on the Illumina HiSeq2500

(Illumina Inc., San Diego, CA, USA). 
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Table 1. Target genes included in the SNUH-FIRST pan-cancer panel

Panel 

version 

SNV/INDEL/CNV Fusion Other

Common 

genes 

included in

version 2, 

version 3, 

version 3.1

AKT1, AKT2, AKT3, ALK, APC, AR, ARAF, 

ARID1A, ATM, ATR, AURKA, AURKB, 

AURKC, AXL, BAP1, BCL2, BRAF, BRCA1, 

BRCA2, CCND1, CCND2, CCND3, CCNE1, 

CDK4, CDK6, CDKN1B, CDKN2A, CDKN2B, 

CHEK2, CREBBP, CSF1R, CTNNB1, DDR1, 

DDR2, DPYD, EGFR, EP300, ERBB2, ERBB3, 

ERBB4, ESR1, EWSR1, FBXW7, FGF19, 

FGF23, FGFR1, FGFR2, FGFR3, FGFR4, 

GNAQ, GNAS, HRAS, IDH1, IDH2, IGF1R, 

IGF2, JAK2, JAK3, KDR, KEAP1, KIT, 

KMT2D, KRAS, MAP2K1, MAP2K2, MAP2K4, 

MAP3K1, MAP3K4, MAPK1, MAPK8, MDM2, 

MET, MSH6, MTOR, MYC, NF1, NF2, NFE2L2, 

NOTCH1, NOTCH2, NOTCH3, NOTCH4, 

NRAS, NRG1, NTRK1, NTRK2, NTRK3, 

PDGFB, PDGFRA, PDGFRB, PIK3CA, PTEN, 

RAD50, RB1, RET, RICTOR, RIT1, RNF43, 

ROS1, SMAD4, SMARCA4, SOX2, SRC, 

STK11, SYK, TERT, TOP2A, TP53, TP63, TSC2, 

UGT1A1

ALK, 

AXL, 

BRAF, 

EGFR, 

EWSR1, 

FGFR1, 

FGFR3, 

NRG1, 

NTRK1, 

NTRK2, 

NTRK3, 

PDGFR

B, 

PPARG, 

RET, 

ROS1, 

SS18

TERT 

(for 

promoter 

mutation

), MET 

(for exon 

14 

skipping)

Genes 

included in 

version 2

ABL2, CBFB, CBL, CDH1, CDK11B, CDKN2C, 

CEBPA, DNMT3A, DOT1L, EPHA3, FGF10, 

FGF14, FGF3, FGF4, FGF6, FLT1, FLT3, FLT4, 

FOXL2, GNA11, HDAC9, HGF, MDM4, MPL, 

NEK2, NPM1, PIK3CB, PIK3CD, PIK3R1, 

PIK3R2, PPARG, RBM10, RSPO1, SDK1, 

SMG1, SS18, TPMT

Genes 

included in 

version3, 

version 3.1

ABL1, BTK, CDK1, CDK12, CDKN1A, 

CHEK1, DICER1, EIF1AX, EMSY, EPCAM, 

ERCC2, EZH2, FAM175A, FANCA, FANCC, 

FANCD2, FANCG, FANCI, FANCL, FANCM, 

FOXA1, GNB2L1, HDAC1, IGFBP3, INPP4B, 

IRF1, JAK1, JUN, KDM5C, KDM6A, LATS1, 

LATS2, MCL1, MLH1, MRE11A, MSH2, 

MUTYH, MYCN, PAK2, PALB2, PARP1, 

PARP2, PBRM1, PMS2, POLD1, POLE, POLQ, 

PPP2R2A, PRKCB, RAD21, RAD51, RAD51B, 

RAD51C, RAD51D, RAD54L, RELA, RHEB, 

RPTOR, SDHB, SETD2, SMARCB1, SPOP, 

ERG, 

ETV1, 

FGFR2, 

NUTM1, 

STAT6, 

TFE3
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SQSTM1, STAT1, SUMO1, TSC1, TSHR, VHL, 

XRCC2, ZBTB16

Genes 

included in 

version 3.1 

only

BARD1, BRIP1
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SNV was called by MuTect v.2 with a Bayesian algorithm, INDEL was identified 

by IndelGenotyper v.36. 3336[43, 44]. Called variants were annotated using 

ANNOVAR[45]. SNV with total depth ≥ 10, allele depth ≥ 3, allele frequency ≥ 5%

(if hotspot, 1%), and INDEL with total depth ≥ 10, allele depth ≥ 3, allele frequency 

≥ 10% (if hotspot, 5) was selected. SNV errors due to 8-oxoG artifacts were excluded 

by the OxoG filter[46]. 

CNV was obtained using CNVkit software[47], and copy number segment ratios of 

tumor and pooled normal samples were compared. Amplifications were called with 

≥ 6 copies and homozygous deletions at 0 copies. Structural variants including 

translocations, inversions, and large deletions were called by DELLY v.0.7.2[48], 

and annotated using ANNOVAR and filtered by the in-hospital tool[45], and 

reviewed by the Integrative Genomics Viewer (v2.3.6)[49].

Breast cancer subtypes 

To determine the sample subtype, IHC of ER, PR, and HER2 in the tissue used for 

sequencing was reviewed. ER and PR positivity were defined as ≥ 1%, and HER2

positivity was defined as IHC 3+ (strong membranous staining in 10% of cells) 

and/or HER2 gene amplification (HER2:CEP17 gene copy ratio ≥ 2) using 

fluorescent in situ hybridization (FISH)[50]. In cases of HER2IHC 2+, HER2 gene 

amplification testing by FISH (FISH) was performed.
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Interpretation of alterations

The reported genetic alterations were compared according to the subtype of breast 

cancer or tissue acquisition site.

To investigate the potential differences in our data and western breast cancer data, 

the public datasets from “the SAFIR01, SAFIR02, SHIVA, or Molecular Screening 

for Cancer Treatment Optimization (MOSCATO) prospective trials” and “the 

metastatic breast cancer project” was compared[51].

Detected genetic alterations were annotated according to the database OncoKB[52]. 

In the OncoKB knowledge base, the genetic alteration are classified into 4 levels. 

Level 1 included genetic alterations that are FDA-recognized biomarkers. Level 2 

includes genetic alterations that are biomarkers recommended as standard care by 

the National Comprehensive Cancer Network (NCCN). Level 3 includes genetic 

alterations that predict response to investigational agents in clinical trials. Level 4 

includes genetic alterations that have hypothetical therapeutic implications based on 

preliminary, non-clinical data. In patients with actionable mutation, following 

treatment and their responses were identified. 
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Results

Baseline characteristics

Altogether, 189 samples from 182 patients were eligible for analysis. The median 

age of the analyzed patients was 50 years (range: 26 to 84 years), 124 (68.1%) 

patients had metastatic disease, and 58 (31.9%) patients had operable breast cancer. 

Patients were classified into four subtypes according to the HR and HER2 status

based on immunohistochemistry. A full assay profile was available for 177 samples 

of which 84 (44.4%) samples had HR+/HER2-, 17 (9.0%) samples had HR+/HER2+, 

13 (6.9%) samples had ER-/HER2+, and 63 (33.3%) samples were TNBC. There 

were 24 patients with known pathogenic BRCA1 or BRCA2 germline mutation. The 

detailed characteristics are summarized in Table 2.
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Table 2. Characteristics of enrolled patients and samples

Variables N (%)

Total number of patients 182

Gender

   Female 181 (99.5)

   Male 1 (0.5)

Patient age when tissue done NGS

   Median (range) 50 (26-84)

Total number of samples 189

Breast cancer subtypes based on the IHC

   HR+/HER2- 84 (44.4)

   HR+/HER2+ 17 (9.0)

   HR-/HER2+ 13 (6.9)

   HR-/HER2- 63 (33.3)

   Unknown 12 (6.3)

Site of tissue

   Primary breast 106 (56.1)

   Metastatic site 83 (43.9)

       Lymph node 6 (3.2)

       Soft tissue 17 (9.0)

       Skin 8 (4.2)

       Visceral metastatic site

           Liver 33 (17.5)

           Lung 13 (6.9)
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           Others* 6 (3.2)

Distant metastasis at the time of NGS

   Yes 161 (85.2)

   No 28 (14.8)

Number of non-synonymous mutation per 

sample

   Median (range) 7 (0-22)

NGS, Next-generation sequencing; HR, hormone receptor; HER2, human epidermal growth 

factor receptor 2; BRCA, Breast cancer gene

*Other site include ovary and salpinx (N=2), bone (N=2), muscle (N=1), and pleural effusion 

(N=1).
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Sequencing results

From October 2016 to March 2020, 340 samples from 255 patients were submitted 

for NGS, 99 samples using SNUH-FIRST pan-cancer panel v2, 67 samples using v3, 

and 174 samples using v3.1. Of these 340 samples, 74 failed to process due to 

insufficient tumor tissue in 57 cases and poor tissue quality in the remaining 17 cases. 

Altogether, 66 samples were reported to have failed quality control during the PCR 

process, and 4 samples failed during final sequencing. Two samples in which the 

tissue sequenced was not that of a breast cancer, and three cases in which the patient 

had another active malignancy at the time of sampling, were excluded. Finally, 189 

samples from 182 patients were analyzed (Figure 1). A total of 1, 428 variants in 243 

genes were detected. At least 1 genomic alteration was observed in 99.5% (188/189) 

of sequenced samples, and the median number of genomic alterations in each sample 

was 7. 
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Figure 1 Patient flow of conducting SNUH-FIRST pan-cancer panel with breast cancer
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Figure 2 Landscapes of detected variants by subtypes. 
Frequently detected genomic alterations are shown. Clinical parameters for each samples are shown in the top panel.     
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Figure 3 Frequency of genetic alteration between early/locally advance breast cancer and 
metastatic breast cancer
The frequency of PIK3CA alterations was high in metastatic breast cancer, and the frequency 
of BRCA1 and ATR were high in early or locally advanced breast cancer

Figure 4 Frequency of genetic alteration between primary breast and metastatic sites
There were no differences in the frequencies of detected genetic alterations in primary breast 
or metastatic site 
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When analyzed using only 111 genes included in common in the three versions of 

the panel, there were 893 SNV, 146 copy number alterations, and 27 copy number 

deletions. TP53 (59.8%), PIK3CA (31.2%), BRCA2 (19.0%), and ERBB2 (18.5%) 

were most frequently mutated. Figure 2 shows the frequently (≥3%) identified 

alterations in all patients. In general, mutation rates were higher in patients with 

metastatic breast cancer and slightly higher in metastatic site compared to primary 

breast cancer. In the HR+/HER2- subgroup, PIK3CA (44.6%), TP53 (21.7%), 

BRCA2 (18.1%) mutation, FGFR1 (9.6%), and Myc (8.4%) amplification were 

frequently found. In the HER2+ subgroup (ER- or HR+), TP53 (66.7%), PIK3CA

(36.7%) mutation, and ERBB2 amplification (80%) were frequently found. In 

particular, ERBB2 amplification was confirmed in 25 of 30 patients whose 

sequencing sample was HER2 + (by IHC or FISH) breast cancer. In the TNBC 

subgroup, TP53 (66.1%), ROS1 (19.4%), KMT2D (17.7%), BRCA1 (14.5%)

mutations were frequently found.

There was no significant difference between the overall frequency of alteration by 

breast cancer stage (early or locally advanced breast cancer vs. metastatic breast 

cancer, p=0.799) or tissue acquisition site (1ry breast vs. metastatic site, p=0.688). 

The rate of PIK3CA mutations is high in metastatic breast cancer samples (p=0.004), 

and the rate of BRCA1 and ATR mutations were significantly high in early or locally 

advanced breast cancer (p=0.045, 0.007) (Figure 3). There was no significant 

difference in frequency between tissue obtained from primary breast and metastatic 

site (Figure 4). 
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For the genes with frequent mutation, Figure 5 shows the type and frequency of 

each mutation. TP53 somatic mutations were observed in 121 samples and most of 

the mutations are located in the DNA binding domain of the protein. PIK3CA 

somatic mutations observed in 66 samples and mainly located in the calcium/lipid-

binding region and kinase domain. BRCA2 mutations observed in 37 samples and 

most of pathogenic mutations located in RAD51 binding domain and DNA binding 

domain. ERBB2 somatic mutations were observed in 35 samples, but none of them 

were the pathogenic kind.
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A. 

TP53 somatic mutations observed in 121 samples. The mutation discovered are graphed with 

the amino acid substitution. TAD, transactivation domain; PD, proline-rich domain; DBD, 

DNA binding domain; TET, tetramerization domain

B. 

PIK3CA somatic mutations observed in 66 samples. The mutations discovered are graphed 

with the amino acid substitution. p85, PI3K p85 regulatory subunit binding domain; RBD, 

Ras binding domain, C2, C2 calcium/lipid-binding region; helical, PI3K accessory (helical) 

domain; Kinase, PI3/4-kinase domain.
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C. 

BRCA2 mutations observed in 37 samples. The mutations discovered are graphed with the 

amino acid substitution. PALB2, PALB2 binding domain; RAD51, RAD51 binding domain, 

DBD, DNA binding domain 

D. 

ERBB2 somatic mutations observed in 35 samples. The mutations discovered are graphed 

with the amino acid substitution. ECD, extracellular domain; TM, transmembrane domain; 

JM, juxtamembrane domain

Figure 5. The distribution of frequently detected somatic mutation
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Two public databases of metastatic breast cancer, "the SAFIR01, SAFIR02, 

SHIVA, or MOSCATO prospective trials" database sequenced 216 samples of 216 

metastatic breast cancer patients, and "the metastatic breast cancer project" database 

sequenced 237 samples of 180 metastatic breast cancer patients, were compared with 

sequencing results of 124 metastatic breast cancer patients. There were differences 

in the genes covered in the two databases and SNUH-FIRST pan-cancer panels. So, 

among the mutated genes commonly found in the two public datasets, only genes 

that are included in three versions of our panel are compared. Genes such as CDH1, 

GATA3, KMT2C, TBX3, RNF213, RELN, NCOR1, PCLO, SPEN, which are not 

included in our panel were excluded. The frequency of TP53, KMT2D, BRCA2, 

ATM, and NOTCH3 was significantly high in SNUH-FIRST pan-cancer panel than 

two public databases. And the frequency of MAP3K1, AKT1, MAP2K4 was 

significantly high in SNUH-FIRST pan-cancer panel and 

SAFIR/SHIVA/MOSCATO database than Metastatic breast cancer project database. 

The frequency of ESR1, NF1, FOXA1, etc. seemed to be low in our results, but not 

significant. (Figure 6).
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Figure 6 Comparison of frequently detected mutation in metastatic breast cancer

Two public metastatic breast cancer databases were compared with SNUH-FIRST pan-cancer panel results. 
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Clinical implication

To determine how many of the mutations have clinical significance, the OncoKB 

precision oncology knowledge database was utilized[52]. Of the 182 patients

sequenced, 121 (66.4%) patients had clinically pathogenic alterations according to 

the OncoKB database (level 1-4), and 112 (61.5%) patients had clinically actionable 

alterations (OncoKB level 1-3). Among 124 patients with metastatic breast cancer, 

sequencing results were clinically applicable in 27 (21.8%) patients. 22 patients 

received approved HER2-targeted therapy, and 5 (4.0%) patients were enrolled into

appropriate new targeted agents clinical trial based on sequencing results (2 

administrated talazoparib, 3 enrolled in clinical trials) (Figure 7 and Table 3).

None of the 48 patients with PIK3CA pathogenic mutations received PI3K inhibitor 

trial, because 2 patients had already participated in the PI3K inhibitor trial prior to 

sequencing, and others did not meet the eligibility criteria for trials. Among 3 

patients with ESR1 mutation, 2 patients had already administrated fulvestrant before, 

and 1 patient had visceral disease and was unsuitable for endocrine treatment 
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Figure 7 Patient with clinically actionable alteration in OncoKB database

Among 124 patients with metastatic breast cancer, sequencing results were clinically 
applicable in 27 (21.8%) patients, and 5 (4.0%) patients were enrolled into

appropriate new targeted agents clinical trial
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Table 3 Detected variants in annotated in OncoKB with targeted therapy

Gene Protein sequence 

change

Number of 

patients

Level Drugs

AKT1 E17K 5 3A AZD5363

BRCA1 Y83*

Q333*

E1163fs

V1786fs

1

1

4

1

2 Olaparib, Talazoparib

BRCA2 K467*

G602fs

Q1886*

K2777*

R2494*

S2984*

Deletion

splicing

2

1

1

2

2

1

2

2

2 Olaparib, Talazoparib

CDK12 Amplification 8 4 Pembrolizumab, Nivolumab, Cemiplimab

ERBB2 Amplification 25 1 Trastuzumab, Pertuzumab, 

Margetuximab, Tucatinib, Lapatinib, 

Neratinib, Poziotinib, 

Ado-Trastuzumab Emtansine, 

Trastuzumab-Deruxtecan

L858R 1 3A Neratinib

ESR1 Y537S 

D538G

1

2

3A Fulvestrant, AZD9496

FGFR1 Amplification

N577K

4

1

4 FGFR inhibitor; AZD4547, Erdafitinib, 

BGJ398, Debio1347

FGFR2 Amplification 2 4 FGFR inhibitor; AZD4547, Erdafitinib, 

BGJ398, Debio1347

KRAS Amplification

G12V

1

1

4 Cobimetinib, Binimetinib, Trametinib
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PIK3CA G106V

N345K

C420R

E542K

E545K 

M1043I, M1043V

H1047R

G1049R

N345K

1

2

2

5

5

2

25

2

2

1 Alpelisib+ Fulvestrant,

GDC0077, 

Copanlisib+Fulvestrant
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In addition to 5 patients who received alteration-matched treatment, 8 patients were 

enrolled in an alteration-unmatched clinical trial. Table 4 showed detailed genetic 

alterations and subsequent treatment in these 13 patients. NGS results from two

patients who had not previously undergone the germline BRCA test found out 

germline BRCA mutation using tumor tissue, and subsequently got a chance to 

receive PARP inhibitor talazoparib. Patient A was previously treated with two lines 

of endocrine treatment for metastatic breast cancer with ER + breast cancer. The 

patient did not know the BRCA status because she did not meet the criteria for BRCA 

testing under Korean national health insurance reimbursement guideline. As the 

cancer panel revealed that she had a pathogenic BRCA2 germline mutation, she has 

been currently receiving talazoparib for 4.5 months with partial response (Figure 8A). 

The other, Patient B was TNBC, to whom two lines of cytotoxic chemotherapy was 

previously administrated, followed by the administration of talazoparib, maintained 

for 2 months, and then started on the next anticancer treatment due to disease 

progression.

Five patients were identified with homologous recombination deficiency (HRD) 

genes, such as BRCA1/2, ATM, and CHEK2, and enrolled into the clinical trials 

administrating a poly(ADP-ribose) polymerase (PARP)/Tankyrase (TNK) dual 

inhibitor. In addition, seven patients were thought to have a mutation in the DNA 

damage response (DDR) or related gene; these were enrolled in a clinical trial 

administrating Ataxia telangiectasia and Rad3-related (ATR) inhibitors or ataxia-

telangiectasia mutated (ATM) inhibitors.
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Table 4 Genomic profiles of patient who had treated based on the results sequencing

Gene AA change AF (%) Clinical significance No. of previous 

chemotherapy* 

Treatment Best response PFS  (months)

Patient A BRCA2 R2494* 89.6 Pathogenic 0** Talazoparib PR 5.5

Patient B BRCA1 splicing 94 Pathogenic 2 Talazoparib PD 2

Patient C BRCA2 splicing 38.6 Pathogenic 2 PARP/TNKi *** PD 2

Patient D PALB2 E1018D 39 2 PARP/TNKi SD 4

RAD51C G3W 16

Patient E ATR M2087V 59 2 PARP/TNKi PD 1

Patient F ATM L2258fs 45 5 PARP/TNKi SD 1

Patient G PTEN D326fs 54 4 PARP/TNKi SD 4

Patient H PIK3CA H1047R 54 Pathogenic 1 Olaparib+ATRi PD 3

Patient I PIK3CA H1047R 22 Pathogenic 1 Olaparib+ATRi SD 5.5

Patient J BRCA1 E1163fs 38 Pathogenic 1 Olaparib+ATRi SD 24

Patient K BRCA1 Y83* 53 Pathogenic 1 Olaparib+ATRi PR 14

Patient L FANCG Q356* 50 Pathogenic 3 Olaparib+ATMi SD 7
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FANCA W1063* 37 Pathogenic

Patient M AKT1 E17K 40 Pathogenic 5 Olaparib+ATMi SD 7.5

NGS, next-generation sequencing; AA, amino acid; AF, allele frequency; PFS, progression free survival 

* The number of cytotoxic chemotherapy performed for metastatic breast cancer was included.

** This patient had 2 lines of endocrine therapy previously.

*** It is clinical trial consist of a poly(ADP-ribose) polymerase (PARP)/Tankyrase (TNK) dual inhibitor
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Patient J was administered palliative gemcitabine and paclitaxel for metastatic 

breast cancer; however, it was discontinued because of intolerance. Subsequently, 

the patient participated in a clinical trial to administer an ATR inhibitor, and the 

PARP inhibitor olaparib. Since then, for two years, the patient has been taking the 

drug well, maintaining a stable disease, and is much more tolerable to treatment than 

with the previous cytotoxic chemotherapy (Figure 8B).

Patient K also received paclitaxel and carboplatin treatment for metastatic breast 

cancer and achieved near-complete remission. However, she reached a point where 

she could not sustain chemotherapy due to severe neurotoxicity. The patient was 

enrolled in a clinical trial administering ATR inhibitors and PARP inhibitors, based 

on the results of the cancer panel. The patient had brain metastasis from the 

beginning, and after 14 months, disease progression was confirmed only through

brain lesions. However, the patient maintained a near-complete remission status 

systemically. Thus, she continued to administer the trial drugs for 26 months while 

controlling her brain disease with gamma knife surgery (Figure 8C).
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A. A 64-year-old female (patient A) who experienced disease progression after two lines of 

endocrine treatment for metastatic breast cancer, started talazoparib after cancer panel detect 

germline BRCA2 mutation and achieved a partial response with a significant reduction in 

SUV on PET scan (Maximal SUV of right pleural lesion, 9.6 to 2.9, and maximal SUV of 

liver mass, 15.4 to 4.3, respectively). PET, positron emission tomography; SUV, standard 

uptake value

B. A 49-year-old female (patient J) discontinued 1st line chemotherapy due to side effects 

and participated in a clinical trial to apply ATR inhibitor and PARP inhibitor. At the time of 
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enrollment, the patient only had bone metastasis, and it was improved with the ATR and 

PARP inhibitors. ATR, Ataxia telangiectasia and Rad3-related; PARP, poly(ADP-ribose) 

polymerase 

C. A 57-year-old female (patient K) achieved near-complete remission after 1st line cytotoxic 

chemotherapy but discontinued because of neurotoxicity. The patient enrolled in a clinical 

trial with ATR inhibitors and PARP inhibitors, and maintained near-complete remission status 

systemically, except for brain metastasis controlled by gamma knife surgery. ATR, Ataxia 

telangiectasia and Rad3-related; PARP, poly(ADP-ribose) polymerase. 

Figure 8 Examples of NGS profiling leading patients to clinical trials
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Discussion

For the purpose of obtaining diagnostic assistance and linking patients with 

specific mutations to appropriate clinical trials, our center established a targeted 

sequencing based NGS test SNUH-FIRST pan-cancer panel. In this study, utility of

the SNUH-FIRST pan-cancer panel in patients with breast cancer was explored and 

its clinical significance was also investigated.

In the 189 samples and 182 patients sequenced, 1,428 non-synonymous mutations

were detected. In general, mutation rates were higher in patients with metastatic 

breast cancer and slightly higher in metastatic site as compared to primary breast

cancer. Overall PIK3CA, TP53 mutations and ERBB2 amplification were frequently 

found. In HR+ breast cancer samples, PIK3CA mutation and FGFR1 and MYC 

amplifications were especially high. In most of the HER2+ breast cancer samples, 

ERBB2 amplification was found. Some of the HER2+ breast cancer samples had 

ERBB2 mutations but none of them were the pathogenic type.

As compared to previously reported metastatic breast cancer database, the overall 

frequency of mutation was high in our test because SNUH-FIRST pan-cancer panel 

contained a relatively small number of genes, with the intention of identifying only 

clinically meaningful or targetable genes. Not all patients who were sequenced in the 

SNUH-FIRST pan-cancer panel for breast cancer had metastatic disease. Instead, by 

allowing physicians to conduct examinations freely during the treatment process, 

more patients, who were refractory to treatment or were considered to have high 

mutational burden were included. Owing to this limitation in enrollment, it cannot 

be judged whether the difference from other metastatic breast cancer database is a 
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characteristic of Korean breast cancer patients. However, the frequency of TP53, 

BRCA2, and ATM mutations was especially high in our results. TP53 mutation is 

known to be different between the Asian and Caucasian population. Zhang et al. 

reported that TP53 mutation was significantly higher in Chinese cohort than in 

TCGA database[53]. 

Out of 124 metastatic breast cancers, sequencing results were clinically applicable 

in 27 (21.8%) patients, and 5 (4.0%) patients were able to receive genetic alteration-

matched treatment. Moreover, another 8 patients were enrolled in an alteration-

unmatched clinical trial by referring to sequencing results. In the NCI-MATCH trial 

that assigned patients according to DNA targeted sequencing, assign rate was less 

than 2% for each sub-protocol[54]. Moreover, in another TGS-based trial, the SAFIR 

trial, assign rate of the genotype-matched trial was 5%[55]. Considering that only a 

small number of patients could be assigned to proper treatment in this sequencing-

based trial, it can be said that 4% is a fairly high rate, although all possible treatment 

options were included in our case. 

In this study, pathogenic mutation of germline BRCA was detected through target 

sequencing in 15 patients. In particular, two patients who had not tested for germline 

BRCA using peripheral mononuclear cells, were found to have germline BRCA 

mutation in SNUH-FIRST pan-cancer panel target sequencing. One patient started 

administrating talazoparib and another was enrolled into the clinical trial. In Korea, 

due to the issue of insurance standards, there are restrictions on BRCA inspection.

Considering high prevalence of germline BRCA[56], and that there is an effective 

treatment when BRCA is identified, it is a significant pitfall that germline BRCA 
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tests cannot be performed. In patients who do not meet insurance standards, but have 

a high probability of BRCA mutation, such as an old patient with TNBC, this 

obstacle to BRCA test is a severe problem. As the NGS test is partly covered by 

insurance, the patient is tested with less financial burden if the germline BRCA is 

detected by target sequencing. Further research therefore, is needed in this direction.

The limitations of this study are as follows: As the SNUH-FIRST pan-cancer panel 

of the present application used a sequencing method that was developed during the 

research period, the included gene or sequencing success rate changed continuously. 

This may have caused a difference depending on the panel version used in the 

analysis. In addition, considering the low test success rate in the case of old tissue, 

tissue biopsy of a metastatic site, or insufficient amount, or a large discrepancy in 

the sample used may also compromise the validation of the study. Besides, since all 

patients sequenced with breast cancer tissue were included in the analysis, many 

factors could lead to variations in the sequencing results, such as disease status and 

history of other carcinomas. Due to the heterogeneity in this patient group, it was not 

possible to perform additional analysis, such as determining the relationship between 

detected mutations and prognosis.

In conclusion, through the SNUH-FIRST pan-cancer panel, the mutational 

landscape of breast cancer patients in a single center was elucidated and practical 

value in the treatment of real patients with breast cancer was identified. However, 

there is a patient bias included in this study; therefore, to really observe the 

characteristics in Korean breast cancer patients, it is necessary to validate the 

findings in a larger number of patients. 
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국문초록

서론: 차세대 염기서열분석법 (Next Generation Sequencing) 은 기존의

염기서열분석법에 비하여 빠르게 많은 변이를 분석할 수 있는 방법이다. 

NGS 검사를 통해 질병과 관련된 변이를 알게 되고 이에 대한 치료제를

탐색하게 되면서, 암 치료에 많은 발전이 있었다. 본 논문에서는 한국

유방암 환자들에서의 흔한 변이를 확인하고 이러한 정보가 실제 환자의

치료에 어떻게 사용되는지 분석 하였다.

방법: 본 연구에서는 서울대병원에서 유방암 조직으로 NGS 검사를

시행한 환자의 병리 결과, NGS 결과 및 의무기록을 후향적으로

조사하였다. NGS 결과에서 흔한 변이를 관찰하고 기술하였고, 실제

환자에서 적용된 예시를 살펴 보았다.

결과: 2016년 10월부터 2020년 3월까지 NGS 검사를 시행한 유방암 환자

중 182명의 sample 189개에서 분석을 시행하였다. 총 243개 gene 에서

1,428가지 variant 가 확인되었고, 샘플당 변이 수의 중앙값은 7(0~22)개

였다. 전체 샘플에서 가장 흔한 변이는 TP53 (59.8%), PIK3CA (31.2%) 등

에서 발견되었고, subtype 에 따라서는 HER2 양성에서 ERBB2 

amplification 이 흔하고 (80%), 삼중음성유방암 (triple-negative breast 

cancer) 에서 TP53 (66.1%), BRCA1 (14.5%) 외에 ROS1 (19.4%), KMT2D

(17.7%) 로 높은 빈도로 확인되었다. 61.5% 의 환자에서 임상적 유용성이

있는 변이가 발견되었고, 22% 의 환자에서 이를 임상적으로 적용 가능했

으며, 특히 4% 의 환자는 이 결과를 토대로 적절한 표적 치료를 시행하

는 임상 시험 등에 연결되었으며, 일부 환자에서 매우 효과적인 결과를

보여주었다. 

결론: 본 연구는 서울대병원 단일 기관에서 유방암 환자의 NGS 경험 및
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이 결과를 환자의 치료로 연결할 수 있음을 보여주었다. 이를 통해 NGS 

결과가 환자의 실제 치료에 도움이 되며, 특히 우리나라 보험 환경에서

유용함을 확인할 수 있었다. 

주요어 : 유방암, 차세대염기서열분석, 유전 변이

학 번 : 2018-27457
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