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ABSTRACT

Seong-Woo Bae

Interdisciplinary Program in Cancer Biology

The Graduate School

Seoul National University

Background: Although fluorodeoxyglucose positron emission 

tomography (FDG-PET) is widely used in staging, response 

monitoring and evaluating recurrence for various cancers, 

its role in gastric cancer (GC) is still limited due to 

variable FDG avidity of malignant lesions. Patient 

derived-xenograft (PDX) models, as patient surrogates, are 

considered promising in-vivo models in preclinical 

research. The purpose of this study is to develop a gene 

signature to predict FDG avidity in GC based on 

established PET imaging PDX murine models to plan 

individualized PET and investigate the molecular 

characteristic landscape.

Methods: Female BALB/c nu/nu mice were implanted 

orthotopically and subcutaneously with GC PDX tissues. 

[18F]FDG-PET scanning protocol evaluation included 

different tumor sizes, FDG doses, scanning intervals and 

organ specific uptake. FDG avidity of similar PDX cases 
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were compared between orthotopic and heterotopic tumor 

implantation models. Microscopic and immunohistochemical 

investigations were performed to confirm tumor growths 

and correlate protein expressions of glucose transporter 1 

(GLUT1) and hexokinase 2 (HK2) with FDG uptake.

  Using RNA sequencing data of thirty PDX cases paired 

with FDG-PET results, we identified a five-gene signature 

(PLS1, PYY, HBQ1, SLC6A5, NAT16) associated with the 

maximum standardized uptake value (SUVmax). We 

established a model (PETscore) for predicting high 

FDG-avid GC using the signature, which was validated in 

human by RNA-seq and qRT-PCR. Furthermore, we also 

characterized the model using public data of GC profiled in 

The Cancer Genome Atlas (TCGA) and Asian Cancer 

Research Group (ACRG).

Results: PET scanning protocol was determined to include 

150 Ci FDG injection dose and scanning after one hour. μ

Comparison of heterotopic and orthotopic implanted mouse 

models revealed longer growths interval for orthotopic 

models with higher uptake in similar PDX tissues. 

H-scores of GLUT1 and HK2 expressions in tumor cells 

were correlated with measured SUVmax values. Validation 

of PETscore provided significant predictive values 

compared with actual SUVmax in human. Investigation 

with TCGA and ACRG data showed that the PETscore was 

significantly associated with glycolysis, microsatellite 

instability (MSI) status and epithelial mesenchymal 

transition (EMT)-related prognosis.
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Conclusion: This preclinical GC PDX based [18F]FDG-PET 

protocol reveals tumor specific FDG uptake and shows 

correlation to glucose metabolic proteins. PDX transplanted 

mouse model can be useful to access PET activity in 

gastric cancer. Our findings in study for FDG avidity 

prediction model suggest the molecular characteristics of 

GC underlying the diverse metabolic profiles. Furthermore, 

our PETscore could be proposed for an individualized 

FDG-PET for staging and disease monitoring by predicting 

FDG avidity.

Keywords: Gastric cancer, Positron mission tomography, 

Patient-derived xenograft, Gene signature, Standardized 

uptake value, Glycolysis, Microsatellite instability, 

Epithelial mesenchymal transition

Student number: 2017-34897
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INTRODUCTION

  Gastric cancer (GC) has been characterized by its tumor 

heterogeneity at molecular, histological and phenotypic 

levels (1, 2). Accurate diagnosis is essential for cancer 

treatment. For assessment of the tumor site and lymph 

node involvement in GC, various medical imaging 

modalities, such as computerized tomography (CT), 

Magnetic Resonance Imaging (MRI), endoscopic ultrasound 

imaging (EUS), and positron emission tomography (PET), 

are commonly used (3). Unlike other imaging modalities, 

2-Deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) PET has 

been established as a metabolic imaging modality in 

clinical cancer diagnostics because of the high rate of 

glucose consumption in cancers, historically being 

described first by the Warburg-effect (4-7). 

Limitations of [18F]FDG-PET in gastric cancer

  Clinical utility of [18F]FDG-PET in gastric cancer 

however remains controversial, especially in respect of the 

aforementioned tumor heterogeneity. Regarding detecting 

tumors by [18F]FDG-PET scan in patients with gastric 

cancer, 40-63% for early gastric cancers (EGC) and 

62-98% for advanced gastric cancers (AGC) are identified 

(8-13). Furthermore, [18F]FDG avidity has been shown to 

be lower in cancers of the diffuse type with signet ring 

cells, high mucinous content, and lower cellularity (10, 11, 
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14). Because of the diversity in characteristics of stomach 

cancer in terms of the aggressiveness as well as histology 

and genomic alteration, features highly associated with 

[18F]FDG avidity have not yet been fully understood. 

Patient-derived xenograft models as patient 

surrogates

  In order to improve the clinical utility of [18F]FDG-PET 

and gain knowledge of the glucose metabolism in GC, 

appropriate pre-clinical in-vivo models are highly desired. 

Patient-derived xenograft (PDX) models, which are 

developed by xenograft of human tumors into 

immune-compromised mice, are useful models for 

pre-clinical studies (15-16). One of the main advantages 

of PDX is that PDX tumors recapitulate biological and 

genetic characteristics of their parental tumors. 

  Recent high-throughput technologies, which can easily 

and robustly generate large-scale molecular profiling data, 

offer extraordinary opportunities to integrate clinical and 

genetic data into models associated with cancer 

characteristics. Several studies have demonstrated 

significant correlation between genetic profiles and the 

PET parameters for different cancer entities (17-20). In 

spite of the individual gene level evidence, how the 

metabolic milieu systematically influences the 

heterogeneous FDG avidity of GC has not been fully 

understood. So far, no comprehensive system biologic 

analysis dealing with the FDG avidity prediction and 
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association of the molecular-genetic characteristics of GC.

  In these regards, human gastric cancer PDX models as 

patient surrogates are considered useful for the molecular 

characteristic landscape of GC associated with glucose 

metabolic profiles non-invasively evaluated by FDG-PET.

Purpose of this study

  We hypothesized that [18F]FDG avidity in GC can be 

predicted by a combination of FDG avidity-associated gene 

expressions. Therefore, this study aimed to develop a 

prediction model for FDG avidity in GC by RNA 

sequencing data paired with [18F]FDG-PET images using 

PDX murine models. In PART I, we establish appropriate 

small animal PET imaging protocol for large-scaled 

preclinical in-vivo study. In PART II, we identify a gene 

signature to develop a prediction model for FDG avidity in 

GC and investigate its molecular characteristic landscape.
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PART I.

Establishment of protocol for preclinical PET imaging of 

human gastric cancer PDX models
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MATERIALS AND METHODS

 

Establishment of human gastric cancer PDX

  Gastric cancer tissues were obtained from patients who 

underwent gastrectomies at Seoul National University 

Hospital in 2014 and 2017 with informed consent, and the 

study was approved by the institutional review board (IRB) 

of Seoul National University Hospital (No. 1402-054-555) 

in accordance with the Declaration of Helsinki. 

Immediately after the tissue acquisition, the samples were 

transferred to RPMI 1640 medium with 1% 

penicillin/streptomycin (all from Thermo Fisher Scientific, 

Waltham, MA, USA).

  Establishing gastric cancer PDX models was conducted in 

collaboration with the Jackson Laboratory. The human 

tumor tissues were minced into pieces approximately 2 mm 

in size and subcutaneously injected into the flanks of 

female NOD.Cg-Prkdc scid Il2rgtm1Wjl/SzJ (NSG , ™

6-week-old) mice (The Jackson Laboratory, Bar Harbor, 

ME, USA). The tumor volume and body weight of the mice 

were checked once or twice weekly. The volume was 

calculated as (length × width2)/2 (21, 22). When tumor 

volumes reached >700 to 1000 mm3, mice were euthanized 

and tumor tissues were excised and cryopreserved in liquid 

nitrogen to generate next passage PDXs. Each successful 

PDX line was assigned a unique ID (SNU-JAX-GXXX). 

Orthotopic and heterotopic PDX model
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  All procedures involving in vivo mouse studies were 

approved by the Institutional Animal Care and Use 

Committee (IACUC) at Seoul National University and 

complied with the Guide for the Care and Use of 

Laboratory Animals (SNU-170704-3). Female BALB/c 

nu/nu mice, at age of 6-8 weeks (Orient Bio., Sungnam, 

Korea) were used to establish mouse tumor models. To 

minimize the murine stromal contamination in PDX models 

and losing the patient characteristics (23-25), we used 

PDX tissues with early passage numbers (P2 or P3).

  The orthotopic tumor implantation was performed under 

general gas anesthesia. The mice were positioned on the 

right supine position followed by disinfection of the whole 

abdominothoracic area. A transverse subcostal incision was 

used to expose the stomach. A first 7-0 non-absorbable 

mono filament suture was applied seromuscular in 

longitudinal direction of the corpus of the stomach. This 

suture was first used as stay suture to expose the stomach 

during implantation and afterwards to cover the 

implantation site. The implantation site was chosen in the 

corpus part of the stomach in the middle of the stay 

suture, therefore the border to squamous cell epithelium 

had to be identified safely before. Then a small 

gastrotomy was performed by micro-scissor, making sure, 

mucosa is exposed. After one edge of the gastrotomy was 

caught by another 7-0 suture, the PDX tissue (size 

approximately 27 mm3) was beaded on the thread and 

positioned on the gastrotomy. The corresponding edge was 

sutured and then gently tied over the PDX tissue. It had to 
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be assured that the PDX tissue connects to the mucosa but 

would not completely subside in the lumen. Now the 

longitudinal stay suture was tied over the implantation site 

in order to completely cover it. Another two 7-0 sutures 

were applied cranial and caudal to the first one. If a full 

coverage of the implantation site was achieved, the 

abdominal cavity was closed by 4-0 absorbable 

polyfilament suture in two layers, abdominal muscle layer 

and skin (Figure 1). A sham model was performed with 

similar technique without tumor implantation.

  The heterotopic PDX model was performed in 

standardized way by implanting the tumor tissue via 

subcutaneous trocar into the right or left flank. For PET 

imaging, the optimal location of the tumor tissue does not 

overlap neither with the kidney nor with the heart signal 

in order to receive a clear signal discrimination. In this 

case, the tumor is located caudal position of the heart and 

in cranial position of the ipsilateral kidney.

  The clinicopathological features of the donor patients for 

the PDX tissues used in the orthotopic and heterotopic 

mouse models are summarized in Table 1.
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Figure 1. Orthotopic xenograft model of gastric cancer 

PDX. Schematic illustration of modeling with photographs: 

A small gastrotomy pouch to expose mucosa ① ② 

Preparation of PDX tissue Positioning in the gastrotomy ③ 

pouch Suturing over the tissue. ④ 
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Sham-orthotopic model

  A sham orthotopic model was performed as control, 

consisting of the identical procedure as orthotopic tumor 

implantation, eventually not implanting the tumor. 

Scanning was performed in intervals and images were 

evaluated for signal/uptake changes due to inflammation. A 

longitudinal scanning was also performed for the 

orthotopic tumor model for the same reason

[18F]FDG PET/MRI imaging

  The mice were starved for 12 to 16 hours and were 

subsequently anesthetized with 2% isoflurane before 

[18F]FDG injection. The body temperature was kept within 

normal range throughout the whole procedure (26).

Animals were scanned for simultaneous PET/MR imaging 

using the SimPET simultaneous PET/MRI scanner (Aspect 

imaging, Israel) (27). [18F]FDG was intravenously injected 

into the tail vein with an uptake time of 1 hour. Urinary 

bladder was evacuated before imaging in order to reduce 

artefacts. 

  The final imaging protocol was used as follows: 

Simultaneous PET/MR scans were acquired for 30 min 

acquisition time.  MR imaging protocol was consisted of 

T2-weighted fast spin echo sequences with repetition time 

3,070 msec and echo time of 63.8 msec. Acquired PET 

images were reconstructed with 3D OSEM (ordered subset 

expectation maximization) algorithm.  

  Acquired PET and MR images were spatially registered 

for the FDG SUV (standard uptake value) evaluation in the 
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tumor sites. 

  To determine adequate [18F]FDG dose, longitudinal 

PET/MRI imaging at different intervals after [18F]FDG 

injection was carried out. Four mice baring heterotopic 

tumors were injected with higher [18F]FDG dose (545 ± 

5.6 μCi). First image was taken one hour after injection, 

then three hours and five hours after injection. The 

corresponding [18F]FDG dose was calculated in respect of 

the half-life of F-18 of 109.8 minutes (28).   

Image Analysis and statistical analysis

  The PET/MRI images were converted into Digital 

Imaging and Communications in Medicine (DICOM) files 

and analyzed with OsiriX MD (FDA certified; Pixmeo, 

Bernex, Switzerland). The maximal standardized uptake 

value (SUVmax) was measured by volume of interests 

(VOIs). 

  Spatial resolution of the SimPET with warmed 

background is 1.45 mm. To minimize the PET signal loss 

by the partial volume effect, tumors with above 5mm 

width were scanned. The VOIs were drawn based on the 

MRI images and measurement of tumor glucose metabolism 

was derived in PET images. The FDG retention was also 

quantified in muscles of hind legs and liver tissue in order 

to illustrate changes over time and correlate with tumor 

signal.

  The statistical analysis and figure calculation were 

performed using GraphPad Prism (GraphPad Software 

8.1.2, San Diego, CA) and a P-value < 0.05 was considered    
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statistically significant. Results for SUVmax were 

presented as the mean values with standard deviation. The 

Mann-Whitney U test for the consecutive imaging and the 

PET images in the comparison between orthotopic and 

heterotopic models was conducted to measure P-value.

Histology and Immunohistochemistry

  After imaging, mice were sacrificed and macroscopically 

investigated for cancer metastasis. The primary tumor was 

excised, fixed in 10% formalin solution and consecutively 

paraffin embedded. Histological confirmation of tumor was 

performed by an expert pathologist (WHK) on 4 m μ

Hematoxilin & Eosin (H&E) stained slides. For 

immunohistochemistry staining, 4 m slides were stained μ

with Glucose transporter 1 antibody (GLUT1, ab115730, 

Abcam, Cambridge, UK) which is corresponding to Human 

Glucose Transporter GLUT1 aa 450 to the C-terminus and 

Hexokinase 2 antibody (HK2, MA5-14849, Thermo Fisher 

Scientific, MA, USA) which is corresponding to the 

sequence of human. The staining was performed with 

Bond-Max Immunostainner and BondPolymer Refine 

Detection Kit (Leica Microsystems, Germany) according to 

the manufacturer’s instructions.

  Assessment of immunohistochemistry was performed by 

application of H-score combining the intensity and degree 

of staining in the tumor tissue (29).
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RESULTS

Selection of optimal tumor size and dose for 

[18F]FDG PET imaging protocol

  Serial imaging of [18F]FDG PET/MRI with injection dose 

of 449 ± 33.3 Ci using a heterotopic model showed μ

comparable FDG uptake in tumors and revealed a tumor 

size of more than 400 mm3 comes along with central 

necrosis of the tumor that affects the global uptake of the 

tumor tissue (Figure 2A, B). Consecutive imaging of 

heterotopic model with primary injection of 545 ± 5.6 μ

Ci after one, three and five hours resulted in distinctive 

signal of tumor, liver and muscle in SNU-JAX-G080 

(Figure 3A, B). The difference of tumor signal, muscle and 

liver was shown to be stable over time, resulting in 

satisfactory results after five hours with an approximate 

obtained [18F]FDG dose of 100 Ci. No benefits were seen μ

for higher dose. In respect of the standard uptake time of 

one hour after injection, a primary injection dose of 150 μ

Ci was expected to result in stable results and was 

therefore chosen for the protocol (Figure 4).
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Figure 2. Selection of optimal tumor size for [18F]FDG PET 

imaging protocol. (A) Serial PET/MRI images in a 

heterotopic model at 54 (1st imaging), 61 (2nd imaging), 

and 72 (3rd imaging) days after modeling. The green 

ellipsoid indicates a tumor. (B) Evaluation of [18F]FDG 

uptake in different size tumors. 
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Figure 3. Selection of optimal  dose for [18F]FDG PET 

imaging protocol. (A) Consecutive PET/MRI images of 

mice-bearing heterotopic PDX tumor at 1, 3, and 5 hours 

following injection of [18F]FDG (n = 4). The yellow arrow 

indicates a tumor. (B) [18F]FDG uptake measurements in 

tumors and in normal background tissues. Box plots with 

error bars indicate the mean uptake and the standard 

deviation across the mice. 
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Figure 4. Injection dose selection for PET imaging 

protocol from the theoretical decay curve of F-18. The 

ideal half life of F-18 is 109.8 minutes. Considered the 

decay time, a primary injection dose of 150 Ci is μ

expected to reach about 100 Ci in the mouse body.μ
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Inflammatory signal aspect for orthotopic 

model

  The sham model underwent FDG PET/MRI scanning at 

Day 18, 33, 57, and 95 after sham implantation. FDG 

uptake analysis revealed that the SUVmax value decreased 

from 1.62 at Day 18 to 0.71 at Day 95 in the same 

intervals. (Figure 5). Two mice without any manipulation 

at any site (“healthy control”) showed a stomach site with 

SUVmax of 0.77 and 0.54. The Day 95 sham model showed 

comparable SUVmax (0.71) compared with the control mice 

(SUVmax = 0.66 ± 0.16). 
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Figure 5. Inflammatory PET signal aspect for orthotopic 

model. (A) [18F]FDG PET/MRI images of normal (n = 2) 

and sham mouse models. The green ellipsoid indicates a 

stomach. (B) Quantitative analysis of FDG uptake using 

SUVmax in stomach. 
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Comparison of corresponding PDX tissues in 

heterotopic and orthotopic model

  Six mice were used for heterotopic models with 

subcutaneously implanted two different PDX tissues. Eight 

mice were orthotopically implanted with the same PDX 

tissues. Two mice deceased before scanning. All (100%) 

heterotopic and seven mice (87.5%) of the orthotopic 

models presented histologically proven cancer growth 

under microscopic investigation. The histo-morphology of 

heterotopic and orthotopic PDX models are demonstrated 

in Figure 6 and Table 2. 

  The remaining orthotopic mice were scanned after a 

mean time of 95 days after implantation. All 

heterotopically implanted mice underwent FDG-PET/MRI 

with a mean tumor size of 134.9 mm2 after a mean time of 

39 days. The [18F]FDG avidity of orthotopic and 

heterotopic PDX models with identical tissues is 

demonstrated in Figure 7A, B. Results suggest a higher 

avidity of tumor in orthotopic environment as in those 

cases the mean SUVmax was measured with 0.8 and 0.7 in 

SNU-JAX-G080 and SNU-JAX-G263 in heterotopic and 

1.3 and 1.2 in orthotopic models. The orthotopic tumor 

growth could be clearly distinguished in MRI. 
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Figure 6. Histomorphology of corresponding PDX tumor 

growth in heterotopic and orthotopic model. 

Representative hematoxylin-eosin staining (H&E) images 

of tumor growth in established models (Magnitude with 

X200). 
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Figure 7. Comparison of corresponding PDX tissue in 

heterotopic and orthotopic model with FDG-PET results. 

(A) [18F]FDG PET/MRI images of heterotopic and 

orthotopic mouse models. (B) Quantitative analysis of 

uptake using SUVmax of [18F]FDG in heterotopic and 

orthotopic models-bearing PDX tumor. 
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Expression levels of GLUT1 and HK2 in 

PET-scanned tumors 

Orthotopic cases showed higher expression of both, 

GLUT1 and HK2 corresponding to higher SUV max in 

orthoto pic cases. Comparing all cases, the model with the 

highest SUVmax (1.3, SNU-JAX-G080, orthotopic) showed 

the highest scores for GLUT1 (177) and HK2 (170). The 

case with the lowest SUV max (0.69, SNU-JAX-G263, 

heterotopic) showed the lowest scores for GLUT1 (57) and 

HK2 (73). Comparison between SUVmax and each marker 

showed significant positive correlation (GLUT1: Pearson r 

= 0.7429, P-value = 0.0088, HK2: Pearson r = 0.6048, 

P-value = 0.0487). Results of GLUT1 and HK2 

immunohistochemistry are shown in Figure 8. 
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Figure 8. Correlation between FDG uptake and 

glycolysis-related protein levels. (A) Representative 

immunohistochemistry results of GLUT1 and HK2 in 

PET-scanned tumors (IHC stain, X200). (B) Comparative 

analysis between SUVmax and immunohistochemical 

staining score (Pearson r = 0.743, P-value < 0.01 for 

GLUT1, Pearson r = 0.605, P-value < 0.05 for HK2). 
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PART II.

Development of prediction model with a gene signature for 

FDG avidity in gastric cancer
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MATERIALS AND METHODS

Study design

  This study was an observational proof-of-concept study 

using gene expression and FDG-PET image data. We 

developed a model for predicting [18F]FDG-avid gastric 

cancer using patient-derived xenograft (PDX) models, and 

clinical applicability of the model was evaluated by RNA 

sequencing (RNA-seq) and real-time reverse transcription 

PCR (qRT-PCR) in gastric cancer patients. The study 

design and flow process are depicted in Figure 9.
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Figure 9. Study design. FDG-avidity prediction model is 

established investigating the gene expression profiles of 

thirty gastric cancer PDXs with [18F]FDG-PET images. The 

model is then evaluated in human by RNA-seq and 

qRT-PCR with the gene signature. 
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Human [18F]FDG-PET imaging and analysis

  PET imaging of patients was collected. According to the 

standard protocol of our hospital, patients were injected 

intravenously 5.18 MBq/kg of FDG after fasting for at 

least 6 hours with blood glucose level < 140 mg/kg. 

PET/CT scans were started 60 minutes after injection, 

using dedicated PET/CT scanners or a PET/MR scanner 

(Biograph 40, mCT, and mMR, Siemens). An emission scan 

was acquired from the skull base to the proximal thigh. A 

CT scan was also obtained for attenuation correction. For 

PET/MR, attenuation correction map was generated by 

DIXON sequence. PET images were reconstructed using an 

iterative algorithm (ordered-subset expectation 

maximization). 

  All PET images were reviewed by the experienced 

nuclear medicine physician using commercial imaging 

software (Syngo.via, VA 30; Siemens Healthcare, Erlangen, 

Germany). To evaluate FDG uptake of tumors, spherical 

volume of interests (VOIs) were drawn for each patient. In 

each VOI, the maximum standardized uptake value 

(SUVmax) was measured. 

 

Nude mouse tumor modeling with 30 PDX 

cases

  Thirty PDX cases for the present study were available 

among the established PDXs. Six-week-old female BALB/c 

nu/nu mice (Orient Bio., Sungnam, Korea) were used to 

establish mouse tumor models (n = 3 per PDX case). The 

mouse tumor modeling was performed by subcutaneous 
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implantation using a trocar as previously described (30).   

  All procedures involving in vivo mouse studies were 

approved by the Institutional Animal Care and Use 

Committee (IACUC) at Seoul National University and 

complied with the Guide for the Care and Use of 

Laboratory Animals (IACUC No. SNU-170704-3). Overall 

characteristics of GC PDXs are summarized in Table 3.
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Small animal [18F]FDG-PET imaging and 

analysis

  Small animal [18F]FDG-PET/MRI imaging was performed 

as previously described (1). After fasting for at least 

12hours, mice were subsequently anesthetized with 2% 

isoflurane before [18F]FDG injection. The mice were 

scanned by simultaneous PET/MRI scanner for small μ

animal (Brightonix, Seoul, Korea). [18F]FDG was 

intravenously injected in tail vein with an uptake time of 

1 hour. Urinary bladder was evacuated before imaging in 

order to reduce artefacts. Simultaneous PET/MRI scans 

were acquired for 30 min acquisition time. 

  The micro PET/MRI images were converted into Digital 

Imaging and Communications in Medicine (DICOM) files 

and analyzed with OsiriX MD (FDA certified; Pixmeo, 

Bernex, Switzerland). SUVmax was measured by VOIs. 

Acquired PET and MRI images were spatially registered 

for SUVmax evaluation in the tumor sites. The VOIs were 

drawn based on the MRI images and measurement of tumor 

glucose metabolism was derived in PET images. 

 

RNA sequencing and data preprocessing

  For acquisition of the RNA-seq data, RNA from the PDX 

or human tissues was extracted using TRIzol (Invitrogen, ™ 

Waltham, MA, USA.). Samples with RNA integrity number 

(RIN) of greater than 5 were further processed. The 101 

bp paired-end libraries were constructed with the TruSeq 

RNA Sample Prep Kit v2 (Illumina) using 1 g of RNA. μ

Whole transcriptome sequencing (WTS) was performed on 
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Illumina HiSeq 2000 instruments.

  Sequenced read counts of PDXs were aligned to combined 

human and mouse reference with STAR (2.4.1d). Duplicate 

reads were removed with Picard(1.1.34). HTSeq-count 

(0.6.1) was used to calculate read counts.

 

WGCNA analysis

  We used Weighted Gene Co-expression Network Analysis 

(WGCNA) package (31) to identify gene network modules 

from the 30 PET-scanned PDXs (training set). We created 

a correlation matrix on the basis of the Pearson’s 

correlation coefficient for all pair-wise genes across all 

samples. The power the key parameter for the weighted —
network was selected to optimize both scale-free topology —
and sufficient node connectivity and we chose a threshold 

of 10 in this study. The correlation matrix was 

transformed into an adjacency matrix (matrix of connection 

strength) using the power function, and pair-wise 

topological overlap between genes was calculated.

 

Development of FDG avidity prediction model

  We used glmnet R package (32) to identify the most 

significant gene signature related with SUVmax.

  The proposed the [18F]FDG-avid tumor prediction model 

using the least absolute shrinkage and selection operator 

(Lasso) regression can be written as follows: 
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where the Y is actual SUVmax, the Y’ is predictive 

SUVmax in PDX (PETscore) and the Xij is RNA-seq read 

count for each gene. The n is the total number of PDX 

cases, the p is the total number of genes in the module. 

The is the regression coefficient of each variable, β 

which indicates how each gene explains the gene 

signature. The is a factor that determines the sparsity λ 

of the solution; as increases, the number of non-zero λ 

components of decreases.  To optimize , we tried β λ

many values of and used those that minimize the mean λ 

square error. The penalty regularization parameter was λ 

determined via the cross validation routine cv.glmnet 

function (10-fold cross validation). The  value was 

finalized by using lambda.1se, which gives the most 

regularized model such that error is within one standard 

error of the minimum. The performance of the prediction 

model was assessed using RNA-seq data of 15 patients 

who underwent FDG-PET in the training set.

Human tissue specimens for the prediction 

model validation

  PET results and RNA-seq data of eight GC patients were 

available for the model validation. Twenty fresh frozen 

tissues among GC patients who underwent FDG-PET scan 

were available for additional validation by qRT-PCR. All 

tissue samples were obtained from Seoul National 

University Hospital, Korea, and written informed consent 

was obtained from all patients. The present retrospective 

validation was approved by the IRB of Seoul National 
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University Hospital (IRB No. 1910-045-1069). 

qRT-PCR analysis

  Total RNA was isolated from frozen tissue samples using 

the Trizol reagent. cDNA was synthesized to analyze 

mRNA expressions using a TOP script cDNA synthesis kit 

(Enzynomics, Daejeon, Korea) according to the 

manufacturer’s protocols. The expression levels of the five 

genes (PYY, SLC6A5, HBQ1, PLS1, NAT16) were measured 

using SYBR Green Master Mix (Applied Biosystems, 

Carlsbad, CA) by normalizing to the levels of GAPDH. 

Primer sequences are described in Table 4. The reaction 

was performed and analyzed by comparative Ct methods △

(33) using Step One Plus Real-Time PCR system (Applied 

Biosystems, Carlsbad, USA). 

  Normalization and regularization of the qRT-PCR results 

for applying the PETscore based on results using RNA-seq 

data. Each gene expression level (- C△ T) was normalized 

by standard deviation: X median(X) / SD(X)–  and then 

transformed into z-score for each tissue sample. Here X is 

each gene expression level for samples and SD indicates 

the standard deviation. Based on the rationale from the 

results of the Lasso modeling, four genes (PYY, SLC6A5, 

HBQ1, PLS1) had positive weighted values one gene 

(NAT16) had negative one, PETscore with qRT-PCR data 

can be written as follows: PETscore = (sum of positive 

gene levels) (– negative gene level). The PETscore was 

then applied to the FDG uptake results to confirm the 

correlation.
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Acquisition of TCGA data

  Genome and transcriptome data of stomach cancer of 

TCGA projects were used. For transcriptome data, 

TCGABiolinks R package was used for downloading from 

TCGA data portal (https://portal.gdc.cancer.gov/) (34). The 

transcriptome data of TCGA-STAD were normalized by 

“TCGAAnalyze_Normalization” function. 

  Genomic alterations of the STAD were downloaded from 

https://github.com/PoisonAlien/TCGAmutations. Mutation 

data were curated and analyzed by maftools package (35). 

Clinical data of stomach cancer (TCGA-STAD) were 

downloaded from cBioPortal (https://www.cbioportal.org). 

 

Metabolic profiles of TCGA data

  Metabolic profiles of TCGA-STAD data were estimated 

by transcriptome data. Single sample gene set enrichment 

analysis (ssGSEA) was used to calculate enrichment scores 

of metabolic profiles (36). RNA-seq data were changed to 

counts per million reads (CPM) and then curated genes 

according to predefined gene sets of MSigDB2 (37). GSVA 

package was used to apply ssGSEA to each transcriptome 

data. The enrichment scores of metabolic pathways were 

normalized by Z-score.

Acquisition of ACRG data

  Clinical and Microarray datasets (GSE62254, n=300) were 

downloaded from the Gene Expression Omnibus (GEO) 

database (http://www.ncbi.nlm.nih.gov/geo/). The samples 

with Lauren and molecular subtypes were filtered by the 
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calculated PETscore of the transcriptome data or overall 

survival results.

FOLFOX response evaluation 

  Drug treatments began after the tumors reached 

approximately 200 mm3. Mice were divided randomly 

into control and FOLFOX treated groups, with five 

mice in each group. 5-FU (Selleckchem, 5 mg/kg, 

weekly) and Oxaliplatin (Selleckchem, 50 mg/kg, 

weekly) in saline was administered via intraperitoneal 

injection for 21 days. The volume of the tumors was 

checked three times weekly and was calculated as 

(length × width2) / 2.  The tumor volume ratio 

between the treatment and the vehicle group was 

calculated as the division of the average tumor 

volume of each group at the final measurement (VTreat 

/ VVehicle). The final tumor volume ratio and p-value 

of analysis of variance (ANOVA) test reflecting the 

trend of tumor growth was used for the evaluation of 

antitumor efficacy. ANOVA test was performed using 

SPSS program. The tumor volume ratio less than 0.5 

and the ANOVA P-value < 0.001 was defined as the 

responder. Non-responder was defined as P-value > 

0.05. Others were defined as moderate responder.  

 

Statistical analysis

  The Spearman’s correlation analysis was performed 
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between the predicted SUVmax and the actual SUVmax 

using ggplot2 R package (38). Correlation coefficients and 

P-values were gained and used to sort statistically 

significant features (P-value < 0.05). All statistical 

analyses were performed in R (version 3.5.3).

  The linear models for microarray data (limma) package 

(39) in R (x64, version 3.5.3) was utilized to identify 

genes associated with SUVmax. False discovery rate (FDR) 

< 0.05 was used for selecting the genes associated with 

SUVmax.

  The statistical analysis (Mann-Whitney U test) and 

figure calculation of comparison between SUVmax and 

individual gene expression were performed using GraphPad 

Prism (GraphPad Software 8.1.2, San Diego, CA).
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RESULTS

Measurement of [18F]FDG uptake in mouse 

tumor model bearing GC PDXs.

  To evaluate FDG avidity in different PDX cases with a 

PET/MRI scanner, 30 PDX cases were used. The median 

SUVmax of the 30 PDX cases was 0.708 (range, 

0.453-1.433). Representative images and FDG uptake 

measurement in tumor of PDX cases are shown in Figure 

10A, B. The SUVmax of PDX cases were significantly 

correlated with SUVmax of their parental tumors (n = 15, 

Spearman r = 0.54, P-value = 0.04, in Figure 10C). 
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Figure 10. Glucose uptake in mouse tumor model bearing 

gastric cancer PDX tissues. (A) Representative 

[18F]FDG-PET/MRI images (B) Quantitative analysis of 

PET images of PDX tumors. (C) Correlation between 

parental tumors and corresponding PDXs. The gray shading 

around the line represents a confidence interval of 0.95. 
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Weighted gene co-expression network analysis 

of 30 GC PDX RNA-seq data

  WGCNA was performed on the preprocessed 16,927 genes 

of 30 PDX samples. We identified network modules using a 

hierarchical clustering method with topological overlap 

dissimilarity as the distance measure. The modules were 

detected by the dynamic tree cut algorithm in WGCNA 

package, defining a height cutoff value of 0.99, deep split 

as 4, and minimum module size cutoff value of 40. Genes 

that were not assigned to any module were classified to 

color gray (Figure 11A). Nineteen co-expression network 

modules that contained groups of genes with similar 

patterns of connection strengths with other genes were 

identified (Figure 11B). The highest association was found 

between the midnightblue module and SUVmax (r = -0.92, 

P-value = 1.8e-42) by Pearson’s correlation analysis. This 

module containing 102 genes associated with SUVmax had 

the highest significance across all modules. The module 

was selected for subsequence analysis steps.
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Figure 11. Weighted gene co-expression network analysis 

of RNA-seq data. (A) Cluster dendrogram and module 

assignment for modules from WGCNA. The branches 

correspond to modules of highly inter-connected gene sets. 

Colors in the horizontal bar represent the modules. (B) Bar 

plot of average gene significance across all genes in each 

module. 
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Establishment of [18F]FDG uptake prediction 

model: PETscore

  Based on the result of WGCNA, we used a Lasso logistic 

regression (Lasso) combined with 10-fold cross validation 

to build a predictor for SUVmax in the 30 PDX cases. The 

Lasso provided a gene signature with five genes (PLS1, 

SLC6A5, NAT16, HBQ1, PYY) as the best predictor of 

SUVmax in the 30 PDX training set. A prediction formula 

with the gene signature was derived to calculate SUVmax 

for each PET-scanned PDX and showed a significantly 

positive correlation (Spearman r = 0.679, P-value = 

5.693e-05) between predicted SUVmax and actual SUVmax 

(Figure 12A). We developed a scoring system (PETscore) 

based on the five gene expression levels for application in 

human. For estimation of the model performance in human, 

we applied the PETscore to 15 PET-scanned patients who 

were paired with the 15 PDXs in the training set. The 

SUVmax of these 15 patients were significantly correlated 

with the PETscore estimated by RNA-seq of the parental 

tumor (Spearman r = 0.557, P-value = 0.034) (Figure 12B). 
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Figure 12. Establishment of FDG uptake prediction model 

for gastric cancer. (A) The prediction model based on 

expression levels of the five genes. The formula provides 

significantly positive correlation between actual SUVmax 

and predicted SUVmax in PDXs (Spearman r = 0.679, 

P-value = 5.693e-05). (B) PETscore calculated based on 

the formula in 15 PET-scanned patients shows a positive 

correlation with actual SUVmax (Spearman r = 0.557, 

P-value = 0.034). The gray shading around the line 

represents a confidence interval of 0.95.
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Validation by RNA-seq and qRT-PCR in 

human 

  To validate the prediction model in an independent 

cohort, we applied the model to 28 PET-scanned patients. 

Eight patients among 28 patients were available to use 

RNA-seq data and 20 patients were assessed with the 

expression of the five genes (PYY, SLC6A5, HBQ1, PLS1, 

NAT16) by qRT-PCR method. The representative PET 

images are depicted in Figure 13A. The clinicopathological 

features of the 28 patients with GC are summarized in 

Table 5. 

  The prediction performed on 8 PET-scanned patients 

showed significant correlation with actual SUVmax of the 

8 patients (Spearman r = 0.905, P-value = 0.005) (Figure 

13B). To apply the model based on RNA-seq data to 

qRT-PCR results, the gene expression values were 

regularized and transformed to z-score to assign 

comparable weights. After that, PETscore which is a 

combination of qRT-PCR results was utilized to validate 

the performance of the five predictors for FDG uptake in 

gastric cancer. The PETscore showed significant 

correlation (Spearman r = 0.464, P-value = 0.039) with 

SUVmax in 20 patients (Figure 13C).
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Figure 13. Validation of the prediction model in human. 

(A) Representative [18F]FDG PET/MRI images of 28 

PET-scanned gastric cancer patients. (B), (C) Heatmap 

displaying the z-scores of the expression levels on the 

five genes measured by RNA-seq and qRT-PCR. (C) 

Correlation between SUVmax and results by each validation 

method shows significantly positive (RNA-seq: Spearman r 

= 0.905, P-value = 0.005, qRT-PCR: Spearman r = 0.464, 

P-value = 0.039). The gray shading around the line 

represents a confidence interval of 0.95.
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Molecular characteristics landscape of GC 

with PET score

  To investigate the molecular characteristics in gastric 

cancer with PETscore, we utilized the Cancer Genome 

Atlas (TCGA). PETscore was compared with glucose 

metabolic profiles. The PETscore was positively correlated 

with GLUT and glycolysis signatures (r = 0.26, P-value < 

0.0001 for GLUT; Figure 14A, r = 0.26, P-value < 0.0001 

for glycolysis; Figure 14B). In addition, we confirmed that 

patients with stomach adenocarcinoma or tubular stomach 

adenocarcinoma had significantly higher PETscore than 

diffuse type gastric cancer (P-value = 0.0206 for stomach 

type, P-value = 0.0077 for tubular type; Figure 15). 

Interestingly, PETscore tended to be associated with 

microsatellite instability (MSI) status. The PETscore of 

GC with MSI-high (MSI-H) was significantly higher than 

those of MSI-low (MSI-L) and MSS tumors (Figure 16A). 

As MSI status affects tumor mutational burden (TMB), the 

correlation analysis between TMB and PETscore was 

performed. Accordingly, PETscore showed a significant 

positive correlation with TMB (R = 0.29, P-value = 

2.1e-8) (Figure 16B).  The comprehensive illustration of 

the molecular characteristic landscape is depicted in 

Figure 17. Additionally, we investigated the genomic 

alteration of each group from gastric cancer divided by the 

median enrichment scores of PETscore. Four genes 

(PLXNA3, EIF4G1, TRIO, PCNX) were identified as 

frequently mutated genes in high PETscore group (Figure 

18). An a further investigation, we performed survival 
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analysis using TCGA and Asian Cancer Research Group 

(ACRG) with PETscore for all subjects. There was no 

significant association with survival depending on 

MSI/PETscore subgroups in TCGA cohort (Figure 19A, B). 

However, overall survival with PETscore in ACRG cohort 

showed significant difference  (P-value=0.007) (Figure 

19C). Furthermore, epithelial-mesenchymal transition 

(EMT) with low PETscore subgroup in ACRG cohort 

showed poor survival (P-value=0.007) (Figure 19D). 

Association between Lauren types and PETscore showed a 

trend that samples with high PETscore is located within 

intestinal type (P-value = 0.0023) (Figure 19E). Overall 

survival of Lauren types with PETscore showed significant 

difference. Diffuse type with low PETscore group showed 

poor survival (P-value = 0.0016) (Figure 19F).
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Figure 14. Molecular characteristic landscape of gastric 

cancer with PETscore. Scatter plot of PETscore versus 

GLUT and glycolysis signatures. (A, B) Both GLUT and 

glycolysis signatures are positively correlated with 

PETsore by Pearson's correlation (r = 0.26, P-value < 

0.0001). 
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Figure 15. Association between PETscore and gastric 

cancer type. Tubular and stomach types show significant 

median value difference of PETscore compared with 

diffuse type (P-value = 0.0206 for stomach type, P-value 

= 0.0077 for tubular type). Red dots indicate PETscores of 

the thirty PET-scanned PDXs.
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Figure 16. Association between PETscore and 

microsatellite instability. (A) The PETscore is 

significantly clustered between the MSI status. (B) The 

colored dots indicate MSI status of each sample, and it 

shows a trend that samples with high mutation burden are 

located within populations with high PETscore. 
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Figure 17. The comprehensive illustration showing the 

relationship between molecular characteristic landscape 

and PETscore. A heatmap depicting the metabolism 

enrichment scores of all samples. Grade, type by WHO 

classifications, MSI status, and total mutation are shown 

for each sample (above the heatmap).
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Figure 18. Genomic alterations associated with PETscore 

in gastric cancer. Each oncoplot (the upper panel) shows 

the genomic alteration of each group from gastric cancer 

divided by the median enrichment score of PETscore. Four 

genes (PLXNA3, EIF4G1, TRIO and PCNX) are frequently 

mutated genes between two groups. The lower panel shows 

gastric cancer sample distribution in each gene.
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Figure 19. Survival analysis with PETscore using TCGA 

and ACRG data. (A) Association of PETscore with overall 

survival in TCGA cohort (P-value=0.951). (B) Association 

of MSI subgroups with overall survival in TCGA cohort 

(P-value=0.428). (C) Association of PETscore with overall 

survival in ACRG cohort. High PETscore group shows 

significantly better survival than low PETscore groups 

(P-value=0.007). (D) Association of molecular subgroups 

with overall survival in ACRG cohort. EMT type with low 

PETscore group shows significantly worse survival than 

the 7 other groups (P-value = 0.0012). (E) Association 

between PETscore and Lauren classification in ACRG 

cohort. The result shows a trend that samples with high 

PETscore is located within intestinal type (P-value = 

0.0023). (F) Association of Lauren subgroups with overall 

survival in ACRG cohort. Intestinal group with high 

PETscore indicates significantly better survival than the 3 

other groups (P-value = 0.0016). 
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Figure 20. Examples in clinical application with the 

PETscore. (A) PET/MRI images of gastric cancer patient 

with low PETscore. 1-year follow-up shows recurrence 

with peritoneal seeding nodules (False-negative SUVmax). 

FDG-PET may be worse for this patient to monitor 

tumors. (B) PET/MRI images of gastric cancer patient with 

high PETscore. 1-year follow-up shows recurrence with 

high FDG-avid lymph nodes (SUVmax = 9.5) and 

peritoneal wall (SUVmax = 4). FDG-PET may be better for 

this patient to monitor tumors. (C) Schematic figure for 

personalized gastric cancer imaging 
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Figure 21. Investigation of FOLFOX sensitivity-related 

SUVmax and PETscore in human. (A) Tumor proliferative 

activity in P0 and P0+ PDX tumors where integer 1. α α≧
Tumor proliferative activity is defined as “1/doubling time 

(day)”. (B) Comparison between SUVmax and tumor 

proliferative activity (Spearman r = 0.238, P-value = 

0.224). (C) FDG avidity in response and non-response 

groups to FOLFOX. (D) Correlation analysis between 

PETscore and SUVmax (Spearman r = 0.532, P-value = 

0.078). (E) FDG avidity by PETscore in response and 

non-response groups to FOLFOX.
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DISCUSSION

  In this study, we used human gastric cancer 

patient-derived xenograft (PDX) models with small animal 

[18F]FDG-PET images to develop a FDG avidity prediction 

model. We utilized systems biology approach, applying 

WGCNA to identify transcriptomic correlates of the 

maximum standardized uptake value (SUVmax) in gastric 

cancer. A significant gene network module correlated with 

[18F]FDG avidity in PDX mouse models and a prediction 

model (PETscore) developed using the module predicted 

actual SUVmax in human. Furthermore, PETscore was 

associated with microsatellite instability (MSI) status, 

epithelial mesenchymal transition (EMT) and patients’ 
survival. 

Preclinical PET imaging PDX murine models

  To our knowledge this is the first study to evaluate such 

model on an [18F]FDG-PET/MRI with different imaging 

protocols and PDX implantation methods. Our results 

demonstrate a stable data quality using a fixed scanning 

protocol using 150 Ci. In heterotopic implantation, we μ

did not identify distinguishable SUVmax difference in 

different tumor sizes with the same PDX tissues (Figure 

2B). Although several studies have reported a positive 

correlation between SUVmax and tumor size (16-18), the 

correlation in gastric cancer specifically is controversial 

(19-21). Moreover, PET signal of big size tumors can 
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overlap with signals from other organs. Therefore, an 

appropriate tumor size to acquire the best image quality in 

in-vivo studies is required. In orthotopic implantation, 

even in immune-compromised mice, a confounding 

inflammation signal has to be considered for a period of 

1-2 months, however, sufficient tumor growth in this 

setting usually exceeds this period. 

  In other solid cancer types, the [18F]FDG-PET, mostly in 

combination with computer tomography in a preclinical 

research setting is established as a tool to investigate drug 

response or biological behavior (22, 23). Valtortaet al. 

introduced a PDX model of non-small cell lung cancer 

(NSCLC) for [18F]FDG-PET/CT and demonstrated its 

usefulness of early therapy response evaluation in nine 

subcutaneous PDX tissues (24). The authors conclude that 

the imaging reflects the cancer glucose metabolism which 

correlates with tumor aggressiveness and growth in this 

study. Halderson et al. introduced an orthotopic 

endometrial cancer cell line model and outlined the 

usefulness of both [18F]FDG and [18F]FLT-PET/MRI for 

tumor growth monitoring and detection of metastasis (25). 

These abilities are important especially in orthotopic 

models, where often an external control of tumor growth is 

impossible. 

  Our study demonstrates [18F]FDG-PET signals in both 

orthotopic and heterotopic PDX models. The images 

suggest that tumor monitoring in orthotopic gastric cancer 

models might benefit from MRI addition, thus several 

difficulties in orthotopic tumor modeling have to be 
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discussed. MRI has been used in several studies for 

monitoring the tumor growth and metastasis in orthotopic 

models (26, 27). However, long-term follow-up with MRI 

for monitoring tumor development, growth, and metastasis 

in preclinical studies, especially with a large number of 

mice, is expensive and time-consuming (28). A larger drop 

out of cases in orthotopic models has to be expected 

traditionally, therefore the benefits of a more natural 

tumor environment can be achieved. In terms of 

inflammatory signal overlapping, our results suggest that 

the SUVmax can be increased even after a longer period 

(Day 57) without tumor implantation (Figure 5), and was 

found in comparable levels as “healthy controls”. It is 

strongly recommended to always correlate the FDG signal 

in orthotopic models with the histology in order not to 

deal with problems of false positivity. The results of the 

GLUT1 and HK2 IHC staining therefore suggest, that a 

higher marker expression appears in orthotopic model s `
tumor tissue, which goes along with a higher glucose 

uptake detected by PET, possible reflecting the alternated 

tumor environment in orthotopic implantation. The IHC 

staining results give a rational explanation for higher FDG 

avidity in orthotopic tumor modeling beyond an 

inflammatory confounder as tumor tissue was measured for 

relevant protein levels. Thus, the technical difficulty of 

tumor implantation and a more resource consuming 

monitoring has to be considered when applying an 

orthotopic model in a high-throughput study. 

  Using a PET/MRI may consume more human and financial 
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resources than a single PET scanner. However, anatomical 

conditions might aggravate the signal detection in 

orthotopic models as the left kidney signal is found close 

and sometimes overlapping to the stomach site. Again, 

forth is reason, the MRI provides the best possible 

resolution to allocate uptake signal to an anatomical 

structure.

  The major limitation of our study is the small sample 

size of the PDX case. Further studies utilizing larger 

sample sizes of different PDXs are necessary in order to 

understand and describe glucose uptake relation between 

gastric cancer patients and corresponding PDXs.

PETscore: a FDG avidity prediction model

  The clinical utility of FDG-PET in GC is influenced by 

factors including tumor size, histological subtype, tumor 

location and physiological FDG uptake by normal gastric 

wall (40). GC has varying sensitivities of FDG-PET due to 

tumor biological heterogeneity. As prediction of FDG 

uptake will be critical role for rational gastric cancer 

patient selection, we sought to develop a prediction model 

for [18F]FDG avidity in GC. 

  PDX models have shown advantages as a useful 

preclinical resource in drug screening, bio-marker 

development and co-clinical trial. Despite of disadvantage 

with low enraft rates and high costs, one of main 

advantages is that PDXs allow the propagation and 

expansion of patient tumors without significant genetic 
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change of tumor cells over multiple generations (41). 

Moreover, PDX models are beneficial to studies for certain 

drugs response and imaging because multiple tests are 

available expending PDXs generated from one parental 

tumor. Our result of FDG avidity correlation between PDXs 

and patients suggested that PDXs, as surrogates, can be 

utillized for PET activity studies reflecting glucose 

metabolism in patient tumors (Spearman r = 0.54, P-value 

= 0.04, Figure 10C). Therefore, PDXs with genomic data 

and PET imaging results are considered as useful materials 

to investigate the heterogeneous FDG avidity in GC 

mimicking patient tumors.

  We have found a gene signature with 4 positively 

correlated genes (PLS1, PYY, SLC6A5, HBQ1) and one 

negatively correlated gene (NAT16) which is associated 

with SUVmax by co-expression network analysis. PLS1 

gene encodes pastin 1 protein which is a member of the 

plastin (also known as fimbrin) family and the family is 

one of actin-binding proteins, and it is evolutionarily 

conserved (42). Platins are expressed in various cancers 

including choroids plexus tumors (43), urinary bladder 

cancer (44), ovarian cancer (45), and colorectal cancer 

(46). PeptideYY (PYY) is a gut hormone and its expression 

increases sequentially along the length of the intestines 

(47, 48). PYY with hormonal regulation of upper 

gastrointestinal function causes decreased gastric acid 

secretion, delays gastric emptying and slows intestinal 

transit time (47, 49). PYY has been identified in several 

carcinoid tumors including rectal carcinoids (50), gastric, 
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small bowel and cecal endocrine tumors (51, 52). 

Moreover, a decreased expression of PYY may be relevant 

to the development and progression of colon 

adenocarcinoma (53, 54). Solute Carrier Family 6 Member 

5 (SLC6A5), Hemoglobin Subunit Theta 1 (HBQ1), and 

N-Acetyltransferase 16 (NAT16), which are protein coding 

genes, have not been well defined in cancer biology, 

particularly in GC.

  The prediction model with the signature (PETscore) was 

validated inhuman using RNA-seq and qRT-PCR data. 

RNA-seq and qRT-PCR provide a value can be calculated 

for the concentration of a target region in a given sample 

(55). RNA-seq has been developed as a powerful method 

for investigating the intracellular transcriptome level 

based on next generation sequencing (NGS) and widely 

used in translational research (56). Although high 

throughput sequencing (HTS) methods for analyzing RNA 

have been improving, qRT-PCR is still a routine and 

cost-effective method for precise and accurate mRNA 

analysis (57, 58). qRT-PCR has, however, limitation with 

utilizing amplicons smaller than 300bp, usually toward the 

3 end of the coding region, avoiding the 3 untranslated ʹ ʹ
region(3 UTR) (59). Despite of the gap between two ʹ
platforms, our PETscore provides applicability for 

prediction of FDG uptake (Figure 13B, C). Our suggested 

model could be used in the clinical setting to perform 

individualized approach for choosing imaging modality for 

the assessment of GC. As a glucose uptake pattern 

non-invasively assessed by [18F]FDG-PET is a unique 
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biological feature, it is maintained in recurred tumor. 

Thus, if we predict [18F]FDG avidity before staging or 

recurrence monitoring, [18F]FDG-PET may be selectively 

used for a tumor which expects to show high 

[18F]FDG-avid tumor. A tumor which showed the low 

PETscore was also low FDG avidity in are curred tumor at 

1-year follow-up. On the other hand, another tumor with 

high PETscore showed hypermetabolim in recurred 

retroperitoneal LNs and peritoneal seeding lesions. The 

example cases are shown in Figure 20A, B. Furthermore, 

as the gene signature can be assessed by biopsy tissues, 

the PETscore can be used for an individualized approach 

for imaging modality (Figure 20C). These findings provide 

the opportunity to include a rational selection process for 

gastric cancer [18F]FDG-PET clinical evaluation. Further 

well-designed clinical validation of this suggested 

individualized imaging for GC is warranted.

  FOLFOX is one of the gastric cancer chemotherapeutic 

regimens being widely, which is the combination of folinic 

acid (FOL), 5-fluorouracil (F) and oxaliplatin (OX). 

5-fluorouracil (5-FU) as a main component in FOLFOX 

which is a type of fluoropyrimidine that incorporates into 

DNA to inhibit thymidylate synthase (TS). Oxaliplatin 

(trans-/-diaminocyclohexane oxalatoplatinum; L-OHP) is a 

platinum-based antineoplastic agent that inhibits DNA 

replication and transcription by forming cross linkages 

within double strands of DNA.  Folinic acid stabilizes the 

5-FU-TS complex with less cytotoxicity and reduced side 

effects of 5-FU with lower dosage which is required to 
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complete the cycles of treatment. We primarily 

investigated the tumor doubling time of PDXs because 

uncontrolled proliferation is one of cancer hallmarks. 

There was no difference on doubilng time between P0 and 

passaged (P0+ , where integer 1) PDX tumors α α≧
(compared by Mann-Whitney U test, P-value = 0.202, 

Figure 21A). Unlike what we expected, the proliferative 

activity with doubling time was not correlated the FDG 

avidity in PDX tumors (Spearman r = 0.238, P-value = 

0.224, Figure 21B). Based on the results of FOLFOX 

groups in GC PDXs, we investigated the FDG avidity in 

twelve PET-scanned patients. We found the slight 

tendency with high SUVmax in FOLFOX non-respond 

group. However, there was no significant difference for 

SUVmax or PETscore between the responder and 

non-responder groups  (Figure 21 C, D). 

  GC with microsatellite instability high (MSI-H) was 

proposed as a distinct subgroup of GCs characterized by 

two large scale molecular studies, The Cancer Genome 

Atlas (TCGA) and the Asian Cancer Research Group 

(ACRG) classification (60, 61). Choi et al. reported that 

STAD (Stomach Adenocarcinoma) and COAD (Colon 

adenocarcinoma) showed a large number of the 

metabolism-related genes than other cancer types 

investigating the relationship between metabolic profiles 

and MSI status (36). Our results also showed that MSI-H 

with high PETscore had hypermutation burden (Figure 

16B, 17). MSI-H GCs are more likely to have favorable 

survival than low level MSI (MSI-L) or microsatellite 
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stable (MSS) tumors and associated with both high 

Tumor-infiltrating lymphocytes (TILs) and programmed 

death-ligand 1 (PD-L1) (62-65). Moreover, accurate and 

reliable evaluation of MSI status considered as a biomarker 

for therapeutics with immune-checkpoint inhibitors is 

important (66, 67). 

  The epithelial-mesenchymal transition (EMT) is critical 

role in embryonic development, wound healing and fibrotic 

disease (68, 69). Tumors poorly infiltrated by T-cells, 

commonly referred to as “cold” tumors, are associated with 

resistance of response to immune checkpoint blockade 

(70). Cold tumors has been reported the linkage with EMT 

which is well-known as one of cancer aggressiveness 

hallmarks with poor survival. Various factors including 

hypoxia could induce and aggravate GC via EMT, which is 

significantly correlated with prognosis. We found that 

PETscore-Low (PETscore-L) and MSS/EMT/PETscore-L 

had a poor prognosis in the ACRG cohort (Figure 19C, D). 

  Takebayashi et al. have reported that SUVmax in gastric 

cancer is rather related to hypoxic status, not the 

glycolytic gene expressions (71). Indeed, our investigation 

of hypoxia inducible factor 1 alpha (HIF1A) and 

EMT-related its downstream comparing SUVmax showed 

that HIF1A had weak positive correlation (Spearman r = 

0.38, P-value = 0.04, Table 6). In this regards, our results 

suggest that PETscore, as a bio-imaging marker 

identifying “cold tumors”, could be used to estimate 

prognosis in GC. 
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Limitations

  The present study has certain limitations. First, although 

we identified a gene signature using small animal PET 

images and RNA-seq data of human GC PDXs and genomic 

alterations based on our PETscore, functional analysis with 

the consequent genes are necessary to further understand 

the functions of these genes in FDG uptake regulation of 

gastric cancer. Second, an additional analysis with 

histopathologic data will make our results more solid and 

reliable. We only used PET image results and mRNA 

transcriptome data of PDX tumor for developing the 

prediction model. Even though our prediction model 

(PETscore) showed clinical characteristics similar to FDG 

uptake reported in previous literature, comprehensive 

multi modal analysis including transcriptome, imaging, and 

histopathologic data can improve our results. Finally, we 

developed PETscore based on RNA-seq data, which 

predicts tumor SUVmax; however, PETscore should be 

cautiously used according to independent external gene 

expression data. As we applied PETscore for qRT-PCR 

data, the data was needed to be preprocessed due to the 

scale difference on gene expression levels. 

Conclusion

  We have introduced a specific [18F]FDG-PET protocol for 

orthotopic and heterotopic gastric cancer PDX in PART I. 

Heterotopic model has higher success rate with less 

mortality. We confirmed correlation with common 
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[18F]FDG-PET related tissue markers and distinct tumor 

signal. PDX mouse model can be useful to access PET 

activity in gastric cancer. 

  In PART II, we identified a five-gene signature for FDG 

uptake prediction in gastric cancer using PDXs, which was 

validated by RNA-seq and qRT-PCR in human. We found 

PETscore associations for glycolytic signature and 

EMT-related prognosis in public omics databases. 

  Thus, as a strength of this study is can be mentioned 

that this is the first study to establish a clinically relevant 

genetic signature of gastric cancer likely to show high 

FDG uptake. Our PETscore may provide additional 

information for gastric cancer patient selection for 

personalized PET imaging.
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국문초록

 

배경: 은 다양한 암의 병기 약물반응 그리고 재발 평가에  FDG-PET , 

널리 쓰이나 위암의 경우 의 섭취가 일정치 않아 그 역할이 제한, FDG

적이다 환자유래이종이식 모델 은 전임상 연구에서 유망한 . (PDX)

in-vivo 모델이다 본 연구는 환자맞춤 계획 및 분자적 특성 조 . PET 

사를 위해 위암 마우스 모델을 이용한 섭취 예측 유전자 지PDX FDG 

표를 개발하는 것이다.  

방법: 암컷 누드마우스에 위암 조직을 정위 및 피하에  BALB/c PDX 

이식했다. [18 촬영 프로토콜을 다양한 종양 크기 및 F]FDG-PET 

선량 촬영 간격 그리고 장기 특이적 섭취에 대해 평가했다FDG , FDG . 

동일 를 이용한 정위 및 피하 이식 모델 간 친화력을 비교했PDX FDG 

다 종양 성장 확인 및 포도당 수송체 그리고 헥소키나아제 . 1(GLUT1) 

와 섭취 간 상관관계를 현미경적 관찰과 면역염색 활용하2(HK2) FDG 

여 조사했다.

결과가 있는 례의 의 시퀀싱 데이터를 이용FDG-PET 30 PDX RNA 

하여 최대 표준섭취계수 와 연관된 유전자 지표를 식별했다(SUVmax) . 

가지 유전자 지표5 (PLS1, PYY, HBQ1, SLC6A5, NAT16 를 이용)

하여 높은 섭취를 보이는 위암을 예측하는 모델 를 FDG (PETscore)

구축했고 환자에서 과 기법을 통해 평가했다, RNA-seq qRT-PCR . 

더욱이, 암유전체지도 및 (TCGA) 아시아 암 연구 그룹 위암 (ACRG) 

공공데이터에서 모델의 특성을 조사했다.

결과: 촬영 프로토콜 의 용량을 주입하고 시간 뒤  PET 150 Ci , 1μ

촬영하는 것으로 결정했다 동일 조직을 이용한 정위이식 및 피하. PDX 

이식 마우스 모델 간 비교에서 정위이식 모델이 섭취가 높았고 종FDG , 

양 성장이 느렸다 종양 세포 내 과 발현의 는 . GLUT1 HK2 H-score
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와 상관관계를 보였다SUVmax .

환자에서 는 실제 값과 비교하여 유의한 예측 값을 PETscore SUVmax

제공했다 및 데이터를 이용한 조사에서 가 . TCGA ACRG PETscore

해당과정 현미부수체 불안정성 상태 그리고 , (MSI) , 상피간엽이행

관련 예후에(EMT) 연관성을 보였다 .

결론: 전임상적 위암 기반  PDX [18 프로토콜은 종양 특F]FDG-PET 

이적 섭취를 나타내고 당대사 단백과 상관관계를 보인다FDG , . PDX 

이식 마우스모델은 위암에서 활성 평가에 유용할 수 있다PET . FDG 

섭취 예측 모델 은 다양한 대사 프로파일 기반 위암의 분자(PETscore)

적 특징을 제안한다 더욱이 는 섭취를 예측하여 병기 . , PETscore FDG 

및 관찰을 위한 개인맞춤 을 제안할 수 있을 것이다FDG-PET .

핵심어 위암 양전자 방출 단층 촬영 환자유래이종이식 유전자 지표: , , , , 

표준섭취계수 해당과정 현미부수체 불안정성, , , 상피간엽이행
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