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ABSTRACT

Studies on the magnetoelectric effects of the
Co2Y-type hexaferrites

Ba2−xSrxCo2(Fe1−yAly)12O22 and 2D van der
Waals materials CuCrP2X6 (X=S and Se)

Chang Bae Park
Department of Physics and Astronomy

Graudate School, Seoul National University, Seoul, Korea

For more than a decade, multiferroic or magnetoelectric (ME) materials, in

which magnetic and ferroelectric orders coexist and are strongly coupled each

other, have been studied extensively. Both their scientific novelty related to

the mechanism of ME coupling and application potentials for realizing multi-

functional electronic devices have been major driving forces for resulting in the

extensive worldwide research activity. Although various new mechanisms and

emergent materials have been found during the research activity, it is still rare to

find a strong ME coupling at room temperature and in low dimensional system.

In particular, the discovery of multiferric materials with a strong ME coupling at

room temperature and in the low dimensional system can open up a new route

for nano-scale electronic devices. As candidates of materials with strong ME

coupling at room temperature and in low dimension, we report two multiferroics,

Co2Y-type hexaferrites Ba2−xSrxCo2(Fe1−yAly)12O22 and van der Waals materials

CuCrP2X6 (X=S and Se), in this thesis.
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In order to control the magnetoelectric coupling strength in the Co2Y-type

hexaferrites, we have investigated comprehensively magnetic, ferroelectric, and

magnetoelectric properties of Ba2−xSrxCo2(Fe1−yAly)12O22 single crystals in broad

doping ranges of Sr and Al (1.0 ≤ x ≤ 1.9 and 0.00≤ y ≤ 0.08). We find that most

of the investigated compounds exhibit intriguing coexistence of the two compet-

ing phases, transverse conical (TC) and alternating longitudinal conical (ALC)

spin structures, of which volume fractions are sensitive to the history of both ap-

plied temperature and magnetic field conditions. The TC phase tends to become

dominant at low temperatures and under in-plane magnetic fields whereas the

ALC phase becomes more stabilized at high temperatures and under out-of-field

conditions. In particular, the crystal with x = 1.8 and y = 0.04 with a maximized

volume fraction of TC phase at room temperature exhibits the highest electric

polarization ∼ 60 µC/m2 at 300 K and ∼ 430 µC/m2 at 10 K under small in-plane

magnetic fields of ∼ 10 mT, resulting in the most sensitive ME coupling. Our

findings show that the thermal stability of the TC phase closely associated with

the control of easy-plane anisotropy and exchange interaction is one of key factors

to optimize the ME coupling at room temperature in the Co2Y-type hexaferrites.

In addition, we report our discovery of magnetic field-induced electric polar-

ization in a two-dimensional (2D) van der Waals material CuCrP2S6 forming a

monoclinic lattice, in which Cu, Cr, and P-P pairs are forming a honeycomb

network. We have observed that electric polarization under magnetic fields oc-

curs below 32 K and is modulated by magnetic field while it is suppressed with

the spin-flop transition located around 6.1 T. Based on magnetization and elec-

tric polarization measurements, electric and magnetic phase diagram has been

constructed. We also claim that the magnetic field-induced electric polariza-

tion is closely associated with the p-d hybridization mechanism originated from

xvii



the off-centered Cr3+ cations within the octahedral sites. Furthermore, with

the symmetry analysis between the antiferromagnetic layers, we could explain

the shape of the electric polarization curve qualitatively. The p-d hybridization

mechanism is further corroborated by the observation of vanishing polarization in

the CuCrP2Se6 compound in which Cr3+ is positioned at the octahedral center,

further supporting that the off-centered cation plays an important role in the

magnetoelectric coupling. Our results thus point to one general route to induce

magnetoelectric coupling in 2D layered materials, i.e., via the off-centered cation.

Key words : multiferroics, magnetoelectrics, ferroelectrics, hexferrites, van
der Waals material

Student number : 2013-20369
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Chapter 1

Introduction

Multiferroics and magnetoelectric (ME) materials have been intensively investi-

gated due to their potential to realize the next generation devices [1]. As depicted

in Fig 1.1, multiferroics indicate the materials in which at least two ferroic orders

such as ferromagnetic, ferroelectric, and ferroelastic orders coexist. We deal with

the combination of ferroelectricity and magnetism in this thesis.

The coexistence of magnetism and ferroelectricity in one material was con-

Figure 1.1: Schematic diagram of (a) multiferrics and (b) magnetoelectric cou-
pling.
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Chapter 1. Introduction

sidered as a challenge because the origins of two order parameters are mutually

exclusive [2]. For example, ferroelectric properties in most of the perovskite ma-

terials are originated from the structural distortion stabilized from the strong

covalent bonding between empty d-orbitals of the transition metal and filled p-

orbitals of oxygen [3]. On the other hand, magnetism results from the partially

occupied d-orbital, which means that ferroelectricity and magnetism are difficult

to be compatible with each other.

Apart from the multiferroics, ME coupling means the control of electric polar-

ization (magnetization) by magnetic (electric) field. Therefore, the coexistence

of ferroelectricity and magnetism does not ensure the strong ME coupling if the

mechanisms of coexisting phases are different [4]. To overcome the issues, spin-

induced ferroelectricity has been suggested as a solution and a modulation of elec-

tric polarization by magnetic field has been observed in various types of materials

with complex spin structures [5,6]. In these materials, not only spatial-inversion

but also time-reversal symmetry is broken by the complex spin structure, result-

ing in the emergence of an electric polarization [7, 8].

I will briefly introduce multiferroics and ME materials in this chapter. In

particular, the origins of spin induced ferroelectricity and relevant materials will

be explained.
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1.1. Types of multiferroics

1.1 Types of multiferroics

Multiferroics are categorized into two types depending on the relation between

ferroelectricity and magnetism [9,10].

1.1.1 Type-I multiferroics

Type-I multiferroics include materials with the distinct sources of ferroelec-

tricity and magnetism. As a result, the ferroelectric Curie temperature T c is

different from the antiferromagnetic Néel temperature TN and the ME coupling

is weak. In general, T c is quite high above room temperature and the magnitude

of electric polarization is sizable. BiFeO3 and YMnO3 are well-known examples

of type-I multiferroics.

BiFeO3 with a perovskite structure is one of the promising multiferroics. Fer-

roelectricity of BiFeO3 is originated from 6s lone pair electrons of Bi3+ cations,

while antiferromagnetic ordering is induced by partially-filled 3d electrons in Fe3+

cations [11]. Thus, BiFeO3 belongs to the class of type I multiferroics with T c of

1100 K and TN of 643 K. The large magnitude of electric polarization has been

observed in both bulk and film forms of BiFeO3 reaches to ∼ 90 µC/cm2 [13,25].

However, the ME coupling is relatively weak because the ferroelectricity and

antiferromagnetic ordering are coming from the different origins, thus the ME

susceptibility dP/dH which quantifies the magnitude of ME coupling is small ∼

55 ps/m [14]

Another example is a hexagonal manganite YMnO3. The tilting of MnO5

polyhedra cause the noncentrosymmetric position of Y3+ and induces a ferroelec-
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Chapter 1. Introduction

tric transition at 914 K [15]. Furthermore, the coupled ferroelectric and magnetic

domains in YMnO3 was observed by the second harmonic generation [16]. How-

ever, the geometrical ferroelectricity is not directly associated with the magnetism

of Mn3+ cations which orders antiferromagnetically at 76 K and ME coupling is

weak as well.

1.1.2 Type-II multiferroics

In contrast, the class of type-II multiferroics contains materials with an electric

polarization generated by the complex spin structures. This type of ferroelectric-

ity, so-called improper ferroelectricity, gives rise to a small electric polarization

because the electric polarization is not a main order parameter of the ferroelectric

transition but a by-product of magnetic ordering [2]. Therefore, the ferroelectric-

ity always accompanies the magnetic ordering, leading to the same T c and TN .

As a result, they are strongly coupled to each other and the ME susceptibility is

expected to be large.

Type-II multiferroic material was first discovered in orthorhombic TbMnO3

[7]. TbMnO3 undergoes two antiferromagnetic transitions below TN1 = 41 K and

TN2 = 28 K. Below TN2, finite electric polarization is induced with the incom-

mensurate spiral spin ordering and they are strongly coupled [17,18]. TbMn2O5 is

another example of type-II multiferroics [8]. The origin of electric polarization is

known as the exchange striction mechanism between the Mn4+-Mn3+ spin chain

at 37 K [89]. Lastly, Y- and Z-type hexaferrites materials are type-II multiferroic

with giant ME coupling [20,21,24].

The mechanism of spin-induced ferroelectricity is summarized into the three

major models depending on spin structures and microscopic origins. The three

models are discussed in the next section.
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1.2 The origins of spin-induced ferroelectricity

Most of the spin-induced ferroelectricity drive the electric polarization P by

following one of the three major models; exchange striction model, spin current

model, spin-dependent p-d hybridization model. In this section, we explain the

mechanisms and the relevant materials.

1.2.1 Exchange striction model

In the exchange striction mechanism, P generated from the symmetric ex-

change interaction between the neighboring magnetic ions, denoted by ith and jth

ions, with spin operator Si and Sj is expressed by

PES
ij = Πij < Si · Sj >, (1.1)

where Πij is the unit vector that points from the ligand site to the center of the

line connecting to two neighboring magnetic ions [25]. The macroscopic P can be

observed if the summation of PES
ij between neighboring ions over every bonding

has a finite value.

The exchange striction mechanism arises in spin ↑↑↓↓ configuration which can

be stabilized from the competitive interaction between nearest and next-nearest

neighboring ions. Fig. 1.2 shows the spin ↑↑↓↓ configuration in magnetic chain

with two alternating charges. The ions attract (repulse) each other when the

direction of the neighboring spins are parallel (antiparallel) to reduce exchange

energy, resulting in the spatial-inversion symmetry breaking and the emergence

of P .
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Figure 1.2: (a) The chain with spin ↑↑↓↓ configuration. Arrows indicates the spin
direction. Blue and red spheres depict two different magnetic atoms A and B with
charge QA and QB, respectively. (b) The emergence of electric polarization by
exchange striction mechanism.

Rare-earth orthorhombic manganites RMnO3 (R = Ho - Lu) with E−type

AFM order [26,27], the Mn3+-Mn4+ mixed manganites RMn2O5 [28], and Ca3CoMnO6

with spin ↑↑↓↓ ordering [29] are widely known as having the ME coupling origi-

nated from the exchange striction.

1.2.2 Spin current model

The spin current model or inverse Dzalyoshinskii-Moriya mechanism [30] arising

from the antisymmetric spin exchange interaction is formulated by

P SC
ij ∝ eij × js = eij× < Si × Sj > (1.2)

eij is an unit vector pointing from Si to Sj and js = < Si × Sj > is termed

the spin current. In this mechanism, the collinear spin order is not expected to

generate the P because spin current < Si × Sj > is estimated to be zero. Thus,

the spin current model is only applicable to the canted spin magnet such as

cycloidal and transverse conical spin structure. Plenty of previous studies verify
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1.2. The origins of spin-induced ferroelectricity

Figure 1.3: (a) The spin chain with the spiral spin ordering. Blue arrows indicate
the spin direction. Blue and red spheres indicates magnetic and oxygen ions,
respectively. ~e is an unit vector parallel to the direction of spin propagation and
~x is a displacement vector of oxygen ion from the the center of the line connecting
to two neighboring magnetic ions.

that the spin frustration competing against exchange interaction is a key feature

for cycloidal spin ordering [31,32].

Fig. 1.3 displays P driven by the spin current model in spiral spin ordering.

The spin current model is derived from the Dzyaloshinskii-Moriya (DM) interac-

tion. The Hamiltonian of DM interaction between the canted spins is formulated

by

HDM = Dij · (Si × Sj) (1.3)

Dij is DM vector defined as ~e× ~x. Once spiral spin ordering is stabilized in a

system, oxygen atoms move to minimize the HDM as depicted in Fig. 1.3.

However, the canted spin does not guarantee to induce P via the spin current

mechanism. Fig. 1.4 presents several spin structures with the spiral spin order

and it is found that the cycloidal and transverse conical spin structure are allowed

to have P .

1.2.3 Spin-dependent p-d hybridization model

In the spin-dependent p-d hybridization mechanism, local P is generated from
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electronic bonding between p-orbital of a ligand ion and d-orbital of a transition

metal magnetic ion (Fig. 1.5) [5]. The electronic hybridization depends on the

spin direction of magnetic ion due to spin−orbit coupling forms

P PD
ij ∝ eil(Si · eil)2 (1.4)

where eil is parallel to bonding direction connecting the magnetic ith ion and

ligand ion l. For example, the origin of ME coupling in CuFeO2 with incom-

Figure 1.4: The selected non-collinear spin structures and application of the spin
current model.
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mensurate spiral spin ordering has been turned out the spin-direction depen-

dent hybridization between d-orbital of Fe3+ ions and p-orbital of O2− ions [33].

Ba2CoGe2O7 also has magnetic field-induce polarization originated from spin-

dependent p− d hybridization [34,35].

1.3 Outline of Thesis

The industrial application of multiferroics and ME coupling will open up a

new prospect to the multifunctional device. It would be realized if new material

showing the giant ME effect at room temperature and two-dimensional (2D)

material of a nano-scale are discovered. As the candidates of ME materials with

Figure 1.5: Schematic illustration of p-d hybridization when (a) the spin is per-
pendicular to the bonding direction and (b) parallel to the bonding direciton.
Blue arrows indicate the spin direction. The blur blue and red areas represent
the d- and p- orbitals of magnetic ions and ligand ions, respectively. eil is along
bonding direction.

9



Chapter 1. Introduction

the large ME effect at room temperature and in the 2D, we mainly discuss the two

kinds of type-II multiferroics, Co2Y-type hexaferrites and van der Waals materials

CuCrP2X6 (X = S and Se) in this thesis.

First, the family of Co2Y-type hexaferrites (Ba, Sr)2Co2Fe12O22 has been

widely investigated because it exhibits the giant ME coupling [36]. However, the

systematic doping study to optimize the ME effect in single crystals has not been

done. Sr- and Al- substitutions are known as controlling the magnetic anisotropy

and spin frustration and eventually they modulate the magnitude of ME coupling

in Y-type hexaferrites [21]. Thus, we report the study on the ME coupling of

Ba2−xSrxCo2(Fe1−yAly)12O22 with various x and y values. Furthermore, the role

of Sr and Al doping and the mechanism on how the ME effect can be optimized

are discussed.

Next, the newly discovered ME effect in van der Waals material CuCrP2S6 is

presented. ME effect in 2D van der Waals materials is rare even in bulk crystals.

Even though the study has been performed in the bulk material, we believe that

the observation of ME coupling in CuCrP2S6 will be a driving force to realize the

ME effect in monolayer-limit. At the end of the section, we study the microscopic

mechanism of spin-induced ferroelectricity and symmetry analysis to investigate

the origin of ME coupling. Particularly, the spin-dependent p-d hybridization

model will be thoroughly inspected.
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Chapter 2

Experimental Methods

In this chapter, we describe the experimental methods utilzed to investigate the

ME effect in this thesis. This section is divided into two main categories, the sin-

gle crystal growth and measurement of ME effect. The single crystal growth part

contains the flux method, thermal annealing, chemical vapor transport method,

which has been used to grow Co2Y-type hexaferrites and CuCrP2X6 respectively.

Measurement part includes the magnetization, dielectric constant, and ME cur-

rent measurements at low temperature (T ∼ 1.8 K ).
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2.1 Single crystal growth

2.1.1 Flux method

Co2Y-type hexaferrites Ba2−xSrxCo2(Fe1−yAly)12O22 single crystal has been

grown by the flux method. Na2O-Fe2O3 are used as a flux. The chemicals is

weighed as shown in Table 2.1. The chemicals is put into a platinum crucible and

capped with platinum lid to prevent from the overflow. The platinum crucible is

placed into the well-calibrated box furnace and the mixed chemicals are melted at

1350 ◦C. A series of temperature steps including several thermal cyclings and slow

cooling is entered into the program of temperature controller as displayed in Fig.

2.1. The oscillation around CoFe2O4 nucleation point, 1350 ◦C, fades away with

time to remove the spinel impurity [37], and then temperature is cooled down.

The solidified products are detached from the platinum crucible mechanically and

shiny crystals are collected from them. When single crystals are not separated

from the flux perfectly, the mixture of nitric acid and water (1 : 1) is occasionally

used. The mixture is boiled at 80 ◦C for 10 minutes with single crystals. However,

the chemical method can damage single crystals by nitric acid and water, thus

the mechanical method is always preferred.

Grown single crystals are checked with X-ray diffractometer (XRD) and elec-

tron probe micro-analyzer (EPMA). XRD data is compared with the known struc-

Chemicals BaCO3 SrCO3 CoO Fe2O3 Al2O3 Na2O
Ratio 19.69(1-x) 19.69x 19.69 53.61(1-y) 53.61y 7.01

Table 2.1: The molar ratio of chemicals to grow Ba2−xSrxCo2(Fe1−yAly)12O22

single crystal
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2.1. Single crystal growth

Figure 2.1: The temperature sequence to grow Co2Y-type single crystals.

ture published in [38] and lattice parameters are estimated by Rietveld refinement

method. EPMA is used to confirm whether the actual amount of Sr and Al sub-

stitution corresponds to the target value.

2.1.2 Thermal annealing

The thermal annealing under oxygen atmosphere removes the possible oxygen

vacancy, resulting in the high resistivity by decreasing electron carriers. The high

resistivity reduces a leakage current while ME effect measurement is performed

and enables to investigate the intrinsic ME properties. In this thesis, Thermal

annealing in the high pressure has been carried out. Ni-based superalloy from

MTI Corporation (Fig. 2.2) is used as a sample chamber for high pressure an-

nealing. Fig. 2.3 shows the change of resistivity depending on the annealing

13
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Figure 2.2: The picture of the chamber for annealing in high pressure

condition. It is concluded that two hours are enough to make crystals insulate at

5 MPa oxygen atmosphere. The general tube furnace is also used if high pressure

furnace is not available. The annealing in ambient pressure follows the condition

from Chai et al. [39].

Figure 2.3: The resistivity as a function of temperature after the thermal anneal-
ing under oxygen atmosphere.
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2.1. Single crystal growth

2.1.3 Chemical vapor transport method

CuCrP2X6 (X=S and Se) single crystal has been prepared by Dr. A. Shahee

and Dr. D. R. Patil. Chemical vapor transport (CVT) method has been used to

grow single crystal [40]. The starting materials are weighed with stoichiometric

ratio and contained to an evacuated quartz tube. S and SeCl4 are used as trans-

port agent of CuCrP2S6 and CuCrP2Se6, respectively. The sealed quartz tube

is put into the tube furnace and the seed powder is positioned at the hot zone.

Plate crystals are formed at the cold zone.

Figure 2.4: The schematic illustration of chemical vapor transport method.
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2.2 Measurements

2.2.1 Magnetization

The vibrating sample magnetometer (VSM) option utilized in Physical Prop-

erty Measurement System (PPMSTM , Quantum Design) and Magnetic Property

Measurement System (MPMSTM) are used to characterize the magnetic proper-

ties. The typical resolution of VSM is around 10−5 emu. The superconducting

magnet always have a remnant magnetic field by inherent pinning of the magnetic

flux and it makes an error in the magnetic field near zero field. The magnetic

Figure 2.5: Magnetization curve of the standard palladium sample to calibrate
the magnetic field near zero field.
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field error can be removed by turning off the field with the oscillation mode from

the high field. However, it is impossible to use oscillation mode when field cooling

(FC) measurement is being done and the precise calibration of magnetic field near

zero field is essential. The magnetic field is calibrated by measuring the param-

agnetic palladium sample from National Institute of Standards and Technology

(NIST). Data is shown in Fig. 2.5. It clear shows that there exist an error of -2

mT (1 mT) while increasing (decreasing) the field near 0 T. The actual magnetic

field value is corrected based on the calibration.

Furthermore, sample is cut into needle shape to decrease the demagnetization

effect by shape anisotropy. The demagnetization factor N reduces the magnetic

field sample feels. The relation between external magnetic field and actual mag-

netic field expressed by

Hactual = Hexternal −NM, (2.1)

where M is magnetization of the sample. Thus, to suppress the demagnetiza-

tion effect is crucial when measuring the big magnetization. All of samples are

attached on the sample holder using GE Varnish or cotton string.

Magnetization also can be measured at high temperature (300 K ≤ T ≤ 800

K) with lab-made probe.

2.2.2 Dielectric constant

To measure the dielectric constant, single crystal is cut and polished into

the plate. Two electrodes are attached on the each side of the plate to make a

capacitor. Silver epoxy (Epotek H20E) is used as a conducting glue, attaching

the electrodes and heated at 150 ◦C for 5 minutes to solidify the silver epoxy.

However, silver reacts with chalcogen on heating and the insulating layers, such
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as Ag2S, are created. The unexpected products prevent from investigating the

intrinsic properties, thus silver paste is used for the chalcogenide because heating

is not needed to cure the silver paste.

The capacitor sample is loaded on the lab-made probe which is utilized in

the PPMS. Actually we measure the capacitance, not dielectric constant. The

dielectric constant ε is converted from the capacitance by the relation as below:

C = ε
A

d
(2.2)

where C is a capacitance, A is an area of the sample and d is a thickness of the

capacitor. The capacitance is measured with capacitance bridge and LCR meter.

In this thesis, we have used capacitance bridge AH2550 at the frequency of 1 kHz.

Dielectric constant is a complex number because we measure the capacitance

with AC voltage The imaginary part of dielectric constant is called dielectric

loss and related to the leakage current. Electric current flows across the sample

because our sample has a finite resistivity, indicating that it is not a perfect

capacitor in reality. The dielectric loss should be considered whenever electric

field is applied not to break sample.

2.2.3 Direct magnetoelectric effect

The same sample configuration with the dielectric constant measurement is

used for the direct ME effect measurement. Direct ME effect means the control of

electric polarization by the magnetic field. The electric polarization of the sample

generates the electric field which binds the charges to the boundary between the

silver epoxy and the sample surface. Once the electric polarization disappers

due to the ferroelectric to paraelectric phase transition by sweeping the magnetic

field or temperature, the accumulated charges flow through the circuit. The

18
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Figure 2.6: The schematic picture of magnetoelectric current measurement.

flowing current is called ME current and electric polarization is propotional to

the accumulated charges. The charges are estimated by instegrating the current

with a time. Therefore, electric polarization is calculated by the equation below

:

∆P =

∫
IMEdt (2.3)

where ∆P is a change of the electric polarizaiton by passing the ferroelectric

phase to paraelectric phase and IME is a ME current. The current is measured

with a sensitive electrometer such as Keithley 617 with a resolution of 10−15A,

because a typical ME current signal is quite small. Therefore, the wires should be

shielded well from the external noise by using coaxial wires and a clean ground.

Before performing the ME currernt measurement, a process to make ferro-

electric domain an unity, so-called an ME poling, is proceded. All of ferroelectric
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materials form ferroelectric domains to minimize the energy by reducing the stray

electric field diverging to the outside of sample. If various ferroelectric domains

exist, the macroscopic polarization is cancelled out, resulting in an absence (or

decreasing) of ME current. To pole the sample, eletric field is applied at the para-

electric phase and then the paraelectric phase is turned into ferroelectric phase by

changing the magnetic field or temperature. Finally, the electric field is turned

off and ME poling procedure is finished.

In addition, ME current also can be measured under the biased-electric field

especially for poly crystals [41]. The biased electric field removes the internal

electric field effect induced by the trap charges in the grain boundary.

2.2.4 Converse magnetoelectric effect

Converse ME effect indicates the contol of magnetization by the electric field.

The magnetization is measured with a VSM option in PPMS and simultaneously

electric field is applied by an external voltage source. In order to make the

application of the electric field possible, modified sample probe has been utilized

[42].
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Chapter 3

Co2Y-type hexaferrites
Ba2−xSrxCo2(Fe1−yAly)12O22

3.1 Introduction

For more than a decade, multiferroic or magnetoelectric (ME) materials, in

which magnetic and ferroelectric orders coexist and are strongly coupled each

other, have been studied extensively. Both their scientific novelty related to the

mechanism of strong magnetoelectric coupling [3, 43–45] and application poten-

tials for realizing multifunctional electronic devices [1,8] have been major driving

forces for resulting in the extensive worldwide research activity. Although vari-

ous new mechanisms and emergent materials have been found during the research

activity [2, 3, 21, 43, 44], it is still rare to find ME materials with strong ME cou-

pling at room temperature. Only a limited number of materials such as BiFeO3,

Cr2O3, and the hexaferrites with Y- or Z-type structure have exhibited sizable

ME coupling at room temperature. However, the ME coupling strength of those

compounds is yet too small for practical applications; for example, the ME sus-

ceptibility, defined here as derivative of electric polarization (P ) with respect to

magnetic field (H), dP/dH, shows a maximum of 3 ps/m for Cr2O3 [46] and
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∼55 ps/m for BiFeO3 [14] at 300 K. Therefore, it is currently of high interests to

explore new multiferroics that can exhibit higher ME coupling at room temper-

ature.

In order to achieve strong ME coupling near room temperature, several fer-

rites with the hexagonal crystal structure have been studied. In particular, those

Z- and Y-type hexaferrites having spinel and tetragonal structural units stacked

along the c-axis have indeed exhibited giant ME coupling (dP/dH > 500 ps/m).

The geometric frustration existing at the interface of the two structural units

has indeed resulted in a non-collinear spin structure such as a conical spin or-

der, which is a key to generation of spin-driven ferroelectricity via the inverse

Dzyaloshiskii-Moriya (DM) mechanism [20, 21, 47, 48]. More importantly, those

hexaferrites exhibit several intrinsic material properties that can allow strong ME

coupling near room temperature. First of all, the conical spin ordering tempera-

tures in some of hexaferrites are located above room temperature [49, 50, 50, 52].

For example, a transverse conical ordering temperature (Tcon) of the Co2Z-type

hexaferrite Ba0.52Sr2.48Co2Fe24O41 is located at 413 K [47], allowing room temper-

ature operation of the ME effects. Secondly, a critical magnetic field for switching

on P is mostly quite low [39,53–55], presumably due to soft nature of the conical

spin structure. As a result, the direction of electric polarization can be eas-

ily reversed at a very small H bias of ∼ 1 mT as demonstrated in one of the

Zn2Y-type hexaferrites (BSZFAO) [21, 56, 57]. Thirdly, magnetization reversal

by electric field without H bias has been demonstrated in the Y-type hexaferites

(± 2 µB/f.u. under ±2 MV/m); the two materials properties of the magnetic

softness and giant direct ME coupling were keys to leading such giant converse

ME effects [48].

For those several advantages, the Y-type hexaferrites are currently drawing
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lots of research attention [36]; they offer great potential for realizing the electric

field E control of magnetization M reversal at room temperature due to their

large direct ME coupling that results in a sharp increase (decrease) of P at a

small positive (negative) H bias [21, 58]. On the other hand, Tcon in most of the

Y-type hexaferrites are still located below room temperature, hindering realiza-

tion of the ME effects near room temperature. It has been uncovered that the

Tcon can be increased when zinc ions are replaced by cobalt ions in the ceramic

samples [56]. However, it has been difficult to quantify intrinsic ME effects in the

ceramic samples because of the trapped charges in the grain boundary. Fig. S1

illustrates that the ME properties between the ceramic and single crystal samples

do not coincide in the same nominal composition [52,55] suggesting that system-

atic study in a single crystal form is required to understand the intrinsic ME

coupling in the Co2Y-type and related hexaferrites. Along this line, Kocsis et al.,

Figure 3.1: Summary of dP/dH in various Y-type hexaferrites single crystal and
poly crystal [52,55–57].
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have recently shown that a Ba0.8Sr1.2Co2Fe11.1Al0.9O22 single crystal having high

resistivity from the oxygen annealing can induce M reversal by E field control at

room temperature [36]. On the other hand, systematic efforts are still lacking to

understand how the maximum ME coupling can be obtained with the variation

of material properties such as doping and related magnetic phase competition.

In this study, we explore the physical properties of Ba2−xSrxCo2(Fe1−yAly)12O22

(BSCFAO) single crystals in order to find the optimal ME coupling strength near

room temperature. We have varied the doping ratios x and y of those single

crystals and have investigated their magnetic, electric, and magnetoelectric prop-

erties. We find that the specimen of x=1.8 and y=0.04 exhibits the largest ME

susceptibility values at temperatures between 10 and 300 K ( ∼ 25000 ps/m at

10 K and ∼ 1000 ps/m at 300 K). The intrinsic P induced by H was successfully

measured up to 320 K. Based on systematic studies of magnetic and electrical

properties, we point out that the volume fraction and stability of the TC phase

is a key to achieving strongest ME coupling in the Co2Y-type hexaferrites series

at both room temperature as well as low temperatures.
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3.2 Experimental results

3.2.1 Crytallographic structure of Co2Y-type hexaferrites

The Z- or Y- type hexaferrites are composed of combination of three crystal-

lographic blocks, i.e., rhombohedral (R), spinel (S), and tetragonal (T ) blocks

[59, 60]. In particular, one hexagonal unit cell of the Y-type hexaferrite contains

only S and T blocks as drawn in Fig. 3.2. The T block is placed at the bottom of

Figure 3.2: The crystal structure of Co2Y-type hexaferrites (left) and a zoomed-
up structure around the interface of the magnetic blocks (right). Both Fe and Co
ions are located in the center of the oxygen octahedra or tetrahedra. Orange and
blue colors represent the Fe or Co ions located in the magnetic L and S blocks,
respectively while purple spheres represent the Ba or Sr sites. The yellow triangle
indicates the geometrical spin frustration related to helical spin ordering in the
Co2Y-type hexaferrites.
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unit cell and the S block is stacked on top of the T block. Then, T’ block (’ sym-

bol means 120 ◦ rotation along c axis) and another S’ block are also subsequently

stacked. After S” and T” blocks are piled up again, the unit cell of the Y-type

hexaferrites is completed. The spin structure of the Y-type hexaferrite can be

also divided into the two major spin moment blocks of Large (L) and Small (S)

as shown in (Fig. 3.2). The chemical substitution in the Fe/Co octahedra and

tetrahedra can indeed result in variation of the magnetic anisotropy within the L

and S blocks, allowing the control of the ME coupling [21].

Fig. 3.3 (a) shows an X-ray diffraction pattern of a ground powder obtained

from a typical Y-type hexaferrite single crystal and a fitting curve based on the

structural model shown in Fig. 1 (a) by the Rietveld refinement method. These

X-ray data analyses have ensured that all the single crystals investigated have

exhibited Bragg peaks consistent with the Y-type hexaferrite structure with the

R3̄m space group [59]. As summarized in Fig. 3.3 (b), the lattice constants

(a and c) of Ba2−xSrxCo2(Fe1−yAly)12O22 obtained from the refinement decrease

almost linearly in proportional to Sr (x) and Al (y) doing ratios. In both Y-

and Z-type hexaferrites, it has been known that Sr substitution for Ba results

in the smallest c and a values, which in turn was useful for making a transverse

conical spin ordering most stable. Our results here indicate that not only Sr but

also Al substitution allows us to reduce the c and a values further. Therefore,

simultaneous substitution of both Sr and Al constitutes an effective route to

stabilize a transverse conical phase.

Electron probe micro-analysis (EPMA) results are shown in Table 3.1.
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Figure 3.3: (a) An X-ray diffraction pattern of the ground Ba0.2Sr1.8Co2Fe12O22

single crystal powder and its Rietveld refinement result, which verifies the R3̄m
structure. (b) The evolution of a- and c-axes lattice constants with Sr (x) and
Al (y) substitution ratios as determined from the X-ray diffraction data and the
Rietveld refinement result.

3.2.2 Enhancement of magnetoelectric coupling by the Sr
and Al substitution

The sample before performing the ME current measurements, a maximum

allowed electric field bias EP without electrical breakdown (e.g., 3.0 MV/m

at 10 K and 2.5 MV/m at 100 K) was applied along the [120] direction in the

paraelectric collinear state (µ0H = 5 T) to pole the electric polarization (See the

Fig. 3.4 for detailed poling electric fields). Then, the electric field is turned off
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Nominal compound EPMA results
Ba0.6Sr1.4Co2Fe12O22 Ba0.74Sr1.26Co2Fe12O22

Ba0.5Sr1.5Co2Fe12O22 Ba0.56Sr1.44Co2Fe12O22

Ba0.3Sr1.7Co2Fe12O22 Ba0.38Sr1.62Co2Fe12O22

Ba0.2Sr1.8Co2Fe12O22 Ba0.24Sr1.76Co2Fe12O22

Ba0.2Sr1.8Co2(Fe0.96Al0.04)12O22 Ba0.25Sr1.75Co2(Fe0.96Al0.04)12O22

Ba0.2Sr1.8Co2(Fe0.94Al0.06)12O22 Ba0.23Sr1.77Co2(Fe0.93Al0.07)12O22

Ba0.2Sr1.8Co2(Fe0.92Al0.08)12O22 Ba0.24Sr1.76Co2(Fe0.9Al0.10)12O22

Table 3.1: Nominal chemical formula and EPMA results.

after H is reduced to become a ferroelectric state (µ0H = 0.2 T). Electric-field

poling EP dependence of polarization at 10 K is shown in Fig. 3.4 (a). Similar

curves were obtained at 10, 100, and 200 K. Both at 10 and 100 K, electric

polarization is saturated at high electric field poling around 3 MV/m above.

The polarization at various temperature range is summarized in Fig. 3.4 (b).

When the transverse cone phase becomes dominant, the ferroelectric polarization

becomes maximized in this hexaferrite. In order to extract the intrinsic electric

Figure 3.4: (a) Electric-field poling EP dependence of polarization at 10 K. (b)
Summary of the polarization at 10 K, 100 K, and 200 K.
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polarization induced by the transverse cone phase, application of EP around 3

MV/m above is presumably required at low temperatures. On the other hand, at

high temperatures around 200 K, the diminishing TC phase result in the reduction

of induced electric polarization value as well as smaller variation with respect to

EP variation (10 % variation of ∆Pmax for ∼ 2.2 MV/m ≤ EP ). Therefore, in

order to reduce a risk of having electrical breakdown effects in a specimen coming

from the increased leakage at high temperatures, we have varied EP to obtain

P (H) curves at each temperature; 3 MV/m at 10 K, 2.5 MV/m at 100 K, 2.0

MV/m at 200 K, and 0.5 MV/m at 300 K.

Fig. 3.5 summarizes the variations of electric polarization P and ME suscep-

tibility dP/dH in the single crystals of Ba2−xSrxCo2(Fe1−yAly)12O22, which have

been obtained from the integration of the ME current data at various tempera-

tures between 10 and 300 K. Fig. 3.5 (a) first exhibits the P ‖ [120] variation

with respect to H ‖ [100] measured with either increasing or decreasing H after

the ME poling at H = 0.1 T. At a low temperature 10 K, the P vs H curve

typically exhibits a sharp increase (decrease) of P at a small positive (negative)

H bias, resulting in a very asymmetric line shape that changes the sign of P with

respect to H direction reversal. This is a characteristic P vs H curve that has

also been realized in an archetypal magnetoelectric Y-type hexaferrite, formula

at 10 K [47,48].

To understand how such phase competition and thermal/magnetic stability

of the TC phase can affect the electrical properties, we have compared the ME

effects quantitatively in the series of Ba2−xSrxCo2(Fe1−yAly)12O22. First of all,

it is clearly found in Fig. 3.5 (a) that as x is increased, a sudden increase of P

at 10 K at a small H bias becomes systematically increasing, finally exhibiting

almost a maximum at x=1.6-1.8. Moreover, x=1.8 compound still exhibits most
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asymmetric P vs H line shape even at 200 K. To quantify the ME coupling

strength, we have thus defined ∆Pmax and (dP/dH)max ; ∆Pmax represents the

difference between the extrema of H-induced P , Pmax-Pmin, and (dP/dH)max

represents the maximum of dP/dH near zero but at a finite field.

Based on the two quantities, we find that sample with x=1.8 in the series of

Ba2−xSrxCo2(Fe1−yAly)12O22 exhibits the strongest ME coupling at overall tem-

peratures up to 250 K (Fig. 3.5). Although ∆Pmax is quite similar in both x=1.6

and 1.8 below 200 K, ∆Pmax at 250 K becomes maximum at x=1.8. Moreover,

(dP/dH)max observable up to 250 K also becomes maximum at x=1.8. The

enhancement of ∆Pmax and (dP/dH)max at x=1.8 compound is closely coined

to the most asymmetric P vs H lineshape maintained up to high temperature

of 200 K, indicating the field-induced stabilization of the TC phase is a key to

the enhancement. With such a Sr ratio of x=1.8, variation of the three O-Fe-

O bonding angles at the interface between the structural T and S blocks (Fig.

3.2, right panel) and resultant spin frustration among the three superexchange

interactions are likely optimized for firstly leading to the longitudinal conical spin

state (the ALC phase) at zero field. At the same time, the compound with Sr

x =1.8 compound should also have an optimized field-induced metastability of

the TC phase after the FC process over other compounds with different x, which

can then explain the maximized ∆Pmax and (dP/dH)max [24, 59]. Although a

larger Sr concentration x may further optimize the spin frustration to increase

the stability of the ALC phase at zero field and the field-induced metastability

of the TC phase, we could not obtain high quality single crystals with x > 1.8

because of the presence of large amount of Fe2O3 and M-type hexaferrite impu-

rities. Therefore, we have chosen x=1.8 to investigate the effects of Al doping to

see whether the ME properties can be further optimized.
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Figure 3.6: (up) ME current and (down) electric polarization of x=1.8 and y=0.06
compound at low magnetic field region above 150 K.

As aluminum Al is substituted to form Ba0.2Sr1.8Co2(Fe1−yAly)12O22, it is

surprisingly found that P induced by a small H bias suddenly increases to re-

sult in even more sharp increase of ∆Pmax and (dP/dH)max at overall tem-

peratures. In particular, Al concentration y=0.02-0.06 exhibits most enhanced

∆Pmax and (dP/dH)max as compared with those of the Al-undoped specimen,

Ba0.2Sr1.8Co2Fe12O22. On the other hand, as Al is increased further up to e.g.

y=0.06-0.08, there is a general tendency that P vs H curve is not reversed even at

200 K, exhibiting symmetric lineshape. For example, the P vs H curve becomes

almost symmetric at y=0.06 compound at 200 K (Fig. 3.6). The results indicate

that Al substitution does not only monotonically enhance the ME coupling via
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the increase of the meta-stability of TC phase after the FC process. Instead, at

higher Al doping ranges of y=0.06-0.08 and at high temperatures above ∼ 200 K,

P reversal with the H direction change is suppressed slowly, presumably coined

to a decrease of the field-induced TC phase in its volume fraction. As a result,

the optimal volume fraction and thermal stability of the field-induced TC phase

seem to be realized in a specimen of y=0.04. We indeed find that both ∆Pmax

and (dP/dH)max become maximum values at y = 0.04 at overall temperatures

as summarized in Fig. 3.5 (c). ∆Pmax is optimized as 430 µC/m2 at 10 K and

37 µC/m2 at 300 K while (dP/dH)max is 25000 ps/m at 10 K and 1000 ps/m at

300 K.

3.2.3 The metastability of the transverse conical state

Such asymmetric lineshape in P vs H curve is closely associated with the field-

history dependent stabilization of the TC phase, thus called ‘metastable’ here.

Several neutron diffraction studies [45,50,51,61] on Ba0.5Sr1.5Zn2(Fe0.92Al0.08)12O22,

Ba0.3Sr1.7Co2Fe12O22 and similar Y-type hexaferrites have indeed shown that the

TC phase becomes stabilized at a field increasing measurement up to 3 T af-

ter suppressing the ALC phase existing at the zero field. Surprisingly the TC

phase remains robust even after turning-off the field without returning to the

ALC phase. This implies that upon the field being decreased, the TC phase once

stabilized at a high field above ∼ 1 T is subject to only in-plane rotation at a

lower field region as the magnetic easy axis of the TC phase prefers to staying in

the ab-plane.

However, as temperature is increased, the asymmetric line shape of the P

vs H curve becomes increasingly symmetric. At 300 K, most of P vs H curves
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exhibit a positive P at a positive H bias. Upon the ME poling being performed

at H = -0.1 T, P exhibits a positive value even at negative H bias, resulting

in almost symmetric P vs H curve (not shown). (Note that almost zero P at a

negative H bias in Fig. 3.5 (a) is due to the lack of a proper poling at the negative

H region in the H sweep process.) This observation at high temperatures around

300 K implies that the rotation axis of the TC phase is increasingly subject to the

rotation via the c-axis in the field decreasing run, resulting in more and more the

stabilization of the ALC phase at low fields near the zero field (see Fig. 3.7 for

spin patterns). Therefore, it is concluded that the metastable TC phase realized

Figure 3.7: A pictorial representation of spin configuration of the Co2Y-type
hexaferrites without (left) and with (right) application of an in-plane magnetic
field (Hab). ALC refers to an alternative conical spin ordering pattern and TC
represents a transverse conical spin ordering pattern.
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after turning-off the field mostly remains stable at low temperatures, while the

ALC phase becomes increasingly stabilized at high temperatures in competition

with the TC phase.

The volume fraction or stability of the TC phase can be indeed proportional

to the net magnetic moment remaining after field cooling as the TC phase essen-

tially exhibits a large moment while the ALC phase with antiferromagnetic spin

configuration exhibits quite a small magnetic moment. In order to investigate

whether such metastable nature of the TC phase over the ALC phase can be

Figure 3.8: In-plane magnetization Mab data of Ba0.2Sr1.8Co2(Fe0.96Al0.04)12O22

from 10 K to 350 K measured at 20 mT after field cooling with various magnetic
field applications conditions, demonstrating the metastable nature of competing
phases in the Co2Y-type hexaferrites. Mab measured during the warming process
under the bias magnetic field µ0HM = 20 mT after cooling with finite (FC) and
zero (ZFC) magnetic field.
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persistent in all the BSCFAO series studied here, we have thus investigated tem-

perature dependent in-plane magnetic moment Mab at a small bias field of 20 mT

(warming) after applying various field cooling processes. A typical measurement

for Ba0.2Sr1.8Co2(Fe0.96Al0.04)12O22 is summarized in Fig. 3.8. The field cooling

(FC) approximately above 100 mT indeed results in quite high Mab values while

the Mab after a zero field cooling (ZFC), implying that the TC phase becomes

metastable mostly after field cooling process above 100 mT while the ZFC makes

the ALC phase stable dominantly near the zero field regions. Moreover, for the

FC curves above 100 mT up to 5 T, Mab measured at a very small bias field of

20 mT remain nearly similar high values, suggesting that the field cooling above

100 mT and up to ∼ 5 T is nearly enough to make the TC phase metastable

dominantly. We found that all the Ba0.2Sr1.8Co2(Fe1−yAly)12O22 series studied

here have such metastable nature (See, Fig. 3.9). It is noted in Fig. 3.9 that the

Mab curves after FC at 5 T and ZFC becomes most conspicuously different in the

y=0.04 compound among Ba0.2Sr1.8Co2(Fe0.96Al0.04)12O22; the difference between

the Mab values at 10 K is the largest and the temperature where the FC 5 T

curve starts to increase and is located at the highest temperature. Therefore, it

is concluded that the volume fraction and temperature stability of the TC phase

remaining after FC becomes highest in the y=0.04 compound.

The metastable nature of the TC phase in competition with the ALC phase

found in a broad doping ranges of Ba0.2Sr1.8Co2(Fe1−yAly)12O22 can be summa-

rized as temperature- dependent free energy behavior shown in Fig. 3.10. Upon

being cooled down at zero field ((1) ZFC), the system mostly remains in the ALC

phase, of which stability sensitively depends on the spin frustration as well as

magnetic anisotropy. As soon as the field is applied up to 5 T at low tempera-

tures, the system is chosen to stay at the TC phase that forms a minimum in the
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Figure 3.9: The Mab for various doping ratio. The red curve and black curves are
Mab of Ba0.2Sr1.8Co2(Fe1−yAly)12O22 measured under µ0HM= 20 mT during the
warming process after various magnetic field applications conditions.

Figure 3.10: Pictorial descriptions for a dominant spin configurations and. L and
S mean the magnetic L and S blocks as shown in Fig. 3.7. The spin state of S
block is omitted for clarity.
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free energy under magnetic field ((2) 5 T, 10 K). Upon the field being turned off,

the system still remains at the TC phase at 10 K as the barrier height ∆Ebarrier

between the TC and ALC phase is high enough to block the phase changes at low

temperatures((3) 0 T, 10 K). When temperature is raised again, the system can

populate both the ACL and the TC phase by thermal excitation, in which volume

fraction of each phase depends on ∆Ebarrier between the two phases ((4) 300 K).

According to this picture, the y=0.04 compound is expected to a most sharp and

deep potential shape in the TC phase relative to that of the ALC phase so that

the volume fraction and thermal stability of the TC phase becomes highest.

The neutron scattering experiment of Ba0.2Sr1.8Co2(Fe0.96Al0.04)12O22 also sup-

ports that ∆Ebarrier is enhanced by Al substitution. In the case of the Al-undoped

specimen Ba0.2Sr1.8Co2Fe12O22, incommensurate k = (0,0,δ) peak (ALC) starts to

evolve and is mixed with the commensurate k=(0, 0, 3/2) peak (TC) in the zero-

field above 120 K [51]. However, Fig. 3.11 indicates that the incommensurate

k = (0,0,δ) peak (ALC) of Al-doped specimen Ba0.2Sr1.8Co2(Fe0.96Al0.04)12O22

emerges above 220 K, much higher than that of Al-undoped sample.

Fig. 3.12 exhibits another evidence of the metastability of the TC phase. ME

susceptibility dP/dH, so-called αMES, is measured with AC method [42]. If the

AC method is used, the αMES can be measured continuously without sweeping the

magnetic field or temperature. The magnetic structure is mostly stabilized to the

TC phase after the poling procedure. However, the TC phase exists in the local

minima of the free energy (metastable phase) while the ALC is a ground state

which placed in the global minima of the free energy (most-stable phase) at zero

magnetic field. Depending on the energy barrier between the TC and ALC phase

(∆Ebarrier), the TC phase moves to ALC by the tunneling effect. Interestingly,

the up-panel of Fig. 3.12 indicates that αMES decays as time goes on near 0 T (9
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Figure 3.11: The change of the Bragg peak intensities under warming the sample
in zero field after applying 3.0 T along ab-plane at 10 K.

mT), whereas αMES at 1.5 T, corresponding to the (2) configuration in Fig. 3.10

is constant. This result strongly supports that the existence of metastability in

the Ba0.2Sr1.8Co2(Fe0.96Al0.04)12O22.

3.2.4 Magnetic properties of Co2Y-type hexaferrites

It is known in Ba0.5Sr1.5Zn2(Fe1−yAly)12O22 [21, 22] that nonmagnetic Al3+
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Figure 3.12: AC ME suscetibility αMES as a function of time under static 9 mT
(up) and 1.5 T (down) after the poling procedure.

ions prefer to occupying the octahedral sites to result in reduction of the in-plane

orbital angular momentum, Lab, of the Fe3+ ions, particularly in the off-centered

octahedral site. Such reduction in Lab is a source of a decrease in the in-plane

magnetic anisotropy with Al substitution, hence resulting in the change of the spin

structure from the proper screw type with in-plane magnetic moment only to the

longitudinal conical spin structure with the local c-axis spin component. In the

case of Ba0.2Sr1.8Co2Fe12O22, magnetic circular dichroism (MCD) measurements

at the Fe L2,3 edge have revealed that the Co2+ ions also prefer to going into the

octahedral site and yields out-plane angular momentum Lc, making additional

magnetic moment component tend to become parallel to the c-axis. As a result,
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the Co2+ ion not only stabilizes the ALC phase having a local c-axis moment but

also increases the superexchange interaction strengths (possibly via the Co-O-Fe

path) to increase the spin ordering temperatures of the ALC phase above room

temperatures as compared with those of the corresponding Zn2Y type specimen,

e.g. Ba0.5Sr1.5Zn2Fe12O22 [21]. As a final result, Ba0.2Sr1.8Co2(Fe1−yAly)12O22

is expected to have not only weakened Lab due to Al3+ substitution but also

the increased Lc due to the Co2+ substitution. According to this picture, Al3+

substitution to make Ba0.2Sr1.8Co2(Fe1−yAly)12O22 seems to allow us to achieve

fine control of the interplay between the in-plane and the out-of-plane magnetic

anisotropy. Moreover, the Al substitution into one of three octahedral Fe sites

represented in Fig. 3.2 can also affect the degree of spin frustration via the spin

dilution effect as well as the bond angle change at the interface. Such a delicate

control of magnetic anisotropy as well as the degree of spin frustration could be

crucial to stabilize the ALC phase (at Hab = 0) and TC phase (at Hab 6= 0) up

to high temperatures to optimize the ME coupling near room temperature.

To find a clue on the interplay between ab-plane and c-axis magnetic anisotropy,

we have systematically investigated the temperature dependence of the in-plane

(Mab) and out-of-plane magnetization (Mc) at high temperature range (300 K

< T < 800 K) after the ZFC process (Fig. 3.13). In the Al-free specimen

Ba0.2Sr1.8Co2Fe12O22, both Mab and Mc exhibits a step-like increase at T ∗=750

K, which is also observed at almost same temperatures in most of the specimen

with Al substation. As this transition is nearly independent of Al substitution

and no appreciable impurity phase is observed in our single crystals, the transition

is likely related to the local spin ordering coming from one of Fe-O-Fe superex-

change paths; upon Co2+ being located dominantly in the octahedral site, Fe3+

in the tetrahedral sites can form the superexchange path between neighboring
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Figure 3.13: Magnetization curve along ab- (orange) and c- (blue) direction mea-
sured in the application of µ0HM = 20 mT during the warming process after
ZFC.
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Fe2+ or Fe3+ in the octahedral sites via the oxygen so that a local ferrimagnetic

spin ordering may occur as similarly observed in other iron oxides e.g. in the

magnetite at 850 K [23].

As a result, Magnetic phases are divided into 5 phases; ALC, ab-FiM1 (fer-

rimagnet along ab-plane), c-FiM1 (ferrimagnet along c-axis), FiM2 (canted fer-

rimagnet tilted between ab-plane and c-axis), and PM (paramagnet). ALC, ab-

FiM1, and c-FiM1 phases are highlighted by green, orange, and blue shadows

respectively in Fig. 3.13. The TALC (green solid line) denotes the transition tem-

perature from ALC to the FiM1 phases. Ta indicates the temperature of magnetic

anisotropy transition from the ab-plane to the tilted direction. Tc is the Curie

temperature, at which the ferrimagnet changes to the paramagnet.

A relevant long-range ferrimagnetic spin ordering between the effective mag-

netic L and S blocks in Ba0.2Sr1.8Co2Fe12O22 is attributed to the step-like feature

observed at Tc = 670 K (Fig. 3.13). Note that for Ba2Co2Fe12O22, a similar transi-

tion has been identified at Tc=613 K [60]. We find that Tc in Ba0.2Sr1.8Co2Fe12O22

is systematically reduced with the increase of Al substitution ratio (y) as indi-

cated by the red solid lines in Fig. 3.14; Tc = 670 , 541, 463, and 438 K for y =

0.00, 0.02, 0.04, and 0.06, respectively. This is consistent with expectation that

the spin dilution effect with Al substitution makes the overall transition temper-

atures decrease. The red sold symbols in the phase diagram summarized in Fig.

3.14 well summarize this trend.

Another notable feature below Tc is that the magnitudes of Mab and Mc

measured at a bias field of µ0HM = 20 mT are varied with the Al doping ratio y

or temperature; in the y = 0.00 specimen, Mc = 2.5 µB/f.u. and Mab = 1.0 µB/f.u.

just below Tc and then Mc = 1.8 µB/f.u. Mab = 4.0 µB/f.u. below T = 495 K,

showing that the ferrimagnetic moment was initially pointing dominantly along
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the c-axis with considerable ab-plane component. Then, a magnetic anisotropy

transition, defined as Ta, occurs at 495 K to let the ab-plane become an easy

plane. We thus assign the phase below Ta = 498 K as a ferrimagnetic phase

with dominant alignment along the a-axis, i.e., ab-FiM1 and the phase above Ta

as a tilted ferrimagnetic phase FiM2 . In the y = 0.02 and 0.04 specimens, a

similar ab-FiM1 phase with dominant Mab moment is realized immediately below

Tc. Finally, in the y=0.06 specimen, a ferrimagnetic phase with dominant Mc

component, thus defined as c-FiM1, is realized at Tc =438 K.

Figure 3.14: Magnetic phase diagram constructed from the magnetization curve.
Red arrows represent the spin structures in the phases. Long and short arrows
denotes the spin in L and S blocks, respectively. ALC, ab-FiM1, and c-FiM1
phases are painted in green, red, and blue colors to coincide with the Fig. 3.13.
The black dashed line denotes the paramagnetic phase for guides to the eye.
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3.2.5 Ferroelectricity and its phase diagram

Figure 3.15: (a) Variation of dielectric constant and electric polarization as a
function of magnetic fields at 320 K in the Ba0.2Sr1.8Co2(Fe1−yAly)12O22 crystal.
(b) Magnetic-field dependent dielectric constant variation at wide temperatures
in the same crystal. The red (black) curve was measured while magnetic field is
increasing (decreasing). Blue dotted lines are for guides to the eye.

Figure 3.16: Phase diagram of Ba0.2Sr1.8Co2(Fe0.96Al0.04)12O22 single crystal con-
structed from the dielectric constant, magnetic field-induced polarization, and
magnetization measurement.
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To further understand the effects of Al3+ substitution, we have determined

phase boundaries of a Ba0.2Sr1.8Co2(Fe1−yAly)12O22 crystal from the dielectric

constant and electric polarization data. Fig. 3.15 presents experimental data

used to determine each phase at 320 K. The left panel of Fig. 3.15 (a) shows the

dielectric constant and P with variation of H. As described in other literatures

[51, 59], the paraelectric (PE) state at high fields coincides with a collinear spin

state. The other paraelectric (PE) phase at low field regions should then result

from the ALC state. The ferroelectric (FE) states induced by the TC phase can

appear between the two different PE states. We notice that increase of P with

H occurs in two different steps, which is assigned here as FE1 and ME current

shows clear anomaly with an emergence of FE2 state near room temperature,

as depicted in Fig. 3.16. The FE1 state is characterized with the large P state

induced by H and is likely to be associated with P induced by the TC phase under

the magnetic field via the spin current mechanism i.e. inverse DM effect. The

other FE2 state seems only stable under finite fields and between the collinear

Ferrimagnetic (Ferri) state and the FE1 (TC) state. This state allowed with

enough thermal fluctuation at finite field and temperature windows might be

related to the canted TC phase or canted ALC phase (Fig. 3.17). The right panel

of Fig.3.15 (b) displays variation of dielectric constant ε peak in an application

of H. The peak related to the FE transition from a collinear spin state to a TC

state is being suppressed as temperature is increased. In addition, ε at a low field

region starts to split above 310 K where the PE state is stabilized.

3.2.6 Observation of converse ME effect

The control of magnetization under electric field, so-called converse ME effect,
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Figure 3.17: ME current at low magnetic field region in (left) y = 0.04 and (right)
y = 0.00 compounds.

was also investigated in Ba0.2Sr1.8Co2(Fe0.96Al0.04)12O22 single crystal. Before

starting the measurement, the poling process was performed by following the

Figure 3.18: Phase diagram of Ba0.2Sr1.8Co2(Fe1−yAly)12O22 single crystal.
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previous section. The chiral magnetic domain structures, corresponding to TC

and ALC was confirmed in CoZn-Y type hexaferrite Ba1.3Sr0.7CoZnFe11Al1O22

[62, 63] and the magnetic domain can be controlled by the electric field due to

cross-coupling of ferroelectricity and magnetism [36,64]. To confirm the converse

ME effect in our single crystal, magnetization has been measured with a lab-made

VSM probe to apply the electric field to Ba0.2Sr1.8Co2(Fe1−yAly)12O22 samples.

Fig. 3.19 is an example of the converse ME effect at zero magnetic field and

10 K in Ba0.2Sr1.8Co2(Fe0.96Al0.04)12O22. It shows that magnetization follows the

behavior of the electric field. Magnetization increases (decreases) as the electric

field increases (decreases), indicating that the variation of magnetization ∆M has

a linear response to the electric field, while the absolute value M does not reverse

the sign at 10 K. The non-reversal of MvsE curve is distinct from the Zn2Y-type

hexaferrite [48]. It is due to the relatively high coercive field Hc of Co2Y-type

hexaferrites (Note that Hc of Co2Y-type hexaferrites is ∼ 10 mT whereas Hc of

Zn2Y-type hexaferrites is ∼ 1 mT.). It is likely that the enhancement of magnetic

anisotropy along the c-direction influences the coercivity by pinning the magnetic

domain along the direction.

Figure 3.19: Electric field dependence of magnetization at 0 T and 10 K in
Ba0.2Sr1.8Co2(Fe0.96Al0.04)12O22.
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Figure 3.20: Electric field dependence of magnetization at 0 T in various temper-
atures in Ba0.2Sr1.8Co2(Fe0.96Al0.04)12O22.

Fig. 3.20 displays the same measurement at various temperature ranges. At

100 K and 200 K, magnetization also shows a linear response to the electric

field and the overall ∆M variations are suppressed as warming the sample. Fur-

thermore, remnant magnetization at 0 T is ∼ 1 µB at 200 K, even though the

modulation of magnetization by the electric field is small (∆M = ∼ 0.05 µB).

As a result, the reversal of magnetization is not realized in our experiments. V.

Kocsis, et al., [36,64] claims that magnetization is reversed by the electric field at

0 T, even at 250 K in Ba0.8Sr1.2Co2Fe11.1Al0.9O22. They applied the high electric

field above 5 MV/m, which is almost four times higher than the electric field we

applied. The application of 5 MV/m to our Ba0.2Sr1.8Co2(Fe1−yAly)12O22 single
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crystal electrically breaks down the sample due to the high current. It indicates

that not only the optimization of ME coupling but also the increase of resistivity

by oxygen annealing is crucial for the magnetization reversal. The discrepancy

between dP/dH and µ0(dM/dE) is exhibited in Fig. 3.21 and it has been dis-

cussed in previous studies [56,65]. It might be also originated from the insufficient

biased-electric field and it seems that cobalt substitution has a relevant role to

enhance the coercivity as discussed before.

Eventually, magnetization can be reversed by the aid of finite magnetic field.

Fig. 3.22 depicts the result. The reversal of magnetization by the electric field

is realized with small magnetic field of -6 mT in Ba0.2Sr1.8Co2(Fe0.96Al0.04)12O22.

The remnant magnetization Mr - 0.07 µB/f.u. at -6 mT is sucessfully modulated

Figure 3.21: Electric field dependence of magnetization at 0 T in various temper-
atures in Ba0.2Sr1.8Co2(Fe0.96Al0.04)12O22.

50



3.2. Experimental results

± 0.3 by application of the electric field ± 3 MV/m.

Fig. 3.23 summarize the ∆MvsE curves in Ba0.2Sr1.8Co2(Fe1−yAly)12O22. We

found that y = 0.04 compound has the highest converse ME coupling from 10 K

to 300 K. The linear behavior of magnetization changes to a quadratic curve at

room temperature because the linear coefficient of ME susceptibility is decreasing

near room temperature [47]. The overall coercive electric field in MvsE curve is

around 1 MV/m at 10 K, which is higher than that of Zn2Y-type hexaferrite (0.1

MV/m) and consistent with the coercive magnetic field in MvsH, as mentioned

in the previous part.

Figure 3.22: The reversal of magnetization by the electric field with finite mag-
netic field -6 mT in Ba0.2Sr1.8Co2(Fe0.96Al0.04)12O22.
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Figure 3.23: The profiles of ∆MvsE in Ba0.2Sr1.8Co2(Fe1−yAly)12O22.

3.3 Discussion

The well-known ALC phase is indeed formed below the temperature regions
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where these ab-FiM1 or c-FiM1 phases are stabilized. When the ALC phase is

formed, both Mab and Mc decrease to make the moment values become smaller

at the ALC phase. The transition temperature for the ALC phase is consistent

with the previous neutron diffraction study for the y = 0.0 specimen16 and the

existence of the ALC phase was also confirmed for y=0.04 at 350 K (Fig. 3.11).

When the transition temperatures of the ALC phase, TALC , is extracted from

the extrema of the temperature derivative of the magnetization curves, we find

that TALC , as indicated by green solid lines in Fig. ??, becomes the highest at ∼

440 K at the Al doping ratio y = 0.04. As summarized in phase diagram of Fig.

3.14 (green solid circles), the evolution of TALC thus forms a dome-shape with

an optimal TALC = ∼ 440 K at y = 0.04. This finding clearly proves that TALC

becomes highest around the doping ratio of the y = 0.04 specimen.

Figure 3.24: The reciprocal of | Mab −Mc |/2 (left tick label) and (Mab +Mc)/2
(right tick label) as a function of Al substitution y at 300 K. The reciprocal is
taken to each values to emphasize the lowest values in the y = 0.04 specimen.
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Not only the transition temperature but also the volume fraction of the ALC

phase in competition with the ab-FiM1 or c-FiM1 phases seems to be most opti-

mized at y = 0.04. At 300 K where the ALC phase is formed in all the specimens

with y variation, we notice that Mab and Mc curves show two interesting fea-

tures; the overall magnitudes of Mab and Mc as well as the difference between

Mab and Mc also becomes minimum at y = 0.04. The inverse of (Mab + Mc)/2

and | Mab −Mc |/2, plotted in Fig. 3.24 demonstrate this trend. Because the

ALC phase with a noncollinear antiferromagnetic spin arrangement, is character-

ized by the isotropic and low magnetic moments, the behavior uncovered in Fig.

3.24 directly shows that the ferrimagnetic phases of ab-FiM1 and c-FiM1 formed

at higher temperature competes with the ALC phase and as a result, the volume

fraction of the ALC phase becomes highest in the y = 0.04 specimen.

Our experimental findings here directly shows that at a proximate zero mag-

netic field (µ0HM = 20 mT), the ALC phase becomes the most stabilized at the

y = 0.04. Combining with the magnetization evolution at temperatures below

300 K presented in Fig. 3.8 and 3.9, the observation in the phase diagram of

Fig. 3.13 demonstrates that the most stable doping of y = 0.04 for the ALC

phase, formed at ZFC, indeed coincides with the most stable TC phase, formed

after FC. Therefore, our work here clearly demonstrates that the stability of ALC

phase is a prerequisite for making the metastable TC phase after high field ap-

plications become most stable to result in a highest volume fraction and a widest

temperature window up to high temperature regions. In other words, the highest

∆Ebarrier between the TC and the ALC phases in Fig. 3.9 is achieved when ALC

phase becomes highest.

The importance of the metastability of the TC phase for having the optimized

ME coupling at overall temperatures including room temperature is found and
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has been also discussed in very recent publications [45, 64]. However, our work

here uncovers that y = 0.04 compound exhibits the most stable TC phase with

the highest ME coupling in the series of Ba0.2Sr1.8Co2(Fe1−yAly)12O22 specimen.

Moreover, the results here establish that the stability of the ALC phase is a key to

reaching the optimized TC phase and thus optimized ME coupling. Furthermore,

we uncover that the fine control of magnetic anisotropy via selective chemical

substitution, e.g. Al3+ in this case, is an essential procedure to make the ALC

phase most stable. The fine control of the magnetic anisotropy seems to also

allow the optimized control of spin frustration at the interface as well to result in

the most high transition temperatures of the ALC phase.
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3.4 Conclusion

We have synthesized the Ba2−xSrxCo2(Fe1−yAly)12O22 (1.0 ≤ x ≤ 1.9 and 0.00

≤ y ≤ 0.08) single crystals in order to maximize the ME coupling by control-

ling the spin frustration and the magnetic anisotropy. Systematic measurement

of ME current reveals that Ba0.2Sr1.8Co2(Fe0.96Al0.04)12O22 exhibits the biggest

magnetic field-induced polarization and dP/dH value among the series of Co2Y-

type hexaferrites. The magnetization measurement after the various ZFC and

FC conditions indicates that metastable TC and ALC phases are coexisting in

the all Ba0.2Sr1.8Co2(Fe1−yAly)12O22 series, conjectured that the TC phase is sep-

arated from the ALC phase by the free energy barrier at low temperature. The

magnitude of Mab after FC and neutron scattering results support that the free

energy barrier develops by Al substitution and the TC phase is the most stabilized

in Ba0.2Sr1.8Co2(Fe0.96Al0.04)12O22 showing the optimized ME coupling. Further-

more, the comparison between Mab and Mc across the ferromagnetic transition

demonstrates that Co and Al substitutions modulate the magnetic anisotropy and

the transition temperature of ALC phase enhances while ab-FiM1 and c-FiM1 are

competing. Our observation indicates that the robust ALC phase represented by

the isotropic and small magnetization is a key ingredient to the giant ME effect

and is realized in the y = 0.04 samples. It proposes a general route to achieve the

giant ME coupling in the family of Co2Y-type hexaferrites at room temperature

and additional studies on the out-plane anisotropy of the Al-doped Co2Y-type

haxaferrites will helpful to fully understand the delicate magnetic phases.
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2D van der Waals materials
CuCrP2X6 (X=S and Se)

4.1 Introduction

Multiferroic and magnetoelectric (ME) materials have been intensively inves-

tigated due to their exotic physical phenomenon derived from the nontrivial spin

order as well as the potential spintronic devices [1,2,5,75]. However, it had been

believed that the realization of mulitiferroic materials is challenging according to

empirical d0-ness rule relevant to two distinct origins of magnetism and electricity

in single material [76]. Since then, new mechanisms of multiferroicity have been

proposed to overcome the restriction and several materials have been discovered

for more than a decade [2, 30, 77]. For example, material BiFeO3 is the most

widely investigated material among single materials [14] and Cr2O3 has been

spotlighted as a ME material at room temperature [46]. Artificial multiferroic

materials in which perovskite and spinel are combined such as BiFeO3-CoFe2O4

nanostructure, have been also actively studied [1, 78].

It is rare to find multiferric materials in low dimensional system even though

multiferroic and ME researches in low dimensional system can open up a new
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route for nanoscale electronic devices. Before investigations for multiferroics,

there had been theoretical and experimental effort to find the single ferroic ma-

terials such as ferromagnetic (FM) and ferroelectric (FE) compounds in two-

dimensional (2D) system. FE along out-plane direction in monolayer has been

observed in van der Waals (vdW) compounds, such as CrGeTe3 and CrI3, with

magneto optical Kerr effect measurement [79,80]. Also, the stable in-plane electric

polarization (P ) been measured in 1-unit cell SnTe film [81]. Given the successful

observation of FM and FE order in 2D system, lots of vdW materials have been

theoretically predicted as a 2D multiferroic [82–84] and recently Y. Lai et al., [85]

experimentally have claimed that CuCrP2S6 compound has multiferroic property

at room temperature. They explain that the P along out-plane is attributed to

the noncentrosymmetric position of Cu1+ ions and FM order is originated from

the dominant magnetic interaction between Cr3+ ions within the layer.

Meanwhile, multiferroic and ME materials commonly involve spatial- and

time-broken symmetry [86] and are categorized into two types (type-I and type-

II) based on the mechanism. In the case of type-I multiferroics, ferroelectricity

has distinct origin from magnetism so that the temperatures of ferroelectric and

magnetic phase transition don’t match each other. In general, the magnitude of

P in type-I multiferroic is large because it is a proper FE in which structural

instability is the main source of P . However, the ME coupling coefficient, α =

dP/dH, is quite small due to two different origins of magnetic and electric order.

BiFeO3 is a good example of type-I multiferroics. The displacement of Bi3+ ions

from the centrosymmetric site breaks a space inversion symmetry at 1100 K and

results in large P 100 µC/cm2 at room temperature, while antiferromagnetic

(AFM) ordering originated from partially filled d-orbital of Fe3+ ions occurs at

643 K with small α = 55 ps/m [14,87].
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In contrast, type-II multiferroic results from the single origin. The exotic

spin order such as ↑↑↓↓ and cycloidal spin configuration can be realized from

the competition between complex magnetic interaction and spin frustration. The

special spin texture can give rise to spin-induced polarization by breaking the

inversion symmetry and the emergence of P has been established as three well-

known mechanisms: exchange striction [26, 27], spin current model [30, 47, 48],

and p-d hybridization [35, 77, 88]. Therefore, ferroelectricity accompanies mag-

netism and they are strongly coupled. For example, TbMn2O5 exhibits P at-

tributed to exchange striction between the Mn4+-Mn3+ spin chain at 37 K and α

is estimated to be 600 ps/m [89]. Among hexaferrites materials, Y-type hexafer-

rites Ba0.5Sr1.5Zn2(Fe0.92Al0.08)12O22 with spin transverse conical structure which

breaks the inversion symmetry by spin current model shows the huge ME coupling

with α = 20000 ps/m which is the highest value in the world [48]. Another type

of hexaferrites, Z-type hexaferrites Ba0.48Sr2.52Co2Fe24O41 also has the strong ME

coupling even at room temperature [24] and the mechanism of huge ME coupling

has been revealed to be the spin-direction dependent hybridization between d-

orbital of Fe3+ ion in the off-centered octahedral site and p-orbital of oxygen

ligand, so-called p-d hybridization [58].

In the application point of view, developing the type-II multiferroic is nec-

essary as much as type-I multiferroic because type-II multiferroic generally has

strong ME coupling. However, to our knowledge, type-II multiferroic or ME cou-

pling have not been found yet in 2D vdW compound. In this work, we present

the discovery of type-II multiferroic and its magnetoelectric coupling in CuCrP2S6

single crystal. In order to find a new type-II multiferroic material in 2D vdW

material, we have focused on magnetic Cr3+ ion because Cu1+ ion has no spin

magnetic moment with d10 electronic configuration. We have observed magnetic

59



Chapter 4. 2D van der Waals materials CuCrP2X6 (X=S and Se)

field-induced-polarization accompanying to AFM order at 32 K. With compre-

hensive measurement of magnetic and dielectric properties, we have successfully

drawn enriched phase diagram. We will also discuss about the physical origin of

P based on p-d hybridization mechanism derived from off-centered Cr3+ cation

by comparing to the counterpart compound CuCrP2Se6.
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4.2 Experimental results

4.2.1 The growth of single crystals

CuCrP2S6 Single crystal was successfully grown by chemical vapor transport

(CVT) method with sulfur as a self-transport agent. The stoichiometric Cu, Cr,

P, and S powder of high purity was mixed as a starting material and sealed in

an evacuated quartz tube. The tube was position in well-calibrated tube furnace

with a temperature gradient from 650 ◦C to 600 ◦C for 2 weeks [40]. In the case

of CuCrP2Se6, the condition of sample growth is almost similar, except that we

have used SeCl4 as a transport agent. The single crystals of thin plate shape with

the size 2 × 2 × 0.5 mm3 have grown on the cold zone (Fig. 2(a)). The structural

Figure 4.1: The image of the grown CuCrP2S6 single crystal.
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analysis is performed by high-resolution X-ray diffractometer and XRD data has

a good agreement on Ref. [90].

4.2.2 Crystallographic structure of CuCrP2X6

The structure of CuCrP2S6 is layered structure. Within the layers, Cu1+,

Cr3+ ions, and P-P pairs constitute the honeycomb lattice in an ordered way as

depicted to Fig. 4.3 (b). The honeycomb layers are separated by a vdW gap. Out

of three ions, Cr3+ is the only source of long range magnetic ordering because Cu1+

does not have spin moment due to d10 electronic configuration [40]. Below 150 K,

CuCrP2S6 undergoes structural transition to Pc space group at 150 K. Fig. 4.3 (a)

Figure 4.2: XRD peak of CuCrP2S6 indexed by the space group suggested in
Ref. [90].
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Figure 4.3: (a) The crystal structure of CuCrP2S6 including the six CrS6 octahe-
dron (blue) and the six CuS3 triangle (red) below 150 K. P4+ ions (orange) forms
pairs. Orange dashed line indicates the NNN interaction J (b) The illustration
projected onto ab-plane. It shows the CuS6 and CrS6 have honeycomb network
(dashed line).

displays that Cu atoms alternatively move to up-down position in the octahedral

site at 150 K so that Cu atoms mostly form triangular network and it changes to

be structurally ordered with antipolar Cu sublattice [90–92, 94]. Moreover, the

ordered Cu-Cr honeycomb lattice is distorted leading to the deviation of the Cr

position from the center of CrS6 octahedron.

In contrast to CuCrP2S6, CuCrP2Se6, the counterpart of CuCrP2S6, has a

disordered Cu atom from the center of octahedral site and the honeycomb lattice

is not distorted [93], thus giving rise to almost centered position of Cr atom in the

CrSe6 octahedron. The structural difference between two compounds is essential

to discuss about the origin of ME coupling at the last section. The structures

of CuCrP2X6 are compared in Fig. 4.4. it displays the structures including only

Cu and Cr atoms and it is easily found that the lattice structure of CuCrP2S6 is

buckled.
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4.2.3 Magnetic properties in CuCrP2S6

On further cooling process, CuCrP2S6 compound shows AFM transition at

32 K. Fig. 2 (a) displays the magnetization M data as a function of temper-

ature T along a-, b-, and c*-direction (c*-direction is parallel to a × b). The

M -T data demonstrates the weak magnetic anisotropy with easy axis along a-

direction. Previous results claim that CuCrP2S6 possibly possess FM order within

the layer (in-plane) and AFM order between the layer (out-plane) with easy plane

anisotropy [40,91]. Our result which has been obtained by distinguishing between

a- and b-direction thoroughly indicates that magnetic anisotropy is not easy plane

but easy axis. For magnetic field (H) along every direction, it shows anomaly at

TN = 32 K, implying the AFM ordering.

Figure 4.4: The comparison between CuCrP2S6 and CuCrP2Se6 structure includ-
ing only Cu and Cr atoms. The white and red mixed ball indicates the disordered
distribution of Cu atom at two different positions. In contrast with CuCrP2Se6
compound, CuCrP2S6 has a buckled structure (left). Also CrS6 octahedron of
CuCrP2S6 is much distorted than that of CuCrP2Se6 (right) [93].
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Figure 4.5: The temperature dependent magnetization M along a-, b-, and c-
directions after zero field cooling process (ZFC). The Néel temperature TN is 32
K and Curie-Weiss temperature θCW is 28 K.

Table 4.1: Exchange constant J of CuCrP2S6 estimated from the DFT calcu-
lation. J1-J5 indicates the intralayer exchange constant and J6-J7 is interlayer
exchange constant as depicted to Fig. 4.6.
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Figure 4.6: (a) Spin structure of CuCrP2S6 overlapped in the crystal structure
displayed in Fig. 4.3. Green arrows indicates the spin direction. (b) The projec-
tion onto ab-plane.

Moreover, M along a-direction starts from ∼ 1 µB/f.u. almost close to zero

at lowest temperature, supporting the cancellation of magnetic moment by AFM

along a-direction. The 1 µB/f.u. discrepancy probably comes from the 1 kOe

external field. This result also can be compared to the prediction of density func-

tional theory (DFT) calculation. Table 4.1 summarizes the next nearest neighbor

(NNN) exchange interaction (Jn) marked in Fig. 4.3. DFT calculation estimates

the intralayer coupling to FM and interlayer coupling to AFM, consistent with

previous studies [40, 90, 91] and our experimental data. Fig. 4.5 exhibits long

range AFM ordering on bulk samples while Curie-Weiss temperature θCW is +

28 K, demonstrating that FM interaction is surviving. Thus by putting all infor-

mation together it is seen that spins mostly aligned along a-direction forms FM

ordering within the ab-plane and AFM ordering along c-direction (Fig. 4.6).

Fig. 4.7 depict the M under H sweeping along a-, b-, and c-direction at 10 K
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with different magnetic field scale. The left and right image plot high magnetic

field from -9 T to 9 T and low magnetic field -0.9 T to 0.9 T respectively. The

M -H along a-direction curve has a slight curvature change at 0.3 T, whereas b-

and c*-directional curves show a linear behavior. The curvature change repre-

senting the spin-flop (SF) transition only happens along a-direction [87]. The

M is saturated at 6.1 T (8.3 T) when µ0H is applied to ab-plane (c*) and the

transition was coined to magnetic field-induced ferromagnetic (FIF) transition.

The saturated Ms is 2.4 µB/f.u. (3.0 µB/f.u.) for H//ab (H//c*) configuration,

little smaller than isolated Cr3+ moment 3.87 µB.

4.2.4 Magnetoelectric properties in CuCrP2S6

Fig. 4.8 present the ME current under electric field E-bias, magnetic field-

induced polarization along c*-direction ∆Pc∗, and dielectric constant ε as a func-

tion of H along ab-plane at 5 K. We have observed ME current peak in the

Figure 4.7: (a) Magnetization M along a-, b-, and c- directions as a function of
magnetic field with -9 T ≤ µ0H ≤ 9 T (left) and -0.9 T ≤ µ0H ≤ 0.9 T (right)
ranges. FIF and SF indicate the magnetic field induced ferromagnetic transition
and spin-flop transition, respectively.
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Figure 4.8: (a) Magnetization M along a-, b-, and c- directions as a function of
magnetic field with -9 T ≤ µ0H ≤ 9 T (left) and -0.9 T ≤ µ0H ≤ 0.9 T (right)
ranges. FIF and SF indicate the magnetic field induced ferromagnetic transition
and spin-flop transition, respectively.

vicinity of HFIF and broad signal between - HFIF and HFIF . The ME current is

reversed when the sign of E-bias is changed. The P is obviously switched by E-
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bias strongly supporting the emergence of ferroelectricity, termed a FE1 phase.

ε-H curve exhibits a peak feature at µ0HFIF = 6.1 T, accompanying to FE1

transition of ME current. It also indicates that that there is the FE transition

at 6.1 T for H//ab configuration. Furthermore, we did not observe P for P//H

configuration (Fig. 4.9).

We have performed ME current at various temperature from 5 K to 40 K. Fig.

4.10 displays the results at selected temperature. The magnitude of ME current

is gradually decreasing and the magnetic field where FIF transition occurs, HFIF ,

is reduced. Fig. 4.10(b) summarize the results. The both of ∆Pc∗ and HFIF are

suppressed with AFM order, implying that the AFM order is strongly coupled to

Figure 4.9: ME current measured under E-bias at 5 K for P//c* and H//ab
configuration.
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Figure 4.10: (a) Electric polarization as a function of magnetic field at various
temperatures. (b) the selected ∆Pc∗ at 5 T and HFIF at each temperatures.

FE order.

Based on the comprehensive measurements, we have defined the phase bound-

ary and plotted phase diagram for H//ab, as presented in Fig. 4.11. As a result,

there are three phases. First, paramagnetic (PM) and antiferroelectric (AFE)

phase resulting from the antipolar sublattice of Cu1+ is placed above TN = 32

K. The phase is well-known phase from the previous studies consistent with our

result. Second phase is AFM and FE1 phase in which out-plane ferroelectricity

are particularly originated from the spin. The P along c*-direction is disappeared

at high magnetic field as spins are aligned to the magnetic field direction and the

resulting third phase is FIF and FE2. We expect that ferroelectricity derived

from Cu1+ ion still survives in the region and further investigation is needed for

FE2 phase to identify the exact magnetic and electric structure. However, we

call the phase FE2 in order to differentiate it from the FE1 phase.
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4.3 Discussion

4.3.1 The mechanism of ME coupling in CuCrP2S6

As mentioned in the previous part related to crystal structure, the distortion of

honeycomb network is much relieved in CuCrP2Se6 than CuCrP2S6. In particular,

the CrS6 octahedrons consisting of CuCrP2S6 are also twisted so that Cr atoms are

pushed from the center of octahedral CrS6, whereas CuCrP2Se6 has centered Cr

position into octahedral CrSe6. To confirm what the structural difference affects

to ME coupling in this system, we have grown CuCrP2Se6 single crystal, as a

counterpart compound of CuCrP2S6, and conducted the coherent measurements.

Figure 4.11: Magnetic and electric phase diagram of CuCrP2S6 for H//ab. The
boundary points are obtained from the dielectric constant ε, electric polarization
∆Pc∗, and magnetization M .
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Magnetic properties are shown in Fig. 4.12. Magnetic properties of CuCrP2Se6

seem to be similar with that of CuCrP2S6. Fig. 4.12 verifies that CuCrP2Se6 un-

dergoes AFM transition at 42 K and FIF transition at 5.5 T at 5 K, similar

behavior with CuCrP2S6. In spite of the similar magnetic behavior, the mag-

netic field-induced polarization vanishes in CuCrP2Se6 (Fig. 4.13), revealing that

off-centered Cr3+ cation plays the crucial role in the ME coupling.

In the introduction 1.2, the microscopic origin of ME coupling in quantum-

level is divided into three types: exchange striction [5,25,26], spin current model

[30, 47, 48], and p-d hybridization [34, 35, 77, 88]. In the exchange striction mech-

anism, P generated from the symmetric exchange interaction between the neigh-

boring magnetic ions, expressed by Eq. 1.1. Also, the Eq. 1.1 indicates that the

macroscopic P is cancelled out when spins form FM ordering aligned to the one

direction due to the identical value of < Si ·Sj >. In CuCrP2S6, the spins of Cr3+

ions show FM ordering within the ab-plane and AFM ordering along c-direction

with the small ratio of FM intralayer coupling to AFM interlayer exchange cou-

Figure 4.12: (a) Temperature dependent magnetization curve under H = 5 kOe
along ab-plane (b)magnetic field dependent magnetization curve under along ab-
plane at 5 K.
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pling, 0.03 ≤ Jinter/Jintra ≤ 0.12 (Table 4.1). Therefore, the bulk CuCrP2S6 can

be regarded to have a quasi-2D nature and FM spin pairs laying on the layer do

not produce the P with the exchange striction mechanism.

The spin current model or inverse Dzalyoshinskii-Moriya mechanism [30] aris-

ing from the antisymmetric spin exchange interaction is formulated by Eq. 1.2.

The spin current model is only applicable to canted spin magnet such as cy-

cloidal and transverse conical spin structure. However, CuCrP2S6 has a small

frustration parameter f = θCW/TN of ∼ 0.875, compared with other materials

showing cycloidal ordering (Ni3V2O8 ∼ 4 [31], MnWO4 ∼ 6 [95]). The weak spin

frustration support that the spin structure of CuCrP2S6 is collinear AFM spin

structure and previous studies on neutron scattering have no evidence of canted

spin structure [40, 91,94] leading to rule out the spin current mechanism.

The only promising mechanism of ME coupling is p-d hybridization. In the p-

d hybridization mechanism, local P is generated from electronic bonding between

Figure 4.13: Electric polarization of CuCrP2S6 (red line) and CuCrP2Se6 (black
line) along c-direction at 5 K for H // ab.
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p-orbital of a ligand ion and d-orbital of a transition metal magnetic ion. The

electronic hybridization depends on spin direction of magnetic ion by spin-orbit

coupling and the electric polarization is formulated by Eq. 1.3

The transition metal magnetic ion deviated from the center of octahedron

composed of six ligand ions produces the local P by means of the p-d hybridiza-

tion mechanism as well [58]. The P in the centered magnetic ion is disappeared

because the symmetric six hybridizations are cancelled each other. However, the

off-centered position breaks the balance of hybridization inside octahedral net-

work and gives rise to local P . Our result in Fig. 4.13 demonstrates that P of

CuCrP2S6 containing the off-centered Cr3+ position is interestingly suppressed in

CuCrP2Se6 without off-centered Cr3+ position as described in Fig. 4.4. Field-

rotation measurement provides another evidence of p-d hybridization. The mech-

anism and Eq. 1.3 permit the P to rotate twice as much to H-rotation [58]. Fig.

4.14 shows that P is sinusoidally modulated by the azimuthal angle θ of H with

respect to a-axis and it has π - periodicity. We claim that p-d hybridization be-

tween the off-centered Cr3+ and S2− ligand is probably the origin of ME coupling

with two clues: The extinction of P in CuCrP2Se6 and sinusoidal behavior of P

under in-plane rotation of H with period of π. Even though further studies are

required to resolve the mechanism of ME coupling, this interpretation will set the

stage for understanding the ME coupling in vdW materials.
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4.3.2 Symmetry analysis in CuCrP2S6

Symmetry analysis has been done by Dr. N. T.- Oganessian at Southern

Federal University. CuCrP2S6 has a monoclinic Pc space group with a = 5.935

Å, b = 10.282 Å, c = 13.368 Å, and β = 106.78 ◦ [90]. The Pc space group has

two symmetry elements, E = (x, y, z) and σy = (x,−y, z + 1
2
). ith Cr atom at jth

layer, Crij, with Sij spins are placed at below position (Table 4.2).

Crij Position Sij

Cr11 (0, 0.332, 0.250) S11

Cr12 (0, 0.668, 0.750) S12

Cr21 (0.527, 0.830, 0.246) S21

Cr21 (0.527, 0.170, 0.746) S22

Table 4.2: The distint atomic positions of Cr atom in one unit cell [90].

Thus, FM and AFM oder parameters (~F and ~A respectively) are introduced

in this system.

~F1 = ~S11 + ~S12; ~F2 = ~S21 + ~S22

~A1 = ~S11 − ~S12; ~A2 = ~S21 − ~S22

(4.1)

Their transformational properties are summarized in Table 4.3. Macroscopi-

cally, ME interaction terms which are invariant under σy and time reversal (T )

are only allowed and it gives ~F → −~F and ~A → − ~A. Therefore, PyF
2
i or PyA

2
j

Irreducible
representation E(x, y, z) σy(x,−y, z + 1

2
) Order parameter

Γ1 1 1 F1y,F2y,A1x,A1z,A2x,A2z;Px,Pz

Γ2 1 -1 F1x,F2z,F2x,F2z,A2y,A2y;Py

Table 4.3: Transformational properties of Pc space group.
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are not allowed since they change sign upon σy. Also we are interested in the

terms such as PiFjAk among ME interactions formulated by combination of or-

der parameters (Table 4.3) because ME effect exists below TN when ~A 6= 0 and

~F 6= 0. However, we should find any interactions with Pz, Fx, Fy, Ax and Ay and

invarient ME interactions are as below:

PzFxAy, PzFyAx (4.2)

Here ~F can be replace by ~M . They are not exactly equal, but for the symmetry

analysis, it does not matter. As a result, possible terms for electric polarization

along c-direction are as below:

Figure 4.15: Electric polarization by the experiment (black line) and the calcu-
lation (red line) in CuCrP2S6.
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Pz ∼MxAy

Pz ∼MyAx

(4.3)

Thus, we have

Pz = aMx

√
1−M2

x + bMy

√
1−M2

y (4.4)

where a and b are ME coefficient when magnetic field is applied along x and

y directions. Result is shown in Fig. 4.15 and magnetic field dependent electric

polarization curve is quantively explained.

78



4.4. Conclusion

4.4 Conclusion

In conclusion, we have discovered a new type-II multiferroic material and

investigated the ME coupling in vdW compound CuCrP2S6. The magnetic mea-

surement and DFT calculation demonstrate that the bulk sample exhibits AFM

ordering at 32 K with the weak anisotropy along a-direction. Concomitant with

AFM ordering, CuCrP2S6 establishes unveiled ferroelectricity strongly coupled to

AFM ordering at 32 K. The P can be controlled by magnetic field and eventually

suppressed at high magnetic field as M is saturated, so-called FIF transition.

By comparing with CuCrP2Se6 having a relaxed structure with almost centered

CrSe6 octahedron, we claim that the appearance of ME coupling in CuCrP2S6

compound results from the unbalanced local P which is induced from the off-

centered Cr3+ cation via p-d hybridization mechanism. Our observation should

shift the paradigm of discovering multiferroicity in 2D vdW materials by utilizing

magnetic ion as an ingredient for the ferroelectricity. We also envision that this

work will pave the way for realizing the true 2D ME coupling in future.
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Chapter 5

Summary and conclusion

The magnetoelectric (ME) coupling is highly demanded in many areas of

science and technology for fundamental and application purposes, e.g., spintronic

devices and next generation memories and sensors. One of central goals for

the intense research on multiferroics/magnetoelectrics is an enhancement of the

ME coupling at room temperature. In particular, Co2Y-type hexaferrites show

the biggest polarization reversed by the external magnetic field so that they are

knows as promising materials to realize the huge ME coupling. There are several

routes to optimize the ME coupling in the Co2Y-type hexaferrites; for example,

a reduction of the leakage current and a delicate control of magnetic structure

by doping, etc. In this thesis, we discuss a general route to achieve the giant

ME coupling in the family of the Co2Y-type hexaferrites by the Aluminum and

Strontium substitution. It has been rare that the specific role of Al3+ is described,

even though the magnetic and ME properties are widely the studied in these

compounds.

As a result, we have optimized the ME coupling in Ba0.2Sr1.8Co2(Fe0.96Al0.04)12O22

single crystal . We have grown the Ba2−xSrxCo2(Fe1−yAly)12O22 (1.0 ≤ x ≤ 1.8

and 0.00 ≤ y ≤ 0.08) single crystals to control the spin frustration and the

magnetic anisotropy. The biggest magnetic field-induced polarization and ME
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susceptibility is observed in Ba0.2Sr1.8Co2(Fe0.96Al0.04)12O22 out among the series

of Co2Y-type hexaferrites we have synthesized. All Ba0.2Sr1.8Co2(Fe1−yAly)12O22

specimens exhibit the magnetic metastable nature of TC and ALC phases and

the variation of the free energy barrier between the magnetic phases, resulting in

the well-separated TC phases in y = 0.04 compound. Furthermore, we found that

ALC phase is most stabilized up to high temperature by competing the in-plane

and out-of-plane magnetic anisotropy. We conclude that the fine tuning of the

magnetic anisotropy originated from the Al substitution into the octahedral site

is crucial to induce the robust ALC spin phase.

In addition, we report our discovery of magnetic field-induced electric po-

larization in a two-dimensional (2D) van der Waals material CuCrP2S6 forming

a monoclinic lattice, in which Cu, Cr and P-P pairs are forming a honeycomb

networks. We have observed that electric polarization under magnetic fields oc-

curs below 32 K and is modulated by magnetic field while it is suppressed with

the spin-flop transition located around 6.1 T. Based on magnetization and elec-

tric polarization measurements, electric and magnetic phase diagram has been

constructed. We also claim that the magnetic field-induced electric polariza-

tion is closely associated with the p-d hybridization mechanism originated from

the off-centered Cr3+ cations within the octahedral sites. Furthermore, with

the symmetry analysis between the antiferromagnetic layers, we could explain

the shape of the electric polarization curve qualitatively. The p-d hybridization

mechanism is further corroborated by the observation of vanishing polarization in

the CuCrP2Se6 compound in which Cr3+ is positioned at the octahedral center,

further supporting that the off-centered cation plays an important role in the

magnetoelectric coupling. Our results thus point to one general route to induce

magnetoelectric coupling in 2D layered materials, i.e., via the off-centered cation.
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Chapter 7

Appendix

In this chapter, we present the experimental results which have not been discussed

in the main contents.

7.1 The additional experiments on the series of

the Co2Y-type hexaferrites

7.1.1 Direct ME coupling in the Ba2−xSrxCo2(Fe1−yAly)12O22

(y = 0.04 and 0.08) series

Fixing not only the Sr ratio to 1.8 (Ba0.2Sr1.8Co2(Fe1−yAly)12O22) but also the

Al ratio to 0.04 or 0.08 are checked to find the compound which has the largest ME

coupling. Thus Ba2−xSrxCo2(Fe0.92Al0.08)12O22 and Ba2−xSrxCo2(Fe0.96Al0.04)12O22

single crystals are grown by the same method described in the main contents and

annealed under oxygen atmosphere.

As a result, x=1.7-1.8 sample has the biggest ME coupling among y = 0.04

compounds as we expected. In the case of y=0.08 compounds,x = 1.3 specimen

show the highest dP/dH value whereas x=1.6 specimen has the biggest ∆Pmax
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Figure 7.1: Magnetic-field dependent electric polarization of (left)
Ba2−xSrxCo2(Fe0.96Al0.04)12O22 and (right) Ba2−xSrxCo2(Fe0.92Al0.08)12O22 single
crystals. ∆Pmax indicates the difference between extreme values, Pmax-Pmin and
Hc indicates the critical magnetic field where dP/dH is maximum.

because x = 1.3 specimen is softer than x = 1.6 specimen (Note that Hc is small in

x = 1.3 sample). To optimize the ME coupling, enhancement of anisotropy along

c-direction should be achieved with the robust ALC phase, which means that

the spin frustration and anisotropy should be properly controlled. Sr- and Al-

substitution simultaneously control the frustration and it is likely that a certain

optimal c/a ratio exists for the giant ME coupling. Thus it seems that less amount

of Sr-substitution is needed in y=0.08 specimen than y=0.08 specimen because

c/a is already suppressed by large y=0.08.
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7.1.2 Magnetostriction of the Co2Y-type hexaferrites

Magnetostriction indicates a property that magnetic material changes the di-

mension by application of the magnetic field. It is a beneficial tool to investigate

the motion of the magnetic domain under the magnetic field because the appli-

cation of the magnetic field is tricky for the XRD or neutron scattering. Here

we present the magnetostriction data measured with lab-made dilatometer and

strain gauge (KYOWA) utilized in PPMSTM .

The dilatometer is a capacitive type with which the change of lattice param-

eters are estimated by the capacitance values. Capacitance is measured by using

the sensitive capacitance bridge, AH2550, with a resolution of 0.01 pF. The

dilatometer is only usable for the L ‖ H configuration. Therefore, the strain

gauge is used to measure the ∆L perpendicular to the direction of the magnetic

field. In this method, the Wheatstone bridge is used. If the sample expands

or contracts by an external field, the resistance of strain gauge changes and the

balance of Wheatstone bridge collapses. We calculated the ∆L by measuring the

voltage across the Wheatstone bridge.

Fig. 7.2 shows the in-plane and out-of-plane magnetostriction by the in-plane

magnetic field in Ba0.2Sr1.8Co2(Fe0.96Al0.04)12O22. The in-plane magnetostriction

is increasing rapidly at a low field region and starts to decrease at 0.4 T as

the in-plane magnetic field is increasing while the out-of-plane magnetostriction

keeps decreasing. In the high field region, the in-plane magnetostriction is almost

saturated. The magnetostriction shows hysteresis behavior which is due to the

rotating of TC domain as discussed in the magnetic domain imaging study [62].

We could not find any variation by warming the sample which indicates that

TC and ALC domains are well-established from the low temperature to room
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Figure 7.2: (a) In-plane and (b) out-of-plane magnetostriction under magnetic
field parallel to in-plane direction in Ba0.2Sr1.8Co2(Fe0.96Al0.04)12O22.

temperature.

The magnetostriction, magnetization, and electric polarization under the in-

plane magnetic field are compared at 10 K in Fig. 7.3. Phase (1) represents the

rotation of the TC phase. During the rotation of TC, magnetization is mostly

pointing to the tilted direction to the magnetic field so that La is contracting.

Under the higher magnetic field above 150 mT, multiple magnetic domains are

unified by the external magnetic field and La rapidly increases while polarization

is constant (phase 2), supporting that the aligned two distinct TCs with opposite

chirality repulse each other. Above 0.4 T, La and Lc decrease simultaneously by

suppressing the domain wall between the two different TCs accompanying to the

disappearance of electric polarization because the spin structure changes to be

collinear.

92



7.1. The additional experiments on the series of the Co2Y-type hexaferrites

Figure 7.3: Summary of magnetostriction, magnetization, and electric polariza-
tion by the in-plane magnetic field in Ba0.2Sr1.8Co2(Fe0.96Al0.04)12O22.

7.1.3 Electric polarization along c-axis induced by the ex-
change striction mechanism

The alternating longitudinal cone (ALC) phase has a spin ordering with an

antiferromagnetic alignment along c-direction, while the normal longitudinal cone

(NLC) phase has a ferromagnetic spin configuration [51]. Therefore, ALC pos-

sesses a exotic spin ↑↑↓↓ configuration along c-direction as depicted in Fig. 3.7

and the spin ↑↑↓↓ with different charges of the magnetic L and S blocks breaks

the inversion symmetry, resulting in the ferroelectricity via exchange striction

mechanism [66].
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Figure 7.4: (Top) ME current and (Bottom) electric polarization along c-
direction by the application of the magnetization along c-direction at 100 K in
Ba0.2Sr1.8Co2(Fe0.94Al0.06)12O22.

Fig. 7.4 show the The emergence of polarization along c-direction at 100 K

in Ba0.2Sr1.8Co2(Fe0.94Al0.06)12O22. The region of ferroelectricity corresponds to

that of the ALC phase. It is clearly seen in Fig. 7.5 that the polarization increase

as increasing the temperature, indicating that evolution of the ALC phase at the

low magnetic field induces the out-of-plane polarization.

To prove that TC phase is most-stabilized in y=0.04, we performed the mea-
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Figure 7.5: (a) Electric polarization along c-direction and (b) phase dia-
gram constructed from the dielectric constant and ME current measurement in
Ba0.2Sr1.8Co2(Fe0.94Al0.06)12O22.

Figure 7.6: Electric polarization along c-direction by the application of the mag-
netization along c-direction at 150 K in Ba0.2Sr1.8Co2(Fe1−yAly)12O22.
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surement with Ba0.2Sr1.8Co2(Fe1−yAly)12O22 samples. Fig. 7.6 shows that the Pc

is not observed in y = 0.04 compound at 150 K, whereas specimens with y =

0.00 and 0.06 have finite magnetic field-induced Pc values. It domonstrates that

TC phase dominantly exists in Ba0.2Sr1.8Co2(Fe0.96Al0.04)12O22 at relatively high

temperature, 150 K, even though magnetic field is low. It also supports that the

hightest ME effect originated from the control of the free energy barrier, ∆Ebarrier

in Ba0.2Sr1.8Co2(Fe0.96Al0.04)12O22.
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7.2 Studies on the ME coupling in the CoZnY-

type hexaferrites single crystal

Figure 7.7: (a) Magnetic-field dependent electric polarization of
Ba2−xSrxCoZn(Fe1−yAly)12O22 single crystals at 10 K and 150 K.

Co2Y-type hexaferrites have a higher coercivity than Zn2Y-type hexaferrites

even though Co2Y-type hexaferrites shows huge ME coupling up to room tem-

perature. It is likely that the high coercivity comes from the strong magnetic

anisotropy along c-direction due to the substitution of cobalt to the octahedral

sites. The hexaferrite materials open a new route to realize the novel devices,

such as multi-bit memory, if a soft hexaferrite (Hc < 1 mT ) with giant ME cou-

pling (dP/dH > 25,000 ps/m) is discovered at room temperature. Here, we chose

Ba0.2Sr1.8CoZn(Fe1−yAly)12O22 single crystal as a target to control the coercive

field. Zinc ions substitute to the tetrahedral sites and do not affect magnetic
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anisotropy, while partial cobalt ions control the magnetic anisotropy in the oc-

tahedral site. We expected that the moderate cobalt-doping enhances the ME

coupling by stabilizing the TC phase and the coercive field remains suitably low.

Fig. 7.7 displays the results. Overall PvsH curves are similar to Co2Y-

and Zn2Y-type hexaferrites cases, meaning that Zn- and Co-doping do not af-

fect the ME coupling via the inverse DM interaction. Fig. 7.8 summarize the

results and shows that magnetic field-induced polarization is optimized in the

Ba0.2Sr1.8Co2(Fe0.94Al0.06)12O22. Note that the optimal Al doping ratio y is 0.04

and 0.08 in Co2Y-type and Zn2Y-type hexaferrites, respectively. As discussed in

the main content, a certain optimal c/a ratio exists for the giant ME coupling and

y=0.06 seems to correspond to the certain value in the CoZnY-type hexaferrites.

Figure 7.8: The summary of magnetic field-induced polarization at 10 K and 150
K in Ba0.2Sr1.8CoZn(Fe1−yAly)12O22.
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7.3 Studies on the ME coupling in the Co2Z-

type hexaferrites Ba3−xSrxCo2Fe24O41 poly crys-

tals

The realization of giant ME coupling at room temperature provides signif-

icant advantages in multifunctional applications such as multi-bit memory and

non-dissipative spintronic devices. Other than Y-type hexaferrite, Z- and U-type

hexaferrites show ME effect at room temperature [24,67]. It is known that the TC

phase is spontaneously existing in the Co2Z-type hexaferrites [47,68] and induce

the ME coupling via spin-dependent p-d hybridization mechanism at room tem-

perature [58]. The TC phase of Z-type hexaferrite also can be tailored by Ba/Sr

Figure 7.9: An X-ray diffraction pattern of Ba3−xSrxCo2Fe24O41 poly crystals and
its Rietveld refinement result.
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Figure 7.10: The evolution of a- and c-axis lattice constants with Sr x substitution
ratio as determined from the X-ray diffraction data and the Rietveld refinement
result of Ba3−xSrxCo2Fe24O41 poly crystals.

because the smaller ionic radius of Sr cation deforms the bonding nature around

the interface between magnetic L and S block and makes the spin frustration

enhanced, as suggested in the Y-type hexaferrites.

In particular, we found that Co2Z-type hexaferrite Ba0.52Sr2.48Co2Fe24O41 sin-

gle crystal shows large ME coupling at room temperature with the ME suscep-

tibility (dP/dH) ∼ 3200 ps/m, the highest value at room temperature among

the known single-phase ME materials [47]. To investigate the evolution of ME

coupling strength with the variation of Ba and Sr ratio, we have synthesized

a series of high quality polycrystalline Ba3−xSrxCo2Fe24O41 (1.5 < x < 3.0) by

solid-state reaction methods. XRD data in Fig. 7.9 indicates that the sample has

high purity and lattice constant follows the Vegard’s law (Fig. 7.10). The poly

crystals were annealed in an oxygen atmosphere to guarantee the high resistance
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Figure 7.11: (a) Voltage driven by the electric current with two-probe method
at 300 K in Ba3−xSrxCo2Fe24O41. (b) Summary of the resistivity at 300 K in
Ba3−xSrxCo2Fe24O41 poly crystals.

as shown in Fig. 7.11.

The resistivity of the samples is enough to apply the poling electric field and

the AC ME susceptibility measurement tool was used to investigate the ME effect

in Ba3−xSrxCo2Fe24O41 poly crystals. Fig. 7.12 shows that Ba0.6Sr2.4Co2Fe24O41

specimen has the largest ME susceptibility of 380 ps/m and the electric polar-

ization of 17 µC/m2 is clearly larger than that of Sr3Co2Fe24O41. The origin of

such enhanced ME coupling at the specific doping can be explained by the vari-

ation of superexchange interaction in the frustrated spin network, in analogy to

the previous results in the Zn2Y-type hexaferrites [21]. Further studies on the

transition of the magnetic structure as a function of Sr ratio x are needed such

as neutron scattering and magnetization measurement.
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Figure 7.12: Summary of the maximum dP/dH and P as a function of Sr ratio x
at 10 K, demonstrating that the specimen with x = 2.4 has the largest magnetic
field induced polarization in Ba3−xSrxCo2Fe24O41 poly crystals.
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7.4 Studies on the hybrid improper ferroelec-

tricity in (Ba,Sr,Ca)3Sn2O7

Hybrid improper ferroelectricity (HIF) induce an electric polarization by the

hybridization of the rotating and tilting mode of the octahedron in perovskite

structure [70,71]. Perovskite structure has an infinite potential for the novel states

and application, thus the discovery of huge polarization in perovskite structure is

of importance. The HIF is a new type of ferroelectricity which was not observed

before so that HIF is being spotlighted [69].

N. A. Benedek et al. first suggested the HIF ferroelectricity mechanism in n=2

Ruddlesden-Poppers structure by two consecutive rotating mode theoretically

[70]. Also, it is experimentally proven in 2015 by Y. S. Oh et al. [69]. They

claim that the large cations in the perovskite (P ) block and small cations in the

rocksalt (R) block induce a big polarization and low switching energy in n=2

Ruddlesden-Poppers structure [71]. The site preference results in the modulation

of orthorhombicity (b− a)/(b+ a) which enhances the rotating and tilting mode.

To investigate the HIF in the (Ba, Sr, Ca)3Sn2O7 with n=2 Ruddlesden-

Figure 7.13: Crystal structure of Sr3Sn2O7 projectetd onto (a) ab-plane and (b)
bc-plane.
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Figure 7.14: (a)The evolution of c-axis lattice constants with Ba substitution
x and Ca substitution y ratio calculated from the the Rietveld refinement of
(Ba,Sr,Ca)3Sn2O7 poly crystals. (b) Orthorhombicity (b−a)/(b+a) as a function
of x and y.

Poppers structure, we grew the poly crystal with solid-state reaction method. The

structure of Sr3Sn2O7 is exhibited in Fig. 7.13. Sr3Sn2O7 has a centrosymmetric

Cmcm space group and we systematically substituted the Ba and Ca cations to
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the Sr sites to make a noncentrosymmetric A21 space group. Fig. 7.14 displays

the lattice constant along c-direction and orthorhombicity (b − a)/(b + a). It

demonstrates that Ba and Ca substitutions rather decrease the orthorhombicity,

even though the enhanced orthorhombicity is needed to induce the structural

transition to the centrosymmetric space group. Therefore, Ba and Ca are relaxing

the distortion of the octahedron, so that tetragonal structure is stabilized other

than orthorhombic structure.

Figure 7.15: Raman shift of (top) (Sr1−yCay)3Sn2O7 and (bottom)
(Sr1−xBax)3Sn2O7 at 300 K
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The origin of the suppressed-orthorhombicity is discussed in this section. Fig.

7.15 presents the Raman shift of (Sr1−yCay)3Sn2O7 and (Sr1−xBax)3Sn2O7 at 300

K. As Ca (Ba) atom with an atomic mass of 40.08 u (137.33 u), the Raman

mode shifts on the right (left) side, respectively because the light Ca2+ makes

vibrational frequency get larger. 710 cm−1 mode does not depend on Ca or

Ba substitution probably because the mode is relevant to the Sn-O-Sn bonding.

However, we found that the 596 cm−1 only moves to a higher frequency when

x and y are increasing. The high frequency mode is known as the octahederal

stretching mode [72–74].

If large cation Ba2+ prefers to enter the R block site, then P block contracts

and distance between Sn-O increases so that the vibrational frequency gets harder.

On the other hand, small cation Ba2+ preferring to enter the P also shrinks P

block resulting in the same effect with Ba substitution as depicted in Fig. 7.16.

XRD result in Fig. 7.17 indicates that small cation in the P block and large

cation in the R exhibit the better Rwp values.

Ferroelectric properties are investigated by the PvsE curve and dielectric

Figure 7.16: The schematic illustration of R-block contraction by selectively sub-
sitution of (a) Ba and (b) Ca in (Ba,Sr,Ca)3Sn2O7 at 300 K
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Figure 7.17: The XRD data fitted by the Rietveld refinement by assum-
ing that cations are prefering specific site in (a) (Sr1−yCay)3Sn2O7 and (b)
(Sr1−xBax)3Sn2O7.

constant measurement. The PvsE curve measurement was performed by Sawyer-

Tower method and the dielectric constant was measured in the closed cycle refrig-

eration system at 10 K < T < 300 K and in the tube furnace with the lab-made

Figure 7.18: Polarization induced by the external electric field measured with the
various frequency in (Sr0.94Ca0.06)3Sn2O7 at 300 K. Capacitance of the reference
is 80 nF and the Sawyer-Tower method with single-loop is used.
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probe at 300 K < T < 600 K. Fig. 7.18 and Fig. 7.19 depict the PvsE curve

and temperature-dependent dielectric constant, respectively. As the frequency in-

crease, the ellipse shape changes to the linear shape because the leakage current

decreases. It shows the polarization has a linear response to the external elec-

tric field, indicating the paraelectricity. To check the existence of the ferroelectric

transition as a function of temperature, we tried dielectric constant measurement.

However, we could not find any evidence of the ferroelectric transition from 10 K

to 600 K [?], which is consistent with suppression of orthorhombicity by the site

preference of Ba2+ and Ca2+.

Figure 7.19: Temperature-dependent (10 K < T < 600 K) dielectric constant of
(Sr1−xCax)3Sn2O7. The excitation frequency is 1 kHz.
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7.5 Investigation of the topological quantum state

via lithium intercalation in a 2D ferromag-

net CrSiTe3

Two-dimensional insulator CrSiTe3 has layered honeycomb structure which

exhibits a paramagnet (PM) to ferromagnet (FM) transition at 33 K [96]. Re-

cent theoretical calculation predicts that the transition-metal trichalcogenide with

chemical formula ABX3 (A is transition metal, B is Si, Ge or Sn, and X is chalco-

gen) can realize magnetic Chern insulator because of its topologically non-trivial

nature of its band structure and time reversal symmetry breaking [97]. Herein,

we present our recent effort to induce a metallic state in CrSiTe3 by lithium

ion (Li+) intercalation and application of hydrostatic pressure. Single crystal

pieces of CrSiTe3 were dipped into the n-butyllithium solution and the evolu-

tion of their electrical resistance with time was monitored. We found that the

room temperature resistivity, ρ300K , of most metallic specimens decreased by

four orders of magnitudes and, at the same time, ferromagnetic moment along

c- axis also decreased by 15%. Hall effect measurements reveal an increase of

carrier concentration, suggesting that the Li+ provides free carriers into the Van

der Waals layers. Upon application of hydrostatic pressure, we also observed a

metal-insulator transition in a LixCrSiTe3 single crystal at 2.57 GPa. Further-

more, longitudinal magneto-resistance (MR) changes negative to positive around

1.46 GPa, indicating the spin reorientation with pressure. The amount of Li+

intercalation has not been enough yet to induce metallic behavior at ambient

pressure, but various Li+ intercalation method and experimental progress will is

presented.
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7.5.1 Sample preparation

Figure 7.20: (a) Temperature sequence and pictorial illustration of how CrSiTe3
single crystal is prepared. [96] (b) Real image of CrSiTe3 single crystals .

CrSiTe3 single crystal is grown by flux-method. Te powder is used as a self-

flux. Cr, Si, and Te powders are weighed with 1:2:6 ratio in the glove box.

The mixed powder is transferred to the Al2O3 crucible, sealed inside the quartz

tube and put inside box furnace with the temperature sequence described in Fig.

7.20 [96] (a). After the sequence is finished, the remaining flux is removed by the

centrifuge. The prepared sample is displayed in the 7.20 (b). We successfully got

a CrSiTe3 single crystal with a size of 1cm × 1cm × 0.2 ×. XRD peaks are also

well-assigned to (00L) with the known structure (R3̄ space group) [98].

Li+ ions are intercalated by the following two methods. First, CrSiTe3 single

crystal is dipped into the n-butyllithium solution. After a few days, the crystal is

taken out and cleaned in the pure hexane. This method has widely been used in

the various dichalcogenide samples [99,100]. We set up the real-time intercalation

monitoring system and found that the resistance of the single crystal is decreasing
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as the dipping time in the n-Butyllithium passes (Fig. 7.21). After the reaction

for 4 days, the resistance of the sample was low enough to measure the resistance

and Hall effect.

Figure 7.21: Variation of resistance of the CrSiTe3 single crystal as a function of
time in the n-Butyllithium.

Fig. 7.23 exhibits the comparison between the magnetization and resistivity

of the LixCrSiTe3. The magnetic moment along c-axis is suppressed to 90 %

after the Li intercalation. Furthermore, resistivity clearly shows the shoulder at

ferromagnetic transition, Tc = 33 K. The anomaly of the resistivity is presumably

originated from the correlation of electrons accompanying to FM order. Hall effect

results in Fig. 7.22 claims that the major carrier is a hole and the carrier density

is ∼ 4 × 1017 cm−3 at 300 K.

The second method is performed with liquid ammonia. Gas ammonia is gen-

erated from the neutral reaction between NH4Cl and KOH. The gas ammonia

flows to the bath of the dry ice and is liquefied (Fig. 7.24). Li metal is dissolved
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Figure 7.22: Hole carrier density, mobility, and resistivity as a function of tem-
perature from 100 K to 300 K in LixCrSiTe3.

Figure 7.23: Temperature-dependent (top) magnetization and (bottom) resistiv-
ity in the CrSiTe3 and LixCrSiTe3.
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Figure 7.24: (a) The set-up for liquefying the ammonia and the intercalation of
Li+ ion. (b) The dissolving Li metal into the liquid ammonia.

into the liquid ammonia and ionized to Li+. The Li+ ions are absorbed and

intercalated into the CrSiTe3 layer. Not only Li but also K and Na metals are

tested as sources of intercalation. The result is displayed in Fig. 7.25. After the

intercalation, Na+ is the most effective ion to make the CrSiTe3 metallic among

alkali metals by decreasing the resistivity (smaller than 1 order of resistivity of

pristine CrSiTe3). However, the ammonia method generally introduces the lower

carriers than n-butyllithium method in our experiment.

Figure 7.25: Resistivity of the alkali metal-intercalated CrSiTe3 single crystal
below room temperature.
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7.5.2 Metal-insulator transition under high pressure

Figure 7.26: (a) Temperature-dependent resistivity of the LixCrSiTe3 single crys-
tal under hydrostatic pressure (0 GPa ≤ P ≤ 2.57 GPa) at the zero field. (b)
Temperature-dependent resistivity in 2.57 GPa at 0 T(blue line) and 9 T(red
line).

To investigate the topological quantum state by controlling the electronic band

structure, we applied hydrostatic pressure to the LixCrSiTe3 single crystal with

piston cell. Fig. 7.26 (a) shows the temperature dependence of resistivity under

high pressure without the magnetic field. As the external pressure increases,

resistivity is systematically reduced. Interestingly, the metal-insulator transition

(MIT) is observed at 2.57 GPa. Furthermore, the MIT disappears under the

magnetic field as shown in Fig. 7.26 (b). Magnetoresistance (MR) at 10 K and

30 K are exhibited in Fig. 7.27. At low pressure, the resistivity decreases with

the application of the magnetic field because spin-spin interaction is suppressed.

The negative MR changes to the positive MR above 0.79 GPa. The crossover of

the positive to negative MR can be explained by spin reorientation [101].

The variation of resistivity in Cr(Si1−xAsx)Te3 single crystals is briefly intro-

duced in Fig. 7.28.
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Figure 7.27: Magnetic field-dependent resistivity of the LixCrSiTe3 single crystal
under hydrostatic pressure at (top) 10 K and (bottom) 30 K.

Figure 7.28: Temperature dependence of resistivity in the Cr(Si1−xAsx)Te3 single
crystals.
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7.6 The preparation of X-ray diffraction at low

temperature

To measure the X-ray diffraction at low temperatures from 13 K to 300 K,

low temperature cryostat, PheniX from the Oxford Cryosystems, and closed cycle

Figure 7.29: a) Z scan and (b) ω scan to align the sample position in the cryostat.
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refrigeration system which is embedded in XRD machine (Malvern Panalytical) is

utilized. First, prepare the sample in a powder form and load on the holder. It is

always better to use a large amount of powder to make a diffracted area wider and

achieve a higher diffraction signal. One can use copper blocks to spread powder

out to cover the wider area with a limited amount of the sample. Then connect the

cryostat to the sample stage and mount the prepared powder. Before covering the

lid of the cryostat, one should align the sample position properly. Use a Copper

beam mask in front of the detector to protect it from the direct incident beam

and then start Z scan. As shown in Fig. 7.29 (a), detected intensity shows step-

like feature and the Z offset is the position of the step, 8.17 mm. Subsequently,

perform ω scan after entering the Z offset in software, then find the ω offset, -0.3

◦, (Fig.7.29(b). The Z and ω offset values are varying every time depending on

how one mounts the powder on the holder. Thus the alignment process should

proceed before measurement.

Now pump the cryostat after covering the radiation shield and lid of the cryo-

stat and turn on the compressor. The lowest temperature our machine reaches

Figure 7.30: XRD result analyzed by profiling fitting of Pd0.07-TaSe2 at 13 K.
Rwp is 11.0.
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is 13 K. Fig. 7.30 displays the one example of the XRD data measured at a

low temperature with our machine. We could get a good signal with the high

intensity even though it is measured for 10 minutes. Fig. 7.31 summarizes the

thermal coefficient along c-direction c−1dd/dT at the various temperature and

shows that mostly follow the Debye model. The thermal coefficient decreases as

cooling the sample and it shows a sudden increase at 30 K. The dip-like feature is

consistent with the commensurate charge density wave (CCDW) transition with

the expansion of the lattice predicted by the density functional theory [102].

Figure 7.31: Summary of the thermal coefficient of Pd0.07-TaSe2 along c-direction
as a function of temperature. The red line follows the Debye fitting with θD =
200 K.

Fig. 7.32 also introduces another example of the XRD data measured at low

temperatures with our machine.
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7.6. The preparation of X-ray diffraction at low temperature

Figure 7.32: XRD results of CaFe3O(PO4)3 at 13 < T < 300 K.
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국문 초록

Co2Y-타입 육방정계 철산화물 Ba2-xSrxCo2(Fe1-yAly)12O22

과 이차원 반데르발스 물질 CuCrP2X6 (X=S, Se)의 자기전
기효과에 관한 연구

  강자성과 강유전성이 공존하는 다강체 물질과 두 현상이 강하게 상호작용하
는 자기전기성체는 그 진기한 과학적 기작뿐만 아니라 멀티비트 메모리와 같
은 산업의 응용 가능성 때문에 오랫동안 연구되어 왔다. 지금까지 다양한 다강
체 및 자기전기성체가 발견되었지만, 아직 상온 혹은 저차원에서 강한 자기전
기효과를 갖는 물질은 흔하지 않다. 특히 상온 혹은 저차원에서 강한 자기전기
효과를 갖는 물질의 발견은 나노스케일의 차세대 소자를 구현하는데 굉장히 
중요하다. 본 학위 논문에서는 자기전기성체의 응용범위를 넓히기 위하여 상온 
자기전기성체 Co2Y-타입 육방정계 철산화물 Ba2-xSrxCo2(Fe1-yAly)12O22과 이
차원 반데르발스물질 CuCrP2X6 (X=S, Se)의 자기전기효과에 대해 연구하였
다.

 Co2Y-타입 육방정계 철산화물의 자기전기효과를 극대화하기 위해 바륨(Ba)과 
철(Fe) 자리에 스트론튬(Sr)과 알루미늄(Al)을 치환하여 단결정을 성장하였다. 
성장시킨 단결정의 자성, 강유전성 및 자기전기성 측정을 통해 물리적 기작을 
탐구하였다. 그 결과 스트론튬과 알루미늄이 치환된 모든 물질군에서 횡형원뿔
스핀구조와 반복종형원뿔스핀구조가 공존하는 것을 확인하였고 그 둘의 비율
이 온도 및 자기장 조건에 굉장히 민감하다는 것을 발견하였다. 횡형원뿔스핀
구조는 주로 저온에서 자기장이 인가되었을 때 안정적인 반면 반복종형원뿔스
핀구조는 고온에서 안정적임을 관찰하였다. 특히 스트론튬 비율 x = 1.8, 알루
미늄 비율 y = 0.04이 치환된 시료에서 횡형원뿔스핀구조가 가장 안정하며 자
기장에 의해 발현되는 전기분극의 변화가 상온에서 60 μC/m2, 10 K에서 430 
μC/m2로 가장 큰 값을 갖는 것이 확인되었다. 이 결과는 스트론튬과 알루미
늄 치환을 통하여 자기비등방성과 교환 상호작용을 조절하고 횡형원뿔스핀구
조를 안정하게 하는 것이 육방정계 철산화물의 상온 자기전기효과를 극대화하
는데 매우 중요함을 시사한다.

 두 번째로 구리(Cu), 크로뮴(Cr), 인(P) 쌍이 벌집구조를 이루고 있는 이차원 



반데르발스 물질 CuCrP2S6 단결정에서의 자기전기효과에 대하여 보고한다. 자
성과 전기분극 측정을 통해 자기장에 의해 조절되는 전기분극을 존재하는 것
을 확인하였고 전기분극이 크로뮴의 반강자성정렬에 의해 유도되는 것을 규명
하였다. 결과적으로 자기전기 상평형도를 얻었고 그 원리에 대하여 보고하였
다. 더 나아가 CuCrP2Se6 물질과의 비교를 통해 전기분극은 크로뮴의 황 팔
면체 자리에서의 비중심성에 기인하는 p-d 혼성 궤도 메커니즘에 의한 것을 
확인하였다. 대칭성 분석을 통하여 성공적으로 자기장 대 전기분극 곡선 및 자
기장 회전에 따른 전기분극의 개형을 이해할 수 있었다. 위 결과는 전이금속의 
팔면체 자리에서의 비중심성이 저차원 자기전기효과를 구현할 수 있음을 처음
으로 시사하였다.

· 키워드: 다강체, 자기전기성체, 강유전체, 육방정계 철산화물, 반데르발스 물질

· 학번: 2013-20369
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