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Abstract

Somatic mutation landscape reveals differential variability

of cell-of-origin for esophageal and liver cancer

Kyungsik Ha

Interdisciplinary Program of Medical Informatics

The Graduate School

Seoul National University

Primary esophageal and liver cancers display consistent increase in

the global disease burden and mortality. Identification of

cell-of-origins for primary cancers would be a necessity to expand

options for designing relevant therapeutics and preventive medicine

for these cancer types. Although multiple studies addressed possible

heterogeneity of cell-of-origins for these cancers and its subtypes, an

integrative research on cell-of-origin for each cancer utilizing human

specimen data was poorly established. To this end, we analyzed

previously published whole-genome sequencing data for

pre-cancerous, cancer, and progenitor tissues along with publicly

available normal tissue epigenomic features to conduct in-silico

prediction of the cell-of-origin for primary cancer subtypes. Especially

in the case of primary liver cancer, we included single cell RNA-seq

data from human livers to assess correlation patterns and verified

this information from cell-of-origin analysis at cell level. Our data

showed that the establishment of somatic mutation landscape inferred

by chromatin features occur early in the process of cancer
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progression, and gastric acid reflux environmental exposure-mediated

epigenetic changes, represented as gastric metaplasia, at early stage

can dramatically impact on determining cell-of-origin of esophageal

cancer. In addition, despite mixed histological features, the

cell-of-origin for mixed hepatocellular carcinoma/intrahepatic

cholangiocarcinoma subtype was predominantly predicted to be

hepatocytic origin. Furthermore, individual sample-level predictions

also revealed hepatocytes as one of the major predicted cell-of-origin

for intrahepatic cholangiocarcinoma, thus implying trans-differentiation

process during cancer progression. Additional analyses on the whole

genome sequencing data of hepatic progenitor cells suggest these

cells may not be a direct cell-of-origin for liver cancers. Furthermore,

a rare proportion of hepatocellular carcinomas were predicted as a

non-hepatocytic cell-of-origin, which also demonstrated a high

expression level of epithelial cell marker specific marker, EPCAM.

Collectively, these results provide novel insights on the heterogeneous

nature and potential contributors of cell-of-origin for primary cancers.

_____________________________________________________________

keywords: somatic mutation, epigenetic features, cell-of-origin,

machine learning, esophageal cancer, primary liver cancer
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Introduction
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1. Studies on the relationship between somatic mutation

landscapes and epigenetic features in cancer genomics

Recent advances in cancer genomics have so far revealed numerous

somatic mutation landscapes for various cancer types, leading to a

number of key findings. Identification of new driver gene mutations,

deciphering clonal evolution structure, and profiling tumor

heterogeneity within and among different patients through

examination of mutations, mainly at the gene level (Alexandrov et al.,

2013; Hodgkinson et al., 2012; Kan et al., 2010; Kandoth et al., 2013;

Lawrence et al., 2013; Martincorena and Campbell, 2015; Schaefer and

Serrano, 2016), have successfully addressed the genes contributing to

cancer progression and identified novel therapeutic targets. Beyond

these gene-focused approaches, systematic analyses of mechanisms

that could explain genomic regional variations in mutation rates

across various cancer types could significantly extend our

understanding about common contributors to the establishment of

mutation landscapes before and during cancer progression. To this

end, a number of studies have examined relationships between

regional mutation frequencies across the genome and some types of

features, including gene expression level and DNA sequence context.

While these factors are being investigated intensively, the studies on

the relationship between somatic mutation profiles and other features

such as epigenetic marks has been thought to be less significant in

cancer genomics so far. Epigenetic marks are heritable elements that

can affect the phenotype without altering the DNA sequence.

Although DNA methylation was considered to be the only epigenetic

marker that can be inherited in the traditional criteria, recent

definitions of epigenetic marks include histone post-translational

modifications (methylation, acetylation, phosphorylation, ubiquitination,
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etc.) and histone variants (H3, H4, H2A, H2B) to deal with the

complexity of living organisms. Since these marks contribute to the

regulation of gene expression and DNA replication by affecting the

chromatin environment such as high order chromatin structures,

nucleosome occupancy, and hypomethylated blocks in the nucleus,

both epigenetic marks and chromatin changes are crucial to identify

cell characteristics and their cancer progression. In line with this,

recent studies have also investigated the relatedness between somatic

mutation profiles and these epigenetic features, including histone

post-translational modifications and open chromatin marks such as

DNase1-seq profiles (Liu et al., 2013; Polak et al., 2015; Polak et al.,

2014; Schuster-Bockler and Lehner, 2012; Stamatoyannopoulos et al.,

2009; Supek and Lehner, 2015; Thurman et al., 2012; Woo and Li,

2012). In consequence, it was confirmed that these epigenetic features

display high correlation with regional mutation rates.

2. Predicting cell-of-origin (COO) of cancer at subtype and

individual sample level

Among the various studies applying an intimate relationship between

somatic mutation profiles and epigenetic features, one of the

successful cases was the development of an algorithm for predicting

cell-of-origin (COO) of cancer (Polak et al., 2015). Although this

study was designed to predict the mutation rate of each cancer cell

type from the epigenetic features of normal cells at the 1

megabase-level, the fundamental goal of the study was to trace the

cell-of-origin of cancer from the importance ranking of epigenetic

features that contribute to predict the mutation rate using random

forest regression. Until now, a total of eight cancer types was

investigated by aggregated the somatic mutation data, and the
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cell-of-origin of each cancer type was correctly predicted except for

the lung cancer type that has no associated epigenetic data (Polak et

al., 2015). However, despite the successful development of the COOs

prediction algorithm for each cancer type, no studies were yet

performed to cancer subtype-specific or individual sample-specific

predictions that could have clinical implications associated with

prevention strategies. COOs classification of cancer at subtype and

individual sample level is clinically important, because it has been

confirmed that some cancer type could have multiple COOs from

different cells/tissues through animal experiments and cell line

studies. In other some cancer type cases, cancerous tissues can be

initiated from fully differentiated cells or from progenitor cells. Thus,

it is crucial to distinguish COOs depending on subtype or individual

sample to establish the early-stage diagnosis and possibly the

treatment selection for each case. This distinction is also essential to

understand the biological mechanism of cancer, since cancer

progression could differ depending on the origin cells of the cancer.

Here, we performed a computational approach to dissect out the

putative COOs on each cancer subtype and interrogated possible

individual tumor-level heterogeneity in COOs. For this, we analyzed a

total of whole genome sequencing data from barrett’s esophagus

(BE), esophageal adenocarcinoma (EAC), esophageal squamous cell

carcinoma (ESCC), primary liver cancer (PLC), extrahepatic biliary

tract cholangiocarcinoma (BTCA), and hepatic progenitor cells (HPC)

for assessing the possibility as a common COO for PLCs, along with

423 of chromatin features at the epigenome-level. PLC comprises

classical hepatocellular carcinoma (HCC) subtype, which represents ∼

90% of PLCs, as well as combined hepatocellular and

cholangiocarcinoma (cHCC/ICC) and intrahepatic cholangiocarcinoma
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(ICC), which are the two cancer subtypes displaying biliary phenotype

to different extent. The mixed subtype (Mixed), one of the cHCC/ICC

subtypes, particularly displays mixed histological features without any

clear distinctive boundary between the HCC-like and ICC-like parts,

thus posing substantial challenges in inferring the COO for these

tumors by either histology or other phenotypic measurements. Since

chromatin marks were generated from tissue-level samples, we

attempted to complement our findings on the correlations between

somatic mutation landscape and chromatin features by utilizing single

cell RNA-seq (scRNA-seq) data derived from human liver tissue

(MacParland et al., 2018) to dissect out the relationships between the

gene expression features from normal liver cell types and somatic

mutation landscape of PLCs. Our study not only confirmed the role of

chromatin marks associated with possible COOs in shaping the

mutation landscape of each cancer type, but also uncovering the

differential contribution of each COO in different subtypes of each

cancer type.
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Materials and Methods
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Data for esophageal cancer. For the purposes of our project, we

used somatic mutation data from BE, EAC, and ESCC tissues. Data

use were authorized from ICGC (http://icgc.org) and BGI

(http://www.genomics.cn/) before use. A total of 23 pairs of Barrett’s

esophagus and matching esophageal adenocarcinoma genomics data

(Ross-Innes et al., 2015) were authorized from ICGC and genome

data of 14 ESCC samples (Zhang et al., 2015) were acquired from

BGI. These data sets were subsequently analyzed following the

standard GATK pipeline (https://www.broadinstitute.org/gatk/) and

somatic variants were called using the MuTect algorithm (Cibulskis

et al., 2013)(https://www.broadinstitute.org/cancer/cga/mutect).

Data for primary liver cancer. We used somatic mutation data of

whole-genome sequencing (WGS) from the NCC-Japan liver cancer

(LINC-JP), RIKEN-Japan liver cancer (LIRI-JP), and Singapore

biliary tract cancer (BTCA-SG) projects after acquiring permission

from ICGC (http://icgc.org). LINC-JP and LIRI-JP data consisted of a

total of 282 samples with the exception of some cases which

displayed multifocal or hypermutations, and these data were

subgrouped according to the histological types (256 HCCs, 8 Mixed,

and 18 ICCs). Data from BTCA-SG were all extrahepatic

cholangiocarcinoma samples consisting of 12 samples without any

particular subgroups. The raw files of these datasets were analyzed

along the standard GATK pipeline

(https://www.broadinstitute.org/gatk/) and somatic mutations were

called with the MuTect algorithm

(http://archive.broadinstitute.org/cancer/cga/mutect) (Cibulskis et al.,

2013). In addition to the data sets listed above, WGS-derived somatic

mutation profile from additional 31 stem/progenitor samples (10 HPCs

and 21 colon adult stem cells) and 38 ICCs from previous studies
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(Blokzijl et al., 2016; Jusakul et al., 2017) were utilized for the

analysis related to hepatic progenitor cells and as an independent

cohort for predicting the COO of ICCs.Furthermore, additional WGS

data from 21 Mixed subtype samples from a recent study (Xue et al.,

2019) were also used for the COO prediction as another independent

cohort. Somatic variants of these samples were called from a different

method that was designed in each study comparing to the datasets

we analyzed.

Epigenomic data and data processing. A total of 423 epigenomics

and chromatin data were from the NIH Roadmap Epigenomics

Mapping Consortium (Roadmap Epigenomics et al., 2015) and

ENCODE (Consortium, 2012). NIH Roadmap Epigenomics data were

accessible from the NCBI GEO series GSE18927, referring to the

University of Washington Human Reference Epigenome Mapping

Project.

To calculate the regional mutation density and mean signal of

chromatin features, all autosomes were split in 1-Mbp regions

followed by filtering out regions containing centromeres, telomeres

and low quality unique mappable base pairs. To determine regional

mutation density and histone modification profiles, we counted the

total number of somatic mutations or ChIP-seq reads per each 1

megabase region. For analyzing the DNase I hypersensitivity and

Repli-seq data, scores of DNase I peaks and replication were

calculated per each 1 megabase region. For somatic mutations,

ChIP-seq data and DNase I hypersensitivity data, BEDOPS (Neph et

al., 2012) was employed to calculate the frequency and scores per

each 1Mbp region.

Principal coordinate analysis. Principal coordinate analysis was
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used to represent differences in mutation frequency distribution

among the individual samples. A dissimilarity matrix was built using

1 – Pearson correlation coefficient across all samples. Each sample

location was assigned in a two-dimensional space using this matrix.

Feature selection based on random forest regression. A random

forest regression-based feature selection algorithm was performed as

described (Polak et al., 2015) with modifications. Briefly, the training

set for each tree was constructed, followed by using out-of-bag data

to estimate the mean squared error. Thus, there was no need to

perform additional tests for error evaluation. Out-of-bag data were

also used to estimate the importance of each variable. In each

out-of-bag case, the values corresponding to each variable were

randomly permuted, then tested to each tree. Subtracting the score of

the mean squared error between the untouched out-of-bag data cases

and the variable-m-permuted cases, the raw importance score of

variable m was measured. By calculating the average score of

variable m in the entire tree, the rank of importance for each variable

was determined. A total of 1,000 random forest trees were employed

to predict mutation density using a total of 423 chromatin features.

Every random forest model was repeated 1,000 times.

After the random forest algorithm step, greedy backward elimination

was performed to select the top 20 chromatin variables. Subsequent

removal of the lowest rank variable was done to calculate the

variance explained value measurements for each variable. To conduct

feature selection on all of the samples corresponding to the particular

pre-cancerous tissues or cancer types, mutation density was

calculated by adding samples in each case. However, the subgrouping

of samples was employed for specific analyses of the esophageal

cancer type. To perform feature selection classified by differential



- 10 -

dysplasia states, samples were divided into 3 groups: 17 samples of

no dysplasia, 3 samples of low-grade dysplasia and 2 samples of

high-grade dysplasia. In the case of feature selection after

subgrouping for distinct and common mutations, all mutations in

paired-samples of BE and EAC were divided into 3 different groups:

Barrett’s only, EAC only, and common mutations.

Analysis of mutation frequency variance explained by chromatin

features for esophageal cancer. To examine the effect of a

particular cell-type specific chromatin context on explaining regional

variability of mutation density across the genome, chromatin features

were subgrouped based on the feature selection algorithm. To study

the differences in variance explained values among distinct cell types,

9 groups were categorized. Each group included 5 chromatin markers

common among the groups: H3K27me3, H3K36me3, H3K4me1,

H3K4me3 and H3K9me3. Random selection of 6 chromatin features

were either from all of the 423 features or 417 features (excluding

stomach mucosa chromatin features). Random selection of chromatin

features was repeated 1,000 times, then the average variance

explained values and permutation distributions were obtained.

Prediction of regional mutation frequencies in 1-megabase

genomic regions with differential chromatin levels for

esophageal cancer. To select 1-megabase genomic regions with

differential H3K4me1 levels, we calculated residual values derived

from a linear regression model between the H3K4me1 level of

stomach mucosa and that of esophagus tissue. To represent regions

harboring differential H3K4me1 levels along with increased mutation

accumulation rates after gastric metaplasia, a total of 92 regions were

chosen based on the two criteria: (1) displaying top 5% in term of
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the residual values, (2) showing higher H3K4me1 levels in esophagus

than stomach mucosa. Subsequently, we built two separate regression

models, and then applied the model to predict the regional mutation

frequencies for the 92 regions. One regression model was between

observed mutation frequencies in BE with no dysplasia and H3K4me1

level of stomach mucosa, and the other one was between observed

mutation frequencies in BE with no dysplasia and H3K4me1 level of

esophagus.

Prediction of cell-of-origin for primary liver cancer by grouping

of chromatin features. To predict cell-of-origin for individual

samples, chromatin marks were subgrouped based on the aggregate

sample-level feature selection results. As a first step, we selected

significant chromatin cell types above the cutoff score from the

feature selection results using aggregated samples corresponding to

each cancer type. Subsequently, we added relevant cell types and

grouped the chromatin marks according to each selected cell type to

evaluate the effect of cell-type specific chromatin on explaining

variability of mutational landscapes among samples. For predicting the

COO for HCCs, we simply utilized the importance ranking among

variables from 423 chromatin features due to the fact that liver

chromatin features were the only major type in the aggregated

feature selection results for HCCs. For our purpose, we considered

the samples with positive variance explained score as relevant

samples for the COO assignments.

Signature analysis of mutational processes for primary liver

cancer. Nonnegative matrix factorization (NMF) algorithm was

employed to investigate mutation signatures as described in previous

study (Blokzijl et al., 2018). This methodology was utilized by
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factoring out frequency matrix of 96-trinucleotide mutation contexts

from HCC, Mixed, ICC, BTCA-SG and HPC samples.

Gene expression analysis for primary liver cancer. RNA-Seq

experiments of HCC samples were performed previously (Fujimoto et

al., 2016), and the data had been deposited in the European

Genome-phenome Archive. The reads were aligned onto the reference

human genome GRCh37 using TopHat v2.1.1. Raw read counts per

gene were computed using HTSeq with the GENCODE v19

annotation. Differential gene expression between hepatocytic- and

non- hepatocytic-origin HCCs was analyzed using limma-voom

v3.26.9 (Ritchie et al., 2015). Gene set enrichment analysis (GSEA)

was performed using the GSEAPreranked v5 module on the

GenePattern server (https://genepattern.broadinstitute.org).

Assessment of relationship between aggregate sample-level

somatic mutation landscape and Single-cell RNA-sequencing

(scRNA-seq) data. Data acquirement from single cell clusters was

performed by running scClustViz algorithm (Innes and Bader, 2018)

on previously generated human liver scRNA-seq data (MacParland et

al., 2018). Two central venous hepatocyte clusters (Cluster 1 and 3),

two periportal-like hepatocyte clusters (Cluster 5 and 14) and one

cholangiocyte cluster (Cluster 17) was selected as representative cell

clusters for this analysis. Spearman correlation level association was

assessed between either of the two gene expression factors

(within-cluster level cellular transcript detection rate, DR; mean

detected transcript count for the cells harboring detectable transcript

level, MDTC) (Innes and Bader, 2018) derived from representative

clusters and chromatin features or regional somatic mutation

variations. For the genomic regions, we either used all of the
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genomic regions or sub-selected 5% genomic regions that represent

the largest difference in the regression model between H3K4me1 liver

and stomach mucosa. Levels for expression factors (DR, MDTC) of

genes in each cluster were aggregated by 1-megabase window for all

genomic regions with DR cutoff of >0.05 or selected genomic regions

without the cutoffs. If a particular gene spans two 1-megabase

genomic regions, we applied the aggregation of expression factor

levels on the region where the gene has a greater length proportion.

Prediction of cell-of-origin by utilizing scRNA-seq data for

primary liver cancer. In order to complement the chromatin

feature-based COO predictions, we applied the previous random forest

algorithm by substituting the chromatin features into the scRNA-seq

data of human liver tissues. scRNA-seq data from a total of 20

single cell clusters (6 hepatocytes clusters, 1 cholangiocyte cluster, 3

endothelial cells clusters, 1 hepatic stellate cells cluster, 2 B cells

clusters, 3 T cells clusters, 1 NK-like cells cluster, 2 intrahepatic

monocyte/macrophage clusters, and 1 erythrocyte cluster) generated

from previous study (MacParland et al., 2018) were used for the COO

prediction, and the DR expression factor values derived from each

cluster were added up based on the gene distribution in 1-megabase

window (same windows as chromatin features) for all genomic

regions. Eventually, from the variables of these 20 clusters sorted by

1-megabase window, we applied greedy backward elimination to

figure out the most significant cluster for the regional mutation

density of each sample. For our purpose, we considered the samples

with positive variance explained score as relevant samples for the

COO assignments. In case of predicting COO for each PLCs subtype

of aggregated samples, we applied greedy backward elimination using

the average DR value of clusters corresponding to each cell type and
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subsequently ranked the DR value features for each cell type.

Code availability. Our core analysis code utilizing the random forest

feature selection algorithm will be available on GitHub (code name:

Random_forest_Ha_mutation_epi).
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Results and Discussions
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1. Somatic mutation landscape reveals differential variability of

cell-of-origin for esophageal cancer

Precancerous tissues and matching cancers display similar

regional mutation frequency profile. We performed principal

coordinate analysis (PCOA) to test whether the average mutation rate

differences reported previously (Ross-Innes et al., 2015) reflected in

the level of 1 megabase window regional mutation frequencies.

Individual BE tissues formed clusters with the EAC tissues separate

from the ESCC tissues, suggesting that the matching of cancer

progression history might serve as a stronger factor than the

cell-of-origin context itself (Figure 1). These result shows similarity

in regional variation in mutation frequencies of precancerous tissues

and matching cancer types, indicating that the effect of cell-of-origin

context might be cancer-type dependent.

Epigenetic shifts caused by metaplasia, driven by acid reflux,

explains the establishment of the somatic mutation landscape

for both BE and EAC. Cell type shift, represented as gastric

metaplasia, is one of the main hallmarks in the development of BE

(Hayakawa et al., 2016). Thus, one could assume that the critical

time point for the establishment of the mutation landscape for BE

could be either before or during the course of cell type shift, or after

its completion. Chromatin feature selection analysis of the mutation

landscape of BE and EAC tissues confirmed that high-ranked

chromatin features were derived from the stomach tissue type (Figure

S1) for both tissues, without any significant esophageal chromatin

features. Simple correlation between regional mutation frequency and

histone modification marks from stomach and esophagus tissues

revealed marginal differences between BE and EAC tissues (Figure
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S2a, b), and this pattern was also consistent with the correlation to

stomach tissue DNase I hypersensitivity profile (Figure S3a).

Moreover, six features covering all stomach chromatin features

subjected to the feature selection analysis solely explained over 80%

of the regional mutation variance for both BE and EAC tissues,

which is unlikely to be non-random (p value < 2.2e-16) (Figure S4).

These results imply that the major time point of mutation landscape

establishment for BE is most likely to be after the cell type shift into

stomach mucosa-like cells. Chromatin feature selections on subgroups

of somatic mutations for BE and EAC based on overlap and

uniqueness of the mutations shared common top-ranked stomach

chromatin features (Figure 2a). In addition, chromatin feature selection

on sample subgroups with respect to dysplasia grade revealed that

the top features all originated from stomach tissue (Figure S5) and

the variance explained level for all of the dysplasia-based subgroups

using six stomach tissue chromatin features were similar to the

variance explained level using all 423 chromatin features (Figure 2b).

This finding was consistent with the high correlation to stomach

tissue DNase I hypersensitivity profile (Figure S3b). Next, we sought

to further determine whether the contribution of stomach mucosa

chromatin features were indeed more crucial than esophagus

chromatin features for shaping the mutation landscape of BE through

an independent type of analysis. For this, H3K4me1 chromatin feature

was used since this single feature explains most of the variance in

mutation frequency of BE. Ninety-two 1-megabase regions displaying

differential H3K4me1 levels were selected (methods) based on the

speculation that these regions would likely to represent accelerated

mutation accumulations through epigenetic changes during gastric

metaplasia. Subsequently, we predicted mutation frequencies in the 92

regions by linear regression-based modeling using H3K4me1 level of
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either stomach mucosa or esophagus tissue (methods). Comparing the

observed and predicted mutation frequencies in the 92 regions

revealed that the mutation frequencies predicted by H3K4me1 of

stomach mucosa was similar to the observed regional mutation

frequencies, but the mutation frequencies predicted by H3K4me1 of

esophagus tissue was significantly different from the other two

groups (Figure S6a). Moreover, regions with larger differences in

H3K4me1 level overall display higher accuracy of mutation frequency

predicted by using H3K4me1 level of stomach mucosa (Figure S6b).

These result further implicate that the chromatin features from

stomach mucosa provide major contribution for establishing the

mutation landscape of BE, as opposed to the chromatin features of

esophagus tissue, a cell-of-origin for BE. From all of these results,

we infer an early time point for establishment of the mutation

landscape for EAC, even prior to the occurrence of dysplasia for BE,

but most likely after epigenetic changes due to gastric metaplasia.

Cell-of-origin of major chromatin features associated with

mutation landscape establishment for BE, EAC, and ESCC are

different. To ensure that the chromatin features shaping the

mutation landscape of BE and EAC were not common to any

esophageal cancer type, we analyzed the genome of ESCC, another

cancer type derived from the esophageal squamous epithelium without

any precancerous stages with cell type shift. Although the regional

mutation frequency of ESCC correlated with histone modification

marks from stomach and esophagus tissues in a similar manner

(Figure S2c), chromatin feature selection revealed a subset of

squamous cell type and esophagus chromatin features that were

significant and distinct from BE and EAC (Figure S7). Moreover,

measuring the level of variance explained values per tissue or cell
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type categories showed stomach chromatin features to be the

strongest ones for BE and EAC, reaching higher than 90% of the

variance level explained by the 423 total chromatin features, whereas

esophageal chromatin features were dominant for ESCC (Figure 3).

Notably, the variance explained values for each category displayed

non-significant relationship with simple correlations between the

chromatin marks from different tissue or cell types (BE rs = 0.36,

EAC rs = 0.36, ESCC rs = 0.18). These results imply a distinct

process of mutation landscape establishment for these cancer types

that varies depending on the presence of precancerous tissues with

cell-type shifts.

Discussion. One thing to note is that our results display

non-universal chromatin features identified as significant in different

cancer types. The reason for these differences in the extent of

variance explaining values for any distinct chromatin feature could be

complex, and the reason might be due to the tissue type-dependent

differences in the mechanisms of epigenetic regulation plus the

differences in major contributing chromatin features serving as either

euchromatin or heterochromatin marks. One mechanistic approach to

assess the extent of chromatin features contributing to mutation

landscape is using CRISPR-Cas9 system to incorporate mutations on

chromatin enzymes leading to global epigenetic changes, and then

inducing somatic mutations using various types of mutagens to

examine the effect of different epigenetic features on shaping

mutation landscape, which could be one of the strong candidates for

any follow-up research.

Finally, analyses results from BE and EAC raise the possibility that

epigenetic changes due to environmental insults, represented as a cell

type shift, could serve as a primary role for establishing the mutation
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landscape of at early stage of cancer progression. Although there are

possibilities that esophagus tissue chromatin features could still be

involved in shaping the mutation landscape of BE in a minor manner,

our analyses demonstrated that the stomach tissue chromatin features

serve as a key factor shaping regional variations in somatic mutation

frequency of BE.
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2. Somatic mutation landscape reveals differential variability of

cell-of-origin for primary liver cancer

Aggregate Sample-level Correlations Between Chromatin Marks

and Somatic Mutations of PLCs. Based on the previous findings

about the associations between the chromatin feature levels and

regional variations in somatic mutation frequencies of tumors (Polak

et al., 2015; Polak et al., 2014) and applying this knowledge onto

machine-learning based COO predictions on several cancer types

(Kübler et al., 2019), we first hypothesized that the whole-genome

mutation landscape of hepatocytic PLC subtype (HCCs) would exhibit

a closer relationship with liver tissue (surrogate tissue for

hepatocytes) chromatin marks, whereas the mutation landscape of

partial or fully biliary PLC subtypes (Mixed and ICCs) and the

BTCAs would likely to display stronger correlations with the

chromatin marks from tissues containing either cuboidal or columnar

epithelium (kidney, stomach, or intestines as representative surrogate

tissues for the cholangiocytes), depending on the extent of biliary

phenotypes and anatomical locations. To examine differential

associations among the mutation landscape for different subtypes of

PLCs and the chromatin feature levels from normal tissues, we first

employed a random-forest based feature selection method to identify

the chromatin features that explained the possible variances in

regional somatic mutation frequencies. To conduct the analysis, we

utilized somatic mutation frequency data at a 1-megabase window for

three subtypes of PLCs (HCCs, Mixed and ICCs) and BTCAs at an

aggregated sample level along with the 1-megabase window

chromatin feature counts. As hypothesized, liver tissue chromatin

marks served as major features displaying significance for HCCs, and

a stomach tissue chromatin mark served as the first-rank feature for
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ICCs and BTCAs (P < 2.2e-16, Mann-Whitney U-test between the

first and second rank features of each PLC subtype; Figure 4a).

Surprisingly, liver tissue chromatin marks were major features

explaining the regional mutation variation of Mixed subtype. This

result indicates a possible tendency of putative COO towards to the

hepatocytes for the Mixed subtype, albeit known molecular

heterogeneity among individual tumors (Moeini et al., 2017) and the

partial biliary phenotypes in histology. The overall lower variance

explained scores for Mixed and ICCs compared to the HCCs were at

least in part likely due to the lower number of the samples and the

total mutation load (Figure S8a, b), indicating that the actual

correlation between the liver tissue chromatin features and the

somatic mutation landscape of Mixed may be similar to that of

HCCs. In line with these results, spearman correlations between the

regional mutation frequency of HCCs or Mixed and liver H3K4me1

chromatin mark level was the largest when comparing to different

chromatin marks from a possible pool of surrogate tissues, whereas

stomach H3K4me1 chromatin mark level showed the highest

correlation with the regional mutation frequency of BTCAs (Figure

S9a). Spearman correlation values among the regional mutation

frequency of ICCs and H3K4me1 of different tissues were overall low

without displaying any tissue type dependent differences, which can

be due to both the lower mutation load of ICCs and the possible

intrinsic COO heterogeneity. These correlation patterns were more

exemplified when sub-setting the genomic regions according to the

top 5% difference in ChIP-seq counts between liver and stomach

H3K4me1 marks (Figure S9b). Similar to the spearman correlation

results, the regional quintile-based mean mutation density data of

HCCs and Mixed showed relatively higher association with the liver

tissue H3K4me1 level comparing to the stomach tissue H3K4me1
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level, while the mean mutation data for ICCs and BTCAs displayed

higher association towards the stomach tissue H3K4me1, with ICCs

as a lesser extent (Figure 4b). Collectively, these results demonstrate

that COO-associated chromatin features can delineate the relationships

with the mutation landscape of PLCs and BTCAs.

Aggregate Sample-level Correlations Between Single Cell

RNA-seq data and Somatic Mutations in PLCs. Previous

publication showed that gene expression data can explain regional

somatic mutation variance, albeit at a lower level compared with the

chromatin features (Polak et al., 2015). As with any major tissue

types, liver tissue contains multiple cell subpopulations including

hepatocytes, cholangiocytes, stellate cells and other rare cell types,

which suggests a potential limitation of mixed cell subpopulations

when using traditional bulk tissue-level RNA-seq data in such

analysis. In our study, we revisited correlation levels between gene

expression and the somatic mutation landscape for PLCs by utilizing

recently published human liver scRNA-seq data (MacParland et al.,

2018), thus taking into account the heterogenous cell types within a

liver tissue. After sub-selecting four cell clusters representing

hepatocytes and one cluster corresponding to cholangiocytes

(methods), we first assessed the relationship between gene expression

features and somatic mutation landscape of PLCs for all of the

1-megabase genomic regions after employing a single-cell-level RNA

transcript detection rate (DR) threshold on gene expression data

(methods). Spearman correlation values between either DR or mean

detected transcript count level (MDTC) and somatic mutation

frequencies for PLC subtypes showed significant but generally lower

correlation values than when using H3K4me1 chromatin features

(spearman coefficient (absolute value) < 0.52 for HCC, < 0.45 for
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Mixed, < 0.32 for ICC and < 0.45 for BTCA). We next used the top

5% difference in H3K4me1 ChIP-seq counts between liver and

stomach tissues, which are the most representative regions used in

the previous analysis showing differences in correlations between

regional somatic mutation frequencies for PLCs and chromatin

features. Results assessing the correlation between the H3K4me1

chromatin features and DR or MDTC for these sub-selected regions

revealed that the DR values were more representative of

demonstrating expected correlations with chromatin features for both

tissue types (Figure S10a). A subsequent analysis was conducted to

assess the correlations between DR values from either hepatocyte or

cholangiocyte clusters and regional somatic mutation variations of

PLCs in the subset regions. Results showed that although the

correlation coefficients derived from DR values were less robust than

the chromatin features, (consistent with the previous report (Polak et

al., 2015)), the observed correlation tendencies were similar, especially

for the somatic mutation landscapes for ICCs and BTCAs. (Figure

S10b).

Based on the results above, we next examined the possibility of

using DR value features from individual liver cell types by

conducting random-forest feature selection method (methods).

Although showing lower variance explained scores, our results

displayed consistencies with the chromatin-based feature selection

results (Figure 4a) by showing hepatocyte DR feature as the first

rank for HCCs and Mixed, and cholangiocyte DR feature as the first

rank for ICCs and BTCAs (Figure S10c). Collectively, our results

using DR gene expression feature complemented the chromatin

feature-based aggregate-level analyses and further confirmed the

relationship between the molecular features derived from the putative

COO and regional somatic mutation frequencies of PLCs.
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3. Functional study for primary liver cancer

Individual Sample-level Cell-of-origin Predictions for primary

liver cancer. To further assess the differential mutation landscapes

and possible COOs for PLCs and BTCAs at the individual sample

level, we conducted a random forest algorithm-based COO analysis

for each sample (methods). This individual sample-based COO

analysis demonstrated the dominance of a hepatocytic predicted COO

for HCCs, in contrast to the predictions for BTCAs, which showed

stomach tissues (a proxy tissue for extrahepatic cholangiocytes) as a

major putative COO (Figure 5a). For the mixed subtype, hepatocytic

COO was solely predicted for the 8 samples that were used for the

aggregate sample-level random forest analysis. This result was

replicated for an additional 20 Mixed subtype samples from another

cohort (Xue et al., 2019)(Figure S11a), which is yet again in line with

the aggregate-level correlation results and the recent publication on

the monoclonal origin of mixed subtypes enriched with HCC-like

gene expression-level features (Xue et al., 2019). For ICCs, however,

both hepatocytes and proxy tissues for cholangiocytes (kidney and

stomach) were predicted to be possible major COOs. This COO

prediction pattern was consistent between different ICC cohorts

(Figure S11b), thus emphasizing the consistent heterogeneity of COOs

and inferring that the somatic mutation landscape can harbor the

signature of cell type trans-differentiations and plasticity involved in

liver injury (Monga, 2019), which is most likely to occur prior to the

development of ICCs. Our results not only replicated earlier findings

on the COOs of HCCs, ICCs and extrahepatic distal

cholangiocarcinoma (DCCs) (Wardell et al., 2018), but also adding a

couple of novel aspects including 1) the complete predominance of

hepatocytic predicted COO for Mixed tumors (28/28) and 2) the
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implication of cuboidal cholangiocytes near the canal of hering (kidney

tissue chromatin mark as a surrogate) could be another major COOs

for ICCs besides the hepatocytes. In addition, six HCC samples

showed non-hepatocytic predicted COO, thus implying a possibly

distinct COO for a subset of HCCs that may be linked to differential

tumor pathology. Overall, our results suggest that the predominant

COO for the HCCs and Mixed would most likely to be hepatocytes.

Also, our evidences point to the cholangiocytes as the likely

predominant COO for BTCAs, whereas the COOs of ICCs tend to

vary by individual samples. These results confirm the importance of

anatomical locations on the COOs of PLCs and BTCAs.

Next, we utilized DR gene expression features derived from human

liver tissue as an alternative to chromatin features from liver, kidney

and stomach tissues. Application of DR features from a total of 20

scRNA-seq clusters for random forest-based COO prediction

(methods) to 20 Mixed subtype samples with positive variance

explained scores cross-confirmed the chromatin feature-based COO

prediction results (18 out of 20 showing hepatocytic COO; Figure

S12). For ICCs, only 5 out of 56 samples displayed positive variance

explained scores, further implicating chromatin features as better

predictors of regional somatic mutation frequencies compared with the

scRNA-seq based gene expression features. This result is also in line

with the aggregate-sample level correlation results discussed earlier.

Along with these results, principle coordinate analysis (PCOA) result

revealed that the PLC samples with hepatocytic predicted COO tend

to aggregate as a cluster, displaying principle coordinate 1 value over

0 (Figure S13). In terms of PLC subtypes, HCCs and Mixed samples

were all contained within a cluster, except for the ones with

non-hepatocytic predicted COOs, whereas the ICCs and BTCAs were

more spread out (Figure 5b), reflecting the distinct mutation
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landscape patterns.

To demonstrate whether HCCs with non-hepatocytic predicted COO

have a unique gene expression patterns compared with the

hepatocytic predicted HCCs, we analyzed the genome-wide gene

expression profiles. Among the non-hepatocytic- and hepatocytic

predicted HCC samples, tumor RNA-seq data were available for 6

and 189 samples, respectively (Fujimoto et al., 2016). A comparison of

gene expression levels between them showed that 124 genes were

up-regulated and 21 were down-regulated in non-liver-origin HCCs

(FDR < 0.05, absolute logFC > 0.647; Table S1). Interestingly, the

upregulated genes included an epithelial cell marker EPCAM and a

cholangiocyte-specific marker KRT19 (Figure 5c). Clustering analysis

confirmed that HCCs with non-hepatocytic predicted COO were

enriched in a cluster that expressed more EPCAM and KRT19

(Figure 5d). Gene set enrichment analysis showed that molecular

pathways associated with bile acid synthesis and xenobiotic

degradation were down-regulated in HCCs with non-hepatocytic

predicted COO (Figure S14). This result indicates that the functional

similarity to hepatocytes is being less observed in HCCs with

non-hepatocytic predicted COO. Furthermore, we identified the

connection network between these two molecular pathways related to

the liver function by employing the pathway intersection function in

Bio-Entity Explorer (Jung et al., 2020). Then, it was confirmed that

Aldo-keto reductase family 1 (AKR1) involved in steroid metabolism

was a common enzyme between bile acid synthesis and xenobiotic

degradation (Figure S15). Collectively, the mRNA expression in

non-hepatocytic predicted HCCs partly resembled that of biliary

epithelial cells, which follows the preceding publication about

EPCAM-positive ductal cells as a possible COO for HCCs at an

inflamed condition (Matsumoto et al., 2017). We also compared
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hepatocytic- and non-hepatocytic predicted HCCs in terms of clinical

features (including tumor stage and survival), but we found no

statistically significant difference in these features, which suggest that

the COO assignments for HCCs may be independent of the clinical

prognosis.

Hepatic Progenitor Cells as a Possible Cell-of-origin for PLCs.

EPCAM-positive HPCs, so called as oval cells, are a progenitor cell

type located inside the Canal of Hering. HPCs harbor differentiation

capacity into both hepatocytes and cholangiocytes, and also have been

suspected to be a possible COO for PLCs. To examine the possibility

of HPCs as a possible COO for different subtypes of PLCs, we

performed random forest feature selection analysis using somatic

mutation frequency data for HPCs (Blokzijl et al., 2016) at an

aggregate sample level. Results from this analysis demonstrated that

the mutation landscape of HPCs cannot be explained adequately by

the normal tissue chromatin landscape, with negative-value variance

explained score for the top 1st rank chromatin feature and 25% for

the total 423 chromatin features (Figure 6a). To check whether the

results from HPCs were due to the lower mutation load or possible

differences in mutation accumulation patterns intrinsic to the adult

stem cells, we utilized the mutation landscape data of colon stem

cells (Blokzijl et al., 2016). Aggregate sample level random forest

feature selection analysis of colon stem cells displayed variance

explained score greater than 40% for the H3K9me3 rectal mucosa

chromatin mark and above 60% for the total 423 features.

Post-adjustment of mutation load for colon stem cells at the level of

HPCs still showed chromatin marks derived from the rectal mucosa

tissue as a top ranked feature, with greater than 28% variance

explained score, implying that either the lower mutation load or the
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stem cell specific mutation accumulation patterns might not be a

contributing factor for the feature selection analysis results from two

different adult stem cells. These results also infer distinct mutation

landscape between the HPCs and PLCs through differential variance

explained score patterns, thus suggesting that HPCs might not be a

direct COO of PLCs.

Relationship between mutation signatures and COO predictions.

Previous evaluation on the mutation signature of HPCs identified a

specific age-associated mutation signature displaying a correlation

with replication timing and average chromatin levels of cell lines

registered in the ENCODE project (Blokzijl et al., 2016). Based on

these findings, we conducted mutation signature analysis on the

HPCs along with the PLCs and BTCAs to discover any relationship

between the mutation signature proportions and COO assignments. As

predicted, we successfully extracted a resembling signature (signature

D) to the age-associated signature previously identified in the HPCs

with similar relative proportion level, along with the other three

mutation signatures (Figure S16a-c). Next, we assessed whether the

proportion of signature D correlates with COO assignment for PLCs.

As demonstrated in Figure 6b, the relative contribution of signature D

was significantly lower for non-hepatocytic predicted HCCs and ICCs

comparing to the hepatocytic-predicted HCCs / ICCs and all of the

HPCs. Moreover, several evidences point out that the correlation

between the relative proportion of the mutation signature and the

COO assignment was specific and consistent for signature D. One is

that the proportion of the other three signatures (A, B and C) was

not significantly associated with the COO assignments for ICCs (P >

0.57), and two signatures (A, B) showed no significant associations

with the COO assignments for HCCs (P > 0.24). Also, the mutation
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type patterns of HPCs were more comparable to those of ICCs and

BTCAs rather than the HCCs and Mixed, in contrast to the findings

on the skewness of COO assignment depending on the signature D

status. Furthermore, major proportion of the non-hepatocytic predicted

COO samples were located in the lower quartile for the signature D

proportions (Figure S16d). Collectively, these results provide a novel

perspective with respect to the importance of age-associated mutation

signature levels on COO assignment, and thus reflect the distinct

mutation landscapes between hepatocytic and non-hepatocytic

predicted COO samples.

Discussion. In this study, we applied random-forest machine learning

algorithm and other computational analyses to whole genome

sequencing data of PLCs and epigenomics data / scRNA-seq data

derived from normal tissues to elucidate unique association patterns

between the two features and identify possible COO distribution for

PLCs at the subtype and individual tumor tissue level. Results from

these analyses would help to understand the complex and

heterogeneous nature of liver cancer COOs and the contribution of

chromatin marks on differential regional somatic mutation landscapes

during the progression of various subtypes of PLCs.

Several recent studies support the idea of chromatin marks serving

as a crucial factor in shaping the mutation landscape for several

types of tumors (Ha et al., 2017; Polak et al., 2015; Polak et al.,

2014). Consistent with this idea, our results show that chromatin

marks can explain the mutation landscape of PLCs at the subtype

level, displaying variance explained scores in the range of 56% (ICCs)

to 87% (HCCs). Moreover, the top chromatin marks associated with

the mutational landscape of 256 HCCs were mostly derived from liver

tissue and the top correlative chromatin marks for 12 of BTCAs were
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from the stomach tissue, which are also concordant to the previous

studies on HCCs and DCCs (Wardell et al., 2018). Also, analysis of

the scRNA-seq data from human liver tissue complemented the

chromatin feature-based data by using DR value feature data from

the actual cell types inside the liver tissue. To note, a lower level of

variance explained scores were observed for ICCs comparing to any

other PLC subtypes, using either chromatin features or the DR value

features. We speculate that the potential contributor to these

differences in variance explained scores might be either 1) lower

mutation load or 2) the higher level of heterogeneity in COOs.

Genetically‐engineered mouse model (GEMM) lineage tracing studies

reported COO-dependent discrepancies with respect to the oncogenic

alterations at the molecular level (Vicent et al., 2019). In the case of

ICCs, mouse models either utilizing thioacetamide administration or

Trp53 genetic loss can direct different cell types (hepatocytes vs

cholangiocytes) into ICCs with concomitant Notch signaling activation

(Guest et al., 2014; Sekiya and Suzuki, 2012). For HCCs, most of the

mouse models revealed that this cancer subtype mainly originates

from hepatocytes, but the emergence of HPC-derived benign lesions

could be identified in conjunction with galectin-3 and α-ketoglutarate

paracrine signals (Tummala et al., 2017). Our COO prediction results

not only do conform with these reports but also stress out the

importance of further large cohort-level investigation on the major

COOs of each subtype of PLCs and the potential COO variability,

especially in the context of distinct or co-existing molecular

alterations. Altogether, these researches would remain highly

necessary for a better understanding of the cancer progression for

PLCs along with the early-stage diagnosis and the treatment

selection.

Several publications provided pieces of evidence on the
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injury-mediated plasticity of hepatocytes by demonstrating the ability

to transdifferentiate into cholangiocytes (Michalopoulos et al., 2005;

Sekiya and Suzuki, 2014; Yanger et al., 2013) at in vitro and/or in

vivo. Moreover, several lines of lineage-tracing based evidence show

that the transdifferentiated hepatocytes can arise ICCs indifferent

mouse models (Fan et al., 2012; Sekiya and Suzuki, 2012; Wang et

al., 2018). These transdifferentiation processes are governed mainly by

the activation of Notch1/2 and Akt signaling, which is renowned to

be crucial for the formation of ICCs at least in part by direct

transcription and overexpression of cyclin E gene (Zender et al.,

2013). Consistent with these observations, our random forest-based

COO predictions also point out the possibility that the hepatocytes are

indeed one of the major COOs of ICCs, alongside with the

cholangiocytes. These results implicate that the somatic mutation

landscape of tumors can harbor the information about the history of

cancer initiation and progression, which may enable to detect the

potential cellular transdifferentiation during the course of cancer

development and accompanied somatic mutation accumulations.

The COOs for PLCs were a subject of debate for a number of years,

not only due to the discovery of several types of HPCs (Cardinale et

al., 2011; Wang et al., 2015), but also to the facultative regeneration

of hepatocytes and cholangiocytes displaying trans-differentiation,

which mainly occurs during the inflammation or liver injury (Mu et

al., 2015; Raven et al., 2017). Our prediction results, at least, favor

differentiated cells rather than progenitor or stem cells as origins for

PLCs. This conclusion is based on the findings that 1) normal liver

(representing hepatocytes), kidney, and stomach (surrogate for the

cholangiocytes) tissues can mostly explain the COO of PLCs, and 2)

the somatic mutation profile of HPCs is not adequately explained

(variance explained score < 24.04) by the normal tissue chromatin
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marks. Although our chromatin feature selection analysis did not

contain any liver progenitor/stem cell chromatin marks, poor

correlation between the mutational landscape of HPCs and the liver or

stomach chromatin marks may imply a distinct chromatin landscape

between the differentiated cells/tissues and the progenitor/stem cells.

Although we cannot fully reject the possibility that the HPCs are still

the very first COO of PLCs, our results at least suggest that the

major somatic mutation accumulation would most likely happen in

differentiated cells, not at the progenitor/stem cell level. Future

assessment on the relationship between the chromatin marks derived

from the HPCs and the mutational landscape of PLCs and HPCs

could serve as a separate confirmatory study, although the limitation

on the number of progenitor/stem cells directly from human liver and

its purity are major hurdles for ChIP-seq or any other epigenomics

assays.

In summary, our results on the COO of PLCs discovered several

novel aspects of COO distribution in different PLC subtypes. We

believe that these results not only validate the in vitroand in vivodata

from previous publications on COOs of PLCs through human data but

also address some new aspects of individual-level differences in

tumor biology and clinical pathology of PLCs, and provide a robust

and relevant way of studying cancer COOs in a human

system.Ultimately, our results support arguments for the necessity of

personalized medicine for cancer treatments, combined with genomics

and other molecular signatures.
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Figure 1. Principal coordinate analysis (PCOA) of individual cancer

samples. Barrett’s esophagus, esophageal adenocarcinoma, and ESCC.
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Figure 2. Regional mutation frequency landscape of Barrett's

esophagus and matching esophageal adenocarcinoma are affected by

cell-type-shift-associated epigenetic changes. (a) Chromatin feature

selection based on the commonality of mutations in paired samples of

Barrett’s esophagus and esophageal adenocarcinoma. Barrett’s only: mutations

observed only in the Barrett’s esophagus genome, Common: mutations

observed in common for both Barrett’s esophagus and esophageal

Adenocarcinoma genomes, EAC only: mutations observed solely in the



- 36 -

esophageal adenocarcinoma genome. (b) Bar graph representing average

variance explained scores using either stomach chromatin features (navy) or

all 423 epigenomic features (gray). ND: no dysplasia, LGD: low-grade

dysplasia, HGD: high-grade dysplasia, EAC: esophageal adenocarcinoma.

Error bars demonstrate minimum and maximum values derived from 1,000

repeated simulations.
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Figure 3. Regional mutation frequency landscape of esophageal

squamous cell carcinoma demonstrates the uniqueness of significant

chromatin features associated with the Barrett’s esophagus and

esophageal adenocarcinoma genomes. Average variance explained scores

for pre-cancerous or matching cancer genomes were separately calculated

using the tissue or cell type-based subgroup-classified chromatin features.

The pink panel represents subgroups with the highest variance explained

score for each cell type. The red line indicates the variance explained score

when using all 423 epigenomic features. Dots represent the Spearman’s rank

correlations (r) of chromatin features between the highest variance

explained-scored subgroup and the remaining subgroups. Error bars

demonstrate minimum and maximum values derived from 1,000 repeated

simulations.
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Figure 4. Cell-of-origin chromatin features delineating relations with

the regional mutation frequency of HCCs, Mixed, ICCs and BTCAs. (a)

Random forest regression-based chromatin feature selection using aggregated

somatic mutation frequency data from HCC, Mixed, ICC and BTCA-SG

samples. The rank of each chromatin feature wasdetermined by importance

values. Barlength represents the variance explained scores, and theerror bar

shows minimum and maximum scores derived from 1,000 repeated

simulations. Red lines represent the cutoff scores determined by the

prediction accuracy of 423 features-1 standard error of the mean. Liver

chromatin features are green-colored and stomach chromatin features are

blue-colored. (b) Normalized mean mutation density per each PLC subtype

and BTCAs plotted with respect to the density quintile groups of liver and

stomach H3K4me1 marks.
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Figure 5. Analysis of COOs forindividual cancer samples. (a) Prediction of

COO via grouping of chromatin features for each normal tissue type. The bar

graph depictsthe percentage of samples with respect to the assigned COO by liver

tissue chromatin features (pink), kidney tissue chromatin features (green), stomach

tissue chromatin features (navy) or the rest (gray). (b) Principal coordinate

analysisof mutation frequency distributions for individual cancer samples. (c,d)

Differential gene expression by non-hepatocytic COO HCCs (n = 6) comparing to

the hepatocytic COO HCCs (n = 189). (c) Volcano plot. The horizontal axis is the

log-ratio of the non-hepatocytic COO to the hepatocytic origins. Dashed line

represents FDR = 0.05. (d) Expression profile of EPCAM and KRT19 mRNA.
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Figure 6. Hepatic progenitor cells displaydistinct mutation landscape

and mutational signature processes compared to the genomes of PLCs.

(a) Chromatin feature selection in relation to the regional mutation frequency

of colon adult stem cells and hepatic progenitor cells. The chromatin features

related to each tissue type are green-colored. (b) The box plot shows the

distribution of relative contribution of signature D in HCC, Mixed, ICC,

BTCA and HPC samples. Samples of each tumor type are separated based

on whether they are predicted as hepatocytic COO (gray) or not (yellow).

Statistical significance wascalculated by using aMann-Whitney U-test (∗∗

∗, P < 0.05). BTCAs were excluded from the statistical analysis because

only two samples were predicted as hepatocytic COO.
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Figure S1. Chromatin feature selection in relation to the regional

mutation frequency of Barrett’s esophagus and esophageal

adenocarcinoma. Chromatin features of the stomach mucosa are

green-colored.
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Figure S2. Correlation plots between regional mutation density and

cell-type matching chromatin features. (a) Mutation density of Barrett’s

esophagus versus stomach mucosa or esophagus chromatin features. (b)

Mutation density of esophageal adenocarcinoma versus stomach mucosa or

esophagus chromatin features. (c) Mutation density of ESCC versus stomach

mucosa or esophagus chromatin features.
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Figure S3. Spearman’s rank correlation (r) between regional mutation

density and chromatin accessibility index across the different

chromosomes. (a) Barrett’s esophagus, esophageal adenocarcinoma and

ESCC. (b) Subgroups of Barrett’s esophagus classified by dysplasia states.
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Figure S4. Comparison of variance explained scores using either stomach

chromatin features or groups of randomly selected chromatin features.

Stomach chromatin group represents a total of 6 chromatin features from stomach

tissue. A total of 417 and 423 chromatin groups displayed 6 randomly selected

chromatin features from either 417 or 423 features. The difference between 417

and 423 features was the presence or absence of stomach chromatin features. (a)

Average variance explained scores using 3 different chromatin groups or all of the

423 features. Error bars demonstrate minimum and maximum values derived from

1,000 repeated simulations. (b) Distribution of variance explained scores for the

group of 6 randomly selected chromatin features from either 417 or 423 chromatin

features with 1,000 permutations. Pink-colored distributions represent average

variance explained score of stomach chromatin features.
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Figure S5. Feature Selection in Barrett’s esophagus and esophageal

adenocarcinoma classified by dysplasia status.
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Figure S6. Comparison of observed and predicted mutation frequencies

in 1 megabase genomic regions with differential chromatin level. (a)

Boxplot for all 1 megabase genomic regions displaying differential chromatin

level (n = 92). Statistical significance was calculated by using

Krushal-Wallis one-way ANOVA followed by Dunn’s test (∗∗∗, P <

0.001 ; NS, not significant). (b) Heatmap of differences in mutation

frequency for the 1 megabase regions with differential chromatin level

(n=92).
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Figure S7. Chromatin feature selection in relation to the regional

mutation frequency of ESCC samples. Chromatin features of the

esophagus are green-colored.
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Figure S8. Difference in variance explained scores between the HCC

and MIXED type ​​is related to the total number of samples and the

aggregated mutation load. (a) Distribution of variance explained scores

using either all samples or 8 randomly selected samples in 1,000 repeated

simulations. Distributions of HCC total (yellow, n = 256) and Mixed total

(navy, n = 8) are the result of using all samples for each cancer type.

However, pink-colored distribution represents the result of using 8 randomly

selected samples in only HCC type. Average variance explained score for

each distribution is shown on the top left. (b) Distribution of aggregated

mutation load at the 1 megabase-level from 8 randomly selected HCC

samples in 1,000 repeated simulations. Orange-colored bar represents the

aggregated mutation load at the 1 megabase-level from all samples of Mixed

type.
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Figure S9. Correlations between cancer genome mutation density and

the H3K4me1 chromatin features in different tissue types. (a)

Correlations between somatic mutation frequencies and chromatin landscape

in all 2128 regions represented by heat map. Different color depths

correspond to the absolute values of Spearman's ρ statistics. (b) Regional

mutation density of HCCs, Mixeds, ICCs and BTCAs parallel to the

ChIP-seq index (reverse scale) of liver or stomach H3K4me1. Dotted and

solid lines represent mutation density and ChIP-seq index, respectively. A

total of 106 genomic regions that show top 5% difference from the predicted

ChIP-seq count in the regression model between liver and stomach

H3K4me1 were selected. Spearman's rank correlations between the mutation

density and ChIP-seq index are shown on the top right. Zoomed images are

representative regions for cancer type groupings with respect to liver and

stomach H3K4me1 level (HCC/Mixed and ICC/BTCA).
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Figure S10. Analysisamong regional somatic mutation frequencies,

H3K4me1 chromatin features and scRNA-seq gene expression factor

levels. (a, b) Correlation coefficient values from 106 1Mbp sub-selected

regions displaying the largest differences in the regression model between

H3K4me1 liver and stomach mucosa were calculated using Spearman's rank

method. In the case of hepatocyte clusters, averaged correlation values

obtained by assessing the correlations between DR or MDTC of each

hepatocyte cluster and either chromatin features or regional somatic mutation

frequencies were used. Minimum and maximum values are represented as

the error bars. (a) Bar graphs representing correlation coefficients between

H3K4me1 chromatin features from either liver (upper part) or stomach

mucosa tissue (bottom part) and DR or MDTC factor levels of hepatocyte

clusters or cholangiocyte cluster. (b) Bar graphs demonstrating correlation

coefficients between the sub-selected regional mutation frequency of each

PLC subtype and DR values from cell clusters (left part of each inset

figure) or H3K4me1 chromatin marks from two tissues (right part of each

inset figure). Each inset figure corresponds to each PLC subtype. All

correlation values were converted to absolute values for visual purposes. (c)

Random forest regression-based scRNA-seq gene expresssion factor feature

selection employing aggregated mutation frequency from each PLCs subtype.

The average DR values of clusters were used for calculating scRNA-seq

feature of each cell type. The rank of each scRNA-seq feature is estimated

by importance values. The bar length shows the variance explained scores,

and error bar indicates minimum and maximum scores derived from 1,000

repeated simulations. Red lines show the cutoff scores determined by the

prediction accuracy of total features-1 s.e.m. hepatocyte scRNA-seq feature

is green-colored and cholangiocyte scRNA-seq feature is blue-colored.
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Figure S11. Cell-of-origin prediction distributions for distinct Mixed

and ICCs cohorts using chromatin features. Pie graphs represent the

percentage of samples with COO assignments as liver tissue chromatin

features (pink), kidney tissue chromatin features (green), stomach tissue

chromatin features (navy) or the rest (gray). (a) Comparison between

Mixed subtype cohorts and (b) between ICC subtype cohorts.
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Figure S12. Cell-of-origin prediction using scRNA-seq data.

scRNA-seq features derived from a total of 20 single cell clusters

constituting human liver tissue was employed to elucidate the relationship

with the regional mutation frequency of Mixed type at individual sample

level. (a) COO prediction for two distinct Mixed subtype cohorts. Pie graphs

indicate the percentage of COO assignments as hepatocyte clusters (pink) or

other clusters (gray). (b) Bar graph displaying the number of Mixed subtype

samples from the two cohorts assigned per each cluster. Hepatocyte clusters

are pink-colored and other clusters are gray-colored.



- 55 -

Figure S13. PCOA of individual cancer samples. Hepatocytic COO

samples are gray-colored and non-hepatocytic COO samples are

orange-colored.
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Figure S14. Gene sets that were down-regulated in non-hepatocytic

COO HCCs.
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Figure S15. Connection network of 'bile acid synthesis' and

'xenobiotic degradation' pathway through Bio-Entity Explorer.
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Figure S16. Mutation signature analysis for the genomes of HCC,

Mixed, ICC, BTCA-SG and HPC samples. (a) Contribution of mutation

types to the four mutational signatures derived from the somatic mutations

of HCC, Mixed, ICC, BTCA-SG and HPC samples. (b) Relative contribution

of mutational signatures in each HPC sample. (c) Relative contribution of

somatic mutation types in each cancer/tissue type. Bar length is calculated

as the average relative contribution in each type and error bars show

standard deviation. (d) Cell-of-origin assignment status based on mutational

signatures for HCC, ICC and BTCA. The bar represents the number of

non-hepatocytic COO assigned samples with respect to the quartile of

signature D contribution. Quartile values are determined by sorting samples

of HCCs, Mixed, ICCs, BTCAs and HPCs according to the relative

contribution of signature D. The number of samples used in the analysis is

shown on each plot.
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Table S1. Differentially expressed Genes between non-hepatocytic- and

hepatocytic-origin HCCs.
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국문초록

식도암과 간암의 기원세포 다양성에 대한 연구

하경식

서울대학교 의료정보학 협동과정

다중 조직 기반의 하위 유형을 가지고 있는 원발성 식도암 및 간암은 전

세계의 질병 부담 및 사망률을 지속적으로 증가시키고 있다. 이러한 원

발성 암에 대한 기원 세포의 규명은 각 암 유형별로 관련 치료제 및 예

방 약품을 보다 넓은 폭으로 선택할 수 있는 기회를 제공할 수 있다. 지

금까지 각 암종과 그들이 포함하고 있는 하위 유형에 대한 기원 세포의

이질성을 다루는 여러 연구들이 있었지만, 인체 유래 세포를 사용하여

각 암에 대한 기원 세포를 추적하는 연구는 제대로 수행되지 않았다. 우

리는 종양 조직과 정상 조직의 후성유전학적 표지에 대한 전체 게놈 시

퀀싱 데이터를 분석하여 각 원발성 암의 하위 유형에 대한 기원 세포 예

측을 수행하였다. 특히, 간암의 경우에 인체유래의 single cell RNA-seq

데이터를 분석하여 기원세포 예측의 정확도를 높이는데 집중하였다. 우

리의 분석 결과 식도선암종과 식도편평세포암종이 동일한 조직에서 암이

발생했음에도 불구하고 두 암종의 기원세포는 서로 다를 수 있음을 보여

주었고, 특히 선암종의 경우에는 대부분의 샘플들이 위 세포에서 유래된

것으로 나타났다. 우리의 분석은 또한 간암에서 드물게 발생하는 하위

유형이며 또한 간세포와 담관세포가 혼합되어 있는 조직학적 특징을 가

지고 있는 혼합 간세포-담관암의 유래가 간세포 기원인 것을 밝혀내었

다. 그리고 간세포 암종에서 드물게 비 간세포 기원으로 예측된 샘플들

의 경우에는 담관 세포 특이적 마커인 EPCAM의 높은 발현량이 나타

나기도 하였다. 추가적으로 간 전구 세포의 전체 게놈 시퀀싱 데이터를

분석하여 이러한 전구 세포가 간암의 직접적인 기원 세포가 아닐 수 있
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다는 가능성을 확인하기도 하였다. 종합적으로 이러한 결과들은 원발성

암 기원 세포의 다양성에 대한 새로운 통찰력을 제공할 것으로 기대된

다.
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