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Abstract

Curvature flows with obstacles

Taehun Lee
Department of Mathematical Sciences
The Graduate School

Seoul National University

Curvature flows are geometric evolutions of a hypersurface moved by cur-
vature quantities such as the mean curvature and the Gauss curvature, which
have been applied in material science and image processing. The main dif-
ficulty to treat curvature flows is development of singularities in finite time
which arises in many case. In this thesis, we would like to propose a method
to continue curvature flows for a long time by placing obstacles enclosed by
the initial hypersurface. We apply the method to prevent the development
of singularities for the mean curvature flow when the initial hypersurface is
given by an entire graph and for the Gauss curvature flow when the initial
hypersurface is strictly convex and closed. Moreover, we investigate the ob-
stacle problem for the parabolic Monge-Ampeére equation which is closely
related to the Gauss curvature flow. Our approach is based on the penaliza-
tion method by allowing the evolution of hypersurface can pass the obstacle,
with the property that the more the hypersurface pass the obstacle, the more

penalty is imposed on the velocity.

Key words: mean curvature flow, Gauss curvature flow, obstacle problem,
free boundary problem, Monge-Ampere equation, singularity
Student Number: 2013-22912
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Chapter 1
Introduction

Curvature flows are geometric evolutions of a hypersurface smoothly im-
mersed in the Fuclidean space, moved by curvature quantities such as the
mean curvature, the Gauss curvature, and so on. Each flow has been intro-
duced to model physical phenomena [33] or to apply other field of science
(material science [63]; image processing [14, 59]). The main difficulty to treat
curvature flows is development of singularities in finite time which arises in
most case, and understanding singularities is an important problem in ge-
ometric analysis. Many mathematicians are devoted to develop methods to
continue flows beyond the first singular time, for example, Brakke flow [6],
level set flow [16, 30], mean curvature flow with surgery [43], and singularity
resolving flow [65]. All these methods are focused on the preservation of some
properties of the initial hypersurface.

In this thesis we would like to propose a new method to continue curvature
flows for a long time by placing obstacles enclosed by the initial hypersurface.
The method is designed for behaviors and phenomena that we would like
to impose on the flow. The obstacles are hypersurfaces embedded in the
Euclidean space. We impose on the evolutions of hypersurface a condition
that it cannot pass the obstacle. When a singularity is developed at some
point for the first time, we place an obstacle such that it encloses the point

and is enclosed by the curvature flow slightly before the first singular time.



CHAPTER 1. INTRODUCTION

This enable the curvature flow to evolve over the first singular time, and we
call this problem curvature flows with obstacles.

Our method easily prevents development of the singularity we targeted.
On the other hand, an unexpected singularity might be occurred by the
obstacle. Since the curvature flows cannot pass the obstacle, a discontinuity
of the velocity arises when the flow touches the obstacle. This makes the
problem difficult and the optimal regularity of the curvature flow with an
obstacle is expected to be at most C*!. The lack of regularity forces us to
consider a general concept of solutions, that is, viscosity solutions. Therefore,
one of the main goal to justify our method is showing that viscosity solutions
for the curvature flow with an obstacle does not develop singularity.

The evolutions of hypersurface under the curvature flows consist of two
parts: the coincidence set where the hypersurface touches the obstacle and
the non-coincidence set where the hypersurfce does not touch the obstacle. In
many case (i.e., convex initial hypersurface), the velocity keeps its sign under
the flow, in which case the coincidence set would tend to grow over time. The
boundary of the coincidence set (or equivalently of the non-coincidence set)
is the so-called free boundary which is unknown before we get a solution.

Major difficulties in curvature flows with obstacles occur near the free
boundary. Indeed, we will see if the free boundary moves in non-degenerate
finite speed, the velocity should be as degenerate as the distance from the
free boundary. In PDEs point of view, the curvature flows with obstacles are
fully nonlinear non-uniformly parabolic equation in the non-coincidence set,
whose ellipticity constant is degenerate at the boundary of the domain which
varies in time and is unknown in advance. Thus we do not expect global lower
bound of the curvature in the curvature flow with obstacles. Instead, we shall
obtain the lower bound of the curvature in terms of the constant depending
on the distance from the free boundary and vanishing on the free boundary,
which is one of main interests.

The main strategy to deal with the curvature flows with obstacles is an

approximation by allowing the evolution of hypersurface can pass the obsta-
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CHAPTER 1. INTRODUCTION

cle, with the property that the more the hypersurface pass the obstacle, the
more penalty is imposed on the velocity. The penalty will be realized by a
penalty function which makes the equation holds not on the non-coincidence
set but on the whole domain. Then establishing the uniform a priori esti-
mates for the approximated problem gives the same estimates for the original
problem.

We will apply the method we proposed to the following three cases.

(i) Gauss curvature flow when the initial hypersurface is strictly convex
and closed ([55]).

(ii) Mean curvature flow when the initial hypersurface is given by entire
graph ([46]).

(iii) Parabolic Monge-Ampere equation ([60]).

Additionally, we consider a free boundary problem arising in composite mem-
brane problem with fractional Laplacian, which could be formulated as two-

sided unstable obstacle problem [36].

The Gauss curvature flow, evolution by the Gauss curvature, was intro-
duced by Firey [33] to describe the deformation of shape of stones which
is worn down by collision from any random angle. Later, Tso [72] proved
that the smooth solution exists uniquely and shrinks to a point when the
enclosed volume converges to zero if the initial hypersurface is strictly con-
vex and closed. Furthermore, it was shown in [3] for two dimensional case
(n = 2) that the contraction is spherical singularity. More generally, the
a-Gauss curvature flow, the evolution by the Gauss curvature with an ex-
ponent «, was studied by Chow [20] for the case aw = 1/n; by Kim and Lee
[47] for 1/n < a < 1; and by Andrews, Guan, and Ni [4] for o > 1/(n + 2).
They showed the flow converges to a self-similar solution for every n > 2 and
a > 1/(n+ 2) after scaling. In the affine invariant case a = 1/(n + 2), the
only self-similar solutions are ellipsoid [2, 13]. Also, in the case a > 1/(n+2),

Brendle, Choi, and Daskalopoulos [7] proved the only self-similar solutions

3
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CHAPTER 1. INTRODUCTION

are round spheres. These flows relate to the parabolic version of Monge-
Amere equation since the Gauss curvature is defined by the determinant of
the Weingarten map. From the fully nonlinearity of the Gauss curvature, if
the initial hypersurface has flat side, then the solution also has flat side for
some time unlike the mean curvature flow which is instantly smoothing (see
[38] and also [19, 23, 24, 48]).

The first result [55] is concerned with the obstacle problem for the Gauss
curvature flow with an exponent a. Under the assumption that both the
obstacle and the initial hypersurface are strictly convex closed hypersurface
and the obstacle is enclosed by the initial hypersurface, the uniform esti-
mates are obtained for several curvatures via penalty method. We also give
a heuristic calculation to explain the principal curvature may be zero on the
free boundary. In particular, when the hypersurface is two dimensional with
0 < a < 1, we prove that the solution for the Gauss curvature flow with an
obstacle exists for all time with bounded principal curvatures {\;} in which
the upper bound is uniform and the lower bound depends on the distance
from the free boundary. Moreover, we show that there is a finite time 7, such
that the solution becomes the obstacle after this time, which is stationary in
time.

The mean curvature flow, evolution by the mean curvature, was originally
studied by Brakke [6] and has been studied by Huisken, Ecker, Sinestrari, and
many others, see [27, 28, 40, 42]. We also refer to the monographs [26, 75]
for introductions. The mean curvature flow is a natural generalization of
heat equation to the manifold setting in the sense that the position vector
X i M™% [0,T) — R"* satisfies

o0X
o = R,

where X (-, ¢) is an immersion of a manifold M and A, is the Laplace-Beltrami
operator on the hypersurface given by X(-,¢) with its canonical metric in-
duced by the Euclidean space R™™!. Despite the similarity between the mean

curvature flow and the heat equation, there are some important differences.

4
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CHAPTER 1. INTRODUCTION

For a short time, the mean curvature flow behaves like the heat equation
with regularizing effects in small-scale; On the other hand, after more time,
singularities are developed since the nonlinearities dominate the evolution.
We may employ the flow as a tool to produce minimal surfaces, to derive
isometric inequalities, or more generally, to classify hypersurfaces by certain
curvature conditions.

The second result [46] is concerned with the obstacle problem for evolu-
tions of non-compact complete graphs over an open subset in R"™. Obstacles
in this setting are also written graphs over an open subset in R", which are
non-compact complete and lies above the initial data. We prove that the
solution exists for all time with locally bounded principal curvatures {\;}.

The parabolic Monge-Ampere equation is parabolic generalization of (el-
liptic) Monge-Ampere equation and is closely related to the a-Gauss curva-
ture flow. In 1976, Krylov [49] suggested three versions of parabolic Monge-

Ampere equation:

—8yu + (det D*u)w = f,
(=) det D)7 = f,
[det(D?u — dyul,)]" = f,

where [, denotes the n X n identity matrix. In this thesis we are concerned
with the first form of equation which is relating to the graph representation of
the Gauss curvature flow. The Monge-Ampere equation arises in prescribed
Gaussian curvature equation [62], optimal transportation [66], and affine ge-
ometry [71]. Also, its parabolic version has been applied to image processing
[59], where reducing noises and preserving sharp edges are issues to resolving
blurring problem. This problem can be controlled by the diffusion driven by
the Gauss curvature since its diffusion is slow near edges due to the nonde-
generacy of curvature.

The third result [60] is concerned with the obstacle problem for the
parabolic Monge-Ampere equation with the forcing term f(z, ¢, u, Du). We

2] 8

S Y |



CHAPTER 1. INTRODUCTION

establish existence, uniqueness, and optimal regularity under some structure
conditions via the penalization method and a priori estimates. Moreover, we
discuss the regularity of the free boundary. As a consequences of our ap-
proach, we also obtain the existence and uniqueness of the solution of the
Cauchy-Dirichlet problem for the parabolic Monge-Ampere equation with
the forcing term f(z,t,u, Du).

The rest of thesis is organized as follows. Chapter 2 describes the notations
and conventions used throughout the thesis. In Chapter 3, we study the Gauss
curvature flow with an obstacle. In Chapter 4, we discuss the mean curvature
flow of entire graphs with an obstacle. Finally, Chapter 5 is devoted to the

obstacle problem for the parabolic Monge-Ampere equation.



Chapter 2
Preliminaries

We describe some notations and conventions used throughout the thesis. Let

X, be an immersion from n-dimensional manifold M into R**!, and let
X(-t): M — R

be a one-parameter family of immersions from M into R"*!'. We may take
M as a compact closed manifold or a non-compact complete manifold. Let
7 be a unit normal vector of ¥; = X (M, t). Given a local coordinate system
{z'}"_, in M, the induced metric and the second fundamental form of ¥; can

be computed as

_JoXox\ o [ PX
Yi=\ oz 0w | U= "\ owow "]

The connection on ¥ is given by

1 0 0 0
I
Iy = 29 <axigﬂ + 9 I~ ngj)

and the covariant derivative on Y is

(Vo) =

iy ik
pl + I



CHAPTER 2. PRELIMINARIES

2.1 Second fundamental form and curvatures

The Weingarten map, the differential of the Gauss map, is then defined by

hi gik hkja

j:

where g% denotes the inverse of the metric. Here we used Einstein’s summa-
tion convention over repeated indices. The principal curvatures Ai, Ao, - - -,
A, are the eigenvalues of h7, and then the Gauss curvature K and the mean

curvature H are given by

K =det(h]) and H =tr(h]).

We also define the sum of the square |A|? = >~ A2 = tr((h?)!) and the sum of
the inverse H = > i = tr((h™")?). From the Gauss equation, we can express
the Riemannian curvature tensor, the Ricci tensor, and the scalar curvature

as

Rijrr = hixhji — hahjy,
Ri; = Hhij - hikgklhlja
R=H?— |A]?

respectively. The Gauss-Weingarten relations

PX L OX
=T — h,U
Oxt0xI 7 Oxk J

gives

L L 02X 0X
A X = V.V, X = ¢ _Tk
gx =g ViviaA =g <axi8xj i 9ok

) = —gijhijﬁ = —Hv.

We also deal with the derivative of the second fundamental form.

M ET] g



CHAPTER 2. PRELIMINARIES

Lemma 2.1.1 ([75]). The following identity holds for h;:
Ahij = VZV]H + Hhikgklhlj - |A’2h”

We also compute the Laplace-Beltrami operator of the outward unit nor-

mal vector.

Lemma 2.1.2. Let 7 be an outward unit normal vector on a hypersurface
¥, in R™ and X be a position vector of ¥;. Then the Laplace-Beltrami

operator of U is given by
A =VH — |A]*7. (2.1.1)

Proof. First we observe that

£ 0X

since <Viz77 %> = hy, and (V,;7, 7) = 0. Using this, we see that

<Vivjl7a 17> = - <vjﬁ7 Viﬁ> = _hfhé'gkl = _(h2)ij-

Moreover, by V;V, X = —h;, 7 and Codazzi equation, we have

X
<V1VJD' > - Vihjk - <Vj17, Vlka> - thw

" Ok
Thus we arrive at
vlv]ﬁ = Vhl] - (hZ)ijlj,

which gives the conclusion. 0



CHAPTER 2. PRELIMINARIES

2.2 Auxiliary lemmas

Let us denote O = aK*(h™")¥V,V; and recall A = ¢“V,;V;. The inner

product and the norm induced by [0 and A are

(VA,VB) = aK*(h™")"V,AV;B, IVA|Z = (VA VA),,

(VA,VB) = ¢"'V;AV,B, IVA|? = (VA,VA).

Here we omit the subscript A.

We provide an auxiliary lemma which is useful for proving curvature

estimates. The proof is a straightforward calculation.

Lemma 2.2.1. Let A and B be smooth functions on M x [0,T). Assume

that A > 0 and for a given v > 0 define S = %. Then

vB
~

(0, — )8 = %(at —O)B (0, — 0)A

2y 1y -1)B
+ (VA VS) g+ = IVAIZ,

Moreover, the same holds for A instead of O.

10
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Chapter 3

Gauss curvature flow with an

obstacle

3.1 Introduction

In this chapter we study the obstacle problem for the Gauss curvature flow
with an exponent o, where 0 < o < 1. The precise formulation is as follows.
The obstacle in our consideration, denoted by @, is a C'! strictly convex
closed hypersurface in R™™!, and let Xo : M™ — R be a smooth immersion
of a strictly convex closed n-dimensional hypersurface enclosing the obstacle.
We consider the evolutions of ¥ = XO(M ™) under the flow by powers of the
Gauss curvature which keep enclosing the obstacle, that is, given an exponent
o, we consider a one-parameter family of immersions X M"x [0,T) — R™!

—

and X, = X (M",t) satisfying

<W for (z,t) € M™ x [0,T),

,—ﬁ<x,t>> < K°(a,t)

ot
X (z,t .
% = — K%, )0z, t) if X(2,t) ¢ ®, (GFo)
dCy, for 0 <t<T,
X(z,0) = Xo(z) for x € M™,
11
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CHAPTER 3. GAUSS CURVATURE FLOW WITH AN OBSTACLE

where K and v are the Gauss curvature and the outward unit normal vector
on Y, respectively. (Here we use the bar notation to indicate the closed
subset of R™™ enclosed by the given set.)

The Gauss curvature flow was introduced by Firey [33] to describe the
deformation of shape of stones which is worn down by collision from any
random angle. It is well known that the solution of Gauss curvature flow
with an exponent « exists uniquely and has a singularity in finite time, see
[72] and [20]. Moreover, the singularity is analyzed for every a > #2,

[20], [47], [4], [7] and [3]. From the fully nonlinearity of Gauss curvature, if

see

the initial hypersurface has flat side, then the solution also has flat side for
some time unlike the mean curvature flow which is instantly smoothing. (See
[38].)

Considering the tumbling stone model for the Gauss curvature flow in [33],
the Gauss curvature flow with an obstacle can be thought of as the tumbling
stone with hard core. Thus, it is not hard to imagine that (GFo) converges
to the obstacle in a finite time since the usual tumbling stone disappears in
a finite time. However, it is rather clear whether the above model preserves
strict convexity. These properties will be described below in mathematical
terms.

A discontinuity of the velocity naturally arises from the existence of the
obstacle. Thus, the solution of (GFo) has at most Lipschitz regularity in
time. This makes us to consider a generalized concept of a solution, that is,
a viscosity solution. To introduce this notion, we need the graphical version
of (GFo) which can be written as, for a graphical solution @ : Q2 x [0,7) — R
with an obstacle ¢ : Q — R,

o (det D?@)™
<

%= ey 0T
i (det D2) o 3.1.1
7 (e papee A e
Q< in Q x [0,7),
12
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CHAPTER 3. GAUSS CURVATURE FLOW WITH AN OBSTACLE

where () is a domain in R™, D represents the usual derivative in Euclidean
space, and { < ¢} denotes the set of points satisfying a(z,t) < @(x) in
2 x [0,T). Moreover, (3.1.1) simplifies to the single equation

det D?@)® ol
min{(l (|;~|2)7fn)+2)a1 - 81;7%5_12} =0 inQx[0,T).
+ |Du|?) =2

Now we can define a viscosity solution of (GFo) as follows:

Definition 3.1.1 (viscosity solution). A continuous, one parameter family of
immersions X : M™x [0, T) — R"" is a viscosity subsolution (supersolution)
of (GFo) if, for any (o, t) € M™ x [0,T) and @ which represents X locally
as a graph near X'(xo,to) with (Zo, W(Zo, %)) = X(xo,to) for some I, after

rotation, it holds that

-— { (det D2 (i, o))" O (o, o)
(

~ (n+2)a—1 ?
1+ [Dij(do, o) [2) 3 ot

ASY

(%0) — @E(fro,to)} > (<)0,

whenever ¢ is a C? function satisfying ¢ (%o, to) = (&, to) and P (Z, ) > (<
Yu(z,t) for any Z in a neighborhood &y and ¢ < ¢,. Finally, a continuous, one
parameter family of immersions X : M™x[0,T) — R is a viscosity solution
of (GFo) if it is both a viscosity subsolution and a viscosity supersolution of

(GFo).

—

With an abuse of terminology, we also say that {3, = X (M,t): 0 <t <
T} is a viscosity solution of (GFo) when X is a viscosity solution. For more
details and properties of viscosity solutions, we refer to [21]. See also [44].

We now state our main results. We proved several estimates for various
curvatures. First, the Gauss curvature is bounded so that (GFo) has nonneg-

ative finite speed.

Proposition 3.1.2. For any o > 0 and any dimension n, the Gauss curva-
ture K of a solution of (GFo) satisfies

0<K<C (3.1.2)

13
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CHAPTER 3. GAUSS CURVATURE FLOW WITH AN OBSTACLE

in M"™ x [0,T) where C = C(n,«, @,)20).

Notice that, in contrast to the Gauss curvature flow case, K does not
have a uniform positive lower bound. It could happen that K = 0 on the free
boundary, the boundary of ¥, N ® in ¥,. Later on, we will give a heuristic
calculation to explain the reason why such a situation occurs.

Next, the minimum principal curvature A, is bounded below on the set
where the distance from the obstacle is positive. To state this result, let us

define the non-coincidence set and the coincidence set by

OM = {(z,t) € M" x [0,T) : X(x,t) & ®},
AM = {(z,t) € M" x [0,T) : X(z,t) € ®}.

Proposition 3.1.3. For any o > 0 and any dimension n, the minimum

principal curvature A\, satisfies
Amin(2,t) > ¢ >0,

for each (z,t) € AM where ¢ = c(n, a, Xo, ®, d(z, AM)) is a constant.

In the following proposition, we consider the 2-dimensional case with

a < 1, where the restrictions arise from a technical reason.

Proposition 3.1.4. For 0 < a < 1 and the dimension n = 2, the mean
curvature H of the solution of (GFo) satisfies

0< H<ZC,

where C' = C(n, a, @,)?0).
When the dimension n = 2, using these uniform estimates, we obtain:

Theorem 3.1.5. Let ¥y and ® be smooth strictly convex closed surface in
R3 such that ® C ¥y. Assume also that 0 < a < 1. Then

14
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CHAPTER 3. GAUSS CURVATURE FLOW WITH AN OBSTACLE

(i) there exists a convex viscosity solution {3, = X(M,t)} of (GFo) for
t € 10,00);

(i1) the principal curvature of ¥, is nonnegative and globally bounded, i.e.,

the principal curvature \; satisfy
0 S )\i S C’

where C = C(n, a, @,XO) s a constant;

(iii) for each point (x,t) in the non-coincidence set AM | the principal curva-
ture of Xy has uniform positive lower bound with dependency on d(z, A),

i.e., the principal curvature \; satisfy
0<e< Nz, t)<C,

where C = C(n,a,@,)?o) and ¢ = c(n,a,@,)?o,d(x,AM)) are con-

stants;

(iv) there is a finite time T* = T*(n,a,@,)zo) such that Xy = ® for all
t>1T.

Our main tool is an approximation using a penalty term. We shall prove
that each approximate solution is smooth and several curvatures have uni-
form bound. For the penalization technique, see [34].

The constraints of dimension n and exponent « will be used in Lemma
3.4.4 to show the uniform upper bound for mean curvature. The main diffi-
culty comes from controlling the third order derivative and the penalty term.
There are some ways to overcome the former issue when we think about the
Gauss curvature flow with an exponent. For example, in [20], the author con-
sider the quantity K /H". However, we cannot use this quantity because both
K and H™ produce second derivative of penalty term with opposite sign, and
one of two sign disturbs having uniform bound.

Finally, we shall explain that why we do not expect the strict positive

15
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CHAPTER 3. GAUSS CURVATURE FLOW WITH AN OBSTACLE

lower bound in (3.1.2), and that why we could have upper bound in Proposi-
tion 3.1.4. To see this, we assume that both @ and ¢ in (3.1.1) are rotationally

symmetric. Let |Z| = v(t) be the equation of free boundary so that

N

(#,1) = p(x) i [2] <~(1),
u(@,t) < @(x) i [z] > (1),

From these settings, we obtain
d Uy

—~(t) =
iU

where the subscript r denotes the derivative in the radial direction, and the
denominator is zero on the free boundary. According to [48], the regularity
follows from the non-degenerate finite speed of the free boundary, which
impose that the numerator 4, is also zero on the free boundary, i.e., K = 0
may happen at some point. Next, following the argument in [34, Chapter 1.9],
we use s(Z) =t for the equation of free boundary instead of v above. Using
this, we have an alternative expression of the velocity of the free boundary,
that is,
d 1

=G (3.1.3)

In order to use this equation, we consider

16



CHAPTER 3. GAUSS CURVATURE FLOW WITH AN OBSTACLE

so that we imply

s(x)
Bo(E) — (7, 1) = /t (@,)rd + (%, ()50 (7)

s(Z)
= / (U ),dr,
¢

5(&)
Orr(T) — Uy (T,1) = / (Qr)prdT + (U0)r (T, 5(Z))5,(Z). (3.1.4)
t
Since @ is rotationally symmetric, the second equation in (3.1.1) becomes

~ ~(n—1)a~q
ot Ur g,

Ot pln-na(l 4 g2) =T
Near the free boundary, this led to @, ~ . heuristically, and therefore,
combining (3.1.3) and (3.1.4), we see that

Notice that we have used @; = @, = 0 and r ~ %, ~ @, ~ @, ~ 1 on the
free boundary. By considering K = 0 at the free boundary points, we may
write @ — @ = a(r — 1)? + (r — 1), where a is the constant chosen to satisfy
K =0, and b > 2. From this, we conclude that %fy(t) ~ 1 if and only if
(b —2)ae — 1 = 0, in which case o € (0,00). It will also be interesting to
consider the case when a > 1 or n > 3 in Proposition 3.1.4, which we leave
for a future study.

This chapter is organized as follows: Section 4.2 describes the notations
and conventions used throughout the chapter. Section 4.3 has the existence
theorem and the evolution equations for the perturbed solutions. Section 4.4
contains the uniform curvature estimates for the perturbed solutions. Section
4.5 has lower bounds for principal curvatures. Finally, section 4.6 contains
the proof of Theorem 3.1.5.

17



CHAPTER 3. GAUSS CURVATURE FLOW WITH AN OBSTACLE
3.2 Preliminaries

3.2.1 Support function

For a strictly convex closed hypersurface X, the outer unit normal vector 7/ :
> — S™is a diffeomorphism. This allow us to reparametrize the hypersurface,

namely
X=X (z2), zes™

We still denote X o1 by X for convenience and we say that X is parametrized
by z-coordinate. Then the support function of the hypersurface ¥ is defined
by

u(z) = <)Z'(z), z> , z€8™ (3.2.1)

All information about hypersurface can be recovered from the support func-

tion through the relation

X(2) = Vu(z) +u(z)z, ze8" (3.2.2)

where V denotes the Levi-Civita connection of the standard metric g on S™.

Moreover, the second fundamental form is given by
hij = ViVju+ug,; on S". (3.2.3)

On the other hand, the standard metric g on S™ can be written as g;; =
hixg* hy; which, together with (3.2.3), implies

_ det(g; 3 )
det (ﬁlﬁju + 1@”) .

(3.2.4)

We refer the reader to [47] and [75] for the details concerning support func-

tion.
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CHAPTER 3. GAUSS CURVATURE FLOW WITH AN OBSTACLE

Given a one-parameter family of strictly convex closed hypersurface ¥,
let u(-, ) be the support function of ¥; for each ¢. We also denote by ¢ the
support function of an obstacle ® which is strictly convex closed hypersur-

face. Then we can restate (GFo) in terms of support function as follows:

det (g, :
—uy < _det(gy;) _ i S"x [0,7),
det(V;V;u + ug,;)

B det(7,,) o (GFo,)
—up = — — if u>p,
det(ViVju + ugij)

u>¢ in S"xI0,T).

It is also equivalent to the equation

. det@ij) *
min < u; + —— — Ju—@ =10
det(V;Vju + ug;)

of degenerate type.

3.2.2 Obstacle

We denote the strictly convex closed hypersurface ® by the obstacle. For
convenience, we parametrize the obstacle by ®' = ;' (i/(x,t)) for each t,
where Vg is the outer unit normal vector of ® and (-, t) is that of ;. Thus
the obstacle ® : M — R™™! and the hypersurface ¥; has the same normal

at any x € M.

3.2.3 Free boundary

Now let us define free boundary I, the non-coincidence set €2, and the coin-

cidence set A for the support function u and ¢ as follows:

Q=1{(z,t) € S" x[0,T) : u(z,t) > p(2)},

(3.2.5)
A={(z1t) € S"x[0,T) :u(z,t) = ¢(2)},
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CHAPTER 3. GAUSS CURVATURE FLOW WITH AN OBSTACLE
and

I' = 009 N OA. (3.2.6)

We also define I'y, €;, and A; as the time section of I'; €2, and A, respectively.

3.3 Singular perturbation problem

In this and the next section, we shall consider the singular perturbation
problem (3.3.2) below. The short-time existence and evolution equation are
established here, and then we prove the several uniform bounds for these
approximations in the next section.

In our obstacle problem (GFo), the evolving hypersurface cannot pass
the obstacle and satisfies the partial differential equation only on the non-
coincidence set A which is unknown before we obtain X. To solve this diffi-
culty, we will consider the penalized problem which is approximated solution
by allowing the hypersurface can pass the obstacle.

Let 8 be the smooth function defined on R and satisfying

8(0) = -1,

B(z) =0 ifx>1,
p'(x)=0 if z <0,
B'(x) >0, p'(z) <0, forallzeR,

and let Kg be the Gauss curvature of the obstacle ®. We define the penalty

term to be

Bs(x) = AoB(x/9), (3.3.1)

where Ay = supg K§ + 1. Then it is easy to check that B5(x) <0, B5(x) > 0,
$(z) <0, and B5(0) = —Ap < —supg K§. Moreover, lims_,o B5(x) — 0 for

x> 0 and limgs_, B5(x) — —oo for < 0.

20
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CHAPTER 3. GAUSS CURVATURE FLOW WITH AN OBSTACLE

Now let us consider the following penalized problem which approximates

(GFo): Given an initial hypersurface ¥y and its immersion Xo: M" — R

%X’é(x, ) =— [Ka(a:,t) ¥ B (<X’5(x, 1) — @ (a), #(z, t)m (1),
X%(z,0) = Xo(z),

(3.3.2)

for z € M and t € [0,7).
The short time existence and the evolution equation will be discussed
in the following subsections. Before proceeding further, it is convenient to

rewrite (3.3.2) in terms of support function as follows:
0 det(g;;
7*U6(Z,t): 77(9;) —
ot det(V;Vul + ug;;

u’(2,0) = ug(2),

U(sf
)) M (3.3.3)

for z € S™ and t € [0,T), where uq is the support function of Xo.

3.3.1 Short-time existence

We use an existence theorem of Hamilton [37], as in [20], to prove the short-
time existence of (3.3.2). The Hamilton’s existence theorem is based on the
Nash-Moser inverse function theorem.

To do this, we need to compute the principal symbol of the right hand
side of (3.3.2), which is obtained by taking the highest order derivatives
and replacing 9/9x" by the Fourier transform variable &; (see [37]). However,
since the penalized problem (3.3.2) is only lower order perturbation from the
Gauss curvature flow, the desired principal symbol is equal to that of Gauss
curvature flow. Note that the proof of Theorem 2.1 in [20] depends only
on the principal symbol and integrability condition. Therefore, by taking the
same integrability condition, we can obtain the following short time existence

result.

21
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CHAPTER 3. GAUSS CURVATURE FLOW WITH AN OBSTACLE

Lemma 3.3.1. For any a > 0 and dimension n, let X, be a smooth strictly
convex hypersurface immersion of M™ into R"*1. Then there exists a positive
w such that (3.3.2) has a unique smooth solution )25(-, t) on M™x[0,w). Here,

w may depend on )?0.

3.3.2 Evolution equations

Under the penalized flow (3.3.2), we can obtain the evolution formula for
the geometric quantity of the hypersurface ¥;. We denote by [ the operator
aK*(h~1)¥V,V,. For notational convenience, we will refer to 3s (<)?‘5 — &, D’>)
simply as [s.

Lemma 3.3.2. Under the flow (3.3.2), the geometric quantities evolve ac-

cording to

o 0Gij o
(i) gtJZ—Q(K + Bs) hij,

oxX

o
.
(it) 57 = V7 (K + ) =,

=V, V(K + B5) — (K* + B5)hxhf

(iii) agzj

= Ohij + 2 K*(AH (W)™ i1y V i
— aK*(h™ )™ (W k¥ iR
+aK*Hh;j — (na+ 1) K*hph¥ 4+ Y,V 85 — Bshiih?,
(iv) %—[; =0K +a(a - 1)K* Y )9V,KV;K + K*t'H
+ K (R YV, V85 + K*Hp;s,

OK*
(v) 5 = 0OK* 4+ oK**H + 05 + aK*H f3,
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CHAPTER 3. GAUSS CURVATURE FLOW WITH AN OBSTACLE

o0H iy
(vi) = = OH + o?g" K*(h™ )" (h™1)""V,;hiyV
o agina(h—l)km(h—l)lnvihklvjhmn
+aK“H? + (1 — na)K®|AP? + ABs + | A|*Bs,
9| X2 212 a 2 o 2 o
5 OX|* —2aK“H + 2(na — 1) KX, 7) — 265(X, D),

(vii)
Proof. For simplicity, we define Fs = K + (s.

(i) Since <ﬁ, g§> =0, we have

(ii) From (7,7) = 1, we obtain %f, z7> =0 and <§’;’:,17 = 0. Thus,

or  Jov oX\ ,.0X L O(=Fyp)\ ,;;0X OF; ,.0X
= ) A o glji.:— Vy—F——— gmi,: ,gzji,.
ot ot’ ox’ oxJ ox' oxi  Oxt”7 OxI

(iii) By the same argument as in (ii), we have

o 00X
dzi IR gl
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This implies that
Ohy _0 [ X N\ _[P(RD) N [ 8K o5
ot ot \owiowi’ ") T\ 0w ") \ owiow 0t
0 (0Fs ov 0X OF, .. 0X
= i 7-_’ Fs— % Fk mn
<8xl (8.%]”—’_ 56 ]> > < z]a L h/zj 781:7”9 8xn>
B 82F5 o laX kaFé .
C Qxidxd +F5<8xi ( Jkg o l) > r aomd  Gkn
”2X

PFs . OF )
— — I +F5<hjkg TR >

= Dxidxi 4 dak
= V,;V,;F5 — Fshpht.

For the second equality, we need the following computation.

(R, V ik = (RHYHV,Viehy;
= (W H"(V Vil + Rigimh}" + Rigjmhi")
= (W Vihi; + ()" (hahm — Pim b ) 1
+ (M (Rl — himhig ) 27"
= (h™Y"VVihij + R — nhim b + Hhi; — i bl
= (K™Y Vihij + Hhij — nhg, by
(3.3.4)

On the other hand,

ViViK® =V, (aK*(h™")™"V jhyny)
= aK*(h" )™V, Vhpmn + 2 K*(h ) (A", hiy VR
— aK*(h) ™ (b i hy V i B
= Ohij + aK*(Hhi; — nhig 17"
+ 2K Y (W)™ hia Vo
— aK*(hH*™ (W™ i hig V A
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Then we get the evolution equation for h;;.

8hij
ot

= ViV, Fs — Fshjuhf
= V.V, K® — K®hjph¥ + V:V,85 — Bshjxhk
= Ohy; + 2 K*(R Y (W™, hig Vo
— aK*(h™H)*™ (b i hiy V iR
+aK*Hh;; — (an + 1) K*hjh¥ + Y,V ;85 — Bshjiht.

(iv) By using the previous result,

B ) iy~
=2KHF; + K(h™)9(V,V;F5 — Fshj,h})
= K(h™")V,V,;F; + KHF;
= K(h™)9V(aK*'V;K) + K" H + K(h™")7V,V ;85 + K H s
=0K +a(a - 1)K* Y )IV,KV,;K + K'"*H

+ K(h™)9V,V,85 + KHj;.

ot

+ K(h™ )Y

K K
v) A direct computation shows = ozKo‘*la— =0Fs;+ KHF;.
( ) ot ot
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(vi) a—H = g
ot ot
= 2F5g" g hyghy;
+ g7 (Ohyy + ”K*(W )" (W) ™" VgV s R
— aK*(h) ™ (W) i hy ¥V i B
+ aK“Hhi; — (an + 1) K*hjphf + V;V ;85 — Bshjxh)
=265 A + OH + o2g" K*(h™ )" (h ™)™ V:hiaV jhonn
— ag? K (b= (h™)" VbV b
+aK*“H? — (an + 1) K*|A]> + ABs — |A]*Bs
=0H + a*g K*(h™ )" (h™")™"V kit V j o
— ag" K*(h )™ (h ™)V, hy V i
+aK*H? — (an — 1) K*|A]> + ABs + | A|* Bs.

0hij
ot

i i Ogn i
(69h) = 9" s + o

(vii) Since

ot ot t
and
DX = 20K°(h7)" (VWi X, X) + (VX V.) )
0X oxX -
_ « —1\kl m
=2aK*(h™") <<8x’“61‘l - T 8xmaX> + gkl)
= QCYKa(h_l)kl (*hkl<ﬁy X> + gkl)
= 2aK*H — 2anK* <)?,ﬁ> ,
we have
01X [?

= O|X|? — 20K°H + 20nK* (X, 1) — 2(K* + 35)(X, )

= O|X|? = 20K°H + 2(an — 1) K“(X, 7) — 285(X, 7).
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O

We also need the evolution equation in z-coordinate. As before, let Lgn

be the operator a K*(h~1)¥V,;V;.
Lemma 3.3.3. Under the flow (3.3.3), the geometric quantities evolve ac-
cording to

. 075 = -
(7’) atj = 07 vkgz] = 07

(i1) vy = Ognu + aK*Hu — (na + 1) K — S5,

... Ohij — _
(iii) atj = —V,V,;Fs — Fsg;,
Ka
(Z?)) 88t =g F5s + aK“HFy,

0 y
(v) a—f =Osnp+aK*Hp — aK*(h™")9hs
where Fs = K + 35 and h® is the second fundamental form of ®.

Proof. The first three assertions follow from (3.2.3). By (3.2.4), we have
K™ = —aK*(h™')%(h;;);. This implies the next assertion. For the last

equation, we compute

Osnp = aK*(h™ ")V, V o = aK*(h™")" ((®,V,;V;2) — (V;V;®, 2))
(3.3.5)
=aK*(h™ "7 (g0 + hi) = —aK*He + aK*(h™")VhY. (3.3.6)

Then 0yp = 0 yields the conclusion. O
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3.4 Uniform upper bound for principal cur-

vature

In this section, we are devoted to deriving the uniform upper estimates inde-
pendent of § for Gauss curvature and mean curvature. These estimates will
give us a sufficient controls on principal curvature. In fact, if we have K > 0

and H < C, then every principal curvature satisfies
0<N<HZC (3.4.1)

Before we proceed further, we need to show that the solution of penalized
problem cannot touch the obstacle and the velocity vector is inward-pointing.
For notational convenience, we omit the index § from all the geometric quan-

tity, such as K%, H?, etc., throughout this section.

Lemma 3.4.1. Let u be the solution of (3.3.3) in S* x [0,T). Then
(1) u(z,t) > ¢(2),
(i) 1Bs(u(z,t) — ()| < C,

(111) K(z,t)* + Bs (u(z,t) — p(z)) >0

for all (z,t) € S* x [0, 7).

Proof. Assume that X touches ® for the first time t; at x; and let z; =
V(x1,t1). Clearly ¢; > 0. By definition of (z,t1), we have

u(z,t) > ¢(2) (3.4.2)

for all points z € S? and all t € [0,¢,], with equality for z = z; and ¢ = ¢,.This

implies

= (u(z1,t) — p(21)) <0, (3.4.3)
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hence
—K*—Bs(u—¢) <0 (3.4.4)

at (z1,t1). Moreover, it also follows from (3.4.2) and (3.2.4) that K (z1,t1) <
Kg(x1,t1). Putting these facts together, we obtain

0< K+ Bsu—¢) < Kg + 55(0) (3.4.5)

at (z1,t1). This contradicts the fact that 85(0) = —sup K —1. Consequently,
X cannot touch .

We now prove the third assertion. We define
A={s5€10,T)|uz,t) <0 for z€ S* and t € [0, s]}. (3.4.6)

Since the initial hypersurface is strictly convex, 0 € A. Assume that s* =
sup A < T. Let Z(t) = mingn(—u;). By differentiating (3.3.3), we obtain the

evolution equation
Zy > (aK*H — f35) 7,

which gives Z(t) > Z(0)e/ (@K H=53)dt By continuity, Z(s*) > 0 which is
contradict to the definition of s*. This completes the proof. O

We remark that 35 is bounded independent of § since
—(max Kg + 1) = 35(0) < Bs(u(z,t) — p(z)) < 0. (3.4.7)

Using this with the following lemma, we can prove the uniform upper bound

of Gauss curvature K.

Lemma 3.4.2. For any a > 0 and dimension n, let u be the smooth solution
of (3.3.3) in S™ x [0,T). Then there exists a constant C = C(a,n, @,Xo),
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independent of §, such that
0< Fs(z,t) <C inS"x[0,T)

where Fs(z,t) = K(z,t)* 4 Bs (u(z,t) — ¢(2)).

Proof. The assertion Fjs(z,t) > 0 follows from Lemma 3.4.1. To prove the

uniform upper bound, we use a Tso’s trick [72] as in [75]. Let us consider

Fg(Z,t)

VD= -

(3.4.8)

= 1
on S"™ x [0,T), where u is the support function of X and py = 3 iér}f . Then,
using (i), the denominator remains positive.

We claim that for any (z,t) € S™ x [0,T)

1 "
w(z,t) < max { sup K(z,0), M} . (3.4.9)
Po zesn (an)py

To prove this, let us consider any time to € (0,7") and assume that w attains

its maximum over S™ x [0, to] at some point (z1,t1). If t; = 0, we have

F 0 1
sup  w(z,t) < _Fo(=,0) < — sup K(z,0).
(2,6)€52 x[0,t0] u(2,0) — po = po ses?

Consequently we may assume t; > 0 and we know that at the maximum

point (z1,t;) of w,

w, <0, Vw=0, and Vw>0. (3.4.10)
By Lemma 2.2.1, the evolution equation of w is given by

6 Doy OO B0~ Ds)u—py) | (¥ ) T,
U — pPo (U-po)Q uU— po
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and then, together with (3.4.10), we have
0 S (U - po)(at - DSH)F& - Fb‘(at - DSH)(U - po)
From the evolution equation of K® in Lemma 3.3.3 and (3.2.3), we obtain

0 S (U — p())(atﬂé + OéKaHF(;) + Fg(Fg + O[Ka(h_l)ijﬁiij)
= (u— po)(Byus + aK*HFy) + F5(F5 + oK*(h™")" (hi; — ug,;))
= —(u—po)BsFs + a(u— po) K*HFs + (K* + 5)Fs + aK“Fs(n — uH).

Since f5 < 0 and 5 > 0, we have

0 < K%js(an+1—aHpy).

Therefore
H< an+1
Qo
and so
K 1 (H\" N\" _,,
sup w< — < — <> < (an+ ) Po( +1) (3.4.11)
Smx[0,t0] Po Po \ N an

Since the right hand side of (3.4.11) is independent of ty, we have (3.4.9).
Now using (3.4.8) and (3.4.9), we obtain

Fy(w,t) = (ulz,1) — po)w(, £) < sup(up(z) — po) sup w(z, ).
S2 S2x[0,T)

This bound, together with (3.4.9), completes the proof. 0
Lemma 3.4.2 has the following immediate consequence.

Corollary 3.4.3. For any o > 0 and any dimension n, the Gauss curvature
K of the solution of 3.5.2 satisfies

0<K<C,
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where C' = (C + supg Ko + 1)a and C is the constant in Lemma 3.4.2.

Proof. By Lemma 3.4.1, we know that —supg Ke — 1 < SB5(u — ) < 0. This
gives the desired result. OJ

We are now ready to prove the uniform upper bound for mean curvature.
Our proof generalizes the quantity used in [3]. When o« = 1 and n = 2, we
employ the same quantity but we have to control the effect form the obstacle

Bs. For 0 < a < 1 and n = 2, we put an exponent in the denominator.

Lemma 3.4.4. For 0 < a <1 and the dimensionn = 2, let X be the smooth
solution of (3.3.2) in M x [0,T). Then we have the estimate

sup H<SC
Mx[0,T)

for all 6 > 0, the constant C' depending only on «, ® and X.

Proof. By the evolution equation of the |X|? in Lemma 3.3.2, the function
|)? | is decreasing in time. Choose the origin such that X, is contained in a
ball of radius R about the origin. Then D := 2R? — |X|? > 0. Now, we can

consider

H

5=

where v will be chosen later. Using Lemma 2.2.1 and the evolution equation
of H and | X|?, we obtain

1 .
0~ D)S = (ng(vih, V,h) + aKH? + (1 — na)K°| AP + ABs + |A|255)

vH
D+l

- %7 <V|)Z'|2, VS>D +

_|_

(—QaK”‘H +2(an — 1)K® <)Z' ﬁ> —285(X, 17))

v(y—-1H

Dr+2 HWX'Q

2
O

As in Lemma 3.4.2, given t, € (0,7, let (z1,t;) achieve the maximum

of S over M x [0,to]. We may assume t; > 0. Then, at this maximum point
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(x1,t1), we have

0<—- (g”K(Vih, V,h) +aK H? + (1 - za)Ka\AF)

1H a o/ 4 (v -
+ D7+1 (-20&[( H +2(2a — 1)K <X,U>) + W ‘

Afs+ (AP = 29D (X,7) H)By
D '

+

(3.4.12)

First we will estimate the penalty terms. By a direct computation, we can
check that

ABs = <X(x,t) ~®'(), ﬁ(:p,t)>‘2 +AA <X - ﬁ> .

The first term on the right is nonpositive since g§ < 0. For the remaining

term, we observe that

0X

k
AF=V'Ho =~

|A|*7.
From this, we have that

A<)Z'—<I>,ﬁ> :gijViV»<X:—{>,l7

~— ~——

v <X 3. V,7
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At the point (z1,t1), we know

2R? — | X2’
and then
. 2 . . Af?
A<X—<I>,ﬁ> <(1+—2 x_oyg)m- A
2
<(1+2y)H —
lumax

where piyax 18 the maximum principal curvature of the obstacle. Therefore,

if we have

4
H(z1,t1) > max <2(1 + 29) fhmaxs ;) ,

then

Afs + (AP = 29D (X,7) H)Bs
D7

<0.

Otherwise, the quantity S has uniform upper bound from the inequality
S < (2R*)7H and the fact that v will be chosen dependent on «, ®, and Xo.

Before we dealing with the higher order derivative term, let us recall
its expression under the normal coordinate. In the coordinate system, the

following formula holds:

R A U
— aK* (WY (Y ihi)?
To estimate g% K (V;h, V;h), we divide into two cases:
(i) 0<a<l;
(i) a = 1.
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For the first case, we could show that

ay?’ D2V X2PK*(2a — 1 — 2(1 — @) K)A2)

H?.
daK + (1 —a)H?

2
gK(Vih, Vih) <>
=1

(3.4.14)

at the maximum point (z1,#;). In fact, using (3.4.13), we have

99K (Vih,V;h) = ala — 1)K A\2V102, + a(a — 1)K\, 2V,h2, (3.4.15)
+ 202K 'V 1h11 Vihgg + 202 K Vhi Vahay
+ (20K + ol — 1) KO\ 2)V,h2,
+ (20K + ala — 1)K*\;?) V1 h3,.

under the normal coordinate system. Moreover, since the point x; realizes

the maximum of S(-,¢), we obtain

HV X

Vihii + Vihgy = D

(3.4.16)

for i = 1,2. For a moment, we denote the quantity 4aK + (1 — a)H? by Q.
We substitute (3.4.16) to (3.4.15) so that the right hand side of (3.4.15) is

—aK*%Q Z

i#j
2 02DV X P PK (20 — 1 — 2(1 — a) KA} %)
> o

. ayD IV XPHE (a +2+ (1 — a)KA2)\
ilvii + QKo 2()

H?.

i=1

This implies the assertion.
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Then (3.4.12) becomes

H? (3.4.17)

0< i OK’YQD_’Y—2|vi|X2|2KO¢(C22a —1-2(1—a)KX?)
+D77((1 - Q)KQHQ —2(1 - 201)[(0‘“) — 2ayD T KA 2

i=1

2
+2(20 — 1)yD " K H <X, D’> + ZCW(W’ - 1)K°‘HD*"’*2)\;1|V14|)Z'|2|2.
i=1

Now we choose

so that we obtain
DK H*(1 - a)K —2ayD™) < —(1 — @)D K ' H?K o (3.4.18)

Moreover, the first term and the last term become

2 -2
- 200 — 1 —2(1 — a)K \;
EBWD”*WmWWKWYOv—UM*+W¥a (1= a) KN, )

i=1 “
. S v—1(Q+~vH((2ae — 1)A; — 2(1 — )\,
3 et QI D =20 )
i#] '
2 ayK*H « —(I=a)(y + )H?* + (v — D4aK +7H)‘¢|v.|)f|2|2
— D7+2Q )\2
Ka—lH 2
=3 T R (KH — (1 )(y + DH?N + (v — DdaK )|V X2
i#j breQ
om/Ko‘*lH 712 2 \?
< W(VKH—}— (v —DdaKH)(|X|" — <X7V> )
Oé’)/KO‘HQ o S _\2
< g (ta+ )y —4a)(XF = (£.7))
< 0"7((40‘ + 1)7 — 404) KOLR*277
11—«
(3.4.19)
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CHAPTER 3. GAUSS CURVATURE FLOW WITH AN OBSTACLE

and the remaining terms are

2(1 _ 2a)Ka+1 2(20( - ].)’YKQH <X, ﬁ>
D * D+

<2120 — 1|(K*™MR™ + yK*“R™'S).
(3.4.20)

Notice that D = 2R? — | X|? and Q = 4K + (1 — o) H2 Putting (3.4.19)
and (3.4.20), together with (3.4.18), we obtain

0<—C15%+CyS + O

where C1, Cy, and C are positive constants depending on a, ®, and )20. Thus,
S is uniformly bounded on M x [0, ¢y]. Since this bound is independent of ¢y,
we have shown maxyxp,7)S < C (o, @, )Z'O) and then the conclusion follows
from H < (2R?)7S.

It remains to prove when v = 1. In this case, we take v = 1. Then (3.4.14)

becomes
. N i 2
GIR(Vih,Vih) < (1K~ (X,7) )52

With this and (3.4.12), we have

o - 2 -
1X]? - <X,ﬁ> e 2K <X,ﬁ>
< 2 Y I A
0< > §?+ - - 282+ —5—L5
< — 8%+ 2K xS + 2K2, R72.

max

As in the previous case, we can obtain the uniform upper bound for S, i.e.,
S < Kpax(1+ V14 2R72).

Again, this bound is independent of ¢y, we conclude that maxy;yjor) S <
C(®, X,) and then H < 2R2S proves the lemma. O]

Remark 3.4.5. The dimension restriction n = 2 is used only on Lemma
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344

3.5 Lower bound for principal curvature

In this section, we will discuss about the lower bound on the principal curva-
ture. We first prove an upper bound estimate for #°, the sum of the inverse
of the principal curvature, which gives the lower bound of principal curva-
ture. This bounds, together with Lemma 3.4.4, yields uniform ellipticity for
each ¢ so that we can obtain the long time existence of penalized solution.
We also show a lower bound on the principal curvature with respect to the

distance from the obstacle.

Lemma 3.5.1. For any o > 0 and dimension n, let u be the solution of
(3.3.3) in S x [0,T). Then there exists a constant C = C(n,®, Xy, T) such
that

H(z,t) < Cs in S"x[0,7T).

Proof. First, we need the evolution equation of H. To see this, note that by

definition

Hi = (§7hij)e = =g ViV (K + f5) — n(K* + f5)
= g'Vi(aK*(h" )"V jhy) — nK* — AgnBs — 1
= g7aK*(h" YV, Vhy — g7 K*(h™ )™ (W™ N ihyun V jh
—77aK* ()™ (W) BV hi
—nK* — Agnfls — nfs
and, as in (3.3.4),

DSnH - §lethkl = gkl (aKa(h_l)ijvkﬁlhij — aKa(ngkl — hle)) s
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which implies that
(0; — Ogn)H = =g K*(h™)™(h™ )"V ihppn Vi
o gijaKa(h—l)km(h—l)lnvihmnﬁjhkl
+aK*(n* — HH) —nK® — AgnfBs — nBs
< —Agnfs — nfs,
by the Cauchy-Schwarz inequality and the fact that the metric and the second
fundamental form are positive definite. As in the previous lemmas, for any
to € (0,T), assume that H 4 €709 has maximum over S™ x [0, o] at

(x1,t1) where t; > 0. The constant v will be chosen later. Then at this point,

we have

v

0 S—Asnﬁg—nﬁg—ﬁ.

(3.5.1)
It remains to control the penalty terms. From the direct calculation,
AgnfBs = 853" Vi(u — 0)V;(u — ¢) + B5Asa(u - ¢).
Using (3.2.2), we have X —® = V(u — ¢) + (u — ¢)z so that
7Vi(u— ) V(u—¢) = |X — @ = (u— )"
Moreover, by the relation (3.2.3), we obtain

Agn(u— ) =77V;V;(u— o)
=77 (hyj — h;}} — (u—)g;;)
=H—H® — (u—p)n.

Recalling the definition (3.3.1), these facts immediately imply that if we take
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72 Aol|8"]lo (B? + nd?), then

//‘R2 /1
—Agnfs —nfs — % <A <—B 5 B K

<= G5 (H—H (= o),

(H—HQ—W—wm%JB@?R>

and therefore H < H® + (u — ¢)n. Finally, we obtain
H<HE+(u—pn+e™

Since the right hand side does not depend on t,, the desired conclusion fol-

lows. O

Lemma 3.5.1, together with the result in Section 4, implies that the lin-

earized operator satisfying uniformly parabolicity, i.e.,
CslE)? < K (x,6)* (k1) &€, < ClEf? (3.5.2)

on M x [0,T), where & € R*, C = C(n, X,, ®), and C5 = Cs(n, X, ®,T).
Then it is a direct consequence that the support function u satisfies a uni-
formly parabolic equation. We can now apply Krylov-Safonov theory to u,
as in [72], which implies a C?# estimate and hence smoothness.

Next we establish the long time existence of (3.3.3). From Lemma 3.3.1,
we have the unique smooth solution w on [0,7"). Take the maximum time
T* that the solution exists, and assume that 7™ is finite. However, using the
estimates above, the hypersurface X7+« is smooth and then the solution exists
beyond T™ by applying the local existence to Xp«. This is a contradiction
and therefore the solution exists on [0, 00).

Let X? be the solution of (3.3.2) for each d. From Corollary 3.4.3 and
Lemma 3.4.1 ((iii)), X? is equicontinuous and uniformly bounded. Then, by
the Arzela-Ascoli theorem, there is a continuous hypersurface X such that
X 5 X uniformly on M x [0,7] up to subsequence for each T" < oo. It

is easy to check that X is the viscosity solution of (GFo). Moreover, using
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Lemma 3.4.4, X has C! bound with X% — X in C' for some 0 < 3 < 1.
This proves the first and second part of Theorem 3.1.5.

To obtain the third part of Theorem 3.1.5, we need the following local
lower curvature bound whose constant depends on the distance from the free
boundary. In order to proceed, we have to define cut-off function. In a z-
coordinate, consider a point (2o, %y) such that 2M := u(z,tg) — ¢(20) > 0.
Now define a cut-off function 7., by

%(th) = (M - u6(27t) + 90(2) - Vt)—k'

Lemma 3.5.2. For any o > 0 and any dimension n, let u® be the smooth
solution of (3.3.3) in S™ x [0,T). Assume that 6 < M. Then we have

<1/J‘11+n1 ! > (z,8) < Mat"lsup——
K )‘min ' B Uop )‘min('7 0) ’

where Uy = {z : u®(z,0) — p(2) < M}.

Proof. From the definition of the cut-off function ¢, with Lemma 3.3.3, we

obtain

(0 — Osn)thy = —aK*H(u — @) + (na+ 1) K* — aK*(h™" )b — v + Bs
< (na+1)K* —~+ S5

on the support of v,. Using the non-positivity of 35 and Corollary 3.4.3, we

also have
(O —Ogn)hy <0
if v > 7o for some constant vy = yo(n, o, max K). Thus we get

(0 — Ogn )l < =b(b— )92 [V [I2,.. (3.5.3)

1
+n—1"

where b = + We next consider the evolution equation for hyy/ Gy;.
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Observe that

(at - DSH)T == 0, (354)
911

and

(0, — Ogn)hyy = = K*(h™)™ (™) 1By Vi g
— aK*(h™)"™(h ™) 1 By Vi g (3.5.5)
+ (na — 1)Ka§11 —aK*Hhy, — ﬁlvlﬂé - 56?11‘

We are now ready to prove the assertion. Let ¢ € (0,7) and assume that the

function ¢\ i attains its maximum on S™ x [0,#] at (z1,21). If t; = 0, then

we get the desired result. Let t; > 0 and choose a normal coordinate system
near (z1,t1) so that

Gij(z1,t) = 05, hij(z1, 1) = AN (21, 1), M(z1,t1) = Amin(21, 1)

Using the similar argument in [18], we can show that for any point,

-
gll )\mln
so that
w =y
911

attains its maximum at (zq,¢1). Then by (3.5.3), and (3.5.4), the following
holds at (z1,t;):

0 S (at — DSn)U}

h h h
= =10, — Ogn )t +92(9, — Ogn) = — 2 <vwg7 vn>
911 911 911/ Ogn
_ _ —bhy — 2
= —b(b— AT [V I, + 040 — Osn)har + 20 A7 [ V][5
(3.5.6)
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Notice that we have used
8tw(z1,t1) 2 0. vw(zl,tl) = 07 V2w(zl,t1) S 0.

Next, the equation (3.5.5) becomes

2
(8, — Ogn)hyy = —a>K*® (Z /\mvlhmm> — aKA A\ V1 h2,,
+ (na — 1)K* — aK*HN ' — V1V 85 — fs.

For the first two terms in the above equation, by the Cauchy-Schwarz in-

equality,

2
1

m#1 o

and therefore,

2
Q2K <Z )\mvlhmm> + Y aK N\ A\ Vb,

1

Using Vw(xq,t1) = 0 again, the equation (3.5.6) becomes

b -1 1 _b b2
0< (- —1- Ty ) i IRl
+ ’(/J,I;(—(XKO[HAI_1 + (na — 1) K®) + 1/12(-?1?1@5 — )\1_255)
< —ayfK®

since b = ﬁ and u(zy,t1)—@(z1) > M > §. This completes the proof. [
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3.6 Proof of Theorem 3.1.5

In this section, we provide a proof of Theorem 3.1.5. In order to present
the proof, we need the comparison principle which is useful to prove the

convergence to the obstacle.

Lemma 3.6.1. Let u and v be the solution of (3.3.3) with initial condition
ug and vy, respectively. Assume that the hypersurfaces corresponding to ug
and vy are smooth strictly convex closed hypersurface. If ug > vg on S™, then

u>vin S™ x [0,00).

Proof. For € > 0, define w = (u — v)e™ " + . The constant v will be chosen
later. Assume that w achieves zero at (z1,t;) for the first time. Clearly, ¢; >
0. Then by the simple maximum principle argument and the mean value

theorem, we can obtain
(v — (K" H" + B5(u” — ¢))(u—v) >0,

where K* and H* are the curvatures corresponding to the support function
u* = s*u+ (1 — s*)v for some s* € [0,1]. At the point (21,%1), u — v is
negative, which will derive a contradiction if v > a(K*)*H* + S(u* — ¢).
This is actually possible since the Gauss curvature and the mean curvature

have an upper bound from Corollary 3.4.3 and Lemma 3.5.1. |
We now prove Theorem 3.1.5.

Proof of Theorem 3.1.5. The statements (i) — (4ii) are proved in the previous
section. The last part is to prove the convergence to the obstacle. For any
given point on ®, we can take the ball B containing the obstacle and touching
® at given point. Since it is well known fact that how the sphere evolves
under the Gauss curvature flow, we also take the large ball enclosing )?0 and
evolving to the B in finite time. Note that this ball is also the solution of

(GFo), and hence the conclusion (iv) follows from comparison principle. [J
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Chapter 4

Mean curvature flow of entire

graphs with an obstacle

4.1 Introduction

In this chapter we consider the obstacle problem for the evolution of complete
non-compact strictly mean convex graphs by mean curvature. The obstacle
® in our consideration is a C'*! complete non-compact strictly convex graphs
over an open subset in R". Let X be a one parameter family of immersions
from M"™ — R"*! where M" is an n-dimensional complete non-compact Rie-
mannian manifold, and the initial hypersurface XO : M™ — R™! is smooth
immersion of a complete non-compact strictly mean convex n-dimensional
graph enclosing the obstacle. We say that X is a solution of the obstacle
problem for the mean curvature flow of complete non-compact hypersurface
if

<W7ﬁ(x,t)> < H(z,t) for (z,t) € M™ x [0,T),

ot
aig,t) — —Hi(x,t) if X(z,t) ¢ ®, (MCFo)
dcCy, for0<t<T,
X(z,0) = Xo(z) for z € M™,
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where H and ¥ are the mean curvature and the outward unit normal vector
on X, respectively. Here we use the bar notation to indicate the closed subset
of R™*! enclosed by the given set.

We always assume that the initial hypersurface X, and the obstacle ®
is given by graphs over an open subset of R™. Denote by ug : 2y — R,
u: Q) — Rand ¢ : Q, = R the graph function of Xy, X, and ®, respectively.
With the graph functions, we could formulate (MCFo) as

ou Du
e At Dudiv | — ) i Qx[0,T),
ot [Dul ( 1+|Du|2> 0.7)

b D
ai: = /1 + |Dul? div <1u> in {u < ¢}, (4.1.1)

+ [Dul?
u<p in Qx[0,7),

As in the previous chapter, the concept of solution here is a viscosity solution.

Now we state our main result in this chapter.

Theorem 4.1.1. Let ¥y and ® be complete non-compact graphs over an open
subset of R™ such that ® C Xy. Assume also that ® is strictly convex and Xy is
strictly mean convex. Then there exists a viscosity solution u : © — RU{oco}
of (MCFo) with the local CY' optimal regularity, where @ C R™1 x [0, 00)

is relatively open and Q0 contains Q, x [0,00).

4.2 Preliminaries

Let M™ be an n-dimensional manifold and X(-,¢) : M™ — R"*! be a one-
parameter family of immersions in R"*!. Denote by v the outward unit nor-
mal vector of 3, = X (M, ). In a local coordinate system {z'}",, the induced

metric and the second fundamental form of ¥; are

0X 0X 0*X
9—<axax> and hij_<8:riaa:i’_y>' (4.2.)
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We also define the inverse matrix of {h;;} by {b”}. With the Einstein’s
summation convention on repeated indices, the Weingarten map is defined
by

i ik
h]» =dg hk]'

where g* denotes the inverse matrix of {g;;}. We call the eigenvalues of h’
as the principal curvatures Ai, Ao, - -+ , A, and then we can define curvatures

as follows:

1. H =tr(h?) = > A (Mean curvature),
2. K =det(h}) =[]\ (Gauss curvature),
3. |A]? = tr((h?)}) = 3 A} (sum of square),

4. M =det((h™")i) = 3 A7 (sum of inverse).
From the Gauss-Weingarten relations, we have

X, 0X v L 0X

—— =17 — — h;;v and - = kg
Oxt0xI 7 Oxk J oxt e ozt

where the Christoffel symbol

1 0 9 9
E_ 1 ok
=5 <8acigjl o axl“’”> |

and then the Laplace-Beltrami operator of the position vector X can be

computed as

- 02X 0X
— V.V X = g% k —
AX=¢g"V,V, X =g < O I $k> =—Hv.
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We write A = A, for simplicity. Recalling the Gauss identity
R = hishji — hahje,
where R;jj; is the Riemannian curvature tensor, and the Codazzi identity
Vihjp = Vjhi,
we can prove the following identity (see [75, Lemma 2.3]):
Ahy; =V, ViH + H(h?);; — | ARy (4.2.2)

We also compute the Laplace-Beltrami operator of the outward unit normal

vector.

4.2.1 Obstacles

Let ® be a complete non-compact strictly convex hypersurface. We always
assume that ® can be represented by a graph over an open subset of R" x {0}.

We call @ as an obstacle and denote its normal by 7.

4.2.2 Penalization method

Let 8 be the smooth function defined on R and satisfying

B(0) = -1,

B(x)=0 ifrx>1,
B (x)=0 if z <0,
B'(x) >0, f'(x) <0, forallzeR,
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and let Kg be the Gauss curvature of the obstacle ®. We define the penalty

term to be

Bs(x) = AoB(x/9), (4.2.3)

where Ay = supg K§ + 1. Then it is easy to check that fs5(z) <0, 85(z) > 0,

Y(z) <0, and f5(0) = —Ay < —supg Kg. Moreover, limgs_,o f5(x) — 0 for
x > 0 and limg_,o Bs(x) — —oo for z < 0.

Now let us consider the following penalized problem which approximates

(MCFo): Given an initial hypersurface ¥y and its immersion Xo: M" —
Rn+17

Ju Du

gu _ R T e B _ :

5 1+ | Dul? div ( ] u|2> + Bs(p —u) inQx[0,T),
u(+,0) = ug.

(4.2.4)

4.3 Evolution equations

In this section, we obtain evolution equations for geometric quantities of the

hypersurface ¥; under the flow (4.2.4).

Lemma 4.3.1. Under the flow (4.2.4), we have the following evolution equa-

tions.

99
(4) gtj — —2(H + Bs)hy;

0 -
(17) a—?:Au—i-v 185

(i) O =V (H + )
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ov

(iv) 5= Av — 207 Vol? — v AP +v* (V55,€)
Ohy; 5 5 >
(1)) En = Ahij — 2H(h )ij + |A| hij + Vivjﬁ(; — (h )ijﬂ(;
. OH
(’Ul) E = AH + |A|2H + Aﬁ& + |A|266
IA]?

(vii) = A|A? = 2|VA]> + 2|A]* + 2RV, V ;85 + 2C 35

Proof. Recall that Fj5 denotes the speed H + 35 of (3.3.2).

(i) Since <ﬁ, g—§> =0, we have

s _ 0 o X\ [oX o
ot <axi( F‘W)’axa'>+<axi’axa‘( F‘*”)>

o 90X oxX ov
=¥ <ax ax> — 5 <axax> = 2H5hy.

(ii) Notice that u = <X,e>, v=(—7e)", and AX = —H7. Then

ou  [oX \ . .
6t—<at7 >—<AX—551/,€>—AU+U Bs.

(iii) From (7, 7) = 1, we obtain %’tj, ﬁ> =0 and <§§,ﬁ> = 0. Thus,

w <05 8)?> 0X i <q 8(—F<sﬁ)> 0X  0F;0X
_ _gilp, _ _

o =9\ o ow ) o v Jow Y owow

(iv) By a direct computation, we see that

Av = g9V, Vv = ¢"V,(—v* (=V,v,e)) = 207! |[Vu|]? + v (AT, e) .
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It can now be deduced from Lemma 2.1.2 that
Av =20 Vo] +0v? (VH, e) + v|A]?
which implies

o, [ o
5= Y <—8t,e>—v (VH + Vs, €)

= Av — 21}71|Vv|2 - v|A|2 + 02 (Vfs,e) .

(v) As in the proof of (iii), it holds that 2Z = hngXk. Using this, we see

that
Ohy | O*(—Fsi)) X
ot _< 902 ") T\ Gmaw VIS

D?Fj 7 L0X OF; 0X
- 0xi0d +F <8xiaxj’y> N <Fij(9xk’g dx™m dm

2 by — —
0°F p 0X F5<6V 61/>

T 9ridxi T Uogk 0\ 9xi 0ad

= Viijﬁ — F(;(hz)ij.
This, together with (4.2.2), yields

8hij
ot

= Ahgy — 2H(h?)i; + | Al hij 4+ ViV;85 — (h*)i;55.

(vi) One easily computes

gt
ot

= 2Fh" (4.3.1)

so that 2 = g % +2F5|A|?. Then we get the desired result from (v).

(vii) Tt also follows from (4.3.1) that 245 — 2pii %4 4 4Fspis(h2),;, and
observe that 207 Ah;; = A|A|? — 2|V A|?. Again, the evolution equation
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(v) gives the conclusion. O

4.4 Uniform boundedness for (s

Lemma 4.4.1. Let u be the solution of (4.2.4). Then the solution u does

not touch the obstacle, 1i.e.,
u(z,t) < o(x) for allx € By, t > 0. (4.4.1)
In particular, the penalty term has the following uniform bound:
—C < Bs(p(x) —u(x,t)) <0, forallx € Bg, t >0, (4.4.2)

where the constant C' depends only on max Hs.

Proof. The first assertion follows from the simple maximum principle argu-
ment. In fact, assume that (xg,) is a point such that u(zo, o) = p(xo) for
the first time. Since u = ug < ¢ on the parabolic boundary of Bg x [0, 00),
the point (x¢,%y) should be an interior point and therefore at this point we

have
Olp—u) <0, D(p—u)=0, D*p—u)>0. (4.4.3)

Applying this to the equation (4.2.4), the inequality

)
0< ai‘ = a;;(Du)Diju + /1 + | Dul2B5(0 — u) (4.4.4)

¢
< ay (D) Digp + /1 + [D[255(0) (4.4.5)

holds at (zg, tg), which implies

Ha(wo) = L, (Db(ae) Digth(ao) = ~5(0).  (4.4.6)

V14 [Di(xo)[?

However, this leads to a contradiction as —f5(0) = max Hg + 1.
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To obtain the second assertion, we observe that
—mngé —1=p5(0) < Bs(¢ —u) < lim fs(z) =0
Z—r00

since (s is increasing. Taking C' = max Hg + 1 completes the proof. O

4.5 Gradient Estimate

In this section, we derive a local gradient estimate for the height function.
Consider the cut-off function v, with moving height to get a local gradient

estimate:
wv = (M - ryt - U(p, t))+7

where we take v < % for a fixed T'. Then one can obtain the evolution

equation of ¢, and recall that of v from Lemma 4.3.1:

5,
O by = by —y— ™ (45.1)
%v = Av — 2071V — v|A]? +0v? (Vf5, €) (4.5.2)

which gives the following local gradient estimate.

Lemma 4.5.1. Let 3y be an initial hypersurface and ® be an obstacle. As-
sume that X, is a complete strictly mean convexr smooth graph solution of
(4.2.4) defined on M™ x [0,T], for some T > 0. Suppose also that v = Cy+ 1

where Cy is the constant in Lemma 3.4.1. Then one has

o, 1), £) < Mmax § sup | {7, @) [ sup(-,0) (453)
Q% Qum

where Qpr = {x € M™ : u(x,0) < M} and Q}, = {x € M™ : {(x) < M + 6}.

Proof. One can find the evolution equation of Z := ¢, v from (4.5.1) and
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(4.5.2):

0 0 0
&Z = ’L/},\/av + ’anr\/

=1, [Av — 21}71|Vv|2 — v|A|2 + 02 (VBs, e>}

+ oAy, =7 - ] (454)
=AZ — 20" (VZ,Vv) — Z|A]> — v

+vZ (Vs e) — Bs.

Moreover, the terms involving penalization become
vZB5(p — u) [Vz/) -Vu — |Vu|2] — Bs(o — u). (4.5.5)

Note that the support of 1., is compactly supported, which makes Z achieves
its maximum on M"™ x [0,T] at some point (zg,%). If we assume |Vu|*> <
V¢ - Vu at this point, then we obtain |Vu| < |V| by Cauchy-Schwarz

1

inequality, which is equivalent to v < | (—Us,€e) |~! at the same point. Then

we have

Z(x(],to) S M sup ‘ <—17¢>,e> |71. (456)

Qs

provided we make the additional assumption ¢(zg) — u(zo,to) < . We
now assume |Vu|> > V- Vu or ¢ —u > § at (xg,1) so that vZ85(¢ —
u) [V - Vu — |Vul*] <0. Also from the uniform boundedness of 35, the re-
maining term in (4.5.5) is bounded by Cj, and hence (4.5.5) is bounded by
the same constant. If ¢y > 0, then from (4.5.4) we have

0 < —ZJA* — v + Gy, (4.5.7)

which is a contradiction since v = Cy + 1. On the other hand, in the case of
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to = 0, we obtain

Z < M supw(-,0). (4.5.8)
Qum

This completes the proof. O

4.6 Speed estimates

We start with the following computations

Lemma 4.6.1. Let u be a solution of (4.2.4). Then

Au= (AX,e) = (—Hv,e) = Hv ", (4.6.1)

AY = Dijp Vi X'VFX7 + Db AX? (4.6.2)

= DV X'V*XT — Dyp(HVY), (4.6.3)

(V) —u),e) = Vi(y —u) (VIX,e) = (Vih, Vu) — || Vul[*. (4.6.4)

Now we are ready to prove speed estimates

Lemma 4.6.2. Assume that 3 is a initial hypersurface and ® is an obstacle.

Let ¥y be a complete strictly mean convex smooth graph solution of (4.2.4)
on M" x [0,T). Then

(7)) (P)et) < cOnPOOP + 04 4) (465)

where c(n) denotes a dimensional constant and the constant 0 is given by
0 = sup{max(v?(z,s),1 4+ Dy - Du) : u(z,s) < M, s € [0,1]}. (4.6.6)

Proof. We start with the evolution equation of H? which follows from (vi)

95

M E ) 8k o
I . I "



CHAPTER 4. MEAN CURVATURE FLOW OF ENTIRE GRAPHS
WITH AN OBSTACLE

in Lemma 4.3.1:

(0 — A)H? = 2H(|APPH + ABs + |A]"B;) — 2| VH|?
1 ) (4.6.7)
=~ H2||VH?|"+ 2| APH? + 2HABs + 2| AP H 5.

Since the sign of the reaction term, 2| A|>H?, in this equation is not good for

the maximum principle, we employ the auxiliary function

1}2

o(v?)

following the well-known idea by Caffarelli, Nirenberg, and Spruck in [?]. To

obtain the evolution equation of ¢ we recall (iv) in Lemma 4.3.1 so that

(8 — A)(v*) = 20(=207" | Vol* — v AP +0* (V5. €)) — 2| Vol|*

= —2|AP = 22 |9+ 20 (Vs )
and hence, we have
0.~ D) = 90— D " [ V02
— <_202A|2 - ;ﬂ Vo2 || + 20° <v55,e>> — " ||ve?|”
= 24P - (S 4 ¢ ) [0 + 2¢'4° (V).
This, together with (4.6.7), gives

(8, — A)(H?p) = ¢(0, — A)H? + H*(9, — A)p — 2(VH? V)

= (—;HQ HVH2H2 +2|APH? + 2HABs + 2|A|2H55>
w17 (=20 7ap - (3o o) (907 + 26 (Vo)

1 H?
—(VH*, V) - ” (V(H?p), V) + = Vel
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Observe that for the first term in the last line
—(VH? V) < 2<pH 2 HVH2|] + \|V<p||

and for the last term in the last line |[Vg|* = (¢')? |Vo?||*. Using this we

arrive at the following inequality:
1
(0 — A)(H?p) < - (V(H?p), V) +2(p — ¢'v*)| AP H?
/\2
_H? <3 2 4l — 3(¢) ) ||sz||2 (4.6.9)
2 2¢
+ 20HABs + 20 v H? (V B35, €) + 20| A|*H 5.

From direct computations, we have

20 460 2
102 "(02) — - /(12 4.6.1
@(U ) (29—7)2)2’ 80 (U ) (29_U2)3 29_1)2(10(1} ) ( 6 O)
so that
ot — L
PV T 2T 20— 022 (20—22 7
and
§ /=2 "o 3(‘10/)2 0 i 2 . 660 . 0
Q¥ Y 2¢ “¥ o T 202(20 —v2) ) (20 —v2)3’
Using this, the inequality (4.6.9) becomes
(0, — A)(H?p) <v (H?¢), Vo) — A+ B (4.6.11)
where
0 2
2| 412 772 2 2
B =20HAPBs + 2¢'v*H? (V 5, €) + 20| A|*H B5. (4.6.13)
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Note that A and B denote reaction terms and penalty terms, respectively.
Now we proceed to the localized quantities. Recall ¢, = (M —u — )4
and its evolution equation (4.5.1) so that on the support of v,

(0 = D) = (= = Bv!) — 1203 || Vu*.
As in the above, this and (4.6.11) gives
(O — A)(HQW/’;l) = qﬁi(at — A)(H?p) + H?p(0, — A)ﬂfy -2 <V(H2<p), VQ/J3>

— vt (-1 (Ve ve) - A+ B)

+ Hp (443 (—y — Bsv™") — 1292 [|Vu|*)
— 207 (V(H?yl), Vi) + 205 H2 ||V ||

Observe from Vo = ¢'Vv? and (4.6.10) that

H2 /
(V(H? o), Vo) + = (Vi Vo)

v
Ive?l* , [vesl’
(20 —v2)3 ~ P8(20 —0?) |’

1 1
— S A{V(H2p), V) = ———

(p( (H?p), V) o
<L
T eyl

(V(H?py?), V) + H*0 (

and notice that ||V¢§Hz = 1699 [V, Then we have

AT/
. o)
(0 %

— 20*| AP H? — 493y HP o +

(0 — A)(H? ) = — <V(H2W3),

AH*Y? | Vu|? (49 + 50?)
20 — v?

+ 2B — 43vT H ;.
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Setting 7 :=t(t + 1)~! and g := Hpy}n, we arrive at

VYt v
%)
(0 @

— 2 P* S| APH? — a3y H o + 1)

+ Uy B — Anylv H f3s

(0 —A)g<g-— <Vg,

AH*2 || Vul[* (40 + 5v2)
20 — 12

(4.6.14)

since 9 = (1+1t)~2 < 1. Now notice that g has a compact support and thus
we can take a maximum point (zg,ty) of g with tg > 0. At this point, the

inequality (4.6.14) becomes

AH*P? || Vu|? (40 + 5v2)
20 — v? (4.6.15)

0 <g—2np* S| APH? — dnpSyH? o + 1)
+ B — dndv H2 of;.

From now on, every quantity will be considered as the value evaluated at

(1‘0, to).
To proceed further, we define

AH? | Vu|* (49 + 50?)
20 — v? ’
(4.6.16)

B = ng3B — dndv™ Hpp;. (4.6.17)

A =g — 2P| APH? — dngyH o +

Since n|A[* > H? 1 <v? <0, and g = H*pyn, we obtain

. 2 Ay A(40 + 50%) |Vl
A=g— 9 ——g+
nnpd (0N V22
29 c(n)n, 4 2 2
0 _
_nn%( 5 (U F OOVl —g ),

where ¢(n) denotes a dimensional constant. Furthermore, using the facts that
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¥y < M,n <1, and |Vl = 1 — 02 < 1, the last inequality yields

which implies A < 0 unless g(z,to) < c(n)(M* 4 M?0).
Now we estimate terms including penalty effects. First of all, we may
rewrite (4.6.17), substituting (4.6.13), as

B = 2nloHABs + 2mbig/vP H? (V B, €) + 2nySpH (1, |A]* — 207 H) Bs.
To estimate the lowest order term, we see that

1
VAP =207 H > ﬁwvHQ - 207 'H

9 2/
n3en  vy/pn2
_ V9 < _2”1/)7\/@>
n3en Vo v '

Using the inequalities v > 1, 1, < M, ¢ <1, and < 1 again, the following
holds: if g(wo,to) > 4n*M?, then ¢, |A|?> — 207 H > 0. This, together with
the fact 85 < 0, leads us to that

2003 H (Y |A]P =207 H) 5 <0
unless g(xg, to) < 4n2M?2. To estimate the highest order term, we notice that

ABs = gijvivjﬁé = gijvi(ﬁzlsvj(ép —u))
=B IV (e —u)|I* + B5A(p — w).

Since 5 < 0, we have

20 HABs < 2o HB5A (0 — w). (4.6.18)
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On the other hand, the remaining term is
250" v H? (V B5, €) = 250" v H2 35 (V (0 — ), €) (4.6.19)
Adding (4.6.18) and (4.6.19) gives that

250 HABs + 20" v H? (V 55, €) (4.6.20)
< 20N H(pA(p —u) + ¢ H (V(p —u),e))B5.  (4.6.21)

By Lemma 4.6.1, we have

PA(p — u)+" v H (V(p — u), e)
= gp((éij — V') Dijh — Hu ' Dyp Dy — Hv_l)
+ @' vH(D - Du — |Dul?)
(20 —1)Hv® (D% - Du)Hv?
< — _
< (0 = Ditmax = =5 5 + g — 2y

- (20 — 1 — Dy - Du)Hv?
- QO(TL 1),umax (29 — 1)2)2 .

From the definition of @, we see that 6 > 1+ D - Du. Using this, we deduce

0Hv
20 — v?

PA (o — ) + P H (Vo —u).0) < (<n 1) — ) - (4.6.22)

0H
If (n — 1) phmax < 2971}2, by (4.6.20) and (4.6.22), we have
—v

ZUQ/Jf‘/ngAﬁg + 2771/13(,0’@3]—]2 (Vps,e) <0.
Otherwise, H < (20 — v2)(n — 1) ftrmax(00) ™1 < (1 — 1) trmax S0 that

g(.’]?(), tO) < C(n)M4M12nax'
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Now we can claim that

In fact, if (4.6.23) does not hold, we already observed that A4 < 0 and B < 0,
which contradicts to (4.6.15). Finally, we conclude, by noting ¢ > (26)71,
that

(H*¢3m) (20, to) < c(n)MPO(M? + 0 + i)

This completes the proof. O

4.7 Estimate for maximum eigenvalue

The purpose of this section is to establish the estimate for the maximum

eigenvalue.

Lemma 4.7.1. Let X; be a complete strictly mean convexr smooth graph so-
lution of (4.2.4) on M™ x [0,T). Then

(77) Dbttt < cMPOOE 40+ 4) (410

where c(n) denotes a dimensional constant and the constant 6 is given by
0 = sup{max(v?(z,s),1 4+ Dy - Du) : u(z,s) < M,s € [0,t]}. (4.7.2)
Proof. We shall consider a quantity

9o = N(E)Nmaxp (V)05

where n(t) = 7, p(v*) = 5= sy, and ¥, = (M — 4t — ). Observe that go
is compactly supported since 7)., has a compact support. Thus we can take a

maximum point (o, to) of go over M" x [0, T]. If ty = 0, we have the desired
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result. Thus we may assume ty > 0.

Now we define a function

hi;gh;
g =mn(t) <1gﬂ> o0
g1

in the coordinate chart near xy. We may choose a normal coordinate so that
gij = 5ija hij = >\i5ija A1 = Amax

at the point (x¢, ). From the Euler’s formula (see Proposition 3.1 in [17]),

we see that

9 < g0, 9(zo,t0) = go(wo, to)

Thus g also have a maximum at (zg, to).
Next, observe that d,g” = 2(H + f;)h* and Vg = 0. We consider the

evolution equation of hy;g%hj1/g11 which follows from (v) in Lemma 4.3.1:

(O — A)(hligijhjl) = 2hugij(3t - A)hjl + huhjl(Q(H + Ba)hij)

- 29ijgklvkh1ivlhj1a
hiig7h; 2 g 2(h3
0y — A) <1§11]1> = Ehug”(at — A)hj + (911)11 (H + Bs)
29”9“ 2(H + /65)(h2)11h11
g Vihi;Vihj — CDE
2

= thgij(—mq ()1 + |APPhjy + VY185 — (h2);155)

2 . 2
+ E(h‘%)n(H + Bs) — ﬁg”gklvkhuvzhﬂ

2(H + B5)(h?)1 't
B (g'1)2
fQH(hB)H 2|A|2(h2)11 2H(h2)11h11
= g1l + g1l - ()2

2h1;9"V; V185 2B5(h*)11hM
gl B (911)2 :

2 .
- Eg”gklvkhlivlhjl +
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Since the evolution equation of ¢(v?) is given by
21 412 3 " 21|12 1,3
(0, — A)p = =20'v°| A" — cpv + ||Vv || + 2¢'v° (V 35, €) .
Thus it follows that

(0 = A)(Qe) = ¢(0: — A)Q + Q0 — A)p — 2(VQ, V)
—2H(h*)11  2JAP(h*)1 2H(h?);h't
= ( g1l + g1l - (g11)2
2h1,9"V ;N1 55 _ 255(}12)11}&11)
gt ()2

+Q < 20'v% A2 — (24,0’1}2 + <,0"> ||Vv2||2 + 2¢0'0* (V Bs, e>>

2
— =797 g"Vhi Vi +

1 Q
—{VQ, Vo) = Z(V(@9). Vi) + 2 IVell*.
Observe that for the first term in the last line

—(VQ,Vy) < 5= VO’ t5, IIVSOII

_ZQ

and for the last term in the last line ||V||> = (¢/)?|[Vo?||*. Using this, we

arrive at the following inequality:

1 P
(0 — A)(Qyp) < - (V(Qp), Vo) — gﬁg”g’“’vkhnvz "+ 35 IIVQII
2@H(h3)11 . 2(pH(h2)11h11

+ 2(90 - 99,02>|A|2Q - g” (911)2
(' 2
~Q G =2 19l
2 11
+ 2 hhg —==V, Vi85 + 20'0°Q (Vs €) — (h(g)llll)};ﬁ&
(4.7.3)
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From direct computations, we have

) o v? 20v? —vt 5
—_ v = —_ = = —
L 20 —v?2 (20 —0v?)2 (20 — v?)? 4

and
3 /. —2 " 3(30/)2 ! i 2 66 _ 9
P Y T Y e T i) T =

Using this, the inequality (4.7.3) becomes
1
(0 — A)(Qp) < - (V(Qp), V) + A + Ay + B (4.7.4)

where

2% .
A= =10 Vi + o5 VQI (4.7.5)
4 N 20H(h*)1n 2pH(h*)uh'!
Ay = =207 |APQ — (260 —2)3 [Ve?|"Q g (g
(4.7.6)

hig , B2 b’
B= 2w;—ﬁvjv1ﬁ5 +200°Q (V 55, €) — 290((;1111)2

Now we proceed to the localized quantities. Recall ¢, = (M —u — ~t)4

Bs. (4.7.7)

and its evolution equation (4.5.1) so that on the support of ¢,
(0 — D)y = 45 (—y = ™) — 1203 | V.
As in the above, this and (4.7.4) gives
(0 = D) Q) = ¥3(0 — A)(Qy) + Q(d, — M)y — 2(V(Qy), V¥))

= (—; (V(Qp), V) + A1 + Az + B>

+ Qo(4y3(—y — Bsv™") — 1292 |Vu|)?)
— 2 (V(Quud), Vi) + 207 Qoo || V||
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Observe from Vi = ¢'Vov? and (4.6.10) that

_l - _L 4 % 4 2
¢<V(Q¢),V<ﬂ> ol (V(Qey3), Vo) + o (V2 Vo?)

Iverl* , [vesll’
(20 —v2)3 ~ 3(20 —0?) )’

__ 1
T eyl

(V(Qpv?), Vi) + QO (

and notice that ||V1/}§Hz = 16¢¢ | Vu||*. Then we have

PAVTe

(0 — A)(Qpr) = — <v<cm3>, ; Vf> CuA

4
f 4Qu2 || Vul|* (460 + 50?)
= 2" IAPQ — W Qp + —
21/’3@H(h3)11 2¢350H(h2)11h11
o g1 - (g')?
+ B — 44307 Q.

With n = t(t +1)~" and g = nQey], we arrive at

PAVAT S v4
i sf> i
Y
4nQy2 || Vull* (40 + 50?)

— 2" | APQ — 4y Qe + S

277@Z1f/<pH(h3)11 QUQ/’ZWLS@H(hQ)uhH
B g1 - (g'1)2
+ B — Al Qpfs

(0 — A)g < Qv — <Vg,

(4.7.8)
from 9y = (1+¢)~2 < 1. At the point (z9, %), the inequality (4.7.8) becomes

4Qu2 [|Vul® (46 + 50?)
20 — 02

0 < Qv — 2p|Alg — dny3y Qe + 1

+ 3B — 4T Qpps.

— 4gH)\,

(4.7.9)
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since we see
Al = =20V hi; + 20V hi <O0.

From now on, every quantity will be considered as the value evaluated at

(1‘0, to).
To proceed further, we define

4Qu2? | Vul|? (40 + 50v2)
20 — v?

A= Qo — 20| APg — A3y Qe + 1

B = 3B — 4™ Qwps.

— 4gH\,,

Since |A]? > Q, 1 <v* <6, and g = Qpy)n, we obtain

A< S0l (i)
v

where ¢(n) denotes a dimensional constant. Furthermore, using the facts that
Py <M, <1,and |[Vul|> =1 —v~2 < 1, the last inequality yields

A< mg/);l <C(2n)(M4+M29)—g>.

Now we estimate terms including penalty effects. First of all, we may

rewrite B, substituting (4.7.7), as

B = 2o\ V1 V185 + 2002003 Q (V Bs, €) — 2o} Bs — dpiiv™' Qe ;.

To estimate the lowest order term, we see that

3 - C
_2777/)380>\?55 - 4771]0;31} 1QyBs < 777123(91/2 L)

~y
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To estimate the highest order term, we notice that

ViViBs = Vi(B5Vi(v — u))
= B3 IV1(¥ — w)|* + B5V1 Vi (v — u).

Since 5 < 0, we have

koM ViV B < oM VLV (6 — ). (4.7.10)
On the other hand, the remaining term is
20030'0°Q (V s, €) = 20 v’ QB (V (¢ — u), €) (4.7.11)
Adding (4.7.10) and (4.7.11) gives that

23\ V1V Bs + 20500’ Q (VBs, €) < 2ni M (Vi Vi(¥ —u) (4.7.12)

+ @MV (Y — u), e))f;.
(4.7.13)

Thus we need to estimate
eViVi(¥ —u) + v’ A (V(¢) — u), e) .
For the first term, we have

OViVi(Y —u) = Vi (DYV (X —ue) — (ViX, e))
= p(D*YV (X —ue)Vi(X —ue) + DYV, V(X — ue)
—(V1ViX,e))
< ¢ ({1 — (V1 &) — MDU(w — (v, € ) — ™)
< (,umax — MDY Duv™t — )\17)_1)

where ji. denotes the maximum eigenvalue of D?1. To estimate second

term, we express V; X = a;;E; where { E;}U{r} is orthonormal basis in R"**.
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Also, we extend functions ¢ and u to the functions whose space variable is
defined on R™™! by defining ¢(X) = (X + be) and u(X) = u(X + be) for
b € R. Then we have

o —u)V; Xg7V ;X e

oV —u)(apEy)*a" a" a;p, (B, €)
= (D(¥ — ), Ey) (E, €)

= (D(¢ —u),e) = (D(Y —u),v) (e,v)
=v 2D —u) - Du.

Therefore, we have

pViVi( —u) + @A (V (¢ —u), e)
= ¢ (ftmax — MDY Duv™ — Mo ") + oA D(¢ — u) - Du
(Dt - Du)M\v® (20 — 1))\ 0?
= Splumax + -
(20 — v?)? (20 — v?)?

B (20 — 1 — Do - Du)A0?
= Phmax (20 — v2)? '

From the definition of 8, we see that § > 1 4+ Dt - Du. Using this, we

deduce

oM 03
gﬁvlvl(lﬁ — U) + 99/1)3)\1 <V(77/) — U), e) < <Mmax — Y i U2) . (4714)
3
If frmax < % by (4.7.12) and (4.7.14), we have
— v

25\ ViV Bs + 21050 v°Q (V s, €) < 0.

Otherwise, H < (20 — v?) fimax0 073 < pimax S0 that

g(x()vt()) S C(n)M4M?nax'
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This completes the proof. |

4.8 Proof of Theorem 4.1.1

In this section we finish the proof of Theorem 4.1.1. From Lemma 4.5.1, we

can solve the following initial boundary value problem (see [65, 41]):

ou Du
B s Pu B .
i V14 |Dul*div ( T u|2> + Bs(p —u) in Bgr(0) x [0,00),

u=1L on 0Bg(0) x [0, 00),
u(+,0) = min{ug, L} in Bg(0).

(4.8.1)

Let us denote the solution of (4.8.1) by u*. By Lemma 4.7.1, we obtain

uniform bounds for ||ULH00,1;0,1/2 in Bg(0) x [0,00). Using the compactness

lemma, Lemma 7.3 in [65], we can obtain a solution u of (4.2.4) such that u”

converge to u uniformly. Now the conclusion follows from the uniform C*?

estimates and the stability property of viscosity solutions.
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Chapter 5

The obstacle problem for
parabolic Monge-Ampere

equation

5.1 Introduction

5.1.1 Backgrounds

The obstacle problem is an example of the free boundary problem, which
arises in Stefan problem, option pricing of American option, fluid filtration
in porous media, elasto-plasticity, optimal control, and financial mathematics
[35, 12]. In [11], Caffarelli established the regularity of the free boundary for
the classical obstacle problem. Later, this regularity result has been extended
to various class of obstacle problems by many authors [53, 58, 52, 68, 31, 10,
5, 56].

The Monge-Ampeére equation is one of the examples of fully nonlinear
differential equations but it could be degenerated if the second derivative is
degenerate, so we need extra estimates to obtain uniform parabolic opera-
tor. It arises in prescribed Gaussian curvature equation [62], optimal trans-

portation [66], and affine geometry [71]. Also, it has been applied to image
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processing [64, 15, 59], where preserving sharp edges and reducing noises are
important to overcome blurring problem. This problem can be resolved by
the fact that the diffusion driven by the Gauss curvature is slow near edges
due to the degeneracy of curvature.

Krylov suggested three versions of parabolic Monge-Ampere equation in
[49]:

—uy + (det D?u)» = f, (5.1.1)
[(—u,) det D271 = f, (5.1.2)
[det(D*u — w,L,)]" = f, (5.1.3)

where I, denotes the n x n identity matrix. Equation (5.1.1) is related to
the graph representation of the Gauss curvature flow (see [55] for instance)
and Equation (5.1.2) appears in the Gauss curvature flow represented by its
support function [72].

The obstacle problem for (elliptic) Monge-Ampere equation was first con-
sidered by [54] and later its generalization to non-convex domains was studied
by [74]. In addition, the very recent work by the first and the second authors
concerns the obstacle problem for the a-Gauss curvature flow in [55]. On
the other hand, obstacle type problems with zero lower obstacle for Gauss
curvature flow have been considered in [23, 24, 48, 19]. Also, the problem in

the Alexandrov sense with zero lower obstacle is researched by [67].

5.1.2 Main results

In this chapter, we would like to consider the obstacle problem for the
parabolic Monge-Ampere equation of the form (5.1.1). We prove the exis-
tence, uniqueness, and optimal regularity (C'!) under some structure condi-
tions via the penalization method and a priori estimates. As a consequence
of our approach, we also obtain the existence and uniqueness of the solution
of the Cauchy-Dirichlet problem for the parabolic Monge-Ampere equation
of the form (5.1.1) with the general forcing term f(z,t, u, Du). Moreover, we
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discuss the regularity of the free boundary using the method of blowup.
Precisely, we consider the following version of parabolic obstacle problem

for the Monge-Ampere equation:

min {¢ —u, —ug + (det D2u)% — f(x,t,u, Du)} =0 in Qp,
u=g on Jyfdp.

(PMAo)

Here Q) is a strictly convex bounded domain with 9Q € C3!, the forcing term

f € C*1(Qr x R x R"), the boundary data g € C*'(9,Qr), and the obstacle

function ¢ € C%'(Qr) such that the obstacle ¢ lies above the boundary data
g, i.e., ¢ > gon 0,Qr.

To state our main results, we introduce structure conditions on f and

assumption on the existence of a subsolution.

(A1) The function f has a lower bound: f > (min (bt) .
)

T

(A2) The function f = f(x,t,z,p) is nondecreasing in z.
(A3) The function f = f(xz,t, z,p) is convex with respect to p.

(A4) There exists a strictly convex subsolution u € C?(Qr) satisfying

—u, + (detyij)% > f(z,t,u,Du) in Qp and w =g on J,8r.

(A5) There exists a nonnegative constant a such that

2
’ (1— la — 2 ) > f,

and

. . . 2 \E e l 2
min {mlxn[gﬂ gt,ﬂlxn{fo} ((det D*g)= — f(-, g, Dg))} +f > gad’,

where d denotes the minimum radius such that 2 C By. In particular,
a=0if f, <O0.
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We will discuss about the conditions in Section 5.1.3 below.

Now we state our first main result:

Theorem 5.1.1. If the assumptions (A1)-(A5) hold, then there exists a
unique strictly convez viscosity solution u of (PMAo) with the optimal regu-

larity, CYY(Qr), satisfying u > u in Q.

The main strategy to have Theorem 5.1.1 is the penalization method.
Since we expect the solution to stay below the obstacle, a discontinuity of
the velocity u; occurs when the solution touches the obstacle. This makes
the problem difficult and that is why the optimal regularity of the solution
to (PMAo) is expected to be Ch! (see Section 5.2 for the definition). To
have the optimal regularity of the solution to (PMAo), we approximate the
obstacle problem (PMAo) by allowing the solution can pass the obstacle,
with the property such that the more the solution pass the obstacle, the
more “penalty” is imposed on the velocity u;. This approximation problem is
formulated as (PMAo,) in Section 5.3. We will prove various a priori estimates
for solutions u€ of the approximation problem (PMAo,) in Subsections 5.3.1-
5.3.3. The existence of u¢ and Theorem 5.1.1 can be given by a priori C*%-
estimates of u¢ and the method of continuity (see Theorem 3.13 in [61] for
instance).

We note that all the equations (5.1.1)-(5.1.3) can be viewed as concave
operators which are homogeneous of degree one. However, this homogeneity
causes some difficulties if we try to obtain interior C'**'-estimates since second
derivatives of homogeneous operators of degree one must be degenerate in
some direction. The equations (5.1.2) and (5.1.3) can make it possible to
overcome the difficulties by taking logarithm to both sides, which is not
the case for (5.1.1). Thus, the convexity condition (A3) for the forcing term
f(z,t,u, Du) is assumed due to the special character of the parabolic operator
(5.1.1). Including (A3), general and reasonable structure conditions which
have been considered in the literature are supposed to f(z,t,u, Du), see
Section 5.1.3 below for details.
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As we mentioned above, we also discuss the existence of the following

Cauchy-Dirichlet problem:

3=

—0yu + (det D2u) = f(x,t,u,Du) in Qp,

(PMA)

S
Il

g on Opfdp.

This result will be used to prove the existence of penalization problem (PMAo,).
Our proof will be based on the a priori estimates by using the method of con-
tinuity. To deal with the dependence on u and Du of the forcing term, we use
a Pogorelov type computation while obtaining interior C'*!-estimate. When
the forcing term f depends only on x and ¢, this problem has been studied
by some authors (see [39, 25, 69]).

Theorem 5.1.2. If the assumptions (A2)-(A5) hold, then there exists a
unique strictly convex solution u € C*(Qz) to (PMA) satisfying u > w in
Qr.

The last result is the free boundary regularity of (PMAo). Since the op-
erator (det DQU)% is defined only in the space of positive definite matrix, the
reduced problem, the obstacle problem with zero obstacle, is not appropriate
in the problem for Monge-Ampere operator. Hence, contrary to Laplacian and
fully nonlinear operator [53, 31, 32, 56], we develop the theory for (PMAo)

as it is without using the reduced problem.

Theorem 5.1.3 (Regularity of free boundary). Let u € Py(M) with an
obstacle ¢ such that
Po—f>c>0 inQf.

Let v := ¢ — u and suppose
6(v,X) Z € forallr <1/4,X € @y, NON(v). (5.1.4)
Then there is 1o = ro(u,®) > 0 such that I'(u) N Q;, is C" graphs.
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We note that the linearized operator £, = —0; + Ej(D2u) - 0;; plays an
important role throughout Section 5.4 in such as non-degeneracy (Lemma
5.4.5), the classification of the global solutions (Proposition 5.4.7), and the

directional monotonicity (Proposition 5.4.10).

5.1.3 Discussion on the conditions

The assumption (Al) implies f > 0 which is not assumed in Theo-
rem 5.1.2. Unlike (PMA), the assumption (A1) is almost necessary condition
in most cases. In fact, when the solution of (PMAo) touches the obstacle, we

can deduce
(det D*u)s > wy+ f = o+ f > f — (¢)”

in the contact set, which ensures the convexity of the solution u. Here we
used f = f(-,u, Du).

The monotone assumption (A2) is essential for uniqueness assertions. The
assumption (A4) has been appeared in many literature, see [8] for instance.

The convexity assumption (A3) is assumed to have the optimal regularity
in Theorem 5.1.1. This assumption has been commonly used in the Hessian
equation (see [61]). For example, 5}/% for 1 < k < n+ 1 and (S/ S, )Y/ k=™
for 1 < m < k < n+ 1 need the convexity assumption in the gradient
variable of f, where S, = Si(D?u, —u;) denotes the elementary symmetric

D? 0
" ) . In case of S,lli(fﬂ),

polynomial of degree k in the eigenvalues of (
—uy

the second form in (5.1.3), the convexity assumption is not needed since it
can be considered as an operator which is non-homogeneous and still concave,
by taking logarithm to both sides. Our equation, the first form in (5.1.3), is
more likely to S,i/k for k <n+1.

The assumption (A5) will be used to show the preservation of convexity,

see Lemma 5.3.3. Such conditions also appeared in [39, 69)].
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5.1.4 Notations

Q; (z,t) B,.(x) x (t —r?,1]

Qr Q% (0,7]

Q(t) Q x {t} the time section with respect to ¢

N(u) {(z,t) € Qr|u(z,t) < ¢(z,t)}  the non-coincident set
A(u) {(z,t) € Qr |u(z,t) = ¢(x,t)}  the coincident set
I'(u) ON(u) N Qr  the free boundary

Snxn the set of symmetric n X n matrices

s {r € R""||z| =1} the unit n-sphere

F(M) (det M)= for M € S™n

Pu —Ou + F(D?u)

L, —0; + Fjj(D?u) - 035

P.(M), Px(M)  see Definitions 5.4.2 and 5.4.3
6 (u, ), 0 (u) see Definition 5.4.1
Ly(Qr), Wz”(QT) see Section 5.2
(€

C*(Qr), C*(Qr) see Section 5.2

5.1.5 Outline

The organization of the chapter is as follows. In Section 5.2, we provide
definitions of viscosity solutions and give a proof of the fact that the n-th
root of the determinant is a concave operator. In Section 5.3, a priori C'!-
estimates for the approximation problem (PMAo,) are established and finish
the proof of Theorem 5.1.1 and Theorem 5.1.2. Finally, in Section 5.4, we
study the regularity of the free boundary of the obstacle problem.

5.2 Preliminaries

We give definitions of function spaces over space-time domain. Also, we in-
troduce the concept of viscosity solutions that is useful to define solutions
of obstacle problem for non-divergence form operator. Finally, we prove the

concavity of the operator F' which we use later in the chapter.
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The Lebesgue space Ly(Qdy) for ¢ > 1 consists of all measurable functions

on @t with a finite norm

1
T q
ull Loy = </ / |u(a:,t)|qcla:dt> and  [[ul] oo (o) = esssup |ul.
0 JQ Qr
The Sobolev space W24 (Qr) for integer [ and g > 1 consists of the ele-
ments of L,(€r) having generalized derivatives of the form DjD? with any

r and s satisfying the inequality 2r + s < 2[. We define its norm to be

2l

lellyzeiign = > (u)iap  where ((W))ig, = > |ID;Dull,q, -

3=0 2r4+s=j

Given a nonnegative integer k, the function space C*(Qr) is the Banach
space of all continuous functions on Q) with derivatives of the form D) D;
for all || 4+ 2s < k, where

ol
_ 1 n _ A1 n —
=07, =7+ +9" and D;—m;

under the norm

lullor@rny = Y. sup_|DiDju(x,t)] < oc.
hy|+2s<k (@) €QT

Given a nonnegative integer k and 0 < a < 1, the Holder space C*(Qr)

is the Banach space of functions in C*(Q7) under the norm

||u||ck,a(m) = ||“||ck(m)
|D;D;U($1, tl) — D;D;U(Q?Q, t2)|
(|1 = 22| + [t — ta)/?

+ Z sup < 0.

[y|+2s=k (T1,t1)#(@2,t2)EQ7

For simplicity of notation, we define
lully = luller@ry  and  lully o = lullore@r)
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and denote C*1(Qr) = WEPETD2(Q). For a forcing term f(z,t, 2, p),

f € CFY(Qr x R x R") is understood in a natural way.

Now we consider definitions of superjet and subjet. The concept of vis-

cosity solutions to (PMAo) will then follow.

Definition 5.2.1 (Superjet and Subjet). Let u be an upper (resp. lower)
semi-continuous function on Qr and (z,s) € Qp. The superjet J§ u(z,s)
(resp. subjet Jo u(z,s)) of u at (z,s) is defined to be the set of points
(a,p, X) € R x R" x 8™ such that

u(z,t) < (resp. z)u(z,s)+a(t—s)+<p,:p—z>+%(X(:c—z),:L'—z>+0(]t—s|+\x—z\2)

as (x,t) = (z,s) in Qp.
We also set Jg/z;u(z, s) = Jo,u(z, s)N(RxR"x ST""), where 87" denotes

the set of positive semi-definite symmetric n X n matrices.
The following lemma explains the reason why we do not consider J;{;u(z, s).

Lemma 5.2.2 ([1]). Let u be an upper semi-continuous in Q. Then, u(-,t)
is convex for each t € [0,T] if and only if X > 0 for all (a,p, X) € J;{Tu(z, s)
and (z,s) € Qr.

Now we are ready to define viscosity solutions.

Definition 5.2.3 (Viscosity Solutions). Let u be a function on Q7 such that
u(+,t) is convex in 2 for each ¢ € [0, T].

(i) We say that an upper (resp. lower) semi-continuous function u on Qp

is said to be a viscosity subsolution (resp. supersolution) of
— Qpu+ (det D*u)w = f(z,t,u, Du) (5.2.1)
in Qp if for all (z,t) € Qp and (a,p, X) € J& u(x,t) (resp. J;);u(x,t)),

—a+ (det X)w > (vesp. <)f(x,t,u(z,t), p).
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(ii) We say that u € C(Qr) is a viscosity solution of (5.2.1) if it is both a

viscosity subsolution and a viscosity supersolution of (5.2.1).

(i) A wiscosity solution of (PMAo) is an upper semi-continuous function
on Qp such that u is a viscosity subsolution in €7 and a viscosity

supersolution in N(u) of (5.2.1), u < ¢ in Qr, and v = g on 0, .
We close this section by showing that the operator (det M)% is concave.

Lemma 5.2.4. Let F(M) = (det M) be an operator defined for M € Sy,
where ST*" is the set of positive semi-definite symmetric nxn matrices. Then

F is a concave operator.
Proof. By continuity of the operator F', it suffices to assume M is positive

definite matrix. We observe that the concavity assertion is equivalent to

F(N,N) =" FMN;Ny <0 for any matrix N = (V). (5.2.2)
i,5,k,l

To show this, we need the formulas

. 1 -
P = ~FMY, (5.2.3)

g 1 . 1 ik 1 1
Fzg,kl = TFMZJMM — 7FMZkMJl’ (524)
n n

where M is the (i, j)-component of the inverse matrix of M. We may assume
M is a diagonal matrix since F(M) = F(UMU™') for any invertible matrix
U. Let us denote this diagonal matrix by M = diag(My, My, - -+, M,,), where
each M; is positive. Then the left hand side of (5.2.2) becomes

.. F F 9
PN =3 g Voo = 2 a6
ik v ij v

(1-n)F F F o,
— N N2 ——  NuN;; — N2
Zi: n27\[i2 “+Zn27\[i7\[j w1 ;RM/‘[J‘ %)

i
__F (Nz“_NJ“>2_Z F e
2 i . . Y
2n oy M;  M; oy nM; M;
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which is clearly nonpositive. This completes the proof. O

5.3 The optimal regularity

In this section we will obtain the existence and optimal (C'!) regularity of
solutions to (PMAo), as stated in Theorem 5.1.1. Our proof will be based on
the uniform a priori estimates for the singular perturbation problem defined
below in order to use the method of continuity. Throughout the section, we
agsume the assumptions in Theorem 5.1.1.

Let us introduce the following singular perturbation problem with a penalty
term:

—uf + (det Dzug)% = f(z,t,u, Du) — Be(¢p —uf)  in Qr,

(PMAo,)
ut = g on 6pQT,

for given € > 0, where 8, € C*°(R) is a so called penalty function satisfying

Be(z) <0, Bi(z) >0, f(z) <0 forz <0,

Be(z) = —0 if z<0,e =0,

Bs(2) =0 if 2 >0,
Be(—e) = —1.

We begin with the uniform boundedness of 5.(¢ — u¢) which is important

when we deal with convergence.

Lemma 5.3.1. Let u® be a solution of (PMAo.). Then
—C < Bs(¢p—u) <0,

where the constant C' = C(||¢]|,,n) is independent of €.

Proof. By the definition of 85, we see that Bs5(¢ — u®) < 0 on Qp. To have
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the lower bound of 5, we define

w(m,t) = Be(é(xvt) - ue(xvt))

and take Xy € Qr such that w(X,) = infg-w < 0. Since u® = g < ¢ on 9,z
and f5(z) = 0if z > 0, we have X € Q. Thus it follows from the monotone
increasing property of 85 on (—oo,0) that ¢ — u. also has a minimum at X,
and consequently D?¢(Xy) > D*u(Xy) and 9,¢(Xy) < dyu(Xy). Hence,

Fla, t,us, Duf) — w(Xo) = —0uf(Xo) + (det D2uf(Xo))n
< —06(Xo) + (det D2$(Xo)) = P (Xo).

Therefore, we have w(Xy) > —P¢p(Xj). This completes the proof. O

Our next task is to show the uniform C! estimate which enables us to
control the forcing term f. It is exploited that the subsolution w in the

assumption (A4) is also a subsolution of (PMAo,).

Lemma 5.3.2. Let u® be a solution of (PMAo,) and assume (A1) and (A4).
Then
[[u]l, < Co,

for some constant Co = Co(|[ull; , ||gll, , Qr,n) independent of €.

Proof. We start with a unique function h satisfying

1
—ath + —Ah=0 1in QT,
n (5.3.1)

h =g on 0.

Since (det D2uf)n < LAwf and f — B5 > 0, v° is a subsolution of (5.3.1)
and v < h in Qp. On the other hand, since the function u < ¢ and thus
Bs(¢ — u) = 0, u is a subsolution of (PMAo,) and v > u in Q7. Thus, we

have v < u° < h in Qp and from the strictly convexity of u®, it is easy to
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show

|

sup [Duf| = sup [Du

Qp poET

Furthermore, it follows from u = «* = h on 0,Qr that for any z € 9 and
0<t<T,

D.u(z,t) < Dou(z,t) < Dch(x,t),
where e denotes the inward unit normal to 092 at x. Thus we can conclude

ully < Colllully s lglly 2, m).

This completes the proof. O

Using Lemma 5.3.2; there exist constants p; and s (independent of €)
such that

0 < py = inf f(-,u®, Du) < sup f(-,u®, Du®) = py < 0. (5.3.2)
Qr m

From the initial data g, there are also constants x; and ko such that

o . . . 2 % - .
K1 = min {aglil[g,n gt,len{fO} ((det D*g)= — f( ,97Dg))}

<max{ sup g, sup ((det D%g) — f(-,g,Dg)) = ko.
o0 x[0,T) Qx{0}

5.3.1 Preservation of convexity and a priori speed es-

timate

This subsection will be devoted to the proof of a preservation of convexity
and a speed bound. We start with the preserving of convexity whose direct

consequence is a lower bound for the speed. From the assumptions (A1) and
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(A5) in Theorem 5.1.1, we can take a positive constant v such that
: L
min{¢;, 0} + 1 > v and Ky + py — iad > (5.3.3)

Lemma 5.3.3. Let u® be a solution of (PMAo.) and assume (Al), (A2),
and (A5). Then

(det D*uf)n = uS + f(-,u°, Duf) > v,

where v is the constant defined in (5.3.3). In particular, u§ > v — us.

Remark 5.3.4. When [ = f(z,t) and max(f;); < oo, we may take a =
max(f;)+ as in [39, 69].

Proof. Let v be a positive constant satisfying (5.3.3). By translation, we can
assume Q C Byjs. Let £1 = =0, + F99;; — f,,0; — f.. Then we have

Lyug = Dy(f = Ps(¢ = w) = fpu ()i = foug = fi + B5(u” — @)

For a small constant b > 0, consider an auxiliary function w = La|z|* — bt,
where a is the constant in the assumption (A5) of Theorem 5.1.1. Since
S F' = £ r((D*f)!) > 1, we obtain

Liw>a (1= fpz;— f|z?/2) +b>a (1= |fold— f.d*/2) +b> fi+b.

Thus, we have shown £;(uf —w) < f5(u® — ¢); — b.
If u; — w attains an interior minimum over Q7, we have £;(uf — w) >
—f:(uf —w) at the minimum point. Since both u; — w and ui — ¢, are less

than or equal to u§ — min{¢;, 0} + T, we obtain

b < folup —w) + B5(u — &) < (f: + B5)(uf — min{¢y, 0} + 0T
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which implies u§ > min{¢;,0} — 07T from f, + 55 > 0. Otherwise, we have
€ : 1 2
u; > ming; — 5ad .
In any case, it follows from (5.3.3) that
u; + f > v —0bT.

By taking b — 0, we have the desired result. O
Next, we will show an upper bound for the speed.

Lemma 5.3.5. Let u® be a solution of (PMAo.) and assume (A2). Then we

have

uf < el max { (inf inf fi(-, v, Dv)> s K2, qbt} .

vEA Qr

Proof. Let us define v = e~'u$ and then, it is easy to verify that

Liv = e " (fi + uf — B5(dy — ug)), (5.3.4)

where £1 = =0, + F90;; — f,,0; — f.. If a maximum of v is attained on the
parabolic boundary 0,7, then we are done. Suppose that v has its positive
maximum over Qp at Xy € Qp. Then we have £,v < 0 at X,, and therefore,
(5.3.4) becomes

fi+u; — B5(dr —u;) <0 at Xo.

At this point, if ¢ —uf <0, then uf < —f;. Otherwise, u < ¢;. In any case,
we have 0 < v(Xy) < u(Xp) < max{—fi, ¢:}, and the conclusion follows. [

Remark 5.3.6. In case of (PMA), we also have the similar results to Lemma 5.3.3
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and Lemma 5.3.5. More precisely, we can obtain

w4 f(,u,Du) > v and uy < eTmax{<inf inf f,(-, v, Dv)) ,/{2}

vEA Qr
without assumption (A1) in Theorem 5.1.1 by applying the comparison prin-
ciple directly.

5.3.2 A priori interior C'!'-estimate

We will prove a priori interior C'*!'-estimate for u¢. From the results of the

previous subsection, Lemmas 5.3.3 and 5.3.5, we note that
0<v<F<|F, < oo, (5.3.5)
where

1
|Fllo = HF(DQue)HO = sulL|F(D2u€(x,t))| = sup det(D*uf(z,t))n
(z,t)eQr (z,t)eQr

is a bounded quantity. We also notice from Lemma 5.3.2 that

IFIR 2 2= 1 ot @il -cocoim) < 0

and we define || f||; ; in a similar way.
As we mentioned in the introduction, the operator Pu must be degenerate
in some direction so we need to assume the convexity of f in the gradient

variable to have C'b! estimate.

Lemma 5.3.7. Let u® be the solution of (PMAo.) and assume (A1)-(A3)
and (A5). Then we have

sup |D*uf| < C | 1+ sup |D*uf| |,
Qr OpQr

where the constant C depends only on n, |Q|, v, |[Flly, [¢lloy, 115, and [Jul]; .

86
fx--! _CI:I_ ]-H -;j]_ oy
¥ — I o



CHAPTER 5. THE OBSTACLE PROBLEM FOR PARABOLIC
MONGE-AMPERE EQUATION

Proof. In this proof, we will use u instead of u® for simplicity. For £ € R™,

we set
a 2 b 2
W = Uge €XP §|D(u—¢)| +§|$| ;

where a and b are positive constants to be determined later. Since Qp x
S"~! is compact, w has a maximum over this set. We may assume that the
maximum of w is achieved at some point (g, ¢y, ) in Q7 x S*~1. By rotating
the coordinates {z1,--- ,x,}, we also assume that £ = e; = (1,0,---,0) and
that D?u(zo, o) is diagonal.

If uyi(zo,to) < ¢11(x0,t0), we are done. So we assume uyi(xg,ty) >
o1 (o, to). Setting F(D?u) = (det D2u)x, we have

F7=—u7 and F7"=—uu — —u™u/". (5.3.6)
n n n
The linearized operator at (o, tp) is given by
ﬁu’U = —ﬁtv + F“@Zjv.

Now, we compute that

Wy U1t
= +a(u — ¢)r(u — @)k,

w U111

W; U114

— = — +a(u— d)r(u— @) + bx;,
w U111
Wi  WW; Uiy | Uil
o 2 2 +

w w ufy U11

+a(u — P)ri(u — @)rj + alu — @)r(u — @)rij + bdy;.
Since F9%50 = ELyiiyw;, we have

u Fij i j u
,C w Z . ’U,121 U1y + ,C U1 + a(u . (b)kﬁu(u B ¢)k
w Uiy U (5.3.7)

+ aFij(u — gb)kl(u — ¢)kj + bF”
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Recall the equation (PMAo,) and differentiate this to get

Lyug = —Fij’kluijlukzl +Dunf— 5('5 : (¢ - U)u - 5:5/ : (Qf) - U)%

Since f5 >0, 8§ <0, and wuy(zo, to) > é11(zo, to), we obtain at (zg, to),

(u - ¢)k£uuk > (U — (,b)kaf

. ik, b (5.3.8)
w11 = uijiugn + Dy f-

Moreover, we calculate
aF
n

aF7(u— @)pi(u— @)r; > —(Au — 2A0). (5.3.9)

By multiplying (5.3.7) by w1 (2o, to) and replacing (5.3.8) and (5.3.9) into it,
we infer that at (zg, o),
0> Eiw > _Fijulliullj

w U1

aF bF .
—a(u — ¢)rLoruy + T(AU —2A¢)uq; + WU”Un

— F9uun + D f + a(u — @)Dy fun

(5.3.10)

The first inequality is obtained from that w has it maximum at (xg, to).
On the other hand, from (5.3.6) and the fact that D?u(zo, ) is diagonal,

we get

' 2
Fuyung ij Fu3y, Fu?, Fu:
J ij,kl 11¢ igl 111 Wyl
- = F"uum = — + - —
U1 U Ui NUGU; N2U;U
2
2 2
= E E %_E E Wit >_FU111
o T 2 . = 2
i j#1 Nl n i Ui nui,
(5.3.11)
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by the Cauchy-Schwarz inequality,

1

2
F Uii1 F U?ﬂ
dba e
Next, we consider terms involving f. By simple computation,

Dyf = fi + four + fpwin,
Dy f = fir +2f1.u1 + fzzu? + 2fip,uin + 2fp,uiun + frun (5.3.12)

+ fppunntijn + fp i
Combining (5.3.10), (5.3.11) and (5.3.12),

Fu3y,
0=~ nu21 + foup ity + fpwin + a(u = @) f urpun

F bE .
+ %(Au - 2A¢)u11 + ?UU’U/H — CL(’LL — ¢)k£¢kull (5313)

- C — C(l + (I)Uu,

where C'is a positive constant depending only on ||ul|,, || f|l5. and [|¢]],. From

the convexity of u and the boundedness of F,

aFu3,

F
%(Au — 20p)uy; > — Cauy, (5.3.14)

where C' depends only on n, ||F||,, and [|¢||,. On the other hand, if we define

b= asup |[(u— &)xdijrl,
Qp

we see that

%u”uu —a(u — @)pLorurr > alu — P)rdrus- (5.3.15)
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Combining (5.3.13), (5.3.14), and (5.3.15), we arrive at

2
_Fulll

F
0= nu2 + (na + fmpl) u%l + fpittinn + a(u — @i fp, urrtinn
11

—C — C(]. +CL)’LL11,

where the constant C' depends only on n, ||F||g, [|9]l5,, || f[l5; and [Jul];.
Notice that w; = 0 at (zg, ), which implies

0= 1 g(u— @)p(u— b + b,

U1

and therefore,

foswinn + a(u — @) fp, urruan = fpun(alu — @)rori — bxy),

Fu? F
—ng > —EQQ(U — ¢)iui, — Ca’(un + 1),
11

where C' depends only on n, [[Fly, |#]l,,, and [ul];. If we define

6 = sup | D(u— ¢)|*,
Qr

we finally obtain that

Fo F
02(_rzf*na+ﬁwQUi—Cﬂ+a%—Cu+a+¥wn

Notice that

F@2+F+f Fo 12+F+f
——a"+ —a =—\a— (= —
n n pip1 n 20 4n© pip1

and that f is convex with respect to p variable so that f,,, > 0. Choosing
a = (20)7!, we conclude that

un < C,
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where the constant C' depends on n, [Q, v, [[F|o, [¢ll5 , [[f]l3, and [|w]|,. This
completes the proof. O

5.3.3 A priori boundary C'!-estimate

In this subsection, we consider a more general equation without the obstacle,
(PMA),
1
—0yu + (det DQu)” = f(z,t,u, Du) in Qrp,

u=g on Opf2r.

The goal here is to prove the a priori boundary C*!'-estimate for a solution
of (PMA).

Proposition 5.3.8. Let u be a solution of (PMA) and assume (A2), (A4),
and (A5). Then we have

sup |D*u| < C
0pQr

where the constant C' depends only on || f|]5, lglls1s lully, 7, and n.
We postpone its proof for a moment. Assuming this, we have the following;:

Proposition 5.3.9. Let u® be the solution of (PMAo.) and assume (Al),
(A2), (A4), and (A5). Then we have

sup |D*u| < C
0pQr

where the constant C' depends only on || f|3, glls,, llully, Qr, and n.

Proof. Let h be the solution of (5.3.1) in Lemma 5.3.2. Then, u® < h in Qp
and h = g on 9,Q7. Let o := 3 infy,0, (¢ — h) = Linfy,q,(¢ — g) > 0. Now

define a set

U={X€Qr:d—h>n
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so that U contains a tubular neighborhood of 9,{27. Then we deduce
o—ut>¢p—h>n inU
and we see that S.(¢ —uf) = 0 in U. Thus, u® satisfies

—opu® + (det Dgua)% = f(X,u®, Du®) in U,

u=y on 9,y
Now the conclusion follows from Proposition 5.3.8. |

Now we prove Proposition 5.3.8. First, we remark that (5.3.5) is still
valid for solutions of (PMA) since we can easily repeat the arguments in
Lemma 5.3.3 and Lemma 5.3.5 (see also Remark 5.3.6). Let us take a point
(wo,t0) € 9,Q7. It is enough to consider the case that to > 0, since D?u(x, 0) =
D?g(x,0) is controlled by the initial data. Thus, we consider the case xq €
09 and ty > 0. We may assume that x, is the origin and the interior unit
normal vector of 90 at zy = 0 is e,,. In a small neighborhood U’ of 0/ in R"~!,
the boundary 99 is given by a graph (z/, p(z')) where 2’ = (z1, -+ ,2,_1),

and we can express p as

/ 1 713
T = pla') = 5 > Baszazs + O(|2/]*), (5.3.16)

where Bug = pas(0') and Greek letters a and 5 go from 1 to n — 1. We note
that since €2 is strictly convex and bounded, B,z is bounded below and above
with constants depend only on the boundary of 2.

We start with the estimate of the second derivates with respect to tan-

gential directions for the solution u.

Lemma 5.3.10. Let u be a solution of (PMA). Then we have
|aaﬁu(07t0)| SC7 fOTl Sa76§n_17

where the constant C' depends only on 0L, ||ul|, and ||g]|,-
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Proof. Since u — g vanishes on the lateral boundary 99 x (0, 7], we see
u(x', p(a'),to) = g(a', p(z), to) inU". (5.3.17)
This implies
Dos(u—g) (@', p(2'),t0) =0 for 1 <a,f<n-1,
so that

(0o + £a0n)(95 + p0n)(u — g) (&', p(z'), to) = 0.
Since p(0') = 0 and p,(0") = ps(0") = 0, this gives

(u = 9)as(0,t0) = —pap(0')(u = g)n (0, t0). (5.3.18)

Now we have

[0as1u(0, t0)| < 10apg (0, t0)] + pas(0')|(u = g)n(0, o),

and therefore, the conclusion follows. |

We briefly remark that (5.3.18) shows the relation of the normal and
tangential derivatives, i.e., the normal derivative is heuristically equal to the
second tangential derivatives. We also remark here that this tangential second
derivative implied by not the equation but the regularity of domain 2, the
boundary data g, and Lipschitz regularity of u up to the boundary.

Now, we claim that ug, has a uniform lower bound on the boundary for

any tangential direction &.

Lemma 5.3.11. Let u be a solution of (PMA) and assume (A1), (A2), and
(A5). Then there is a uniform constant co = co(0€2, [|glls, ,v) such that

37 uas(0,t0)als > co > 0,

a,f<n
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for any unit vector £ = (&1, ,€n1)-

Proof. We may assume that £ = e;. In the neighborhood U’ x (0, T of (0/, to),

we can write

1 )
g(I/: p($/), tO) = g(O, tO) + ga(oa tO)‘ra =+ Ef)/a,@xocwﬁ + O(|$/|3) (5319>

Let /\ - ,01’1/1(6’) == %1117 A = (gl(OatO)a e ,gn71(07t0)7 >\)7

’gL:U—g(Oﬂfo)—ACL',

and

flx,t,z,p) = f(z,t,2+g(0,t) + A-z,p+ A).
Then, it is easy to verify that
— 0y + (det D*@)w = f(x,t, 4, Di).
Moreover, from (5.3.17), (5.3.19), and the definitions of @ and A, we have

D110(0,t9) = D11u(0,t9) — Ap11(0') = D11g(0,t0) — AByy = y11 — AB11 =0,
(5.3.20)

which implies
u11(0, %) = 11(0,t0) = —n(0,%0)p11(0")

since Dnﬂ(o, t()) = ’17611(07 to) + ﬂn(O, to)pu(ol).
It remains to show that —,,(0,%) has a uniform positive lower bound.

Hence, we construct a barrier function for @. By (5.3.16) and Young’s in-
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equality,
2 1
o = % =3 > Bagtazs + O(2'F)
H (@A) A(LD) (5.3.21)
2
< T htat C ( Z x5+ |x|4> in U,
1 1<B<n

where C' = C(92). On the other hand, we see from (5.3.17), (5.3.19) and
(5.3.20) that

1 ,
i=u—g(0,t) —A-z= 3 > eszezs+O(2'])) iU (5.3.22)
(a,8)#(1,1)
Therefore, by (5.3.21), (5.3.22) and Young'’s inequality, there is C'(9%2, ||g]|; ;)

such that
ﬂ|3g < Z a1;017; +C< Z .17?3 + |1‘|4> ,

1<j<n 1<p<n
for some constants a;;, 1 < j < n.

Consider a barrier function h defined by

1
h = —az, + blz|* + 3B Z (a1j21 + Bx;)?,

1<j<n

where constants a, b, and B will be determined below. Denoting the k x k
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identity matrix by I, we see that

play+- o +at,) a0 an
a
D%h = 21, + 2
B]n—l

A1n

20+ (§ — gp)(aly +---+af,) 0 0
a2

(2b + B,

Q1n

and thus det D*h = (2b + B)"'2b (1 + i (@ a%n)). First, we
take a constant B = B(C) such that

1
Z Q10125 + C < Z 1’% + |.T4> S ﬁ Z (alja:l + BZI?j)Z on Of).
1<j<n 1<B<n 1<j<n

Then, choose small b = b(9<, [|g[5, ,v) > 0 such that
(det D2h)» < v < Oy + f(x,t,u, Du) = d,ii + f(z,t,0, Dit) = (det D*q)n

in Qx{to}, where v is the positive constant in Lemma 5.3.3. Since €2 is strictly
convex, there is a small positive constant a = a(b, 9Q) = a(99, ||g|l5, , v) such

that —ax,, + blz|> > 0 for € 9Q and therefore we have
u<h on 0.

From the maximum principle, @ < hin Q x {to} and @(0,ty) = h(0,ty) =
0. By taking a derivative with respect to x,, we have —t,, > —h, =a > 0

at (0,%). This completes the proof. O

In the next lemma, we shall estimate the mixed derivative 4, (0, o) for

a=1,2,--- ,n—1.
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Lemma 5.3.12. Let u be a solution of (PMA) and assume (A1), (A2), (A4),
and (A5). Then we have

|0nau(0,t0)] < C forl1<a<n-—1,
where the constant C = C(0Q, |[ull,, [|fll5, lgll5,v)-

Proof. Let us consider the vector field

T, =0, + Z Bag(xgan — .Tnag)

B<n

and the linearized operators
Fo..
ﬁu = —825 + —u”aiaj, ;Co = Eu — fpi&-,
n

where u denotes (i,7) component of inverse matrix of D?u. Recall that
u—g=01in U x [0, o], where U’ is the neighborhood of 0" introduced at the
beginning of this subsection. Differentiating this with respect to u — g and

recalling (5.3.16), we obtain that

0= Da(u—g) = (0a + padn)(u—g)
_ (aa ' ”leagxﬁan> (u—9)+O(l«'P)
p=1
=T,(u—g)+O0(2) inU x[0,t)].
Thus, we have

|To(u—g)| < CLla'* in U’ x [0,t] (5.3.23)

for some C; = C1(09). On the other hand, by a direct computation (or using
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that our operator is invariant under the rotations), we can get

Lo(Tou) = To(Luw) = Taf (2, t,u, Du) < fp, Toui + COQ, [ £1I1, [Jully),
Lo(Tag) = —=CO 117, llglls) = CO2n, I £115 llglls) D u',

which yields

Lo(Ta(u — g)) < Cs (1 n Zuii) i Q, (5.3.24)

Cwhere 5 = G50, || f1l3, llglls » llull,)-
Next, we shall construct a barrier function for T, (u — g) in Q9 x [0, ],

where Q2 := {|z| < 6} N Q. In order to do this, we use

1 1 1
') = Tn — = BagTaty — = Ma? + >l |?
w(z' x,) = x 5 BasTatts — 3 xn+4u|x|,

where p denotes the minimum eigenvalue of the matrix B,s and M will

be determined later. We start with estimates on the lateral boundary of

Q° x [0,t]. On (992° N IN) x [0,t0], by (5.3.16),

1 1 1
w = Zu|x'|2 — iMxi +O(|2']®) > 1u|x’|2 — Cs|2'|?,  for C3 = C5(Q2, M) > 0.
Ifo < ﬁ, we have

w > ém? on (90 N9 x [0, o). (5.3.25)

On K x [0,to], where Ky := 9Q° N QN {ipla’|* > M2}, using z, > p(z’)
and (5.3.16), we see that

1 1 1 1 1
w>p— §Ba5xa1:5 — §Mxi + 1u|z'|2 = —iMxi + Zu\x’|2 +O(|7')*)

1
> —Cula'P + gule' P,
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for some Cy = Cy(90). Tec;» we have
1 Mup
> —plo | 752 Ky x [0,). 5.3.26
w> gl > st o Kax 0.t (5:3.20

Finally, on Ky x [0,o], where K, := 9Q° N QN {3pl2/|> < Mz2}, using

Ty > ,/(4MJr 0, we see that

>4/ 6 — Q.M 62,
4M—|— Gl )
Ifo < 205 /7( M“ y> We have

w > 0552 on K2 X [O,to] (5327)

From (5.3.23), (5.3.25), (5.3.26), and (5.3.27), it is immediate that if we
take sufficiently small constant 6 > 0 and a constant A > 0 such that § <

min (8“73, e ﬁ1 /W) and A > C;/min (1/87 T u+4M C5> then
Aw+Ty(u—g) >0 on 99 x [0, ).
Our next task is to show that
Lo(Aw £ To(u—g)) <0 in Q° x (0, (5.3.28)
Indeed, from the definition of w and u, we calculate that
L,w= %uij (—Bij — Méindjn + g%) < _;LMKZnUii - %Munn

Using the arithmetic-geometric mean inequality, we have

F B F M(nfl)/n
- il — Mu™ >
4nu2u + 2n v= 4

i<n

(2M>1/n,
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and then we see that if M > /2,
F B F M(n—l)/n 'u(n—l)/n )

- w = nn __ /n

Low < 4nu2u 2nMu —(2M)".

<n

F .
1/n _ W
(2M) /™ < 4nu§ u

Therefore, by the definition of Ly and w,

F P 1/n N
Eowg—@uZu —T(QM) + Cs(1+ Mo) in Q°,

for some Cg = Cg(||f]|7,0%). If we choose M so that w

2Cs + 1 and for this M we take 0 so that M§ < 1, then we have

Low < —%uzu“—l <G (143w,

for some C7 = C7(v, M), by (5.3.5). By choosing A > Cy/C; and recalling
(5.3.24), we have the desired result, (5.3.28).

In order to finish the proof, we need to prove that

Aw+Ty(u—g) >0 on Q° x {0}.

Since u — g = 0 on  x {0}, we obtain T,,(u — g) = 0 on Q x {0}. Now it
suffices to show that w > 0 in Q°, which follows from the maximum principle
to w in ©° since w > 0 on 9Q° and %uijaijw < 0in Q9.
From the comparison principle, we have
|To(u—g)| < Aw in Q° x [0, ).

Using this and T, (u — ¢)(0,t) = w(0,te) = 0, we conclude that

|07 To(u—g)| < Ad,w=A at (0,t),
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which implies
|Onau(0, t0)| < COOX lully I f1l3, llglly, ) for 1<a<n-—1

This completes the proof. |
The last lemma in this section is bound for wu,,, (0, t).

Lemma 5.3.13. Let u be a solution of (PMA) and assume (A1), (A2), (A4),
and (A5). Then we have

|0pnnu(0, )] < C

where the constant C' = (O, lully, [1f 11z llglls.1 > v, [1F'lp)-

Proof. Denoting the cofactor of u;; by A%, we have
Z A"y, = det D*u = (f 4+ )",
=1
and
|A™ | < (f +u)" + D [A" | at (0,10). (5.3.29)
i#n

From Lemma 5.3.11, we see that A™(0,tq) has a uniform positive lower
bound. By (5.3.5), the first term in the right hand side of (5.3.29) is uni-
formly bounded (see also the remark at the beginning of the proof of Propo-
sition 5.3.8). Moreover, Lemma 5.3.10 and Lemma 5.3.12 gives the uniform
upper bound for the second term of the right hand side of (5.3.29). This
completes the proof. |

5.3.4 The optimal regularity of the obstacle problem

The results of the previous subsections read as follows:
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Theorem 5.3.14. Let u® € C*(Qr) N C*(Qr) be a solution of (PMAo,).
Assume that (A1)-(A5). Then

[y, < €

where the constant C' depends on ||glls 1, | fll5 9ll51, llully, Qr, and n, and

is independent of .

We also have the higher order estimates.

Proposition 5.3.15. Let u € C**1(Qp)NC*2(Qr) be a solution of (PMAo,).

Assume that (A1)-(A5). Then we have for 0 < a <1,

[ullya < Ce,
where the constant C. depends on €, ||glliyy 15 111 19l [y, Qr, and
n.

Sketch of proof. From Krylov-Safonov’s estimate in [51], we may obtain the
Holder regularity of dyu as in Step 1 of [70, Theorem 2.1]. Observe that our

equation is
(det DQu)Z =f+u — Bs(¢—u).

Since (det Dzu)% is a concave operator, we have a space Holder estimate by
Evans-Krylov theory (see [29] and [50]). Now the Hélder estimate for D?u
in ¢ follows from the same argument as in Step 2 of [70, Theorem 2.1]. By

standard Schauder theory, we have the desired result. |

Using the method of continuity and the a priori estimates which have
been shown above, we can prove the existence of solutions to (PMAo,) having

uniform C! bound.

Lemma 5.3.16. Assume that (A1)-(Ab). There exists a unique solution u® €
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C3(Qr) N C*(Qr) of (PMAo,) for each 0 < e < 1 satisfying
ut >win Qr and |u]l, < C,

where the constant C' is independent of €.

Proof. The uniqueness assertion follows from the comparison principle since
f» > 0. We prove the existence assertion in two cases.
Case 1. Assume that u € C=(Qr). Let us define

f = —u, + (det D*u),

and f¢(z,t,z,p) = f(x,t,2,p)— PBs(¢—2). Since u is a subsolution of (PMA),
we know that f > f(-,u, Du) > p; > 0. For each s € [0, 1], we consider the
Cauchy-Dirichlet problem

—0pu + (det DZu)% = sf(z,t,u, Du) + (1 —s)f(x,t) in Qp, (5.3.30)
u=g on  Opfdp. -

Let u € C3(Q7) be a solution of (5.3.30) and let B be the class of solutions
v of (5.3.30) such that v > u in Q7. Since u is also a subsolution of (5.3.30),
it follows from the comparison principle that any strictly convex solution
u € C>(Qy) satisfies u > w. This gives u € B, and by the Proposition 5.3.15,

[ully, < C: independent of s.

Hence, it is possible to show, by using the method of continuity, that for each
s € [0,1], the equation (5.3.30) has a strictly convex solution in C%(Qr). As
in Proposition 5.3.15, it follows from the standard regularity theory that
u € CYQr).

Case 2. We now consider the case u € C*(Q7). Take a sequence of strictly

convex functions u,, € C®(Q) converging to u in C?(Qr). Since u is a
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subsolution of (PMA), we may assume that

1
n

=0, + (det D*u, )™ > (1= 27") fr(2,t, 4y, Du,,) in Q.

r=m>

Setting g = ,,]9,9,, we consider Cauchy-Dirichlet problem

—Ou+ (det D) = (1—27™)f in Qp, 531)
U= Gm on  Opfdy. o

By the result of Case 1 and the fact that w,, is a subsolution of (5.3.31),

there exists a strictly convex solution wu,, € C=(Qr) of (5.3.31) satisfying

[l < Ck, a lully)

for k > 2 and 0 < a < 1. Here the constant C(k, o, ||ul|,) also depends on

the other known data. Thus we can extract a subsequence converging to a
solution of (PMA) in C*=(Qr). O

proof of Theorem 5.1.1. We begin with the uniqueness assertion. It was shown
in [45] that the comparison principle holds for viscosity subsolutions and su-
persolutions of equation (5.2.1) if f, > 0. Assume that there are two viscosity
solutions u; and us of (PMAo) with uy(z1,t1) < uz(zy,t1) for some (zq,¢1) €
Q7. Let G be a connected component of {(z,t) € Qr : uy(z,t) < us(z,t)}
containing (x1,t1). Since u; < ug < ¢ in G, it follows that uy is a viscosity
solution of (5.2.1) in G. On the other hand, uy is a viscosity subsolution
in G. Then by the maximum principle, we have uy < u; in G, which is a
contradiction.

From the uniform C! estimate, we can extract a subsequence u®* con-
verging to a function u € CHY(Q7) in C1*(Qr) for all 0 < a < 1. Since
u® > u in Qp for any e, we thus have v > u in Qp. Moreover, u < ¢ follows
from the uniform boundedness of §5, Lemma 5.3.1. To finish the proof, it
remains to show that u is the viscosity solution of (PMAo), which is a direct

consequence of the stability property in [22]. O
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Remark 5.3.17. The solution u has, in fact, C*“®-regularity in the non-

coincidence set N(u) as in the same argument in Proposition 5.3.15.

We close this section by giving the proof of Theorem 5.1.2. Since the
main part of proof is simpler and similar to that of Theorem 5.1.1, we do not

repeat here.

proof of Theorem 5.1.2. Without the penalty term in (PMAo,), we can ob-
tain the same a priori estimates in this section. Moreover, as we explained
in the Remark 5.3.6, the assumption (A1) in Theorem 5.1.1 can be removed.
Following the proof of Lemma 5.3.16, we have the desired result. O

5.4 Regularity of the free boundary

In this section, we study the regularity of the free boundary I'(u) = ON (u) N
Qr of the solution u to (PMAo). Precisely, we discuss the local regularity of
the free boundary N(u) at a free boundary point Xy = (¢, %) € I'(u). For
simplicity, we set (o, %9) = (0,0) and consider the problem in a neighborhood
of (0,0):

Pu > f(z,t) inQ,,

Pu= f(z,t) inQ, NN(u), (5.4.1)

u<¢ inQ,,

with u(0,0) = ¢(0,0) = 0, Vu(0,0) = V¢(0,0) = 0 by subtracting the affine
function ¢(0) + D¢(0) - z, and the obstacle ¢ such that d;¢ € W2(Q,) and
D¢ € WZHQ;)-

In contrast with the theory for the uniformly elliptic or parabolic fully
nonlinear operator in [53, 31, 32, 56], introducing the problem with lower
zero obstacle for the Monge-Ampere operator is not appropriate since the
modified operator —0; + G (see (5.4.2)) for F(M) = det%(/\/l) is not the
Monge-Ampere operator. Hence, in this section, we deal with the problem
(5.4.1) as it is without using the simplified problem with the zero obstacle
such as in [53, 9, 31, 32, 56].
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First, for a detailed explanation, we briefly introduce the reduced obstacle
problem for the uniformly fully nonlinear operator, F'. The modified operator

is defined as follow:
G(M,z) = —=F(=M + D*¢(x)) + F(D*¢(x)). (5.4.2)

Then, for the solution u of the obstacle problem for F', v = ¢ — u is a solution

the reduced obstacle problem with the zero obstacle function:

— O+ G(D*v,x) = (=016 + F(D*¢) — f) X{us0} v>0 in Q.
(5.4.3)
The operator G is also a uniformly parabolic with the same parabolicity.
Hence, to have the regularity of the free boundary, it is enough to discuss
the regularity for the reduced problem (5.4.3).

In the case that F = det%, G is not the Monge-Ampere operator and
defined only in {(M,z)| — M + D?*¢(z) > 0} C 8™ x R™. Hence, to
have the regularity theory of the free boundary with the operator —0; + G,
additional mathematical justification is needed to apply general theories (like
maximum principle or regularity theory) to the solution u of PDEs with the
operator G although (D%v, ) is exactly in the subspace. Therefore, instead
of G and the reduced form (5.4.3), in this section, we deal with the original
problem (5.4.1).

We note that the linearized operator
L, = —0; + Fy;(D*u) - 0
of P := —8, + F(M), where F(M) = (det M)# and
Fj(D*u) - M = %F(Dzu)tr((Dzu)_lM)

is used throughout this section. Since Fj;(D?u) depends on D?u, L, is an

operator with continuous coefficient only on N (u). By the optimal regularity
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of the solution, Theorem 5.1.1, we know that D?u and d,u are bounded and

moreover, by Lemma 5.3.3 and the convergence of u¢ to u, we know that
(det D*u)r > f+Qu>v >0 in Qr,

and the eigenvalues of u also have a lower bound. Therefore, £, is uniformly
parabolic in N (u).

In Subsection 5.4.1, we discuss rescalings, blowup functions, and the thick-
ness of A(u) for the solution u of (5.4.1) and define the solution spaces of
the local and global solutions. We note that since it is needed to consider the
global solution with the uniform thickness assumption, we introduce a class
of global solution including the global solution of the obstacle problem for
Monge-Ampére equation, (5.4.1) in R™ x (—o0, 0].

In Subsection 5.4.2, the non-degeneracy of u € Py (M) is proved by using
(5.4.4) and it is discussed that the blowup function uy of u € Py (M) is a
solution of the global solution, ug € Ps(M).

In Subsections 5.4.3 and 5.4.4, we will discuss the classification of the
global solutions and the directional monotonicity of the local solutions, re-
spectively. We note that since the linearized operator £, depends on D?u,
in the proof of the classification of the global solutions and the directional
monotonicity, we will carefully deal with the case that the £, applied on the
functions such as 0;¢, 0.0, and 0.¢.

Finally, in Subsection 5.4.5, we prove the regularity of the free boundary

I(u) =0Qu) N Q7.

5.4.1 Preliminaries

The rescalings of the solution u of (5.4.1) and ¢ at 0 with «(0,0) = ¢(0,0) =0
and Vu(0,0) = V¢(0,0) = 0 for r > 0 are

u(rz, r’t)

. and  ¢.(X) = olra, 1)

r2

u(X) = . X el
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By the W2!-regularity of solution u (Theorem 5.1.1), W2!-norm of the rescal-
ings u, are uniformly bounded. Then, we can extract a limit function which
is called a blowup. Specifically, for the solution u of (5.4.1), there exists a
sequence 7; and ug € W2, (R™ x (—00,0]) such that

00,loc

Uy, — Ug in W;”ﬁm (R" x (—00,0]), forany n < p < oo.

The limt function wug is called a blowup of u at 0.

Definition 5.4.1. We denote by 4, (u, X) the thickness of A(u) on B,(z°) x
{t° —r?} e,
MD (A(w) 1 (B.(a) x {12 = 12}))

57“(”7)(0) = r )

where MD(A) is the least distance between two parallel hyperplanes contain-
ing A C R™. We will use the abbreviation §,(u) for §,(u,0).

For the convenience of statement, we define a class of local solutions to
the problem (5.4.1).

Definition 5.4.2. (Local solutions) The class of local solutions P,.(M) (0 <

r < 0o) consists of all solutions u of (5.4.1) satisfying:
(i) Hatu”Loc(Q;) + HD2“HL0<>(Q:) <M,
(i) 0 € ON(u),
with £(0) = 1, f € W2H(Q;), 6 € W2H(Q;), and Dg € W2 (Q;).

In order to have the classification of global solutions, it is needed to
consider global solutions with the uniform thickness assumption, (5.1.4). On
the other hand, we know that non-degeneracy of v € P;(M) and the uniform
thickness assumption on u imply that the blowup function uy of u satisfies

the uniform thickness condition,

0p(ug, X) > € forallr>0,X € Q;/Q NNy,
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where N,, = R" x (—00,0] \ Ay,

Ay, = limsup{u,, = ¢, } C {uo = do},

Tj—>00

and limsup,_, ., A; is the set of all limit points of sequences (z;,,%;,) € Aj;,
see subsection 5.2 of [9] and subsection 6.2 of [57]. Hence, we define the global

solution as follows:

Definition 5.4.3. (Global solutions) The class of global solutions Py, (M)
consists of all solutions u of

Pu>1 inR" x (—o0,0],

Pu=1 inR" x (—00,0] NN,

u<¢ inR"x(—00,0],
with the obstacle ¢ which satisfying:
(1) N0sul] oo (rnx (—o00)) + 1D?ul] Loo (r x (—o00) < M,
(i) 0 € ON,,
(ili) Py =a > 1 and 9,¢ and D?*¢ are constants,
where N, is an open set such that N, D {u < ¢} and A, = R" x (—00, 0]\ N,,.

Remark 5.4.4. We note that for v € P (M), Pu = Pp =a > 1 ae. in
{u = ¢}. Hence, Pu=1in N, implies [{u = ¢} \ A,| = {u = ¢} N N,| =0.

We note that in the definition of Py(M), d;¢ € W21(Q,") and D¢ €
W2HQ, ) are assumed. Hence, ¢ € C*(Q, ) and by Taylor expansion, ¢y is a
homogeneous polynomial with homogeneity 1 for ¢ and 2 for x, where ¢ is
the blowup of ¢ at 0. Especially, we know that 9,¢y and D?¢, are constant in
R" x (—00, 0]. Therefore, it is assumed that d;¢» and D?¢ are constants in the
definition for the space of global solutions P, (M), where ¢ is the obstacle

function.
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5.4.2 Basic results

Now we prove the non-degeneracy by using the linearized operator £, and
(5.4.4) below. The non-degeneracy implies that the blowup of ¢ — u at a
free boundary point is not the zero function and the fact that the Lebesgue
measure of the free boundary is zero.

By the concavity of P, we have that
L(p—u)>Pp—Pu=Pop—f in N(u). (5.4.4)

Indeed, from the definition of operators, Pu = L,u = f in N(u) and more-

over, the arithmetic-geometric mean inequality gives
Pop < Lyp in Qr.

Precisely, by the inequality, we have

1
n

F(D*u)"'F(D?*¢) = (det ((D*u)"'D?*¢))" < %tr ((D*w)~'D%¢)
and
Po = —0ip + F(D*¢) < —0, + %F(DQU) tr (D*u)"'D%¢) = L,¢ in Q.

For u € Py(M), by Lemma 5.3.3 and the convergence of u¢ to u, we know
that
F(D%u) = (det DQU)% >f+0u>v>0 in Qp,

and the eigenvalues of D?u have upper and lower bounds, i.e. there is ¢y =
€o(M,v) > 0 such that ¢ < D*u < %I.

Lemma 5.4.5 (Non-degeneracy). Let u € Pi(M). If Pp > f+c in Q7 for

some positive constant ¢, then

sup  (¢(X) —u(X)) > o(Xo) —u(Xo) +2ar%,  Xo € N(u) NQ7,
XeQr (Xo)
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for any Q- (Xo) C Q7 , where o := m

Proof. Let v=¢ —uand Xy € N(u) ={u < ¢} NQ7 ={v >0} NQ7 and

define an auxiliary function
w(z,t) = v(z,t) — v(o, o) — a (|2 — 20> — (t — o)) .
Recalling (5.3.2), we have

L, (|z—zol>—(t—ty)) =1+ %F(DQu)tr((Dzu)fl) <1+ 620(f + Opu)

2
<14+ =+ M) = =
0

(5.4.5)

Then, the inequality (5.4.4) implies
Lyaw>Ly(p—u)—c>Pop—f—c>0 inQ, (Xo).

Since w(Xp) = 0 and w(X) < 0 on 0{v > 0} N Q, (Xop), by the maximum
principle, we have

w(Xp) =0< sup w
{v>0}N8, Q5 (Xo)

and the desired inequality holds for Xy € N(u) N Q7.
For X, € ON(u) N Q7 ,we will take a sequence of points X7 € N(u) such

that X7 — X, as j — o0o. By passing to the limit as j goes to oo, we have

the desired inequality for Xy € N(u) N Q7. O

Lemma 5.4.6. Let u € P(M) with the obstacle function ¢ such that P¢ >
f+cin Qy, for some positive constant c. Then any blowup vy at 0 is in
Poo(M).

Proof. Let u,, be a sequence of the rescalings converging to a blowup ug. The
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rescaling u,, satisfies
Pu,, > f(rywv,r?t)  in Q1)
Pu,, = f(riz,rit) in Qi N N(u,,), (5.4.6)
uTi S ¢’I"i in Q;/Ti’

Take a point Xy in N,,, where N,, = R" x (—00,0] \ Ay, and A,, =
limsup, _,..{t,; = ¢, }. Then, there exist 6 > 0 and 4, such that Q; (Xo) C
{u,, < ¢, } for all ¢ > iy and

Pu,, (z,t) = —Oyu,. (z,t) + (det D?u,, (z,1))n
= —Ou(riz, r2t) + (det D2u(ryz, r2t))
= f(rix,rft) in Qy (Xo).

By the interior uniform C%% bound, we may assume strong convergence

of u,, to ug in C*#(Qj (Xy)), for some 0 < 3 < a. Thus, we have that
—Ohuo(X) + (det D*ug(X))7 = f(0) =1 in Q5 (Xo)

and
—up(X) + F(D*up(X)) =1 in R" x (—00,0] N Ny,.

Moreover, we obtain 0 € ON,,, by using the non-degeneracy. Therefore, ug is
in Py (M). O

5.4.3 Classification of the blowup

In this subsection, we will prove that any global solution u € Py (M) with

the uniform thickness assumption (5.1.4) are of the form

v=¢—u= g(aﬁ)g in R" x (—o0,0].

n

For the first step, in Proposition 5.4.7 below, we show that d,v < 0 in
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R™ x (—00, 0] by using the method which is introduced by [9] for the reduced
problem (5.4.3) with the heat operator.

In the proof of Proposition 5.4.7, we define limit functions ug and ¢q of
the rescalings, u; and ¢;, (5.4.7), respectively, such that Puy = 1 in N, UQ7 .
Then, 0;(Pug) = Ly,Ouo = 0 in N, U Q7. By the fact that d;¢ is constant,
Oyo is also constant, L,,0,¢p = 0 in R™ x (—o0, 0], and

Cuoﬁtvo = £u08t¢0 — £u08tu0 =0 in Nuo U Q;(O, 0)
Thus, we could utilize the maximum principle to d,vg and have the result of
the proposition.

Proposition 5.4.7. Let u € P (M). Then,
Ow(z,t) <0 inR" x (—o0,0].
Proof. Since u € Py, (M), the function dv is globally bounded. Suppose that

m:= sup 0w >0
R™ x (—00,0]

and let (x;,%;) be a sequence such that

Ow(z;,t;) = m = lim dw(z,t) > 0.

Jj—o0

We denote d; by the supremum of r such that @, (z;,t;) is contained in N,, D
N(u) = {u < 8} Tet (57,55) € 9,Qq (25,45) NT(w), (55,5 = (452, 555),

J

djw + xj, d2t + t; djx + xj, d2t +t;
wj(x,t) == uld;e 3;32 J ]), oj(x,t) = #d; 3;]2 J ]), (5.4.7)

J J

and

Uj = ¢j — Uj.

Since (y;,5;) € ONu, u(y;, s;) = (y;,s;), and Vu(y;, s;) = Vo(y;, s;),

113



CHAPTER 5. THE OBSTACLE PROBLEM FOR PARABOLIC
MONGE-AMPERE EQUATION

we have that u; < ¢; in R" x (—o0, 0],
ui (g, 55) = (U5, 35),  Vuy(y;,55) = Vo,(5,55),

and
1D%uj|,. + 10sus]| oo < M.

Furthermore, Q; C Ny, Pu; = 1 in N,, UQ; and (5, 5;) € 0,Q; NOIN,,,
where Ny, := {(y, s)| (djy + x;,d}s + t;) € Ny} such that N, D {u; < ¢;}.
Hence, u; and ¢; have at most quadratic growth at infinity and we can

extract subsequence of u; converging to global solutions v, such that
Pupg=11in N,, UQT, Owg <m in R" x (—o00,0], and vy(0,0) = m,

where vy := g — up.
Since 0y¢ is constant, Oi¢ is also constant and L,,0:p9 = 0 in R™ x
(—00,0]. Thus, 0;(Pug) = Ly,0up = 0 in N, U Q7 implies

EantUO = £u08t¢0 — EUOﬁtuo =0 in Nuo U Ql_((]? O)

Since L, is uniformly parabolic, by the maximum principle, d,v9 = m
in 7. Furthermore, by the same method, we have that 0;vy = m in the
connected component Q(uo) of Q7 U N,,, which containing )7 and there is
a point (9o, S0) € 0,Q7 N ONy,.

Then,

vo(x,t) =mt + f(x) in (By x R7) N Quy),

where f(z) := vo(z,0) > 0 and R~ := (—o0, (]
Then, the free boundary dQ(ug) is represented by t(z) = —f(z)/m in
B; x R™. Since

Vg =Vf(z) in{(z,t)[t>t(x)} N (B xR,
Vg =0 on {(z,t) [t =t(x)} N (B x R7),

114



CHAPTER 5. THE OBSTACLE PROBLEM FOR PARABOLIC
MONGE-AMPERE EQUATION

and Vg is continuous in R™ x R™, we know that Vf(z) =0 in B;. Hence
vo(z,t) = mt+co and  wug(z,t) = —mit+po—co in {(z,t) |t > t(z) V(B xR7),

for a nonnegative constant cg.
Since Pog =a > 1,

Pug=m~+Ppy>1 in{(z,t)|t <t(z)} N (B xR7) C Ny

and we have a contradiction. O

By using an argument in [57] with rescaled functions such as (5.4.7), we
could have that dyw > 0 in R™ x (—o0,0]. This together with Proposition
5.4.7 implies v = 0 in R™ x (—00,0] and then the results for the elliptic
case which is discussed in [54] implies the classification of the global solutions,
see the comment prior to Proposition 5.4.8.

Precisely, by v = 0 in R" x (—o0, 0], we know that the free boundary ON,,
is time-invariant and dyu = ;¢ is constant in R” x (—o0,0]. Hence, for the
classification of the global solution, it is enough to consider the classification

for the elliptic obstacle problem:

(det D%a) " > Bu(0,0)+1 in R",
(det D%)* = 9u(0,0) + 1 in R” N N (@), (5.4.8)
) in R",

where @ := u—du(0,0)t, ¢ := ¢—0yu(0,0)t = p—,6(0,0)t, and Ny := N,(0).
Since the linearized operator Fj(D*a)M = LF(D*a)tr((D*a)'M) is
uniformly elliptic, the classification of the global solution for the elliptic
problem, (5.4.8), is obtained by the method in [53, 31] with the considera-
tion of the special characteristics of the Monge-Ampere operator, F/(D?u) =
(det D2u)%, which is discussed in the introduction of this section.
Indeed, for a solution u to F(D?u) = (det D?*u)= = ¢ in a domain Q C R™,
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the concavity of F' implies
Fy;(D*u)D*uee >0 in Q.

On the other hand, since D?*¢(z) is constant, we have F;(D?*u)D?*¢. = 0
and
Fij(D*u)(D*(¢ — u)ee) <0 in Q. (5.4.9)

Then, the method in [53, 31] with (5.4.9) to v = ¢ — u implies that v is
convex and

v=¢—u=c(z})?® inR"x (-o0,0,

n

for a global solution u of (5.4.8) with obstacle ¢.

Proposition 5.4.8. [57] Let u € P(M) and assume that
0r(v, X) >¢ forallr>0,X € IN,
then,
ow(z,t) =0  inR"x(—00,0] and v:=¢—u=c(z})®> inR"x(—o0,0],

for an appropriate system of coordinates and a positive constant c.

By using Proposition 5.4.8, with the same method as in Lemma 4.1 of

[32], we have the following proposition.

Lemma 5.4.9. Let u € P(M) and assume that
0 (v,X)>¢  forallr>0,X € N(u).

Then,
Ow(X) =0  as X — (x0,10)

for any (xq,t9) € T'(u).
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5.4.4 Directional monotonicity

Now we are ready to prove the directional monotonicity, Proposition 5.4.10.
In the proof of the property, we use the C convergence of u, and ¢, to ug
and ¢y, respectively, Lemma 5.4.9, and the regularity of u, f, and ¢.
Precisely, for u € Py (M) with v < ¢ in @7, the rescaling u, at 0 satisfies
(5.4.6) in @7, and u, converges to the blowup function uo in C1(Q7). Then

we have
l|lur — uoﬂcl,ﬂ(Ql_) and  ||¢, — ‘ZSOHCM(QD —0 asr—0. (5.4.10)

On the other hand, by Lemma 5.4.9, 0 € I'(u), the optimal W2' regularity
of u, and 9,0 € W2, we have that

o

||8t (¢r - Ur)HLoo(Q;) = H@’U(T’x, r2t)“L°°(Q*)

(5.4.11)

Then, by using (5.4.10) and (5.4.11), for a unit vector € := (e,, e;) € S" such
that COzvy — vy > 0 in @7, we have COzv, — v, > —¢p in Q7 .

Furthermore, since f € W21(Qr), 0,0 € W21(Qy), and D¢ € W2H(Qr),

for f, := f(rx,r?t), we have

HaifrHLoo(Q;) =T ||aif||Loo(Q;) — 0,
0S| ey = 72 1106f | oo =0,
(D + 0) at¢r||Lm(Q )—7«2||D28t¢+atat¢|{m@ -0,
[(D* +0)0i¢r | oo o) = 7 |1D*0i60 + 01010 o) — 0 5T =0

(5.4.12)

Thus, by using (5.4.4), we know that the auxiliary function w in (5.4.13)

is a supersolution. Finally, the maximum principle to the auxiliary function
w in (5.4.13) implies that C'Osv, — v, > 0 in Q;/Q and Osv, > 0 in Q1_/2'

We note that this argument for the parabolic obstacle problem for the

heat operator was introduced in [9, Chapter 13] and [57].

Proposition 5.4.10. (Directional monotonicity) Let u € P(M) and P¢ —
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f>2c>01in Q7. Let
vo(2, ) = do(@, ) — uo(w, 1) = %(:c:[)Q,

where ug and ¢g are blowup functions of u and ¢, respectively. Then, for any
0 € (0,1], there exists rs = (0, u, $) > 0 such that

Oev >0 inQ,  for anyé €S" such that é- (e,,0) > 9.

Proof. For any § € (0,1}, by direct computation, we know that there is
Cs > 0 such that

Cs05v9 —vg > 0in Q] for any é € S™ such that é- (e,,0) > 0.
By (5.4.10) and (5.4.11), for sufficiently small r = (8, u, ¢),
C(Saévr — U 2 _% in Q;v
where « is the constant in Lemma 5.4.5. We claim that
Cs0sv, —v, >0 in Q;/Q

Suppose that there is a point Yy = (yo, S0) € Q)N {v, > 0} such that
C50:v,(Yy) — v,-(Yp) < 0 and consider

. a
w(Y) == C50.0,.(Y) —v.(Y) + 5 (ly = vol* = (s — s0)) (5.4.13)
where « is the constant in Lemma 5.4.5. Recalling (5.4.5), we obtain
a c
5Lu (ly = wol* = (s = 50)) = B%

Then, by L, 0su, = 0sPu, = 0s(f(rz,r*t)) in N(u), L, 0:¢, = —0,0:0, +
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LF(D*u)tr((D*u)*D%0:¢,) in Q7 , and (5.4.12), we may assume that

1L, 060 | in V(u,)

C
<
)_205

and have

Lo (Y) = Cs5La 0e0n(Y) = Lo 0r(Y) + g

<c—(Po, — fr(ry,r2s)) <0 in Ql_/4(YE)) N N(uy).
Thus, by the maximum principle for @ on Ql_/4(Y0) N N(u,), we have

inf w<wlYy) <0 and inf (COsv, —vy) < @
0,Q7,, (YN (ur) Q7,4 (Yo (ur) 32

Hence, we arrive at a contradiction and have Cs0:v, — v, > 0 in Q;/T By the

nonnegativity of v,, we have dzv > 0 in Qr_/z- O

5.4.5 Proof of the regularity of the free boundary

Lemma 5.4.11. Let w € Pi(M) be as in Theorem 5.1.3. Then, there is
ri =11 (u,¢) > 0 such that blowup functions of v=¢—wu at X € I'(u) N Q;,l
are half-space functions, i.e., blowups of v at X are of the form c(x;)?/2, up

to a rotation, for some constant c.

Proof. By Proposition 5.4.8,

in an appropriate system of coordinates, for any blowup of v at 0.

For X = (z,t) € T'(u) N Q;q and t = 0, by the thickness assumptions
(5.1.4) and the same methods as in Proposition 5.4.8, we have that any
blowup vy of v at X,

vo(x,t) = Po — up = c(x - egg)%r in R" x (—o0, 0],
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for e, € S"7!, some positive constant c.
For the case X = (z,t) € I'(u) N @, and £ < 0, By using the argument
in Proposition 5.4.8 in R” x R (as in Appendix of [57]), we have that

vo(z,t) = o —up =c(z-e,)2  inR" xR,

for some e, € S*"! and positive constant c. |

Now, we are ready to prove the regularity of the free boundaries of u €
P, (M), Theorem 5.1.3.

Proof of Theorem 5.1.3. By the directional monotonicity, Proposition 5.4.10,
the free boundary I'(u) N @, Jo is & graph z,, = f («',t) where f is a Lipschitz
function with the Lipschitz constant less than 6/v/1 — 62. Furthermore, in
Proposition 5.4.10, § € (0,1] could be arbitrary small. Hence, we have a
tangent plane of I'(u) and the normal vector (e,,0) at 0. For any point
Z € I'(u) N Qyy, by Lemma 5.4.11, we know that there is a tangent plane
of the free boundary at Z with normal vector v;. By Proposition 5.4.10, for
Z €T'(u)NQ,,, we have vz - € > 0, for any € - (e,,0) > d. Hence, vy is close
to €,. Therefore, I'(u) N Q, is Cl at 0.

By the same argument in Propositions 5.4.7 and 5.4.8, for any free bound-
ary point Z = (z,7) € I'(u) N Q;i’ 7 < 0, the blowup of v at Z is of the
form ¢(z,)% in R" x R and we have a directional monotonicity for v in
Q. (Z), i.e., we obtain that for some " > 0, for any 0 € (0, 1] there exists
rs = 71(d,u, ¢, Z) > 0 such that

Odev>0 inQ,  forany € € S" such that e-vz > 4.

Then, by the same argument in the previous paragraph, I'(u) is Ct at Z. [
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