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Abstract 
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the exact wavefunction of two 
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contact interaction 
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The Graduate School 

Seoul National University 

 

 

   We consider two bosons in a one-dimensional harmonic trap, 

interacting by a contact potential, and compare the exact solution of 

this problem to a self-consistent numerical solution by using the 

multiconfigurational time-dependent Hartree (MCTDH) method. We 

thereby benchmark the predictions of the MCTDH method with a 

few-body problem that has an analytical solution for the most 

commonly experimentally realized interaction potential in ultracold 

quantum gases. It is found that exact ground state energy and first 
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order correlations are accurately reproduced by MCTDH up to the 

intermediate dimensionless coupling strengths corresponding to 

typical background scattering lengths of magnetically trapped 

ultracold dilute Bose gases. For larger couplings, established for 

example by (a combination of) Feshbach resonances and optical 

trapping, the MCTDH approach overestimates the depth of the trap-

induced correlation dip of first order correlations in position space, 

and underestimates the fragmentation, defined as the average 

relative occupation of orbitals other than the energetically lowest one. 

We anticipate that qualitatively similar features in the correlation 

function may arise for larger particle numbers, paving the way for a 

quantitative assessment of the accuracy of MCTDH by experiments 

with ultracold atoms. 

 

Keywords : Boson, MCTDH, exact solution, ultracold gas, first order 

correlations 

Student Number : 2015-20317 
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Chapter 1. Introduction 

 

1.1 MCTDH 

The MCTDH method is a powerful self-consistent numerical 

approach to the quantum dynamics of many interacting particles, and 

has been extensively used to predict correlation functions, cf., e.g., 

Refs. [1-5]. Initially used for the purpose of propagating 

wavepackets in physical chemistry, where it is by now routinely used 

[6], in the past decade MCTDH has increasingly been applied to 

describe the intricate many-body physics of ultracold dilute Bose 

gases, for example, in Refs. [7-18]. 

The present study is inspired by the ongoing debate on the 

convergence of MCTDH, see, e.g., Refs. [19-22]. These 

convergence issues arise because the MCTDH equations of motion 

become singular as soon as unoccupied orbitals occur during the real 

or imaginary time evolution. Hence, some (nonunique) prescription 

of regularization is needed, see for example [23-26]. Furthermore, 

it is not clear whether MCTDH is more accurate in comparison to, 

e.g., the alternative approach of using the truncated Wigner method 

for either large or small number of particles 𝑁𝑁 [21]. This stems from 

the fact that neither method, MCTDH nor truncated Wigner (see also, 
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e.g., Ref. [27]) provides a control parameter for its accuracy to be 

assessed within given numerical resources. This should be compared 

with (number-conserving) Bogoliubov theory[28, 29], where this 

control parameter is some power of the inverse of the particle 

number, 1/𝑁𝑁. Rigorous results on the accuracy of retaining just a 

single orbital in the field operator expansion are available in the limit 

of particle number 𝑁𝑁 → ∞, provided the (formal) condition is met that 

the interaction coupling 𝑔𝑔 decreases as 1/𝑁𝑁 , and hence 𝑔𝑔 = 𝑔𝑔(𝑁𝑁) 

tends to zero in that limit[30, 31]. These rigorous results are, in 

addition, limited to reproducing the Gross-Pitaevskii energy 

correctly, while higher-order correlations reveal deviations from 

mean-field physics even in the large 𝑁𝑁 limit keeping 𝑔𝑔𝑔𝑔 fixed cf., 

e.g., [13, 14]. 

 

1.2 Necessity of Benchmarking MCTDH 

Importantly, a direct experimental verification of the accuracy of 

MCTDH in a controllable quantum many-body system is lacking so 

far. We here aim at benchmarking MCTDH with the exactly solvable 

model most closely associated with current experiments on ultracold 

gases: A pair of bosons with repulsive contact interactions trapped in 

a single harmonic well. Because many-body correlations are 

strongest in one spatial dimension, we use to this end a one-
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dimensional (1D) variant of the originally 3D analytical solution [32-

34]: For 𝑁𝑁 = 2 in one spatial dimension, one expects deviations from 

(single-orbital) mean-field physics to be most significant. The 

present case of strong correlations is therefore an excellent testing 

ground for the accuracy of MCTDH outside its usual applicability 

domain of weak correlations. Upon approaching the Tonks-Girardeau 

"fermionized" limit [35-38], the self-consistent determination of the 

orbitals' shape in a harmonic trap becomes increasingly important, as 

the usual periodic boundary conditions in a spatially homogeneous 

system cannot be applied. While it is well known that in 1D, the Lieb-

Liniger solution [39] is exact for any 𝑁𝑁 , extracting correlation 

functions is in general a challenging task [36]. In addition, the Lieb-

Liniger solution is not available in harmonic traps. 

The analytically solvable 𝑁𝑁 = 2  problem supplies an exact 

statement on the shape of the orbitals and level occupation statistics. 

It can thus assess the accuracy of MCTDH, which determines these 

quantities, for a large but finite number 𝑀𝑀 of field operator modes. 

We provide below, with an experimentally realizable interaction 

potential, an accurate quantitative statement to which extent MCTDH 

is "numerically exact" [40], i.e., controllably reproduces for 𝑀𝑀 → ∞ 
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an exact solution of the Schrödinger equation①. The coupling strength 

can be changed over a large range via Feshbach resonances [41], 

facilitating experimental access to the validity domain of MCTDH. We 

demonstrate that for large couplings, MCTDH increasingly 

overestimates a trap-induced dip in nonlocal first-order correlations, 

which can be used as a sensitive measure of the accuracy of MCTDH. 

  

 
① An exactly solvable model (which is readily integrable for any N) and 
the convergence of MCTDH towards its solutions was studied with a 
harmonic interaction potential in Ref. [7], with the obvious limitation that 
this interaction is not realized in ultracold atomic gases. 



 

 5 

Chapter 2. Two harmonically trapped bosons   

in 1D 

 

2.1 Analytical solution 

The Hamiltonian is 

where 𝑥⃗𝑥 = (𝑥𝑥1,𝑥𝑥2) is the position vector of the atoms, 𝑚𝑚 their 

mass, 𝜔𝜔 the frequency of the trapping potential, and 𝑔𝑔 is the 1D 

interaction coupling constant. Below, we use ℏ𝜔𝜔 as unit of energy, 

and 𝑙𝑙 = �ℏ/𝑚𝑚𝑚𝑚  as length scale. The solution of the Schrödinger 

equation can be found by the separation ansatz [32, 34] 

 

where we introduced relative, 𝑟𝑟 = 1
√2

(𝑥𝑥1 − 𝑥𝑥2)  and center-of-

mass (COM) 𝑅𝑅 = 1
√2

(𝑥𝑥1 + 𝑥𝑥2)  coordinates. Relative and COM 

wavefunctions are then given by 

where 𝐻𝐻𝑛𝑛 is the Hermite polynomial of order 𝑛𝑛 and 𝑈𝑈(−𝑎𝑎, 𝑏𝑏; 𝑥𝑥) 

is a confluent hypergeometricfunction [42]; we omitted the 

 𝐻𝐻 = −
ℏ2

2𝑚𝑚
Δ𝑥𝑥 +

1
2
𝑚𝑚𝜔𝜔2𝑥⃗𝑥2 + 𝑔𝑔𝑔𝑔(𝑥𝑥1 − 𝑥𝑥2) (1) 

 Ψ(𝑅𝑅, 𝑟𝑟) = ΨCOM(𝑅𝑅) 𝜓𝜓rel(𝑟𝑟), (2) 

 

ΨCOM(𝑅𝑅) ∝ 𝑒𝑒−𝑅𝑅2/2𝐻𝐻𝑛𝑛(𝑅𝑅), 

𝜓𝜓rel(𝑟𝑟) ∝ 𝑒𝑒−𝑟𝑟2/2 𝑈𝑈(−𝜈𝜈,
1
2

; 𝑟𝑟2), 

 

(3) 



 

 6 

normalization constants. A new quantum number 𝜈𝜈 parametrizes the 

total energy of the system 

 

where the 𝑔𝑔 dependence of 𝜈𝜈 is found by solving [34] 

 

Clearly, the wavefunction in Eq. (2) describes the system we 

consider exactly. In the following, we compare ground state energy, 

single-particle density matrix (SPDM) and the shape of the 

orbitals, obtained by employing this exact solution with the results 

from MCTDH calculations, varying the coupling 𝑔𝑔 and the number 

of orbitals 𝑀𝑀. We note here that the 𝑁𝑁 = 2 harmonic trap 

wavefunction has previously been used to compare to MCTDH 

results [22], however for only up to intermediate values of negative 

𝑔𝑔 ∼ 𝑂𝑂(−1), for maximally 𝑀𝑀 = 10 orbitals, and without the crucial 

comparison of nonlocal first-order correlations we present below, 

which encapsulate MCTDH self-consistency in particular for strong 

correlations. 

Using Eqs. (2) and (3), the SPDM 𝜌𝜌(1)(𝑥𝑥, 𝑥𝑥′) =

∫Ψ∗(𝑥𝑥, 𝑥𝑥1)Ψ(𝑥𝑥1,𝑥𝑥′)d𝑥𝑥1 of the ground state, which is obtained from 

𝑛𝑛 = 0 and 𝜈𝜈 = 𝜈𝜈0 with 𝜈𝜈0 being the minimal value of 𝜈𝜈 from solving 

 𝐸𝐸 =  2 𝜈𝜈 +  𝑛𝑛 +  1, (4) 

 Γ �−𝜈𝜈 + 1
2�

Γ(−𝜈𝜈) = −
𝑔𝑔

2√2
 (5) 
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Eq. (5), is given by 

 

where the integral may be calculated numerically to in principle 

arbitrary accuracy. 

 

2.2 The MCTDH method 

The notion of self-consistency embodied by MCTDH is that it 

determines the shape and time dependence of the orbitals 𝜑𝜑𝑖𝑖(𝑥𝑥, 𝑡𝑡) 

self-consistently together with their occupation distribution 𝐶𝐶𝑁𝑁��⃗ (𝑡𝑡) in 

Fock space, where 𝑁𝑁��⃗ = (𝑁𝑁0,𝑁𝑁1, … ,𝑁𝑁𝑀𝑀−1)  (∑ 𝑁𝑁𝑖𝑖𝑀𝑀−1
0 = 𝑁𝑁)  is the 

occupation vector. The coupled MCDTH equations of motion are [34] 

 

Here, 𝑪𝑪(𝑡𝑡) is the column vector that consists of all possible 

expansion coefficients 𝐶𝐶𝑁𝑁��⃗ (𝑡𝑡) , 𝑯𝑯(𝑡𝑡)  corresponds to the time-

dependent Hamiltonian matrix in the basis |𝑁𝑁��⃗ ;  𝑡𝑡⟩, ℎ� is the single-

particle Hamiltonian, 𝑊𝑊�𝑠𝑠𝑠𝑠 = 𝑔𝑔 ∫∫d 𝑥𝑥 𝜑𝜑𝑠𝑠∗(𝑥𝑥)𝜑𝜑𝑙𝑙(𝑥𝑥),  and 𝑃𝑃� = 1 −

∑ |𝜑𝜑𝑘𝑘′⟩⟨𝜑𝜑𝑘𝑘′|
𝑀𝑀
𝑘𝑘′=1  is an orthogonal subspace projection operator. Finally, 

 

𝜌𝜌(1)(𝑥𝑥, 𝑥𝑥′) ∝ 𝑒𝑒−�𝑥𝑥2+𝑥𝑥′2�/2 

× �d𝑥𝑥1𝑒𝑒−𝑥𝑥1
2 𝑈𝑈 �−ν0,

1
2

;
(𝑥𝑥 − 𝑥𝑥1)2

2 �𝑈𝑈 �−𝜈𝜈0,
1
2

;
(𝑥𝑥1 − 𝑥𝑥′)2

2 � 
(6) 

 

𝑖𝑖ℏ
𝜕𝜕𝑪𝑪(𝑡𝑡)
𝜕𝜕𝜕𝜕

= 𝑯𝑯(𝑡𝑡)𝑪𝑪(𝑡𝑡), 

𝑖𝑖ℏ
𝜕𝜕�𝜑𝜑𝑗𝑗�
𝜕𝜕𝜕𝜕

= 𝑃𝑃� �ℎ��𝜑𝜑𝑗𝑗� + � 𝜌𝜌𝑗𝑗𝑗𝑗−1𝜌𝜌𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑊𝑊�𝑠𝑠𝑠𝑠�𝜑𝜑𝑞𝑞�
𝑀𝑀

𝑘𝑘,𝑠𝑠,𝑞𝑞,𝑙𝑙=1

�. 
(7) 
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𝜌𝜌𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 is the matrix element of the two-particle density matrix. To 

find the self-consistent solution of the above equations, we use 

MCTDH-X software package, provided by [4] and first implemented 

in [43, 44].  



 

 9 

Chapter 3. Benchmarking MCTDH 

 

3.1 Convergence of MCTDH to exact ground energy 

 

Fig 1. Convergence of the ground state energy, calculated via 

MCTDH-X with increasing number of orbitals (black squares), 𝑀𝑀 =

2, … ,33 towards the exact value from Eq. (4) (red solid); the coupling 

𝑔𝑔 = 1. Inset: The relative error for the ground state energy for 𝑔𝑔 = 1 

(black solid), 𝑔𝑔 = 3 (brown dashed) and 𝑔𝑔 = 10 (blue dash-dotted). 

 

In order to verify convergence of the ground state energy to the 

exact result, we performed extensive MCTDH calculations for a wide 

range of the number of orbitals, 𝑀𝑀 = 2, … , 33. In Fig. 1, we present the 
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comparison between the exact and numerical values of the ground 

state energy for the interaction coupling 𝑔𝑔 = 1. We conclude that the 

numerical value converges rapidly for a large number of orbitals. The 

relative error between the exact and converged numerical values 

becomes less than 3 ‰ when 𝑀𝑀 > 15. We however also notice that 

upon further increase of 𝑀𝑀, the error does not decrease significantly 

further. Specifically, for 𝑀𝑀 = 20 the error is 2.48‰, and for 𝑀𝑀 = 33 

it is still 2.26 ‰. 

From Fig. 1 we see that for large 𝑀𝑀  the energy converges 

exponentially with a small relative error, corresponding to results of 

similar calculations that employed interaction rescaling, for a smaller 

number of orbitals, see [45]. To illustrate the dependence of the 

convergence on 𝑔𝑔, the relative error for the energy, (𝐸𝐸MCTDH − 𝐸𝐸exact)/

𝐸𝐸exact, is shown in the inset of Fig. 1 for 𝑀𝑀 = 2, … , 12 and 𝑔𝑔 = 1, 3, and 

10 . The MCTDH calculations still converge reasonably well for 

sufficiently large 𝑀𝑀 to the exact energy. However, the computational 

cost (the 𝑀𝑀  needed for convergence) is, as expected, seen to 

increase for larger values of 𝑔𝑔. 
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3.2 Density matrix 

 

 

Fig 2. Top: SPDM 𝜌𝜌(1)(𝑥𝑥, 𝑥𝑥′)/�𝜌𝜌(𝑥𝑥)𝜌𝜌(𝑥𝑥′) as a function of 𝑥𝑥 and 𝑥𝑥′ = 0 

for 𝑁𝑁 = 2  interacting bosons in a harmonic trap, in the strong 

coupling regime. The gray circles are the Monte Carlo results of 

Minguzzi et al. [35] for hard-core bosons (𝑔𝑔 → ∞), with the size of 

the circles representing the error bars in the Monte Carlo data. The 

lines are MCTDH results for various 𝑔𝑔 and 𝑀𝑀 = 10. The solid lines 

show the analytical result. Bottom: Comparison of MCDTH results 

(𝑀𝑀 = 10) with the 1D analytical solution in the range of intermediate 
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interaction couplings. 

 

Generally, correlation functions are more sensitive to the 

accuracy of MCTDH predictions than the ground state energy is, cf. 

[13, 14, 47]. Therefore, we now concentrate on a comparison of the 

analytics to numerics in the form of the first-order correlations, as 

encapsulated by the SPDM. We compare the results of our MCTDH 

calculations, in addition, with the Monte Carlo calculations performed 

by Minguzzi et al. in Ref. [35] for the SPDM of a pair of hard-core 

bosons in a 1D harmonic trap. The emphasis for this part of the paper 

is to assess the accuracy of MCTDH when 𝑔𝑔 in the Hamiltonian Eq. 

(1) is varied from weak over intermediate to strong coupling, so that 

we here fix 𝑀𝑀 = 10. 

In Fig. 2, we plot the normalized SPDM 𝜌𝜌(1)(𝑥𝑥, 𝑥𝑥′)/�𝜌𝜌(𝑥𝑥)𝜌𝜌(𝑥𝑥′) as 

function of 𝑥𝑥, and at fixed 𝑥𝑥′ = 0, for relatively large values of 𝑔𝑔. The 

gray circles in the top panel are taken from the Monte Carlo data of 

Ref. [35], while the solid lines show the comparison of MCTDH 

results with the 1D variant of the 3D analytical solution for 𝑁𝑁 = 2 

bosons in a harmonic trap [32, 33]. We observe that the qualitative 

behavior of the MCTDH results is in accord with the analytical result 

as well as with the hard-core Monte Carlo calculations - the dip in 

the first-order correlations located at approximately 𝑥𝑥 = 𝑙𝑙  is 



 

 13 

consistently visible. Note that this dip in the correlation function 

𝜌𝜌(1)(𝑥𝑥, 𝑥𝑥′)  corresponds to a peak in phase fluctuations, defined 

according to [47] �𝜓𝜓�†(𝑥𝑥)𝜓𝜓�(𝑥𝑥′)� = �𝜌𝜌(𝑥𝑥)𝜌𝜌(𝑥𝑥′) exp �− 1
2
�𝛿𝛿𝜙𝜙�𝑥𝑥𝑥𝑥′2 ��,  where 

𝛿𝛿𝜙𝜙�𝑥𝑥𝑥𝑥′ = 𝜙𝜙�(𝑥𝑥)− 𝜙𝜙�(𝑥𝑥′)  is the phase difference operator and 𝜌𝜌(𝑥𝑥) =

�𝜓𝜓�†(𝑥𝑥)𝜓𝜓�(𝑥𝑥)� is the mean local density. 

The correlation dip is due to the presence and geometry of the 

trap and, consequently, related to the shape of the occupied orbitals 

and exists even for relatively small interaction couplings. The built-

in self-consistency of the MCTDH method is crucial in order to 

correctly describe the correlation phenomena in trapped quantum 

many-body systems, because the depth and location of the 

correlation dip sensitively depends on the self-consistently 

determined orbital shape. 

We note in the top panel of Fig. 2 a sizable quantitative difference 

to the analytical solutions already for interaction strengths that are 

far below the hard-core limit of 𝑔𝑔 → ∞. However, for couplings 

commonly realized in experiments with magnetic traps (see for 

concrete estimates below), the agreement between the analytical 

results and MCTDH is very satisfactory, see the lower panel of Fig. 

2, even for the relatively modest number of orbitals 𝑀𝑀 = 10 used in 

these calculations. The characteristic dip in the correlation function 

appears for any interaction strength and is correctly reproduced by 
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the MCTDH method to good accuracy in its location, while the depth 

of the dip is somewhat exaggerated by MCTDH in particular for 

larger than intermediate couplings, 𝑔𝑔 ≫ 1. 

 

3.3 Fragmentation 

 

Fig 3. Fragmentation 𝒇𝒇 as defined in Eq. (9), obtained from the 

diagonalization of the analytical SPDM (red solid) and from MCTDH 

(black dashed) with 𝑴𝑴 = 𝟏𝟏𝟏𝟏 orbitals, for the range 𝒈𝒈 = 𝟎𝟎.𝟏𝟏, … ,𝟒𝟒. The 

inset shows the relative numerical error in the occupation number of 

the energetically lowest orbital. 

Using the SPDM, one may formally define an important figure of 
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merit, the fragmentation. By diagonalizing the SPDM, one obtains its 

eigenfunctions, 𝜙𝜙𝑖𝑖, and eigenvalues, 𝑁𝑁𝑖𝑖, which are in the many-body 

context referred to as natural orbitals and occupation numbers, 

respectively, 

 

Here, the sum for MCTDH runs over the finite set 𝑖𝑖 = {0, … ,𝑀𝑀 − 1} 

and for the exact solution over an infinite set 𝑖𝑖 = {0, … , ∞}. While a 

"macroscopic" orbital occupation defining fragmented condensates 

[48, 49] obviously cannot be obtained when 𝑁𝑁 = 2 , the average 

relative occupation of orbitals other than the energetically lowest is 

still well defined. We thus define the 

 

as the relative occupation number of all orbitals excluding the most 

populated one (which has 𝑖𝑖: = 0), sorting occupation numbers 𝑁𝑁𝑖𝑖 

from largest to smallest. 

In Fig. 3, we display the exact fragmentation 𝑓𝑓 calculated using 

the exact density matrix in Eq. (6). We obtain the exact occupation 

numbers by first expressing 𝜌𝜌(1)(𝑥𝑥, 𝑥𝑥′)  in a harmonic oscillator 

eigenfunctions basis of dimension 𝑀𝑀ho = 50  (which proved 

sufficiently large) and by then diagonalizing it, evaluating the 

 𝜌𝜌(1)(𝑥𝑥, 𝑥𝑥′) = � 𝑁𝑁𝑖𝑖𝜙𝜙𝑖𝑖∗(𝑥𝑥′)𝜙𝜙𝑖𝑖(𝑥𝑥)
𝑀𝑀−1

𝑖𝑖=0

. (8) 

 Fragmentation        𝑓𝑓 ≔
𝑁𝑁 −𝑁𝑁0
𝑁𝑁

 (9) 
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integrals via the Gauss-Hermite approximation. The sizable 

difference when 𝑔𝑔 ≫ 1, is further illustrated in the inset, which shows 

the error in the occupation of the lowest orbital, 1 −𝑁𝑁0,MCTDH/𝑁𝑁0,exact. 

Note that the fragmentation 𝑓𝑓 obtained via MCTDH is always larger 

than the exact value, which is in agreement with the observation that 

the former approach overestimates the correlation dip in the first-

order correlations (and hence also overestimates phase fluctuations), 

cf. Fig. 2. 

 

3.4 Natural orbital 

In Fig. 4, we plot the first six natural orbitals contained in the 

diagonalized SPDM Eq. (8). We conclude that sizable deviations 

between exact and MCTDH natural orbitals start to occur for 𝑖𝑖 = 4 

and above; within the resolution of the figure, we detected no 

discernible deviation in the first four, that is energetically lowest, 

natural orbitals, 𝑖𝑖 = 0, … , 3 , the exact and MCTDH curves lying 

precisely on top of each other in this range. We also note in this 

context that the occupation numbers 𝑁𝑁𝑖𝑖 for 𝑖𝑖 > 2 are very small. For 

example, 𝑁𝑁3 is about an order of magnitude less than 𝑁𝑁2, for  
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Fig 4. The first six natural orbitals 𝝓𝝓𝒊𝒊(𝒙𝒙), 𝒊𝒊 = 𝟎𝟎, … ,𝟓𝟓, in Eq. (8), 

obtained via MCTDH (dashed, 𝑴𝑴 = 𝟏𝟏𝟏𝟏) and the exact results (solid), 

from diagonalizing the SPDM in Eq. (6) (solid). Left: 𝒊𝒊 = 𝟎𝟎, … ,𝟑𝟑, right: 

𝒊𝒊 = 𝟒𝟒,𝟓𝟓. Top row: 𝒈𝒈 = 𝟏𝟏, bottom row 𝒈𝒈 = 𝟏𝟏𝟏𝟏. 

 

both 𝑔𝑔 = 1 and 𝑔𝑔 = 10 and for both MCTDH and exact occupation 

numbers②. Therefore, it is indeed the occupation number difference 

 
② Specifically, for g = 1, N2 ≃ 2.09 × 10−3 (exact), N2 ≃ 2.20 × 10−4 
(MCTDH, M = 10), N2 ≃ 2.14 × 10−3 (MCTDH, M = 33), while N3 ≃
4.12 × 10−4 (exact), N3 ≃ 4.34 × 10−4 (MCTDH, M = 10), N3 ≃ 4.27 × 10−3 
(MCTDH, M = 33). 
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of the lower natural orbitals (rather than their precise shape) which 

explains the different fragmentation obtained by MCTDH and exact 

solution. As a corollary, going to much larger 𝑀𝑀  does not 

significantly decrease the 𝑓𝑓-difference further. 
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Chapter 4. Conclusion 

 

We now illustrate the above general considerations by concrete 

numbers for an experimentally realizable system. In a quasi-1D Bose 

gas, and far away from geometric resonances [50], we have 𝑔𝑔 =

4𝑎𝑎sc 𝑙𝑙/𝑙𝑙⊥2  where 𝑙𝑙⊥ is the transverse trapping length. For 87Rb, this 

implies 𝑔𝑔 = 1.96 × 𝑎𝑎sc[𝑎𝑎Rb]𝜈𝜈⊥[kHz]/�𝜈𝜈[Hz] , where the background 

scattering length 𝑎𝑎Rb = 5.29nm,  𝜔𝜔⊥,𝜈𝜈 = 2𝜋𝜋𝜈𝜈⊥,𝜈𝜈 , and the frequencies 

are scaled with typical experimental values see, e.g., [51, 52]. With 

the background scattering length of 87Rb and 𝑔𝑔 ∼ 𝑂𝑂(1), the MCTDH 

results are in satisfactory accord with the analytical result for quasi-

1D setups accessible by magnetic trapping. 

Limits of the MCTDH approach can be explored, e.g., in optical 

lattices when one increases 𝑔𝑔 towards the Tonks-Girardeau regime 

[37, 38]. While only at a filling of two per one-dimensional tube our 

results can strictly be applied, we anticipate that also for larger 𝑁𝑁 

qualitatively similar features as those in Fig. 2, and in particular the 

trap-induced correlation dip, should persist and be observable for 

example with (a combination of) Feshbach resonances [41] and 

higher aspect ratios. Variation of 𝑔𝑔 and 𝑁𝑁 and measurement of, e.g., 

the first-order correlations which have been investigated here paves 
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the way for a quantitative experimental assessment of the accuracy 

of MCTDH. 

The detailed analysis of higher-order correlations [53] will then 

reveal further precise information on the applicability of the MCTDH 

method to strongly correlated systems. 
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Appendix 

 

MCTDH-X 

MCTDH-X is one of the mostly used software to implement multi-

configurational time dependent Hartree method numerically. It is 

mainly written with C and Fortran which is referred to have fast 

performance to proceed same code ran by other programming 

languages like python, and java and etc. This comes from the fact 

that C and Fortran are the programming language similar with 

assembly which have one-to-one correspondence machine code, 

so we can reduce unnecessary part of the code to optimize the 

performance. The author of MCTDH-X program has developed the 

code as common research purpose and suggested other to 

participate the development so the update for the software is 

relatively frequent. There exist simple scripts which enable 

scientist to implement the software without knowing detailed 

programming knowledge to run this program. However, as there are 

a few researchers on ultracold gas, reliability of the software is not 

clearly solved. Our research opened the way to relieve concerns 

about the software. 
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Set-up for Computation 

One of the fascinating issues for our research is that we ran the 

program by using common desktop. We used intel i7-7700k and 

64GB RAM for this research. It is not common to use 64 GB RAM 

for usual purpose, but 16 GB RAM was enough for most part of our 

research. The requirement for RAM becomes exponentially larger 

as 𝑚𝑚 + 𝑛𝑛 becomes larger (𝑚𝑚 is the number of orbital and 𝑛𝑛 is the 

number of particle), 64 GB is necessary when we try to calculate 

numerical solution when 𝑛𝑛 = 2 and 𝑚𝑚 = 33. 

I used Ubuntu Desktop 16.04 LTS for our PC. It is because 

Windows OS is not suitable to use long-term calculation because 

performance becomes slower as uptime becomes higher. Recently 

Windows OS reduced this problem but most of libraries are 

available on Linux OS, and still Windows OS consumes some 

resource to operator. 

For the computation machine, it is important to reduce bottleneck 

caused by Human. Running several programs at that time cannot 

utilize the full memory and computing power. Most of researchers 

working on science field are not familiar with job scheduling system 

which could be easily implemented. Job scheduling is a method in 

which computer runs another work just after currently working job 

is done. Therefore, when we try to utilize computational resource 
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without wasting IDLE time of computational machine, it is not an 

option to use job scheduler. On Ubuntu machine, Torque/PBS is 

easily available by using simple commands and it takes little 

resource for computing machine. Pushbullet is one of the best 

options to alarm research that the work is done. By using basic 

shell scripting knowledge, Pushbullet can let the researcher know 

the time queued job is done. 

 

Trial and Error 

On MCTDH-X, we can change the parameters to implement 

various situation in physics. This parameter can control the number 

of point of data in coordinate space and coordinate space region. 

Using narrow coordinate space increases the numbers of data point 

representing orbital data per unit distance, but it could bother 

physical validity of the configuration. Increasing number of points 

takes much more time to get the result. Therefore, it is important to 

calibrate appropriate number to get the results in a reasonable time 

period. 

 

Further Consideration 

There becomes more necessity to incorporate computational 
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approach to achieve new discovery. Using supercomputing cluster 

is one of the best option people takes for their result. But using 

supercomputer requires expensive funds and supercomputing 

system in SNU is not stable. As my experience to study 

computational skill which earns the grand prize on supercomputing 

competition, constructing supercomputing infrastructure on Physics 

department can produce way-breaking result for research process. 

Cloud computing service allows us to construct simple maintenance 

system. 
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요    약 

 

우리는 접촉 퍼텐셜에 의해 상호작용하는 1차원 조화 덫에 있는 두 

개의 보손을 고려하며, 이 문제의 완전 해를 다중 짜임새 시간 의존 

하트리 (MCTDH) 방법으로 얻은 자체 모순없는 수치 해와 비교한다. 

따라서 우리는 초저온 양자 기체에서 가장 흔히 실험적으로 구현되고 

있으며 해석적 해를 가진 소수체 문제와 MCTDH 방법으로 예측된 

결과를 벤치마킹한다. 자기적으로 갇힌 초저온 희석 보스 기체의 

전형적인 배경 산란길이에 해당하는 중간정도의 무차원 결합세기까지 

MCTDH 방법을 통해 정확한 접지 상태 에너지와 1차 상관 관계를 

정확하게 재현하는 것으로 확인되었다. 예를 들어 페쉬바흐 공명 및 

광학 덫치기의 조합에 의해 구성되는 더 강한 결합세기의 경우, MCTDH 

접근방식은 위치 공간에서 1차 상관관계의 덫-유도 상관관계 오목함의 

깊이를 과대평가하고 에너지가 가장 낮은 것을 제외한 궤도의 평균적인 

상대적 점유로 정의되는 토막내기를 과소평가한다. 우리는 상관 함수의 

정성적으로 유사한 특성이 더 큰 입자 수에 대해 발생할 수 있다고 

예상하며, 초저온 원자에 대한 실험을 통해 MCTDH의 정확도를 

정량적으로 평가할 수 있는 길을 열어준다. 

 

주요어 : 보손, MCTDH, 완전해, 초저온 기체, 1차 상관 관계 
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