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Abstract

Somatic mutation landscape reveals differential variability

of cell-of-origin for esophageal and liver cancer

Kyungsik Ha
Interdisciplinary Program of Medical Informatics

The Graduate School

Seoul National University

Primary esophageal and liver cancers display consistent increase in
the global disease burden and mortality. Identification of
cell-of-origins for primary cancers would be a necessity to expand
options for designing relevant therapeutics and preventive medicine
for these cancer types. Although multiple studies addressed possible
heterogeneity of cell-of-origins for these cancers and its subtypes, an
integrative research on cell-of-origin for each cancer utilizing human
specimen data was poorly established. To this end, we analyzed
previously published whole-genome sequencing data for
pre—cancerous, cancer, and progenitor tissues along with publicly
available normal tissue epigenomic features to conduct in-silico
prediction of the cell-of-origin for primary cancer subtypes. Especially
in the case of primary liver cancer, we included single cell RNA-seq
data from human livers to assess correlation patterns and verified
this information from cell-of-origin analysis at cell level. Our data
showed that the establishment of somatic mutation landscape inferred

by chromatin features occur early in the process of cancer



progression, and gastric acid reflux environmental exposure-mediated
epigenetic changes, represented as gastric metaplasia, at early stage
can dramatically impact on determining cell-of-origin of esophageal
cancer. In addition, despite mixed histological features, the
cell-of-origin  for mixed hepatocellular  carcinoma/intrahepatic
cholangiocarcinoma subtype was predominantly predicted to be
hepatocytic origin. Furthermore, individual sample-level predictions
also revealed hepatocytes as one of the major predicted cell-of-origin
for intrahepatic cholangiocarcinoma, thus implying trans—differentiation
process during cancer progression. Additional analyses on the whole
genome sequencing data of hepatic progenitor cells suggest these
cells may not be a direct cell-of-origin for liver cancers. Furthermore,
a rare proportion of hepatocellular carcinomas were predicted as a
non—hepatocytic cell-of-origin, which also demonstrated a high
expression level of epithelial cell marker specific marker, EPCAM.
Collectively, these results provide novel insights on the heterogeneous

nature and potential contributors of cell-of-origin for primary cancers.

keywords: somatic mutation, epigenetic features, cell-of-origin,
machine learning, esophageal cancer, primary liver cancer
Student Number: 2011-23816
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Introduction



1. Studies on the relationship between somatic mutation

landscapes and epigenetic features in cancer genomics

Recent advances in cancer genomics have so far revealed numerous
somatic mutation landscapes for various cancer types, leading to a
number of key findings. Identification of new driver gene mutations,
deciphering clonal evolution structure, and profiling tumor
heterogeneity  within and among different patients through
examination of mutations, mainly at the gene level (Alexandrov et al.,
2013; Hodgkinson et al., 2012; Kan et al., 2010; Kandoth et al., 2013;
Lawrence et al.,, 2013; Martincorena and Campbell, 2015; Schaefer and
Serrano, 2016), have successfully addressed the genes contributing to
cancer progression and identified novel therapeutic targets. Beyond
these gene—focused approaches, systematic analyses of mechanisms
that could explain genomic regional variations in mutation rates
across various cancer types could significantly extend our
understanding about common contributors to the establishment of
mutation landscapes before and during cancer progression. To this
end, a number of studies have examined relationships between
regional mutation frequencies across the genome and some types of
features, including gene expression level and DNA sequence context.
While these factors are being investigated intensively, the studies on
the relationship between somatic mutation profiles and other features
such as epigenetic marks has been thought to be less significant in
cancer genomics so far. Epigenetic marks are heritable elements that
can affect the phenotype without altering the DNA sequence.
Although DNA methylation was considered to be the only epigenetic
marker that can be inherited in the traditional criteria, recent
definitions of epigenetic marks include histone post-translational

modifications (methylation, acetylation, phosphorylation, ubiquitination,
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etc.) and histone variants (H3, H4, H2A, H2B) to deal with the
complexity of living organisms. Since these marks contribute to the
regulation of gene expression and DNA replication by affecting the
chromatin environment such as high order chromatin structures,
nucleosome occupancy, and hypomethylated blocks in the nucleus,
both epigenetic marks and chromatin changes are crucial to identify
cell characteristics and their cancer progression. In line with this,
recent studies have also investigated the relatedness between somatic
mutation profiles and these epigenetic features, including histone
post—translational modifications and open chromatin marks such as
DNasel-seq profiles (Liu et al., 2013; Polak et al., 2015; Polak et al.,
2014; Schuster-Bockler and Lehner, 2012; Stamatoyannopoulos et al.,
2009; Supek and Lehner, 2015; Thurman et al., 2012, Woo and Li,
2012). In consequence, it was confirmed that these epigenetic features

display high correlation with regional mutation rates.

2. Predicting cell-of-origin (COO) of cancer at subtype and

individual sample level

Among the various studies applying an intimate relationship between
somatic mutation profiles and epigenetic features, one of the
successful cases was the development of an algorithm for predicting
cell-of-origin (COO) of cancer (Polak et al, 2015). Although this
study was designed to predict the mutation rate of each cancer cell
type from the epigenetic features of normal cells at the 1
megabase—level, the fundamental goal of the study was to trace the
cell-of-origin of cancer from the importance ranking of epigenetic
features that contribute to predict the mutation rate using random
forest regression. Until now, a total of eight cancer types was

investigated by aggregated the somatic mutation data, and the
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cell-of-origin of each cancer type was correctly predicted except for
the lung cancer type that has no associated epigenetic data (Polak et
al.,, 2015). However, despite the successful development of the COOs
prediction algorithm for each cancer type, no studies were vyet
performed to cancer subtype-specific or individual sample-specific
predictions that could have clinical implications associated with
prevention strategies. COOs classification of cancer at subtype and
individual sample level is clinically important, because it has been
confirmed that some cancer type could have multiple COOs from
different cells/tissues through animal experiments and cell line
studies. In other some cancer type cases, cancerous tissues can be
initiated from fully differentiated cells or from progenitor cells. Thus,
it is crucial to distinguish COOs depending on subtype or individual
sample to establish the early-stage diagnosis and possibly the
treatment selection for each case. This distinction is also essential to
understand the biological mechanism of cancer, since cancer

progression could differ depending on the origin cells of the cancer.

Here, we performed a computational approach to dissect out the
putative COOs on each cancer subtype and interrogated possible
individual tumor-level heterogeneity in COOs. For this, we analyzed a
total of whole genome sequencing data from barrett’s esophagus
(BE), esophageal adenocarcinoma (EAC), esophageal squamous cell
carcinoma (ESCC), primary liver cancer (PLC), extrahepatic biliary
tract cholangiocarcinoma (BTCA), and hepatic progenitor cells (HPC)
for assessing the possibility as a common COO for PLCs, along with
423 of chromatin features at the epigenome-level. PLC comprises
classical hepatocellular carcinoma (HCC) subtype, which represents ~
90% of PLCs, as well as combined hepatocellular and

cholangiocarcinoma (cHCC/ICC) and intrahepatic cholangiocarcinoma
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(ICC), which are the two cancer subtypes displaying biliary phenotype
to different extent. The mixed subtype (Mixed), one of the cHCC/ICC
subtypes, particularly displays mixed histological features without any
clear distinctive boundary between the HCC-like and ICC-like parts,
thus posing substantial challenges in inferring the COO for these
tumors by either histology or other phenotypic measurements. Since
chromatin marks were generated from tissue-level samples, we
attempted to complement our findings on the correlations between
somatic mutation landscape and chromatin features by utilizing single
cell RNA-seq (scRNA-seq) data derived from human liver tissue
(MacParland et al., 2018) to dissect out the relationships between the
gene expression features from normal liver cell types and somatic
mutation landscape of PLCs. Our study not only confirmed the role of
chromatin marks associated with possible COOs in shaping the
mutation landscape of each cancer type, but also uncovering the
differential contribution of each COO in different subtypes of each

cancer type.
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Data for esophageal cancer. For the purposes of our project, we
used somatic mutation data from BE, EAC, and ESCC tissues. Data
use were authorized from ICGC (http://icgc.org) and BGI
(http://www.genomics.cn/) before use. A total of 23 pairs of Barrett’'s
esophagus and matching esophageal adenocarcinoma genomics data
(Ross—Innes et al, 2015) were authorized from ICGC and genome
data of 14 ESCC samples (Zhang et al., 2015) were acquired from
BGI. These data sets were subsequently analyzed following the
standard GATK pipeline (https://www.broadinstitute.org/gatk/) and
somatic variants were called using the MuTect algorithm (Cibulskis

et al., 2013)(https://www.broadinstitute.org/cancer/cga/mutect).

Data for primary liver cancer. We used somatic mutation data of
whole-genome sequencing (WGS) from the NCC-Japan liver cancer
(LINC-JP), RIKEN-Japan liver cancer (LIRI-JP), and Singapore
biliary tract cancer (BTCA-SG) projects after acquiring permission
from ICGC (http://icgc.org). LINC-]JP and LIRI-JP data consisted of a
total of 282 samples with the exception of some cases which
displayed multifocal or hypermutations, and these data were
subgrouped according to the histological types (256 HCCs, 8 Mixed,
and 18 ICCs). Data from BTCA-SG were all extrahepatic
cholangiocarcinoma samples consisting of 12 samples without any
particular subgroups. The raw files of these datasets were analyzed
along the standard GATK pipeline
(https://www.broadinstitute.org/gatk/) and somatic mutations were
called with the MuTect algorithm
(http://archive.broadinstitute.org/cancer/cga/mutect) (Cibulskis et al.,
2013). In addition to the data sets listed above, WGS-derived somatic
mutation profile from additional 31 stem/progenitor samples (10 HPCs

and 21 colon adult stem cells) and 38 ICCs from previous studies
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(Blokzijl et al., 2016; Jusakul et al, 2017) were utilized for the
analysis related to hepatic progenitor cells and as an independent
cohort for predicting the COO of ICCs.Furthermore, additional WGS
data from 21 Mixed subtype samples from a recent study (Xue et al.,
2019) were also used for the COO prediction as another independent
cohort. Somatic variants of these samples were called from a different
method that was designed in each study comparing to the datasets

we analyzed.

Epigenomic data and data processing. A total of 423 epigenomics
and chromatin data were from the NIH Roadmap Epigenomics
Mapping Consortium (Roadmap Epigenomics et al, 2015) and
ENCODE (Consortium, 2012). NIH Roadmap Epigenomics data were
accessible from the NCBI GEO series GSE18927, referring to the
University of Washington Human Reference Epigenome Mapping
Project.

To calculate the regional mutation density and mean signal of
chromatin features, all autosomes were split in 1-Mbp regions
followed by filtering out regions containing centromeres, telomeres
and low quality unique mappable base pairs. To determine regional
mutation density and histone modification profiles, we counted the
total number of somatic mutations or ChIP-seq reads per each 1
megabase region. For analyzing the DNase I hypersensitivity and
Repli-seq data, scores of DNase I peaks and replication were
calculated per each 1 megabase region. For somatic mutations,
ChIP-seq data and DNase I hypersensitivity data, BEDOPS (Neph et
al.,, 2012) was employed to calculate the frequency and scores per

each 1Mbp region.

Principal coordinate analysis. Principal coordinate analysis was
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used to represent differences in mutation frequency distribution
among the individual samples. A dissimilarity matrix was built using
1 - Pearson correlation coefficient across all samples. Each sample

location was assigned in a two—dimensional space using this matrix.

Feature selection based on random forest regression. A random
forest regression-based feature selection algorithm was performed as
described (Polak et al., 2015) with modifications. Briefly, the training
set for each tree was constructed, followed by using out-of-bag data
to estimate the mean squared error. Thus, there was no need to
perform additional tests for error evaluation. Out-of-bag data were
also used to estimate the importance of each variable. In each
out-of-bag case, the values corresponding to each variable were
randomly permuted, then tested to each tree. Subtracting the score of
the mean squared error between the untouched out-of-bag data cases
and the variable-m-permuted cases, the raw importance score of
variable m was measured. By calculating the average score of
variable m in the entire tree, the rank of importance for each variable
was determined. A total of 1,000 random forest trees were employed
to predict mutation density using a total of 423 chromatin features.
Every random forest model was repeated 1,000 times.

After the random forest algorithm step, greedy backward elimination
was performed to select the top 20 chromatin variables. Subsequent
removal of the lowest rank variable was done to calculate the
variance explained value measurements for each variable. To conduct
feature selection on all of the samples corresponding to the particular
pre—cancerous tissues or cancer types, mutation density was
calculated by adding samples in each case. However, the subgrouping
of samples was employed for specific analyses of the esophageal

cancer type. To perform feature selection classified by differential
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dysplasia states, samples were divided into 3 groups: 17 samples of
no dysplasia, 3 samples of low-grade dysplasia and 2 samples of
high-grade dysplasia. In the case of feature selection after
subgrouping for distinct and common mutations, all mutations in
paired-samples of BE and EAC were divided into 3 different groups:

Barrett's only, EAC only, and common mutations.

Analysis of mutation frequency variance explained by chromatin
features for esophageal cancer. To examine the effect of a
particular cell-type specific chromatin context on explaining regional
variability of mutation density across the genome, chromatin features
were subgrouped based on the feature selection algorithm. To study
the differences in variance explained values among distinct cell types,
9 groups were categorized. Each group included 5 chromatin markers
common among the groups: H3K27me3, H3K36me3, H3K4mel,
H3K4me3 and H3K9me3. Random selection of 6 chromatin features
were either from all of the 423 features or 417 features (excluding
stomach mucosa chromatin features). Random selection of chromatin
features was repeated 1,000 times, then the average variance

explained values and permutation distributions were obtained.

Prediction of regional mutation frequencies in 1-megabase
genomic regions with differential chromatin levels for
esophageal cancer. To select 1-megabase genomic regions with
differential H3K4mel levels, we calculated residual values derived
from a linear regression model between the H3K4mel Ilevel of
stomach mucosa and that of esophagus tissue. To represent regions
harboring differential H3K4mel levels along with increased mutation
accumulation rates after gastric metaplasia, a total of 92 regions were

chosen based on the two criteria: (1) displaying top 5% in term of
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the residual values, (2) showing higher H3K4mel levels in esophagus
than stomach mucosa. Subsequently, we built two separate regression
models, and then applied the model to predict the regional mutation
frequencies for the 92 regions. One regression model was between
observed mutation frequencies in BE with no dysplasia and H3K4mel
level of stomach mucosa, and the other one was between observed
mutation frequencies in BE with no dysplasia and H3K4mel level of

esophagus.

Prediction of cell-of-origin for primary liver cancer by grouping
of chromatin features. To predict cell-of-origin for individual
samples, chromatin marks were subgrouped based on the aggregate
sample—level feature selection results. As a first step, we selected
significant chromatin cell types above the cutoff score from the
feature selection results using aggregated samples corresponding to
each cancer type. Subsequently, we added relevant cell types and
grouped the chromatin marks according to each selected cell type to
evaluate the effect of cell-type specific chromatin on explaining
variability of mutational landscapes among samples. For predicting the
COO for HCCs, we simply utilized the importance ranking among
variables from 423 chromatin features due to the fact that liver
chromatin features were the only major type in the aggregated
feature selection results for HCCs. For our purpose, we considered
the samples with positive variance explained score as relevant

samples for the COO assignments.

Signature analysis of mutational processes for primary liver
cancer. Nonnegative matrix factorization (NMF) algorithm was
employed to investigate mutation signatures as described in previous
study (Blokzijl et al., 2018). This methodology was utilized by
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factoring out frequency matrix of 96-trinucleotide mutation contexts
from HCC, Mixed, ICC, BTCA-SG and HPC samples.

Gene expression analysis for primary liver cancer. RNA-Seq
experiments of HCC samples were performed previously (Fujimoto et
al., 2016), and the data had been deposited in the FEuropean
Genome-phenome Archive. The reads were aligned onto the reference
human genome GRCh37 using TopHat v2.1.1. Raw read counts per
gene were computed using HTSeq with the GENCODE v19
annotation. Differential gene expression between hepatocytic- and
non— hepatocytic-origin HCCs was analyzed using limma-voom
v3.26.9 (Ritchie et al., 2015). Gene set enrichment analysis (GSEA)
was performed using the GSEAPreranked v5 module on the

GenePattern server (https://genepattern.broadinstitute.org).

Assessment of relationship between aggregate sample-level
somatic mutation landscape and Single-cell RNA-sequencing
(scRNA-seq) data. Data acquirement from single cell clusters was
performed by running scClustViz algorithm (Innes and Bader, 2018)
on previously generated human liver scRNA-seq data (MacParland et
al.,, 2018). Two central venous hepatocyte clusters (Cluster 1 and 3),
two periportal-like hepatocyte clusters (Cluster 5 and 14) and one
cholangiocyte cluster (Cluster 17) was selected as representative cell
clusters for this analysis. Spearman correlation level association was
assessed between either of the two gene expression factors
(within—cluster level cellular transcript detection rate, DR; mean
detected transcript count for the cells harboring detectable transcript
level, MDTC) (Innes and Bader, 2018) derived from representative
clusters and chromatin features or regional somatic mutation

variations. For the genomic regions, we either used all of the
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genomic regions or sub-selected 5% genomic regions that represent
the largest difference in the regression model between H3K4mel lLiver
and stomach mucosa. Levels for expression factors (DR, MDTC) of
genes In each cluster were aggregated by 1-megabase window for all
genomic regions with DR cutoff of >0.05 or selected genomic regions
without the cutoffs. If a particular gene spans two 1-megabase
genomic regions, we applied the aggregation of expression factor

levels on the region where the gene has a greater length proportion.

Prediction of cell-of-origin by utilizing scRNA-seq data for
primary liver cancer. In order to complement the chromatin
feature-based COO predictions, we applied the previous random forest
algorithm by substituting the chromatin features into the scRNA-seq
data of human liver tissues. scRNA-seq data from a total of 20
single cell clusters (6 hepatocytes clusters, 1 cholangiocyte cluster, 3
endothelial cells clusters, 1 hepatic stellate cells cluster, 2 B cells
clusters, 3 T cells clusters, 1 NK-like cells cluster, 2 intrahepatic
monocyte/macrophage clusters, and 1 erythrocyte cluster) generated
from previous study (MacParland et al., 2018) were used for the COO
prediction, and the DR expression factor values derived from each
cluster were added up based on the gene distribution in 1-megabase
window (same windows as chromatin features) for all genomic
regions. Eventually, from the variables of these 20 clusters sorted by
1-megabase window, we applied greedy backward elimination to
figure out the most significant cluster for the regional mutation
density of each sample. For our purpose, we considered the samples
with positive variance explained score as relevant samples for the
COO assignments. In case of predicting COO for each PLCs subtype
of aggregated samples, we applied greedy backward elimination using

the average DR value of clusters corresponding to each cell type and
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subsequently ranked the DR value features for each cell type.
Code availability. Our core analysis code utilizing the random forest

feature selection algorithm will be available on GitHub (code name:

Random_forest_Ha_mutation_epi).
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1. Somatic mutation landscape reveals differential variability of

cell-of-origin for esophageal cancer

Precancerous tissues and matching cancers display similar
regional mutation frequency profile. We performed principal
coordinate analysis (PCOA) to test whether the average mutation rate
differences reported previously (Ross-Innes et al., 2015) reflected in
the level of 1 megabase window regional mutation frequencies.
Individual BE tissues formed clusters with the EAC tissues separate
from the ESCC tissues, suggesting that the matching of cancer
progression history might serve as a stronger factor than the
cell-of-origin context itself (Figure 1). These result shows similarity
In regional variation in mutation frequencies of precancerous tissues
and matching cancer types, indicating that the effect of cell-of-origin

context might be cancer—-type dependent.

Epigenetic shifts caused by metaplasia, driven by acid reflux,
explains the establishment of the somatic mutation landscape
for both BE and EAC. Cell type shift, represented as gastric
metaplasia, is one of the main hallmarks in the development of BE
(Hayakawa et al., 2016). Thus, one could assume that the critical
time point for the establishment of the mutation landscape for BE
could be either before or during the course of cell type shift, or after
its completion. Chromatin feature selection analysis of the mutation
landscape of BE and EAC tissues confirmed that high-ranked
chromatin features were derived from the stomach tissue type (Figure
S1) for both tissues, without any significant esophageal chromatin
features. Simple correlation between regional mutation frequency and
histone modification marks from stomach and esophagus tissues

revealed marginal differences between BE and EAC tissues (Figure
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S2a, b), and this pattern was also consistent with the correlation to
stomach tissue DNase 1 hypersensitivity profile (Figure S3a).
Moreover, six features covering all stomach chromatin features
subjected to the feature selection analysis solely explained over 80%
of the regional mutation variance for both BE and EAC tissues,
which is unlikely to be non-random (p value < 2.2e-16) (Figure S4).
These results imply that the major time point of mutation landscape
establishment for BE is most likely to be after the cell type shift into
stomach mucosa-like cells. Chromatin feature selections on subgroups
of somatic mutations for BE and EAC based on overlap and
uniqueness of the mutations shared common top-ranked stomach
chromatin features (Figure 2a). In addition, chromatin feature selection
on sample subgroups with respect to dysplasia grade revealed that
the top features all originated from stomach tissue (Figure S5) and
the variance explained level for all of the dysplasia-based subgroups
using six stomach tissue chromatin features were similar to the
variance explained level using all 423 chromatin features (Figure 2b).
This finding was consistent with the high correlation to stomach
tissue DNase I hypersensitivity profile (Figure S3b). Next, we sought
to further determine whether the contribution of stomach mucosa
chromatin features were indeed more crucial than esophagus
chromatin features for shaping the mutation landscape of BE through
an independent type of analysis. For this, H3K4mel chromatin feature
was used since this single feature explains most of the variance in
mutation frequency of BE. Ninety-two 1-megabase regions displaying
differential H3K4mel levels were selected (methods) based on the
speculation that these regions would likely to represent accelerated
mutation accumulations through epigenetic changes during gastric
metaplasia. Subsequently, we predicted mutation frequencies in the 92

regions by linear regression—-based modeling using H3K4mel level of
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either stomach mucosa or esophagus tissue (methods). Comparing the
observed and predicted mutation frequencies in the 92 regions
revealed that the mutation frequencies predicted by H3K4mel of
stomach mucosa was similar to the observed regional mutation
frequencies, but the mutation frequencies predicted by H3K4mel of
esophagus tissue was significantly different from the other two
groups (Figure S6a). Moreover, regions with larger differences in
H3K4mel level overall display higher accuracy of mutation frequency
predicted by using H3K4mel level of stomach mucosa (Figure S6b).
These result further implicate that the chromatin features from
stomach mucosa provide major contribution for establishing the
mutation landscape of BE, as opposed to the chromatin features of
esophagus tissue, a cell-of-origin for BE. From all of these results,
we Infer an early time point for establishment of the mutation
landscape for EAC, even prior to the occurrence of dysplasia for BE,

but most likely after epigenetic changes due to gastric metaplasia.

Cell-of-origin of major chromatin features associated with
mutation landscape establishment for BE, EAC, and ESCC are
different. To ensure that the chromatin features shaping the
mutation landscape of BE and EAC were not common to any
esophageal cancer type, we analyzed the genome of ESCC, another
cancer type derived from the esophageal squamous epithelium without
any precancerous stages with cell type shift. Although the regional
mutation frequency of ESCC correlated with histone modification
marks from stomach and esophagus tissues in a similar manner
(Figure S2c), chromatin feature selection revealed a subset of
squamous cell type and esophagus chromatin features that were
significant and distinct from BE and EAC (Figure S7). Moreover,

measuring the level of variance explained values per tissue or cell
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type categories showed stomach chromatin features to be the
strongest ones for BE and EAC, reaching higher than 909 of the
variance level explained by the 423 total chromatin features, whereas
esophageal chromatin features were dominant for ESCC (Figure 3).
Notably, the variance explained values for each category displayed
non-significant relationship with simple correlations between the
chromatin marks from different tissue or cell types (BE rs = 0.36,
EAC rs = 036, ESCC rs = 0.18). These results imply a distinct
process of mutation landscape establishment for these cancer types
that varies depending on the presence of precancerous tissues with

cell-type shifts.

Discussion. One thing to note is that our results display
non—universal chromatin features identified as significant in different
cancer types. The reason for these differences in the extent of
variance explaining values for any distinct chromatin feature could be
complex, and the reason might be due to the tissue type—dependent
differences in the mechanisms of epigenetic regulation plus the
differences in major contributing chromatin features serving as either
euchromatin or heterochromatin marks. One mechanistic approach to
assess the extent of chromatin features contributing to mutation
landscape is using CRISPR-Cas9 system to incorporate mutations on
chromatin enzymes leading to global epigenetic changes, and then
inducing somatic mutations using various types of mutagens to
examine the effect of different epigenetic features on shaping
mutation landscape, which could be one of the strong candidates for
any follow—up research.

Finally, analyses results from BE and EAC raise the possibility that
epigenetic changes due to environmental insults, represented as a cell

type shift, could serve as a primary role for establishing the mutation
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landscape of at early stage of cancer progression. Although there are
possibilities that esophagus tissue chromatin features could still be
involved in shaping the mutation landscape of BE in a minor manner,
our analyses demonstrated that the stomach tissue chromatin features
serve as a key factor shaping regional variations in somatic mutation

frequency of BE.
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2. Somatic mutation landscape reveals differential variability of

cell-of-origin for primary liver cancer

Aggregate Sample-level Correlations Between Chromatin Marks
and Somatic Mutations of PLCs. Based on the previous findings
about the associations between the chromatin feature levels and
regional variations in somatic mutation frequencies of tumors (Polak
et al, 2015; Polak et al, 2014) and applying this knowledge onto
machine-learning based COO predictions on several cancer types
(Kibler et al., 2019), we first hypothesized that the whole-genome
mutation landscape of hepatocytic PLC subtype (HCCs) would exhibit
a closer relationship with liver tissue (surrogate tissue for
hepatocytes) chromatin marks, whereas the mutation landscape of
partial or fully biliary PLC subtypes (Mixed and ICCs) and the
BTCAs would likely to display stronger correlations with the
chromatin marks from tissues containing either cuboidal or columnar
epithelium (kidney, stomach, or intestines as representative surrogate
tissues for the cholangiocytes), depending on the extent of biliary
phenotypes and anatomical locations. To examine differential
associations among the mutation landscape for different subtypes of
PLCs and the chromatin feature levels from normal tissues, we first
employed a random-forest based feature selection method to identify
the chromatin features that explained the possible variances In
regional somatic mutation frequencies. To conduct the analysis, we
utilized somatic mutation frequency data at a 1-megabase window for
three subtypes of PLCs (HCCs, Mixed and ICCs) and BTCAs at an
aggregated sample level along with the 1-megabase window
chromatin feature counts. As hypothesized, liver tissue chromatin
marks served as major features displaying significance for HCCs, and

a stomach tissue chromatin mark served as the first-rank feature for
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ICCs and BTCAs (P < 2.2e-16, Mann-Whitney U-test between the
first and second rank features of each PLC subtype; Figure 4a).
Surprisingly, liver tissue chromatin marks were major features
explaining the regional mutation variation of Mixed subtype. This
result indicates a possible tendency of putative COO towards to the
hepatocytes for the Mixed subtype, albeit known molecular
heterogeneity among individual tumors (Moeini et al., 2017) and the
partial biliary phenotypes in histology. The overall lower variance
explained scores for Mixed and ICCs compared to the HCCs were at
least in part likely due to the lower number of the samples and the
total mutation load (Figure S8a, b), indicating that the actual
correlation between the liver tissue chromatin features and the
somatic mutation landscape of Mixed may be similar to that of
HCCs. In line with these results, spearman correlations between the
regional mutation frequency of HCCs or Mixed and liver H3K4mel
chromatin mark level was the largest when comparing to different
chromatin marks from a possible pool of surrogate tissues, whereas
stomach H3K4mel chromatin mark level showed the highest
correlation with the regional mutation frequency of BTCAs (Figure
S9a). Spearman correlation values among the regional mutation
frequency of ICCs and H3K4mel of different tissues were overall low
without displaying any tissue type dependent differences, which can
be due to both the lower mutation load of ICCs and the possible
intrinsic COO heterogeneity. These correlation patterns were more
exemplified when sub-setting the genomic regions according to the
top 5% difference in ChIP-seq counts between liver and stomach
H3K4mel marks (Figure S9b). Similar to the spearman correlation
results, the regional quintile-based mean mutation density data of
HCCs and Mixed showed relatively higher association with the liver

tissue H3K4mel level comparing to the stomach tissue H3K4mel

,22,



level, while the mean mutation data for ICCs and BTCAs displayed
higher association towards the stomach tissue H3K4mel, with ICCs
as a lesser extent (Figure 4b). Collectively, these results demonstrate
that COO-associated chromatin features can delineate the relationships
with the mutation landscape of PLCs and BTCAs.

Aggregate Sample-level Correlations Between Single Cell
RNA-seq data and Somatic Mutations in PLCs. Previous
publication showed that gene expression data can explain regional
somatic mutation variance, albeit at a lower level compared with the
chromatin features (Polak et al.,, 2015). As with any major tissue
types, liver tissue contains multiple cell subpopulations including
hepatocytes, cholangiocytes, stellate cells and other rare cell types,
which suggests a potential limitation of mixed cell subpopulations
when using traditional bulk tissue-level RNA-seq data in such
analysis. In our study, we revisited correlation levels between gene
expression and the somatic mutation landscape for PLCs by utilizing
recently published human liver scRNA-seq data (MacParland et al.,
2018), thus taking into account the heterogenous cell types within a
liver tissue. After sub-selecting four cell -clusters representing
hepatocytes and one cluster corresponding to cholangiocytes
(methods), we first assessed the relationship between gene expression
features and somatic mutation landscape of PLCs for all of the
1-megabase genomic regions after employing a single—cell-level RNA
transcript detection rate (DR) threshold on gene expression data
(methods). Spearman correlation values between either DR or mean
detected transcript count level (MDTC) and somatic mutation
frequencies for PLC subtypes showed significant but generally lower
correlation values than when using H3K4mel chromatin features
(spearman coefficient (absolute value) < 052 for HCC, < 0.45 for
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Mixed, < 0.32 for ICC and < 0.45 for BTCA). We next used the top
5% difference in H3K4mel ChIP-seq counts between liver and
stomach tissues, which are the most representative regions used in
the previous analysis showing differences in correlations between
regional somatic mutation frequencies for PLCs and chromatin
features. Results assessing the correlation between the H3K4mel
chromatin features and DR or MDTC for these sub-selected regions
revealed that the DR values were more representative of
demonstrating expected correlations with chromatin features for both
tissue types (Figure S10a). A subsequent analysis was conducted to
assess the correlations between DR values from either hepatocyte or
cholangiocyte clusters and regional somatic mutation variations of
PLCs 1in the subset regions. Results showed that although the
correlation coefficients derived from DR values were less robust than
the chromatin features, (consistent with the previous report (Polak et
al.,, 2015)), the observed correlation tendencies were similar, especially
for the somatic mutation landscapes for ICCs and BTCAs. (Figure
S10b).

Based on the results above, we next examined the possibility of
using DR wvalue features from individual liver cell types by
conducting random-forest feature selection method (methods).
Although showing lower variance explained scores, our results
displayed consistencies with the chromatin—-based feature selection
results (Figure 4a) by showing hepatocyte DR feature as the first
rank for HCCs and Mixed, and cholangiocyte DR feature as the first
rank for ICCs and BTCAs (Figure S10c). Collectively, our results
using DR gene expression feature complemented the chromatin
feature-based aggregate—level analyses and further confirmed the
relationship between the molecular features derived from the putative

COO and regional somatic mutation frequencies of PLCs.
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3. Functional study for primary liver cancer

Individual Sample-level Cell-of-origin Predictions for primary
liver cancer. To further assess the differential mutation landscapes
and possible COOs for PLCs and BTCAs at the individual sample
level, we conducted a random forest algorithm-based COO analysis
for each sample (methods). This individual sample-based COO
analysis demonstrated the dominance of a hepatocytic predicted COO
for HCCs, in contrast to the predictions for BTCAs, which showed
stomach tissues (a proxy tissue for extrahepatic cholangiocytes) as a
major putative COO (Figure ba). For the mixed subtype, hepatocytic
COO was solely predicted for the 8 samples that were used for the
aggregate sample-level random forest analysis. This result was
replicated for an additional 20 Mixed subtype samples from another
cohort (Xue et al.,, 2019)(Figure Slla), which is yet again in line with
the aggregate-level correlation results and the recent publication on
the monoclonal origin of mixed subtypes enriched with HCC-like
gene expression-level features (Xue et al., 2019). For ICCs, however,
both hepatocytes and proxy tissues for cholangiocytes (kidney and
stomach) were predicted to be possible major COOs. This COO
prediction pattern was consistent between different ICC cohorts
(Figure S11b), thus emphasizing the consistent heterogeneity of COOs
and inferring that the somatic mutation landscape can harbor the
signature of cell type trans-—differentiations and plasticity involved in
liver injury (Monga, 2019), which is most likely to occur prior to the
development of ICCs. Our results not only replicated earlier findings
on the COOs of HCCs, ICCs and extrahepatic distal
cholangiocarcinoma (DCCs) (Wardell et al., 2018), but also adding a
couple of novel aspects including 1) the complete predominance of
hepatocytic predicted COO for Mixed tumors (28/28) and 2) the
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implication of cuboidal cholangiocytes near the canal of hering (kidney
tissue chromatin mark as a surrogate) could be another major COOs
for ICCs besides the hepatocytes. In addition, six HCC samples
showed non-hepatocytic predicted COO, thus implying a possibly
distinct COO for a subset of HCCs that may be linked to differential
tumor pathology. Overall, our results suggest that the predominant
COO for the HCCs and Mixed would most likely to be hepatocytes.
Also, our evidences point to the cholangiocytes as the likely
predominant COO for BTCAs, whereas the COOs of ICCs tend to
vary by individual samples. These results confirm the importance of
anatomical locations on the COOs of PLCs and BTCAs.

Next, we utilized DR gene expression features derived from human
liver tissue as an alternative to chromatin features from liver, kidney
and stomach tissues. Application of DR features from a total of 20
scRNA-seq clusters for random forest-based COQO prediction
(methods) to 20 Mixed subtype samples with positive variance
explained scores cross—confirmed the chromatin feature-based COO
prediction results (18 out of 20 showing hepatocytic COO; Figure
S12). For ICCs, only 5 out of 56 samples displayed positive variance
explained scores, further implicating chromatin features as better
predictors of regional somatic mutation frequencies compared with the
scRNA-seq based gene expression features. This result is also in line
with the aggregate—sample level correlation results discussed earlier.
Along with these results, principle coordinate analysis (PCOA) result
revealed that the PLC samples with hepatocytic predicted COO tend
to aggregate as a cluster, displaying principle coordinate 1 value over
0 (Figure S13). In terms of PLC subtypes, HCCs and Mixed samples
were all contained within a cluster, except for the ones with
non—hepatocytic predicted COOs, whereas the ICCs and BTCAs were

more spread out (Figure 5b), reflecting the distinct mutation
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landscape patterns.

To demonstrate whether HCCs with non-hepatocytic predicted COO
have a unique gene expression patterns compared with the
hepatocytic predicted HCCs, we analyzed the genome-wide gene
expression profiles. Among the non-hepatocytic- and hepatocytic
predicted HCC samples, tumor RNA-seq data were available for 6
and 189 samples, respectively (Fujimoto et al., 2016). A comparison of
gene expression levels between them showed that 124 genes were
up-regulated and 21 were down-regulated in non-liver-origin HCCs
(FDR < 0.05, absolute logFC > 0.647, Table S1). Interestingly, the
upregulated genes included an epithelial cell marker EPCAM and a
cholangiocyte-specific marker KR 719 (Figure 5c¢). Clustering analysis
confirmed that HCCs with non-hepatocytic predicted COO were
enriched in a cluster that expressed more EPCAM and KRTI19
(Figure 5d). Gene set enrichment analysis showed that molecular
pathways associated with Dbile acid synthesis and xenobiotic
degradation were down-regulated in HCCs with non-hepatocytic
predicted COO (Figure S14). This result indicates that the functional
similarity to hepatocytes is being less observed in HCCs with
non—hepatocytic predicted COO. Furthermore, we identified the
connection network between these two molecular pathways related to
the liver function by employing the pathway intersection function in
Bio—Entity Explorer (Jung et al., 2020). Then, it was confirmed that
Aldo-keto reductase family 1 (AKRI1) involved in steroid metabolism
was a common enzyme between bile acid synthesis and Xenobiotic
degradation (Figure S15). Collectively, the mRNA expression in
non—hepatocytic predicted HCCs partly resembled that of biliary
epithelial cells, which follows the preceding publication about
EPCAM-positive ductal cells as a possible COO for HCCs at an

inflamed condition (Matsumoto et al., 2017). We also compared
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hepatocytic- and non-hepatocytic predicted HCCs in terms of clinical
features (including tumor stage and survival), but we found no
statistically significant difference in these features, which suggest that
the COO assignments for HCCs may be independent of the clinical

pPrognosis.

Hepatic Progenitor Cells as a Possible Cell-of-origin for PLCs.
EPCAM-positive HPCs, so called as oval cells, are a progenitor cell
type located inside the Canal of Hering. HPCs harbor differentiation
capacity into both hepatocytes and cholangiocytes, and also have been
suspected to be a possible COO for PLCs. To examine the possibility
of HPCs as a possible COO for different subtypes of PLCs, we
performed random forest feature selection analysis using somatic
mutation frequency data for HPCs (Blokzijl et al., 2016) at an
aggregate sample level. Results from this analysis demonstrated that
the mutation landscape of HPCs cannot be explained adequately by
the normal tissue chromatin landscape, with negative-value variance
explained score for the top 1st rank chromatin feature and 25% for
the total 423 chromatin features (Figure 6a). To check whether the
results from HPCs were due to the lower mutation load or possible
differences in mutation accumulation patterns intrinsic to the adult
stem cells, we utilized the mutation landscape data of colon stem
cells (Blokzijl et al., 2016). Aggregate sample level random forest
feature selection analysis of colon stem cells displayed variance
explained score greater than 409 for the H3K9me3 rectal mucosa
chromatin mark and above 60% for the total 423 features.
Post-adjustment of mutation load for colon stem cells at the level of
HPCs still showed chromatin marks derived from the rectal mucosa
tissue as a top ranked feature, with greater than 28% variance

explained score, implying that either the lower mutation load or the
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stem cell specific mutation accumulation patterns might not be a
contributing factor for the feature selection analysis results from two
different adult stem cells. These results also infer distinct mutation
landscape between the HPCs and PLCs through differential variance
explained score patterns, thus suggesting that HPCs might not be a
direct COO of PLCs.

Relationship between mutation signatures and COO predictions.

Previous evaluation on the mutation signature of HPCs identified a
specific age-associated mutation signature displaying a correlation
with replication timing and average chromatin levels of cell lines
registered in the ENCODE project (Blokzijl et al., 2016). Based on
these findings, we conducted mutation signature analysis on the
HPCs along with the PLCs and BTCAs to discover any relationship
between the mutation signature proportions and COO assignments. As
predicted, we successfully extracted a resembling signature (signature
D) to the age-associated signature previously identified in the HPCs
with similar relative proportion level, along with the other three
mutation signatures (Figure Sl6a-c). Next, we assessed whether the
proportion of signature D correlates with COO assignment for PLCs.
As demonstrated in Figure 6b, the relative contribution of signature D
was significantly lower for non—hepatocytic predicted HCCs and ICCs
comparing to the hepatocytic—predicted HCCs / ICCs and all of the
HPCs. Moreover, several evidences point out that the correlation
between the relative proportion of the mutation signature and the
COO assignment was specific and consistent for signature D. One is
that the proportion of the other three signatures (A, B and C) was
not significantly associated with the COO assignments for ICCs (P >
0.57), and two signatures (A, B) showed no significant associations
with the COO assignments for HCCs (P > 0.24). Also, the mutation
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type patterns of HPCs were more comparable to those of ICCs and
BTCAs rather than the HCCs and Mixed, in contrast to the findings
on the skewness of COO assignment depending on the signature D
status. Furthermore, major proportion of the non—hepatocytic predicted
COO samples were located in the lower quartile for the signature D
proportions (Figure S16d). Collectively, these results provide a novel
perspective with respect to the importance of age—associated mutation
signature levels on COQO assignment, and thus reflect the distinct
mutation landscapes between hepatocytic and non-hepatocytic

predicted COO samples.

Discussion. In this study, we applied random—-forest machine learning
algorithm and other computational analyses to whole genome
sequencing data of PLCs and epigenomics data / scRNA-seq data
derived from normal tissues to elucidate unique association patterns
between the two features and identify possible COO distribution for
PLCs at the subtype and individual tumor tissue level. Results from
these analyses would help to wunderstand the complex and
heterogeneous nature of liver cancer COOs and the contribution of
chromatin marks on differential regional somatic mutation landscapes
during the progression of various subtypes of PLCs.

Several recent studies support the idea of chromatin marks serving
as a crucial factor in shaping the mutation landscape for several
types of tumors (Ha et al., 2017, Polak et al., 2015, Polak et al.,
2014). Consistent with this idea, our results show that chromatin
marks can explain the mutation landscape of PLCs at the subtype
level, displaying variance explained scores in the range of 562 (ICCs)
to 87% (HCCs). Moreover, the top chromatin marks associated with
the mutational landscape of 256 HCCs were mostly derived from liver

tissue and the top correlative chromatin marks for 12 of BTCAs were
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from the stomach tissue, which are also concordant to the previous
studies on HCCs and DCCs (Wardell et al., 2018). Also, analysis of
the scRNA-seq data from human liver tissue complemented the
chromatin feature-based data by using DR value feature data from
the actual cell types inside the liver tissue. To note, a lower level of
variance explained scores were observed for ICCs comparing to any
other PLC subtypes, using either chromatin features or the DR value
features. We speculate that the potential contributor to these
differences in variance explained scores might be either 1) lower
mutation load or 2) the higher level of heterogeneity in COOs.
Genetically engineered mouse model (GEMM) lineage tracing studies
reported COO-dependent discrepancies with respect to the oncogenic
alterations at the molecular level (Vicent et al., 2019). In the case of
ICCs, mouse models either utilizing thioacetamide administration or
Trpb3 genetic loss can direct different cell types (hepatocytes vs
cholangiocytes) into ICCs with concomitant Notch signaling activation
(Guest et al., 2014; Sekiya and Suzuki, 2012). For HCCs, most of the
mouse models revealed that this cancer subtype mainly originates
from hepatocytes, but the emergence of HPC-derived benign lesions
could be identified in conjunction with galectin-3 and a-ketoglutarate
paracrine signals (Tummala et al., 2017). Our COO prediction results
not only do conform with these reports but also stress out the
importance of further large cohort-level investigation on the major
COOs of each subtype of PLCs and the potential COO variability,
especially in the context of distinct or co—existing molecular
alterations. Altogether, these researches would remain highly
necessary for a better understanding of the cancer progression for
PLCs along with the early-stage diagnosis and the treatment
selection.

Several publications provided pieces of evidence on the
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injury-mediated plasticity of hepatocytes by demonstrating the ability
to transdifferentiate into cholangiocytes (Michalopoulos et al., 2005;
Sekiva and Suzuki, 2014; Yanger et al., 2013) at in vitro and/or in
vivo. Moreover, several lines of lineage—tracing based evidence show
that the transdifferentiated hepatocytes can arise ICCs indifferent
mouse models (Fan et al., 2012; Sekiya and Suzuki, 2012; Wang et
al., 2018). These transdifferentiation processes are governed mainly by
the activation of Notchl/2 and Akt signaling, which is renowned to
be crucial for the formation of ICCs at least in part by direct
transcription and overexpression of cyclin E gene (Zender et al,
2013). Consistent with these observations, our random forest-based
COO predictions also point out the possibility that the hepatocytes are
indeed one of the major COOs of ICCs, alongside with the
cholangiocytes. These results implicate that the somatic mutation
landscape of tumors can harbor the information about the history of
cancer Initiation and progression, which may enable to detect the
potential cellular transdifferentiation during the course of cancer
development and accompanied somatic mutation accumulations.

The COOs for PLCs were a subject of debate for a number of years,
not only due to the discovery of several types of HPCs (Cardinale et
al.,, 2011, Wang et al.,, 2015), but also to the facultative regeneration
of hepatocytes and cholangiocytes displaying trans—differentiation,
which mainly occurs during the inflammation or liver injury (Mu et
al.,, 2015; Raven et al., 2017). Our prediction results, at least, favor
differentiated cells rather than progenitor or stem cells as origins for
PLCs. This conclusion is based on the findings that 1) normal liver
(representing hepatocytes), kidney, and stomach (surrogate for the
cholangiocytes) tissues can mostly explain the COO of PLCs, and 2)
the somatic mutation profile of HPCs is not adequately explained

(variance explained score < 24.04) by the normal tissue chromatin
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marks. Although our chromatin feature selection analysis did not
contain any liver progenitor/stem cell chromatin marks, poor
correlation between the mutational landscape of HPCs and the liver or
stomach chromatin marks may imply a distinct chromatin landscape
between the differentiated cells/tissues and the progenitor/stem cells.
Although we cannot fully reject the possibility that the HPCs are still
the very first COO of PLCs, our results at least suggest that the
major somatic mutation accumulation would most likely happen in
differentiated cells, not at the progenitor/stem cell level. Future
assessment on the relationship between the chromatin marks derived
from the HPCs and the mutational landscape of PLCs and HPCs
could serve as a separate confirmatory study, although the limitation
on the number of progenitor/stem cells directly from human liver and
its purity are major hurdles for ChIP-seq or any other epigenomics
assays.

In summary, our results on the COO of PLCs discovered several
novel aspects of COO distribution in different PLC subtypes. We
believe that these results not only validate the in vitroand in vivodata
from previous publications on COOs of PLCs through human data but
also address some new aspects of individual-level differences in
tumor biology and clinical pathology of PLCs, and provide a robust
and relevant way of studying cancer COQOs in a human
system.Ultimately, our results support arguments for the necessity of
personalized medicine for cancer treatments, combined with genomics

and other molecular signatures.
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Figure 1. Principal coordinate analysis (PCOA) of individual cancer

samples. Barrett’s esophagus, esophageal adenocarcinoma, and ESCC.
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Figure 2. Regional mutation frequency landscape of Barrett’s
esophagus and matching esophageal adenocarcinoma are affected by
cell-type-shift-associated epigenetic changes. (a) Chromatin feature
selection based on the commonality of mutations in paired samples of
Barrett’s esophagus and esophageal adenocarcinoma. Barrett’s only: mutations
observed only in the Barrett's esophagus genome, Common: mutations
observed in common for both Barrett's esophagus and esophageal

Adenocarcinoma genomes, EAC only: mutations observed solely in the
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esophageal adenocarcinoma genome. (b) Bar graph representing average
variance explained scores using either stomach chromatin features (navy) or
all 423 epigenomic features (gray). ND: no dysplasia, LGD: low-grade
dysplasia, HGD: high-grade dysplasia, EAC: esophageal adenocarcinoma.
Error bars demonstrate minimum and maximum values derived from 1,000

repeated simulations.
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Figure 3. Regional mutation frequency landscape of esophageal
squamous cell carcinoma demonstrates the uniqueness of significant
chromatin features associated with the Barrett’s esophagus and
esophageal adenocarcinoma genomes. Average variance explained scores
for pre—cancerous or matching cancer genomes were separately calculated
using the tissue or cell type-based subgroup-classified chromatin features.
The pink panel represents subgroups with the highest variance explained
score for each cell type. The red line indicates the variance explained score
when using all 423 epigenomic features. Dots represent the Spearman’s rank
correlations (r) of chromatin features between the highest variance
explained-scored subgroup and the remaining subgroups. Error bars
demonstrate minimum and maximum values derived from 1,000 repeated

simulations.
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Figure 4. Cell-of-origin chromatin features delineating relations with
the regional mutation frequency of HCCs, Mixed, ICCs and BTCAs. (a)
Random forest regression—-based chromatin feature selection using aggregated
somatic mutation frequency data from HCC, Mixed, ICC and BTCA-SG
samples. The rank of each chromatin feature wasdetermined by importance
values. Barlength represents the variance explained scores, and theerror bar
shows minimum and maximum scores derived from 1,000 repeated
simulations. Red lines represent the cutoff scores determined by the
prediction accuracy of 423 features—1 standard error of the mean. Liver
chromatin features are green—colored and stomach chromatin features are
blue—colored. (b) Normalized mean mutation density per each PLC subtype
and BTCAs plotted with respect to the density quintile groups of liver and
stomach H3K4mel marks.
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Figure 5. Analysis of COOs forindividual cancer samples. (a) Prediction of
COO wvia grouping of chromatin features for each normal tissue type. The bar
graph depictsthe percentage of samples with respect to the assigned COO by liver
tissue chromatin features (pink), kidney tissue chromatin features (green), stomach
tissue chromatin features (navy) or the rest (gray). (b) Principal coordinate
analysisof mutation frequency distributions for individual cancer samples. (c,d)
Differential gene expression by non-hepatocytic COO HCCs (n = 6) comparing to
the hepatocytic COO HCCs (n = 189). (c) Volcano plot. The horizontal axis is the
log-ratio of the non-hepatocytic COO to the hepatocytic origins. Dashed line
represents FDR = 0.05. (d) Expression profile of EPCAM and KRT19 mRNA.
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Figure 6. Hepatic progenitor cells displaydistinct mutation landscape

and mutational signature processes compared to the genomes of PLCs.

(a) Chromatin feature selection in relation to the regional mutation frequency

of colon adult stem cells and hepatic progenitor cells. The chromatin features

related to each tissue type are green—colored. (b) The box plot shows the

distribution of relative contribution of signature D in HCC, Mixed, ICC,

BTCA and HPC samples. Samples of each tumor type are separated based

on whether they are predicted as hepatocytic COO (gray) or not (yellow).

Statistical significance wascalculated by using aMann-Whitney U-test (X X

X, P < 0.05). BTCAs were excluded from the statistical analysis because

only two samples were predicted as hepatocytic COO.
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Figure S1. Chromatin feature selection in relation to the regional
mutation frequency of Barrett’s esophagus and esophageal
adenocarcinoma. Chromatin features of the stomach mucosa are

green—colored.
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Figure S2. Correlation plots between regional mutation density and
cell-type matching chromatin features. (a) Mutation density of Barrett's
esophagus versus stomach mucosa or esophagus chromatin features. (b)
Mutation density of esophageal adenocarcinoma versus stomach mucosa or
esophagus chromatin features. (¢) Mutation density of ESCC versus stomach

mucosa or esophagus chromatin features.
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Figure S3. Spearman’s rank correlation (r) between regional mutation
density and chromatin accessibility index across the different
chromosomes. (a) Barrett's esophagus, esophageal adenocarcinoma and

ESCC. (b) Subgroups of Barrett's esophagus classified by dysplasia states.
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Figure S4. Comparison of variance explained scores using either stomach
chromatin features or groups of randomly selected chromatin features.
Stomach chromatin group represents a total of 6 chromatin features from stomach
tissue. A total of 417 and 423 chromatin groups displayed 6 randomly selected
chromatin features from either 417 or 423 features. The difference between 417
and 423 features was the presence or absence of stomach chromatin features. (a)
Average variance explained scores using 3 different chromatin groups or all of the
423 features. Error bars demonstrate minimum and maximum values derived from
1,000 repeated simulations. (b) Distribution of variance explained scores for the
group of 6 randomly selected chromatin features from either 417 or 423 chromatin
features with 1,000 permutations. Pink-colored distributions represent average

variance explained score of stomach chromatin features.
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Figure S6. Comparison of observed and predicted mutation frequencies
in 1 megabase genomic regions with differential chromatin level. (a)
Boxplot for all 1 megabase genomic regions displaying differential chromatin
level (n = 92). Statistical significance was calculated by using
Krushal-Wallis one-way ANOVA followed by Dunn's test (kk*, P <
0.001 ; NS, not significant). (b) Heatmap of differences in mutation
frequency for the 1 megabase regions with differential chromatin level
(n=92).
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Figure S7. Chromatin feature selection in relation to the regional
mutation frequency of ESCC samples. Chromatin features of the

esophagus are green—colored.
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Figure S8. Difference in variance explained scores between the HCC
and MIXED type is related to the total number of samples and the
aggregated mutation load. (a) Distribution of variance explained scores
using either all samples or 8 randomly selected samples in 1,000 repeated
simulations. Distributions of HCC total (yellow, n = 256) and Mixed total
(navy, n = 8) are the result of using all samples for each cancer type.
However, pink-colored distribution represents the result of using 8 randomly
selected samples in only HCC type. Average variance explained score for
each distribution is shown on the top left. (b) Distribution of aggregated
mutation load at the 1 megabase-level from 8 randomly selected HCC
samples in 1,000 repeated simulations. Orange-colored bar represents the
aggregated mutation load at the 1 megabase-level from all samples of Mixed

type.
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Figure S9. Correlations between cancer genome mutation density and
the H3K4mel chromatin features in different tissue types. (a)
Correlations between somatic mutation frequencies and chromatin landscape
in all 2128 regions represented by heat map. Different color depths
correspond to the absolute values of Spearman’s p statistics. (b) Regional
mutation density of HCCs, Mixeds, ICCs and BTCAs parallel to the
ChIP-seq index (reverse scale) of liver or stomach H3K4mel. Dotted and
solid lines represent mutation density and ChIP-seq index, respectively. A
total of 106 genomic regions that show top 5% difference from the predicted
ChIP-seq count in the regression model between liver and stomach
H3K4mel were selected. Spearman’s rank correlations between the mutation
density and ChIP-seq index are shown on the top right. Zoomed images are
representative regions for cancer type groupings with respect to liver and
stomach H3K4mel level (HCC/Mixed and ICC/BTCA).
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Figure S10. Analysisamong regional somatic mutation frequencies,
H3K4mel chromatin features and scRNA-seq gene expression factor
levels. (a, b) Correlation coefficient values from 106 1Mbp sub-selected
regions displaying the largest differences in the regression model between
H3K4mel liver and stomach mucosa were calculated using Spearman’s rank
method. In the case of hepatocyte clusters, averaged -correlation values
obtained by assessing the correlations between DR or MDTC of each
hepatocyte cluster and either chromatin features or regional somatic mutation
frequencies were used. Minimum and maximum values are represented as
the error bars. (a) Bar graphs representing correlation coefficients between
H3K4mel chromatin features from either liver (upper part) or stomach
mucosa tissue (bottom part) and DR or MDTC factor levels of hepatocyte
clusters or cholangiocyte cluster. (b) Bar graphs demonstrating correlation
coefficients between the sub-selected regional mutation frequency of each
PLC subtype and DR values from cell clusters (left part of each inset
figure) or H3K4mel chromatin marks from two tissues (right part of each
inset figure). [Each inset figure corresponds to each PLC subtype. All
correlation values were converted to absolute values for visual purposes. (c)
Random forest regression-based scRNA-seq gene expresssion factor feature
selection employing aggregated mutation frequency from each PLCs subtype.
The average DR values of clusters were used for calculating scRNA-seq
feature of each cell type. The rank of each scRNA-seq feature is estimated
by importance values. The bar length shows the variance explained scores,
and error bar indicates minimum and maximum scores derived from 1,000
repeated simulations. Red lines show the cutoff scores determined by the
prediction accuracy of total features-1 s.e.m. hepatocyte scRNA-seq feature

1s green—colored and cholangiocyte scRNA-seq feature is blue-colored.
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Figure S11. Cell-of-origin prediction distributions for distinct Mixed
and ICCs cohorts using chromatin features. Pie graphs represent the
percentage of samples with COO assignments as liver tissue chromatin
features (pink), kidney tissue chromatin features (green), stomach tissue
chromatin features (navy) or the rest (gray). (a) Comparison between

Mixed subtype cohorts and (b) between ICC subtype cohorts.
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Figure S12. Cell-of-origin prediction wusing scRNA-seq data.
scRNA-seq features derived from a total of 20 single cell clusters
constituting human liver tissue was employed to elucidate the relationship
with the regional mutation frequency of Mixed type at individual sample
level. (a) COO prediction for two distinct Mixed subtype cohorts. Pie graphs
indicate the percentage of COO assignments as hepatocyte clusters (pink) or
other clusters (gray). (b) Bar graph displaying the number of Mixed subtype
samples from the two cohorts assigned per each cluster. Hepatocyte clusters

are pink—colored and other clusters are gray-—colored.
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Figure S13. PCOA of individual cancer samples.
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Figure S14. Gene sets that were down-regulated in non-hepatocytic

COO HCCs.
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Figure $S15. Connection network of ’bile acid synthesis’ and

"xenobiotic degradation’ pathway through Bio—Entity Explorer.
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Figure S16. Mutation signature analysis for the genomes of HCC,
Mixed, ICC, BTCA-SG and HPC samples. (a) Contribution of mutation
types to the four mutational signatures derived from the somatic mutations
of HCC, Mixed, ICC, BTCA-SG and HPC samples. (b) Relative contribution
of mutational signatures in each HPC sample. (c) Relative contribution of
somatic mutation types in each cancer/tissue type. Bar length is calculated
as the average relative contribution in each type and error bars show
standard deviation. (d) Cell-of-origin assignment status based on mutational
signatures for HCC, ICC and BTCA. The bar represents the number of
non-hepatocytic COO assigned samples with respect to the quartile of
signature D contribution. Quartile values are determined by sorting samples
of HCCs, Mixed, ICCs, BTCAs and HPCs according to the relative
contribution of signature D. The number of samples used in the analysis is

shown on each plot.
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Table S1. Differentially expressed Genes between non-hepatocytic- and
hepatocytic-origin HCCs.

Gene ID Gene symbol lagFC AveExpr P.Value FDR
ENSG00000161249.16 DMKN 5.062718005 | -0.133833627 | 5.79731E-11 | 4.60909E-07
ENSG00000134121.5 CHL1 4903538873 | -2.745241348 | 4 5308E-08 | 7.3BBOBE-06
ENSG00000119888.6 EPCAM 4750318163 | 0.451955596 | 5.56417E-DB | 6.65364E-05
ENSG00000171345 9 KRT19 4 620835737 | -2.242115976 | 5.04115E-07 | 0.000430586
ENSGOOD00162948 12 CAPN1Z | 4460917837 | -3.452568356 | 2.51523E-10 | 6.95756E-07
ENSGO0000213438 4 FAMISAS | 4 276950727 | -1.839672486 | 2.31201E-08 | 5.18381E-06
ENSG00000131037.10 EFSaL] 4240681151 | -0.736121173 | 1.19381E-13 | 2.14152E-08
ENSG00000184363.5 PKP3 4154360112 | -3.154846101 | 3.80302E-00 | 6.8214BE-06
ENSG00000104413.11 ESRAP1 4.112051636 | -3.320175308 | 0.62504E-06 | 0.00411058
ENSG00000183454.9 GRINZA 4.036506636 | -3.610026899 | 3.3230BE-00 | 6.622B0E-06
ENSG00000159263.11 SiMz 4.00016387 | -3.108501219 | 3.7529E-08 | 4.80827E-05
ENSG00D00182272.7 B4GALNT4 | 3.980777347 | -2.098102938 | B.9587E-09 | 1.3301E-05
ENSGO00D0162068.10 | CCDCE4B | 3.07193709 | -3 223803004 | 7.1183E-07 | 0.000555136
ENSGO0000146555.14 SDK1 3.941227041 | -1.162653665 | 2.71522E-10 | 6.95756E-07
ENSGO0000153404.8 | PLEKHGAB | 3.712740228 | -2.030266008 | 9.4771E-08 | 0.000106244
ENSG00D00162552.10 WNT4 3.704973808 | -0.601769663 | 2.71779E-08 | 3.74993E-05
ENSGO0000136002.12 | ARHGEF4 | 3.704371314 | -2.720236555 | 2.01164E-10 | 6.95756E-07
ENSG00000165238.12 WHKZ 3.6BB090343 | (.029657067 | 2.45255E-08 | 0.001691976
ENSG00000145113.17 MUC4 3.6B5707427 | -2.621147752 | 2.63751E-07 | 0.000262828
ENSG00000137203.6 TEAPZA 3.647603437 | -0.502925872 | B.60928E-11 | 4.60909E-07
ENSG00000165445 7 SLC16AD | 3.633684788 | -D.41082064 | B417E-DB_| 0.0D411058
ENSGO0D00105048.12 TNNTT 3.44692295 | -3.497199786 | 2 90823E-06 | 0.001863034
ENSGO0000189292.11 | FAMISOE | 3.440147878 | -2.392342705 | 1.02784E-10 | 4.60909E-07
ENSG00000159247.8 TUBBP5 | 3.419449712 | -2.84541423 | 1.91239E-05 | 0.006417903
ENSGO0000111344.7 RASALT 3.305183228 | -2.063788982 | 3.03164E-07 | 0.000286203
ENSG00000184202.5 TACSTDZ | 3284731657 | -1.487481534 | 0.00010527 | 0.022478897
ENSGO0D00170074.15 | FAMI53A | 3271527857 | -2 568660534 | 3.75069E-07 | 0.000336381
ENSG00000124102.4 Pia 3.966949152 | -2.131724945 | 0.000344921 | 0.045176245
ENSGO0D00268756.1 | AC104534.2 | 3266112552 | -3.219729752 | D.88502E-06 | 0.004123508
ENSG00000133477.12 FAMB3F__ | 3240005512 | -2.952343337 | 0.000152303 | 002787617
ENSG00000184343.6 SRPK3 3.237933881 | -3.06315791 | 1,42162E-07 | 0.000149997
ENSGO0000112812.11 PRSS16_ | 3.218769206 | -3.208671945 | 0.000111322 | 0.023184212
ENSG00000104892.12 KLC3 3.192207986 | -2.086348724 | B.53820E-06 | 0.00411058
ENSGO0DD0225346 1 | AP11-305B7.2 | 3.179456656 | -3.127704284 | 6.190947E-D6 | 0.003270587
ENSG00000095032.5 Cidorf77__ | 3158529438 | -0.045667821 | 6.60897E-05 | 0.016238054
ENSGE00000005001.5 PRS522__ | 3.101113528 | -3.084871231 | 4.84786E-05 | 0.013867142
ENSG00000148043.12 SYT8 3.063792717 | -2.314471678 | 2.98231E-05 | 0.009066726
ENSG00D00063186.12 SDK2 3.025609327 | -1.062029986 | 8.5414E-07 | 0.000638363
ENSG00000176820.10 FUT2 3015073918 | -1.667011629 | 0.000197405 | 0.032484932
ENSGO0D00171462.10 DLKZ 2992474532 | -1 858245628 | 7.22012E-05 | 0.017500984
ENSGO0D00166796.7 LDHE 2981548718 | -2.831651638 | 1 B0405E-05 | 0.008417903
ENSGO0D00187775.12 DNAH1T 2.67321331_| -1.386054121 | 0.000164151 | 0.028105688
ENSG00000130294.10 KIF1A 2.942405647 | -1.873754387 | 0.000164526 | 0.028105689
ENSG00000135373.8 EHF 2.803291719 | 1.242829185 | 1.3366E-05 | 0.005181954
ENSG00000013588.5 GPRCSA 2.88411355 | -1.717433767 | 0.000162077 | 0.028105689
ENSG00DD0186112.4 Céori132__ | 2858416155 | -1.031620437 | 0.000202608 | 0.033037231
ENSG00000105426.10 FTPRS 2 B36523141 | 1.308481792 | 2.57035E-06 | 0001707569
ENSGO00001 1732212 CR2 2 834777008 | -3.013454749 | 0.000238513 | 0.035933308
ENSGO0000137699.12 TRIMZ3 2803176897 | -0.712695 | 6.93815E-05 | 0.021738101
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Gene ID Gene symbol logFC AveExpr P.Value FDR
ENSGO0000154318.10 FAMI1G7TA 2.789097654 | -2.048367329 | 1.21079E-05 | 0.004935904
ENSGO0D00159212.8 CLICE 2.739788056 | -2,06770182 | 0.000323615 | D.0436844245
ENSGO0000205795.4 CY31 2. 715764216 | -2.602504102 | 0.000114338 | 0.0231B4212
ENSGE00000101115.8 SALL4 2. 704137018 | 0.268588921 | 0.000261316 | 0.037B00136
ENSGO0000058404.15 CAMKZB 2.683984581 | -0.902376697 | 6.39836E-05 | 0.016179566
EMNSGO0000102554.9 KLF5 2676343614 | 1.740264807 | 1.35782E-05 | 0.005181954
ENSGO0000185498.12 MUCH 2661448334 | 0281755422 | 9.22351E-06 | 0.00411058
EMNSGE00000204380.2 ACO05042 4 | 2858207752 | -3.35332207 0.0003644 0046356287
ENSG00000198753.7 PLXNB3 2680845097 | -0.342017577 | 2.223B5E-05 | 0.007252568
ENSGO0000162738.5 VANGLZ 2572483777 | -0.947963707 | 0.000224222 | 0.034083666
ENSGO0000131203.8 DO 2571580247 | 0013726831 | 0.000123554 | 0023335931
ENSGO0000170425.3 ADORAZBE 2524458011 | -1.078383131 | 0.000112772 | 0.023184212
ENSG00000181218.4 HIST3IH2A 2510548398 | -2.210642505 | 0.000122127 | 0.023304256
ENSGO0000182580.2 EPHB3 2.509108717 | -0.632213464 | 3.81808E-05 | 0.011414155
ENSGO0000168453.10 HR 2470189317 [ -1.559337528 | 0.000141445 | 0.026428178
EMSGO0D00126155.8 PLEKHG4 2. 456633651 0.21081219 2.7527E-05 0.00851295
ENSG00000101213.5 PTKE 2428244737 | 0.647886993 | 0.000170132 | 0.028789256
ENSGO0000143797.7 MBOAT2 2.410345408 | 0.613264802 | 5.78745E-07 | 0.0004718561
ENSGO0D001E7E42.8 SPINT2 2.37788438 2136207673 | 0.000209611 | 0.03353451
ENSGODD00181085,10 MAPK1S 2324487427 | -2,43292748 | 0.000355599 | D.045887569
ENSG00000206363.4 C150rf53 2.316888483 | -2.449986115 | 0.00036084 | 0.046231286
ENSGE00000130751.5 NFAS1 2302061395 | -1.489840859 | 8.7001E-06 0.00411058
ENSGO0D00181652.14 ATGEB 2.299726617 | -1.625076203 | 6.132B0E-06 | 0.003270587
EMSG00D00112655.11 PTKT 2,.2058093368 | 1.858078697 | 0.000120206 | 0.023184212
EMNSGD0000248684 1 RP11-423H2.3 | 2280066134 | -1,805452163 | 5.92006E-05 | 0.015B21634
ENSGO0000143320.4 CRABFP2 2286963455 | -0.737104636 | 6.56307E-05 | 0.016239054
EMNSG00000228594.1 Clorf233 2.260768638 | -0.826738845 | 1.7885E-05 | 0.006417903
ENSGO0000126460.6 FRRG2 2.259200701 | 0.458206183 | 1.32821E-05 | 0.005181954
EMSGO0000155066.11 PROM2 2251707637 | -1.514406248 | 0.000117128 | 0.023184212
ENSGO000072071.12 LPHN1 2248413263 | 1.363492015 | 4.10616E-06 | 0.002455075
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