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Abstract

Curvature flows with obstacles

Taehun Lee

Department of Mathematical Sciences

The Graduate School

Seoul National University

Curvature flows are geometric evolutions of a hypersurface moved by cur-

vature quantities such as the mean curvature and the Gauss curvature, which

have been applied in material science and image processing. The main dif-

ficulty to treat curvature flows is development of singularities in finite time

which arises in many case. In this thesis, we would like to propose a method

to continue curvature flows for a long time by placing obstacles enclosed by

the initial hypersurface. We apply the method to prevent the development

of singularities for the mean curvature flow when the initial hypersurface is

given by an entire graph and for the Gauss curvature flow when the initial

hypersurface is strictly convex and closed. Moreover, we investigate the ob-

stacle problem for the parabolic Monge-Ampère equation which is closely

related to the Gauss curvature flow. Our approach is based on the penaliza-

tion method by allowing the evolution of hypersurface can pass the obstacle,

with the property that the more the hypersurface pass the obstacle, the more

penalty is imposed on the velocity.

Key words: mean curvature flow, Gauss curvature flow, obstacle problem,

free boundary problem, Monge-Ampère equation, singularity
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Chapter 1

Introduction

Curvature flows are geometric evolutions of a hypersurface smoothly im-

mersed in the Euclidean space, moved by curvature quantities such as the

mean curvature, the Gauss curvature, and so on. Each flow has been intro-

duced to model physical phenomena [33] or to apply other field of science

(material science [63]; image processing [14, 59]). The main di�culty to treat

curvature flows is development of singularities in finite time which arises in

most case, and understanding singularities is an important problem in ge-

ometric analysis. Many mathematicians are devoted to develop methods to

continue flows beyond the first singular time, for example, Brakke flow [6],

level set flow [16, 30], mean curvature flow with surgery [43], and singularity

resolving flow [65]. All these methods are focused on the preservation of some

properties of the initial hypersurface.

In this thesis we would like to propose a new method to continue curvature

flows for a long time by placing obstacles enclosed by the initial hypersurface.

The method is designed for behaviors and phenomena that we would like

to impose on the flow. The obstacles are hypersurfaces embedded in the

Euclidean space. We impose on the evolutions of hypersurface a condition

that it cannot pass the obstacle. When a singularity is developed at some

point for the first time, we place an obstacle such that it encloses the point

and is enclosed by the curvature flow slightly before the first singular time.

1



CHAPTER 1. INTRODUCTION

This enable the curvature flow to evolve over the first singular time, and we

call this problem curvature flows with obstacles.

Our method easily prevents development of the singularity we targeted.

On the other hand, an unexpected singularity might be occurred by the

obstacle. Since the curvature flows cannot pass the obstacle, a discontinuity

of the velocity arises when the flow touches the obstacle. This makes the

problem di�cult and the optimal regularity of the curvature flow with an

obstacle is expected to be at most C1,1. The lack of regularity forces us to

consider a general concept of solutions, that is, viscosity solutions. Therefore,

one of the main goal to justify our method is showing that viscosity solutions

for the curvature flow with an obstacle does not develop singularity.

The evolutions of hypersurface under the curvature flows consist of two

parts: the coincidence set where the hypersurface touches the obstacle and

the non-coincidence set where the hypersurfce does not touch the obstacle. In

many case (i.e., convex initial hypersurface), the velocity keeps its sign under

the flow, in which case the coincidence set would tend to grow over time. The

boundary of the coincidence set (or equivalently of the non-coincidence set)

is the so-called free boundary which is unknown before we get a solution.

Major di�culties in curvature flows with obstacles occur near the free

boundary. Indeed, we will see if the free boundary moves in non-degenerate

finite speed, the velocity should be as degenerate as the distance from the

free boundary. In PDEs point of view, the curvature flows with obstacles are

fully nonlinear non-uniformly parabolic equation in the non-coincidence set,

whose ellipticity constant is degenerate at the boundary of the domain which

varies in time and is unknown in advance. Thus we do not expect global lower

bound of the curvature in the curvature flow with obstacles. Instead, we shall

obtain the lower bound of the curvature in terms of the constant depending

on the distance from the free boundary and vanishing on the free boundary,

which is one of main interests.

The main strategy to deal with the curvature flows with obstacles is an

approximation by allowing the evolution of hypersurface can pass the obsta-

2



CHAPTER 1. INTRODUCTION

cle, with the property that the more the hypersurface pass the obstacle, the

more penalty is imposed on the velocity. The penalty will be realized by a

penalty function which makes the equation holds not on the non-coincidence

set but on the whole domain. Then establishing the uniform a priori esti-

mates for the approximated problem gives the same estimates for the original

problem.

We will apply the method we proposed to the following three cases.

(i) Gauss curvature flow when the initial hypersurface is strictly convex

and closed ([55]).

(ii) Mean curvature flow when the initial hypersurface is given by entire

graph ([46]).

(iii) Parabolic Monge-Ampère equation ([60]).

Additionally, we consider a free boundary problem arising in composite mem-

brane problem with fractional Laplacian, which could be formulated as two-

sided unstable obstacle problem [36].

The Gauss curvature flow, evolution by the Gauss curvature, was intro-

duced by Firey [33] to describe the deformation of shape of stones which

is worn down by collision from any random angle. Later, Tso [72] proved

that the smooth solution exists uniquely and shrinks to a point when the

enclosed volume converges to zero if the initial hypersurface is strictly con-

vex and closed. Furthermore, it was shown in [3] for two dimensional case

(n = 2) that the contraction is spherical singularity. More generally, the

↵-Gauss curvature flow, the evolution by the Gauss curvature with an ex-

ponent ↵, was studied by Chow [20] for the case ↵ = 1/n; by Kim and Lee

[47] for 1/n  ↵  1; and by Andrews, Guan, and Ni [4] for ↵ � 1/(n + 2).

They showed the flow converges to a self-similar solution for every n � 2 and

↵ � 1/(n + 2) after scaling. In the a�ne invariant case ↵ = 1/(n + 2), the

only self-similar solutions are ellipsoid [2, 13]. Also, in the case ↵ > 1/(n+2),

Brendle, Choi, and Daskalopoulos [7] proved the only self-similar solutions

3



CHAPTER 1. INTRODUCTION

are round spheres. These flows relate to the parabolic version of Monge-

Amère equation since the Gauss curvature is defined by the determinant of

the Weingarten map. From the fully nonlinearity of the Gauss curvature, if

the initial hypersurface has flat side, then the solution also has flat side for

some time unlike the mean curvature flow which is instantly smoothing (see

[38] and also [19, 23, 24, 48]).

The first result [55] is concerned with the obstacle problem for the Gauss

curvature flow with an exponent ↵. Under the assumption that both the

obstacle and the initial hypersurface are strictly convex closed hypersurface

and the obstacle is enclosed by the initial hypersurface, the uniform esti-

mates are obtained for several curvatures via penalty method. We also give

a heuristic calculation to explain the principal curvature may be zero on the

free boundary. In particular, when the hypersurface is two dimensional with

0 < ↵  1, we prove that the solution for the Gauss curvature flow with an

obstacle exists for all time with bounded principal curvatures {�i} in which

the upper bound is uniform and the lower bound depends on the distance

from the free boundary. Moreover, we show that there is a finite time T⇤ such

that the solution becomes the obstacle after this time, which is stationary in

time.

The mean curvature flow, evolution by the mean curvature, was originally

studied by Brakke [6] and has been studied by Huisken, Ecker, Sinestrari, and

many others, see [27, 28, 40, 42]. We also refer to the monographs [26, 75]

for introductions. The mean curvature flow is a natural generalization of

heat equation to the manifold setting in the sense that the position vector

X : Mn
⇥ [0, T ) ! Rn+1 satisfies

@X

@t
= �g(t)X,

whereX(·, t) is an immersion of a manifoldM and�g is the Laplace-Beltrami

operator on the hypersurface given by X(·, t) with its canonical metric in-

duced by the Euclidean space Rn+1. Despite the similarity between the mean

curvature flow and the heat equation, there are some important di↵erences.

4



CHAPTER 1. INTRODUCTION

For a short time, the mean curvature flow behaves like the heat equation

with regularizing e↵ects in small-scale; On the other hand, after more time,

singularities are developed since the nonlinearities dominate the evolution.

We may employ the flow as a tool to produce minimal surfaces, to derive

isometric inequalities, or more generally, to classify hypersurfaces by certain

curvature conditions.

The second result [46] is concerned with the obstacle problem for evolu-

tions of non-compact complete graphs over an open subset in Rn. Obstacles

in this setting are also written graphs over an open subset in Rn, which are

non-compact complete and lies above the initial data. We prove that the

solution exists for all time with locally bounded principal curvatures {�i}.

The parabolic Monge-Ampère equation is parabolic generalization of (el-

liptic) Monge-Ampère equation and is closely related to the ↵-Gauss curva-

ture flow. In 1976, Krylov [49] suggested three versions of parabolic Monge-

Ampère equation:

�@tu+ (detD2u)
1
n = f,

[(�@tu) detD
2u]

1
n+1 = f,

[det(D2u� @tuIn)]
1
n = f,

where In denotes the n ⇥ n identity matrix. In this thesis we are concerned

with the first form of equation which is relating to the graph representation of

the Gauss curvature flow. The Monge-Ampère equation arises in prescribed

Gaussian curvature equation [62], optimal transportation [66], and a�ne ge-

ometry [71]. Also, its parabolic version has been applied to image processing

[59], where reducing noises and preserving sharp edges are issues to resolving

blurring problem. This problem can be controlled by the di↵usion driven by

the Gauss curvature since its di↵usion is slow near edges due to the nonde-

generacy of curvature.

The third result [60] is concerned with the obstacle problem for the

parabolic Monge-Ampère equation with the forcing term f(x, t, u,Du). We

5



CHAPTER 1. INTRODUCTION

establish existence, uniqueness, and optimal regularity under some structure

conditions via the penalization method and a priori estimates. Moreover, we

discuss the regularity of the free boundary. As a consequences of our ap-

proach, we also obtain the existence and uniqueness of the solution of the

Cauchy-Dirichlet problem for the parabolic Monge-Ampère equation with

the forcing term f(x, t, u,Du).

The rest of thesis is organized as follows. Chapter 2 describes the notations

and conventions used throughout the thesis. In Chapter 3, we study the Gauss

curvature flow with an obstacle. In Chapter 4, we discuss the mean curvature

flow of entire graphs with an obstacle. Finally, Chapter 5 is devoted to the

obstacle problem for the parabolic Monge-Ampère equation.

6



Chapter 2

Preliminaries

We describe some notations and conventions used throughout the thesis. Let

X0 be an immersion from n-dimensional manifold M into Rn+1, and let

X(·, t) : M ! Rn+1

be a one-parameter family of immersions from M into Rn+1. We may take

M as a compact closed manifold or a non-compact complete manifold. Let

~⌫ be a unit normal vector of ⌃t = X(M, t). Given a local coordinate system

{xi
}
n

i=1 in M , the induced metric and the second fundamental form of ⌃t can

be computed as

gij =

*
@ ~X

@xi
,
@ ~X

@xj

+
and hij = �

*
@2 ~X

@xi@xj
, ~⌫

+
.

The connection on ⌃t is given by

�k

ij
=

1

2
gkl
✓
@

@xi
gjl +

@

@xj
gil �

@

@xl
gij

◆

and the covariant derivative on ⌃t is

(rjv)
i =

@

@xi
vi + �i

jk
vk.

7



CHAPTER 2. PRELIMINARIES

2.1 Second fundamental form and curvatures

The Weingarten map, the di↵erential of the Gauss map, is then defined by

hi

j
= gikhkj,

where gij denotes the inverse of the metric. Here we used Einstein’s summa-

tion convention over repeated indices. The principal curvatures �1, �2, · · · ,

�n are the eigenvalues of hj

i
, and then the Gauss curvature K and the mean

curvature H are given by

K = det(hj

i
) and H = tr(hj

i
).

We also define the sum of the square |A|2 =
P
�2
k
= tr((h2)j

i
) and the sum of

the inverse H =
P

1
�k

= tr((h�1)j
i
). From the Gauss equation, we can express

the Riemannian curvature tensor, the Ricci tensor, and the scalar curvature

as

Rijkl = hikhjl � hilhjk,

Rij = Hhij � hikg
klhlj,

R = H2
� |A|2,

respectively. The Gauss-Weingarten relations

@2X

@xi@xj
= �k

ij

@X

@xk
� hij~⌫

gives

�g(t)X = gijrirjX = gij
✓

@2X

@xi@xj
� �k

ij

@X

@xk

◆
= �gijhij~⌫ = �H⌫.

We also deal with the derivative of the second fundamental form.

8



CHAPTER 2. PRELIMINARIES

Lemma 2.1.1 ([75]). The following identity holds for hij:

�hij = rirjH +Hhikg
klhlj � |A|2hij.

We also compute the Laplace-Beltrami operator of the outward unit nor-

mal vector.

Lemma 2.1.2. Let ~⌫ be an outward unit normal vector on a hypersurface

⌃t in Rn+1, and ~X be a position vector of ⌃t. Then the Laplace-Beltrami

operator of ~⌫ is given by

�~⌫ = rH � |A|2~⌫. (2.1.1)

Proof. First we observe that

ri~⌫ = hk

i

@ ~X

@xk
.

since
D
ri~⌫,

@ ~X

@xk

E
= hik and hri~⌫,~⌫i = 0. Using this, we see that

hrirj~⌫,~⌫i = �hrj~⌫,ri~⌫i = �hk

i
hl

j
gkl = �(h2)ij.

Moreover, by rirkX = �hik~⌫ and Codazzi equation, we have

*
rirj~⌫,

@ ~X

@xk

+
= rihjk � hrj~⌫,rirkXi = rkhij.

Thus we arrive at

rirj~⌫ = rhij � (h2)ij~⌫,

which gives the conclusion.

9



CHAPTER 2. PRELIMINARIES

2.2 Auxiliary lemmas

Let us denote ⇤ = ↵K↵(h�1)ijrirj and recall � = gijrirj. The inner

product and the norm induced by ⇤ and � are

hrA,rBi⇤ = ↵K↵(h�1)ijriArjB, krAk2⇤ = hrA,rAi⇤ ,

hrA,rBi = gijriArjB, krAk2 = hrA,rAi .

Here we omit the subscript �.

We provide an auxiliary lemma which is useful for proving curvature

estimates. The proof is a straightforward calculation.

Lemma 2.2.1. Let A and B be smooth functions on M ⇥ [0, T ). Assume

that A > 0 and for a given � > 0 define S = B

A� . Then

(@t �⇤)S =
1

A�
(@t �⇤)B �

�B

A�+1
(@t �⇤)A

+
2�

A
hrA,rSi⇤ +

�(� � 1)B

A�+2
krAk2⇤ ,

Moreover, the same holds for � instead of ⇤.

10



Chapter 3

Gauss curvature flow with an

obstacle

3.1 Introduction

In this chapter we study the obstacle problem for the Gauss curvature flow

with an exponent ↵, where 0 < ↵  1. The precise formulation is as follows.

The obstacle in our consideration, denoted by �, is a C1,1 strictly convex

closed hypersurface in Rn+1, and let ~X0 : Mn
! Rn+1 be a smooth immersion

of a strictly convex closed n-dimensional hypersurface enclosing the obstacle.

We consider the evolutions of ⌃0 = ~X0(Mn) under the flow by powers of the

Gauss curvature which keep enclosing the obstacle, that is, given an exponent

↵, we consider a one-parameter family of immersions ~X : Mn
⇥[0, T ) ! Rn+1

and ⌃t = ~X(Mn, t) satisfying

*
@ ~X(x, t)

@t
,�~⌫(x, t)

+
 K↵(x, t) for (x, t) 2 Mn

⇥ [0, T ),

@ ~X(x, t)

@t
= �K↵(x, t)~⌫(x, t) if ~X(x, t) /2 �,

� ⇢ ⌃t for 0  t < T,

~X(x, 0) = ~X0(x) for x 2 Mn,

(GFo)

11



CHAPTER 3. GAUSS CURVATURE FLOW WITH AN OBSTACLE

where K and ~⌫ are the Gauss curvature and the outward unit normal vector

on ⌃t, respectively. (Here we use the bar notation to indicate the closed

subset of Rn+1 enclosed by the given set.)

The Gauss curvature flow was introduced by Firey [33] to describe the

deformation of shape of stones which is worn down by collision from any

random angle. It is well known that the solution of Gauss curvature flow

with an exponent ↵ exists uniquely and has a singularity in finite time, see

[72] and [20]. Moreover, the singularity is analyzed for every ↵ �
1

n+2 , see

[20], [47], [4], [7] and [3]. From the fully nonlinearity of Gauss curvature, if

the initial hypersurface has flat side, then the solution also has flat side for

some time unlike the mean curvature flow which is instantly smoothing. (See

[38].)

Considering the tumbling stone model for the Gauss curvature flow in [33],

the Gauss curvature flow with an obstacle can be thought of as the tumbling

stone with hard core. Thus, it is not hard to imagine that (GFo) converges

to the obstacle in a finite time since the usual tumbling stone disappears in

a finite time. However, it is rather clear whether the above model preserves

strict convexity. These properties will be described below in mathematical

terms.

A discontinuity of the velocity naturally arises from the existence of the

obstacle. Thus, the solution of (GFo) has at most Lipschitz regularity in

time. This makes us to consider a generalized concept of a solution, that is,

a viscosity solution. To introduce this notion, we need the graphical version

of (GFo) which can be written as, for a graphical solution ũ : ⌦⇥ [0, T ) ! R
with an obstacle '̃ : ⌦ ! R,

@ũ

@t


(detD2ũ)↵

(1 + |Dũ|2)
(n+2)↵�1

2

in ⌦⇥ [0, T ),

@ũ

@t
=

(detD2ũ)↵

(1 + |Dũ|2)
(n+2)↵�1

2

in {ũ < '̃},

ũ  '̃ in ⌦⇥ [0, T ),

(3.1.1)

12



CHAPTER 3. GAUSS CURVATURE FLOW WITH AN OBSTACLE

where ⌦ is a domain in Rn, D represents the usual derivative in Euclidean

space, and {ũ < '̃} denotes the set of points satisfying ũ(x, t) < '̃(x) in

⌦⇥ [0, T ). Moreover, (3.1.1) simplifies to the single equation

min

(
(detD2ũ)↵

(1 + |Dũ|2)
(n+2)↵�1

2

�
@ũ

@t
, '̃� ũ

)
= 0 in ⌦⇥ [0, T ).

Now we can define a viscosity solution of (GFo) as follows:

Definition 3.1.1 (viscosity solution). A continuous, one parameter family of

immersions ~X : Mn
⇥[0, T ) ! Rn+1 is a viscosity subsolution (supersolution)

of (GFo) if, for any (x0, t0) 2 Mn
⇥ [0, T ) and ũ which represents ~X locally

as a graph near ~X(x0, t0) with (x̃0, ũ(x̃0, t0)) = ~X(x0, t0) for some x̃0 after

rotation, it holds that

min

(
(detD2 ̃(x̃0, t0))↵

(1 + |D ̃(x̃0, t0)|2)
(n+2)↵�1

2

�
@ ̃(x̃0, t0)

@t
, '̃(x̃0)�  ̃(x̃0, t0)

)
� ()0,

whenever  ̃ is a C2 function satisfying  ̃(x̃0, t0) = ũ(x̃0, t0) and  ̃(x̃, t) � (

)ũ(x̃, t) for any x̃ in a neighborhood x̃0 and t < t0. Finally, a continuous, one

parameter family of immersions ~X : Mn
⇥[0, T ) ! Rn+1 is a viscosity solution

of (GFo) if it is both a viscosity subsolution and a viscosity supersolution of

(GFo).

With an abuse of terminology, we also say that {⌃t = ~X(M, t) : 0  t <

T} is a viscosity solution of (GFo) when ~X is a viscosity solution. For more

details and properties of viscosity solutions, we refer to [21]. See also [44].

We now state our main results. We proved several estimates for various

curvatures. First, the Gauss curvature is bounded so that (GFo) has nonneg-

ative finite speed.

Proposition 3.1.2. For any ↵ > 0 and any dimension n, the Gauss curva-

ture K of a solution of (GFo) satisfies

0  K  C (3.1.2)

13
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in Mn
⇥ [0, T ) where C = C(n,↵,�, ~X0).

Notice that, in contrast to the Gauss curvature flow case, K does not

have a uniform positive lower bound. It could happen that K = 0 on the free

boundary, the boundary of ⌃t \ � in ⌃t. Later on, we will give a heuristic

calculation to explain the reason why such a situation occurs.

Next, the minimum principal curvature �min is bounded below on the set

where the distance from the obstacle is positive. To state this result, let us

define the non-coincidence set and the coincidence set by

⌦M = {(x, t) 2 Mn
⇥ [0, T ) : ~X(x, t) 62 �},

⇤M = {(x, t) 2 Mn
⇥ [0, T ) : ~X(x, t) 2 �}.

Proposition 3.1.3. For any ↵ > 0 and any dimension n, the minimum

principal curvature �min satisfies

�min(x, t) � c > 0,

for each (x, t) 2 ⇤M where c = c(n,↵, ~X0,�, d(x,⇤M)) is a constant.

In the following proposition, we consider the 2-dimensional case with

↵  1, where the restrictions arise from a technical reason.

Proposition 3.1.4. For 0 < ↵  1 and the dimension n = 2, the mean

curvature H of the solution of (GFo) satisfies

0 < H  C,

where C = C(n,↵,�, ~X0).

When the dimension n = 2, using these uniform estimates, we obtain:

Theorem 3.1.5. Let ⌃0 and � be smooth strictly convex closed surface in

R3 such that � ⇢ ⌃0. Assume also that 0 < ↵  1. Then

14



CHAPTER 3. GAUSS CURVATURE FLOW WITH AN OBSTACLE

(i) there exists a convex viscosity solution {⌃t = ~X(M, t)} of (GFo) for

t 2 [0,1);

(ii) the principal curvature of ⌃t is nonnegative and globally bounded, i.e.,

the principal curvature �i satisfy

0  �i  C,

where C = C(n,↵,�, ~X0) is a constant;

(iii) for each point (x, t) in the non-coincidence set ⇤M , the principal curva-

ture of ⌃t has uniform positive lower bound with dependency on d(x,⇤),

i.e., the principal curvature �i satisfy

0 < c  �i(x, t)  C,

where C = C(n,↵,�, ~X0) and c = c(n,↵,�, ~X0, d(x,⇤M)) are con-

stants;

(iv) there is a finite time T ⇤ = T ⇤(n,↵,�, ~X0) such that ⌃t = � for all

t � T ⇤.

Our main tool is an approximation using a penalty term. We shall prove

that each approximate solution is smooth and several curvatures have uni-

form bound. For the penalization technique, see [34].

The constraints of dimension n and exponent ↵ will be used in Lemma

3.4.4 to show the uniform upper bound for mean curvature. The main di�-

culty comes from controlling the third order derivative and the penalty term.

There are some ways to overcome the former issue when we think about the

Gauss curvature flow with an exponent. For example, in [20], the author con-

sider the quantity K/Hn. However, we cannot use this quantity because both

K and Hn produce second derivative of penalty term with opposite sign, and

one of two sign disturbs having uniform bound.

Finally, we shall explain that why we do not expect the strict positive

15



CHAPTER 3. GAUSS CURVATURE FLOW WITH AN OBSTACLE

lower bound in (3.1.2), and that why we could have upper bound in Proposi-

tion 3.1.4. To see this, we assume that both ũ and '̃ in (3.1.1) are rotationally

symmetric. Let |x̃| = �(t) be the equation of free boundary so that

ũ(x̃, t) = '̃(x̃) if |x̃|  �(t),

ũ(x̃, t) < '̃(x̃) if |x̃| > �(t),

Dũ = D'̃ on |x̃| = �(t).

From these settings, we obtain

d

dt
�(t) =

ũt

'̃r � ũr

,

where the subscript r denotes the derivative in the radial direction, and the

denominator is zero on the free boundary. According to [48], the regularity

follows from the non-degenerate finite speed of the free boundary, which

impose that the numerator ũt is also zero on the free boundary, i.e., K = 0

may happen at some point. Next, following the argument in [34, Chapter 1.9],

we use s(x̃) = t for the equation of free boundary instead of � above. Using

this, we have an alternative expression of the velocity of the free boundary,

that is,

d

dt
�(t) =

1

sr(x̃)
. (3.1.3)

In order to use this equation, we consider

'̃(x̃)� ũ(x̃, t) =

ˆ
s(x̃)

t

ũ⌧d⌧,

16
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so that we imply

'̃r(x̃)� ũr(x̃, t) =

ˆ
s(x̃)

t

(ũ⌧ )rd⌧ + ũt(x̃, s(x̃))sr(x̃)

=

ˆ
s(x̃)

t

(ũ⌧ )rd⌧,

'̃rr(x̃)� ũrr(x̃, t) =

ˆ
s(x̃)

t

(ũ⌧ )rrd⌧ + (ũt)r(x̃, s(x̃))sr(x̃). (3.1.4)

Since ũ is rotationally symmetric, the second equation in (3.1.1) becomes

@ũ

@t
=

ũ(n�1)↵
r ũ↵

rr

r(n�1)↵(1 + ũ2
r
)
(n+2)↵�1

2

,

Near the free boundary, this led to ũt ⇠ ũ↵

rr
heuristically, and therefore,

combining (3.1.3) and (3.1.4), we see that

d

dt
�(t) ⇠

(ũt)r(x̃, s(x̃))

'̃rr(x̃)
⇠ (ũ↵

rr
)r.

Notice that we have used ũt = ũrr = 0 and r ⇠ ũr ⇠ '̃r ⇠ '̃rr ⇠ 1 on the

free boundary. By considering K = 0 at the free boundary points, we may

write '̃� ũ = a(r � 1)2 + (r � 1)b, where a is the constant chosen to satisfy

K = 0, and b > 2. From this, we conclude that d

dt
�(t) ⇠ 1 if and only if

(b � 2)↵ � 1 = 0, in which case ↵ 2 (0,1). It will also be interesting to

consider the case when ↵ > 1 or n � 3 in Proposition 3.1.4, which we leave

for a future study.

This chapter is organized as follows: Section 4.2 describes the notations

and conventions used throughout the chapter. Section 4.3 has the existence

theorem and the evolution equations for the perturbed solutions. Section 4.4

contains the uniform curvature estimates for the perturbed solutions. Section

4.5 has lower bounds for principal curvatures. Finally, section 4.6 contains

the proof of Theorem 3.1.5.
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3.2 Preliminaries

3.2.1 Support function

For a strictly convex closed hypersurface ⌃, the outer unit normal vector ~⌫ :

⌃ ! Sn is a di↵eomorphism. This allow us to reparametrize the hypersurface,

namely

~X = ~X(~⌫�1(z)), z 2 Sn.

We still denote ~X�~⌫�1 by ~X for convenience and we say that ~X is parametrized

by z-coordinate. Then the support function of the hypersurface ⌃ is defined

by

u(z) =
D
~X(z), z

E
, z 2 Sn. (3.2.1)

All information about hypersurface can be recovered from the support func-

tion through the relation

~X(z) = ru(z) + u(z)z, z 2 Sn, (3.2.2)

where r denotes the Levi-Civita connection of the standard metric g on Sn.

Moreover, the second fundamental form is given by

hij = rirju+ ug
ij

on Sn. (3.2.3)

On the other hand, the standard metric g on Sn can be written as g
ij

=

hikgklhlj which, together with (3.2.3), implies

K =
det(g

ij
)

det(rirju+ ug
ij
)
. (3.2.4)

We refer the reader to [47] and [75] for the details concerning support func-

tion.

18
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Given a one-parameter family of strictly convex closed hypersurface ⌃t,

let u(·, t) be the support function of ⌃t for each t. We also denote by ' the

support function of an obstacle � which is strictly convex closed hypersur-

face. Then we can restate (GFo) in terms of support function as follows:

�ut 

 
det(g

ij
)

det(rirju+ ug
ij
)

!↵

in Sn
⇥ [0, T ),

�ut =

 
det(g

ij
)

det(rirju+ ug
ij
)

!↵

if u > ',

u � ' in Sn
⇥ [0, T ).

(GFos)

It is also equivalent to the equation

min

(
ut +

 
det(g

ij
)

det(rirju+ ug
ij
)

!↵

, u� '

)
= 0

of degenerate type.

3.2.2 Obstacle

We denote the strictly convex closed hypersurface � by the obstacle. For

convenience, we parametrize the obstacle by �
t = ~⌫�1

� (~⌫(x, t)) for each t,

where ~⌫� is the outer unit normal vector of � and ~⌫(·, t) is that of ⌃t. Thus

the obstacle �
t : M ! Rn+1 and the hypersurface ⌃t has the same normal

at any x 2 M .

3.2.3 Free boundary

Now let us define free boundary �, the non-coincidence set ⌦, and the coin-

cidence set ⇤ for the support function u and ' as follows:

⌦ = {(z, t) 2 Sn
⇥ [0, T ) : u(z, t) > '(z)},

⇤ = {(z, t) 2 Sn
⇥ [0, T ) : u(z, t) = '(z)},

(3.2.5)
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and

� = @⌦ \ @⇤. (3.2.6)

We also define �t, ⌦t, and ⇤t as the time section of �, ⌦, and ⇤, respectively.

3.3 Singular perturbation problem

In this and the next section, we shall consider the singular perturbation

problem (3.3.2) below. The short-time existence and evolution equation are

established here, and then we prove the several uniform bounds for these

approximations in the next section.

In our obstacle problem (GFo), the evolving hypersurface cannot pass

the obstacle and satisfies the partial di↵erential equation only on the non-

coincidence set ⇤ which is unknown before we obtain ~X. To solve this di�-

culty, we will consider the penalized problem which is approximated solution

by allowing the hypersurface can pass the obstacle.

Let � be the smooth function defined on R and satisfying

�(0) = �1,

�(x) = 0 if x � 1,

�00(x) = 0 if x < 0,

�0(x) � 0, �00(x)  0, for all x 2 R,

and let K� be the Gauss curvature of the obstacle �. We define the penalty

term to be

��(x) = A0�(x/�), (3.3.1)

where A0 = sup� K↵

�+1. Then it is easy to check that ��(x)  0, �0
�
(x) � 0,

�00
�
(x)  0, and ��(0) = �A0 < � sup� K↵

�. Moreover, lim�!0 ��(x) ! 0 for

x > 0 and lim�!0 ��(x) ! �1 for x < 0.
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Now let us consider the following penalized problem which approximates

(GFo): Given an initial hypersurface ⌃0 and its immersion ~X0 : Mn
! Rn+1,

@

@t
~X�(x, t) = �

h
K↵(x, t) + ��

⇣D
~X�(x, t)��

t(x), ~⌫(x, t)
E⌘i

~⌫(x, t),

~X�(x, 0) = ~X0(x),

(3.3.2)

for x 2 M and t 2 [0, T ).

The short time existence and the evolution equation will be discussed

in the following subsections. Before proceeding further, it is convenient to

rewrite (3.3.2) in terms of support function as follows:

�
@

@t
u�(z, t) =

 
det(g

ij
)

det(rirju� + u�g
ij
)

!↵

+ ��(u
�
� '),

u�(z, 0) = u0(z),

(3.3.3)

for z 2 Sn and t 2 [0, T ), where u0 is the support function of ~X0.

3.3.1 Short-time existence

We use an existence theorem of Hamilton [37], as in [20], to prove the short-

time existence of (3.3.2). The Hamilton’s existence theorem is based on the

Nash-Moser inverse function theorem.

To do this, we need to compute the principal symbol of the right hand

side of (3.3.2), which is obtained by taking the highest order derivatives

and replacing @/@xi by the Fourier transform variable ⇠i (see [37]). However,

since the penalized problem (3.3.2) is only lower order perturbation from the

Gauss curvature flow, the desired principal symbol is equal to that of Gauss

curvature flow. Note that the proof of Theorem 2.1 in [20] depends only

on the principal symbol and integrability condition. Therefore, by taking the

same integrability condition, we can obtain the following short time existence

result.
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Lemma 3.3.1. For any ↵ > 0 and dimension n, let ~X0 be a smooth strictly

convex hypersurface immersion of Mn into Rn+1. Then there exists a positive

! such that (3.3.2) has a unique smooth solution ~X�(·, t) on Mn
⇥[0,!). Here,

! may depend on ~X0.

3.3.2 Evolution equations

Under the penalized flow (3.3.2), we can obtain the evolution formula for

the geometric quantity of the hypersurface ⌃t. We denote by ⇤ the operator

↵K↵(h�1)klrkrl. For notational convenience, we will refer to ��
⇣D

~X�
��, ~⌫

E⌘

simply as ��.

Lemma 3.3.2. Under the flow (3.3.2), the geometric quantities evolve ac-

cording to

(i)
@gij
@t

= �2 (K↵ + ��)hij,

(ii)
@~⌫

@t
= r

j (K↵ + ��)
@ ~X

@xj
,

(iii)
@hij

@t
= rirj(K

↵ + ��)� (K↵ + ��)hjkh
k

i

= ⇤hij + ↵2K↵(h�1)kl(h�1)mn
rihklrjhmn

� ↵K↵(h�1)km(h�1)lnrihklrjhmn

+ ↵K↵Hhij � (n↵ + 1)K↵hjkh
k

i
+rirj�� � ��hjkh

k

i
,

(iv)
@K

@t
= ⇤K + ↵(↵� 1)K↵�1(h�1)ijriKrjK +K↵+1H

+K(h�1)ijrirj�� +K↵H��,

(v)
@K↵

@t
= ⇤K↵ + ↵K2↵H +⇤�� + ↵K↵H��,
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(vi)
@H

@t
= ⇤H + ↵2gijK↵(h�1)kl(h�1)mn

rihklrjhmn

� ↵gijK↵(h�1)km(h�1)lnrihklrjhmn

+ ↵K↵H2 + (1� n↵)K↵
|A|2 +��� + |A|2��,

(vii)
@| ~X|

2

@t
= ⇤| ~X|

2
� 2↵K↵

H + 2(n↵� 1)K↵
h ~X,~⌫i � 2��h ~X,~⌫i,

Proof. For simplicity, we define F� = K↵ + ��.

(i) Since
D
~⌫, @ ~X

@xi

E
= 0, we have

@gij
@t

=
@

@t

*
@ ~X

@xi
,
@ ~X

@xj

+
=

*
@

@xi
(�F�~⌫),

@ ~X

@xj

+
+

*
@ ~X

@xi
,
@

@xj
(�F�~⌫)

+

= �F�

*
@~⌫

@xi
,
@ ~X

@xj

+
� F�

*
@ ~X

@xi
,
@~⌫

@xj

+
= 2F�

*
~⌫,

@2 ~X

@xi@xj

+
= �2F�hij.

(ii) From h~⌫,~⌫i = 1, we obtain
⌦
@~⌫

@t
, ~⌫
↵
= 0 and

⌦
@~⌫

@xi , ~⌫
↵
= 0. Thus,

@~⌫

@t
=

*
@~⌫

@t
,
@ ~X

@xi

+
gij
@ ~X

@xj
= �

⌧
~⌫,
@(�F�~⌫)

@xi

�
gij
@ ~X

@xj
=
@F�

@xi
gij
@ ~X

@xj
.

(iii) By the same argument as in (ii), we have

@~⌫

@xj
= hjkg

kl
@ ~X

@xl
.
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This implies that

@hij

@t
=

@

@t

*
@2 ~X

@xi@xj
,�~⌫

+
=

⌧
@2(�F�~⌫)

@xi@xj
,�~⌫

�
�

*
@2 ~X

@xi@xj
,
@~⌫

@t

+

=

⌧
@

@xi

✓
@F�

@xj
~⌫ + F�

@~⌫

@xj

◆
, ~⌫

�
�

*
�k

ij

@ ~X

@xk
� hij~⌫,

@F�

@xm
gmn

@ ~X

@xn

+

=
@2F�

@xi@xj
+ F�

*
@

@xi

 
hjkg

kl
@ ~X

@xl

!
, ~⌫

+
� �k

ij

@F�

@xm
gmngkn

=
@2F�

@xi@xj
� �k

ij

@F�

@xk
+ F�

*
hjkg

kl
@2 ~X

@xi@xl
, ~⌫

+

= rirjF� � F�hjkh
k

i
.

For the second equality, we need the following computation.

(h�1)klrirjhkl = (h�1)klrirkhlj

= (h�1)kl(rkrihlj +Riklmh
m

j
+Rikjmh

m

l
)

= (h�1)klrkrlhij + (h�1)kl(hilhkm � himhkl)h
m

j

+ (h�1)kl(hijhkm � himhkj)h
m

l

= (h�1)klrkrlhij + himh
m

j
� nhimh

m

j
+Hhij � himh

m

j

= (h�1)klrkrlhij +Hhij � nhimh
m

j
.

(3.3.4)

On the other hand,

rirjK
↵ = ri

�
↵K↵(h�1)mn

rjhmn

�

= ↵K↵(h�1)mn
rirjhmn + ↵2K↵(h�1)kl(h�1)mn

rihklrjhmn

� ↵K↵(h�1)km(h�1)lnrihklrjhmn

= ⇤hij + ↵K↵(Hhij � nhimh
m

j
)

+ ↵2K↵(h�1)kl(h�1)mn
rihklrjhmn

� ↵K↵(h�1)km(h�1)lnrihklrjhmn.
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Then we get the evolution equation for hij.

@hij

@t
= rirjF� � F�hjkh

k

i

= rirjK
↵
�K↵hjkh

k

i
+rirj�� � ��hjkh

k

i

= ⇤hij + ↵2K↵(h�1)kl(h�1)mn
rihklrjhmn

� ↵K↵(h�1)km(h�1)lnrihklrjhmn

+ ↵K↵Hhij � (↵n+ 1)K↵hjkh
k

i
+rirj�� � ��hjkh

k

i
.

(iv) By using the previous result,

@K

@t
=

@

@t
det(gikhkj) =

@

@t

det(hij)

det(gij)
= �Kgij

@gij
@t

+K(h�1)ij
@hij

@t

= 2KHF� +K(h�1)ij(rirjF� � F�hjkh
k

i
)

= K(h�1)ijrirjF� +KHF�

= K(h�1)ijri(↵K
↵�1

rjK) +K1+↵H +K(h�1)ijrirj�� +KH��

= ⇤K + ↵(↵� 1)K↵�1(h�1)ijriKrjK +K1+↵H

+K(h�1)ijrirj�� +KH��.

(v) A direct computation shows
@K↵

@t
= ↵K↵�1@K

@t
= ⇤F� +KHF�.
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(vi)
@H

@t
=

@

@t
(gijhij) = �gikglj

@gkl
@t

hij + gij
@hij

@t

= 2F�g
ikgljhklhij

+ gij
�
⇤hij + ↵2K↵(h�1)kl(h�1)mn

rihklrjhmn

� ↵K↵(h�1)km(h�1)lnrihklrjhmn

+ ↵K↵Hhij � (↵n+ 1)K↵hjkh
k

i
+rirj�� � ��hjkh

k

i

�

= 2F�|A|
2 +⇤H + ↵2gijK↵(h�1)kl(h�1)mn

rihklrjhmn

� ↵gijK↵(h�1)km(h�1)lnrihklrjhmn

+ ↵K↵H2
� (↵n+ 1)K↵

|A|2 +��� � |A|2��

= ⇤H + ↵2gijK↵(h�1)kl(h�1)mn
rihklrjhmn

� ↵gijK↵(h�1)km(h�1)lnrihklrjhmn

+ ↵K↵H2
� (↵n� 1)K↵

|A|2 +��� + |A|2��.

(vii) Since

@| ~X|
2

@t
=

@

@t

D
~X, ~X

E
= 2

*
~X,
@ ~X

@t

+
= �2F�

D
~X,~⌫

E
,

and

⇤| ~X|
2 = 2↵K↵(h�1)kl

⇣
hrkrl

~X, ~Xi+ hrk
~X,rl

~Xi

⌘

= 2↵K↵(h�1)kl
 *

@ ~X

@xk@xl
� �m

kl

@ ~X

@xm
, ~X

+
+ gkl

!

= 2↵K↵(h�1)kl
⇣
�hklh~⌫, ~Xi+ gkl

⌘

= 2↵K↵
H� 2↵nK↵

D
~X,~⌫

E
,

we have

@| ~X|
2

@t
= ⇤| ~X|

2
� 2↵K↵

H + 2↵nK↵
h ~X,~⌫i � 2(K↵ + ��)h ~X,~⌫i

= ⇤| ~X|
2
� 2↵K↵

H + 2(↵n� 1)K↵
h ~X,~⌫i � 2��h ~X,~⌫i.
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We also need the evolution equation in z-coordinate. As before, let ⇤Sn

be the operator ↵K↵(h�1)ijrirj.

Lemma 3.3.3. Under the flow (3.3.3), the geometric quantities evolve ac-

cording to

(i)
@g

ij

@t
= 0, rkgij = 0,

(ii) ut = ⇤Snu+ ↵K↵Hu� (n↵ + 1)K↵
� ��,

(iii)
@hij

@t
= �rirjF� � F�gij,

(iv)
@K↵

@t
= ⇤SnF� + ↵K↵HF�,

(v)
@'

@t
= ⇤Sn'+ ↵K↵H'� ↵K↵(h�1)ijh�

ij

where F� = K↵ + �� and h� is the second fundamental form of �.

Proof. The first three assertions follow from (3.2.3). By (3.2.4), we have

@tK↵ = �↵K↵(h�1)ij(hij)t. This implies the next assertion. For the last

equation, we compute

⇤Sn' = ↵K↵(h�1)ijrirj' = ↵K↵(h�1)ij
�⌦
�,rirjz

↵
�
⌦
rirj�, z

↵�

(3.3.5)

= ↵K↵(h�1)ij
�
�g

ij
'+ h�

ij

�
= �↵K↵H'+ ↵K↵(h�1)ijh�

ij
. (3.3.6)

Then @t' = 0 yields the conclusion.
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3.4 Uniform upper bound for principal cur-

vature

In this section, we are devoted to deriving the uniform upper estimates inde-

pendent of � for Gauss curvature and mean curvature. These estimates will

give us a su�cient controls on principal curvature. In fact, if we have K > 0

and H  C, then every principal curvature satisfies

0 < �i  H  C. (3.4.1)

Before we proceed further, we need to show that the solution of penalized

problem cannot touch the obstacle and the velocity vector is inward-pointing.

For notational convenience, we omit the index � from all the geometric quan-

tity, such as K�, H�, etc., throughout this section.

Lemma 3.4.1. Let u be the solution of (3.3.3) in S2
⇥ [0, T ). Then

(i) u(z, t) > '(z),

(ii) |��(u(z, t)� '(z))|  C,

(iii) K(z, t)↵ + �� (u(z, t)� '(z)) > 0

for all (z, t) 2 S2
⇥ [0, T ).

Proof. Assume that ~X touches � for the first time t1 at x1 and let z1 =

~⌫(x1, t1). Clearly t1 > 0. By definition of (z1, t1), we have

u(z, t) � '(z) (3.4.2)

for all points z 2 S2 and all t 2 [0, t1], with equality for z = z1 and t = t1.This

implies

@

@t
(u(z1, t)� '(z1))

���
t=t1

 0, (3.4.3)
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hence

�K↵
� ��(u� ')  0 (3.4.4)

at (z1, t1). Moreover, it also follows from (3.4.2) and (3.2.4) that K(x1, t1) 

K�(x1, t1). Putting these facts together, we obtain

0  K↵ + ��(u� ')  K↵

� + ��(0) (3.4.5)

at (x1, t1). This contradicts the fact that ��(0) = � supK↵

��1. Consequently,
~X cannot touch �.

We now prove the third assertion. We define

A = {s 2 [0, T )|ut(z, t) < 0 for z 2 S2 and t 2 [0, s]}. (3.4.6)

Since the initial hypersurface is strictly convex, 0 2 A. Assume that s⇤ =

supA < T . Let Z(t) = minSn(�ut). By di↵erentiating (3.3.3), we obtain the

evolution equation

Zt � (↵K↵H � �0
�
)Z,

which gives Z(t) � Z(0)e
´
(↵K↵

H��
0
�)dt. By continuity, Z(s⇤) > 0 which is

contradict to the definition of s⇤. This completes the proof.

We remark that �� is bounded independent of � since

�(maxK↵

� + 1) = ��(0)  ��(u(z, t)� '(z))  0. (3.4.7)

Using this with the following lemma, we can prove the uniform upper bound

of Gauss curvature K.

Lemma 3.4.2. For any ↵ > 0 and dimension n, let u be the smooth solution

of (3.3.3) in Sn
⇥ [0, T ). Then there exists a constant C = C(↵, n,�, ~X0),
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independent of �, such that

0 < F�(z, t)  C in Sn
⇥ [0, T )

where F�(z, t) = K(z, t)↵ + �� (u(z, t)� '(z)).

Proof. The assertion F�(z, t) > 0 follows from Lemma 3.4.1. To prove the

uniform upper bound, we use a Tso’s trick [72] as in [75]. Let us consider

w(z, t) =
F�(z, t)

u(z, t)� ⇢0
(3.4.8)

on Sn
⇥ [0, T ), where u is the support function of ~X and ⇢0 =

1

2
inf
Sn
'. Then,

using (i), the denominator remains positive.

We claim that for any (z, t) 2 Sn
⇥ [0, T )

w(z, t)  max

⇢
1

⇢0
sup
z2Sn

K(z, 0),
(↵n+ 1)n

(↵n)n⇢n+1
0

�
. (3.4.9)

To prove this, let us consider any time t0 2 (0, T ) and assume that w attains

its maximum over Sn
⇥ [0, t0] at some point (z1, t1). If t1 = 0, we have

sup
(z,t)2S2⇥[0,t0]

w(z, t) 
F�(z1, 0)

u(z, 0)� ⇢0


1

⇢0
sup
z2S2

K(z, 0).

Consequently we may assume t1 > 0 and we know that at the maximum

point (z1, t1) of w,

wt  0, rw = 0, and r
2
w � 0. (3.4.10)

By Lemma 2.2.1, the evolution equation of w is given by

(@t �⇤Sn)w =
(@t �⇤Sn)F�

u� ⇢0
�

F�(@t �⇤Sn)(u� ⇢0)

(u� ⇢0)2
+

2
⌦
r(u� ⇢0),rw

↵
⇤Sn

u� ⇢0
,
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and then, together with (3.4.10), we have

0  (u� ⇢0)(@t �⇤Sn)F� � F�(@t �⇤Sn)(u� ⇢0).

From the evolution equation of K↵ in Lemma 3.3.3 and (3.2.3), we obtain

0  (u� ⇢0)(@t�� + ↵K↵HF�) + F�(F� + ↵K↵(h�1)ijrirju)

= (u� ⇢0)(�
0
�
ut + ↵K↵HF�) + F�(F� + ↵K↵(h�1)ij(hij � ug

ij
))

= �(u� ⇢0)�
0
�
F� + ↵(u� ⇢0)K

↵HF� + (K↵ + ��)F� + ↵K↵F�(n� uH).

Since ��  0 and �0
�
� 0, we have

0  K↵F�(↵n+ 1� ↵H⇢0).

Therefore

H 
↵n+ 1

↵⇢0
,

and so

sup
Sn⇥[0,t0]

w 
K

⇢0


1

⇢0

✓
H

n

◆n



✓
↵n+ 1

↵n

◆n

⇢�(n+1)
0 . (3.4.11)

Since the right hand side of (3.4.11) is independent of t0, we have (3.4.9).

Now using (3.4.8) and (3.4.9), we obtain

F�(x, t) = (u(x, t)� ⇢0)w(x, t)  sup
S2

(u0(x)� ⇢0) sup
S2⇥[0,T )

w(x, t).

This bound, together with (3.4.9), completes the proof.

Lemma 3.4.2 has the following immediate consequence.

Corollary 3.4.3. For any ↵ > 0 and any dimension n, the Gauss curvature

K of the solution of 3.3.2 satisfies

0 < K  C̃,
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where C̃ = (C + sup� K� + 1)
1
↵ and C is the constant in Lemma 3.4.2.

Proof. By Lemma 3.4.1, we know that � sup� K�� 1  ��(u�')  0. This

gives the desired result.

We are now ready to prove the uniform upper bound for mean curvature.

Our proof generalizes the quantity used in [3]. When ↵ = 1 and n = 2, we

employ the same quantity but we have to control the e↵ect form the obstacle

��. For 0 < ↵ < 1 and n = 2, we put an exponent in the denominator.

Lemma 3.4.4. For 0 < ↵  1 and the dimension n = 2, let ~X be the smooth

solution of (3.3.2) in M ⇥ [0, T ). Then we have the estimate

sup
M⇥[0,T )

H  C

for all � > 0, the constant C depending only on ↵, � and ~X0.

Proof. By the evolution equation of the | ~X|
2 in Lemma 3.3.2, the function

| ~X| is decreasing in time. Choose the origin such that ~X0 is contained in a

ball of radius R about the origin. Then D := 2R2
� | ~X|

2 > 0. Now, we can

consider

S =
H

D�

where � will be chosen later. Using Lemma 2.2.1 and the evolution equation

of H and | ~X|
2, we obtain

(@t �⇤)S =
1

D�

⇣
gijK̈(rih,rjh) + ↵K↵H2 + (1� n↵)K↵

|A|2 +��� + |A|2��
⌘

+
�H

D�+1

⇣
�2↵K↵

H + 2(↵n� 1)K↵

D
~X,~⌫

E
� 2��h ~X,~⌫i

⌘

�
2�

D

D
r| ~X|

2,rS
E

⇤
+
�(� � 1)H

D�+2

���r| ~X|
2
���
2

⇤
.

As in Lemma 3.4.2, given t0 2 (0, T ), let (x1, t1) achieve the maximum

of S over M ⇥ [0, t0]. We may assume t1 > 0. Then, at this maximum point
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(x1, t1), we have

0 
1

D�

⇣
gijK̈(rih,rjh) + ↵K↵H2 + (1� 2↵)K↵

|A|2
⌘

+
�H

D�+1

⇣
�2↵K↵

H + 2(2↵� 1)K↵

D
~X,~⌫

E⌘
+
�(� � 1)H

D�+2

���r| ~X|
2
���
2

⇤

+
��� + (|A|2 � 2�D�1

D
~X,~⌫

E
H)��

D�
.

(3.4.12)

First we will estimate the penalty terms. By a direct computation, we can

check that

��� = �00
�

���r
D
~X(x, t)��

t(x), ~⌫(x, t)
E���

2

+ �0
�
�
D
~X ��, ~⌫

E
.

The first term on the right is nonpositive since �00
�
 0. For the remaining

term, we observe that

�~⌫ = r
kH

@ ~X

@xk
� |A|2~⌫.

From this, we have that

�
D
~X ��, ~⌫

E
= gijrirj

D
~X ��, ~⌫

E

= gijri

D
~X ��,rj~⌫

E

= gij
D
ri( ~X ��),rj~⌫

E
+
D
~X ��,�~⌫

E

= �

D
�( ~X ��), ~⌫

E
+

*
~X ��,rkH

@ ~X

@xk
� |A|2~⌫

+

= H � gijh�
ij
+r

kH

*
~X ��,

@ ~X

@xk

+
� |A|2

D
~X ��, ~⌫

E
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At the point (x1, t1), we know

r
kH = �

�Hr
k
| ~X|

2

2R2 � | ~X|2
,

and then

�
D
~X ��, ~⌫

E


 
1 +

2�

2R2 � | ~X|2
| ~X ��|| ~X|

!
H �

|A|2

µmax

(1 + 2�)H �
H2

2µmax

where µmax is the maximum principal curvature of the obstacle. Therefore,

if we have

H(x1, t1) � max

✓
2(1 + 2�)µmax,

4�

R

◆
,

then

��� + (|A|2 � 2�D�1
D
~X,~⌫

E
H)��

D�
 0.

Otherwise, the quantity S has uniform upper bound from the inequality

S  (2R2)�H and the fact that � will be chosen dependent on ↵, �, and ~X0.

Before we dealing with the higher order derivative term, let us recall

its expression under the normal coordinate. In the coordinate system, the

following formula holds:

gijK̈(rih,rjh) = ↵2K↵(h�1)kk(h�1)mm
rihkkrihmm

� ↵K↵(h�1)kk(h�1)ll(rihkl)
2

(3.4.13)

To estimate gijK̈(rih,rjh), we divide into two cases:

(i) 0 < ↵ < 1;

(ii) ↵ = 1.
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For the first case, we could show that

gijK̈(rih,rjh) 
2X

i=1

↵�2D�2
|ri|

~X|
2
|
2K↵(2↵� 1� 2(1� ↵)K��2

i
)

4↵K + (1� ↵)H2
H2.

(3.4.14)

at the maximum point (x1, t1). In fact, using (3.4.13), we have

gijK̈(rih,rjh) = ↵(↵� 1)K↵��2
1 r1h

2
11 + ↵(↵� 1)K↵��2

2 r2h
2
22 (3.4.15)

+ 2↵2K↵�1
r1h11r1h22 + 2↵2K↵�1

r2h11r2h22

+ (�2↵K↵�1 + ↵(↵� 1)K↵��2
1 )r2h

2
11

+ (�2↵K↵�1 + ↵(↵� 1)K↵��2
2 )r1h

2
22.

under the normal coordinate system. Moreover, since the point x1 realizes

the maximum of S(·, t), we obtain

rih11 +rih22 = �
�Hri|

~X|
2

D
(3.4.16)

for i = 1, 2. For a moment, we denote the quantity 4↵K + (1� ↵)H2 by Q.

We substitute (3.4.16) to (3.4.15) so that the right hand side of (3.4.15) is

� ↵K↵�2Q
X

i 6=j

 
rihii +

↵�D�1
ri|

~X|
2HK↵�1(↵ + 2 + (1� ↵)K��2

j
)

↵K↵�2Q

!2

+
2X

i=1

↵�2D�2
|ri|

~X|
2
|
2K↵(2↵� 1� 2(1� ↵)K��2

i
)

Q
H2.

This implies the assertion.
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Then (3.4.12) becomes

0 

2X

i=1

↵�2D���2
|ri|

~X|
2
|
2K↵(2↵� 1� 2(1� ↵)K��2

i
)

Q
H2 (3.4.17)

+D��((1� ↵)K↵H2
� 2(1� 2↵)K↵+1)� 2↵�D���1K↵�1H2

+ 2(2↵� 1)�D���1K↵H
D
~X,~⌫

E
+

2X

i=1

↵�(� � 1)K↵HD���2��1
i
|ri|

~X|
2
|
2.

Now we choose

� =
2(1� ↵)

↵
KmaxR

2

so that we obtain

D��K↵�1H2((1� ↵)K � 2↵�D�1)  �(1� ↵)D��K↵�1H2Kmax. (3.4.18)

Moreover, the first term and the last term become

2X

i=1

↵�D���2
|ri|

~X|
2
|
2K↵H

✓
(� � 1)��1

i
+ �H

2↵� 1� 2(1� ↵)K��2
i

Q

◆

=
X

i 6=j

↵�K↵H|ri|
~X|

2
|
2 (� � 1)(Q+ �H((2↵� 1)�i � 2(1� ↵)�j)

�iD�+2Q

=
2X

i=1

↵�K↵H

D�+2Q
⇥

�(1� ↵)(� + 1)H2 + (� � 1)4↵K + �H�i
�i

|ri|
~X|

2
|
2

=
X

i 6=j

↵�K↵�1H

D�+2Q
(�KH � (1� ↵)(� + 1)H2�j + (� � 1)4↵K�j)|ri|

~X|
2
|
2


↵�K↵�1H

D�+2Q
(�KH + (� � 1)4↵KH)(| ~X|

2
�

D
~X,~⌫

E2
)


↵�K↵H2

D�+2Q
((4↵ + 1)� � 4↵)(| ~X|

2
�

D
~X,~⌫

E2
)


↵�((4↵ + 1)� � 4↵)

1� ↵
K↵R�2�,

(3.4.19)
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and the remaining terms are

2(1� 2↵)K↵+1

D�
+

2(2↵� 1)�K↵H
D
~X,~⌫

E

D�+1
 2|2↵� 1|(K↵+1R�2� + �K↵R�1S).

(3.4.20)

Notice that D = 2R2
� | ~X|

2 and Q = 4↵K + (1 � ↵)H2. Putting (3.4.19)

and (3.4.20), together with (3.4.18), we obtain

0  �C1S
2 + C2S + C3

where C1, C2, and C3 are positive constants depending on ↵,�, and ~X0. Thus,

S is uniformly bounded on M ⇥ [0, t0]. Since this bound is independent of t0,

we have shown maxM⇥[0,T ) S  C(↵,�, ~X0) and then the conclusion follows

from H  (2R2)�S.

It remains to prove when ↵ = 1. In this case, we take � = 1. Then (3.4.14)

becomes

gijK̈(rih,rjh)  (| ~X|
2
�

D
~X,~⌫

E2
)S2.

With this and (3.4.12), we have

0 

| ~X|
2
�

D
~X,~⌫

E2

D
S2 +

2K2

D
� 2S2 +

2K
D
~X,~⌫

E

D
S

� S2 + 2KmaxS + 2K2
maxR

�2.

As in the previous case, we can obtain the uniform upper bound for S, i.e.,

S  Kmax(1 +
p

1 + 2R�2).

Again, this bound is independent of t0, we conclude that maxM⇥[0,T ) S 

C(�, ~X0) and then H  2R2S proves the lemma.

Remark 3.4.5. The dimension restriction n = 2 is used only on Lemma
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3.4.4

3.5 Lower bound for principal curvature

In this section, we will discuss about the lower bound on the principal curva-

ture. We first prove an upper bound estimate for H�, the sum of the inverse

of the principal curvature, which gives the lower bound of principal curva-

ture. This bounds, together with Lemma 3.4.4, yields uniform ellipticity for

each � so that we can obtain the long time existence of penalized solution.

We also show a lower bound on the principal curvature with respect to the

distance from the obstacle.

Lemma 3.5.1. For any ↵ > 0 and dimension n, let u be the solution of

(3.3.3) in Sn
⇥ [0, T ). Then there exists a constant C = C(n,�, ~X0, T ) such

that

H(z, t)  C� in Sn
⇥ [0, T ).

Proof. First, we need the evolution equation of H. To see this, note that by

definition

Ht = (gijhij)t = �gijrirj(K
↵ + ��)� n(K↵ + ��)

= gijri(↵K
↵(h�1)klrjhkl)� nK↵

��Sn�� � n��

= gij↵K↵(h�1)klrirjhkl � gij↵2K↵(h�1)mn(h�1)klrihmnrjhkl

� gij↵K↵(h�1)km(h�1)lnrihmnrjhkl

� nK↵
��Sn�� � n��

and, as in (3.3.4),

⇤SnH = gkl⇤Snhkl = gkl
�
↵K↵(h�1)ijrkrlhij � ↵K↵(ng

kl
� hklH)

�
,
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which implies that

(@t �⇤Sn)H = �gij↵2K↵(h�1)mn(h�1)klrihmnrjhkl

� gij↵K↵(h�1)km(h�1)lnrihmnrjhkl

+ ↵K↵(n2
�HH)� nK↵

��Sn�� � n��

 ��Sn�� � n��,

by the Cauchy-Schwarz inequality and the fact that the metric and the second

fundamental form are positive definite. As in the previous lemmas, for any

t0 2 (0, T ), assume that H + e�(t0�t)��2
has maximum over Sn

⇥ [0, t0] at

(x1, t1) where t1 > 0. The constant � will be chosen later. Then at this point,

we have

0 ��Sn�� � n�� �
�

�2
. (3.5.1)

It remains to control the penalty terms. From the direct calculation,

�Sn�� = �00
�
gijri(u� ')rj(u� ') + �0

�
�Sn(u� ').

Using (3.2.2), we have ~X �� = r(u� ') + (u� ')z so that

gijri(u� ')rj(u� ') = | ~X ��|
2
� (u� ')2.

Moreover, by the relation (3.2.3), we obtain

�Sn(u� ') = gijrirj(u� ')

= gij(hij � h�
ij
� (u� ')g

ij
)

= H�H
�
� (u� ')n.

Recalling the definition (3.3.1), these facts immediately imply that if we take
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� � A0 k�00
k1 (R2 + n�2), then

��Sn�� � n�� �
�

�2
A0

✓
��00R

2

�2
� �01

�
(H�H

�
� (u� ')n)�

k�00
k1 R2

�2

◆

� �01

�
(H�H

�
� (u� ')n),

and therefore H  H
� + (u� ')n. Finally, we obtain

H  H
� + (u� ')n+ e�T �

�2

Since the right hand side does not depend on t0, the desired conclusion fol-

lows.

Lemma 3.5.1, together with the result in Section 4, implies that the lin-

earized operator satisfying uniformly parabolicity, i.e.,

C�|⇠|
2
 ↵K(x, t)↵(h�1)ij⇠i⇠j  C|⇠|2 (3.5.2)

on M ⇥ [0, T ), where ⇠ 2 Rn, C = C(n, ~X0,�), and C� = C�(n, ~X0,�, T ).

Then it is a direct consequence that the support function u satisfies a uni-

formly parabolic equation. We can now apply Krylov-Safonov theory to u,

as in [72], which implies a C2,� estimate and hence smoothness.

Next we establish the long time existence of (3.3.3). From Lemma 3.3.1,

we have the unique smooth solution u on [0, T ). Take the maximum time

T ⇤ that the solution exists, and assume that T ⇤ is finite. However, using the

estimates above, the hypersurface ⌃T ⇤ is smooth and then the solution exists

beyond T ⇤ by applying the local existence to ⌃T ⇤ . This is a contradiction

and therefore the solution exists on [0,1).

Let ~X� be the solution of (3.3.2) for each �. From Corollary 3.4.3 and

Lemma 3.4.1 ((iii)), ~X� is equicontinuous and uniformly bounded. Then, by

the Arzela-Ascoli theorem, there is a continuous hypersurface ~X such that
~X�

! ~X uniformly on M ⇥ [0, T ] up to subsequence for each T < 1. It

is easy to check that ~X is the viscosity solution of (GFo). Moreover, using
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Lemma 3.4.4, ~X has C1,1 bound with ~X�
! ~X in C1,� for some 0 < � < 1.

This proves the first and second part of Theorem 3.1.5.

To obtain the third part of Theorem 3.1.5, we need the following local

lower curvature bound whose constant depends on the distance from the free

boundary. In order to proceed, we have to define cut-o↵ function. In a z-

coordinate, consider a point (z0, t0) such that 2M := u(z0, t0) � '(z0) > 0.

Now define a cut-o↵ function  � by

 �(z, t) = (M � u�(z, t) + '(z)� �t)+.

Lemma 3.5.2. For any ↵ > 0 and any dimension n, let u� be the smooth

solution of (3.3.3) in Sn
⇥ [0, T ). Assume that � < M . Then we have

✓
 

1
↵+n�1
�

1

�min

◆
(z, t)  M

1
↵+n�1 sup

U0

1

�min(·, 0)
,

where U0 = {z : u�(z, 0)� '(z) < M}.

Proof. From the definition of the cut-o↵ function  � with Lemma 3.3.3, we

obtain

(@t �⇤Sn) � = �↵K↵H(u� ') + (n↵ + 1)K↵
� ↵K↵(h�1)ijh�

ij
� � + ��

 (n↵ + 1)K↵
� � + ��

on the support of  �. Using the non-positivity of �� and Corollary 3.4.3, we

also have

(@t �⇤Sn) �  0

if � � �0 for some constant �0 = �0(n,↵,maxK). Thus we get

(@t �⇤Sn) b

�
 �b(b� 1) b�2

�
kr �k

2
⇤Sn

, (3.5.3)

where b = 1
1
↵+n�1

. We next consider the evolution equation for h11/ g11.
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Observe that

(@t �⇤Sn)
1

g11
= 0, (3.5.4)

and

(@t �⇤Sn)h11 = �↵2K↵(h�1)mn(h�1)klr1hmnr1hkl

� ↵K↵(h�1)km(h�1)lnr1hmnr1hkl

+ (n↵� 1)K↵g11 � ↵K↵Hh11 �r1r1�� � ��g11.

(3.5.5)

We are now ready to prove the assertion. Let t0 2 (0, T ) and assume that the

function  b

�
��1
min attains its maximum on Sn

⇥ [0, t0] at (z1, t1). If t1 = 0, then

we get the desired result. Let t1 > 0 and choose a normal coordinate system

near (z1, t1) so that

g
ij
(z1, t1) = �ij, hij(z1, t1) = ��1

i
(z1, t1)�ij, �1(z1, t1) = �min(z1, t1).

Using the similar argument in [18], we can show that for any point,

h11

g11


1

�min

so that

w =  b

�

h11

g11

attains its maximum at (z1, t1). Then by (3.5.3), and (3.5.4), the following

holds at (z1, t1):

0  (@t �⇤Sn)w

=
h11

g11
(@t �⇤Sn) b

�
+  b

�
(@t �⇤Sn)

h11

g11
� 2

⌧
r b

�
,r

h11

g11

�

⇤Sn

= �b(b� 1) b�2
�

��1
1 kr �k

2
⇤Sn

+  b

�
(@t �⇤Sn)h11 + 2 �b

�
��1
1

��r b

�

��2
⇤Sn

.

(3.5.6)
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Notice that we have used

@tw(z1, t1) � 0. rw(z1, t1) = 0, r
2
w(z1, t1)  0.

Next, the equation (3.5.5) becomes

(@t �⇤Sn)h11 = �↵2K↵

 
X

m

�mr1hmm

!2

� ↵K↵�m�nr1h
2
mn

+ (n↵� 1)K↵
� ↵K↵H��1

1 �r1r1�� � ��.

For the first two terms in the above equation, by the Cauchy-Schwarz in-

equality,

↵

 
X

m

�mr1hmm

!2

+
X

m 6=1

�2
m
r1h

2
mm

�
1

1
↵
+ n� 1

�21r1h
2
11

and therefore,

↵2K↵

 
X

m

�mr1hmm

!2

+
X

m

↵K↵�m�nr1h
2
mn

�

✓
1 +

1
1
↵
+ n� 1

◆
↵K↵�1

X

m

�mrmh
2
11.

Using rw(x1, t1) = 0 again, the equation (3.5.6) becomes

0 

✓
�
b� 1

b
� 1�

1
1
↵
+ n� 1

+ 2

◆
 �b

�
�1
��r b

�

��2
⇤Sn

+  b

�
(�↵K↵H��1

1 + (n↵� 1)K↵) +  b

�
(�r1r1�� � ��2

1 ��)

� ↵ b

�
K↵

since b = 1
1
↵+n�1

and u(z1, t1)�'(z1) � M > �. This completes the proof.
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3.6 Proof of Theorem 3.1.5

In this section, we provide a proof of Theorem 3.1.5. In order to present

the proof, we need the comparison principle which is useful to prove the

convergence to the obstacle.

Lemma 3.6.1. Let u and v be the solution of (3.3.3) with initial condition

u0 and v0, respectively. Assume that the hypersurfaces corresponding to u0

and v0 are smooth strictly convex closed hypersurface. If u0 � v0 on Sn, then

u � v in Sn
⇥ [0,1).

Proof. For " > 0, define w = (u� v)e��t + ". The constant � will be chosen

later. Assume that w achieves zero at (z1, t1) for the first time. Clearly, t1 >

0. Then by the simple maximum principle argument and the mean value

theorem, we can obtain

(� � ↵(K⇤)↵H⇤ + �0
�
(u⇤

� '))(u� v) � 0,

where K⇤ and H⇤ are the curvatures corresponding to the support function

u⇤ = s⇤u + (1 � s⇤)v for some s⇤ 2 [0, 1]. At the point (z1, t1), u � v is

negative, which will derive a contradiction if � � ↵(K⇤)↵H⇤ + �0
�
(u⇤

� ').

This is actually possible since the Gauss curvature and the mean curvature

have an upper bound from Corollary 3.4.3 and Lemma 3.5.1.

We now prove Theorem 3.1.5.

Proof of Theorem 3.1.5. The statements (i)�(iii) are proved in the previous

section. The last part is to prove the convergence to the obstacle. For any

given point on�, we can take the ball B containing the obstacle and touching

� at given point. Since it is well known fact that how the sphere evolves

under the Gauss curvature flow, we also take the large ball enclosing ~X0 and

evolving to the B in finite time. Note that this ball is also the solution of

(GFo), and hence the conclusion (iv) follows from comparison principle.
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Chapter 4

Mean curvature flow of entire

graphs with an obstacle

4.1 Introduction

In this chapter we consider the obstacle problem for the evolution of complete

non-compact strictly mean convex graphs by mean curvature. The obstacle

� in our consideration is a C1,1 complete non-compact strictly convex graphs

over an open subset in Rn. Let ~X be a one parameter family of immersions

from Mn
! Rn+1, where Mn is an n-dimensional complete non-compact Rie-

mannian manifold, and the initial hypersurface ~X0 : Mn
! Rn+1 is smooth

immersion of a complete non-compact strictly mean convex n-dimensional

graph enclosing the obstacle. We say that X is a solution of the obstacle

problem for the mean curvature flow of complete non-compact hypersurface

if

*
@ ~X(x, t)

@t
,�~⌫(x, t)

+
 H(x, t) for (x, t) 2 Mn

⇥ [0, T ),

@ ~X(x, t)

@t
= �H~⌫(x, t) if ~X(x, t) /2 �,

� ⇢ ⌃t for 0  t < T,

~X(x, 0) = ~X0(x) for x 2 Mn,

(MCFo)
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where H and ~⌫ are the mean curvature and the outward unit normal vector

on ⌃t, respectively. Here we use the bar notation to indicate the closed subset

of Rn+1 enclosed by the given set.

We always assume that the initial hypersurface X0 and the obstacle �

is given by graphs over an open subset of Rn. Denote by u0 : ⌦0 ! R,
u : ⌦ ! R and ' : ⌦' ! R the graph function of X0, X, and �, respectively.

With the graph functions, we could formulate (MCFo) as

@u

@t


p
1 + |Du|2 div

 
Dup

1 + |Du|2

!
in ⌦⇥ [0, T ),

@u

@t
=
p
1 + |Du|2 div

 
Dup

1 + |Du|2

!
in {u < '},

u  ' in ⌦⇥ [0, T ),

u(·, 0) = u0.

(4.1.1)

As in the previous chapter, the concept of solution here is a viscosity solution.

Now we state our main result in this chapter.

Theorem 4.1.1. Let ⌃0 and � be complete non-compact graphs over an open

subset of Rn such that � ⇢ ⌃0. Assume also that � is strictly convex and ⌃0 is

strictly mean convex. Then there exists a viscosity solution u : ⌦ ! R[ {1}

of (MCFo) with the local C1,1 optimal regularity, where ⌦ ⇢ Rn+1
⇥ [0,1)

is relatively open and ⌦ contains ⌦' ⇥ [0,1).

4.2 Preliminaries

Let Mn be an n-dimensional manifold and X(·, t) : Mn
! Rn+1 be a one-

parameter family of immersions in Rn+1. Denote by ⌫ the outward unit nor-

mal vector of ⌃t = X(M, t). In a local coordinate system {xi
}
n

i=1, the induced

metric and the second fundamental form of ⌃t are

gij =

⌧
@X

@xi
,
@X

@xj

�
and hij =

⌧
@2X

@xi@xj
,�⌫

�
. (4.2.1)
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We also define the inverse matrix of {hij} by {bij}. With the Einstein’s

summation convention on repeated indices, the Weingarten map is defined

by

hi

j
= gikhkj

where gij denotes the inverse matrix of {gij}. We call the eigenvalues of hi

j

as the principal curvatures �1,�2, · · · ,�n, and then we can define curvatures

as follows:

1. H = tr(hi

j
) =

P
�i (Mean curvature),

2. K = det(hi

j
) =

Q
�i (Gauss curvature),

3. |A|2 = tr((h2)i
j
) =

P
�2
i
(sum of square),

4. H = det((h�1)i
j
) =

P
��1
i

(sum of inverse).

From the Gauss-Weingarten relations, we have

@2X

@xi@xj
= �k

ij

@X

@xk
� hij⌫ and

@⌫

@xi
= hikg

kl
@X

@xl
,

where the Christo↵el symbol

�k

ij
=

1

2
gkl
✓
@

@xi
gjl +

@

@xj
gil �

@

@xl
gij

◆
,

and then the Laplace-Beltrami operator of the position vector X can be

computed as

�gX = gijrirjX = gij
✓

@2X

@xi@xj
� �k

ij

@X

@xk

◆
= �H⌫.
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We write � = �g for simplicity. Recalling the Gauss identity

Rijkl = hikhjl � hilhjk,

where Rijkl is the Riemannian curvature tensor, and the Codazzi identity

rihjk = rjhik,

we can prove the following identity (see [75, Lemma 2.3]):

�hij = rirjH +H(h2)ij � |A|2hij. (4.2.2)

We also compute the Laplace-Beltrami operator of the outward unit normal

vector.

4.2.1 Obstacles

Let � be a complete non-compact strictly convex hypersurface. We always

assume that � can be represented by a graph over an open subset of Rn
⇥{0}.

We call � as an obstacle and denote its normal by ~⌫�.

4.2.2 Penalization method

Let � be the smooth function defined on R and satisfying

�(0) = �1,

�(x) = 0 if x � 1,

�00(x) = 0 if x < 0,

�0(x) � 0, �00(x)  0, for all x 2 R,
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and let K� be the Gauss curvature of the obstacle �. We define the penalty

term to be

��(x) = A0�(x/�), (4.2.3)

where A0 = sup� K↵

�+1. Then it is easy to check that ��(x)  0, �0
�
(x) � 0,

�00
�
(x)  0, and ��(0) = �A0 < � sup� K↵

�. Moreover, lim�!0 ��(x) ! 0 for

x > 0 and lim�!0 ��(x) ! �1 for x < 0.

Now let us consider the following penalized problem which approximates

(MCFo): Given an initial hypersurface ⌃0 and its immersion ~X0 : Mn
!

Rn+1,

@u

@t
=
p

1 + |Du|2 div

 
Dup

1 + |Du|2

!
+ ��('� u) in ⌦⇥ [0, T ),

u(·, 0) = u0.
(4.2.4)

4.3 Evolution equations

In this section, we obtain evolution equations for geometric quantities of the

hypersurface ⌃t under the flow (4.2.4).

Lemma 4.3.1. Under the flow (4.2.4), we have the following evolution equa-

tions.

(i)
@gij
@t

= �2(H + ��)hij

(ii)
@u

@t
= �u+ v�1��

(iii)
@~⌫

@t
= r(H + ��)
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(iv)
@v

@t
= �v � 2v�1

|rv|2 � v|A|2 + v2 hr��, ei

(v)
@hij

@t
= �hij � 2H(h2)ij + |A|2hij +rirj�� � (h2)ij��

(vi)
@H

@t
= �H + |A|2H +��� + |A|2��

(vii)
@|A|2

@t
= �|A|2 � 2|rA|2 + 2|A|4 + 2hij

rirj�� + 2C��

Proof. Recall that F� denotes the speed H + �� of (3.3.2).

(i) Since
D
~⌫, @ ~X

@xi

E
= 0, we have

@gij
@t

=

*
@

@xi
(�F�~⌫),

@ ~X

@xj

+
+

*
@ ~X

@xi
,
@

@xj
(�F�~⌫)

+

= �F�

*
@~⌫

@xi
,
@ ~X

@xj

+
� F�

*
@ ~X

@xi
,
@~⌫

@xj

+
= �2F�hij.

(ii) Notice that u =
D
~X, e

E
, v = h�~⌫, ei�1, and � ~X = �H~⌫. Then

@u

@t
=

*
@ ~X

@t
, e

+
= h�X � ��~⌫, ei = �u+ v�1��.

(iii) From h~⌫,~⌫i = 1, we obtain
⌦
@~⌫

@t
, ~⌫
↵
= 0 and

⌦
@~⌫

@xi , ~⌫
↵
= 0. Thus,

@~⌫

@t
= gij

*
@~⌫

@t
,
@ ~X

@xi

+
@ ~X

@xj
= �gij

⌧
~⌫,
@(�F�~⌫)

@xi

�
@ ~X

@xj
= gij

@F�

@xi

@ ~X

@xj
= rF�.

(iv) By a direct computation, we see that

�v = gijrirjv = gijri(�v2 h�rj⌫, ei) = 2v�1
|rv|2 + v2 h�~⌫, ei .

50



CHAPTER 4. MEAN CURVATURE FLOW OF ENTIRE GRAPHS
WITH AN OBSTACLE

It can now be deduced from Lemma 2.1.2 that

�v = 2v�1
|rv|2 + v2 hrH, ei+ v|A|2

which implies

@v

@t
= �v2

⌧
�
@~⌫

@t
, e

�
= v2 hrH +r��, ei

= �v � 2v�1
|rv|2 � v|A|2 + v2 hr��, ei .

(v) As in the proof of (iii), it holds that @~⌫

@xi = hk

i

@ ~X

@xk . Using this, we see

that

@hij

@t
=

⌧
@2(�F�~⌫)

@xi@xj
,�~⌫

�
+

*
@2 ~X

@xi@xj
,�rF�

+

=
@2F�

@xi@xj
+ F�

⌧
@2~⌫

@xi@xj
, ~⌫

�
�

*
�k

ij

@ ~X

@xk
, gmn

@F�

@xm

@ ~X

@xn

+

=
@2F�

@xi@xj
� �k

ij

@ ~X

@xk
� F�

⌧
@~⌫

@xi
,
@~⌫

@xj

�

= rirjF� � F�(h
2)ij.

This, together with (4.2.2), yields

@hij

@t
= �hij � 2H(h2)ij + |A|2hij +rirj�� � (h2)ij��.

(vi) One easily computes

@gij

@t
= 2F�h

ij (4.3.1)

so that @H

@t
= gij @hij

@t
+2F�|A|2. Then we get the desired result from (v).

(vii) It also follows from (4.3.1) that @|A|2
@t

= 2hij @hij

@t
+ 4F�hij(h2)ij, and

observe that 2hij�hij = �|A|2�2|rA|2. Again, the evolution equation
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(v) gives the conclusion.

4.4 Uniform boundedness for ��

Lemma 4.4.1. Let u be the solution of (4.2.4). Then the solution u does

not touch the obstacle, i.e.,

u(x, t) < '(x) for all x 2 BR, t � 0. (4.4.1)

In particular, the penalty term has the following uniform bound:

�C  ��('(x)� u(x, t))  0, for all x 2 BR, t � 0, (4.4.2)

where the constant C depends only on max
�

H�.

Proof. The first assertion follows from the simple maximum principle argu-

ment. In fact, assume that (x0, t0) is a point such that u(x0, t0) = '(x0) for

the first time. Since u = u0 < ' on the parabolic boundary of BR ⇥ [0,1),

the point (x0, t0) should be an interior point and therefore at this point we

have

@t('� u)  0, D('� u) = 0, D2('� u) � 0. (4.4.3)

Applying this to the equation (4.2.4), the inequality

0 
@u

@t
= aij(Du)Diju+

p
1 + |Du|2��('� u) (4.4.4)

 aij(D')Dij'+
p
1 + |D |2��(0) (4.4.5)

holds at (x0, t0), which implies

H�(x0) =
1p

1 + |D (x0)|2
aij(D (x0))Dij (x0) � ���(0). (4.4.6)

However, this leads to a contradiction as ���(0) = max
�

H� + 1.
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To obtain the second assertion, we observe that

�max
�

H� � 1 = ��(0)  ��('� u)  lim
z!1

��(z) = 0

since �� is increasing. Taking C = max
�

H� + 1 completes the proof.

4.5 Gradient Estimate

In this section, we derive a local gradient estimate for the height function.

Consider the cut-o↵ function  � with moving height to get a local gradient

estimate:

 � :=
⇣
M � �t� u(p, t)

⌘

+
,

where we take � < M

T
for a fixed T . Then one can obtain the evolution

equation of  � and recall that of v from Lemma 4.3.1:

@

@t
 � = � � � � � ��v

�1 (4.5.1)

@

@t
v = �v � 2v�1

|rv|2 � v|A|2 + v2 hr��, ei (4.5.2)

which gives the following local gradient estimate.

Lemma 4.5.1. Let ⌃0 be an initial hypersurface and � be an obstacle. As-

sume that ⌃t is a complete strictly mean convex smooth graph solution of

(4.2.4) defined on Mn
⇥ [0, T ], for some T > 0. Suppose also that � = C0+1

where C0 is the constant in Lemma 3.4.1. Then one has

v(x, t) �(x, t)  M max

(
sup
Q

�
M

| h�~⌫�, ei |
�1, sup

QM

v(·, 0)

)
(4.5.3)

where QM = {x 2 Mn : u(x, 0) < M} and Q�

M
= {x 2 Mn :  (x) < M + �}.

Proof. One can find the evolution equation of Z :=  �v from (4.5.1) and
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(4.5.2):

@

@t
Z =  �

@

@t
v + v

@

@t
 �

=  �

h
�v � 2v�1

|rv|2 � v|A|2 + v2 hr��, ei
i

+ v
h
� � � � � ��v

�1
i

= �Z � 2v�1
hrZ,rvi � Z|A|2 � �v

+ vZ hr��, ei � ��.

(4.5.4)

Moreover, the terms involving penalization become

vZ�0
�
('� u)

⇥
r ·ru� |ru|2

⇤
� ��('� u). (4.5.5)

Note that the support of  � is compactly supported, which makes Z achieves

its maximum on Mn
⇥ [0, T ] at some point (x0, t0). If we assume |ru|2 

r' · ru at this point, then we obtain |ru|  |r | by Cauchy-Schwarz

inequality, which is equivalent to v  | h�~⌫�, ei |�1 at the same point. Then

we have

Z(x0, t0)  M sup
QM+�

| h�~⌫�, ei |
�1. (4.5.6)

provided we make the additional assumption '(x0) � u(x0, t0)  �. We

now assume |ru|2 > r' · ru or ' � u > � at (x0, t0) so that vZ�0
�
(' �

u) [r' ·ru� |ru|2]  0. Also from the uniform boundedness of ��, the re-

maining term in (4.5.5) is bounded by C0, and hence (4.5.5) is bounded by

the same constant. If t0 > 0, then from (4.5.4) we have

0  �Z|A|2 � �v + C0, (4.5.7)

which is a contradiction since � = C0 + 1. On the other hand, in the case of
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t0 = 0, we obtain

Z  M sup
QM

v(·, 0). (4.5.8)

This completes the proof.

4.6 Speed estimates

We start with the following computations

Lemma 4.6.1. Let u be a solution of (4.2.4). Then

�u = h�X, ei = h�H⌫, ei = Hv�1, (4.6.1)

� = Dij rkX
i
r

kXj +Di �X i (4.6.2)

= Dij rkX
i
r

kXj
�Di (H⌫

i), (4.6.3)

hr( � u), ei = ri( � u)
⌦
r

iX, e
↵
= hr ,rui � kruk2 . (4.6.4)

Now we are ready to prove speed estimates

Lemma 4.6.2. Assume that ⌃0 is a initial hypersurface and � is an obstacle.

Let ⌃t be a complete strictly mean convex smooth graph solution of (4.2.4)

on M
n
⇥ [0, T ). Then

✓
t

t+ 1

◆
(H2 4

�
)(x, t)  c(n)M2✓(M2 + ✓ + µ2

max) (4.6.5)

where c(n) denotes a dimensional constant and the constant ✓ is given by

✓ = sup{max(v2(x, s), 1 +D' ·Du) : u(x, s) < M, s 2 [0, t]}. (4.6.6)

Proof. We start with the evolution equation of H2 which follows from (vi)
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in Lemma 4.3.1:

(@t ��)H2 = 2H(|A|2H +��� + |A|2��)� 2 krHk
2

= �
1

2
H�2

��rH2
��2 + 2|A|2H2 + 2H��� + 2|A|2H��.

(4.6.7)

Since the sign of the reaction term, 2|A|2H2, in this equation is not good for

the maximum principle, we employ the auxiliary function

'(v2) =
v2

2✓ � v2
(4.6.8)

following the well-known idea by Ca↵arelli, Nirenberg, and Spruck in [?]. To

obtain the evolution equation of ' we recall (iv) in Lemma 4.3.1 so that

(@t ��)(v2) = 2v(�2v�1
krvk2 � v|A|2 + v2 hr��, ei)� 2 krvk2

= �2v2|A|2 �
3

2
v�2

��rv2
��2 + 2v3 hr��, ei

and hence, we have

(@t ��)' = '0(@t ��)v2 � '00 ��rv2
��2

= '0
✓
�2v2|A|2 �

3

2
v�2

��rv2
��2 + 2v3 hr��, ei

◆
� '00 ��rv2

��2

= �2'0v2|A|2 �

✓
3

2
'0v�2 + '00

◆��rv2
��2 + 2'0v3 hr��, ei .

This, together with (4.6.7), gives

(@t ��)(H2') = '(@t ��)H2 +H2(@t ��)'� 2
⌦
rH2,r'

↵

= '

✓
�
1

2
H�2

��rH2
��2 + 2|A|2H2 + 2H��� + 2|A|2H��

◆

+H2

✓
�2'0v2|A|2 �

✓
3

2
'0v�2 + '00

◆��rv2
��2 + 2'0v3 hr��, ei

◆

�
⌦
rH2,r'

↵
�

1

'

⌦
r(H2'),r'

↵
+

H2

'
kr'k2 .
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Observe that for the first term in the last line

�
⌦
rH2,r'

↵


1

2
'H�2

��rH2
��2 + H2

2'
kr'k2

and for the last term in the last line kr'k2 = ('0)2 krv2k2. Using this we

arrive at the following inequality:

(@t ��)(H2')  �
1

'

⌦
r(H2'),r'

↵
+ 2('� '0v2)|A|2H2

�H2

✓
3

2
'0v�2 + '00

�
3('0)2

2'

◆��rv2
��2

+ 2'H��� + 2'0v3H2
hr��, ei+ 2'|A|2H��.

(4.6.9)

From direct computations, we have

'0(v2) =
2✓

(2✓ � v2)2
, '00(v2) =

4✓

(2✓ � v2)3
=

2

2✓ � v2
'0(v2) (4.6.10)

so that

'� '0v2 =
v2

2✓ � v2
�

2✓v2

(2✓ � v2)2
=

�v4

(2✓ � v2)2
= �'2

and

3

2
'0v�2 + '00

�
3('0)2

2'
= '0

✓
3

2v2
+

2

2✓ � v2
�

6✓

2v2(2✓ � v2)

◆
=

✓

(2✓ � v2)3
.

Using this, the inequality (4.6.9) becomes

(@t ��)(H2')  �
1

'

⌦
r(H2'),r'

↵
�A+ B (4.6.11)

where

A = 2'2
|A|2H2 +

✓

(2✓ � v2)3
��rv2

��2 H2, (4.6.12)

B = 2'H��� + 2'0v3H2
hr��, ei+ 2'|A|2H��. (4.6.13)
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Note that A and B denote reaction terms and penalty terms, respectively.

Now we proceed to the localized quantities. Recall  � = (M � u � �t)+

and its evolution equation (4.5.1) so that on the support of  �,

(@t ��) 4
�
= 4 3

�
(�� � ��v

�1)� 12 2
�
kruk2 .

As in the above, this and (4.6.11) gives

(@t ��)(H2' 4
�
) =  4

�
(@t ��)(H2') +H2'(@t ��) 4

�
� 2

⌦
r(H2'),r 4

�

↵

=  4
�

✓
�
1

'

⌦
r(H2'),r'

↵
�A+ B

◆

+H2'
�
4 3

�
(�� � ��v

�1)� 12 2
�
kruk2

�

� 2 �4
�

⌦
r(H2' 4

�
),r 4

�

↵
+ 2 �4

�
H2'

��r 4
�

��2 .

Observe from r' = '0
rv2 and (4.6.10) that

�
1

'

⌦
r(H2'),r'

↵
= �

1

' 4
�

⌦
r(H2' 4

�
),r'

↵
+

H2'0

 4
�

⌦
r 4

�
,rv2

↵

 �
1

' 4
�

⌦
r(H2' 4

�
),r'

↵
+H2✓

 
krv2k2

(2✓ � v2)3
+

��r 4
�

��2

 8
�
(2✓ � v2)

!
,

and notice that
��r 4

�

��2 = 16 6
�
kruk2. Then we have

(@t ��)(H2' 4
�
) = �

⌧
r(H2' 4

�
),
2r 4

�

 4
�

+
r'

'

�

� 2'2 4
�
|A|2H2

� 4 3
�
�H2'+

4H2 2
�
kruk2 (4✓ + 5v2)

2✓ � v2

+  4
�
B � 4 3

�
v�1H2'��.
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Setting ⌘ := t(t+ 1)�1 and g := H2' 4
�
⌘, we arrive at

(@t ��)g  g �

⌧
rg,

2r 4
�

 4
�

+
r'

'

�

� 2⌘'2 4
�
|A|2H2

� 4⌘ 3
�
�H2'+ ⌘

4H2 2
�
kruk2 (4✓ + 5v2)

2✓ � v2

+ ⌘ 4
�
B � 4⌘ 3

�
v�1H2'��

(4.6.14)

since @t⌘ = (1+ t)�2
 1. Now notice that g has a compact support and thus

we can take a maximum point (x0, t0) of g with t0 > 0. At this point, the

inequality (4.6.14) becomes

0  g � 2⌘'2 4
�
|A|2H2

� 4⌘ 3
�
�H2'+ ⌘

4H2 2
�
kruk2 (4✓ + 5v2)

2✓ � v2

+ ⌘ 4
�
B � 4⌘ 3

�
v�1H2'��.

(4.6.15)

From now on, every quantity will be considered as the value evaluated at

(x0, t0).

To proceed further, we define

Ã = g � 2⌘'2 4
�
|A|2H2

� 4⌘ 3
�
�H2'+ ⌘

4H2 2
�
kruk2 (4✓ + 5v2)

2✓ � v2
,

(4.6.16)

B̃ = ⌘ 4
�
B � 4⌘ 3

�
v�1H2'��. (4.6.17)

Since n|A|2 � H2, 1  v2  ✓, and g = H2' 4
�
⌘, we obtain

Ã = g �
2

n⌘ 4
�

g2 �
4�

 �

g +
4(4✓ + 5v2) kruk2

v2 2
�

g


2g

n⌘ 4
�

✓
c(n)⌘

2
( 4

�
+  2

�
✓ kruk2)� g

◆
,

where c(n) denotes a dimensional constant. Furthermore, using the facts that
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 �  M , ⌘  1, and kruk2 = 1� v�2
 1, the last inequality yields

Ã 
2g

n⌘ 4
�

✓
c(n)

2
(M4 +M2✓)� g

◆
,

which implies Ã < 0 unless g(x0, t0)  c(n)(M4 +M2✓).

Now we estimate terms including penalty e↵ects. First of all, we may

rewrite (4.6.17), substituting (4.6.13), as

B̃ = 2⌘ 4
�
'H��� + 2⌘ 4

�
'0v3H2

hr��, ei+ 2⌘ 3
�
'H

�
 �|A|

2
� 2v�1H

�
��.

To estimate the lowest order term, we see that

 �|A|
2
� 2v�1H �

1

n
 �H

2
� 2v�1H

=
g

n 3
�
'⌘

�
2
p
g

v
p
'⌘ 2

�

=

p
g

n 3
�
'⌘

✓
p
g �

2n �

p
'⌘

v

◆
.

Using the inequalities v � 1,  �  M , '  1, and ⌘  1 again, the following

holds: if g(x0, t0) � 4n2M2, then  �|A|2 � 2v�1H � 0. This, together with

the fact ��  0, leads us to that

2⌘ 3
�
'H

�
 �|A|

2
� 2v�1H

�
��  0

unless g(x0, t0)  4n2M2. To estimate the highest order term, we notice that

��� = gijrirj�� = gijri(�
0
�
rj('� u))

= �00
�
kr('� u)k2 + �0

�
�('� u).

Since �00
�
 0, we have

2⌘ 4
�
'H���  2⌘ 4

�
'H�0

�
�('� u). (4.6.18)
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On the other hand, the remaining term is

2⌘ 4
�
'0v3H2

hr��, ei = 2⌘ 4
�
'0v3H2�0

�
hr('� u), ei (4.6.19)

Adding (4.6.18) and (4.6.19) gives that

2⌘ 4
�
'H��� + 2⌘ 4

�
'0v3H2

hr��, ei (4.6.20)

 2⌘ 4
�
H('�('� u) + '0v3H hr('� u), ei)�0

�
. (4.6.21)

By Lemma 4.6.1, we have

'�('� u)+'0v3H hr('� u), ei

= '
�
(�ij � ⌫i⌫j)Dij �Hv�1Di Diu�Hv�1

�

+ '0vH(D ·Du� |Du|2)

 '(n� 1)µmax �
(2✓ � 1)Hv3

(2✓ � v2)2
+

(D ·Du)Hv3

(2✓ � v2)2

= '(n� 1)µmax �
(2✓ � 1�D ·Du)Hv3

(2✓ � v2)2
.

From the definition of ✓, we see that ✓ � 1+D ·Du. Using this, we deduce

'�('� u) + '0v3H hr('� u), ei  '

✓
(n� 1)µmax �

✓Hv

2✓ � v2

◆
. (4.6.22)

If (n� 1)µmax 
✓Hv

2✓ � v2
, by (4.6.20) and (4.6.22), we have

2⌘ 4
�
'H��� + 2⌘ 4

�
'0v3H2

hr��, ei  0.

Otherwise, H  (2✓ � v2)(n� 1)µmax(✓v)�1
 (n� 1)µmax so that

g(x0, t0)  c(n)M4µ2
max.
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Now we can claim that

g(x0, t0)  c(n)M2(M2 + ✓ + µ2
max). (4.6.23)

In fact, if (4.6.23) does not hold, we already observed that A < 0 and B  0,

which contradicts to (4.6.15). Finally, we conclude, by noting ' � (2✓)�1,

that

(H2 4
�
⌘)(x0, t0)  c(n)M2✓(M2 + ✓ + µ2

max).

This completes the proof.

4.7 Estimate for maximum eigenvalue

The purpose of this section is to establish the estimate for the maximum

eigenvalue.

Lemma 4.7.1. Let ⌃t be a complete strictly mean convex smooth graph so-

lution of (4.2.4) on M
n
⇥ [0, T ]. Then

✓
t

t+ 1

◆
(�2max 

4
�
)(x, t)  c(n)M2✓(M2 + ✓ + µ2

max) (4.7.1)

where c(n) denotes a dimensional constant and the constant ✓ is given by

✓ = sup{max(v2(x, s), 1 +D ·Du) : u(x, s) < M, s 2 [0, t]}. (4.7.2)

Proof. We shall consider a quantity

g0 = ⌘(t)�2max'(v
2) 4

�

where ⌘(t) = t

t+1 , '(v
2) = v

2

2✓�v2
, and  � = (M � �t � u)+. Observe that g0

is compactly supported since  � has a compact support. Thus we can take a

maximum point (x0, t0) of g0 over Mn
⇥ [0, T ]. If t0 = 0, we have the desired
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result. Thus we may assume t0 > 0.

Now we define a function

g = ⌘(t)

✓
h1igijhj1

g11

◆
'(v2) 4

�

in the coordinate chart near x0. We may choose a normal coordinate so that

gij = �ij, hij = �i�ij, �1 = �max

at the point (x0, t0). From the Euler’s formula (see Proposition 3.1 in [17]),

we see that

g  g0, g(x0, t0) = g0(x0, t0)

Thus g also have a maximum at (x0, t0).

Next, observe that @tgij = 2(H + ��)hij and rg = 0. We consider the

evolution equation of h1igijhj1/g11 which follows from (v) in Lemma 4.3.1:

(@t ��)(h1ig
ijhj1) = 2h1ig

ij(@t ��)hj1 + h1ihj1(2(H + ��)h
ij)

� 2gijgklrkh1irlhj1,

(@t ��)

✓
h1igijhj1

g11

◆
=

2

g11
h1ig

ij(@t ��)hj1 +
2(h3)11
g11

(H + ��)

�
2gijgkl

g11
rkh1irlhj1 �

2(H + ��)(h2)11h11

(g11)2

=
2

g11
h1ig

ij(�2H(h2)j1 + |A|2hj1 +rjr1�� � (h2)j1��)

+
2

g11
(h3)11(H + ��)�

2

g11
gijgklrkh1irlhj1

�
2(H + ��)(h2)11h11

(g11)2

=
�2H(h3)11

g11
+

2|A|2(h2)11
g11

�
2H(h2)11h11

(g11)2

�
2

g11
gijgklrkh1irlhj1 +

2h1igijrjr1��
g11

�
2��(h2)11h11

(g11)2
.
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Since the evolution equation of '(v2) is given by

(@t ��)' = �2'0v2|A|2 �

✓
3

2
'0v�2 + '00

◆��rv2
��2 + 2'0v3 hr��, ei .

Thus it follows that

(@t ��)(Q') = '(@t ��)Q+Q(@t ��)'� 2 hrQ,r'i

= '

✓
�2H(h3)11

g11
+

2|A|2(h2)11
g11

�
2H(h2)11h11

(g11)2

�
2

g11
gijgklrkh1irlhj1 +

2h1igijrjr1��
g11

�
2��(h2)11h11

(g11)2

◆

+Q

✓
�2'0v2|A|2 �

✓
3

2
'0v�2 + '00

◆��rv2
��2 + 2'0v3 hr��, ei

◆

� hrQ,r'i �
1

'
hr(Q'),r'i+

Q

'
kr'k2 .

Observe that for the first term in the last line

�hrQ,r'i 
'

2Q
krQk

2 +
Q

2'
kr'k2

and for the last term in the last line kr'k2 = ('0)2 krv2k2. Using this, we

arrive at the following inequality:

(@t ��)(Q')  �
1

'
hr(Q'),r'i �

2'

g11
gijgklrkh1irlhj1 +

'

2Q
krQk

2

+ 2('� '0v2)|A|2Q�
2'H(h3)11

g11
�

2'H(h2)11h11

(g11)2

�Q

✓
3

2
'0v�2 + '00

�
3('0)2

2'

◆��rv2
��2

+ 2'
h1igij

g11
rjr1�� + 2'0v3Q hr��, ei � 2'

(h2)11h11

(g11)2
��.

(4.7.3)

64



CHAPTER 4. MEAN CURVATURE FLOW OF ENTIRE GRAPHS
WITH AN OBSTACLE

From direct computations, we have

'� '0v2 =
v2

2✓ � v2
�

2✓v2

(2✓ � v2)2
=

�v4

(2✓ � v2)2
= �'2

and

3

2
'0v�2 + '00

�
3('0)2

2'
= '0

✓
3

2v2
+

2

2✓ � v2
�

6✓

2v2(2✓ � v2)

◆
=

✓

(2✓ � v2)3
.

Using this, the inequality (4.7.3) becomes

(@t ��)(Q')  �
1

'
hr(Q'),r'i+A1 +A2 + B (4.7.4)

where

A1 = �
2'

g11
gijgklrkh1irlhj1 +

'

2Q
krQk

2 (4.7.5)

A2 = �2'2
|A|2Q�

✓

(2✓ � v2)3
��rv2

��2 Q�
2'H(h3)11

g11
�

2'H(h2)11h11

(g11)2
,

(4.7.6)

B = 2'
h1igij

g11
rjr1�� + 2'0v3Q hr��, ei � 2'

(h2)11h11

(g11)2
��. (4.7.7)

Now we proceed to the localized quantities. Recall  � = (M � u � �t)+

and its evolution equation (4.5.1) so that on the support of  �,

(@t ��) 4
�
= 4 3

�
(�� � ��v

�1)� 12 2
�
kruk2 .

As in the above, this and (4.7.4) gives

(@t ��)(Q' 4
�
) =  4

�
(@t ��)(Q') +Q'(@t ��) 4

�
� 2

⌦
r(Q'),r 4

�

↵

=  4
�

✓
�
1

'
hr(Q'),r'i+A1 +A2 + B

◆

+Q'
�
4 3

�
(�� � ��v

�1)� 12 2
�
kruk2

�

� 2 �4
�

⌦
r(Q' 4

�
),r 4

�

↵
+ 2 �4

�
Q'

��r 4
�

��2 .
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Observe from r' = '0
rv2 and (4.6.10) that

�
1

'
hr(Q'),r'i = �

1

' 4
�

⌦
r(Q' 4

�
),r'

↵
+

Q'0

 4
�

⌦
r 4

�
,rv2

↵

 �
1

' 4
�

⌦
r(Q' 4

�
),r'

↵
+Q✓

 
krv2k2

(2✓ � v2)3
+

��r 4
�

��2

 8
�
(2✓ � v2)

!
,

and notice that
��r 4

�

��2 = 16 6
�
kruk2. Then we have

(@t ��)(Q' 4
�
) = �

⌧
r(Q' 4

�
),
2r 4

�

 4
�

+
r'

'

�
+  4

�
A1

� 2'2 4
�
|A|2Q� 4 3

�
�Q'+

4Q 2
�
kruk2 (4✓ + 5v2)

2✓ � v2

�
2 4

�
'H(h3)11
g11

�
2 4

�
'H(h2)11h11

(g11)2

+  4
�
B � 4 3

�
v�1Q'��.

With ⌘ = t(t+ 1)�1 and g = ⌘Q' 4
�
, we arrive at

(@t ��)g  Q' 4
�
�

⌧
rg,

2r 4
�

 4
�

+
r'

'

�
+ ⌘ 4

�
A1

� 2⌘'2 4
�
|A|2Q� 4⌘ 3

�
�Q'+

4⌘Q 2
�
kruk2 (4✓ + 5v2)

2✓ � v2

�
2⌘ 4

�
'H(h3)11
g11

�
2⌘ 4

�
'H(h2)11h11

(g11)2

+ ⌘ 4
�
B � 4⌘ 3

�
v�1Q'��

(4.7.8)

from @t⌘ = (1+ t)�2
 1. At the point (x0, t0), the inequality (4.7.8) becomes

0  Q' 4
�
� 2'|A|2g � 4⌘ 3

�
�Q'+ ⌘

4Q 2
�
kruk2 (4✓ + 5v2)

2✓ � v2
� 4gH�1

+ ⌘ 4
�
B � 4⌘ 3

�
v�1Q'��.

(4.7.9)

66



CHAPTER 4. MEAN CURVATURE FLOW OF ENTIRE GRAPHS
WITH AN OBSTACLE

since we see

A1 = �2'rkh
2
1i + 2'rkh

2
11  0.

From now on, every quantity will be considered as the value evaluated at

(x0, t0).

To proceed further, we define

Ã = Q' 4
�
� 2'|A|2g � 4⌘ 3

�
�Q'+ ⌘

4Q 2
�
kruk2 (4✓ + 5v2)

2✓ � v2
� 4gH�1,

B̃ = ⌘ 4
�
B � 4⌘ 3

�
v�1Q'��.

Since |A|2 � Q, 1  v2  ✓, and g = Q' 4
�
⌘, we obtain

Ã 
c(n)g

⌘ 4
�

�
 4
�
+  2

�
✓ � g

�

where c(n) denotes a dimensional constant. Furthermore, using the facts that

 �  M , ⌘  1, and kruk2 = 1� v�2
 1, the last inequality yields

Ã 
g

⌘ 4
�

✓
c(n)

2
(M4 +M2✓)� g

◆
.

Now we estimate terms including penalty e↵ects. First of all, we may

rewrite B̃, substituting (4.7.7), as

B̃ = 2⌘ 4
�
'�1r1r1�� + 2⌘ 4

�
'0v3Q hr��, ei � 2⌘ 4

�
'�31�� � 4⌘ 3

�
v�1Q'��.

To estimate the lowest order term, we see that

�2⌘ 4
�
'�31�� � 4⌘ 3

�
v�1Q'�� 

C0g

⌘ 4
�

(g1/2 + 1)
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To estimate the highest order term, we notice that

r1r1�� = r1(�
0
�
r1( � u))

= �00
�
kr1( � u)k2 + �0

�
r1r1( � u).

Since �00
�
 0, we have

2⌘ 4
�
'�1r1r1��  2⌘ 4

�
'�1�

0
�
r1r1( � u). (4.7.10)

On the other hand, the remaining term is

2⌘ 4
�
'0v3Q hr��, ei = 2⌘ 4

�
'0v3Q�0

�
hr( � u), ei (4.7.11)

Adding (4.7.10) and (4.7.11) gives that

2⌘ 4
�
'�1r1r1�� + 2⌘ 4

�
'0v3Q hr��, ei  2⌘ 4

�
�1('r1r1( � u) (4.7.12)

+ '0v3�1 hr( � u), ei)�0
�
.

(4.7.13)

Thus we need to estimate

'r1r1( � u) + '0v3�1 hr( � u), ei .

For the first term, we have

'r1r1( � u) = 'r1 (D r1(X � ue)� hr1X, ei)

= '(D2 r1(X � ue)r1(X � ue) +D r1r1(X � ue)

� hr1r1X, ei)

 '
�
µmax(1� hr1X, ei2)� �1D (⌫ � h⌫, ei e)� �1v

�1
�

 '
�
µmax � �1D Duv�1

� �1v
�1
�

where µmax denotes the maximum eigenvalue of D2 . To estimate second

term, we expressriX = aijEj where {Ej}[{⌫} is orthonormal basis in Rn+1.
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Also, we extend functions  and u to the functions whose space variable is

defined on Rn+1 by defining  (X) =  (X + be) and u(X) = u(X + be) for

b 2 R. Then we have

hr( � u), ei = D↵( � u)riX
↵gijrjX

�
e
�

= D↵( � u)(aikEk)
↵alialjajm hEm, ei

= hD( � u), Eki hEk, ei

= hD( � u), ei � hD( � u), ⌫i he, ⌫i

= v�2D( � u) ·Du.

Therefore, we have

'r1r1( � u) + '0v3�1 hr( � u), ei

= '
�
µmax � �1D Duv�1

� �1v
�1
�
+ '0v�1D( � u) ·Du

= 'µmax +
(D ·Du)�1v3

(2✓ � v2)2
�

(2✓ � 1)�1v3

(2✓ � v2)2

= 'µmax �
(2✓ � 1�D ·Du)�1v3

(2✓ � v2)2
.

From the definition of ✓, we see that ✓ � 1 + D · Du. Using this, we

deduce

'r1r1( � u) + '0v3�1 hr( � u), ei  '

✓
µmax �

✓�1v3

2✓ � v2

◆
. (4.7.14)

If µmax 
✓Hv3

2✓ � v2
, by (4.7.12) and (4.7.14), we have

2⌘ 4
�
'�1r1r1�� + 2⌘ 4

�
'0v3Q hr��, ei  0.

Otherwise, H  (2✓ � v2)µmax✓�1v�3
 µmax so that

g(x0, t0)  c(n)M4µ2
max.
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This completes the proof.

4.8 Proof of Theorem 4.1.1

In this section we finish the proof of Theorem 4.1.1. From Lemma 4.5.1, we

can solve the following initial boundary value problem (see [65, 41]):

@u

@t
=
p
1 + |Du|2 div

 
Dup

1 + |Du|2

!
+ ��('� u) in BR(0)⇥ [0,1),

u = L on @BR(0)⇥ [0,1),

u(·, 0) = min{u0, L} in BR(0).
(4.8.1)

Let us denote the solution of (4.8.1) by uL. By Lemma 4.7.1, we obtain

uniform bounds for
��uL

��
C0,1;0,1/2 in BR(0) ⇥ [0,1). Using the compactness

lemma, Lemma 7.3 in [65], we can obtain a solution u of (4.2.4) such that uL

converge to u uniformly. Now the conclusion follows from the uniform C1;1

estimates and the stability property of viscosity solutions.
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Chapter 5

The obstacle problem for

parabolic Monge-Ampère

equation

5.1 Introduction

5.1.1 Backgrounds

The obstacle problem is an example of the free boundary problem, which

arises in Stefan problem, option pricing of American option, fluid filtration

in porous media, elasto-plasticity, optimal control, and financial mathematics

[35, 12]. In [11], Ca↵arelli established the regularity of the free boundary for

the classical obstacle problem. Later, this regularity result has been extended

to various class of obstacle problems by many authors [53, 58, 52, 68, 31, 10,

5, 56].

The Monge-Ampère equation is one of the examples of fully nonlinear

di↵erential equations but it could be degenerated if the second derivative is

degenerate, so we need extra estimates to obtain uniform parabolic opera-

tor. It arises in prescribed Gaussian curvature equation [62], optimal trans-

portation [66], and a�ne geometry [71]. Also, it has been applied to image
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processing [64, 15, 59], where preserving sharp edges and reducing noises are

important to overcome blurring problem. This problem can be resolved by

the fact that the di↵usion driven by the Gauss curvature is slow near edges

due to the degeneracy of curvature.

Krylov suggested three versions of parabolic Monge-Ampère equation in

[49]:

�ut + (detD2u)
1
n = f, (5.1.1)

[(�ut) detD
2u]

1
n+1 = f, (5.1.2)

[det(D2u� utIn)]
1
n = f, (5.1.3)

where In denotes the n ⇥ n identity matrix. Equation (5.1.1) is related to

the graph representation of the Gauss curvature flow (see [55] for instance)

and Equation (5.1.2) appears in the Gauss curvature flow represented by its

support function [72].

The obstacle problem for (elliptic) Monge-Ampère equation was first con-

sidered by [54] and later its generalization to non-convex domains was studied

by [74]. In addition, the very recent work by the first and the second authors

concerns the obstacle problem for the ↵-Gauss curvature flow in [55]. On

the other hand, obstacle type problems with zero lower obstacle for Gauss

curvature flow have been considered in [23, 24, 48, 19]. Also, the problem in

the Alexandrov sense with zero lower obstacle is researched by [67].

5.1.2 Main results

In this chapter, we would like to consider the obstacle problem for the

parabolic Monge-Ampère equation of the form (5.1.1). We prove the exis-

tence, uniqueness, and optimal regularity (C1,1) under some structure condi-

tions via the penalization method and a priori estimates. As a consequence

of our approach, we also obtain the existence and uniqueness of the solution

of the Cauchy-Dirichlet problem for the parabolic Monge-Ampère equation

of the form (5.1.1) with the general forcing term f(x, t, u,Du). Moreover, we
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discuss the regularity of the free boundary using the method of blowup.

Precisely, we consider the following version of parabolic obstacle problem

for the Monge-Ampère equation:

8
<

:
min

n
�� u,�ut +

�
detD2u

� 1
n � f(x, t, u,Du)

o
= 0 in ⌦T ,

u = g on @p⌦T .
(PMAo)

Here ⌦ is a strictly convex bounded domain with @⌦ 2 C3,1, the forcing term

f 2 C2,1(⌦T ⇥R⇥Rn), the boundary data g 2 C3,1(@p⌦T ), and the obstacle

function � 2 C2,1(⌦T ) such that the obstacle � lies above the boundary data

g, i.e., � > g on @p⌦T .

To state our main results, we introduce structure conditions on f and

assumption on the existence of a subsolution.

(A1) The function f has a lower bound: f >

✓
min
⌦T

�t

◆�

.

(A2) The function f = f(x, t, z, p) is nondecreasing in z.

(A3) The function f = f(x, t, z, p) is convex with respect to p.

(A4) There exists a strictly convex subsolution u 2 C2(⌦T ) satisfying

�u
t
+ (det u

ij
)

1
n � f(x, t, u,Du) in ⌦T and u = g on @p⌦T .

(A5) There exists a nonnegative constant a such that

a

✓
1� |fp|d�

fzd2

2

◆
� ft

and

min

⇢
inf

@⌦⇥[0,T ]
gt, inf

⌦⇥{0}

�
(detD2g)

1
n � f(·, g,Dg)

��
+ f >

1

2
ad2,

where d denotes the minimum radius such that ⌦ ⇢ Bd. In particular,

a = 0 if ft  0.
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We will discuss about the conditions in Section 5.1.3 below.

Now we state our first main result:

Theorem 5.1.1. If the assumptions (A1)-(A5) hold, then there exists a

unique strictly convex viscosity solution u of (PMAo) with the optimal regu-

larity, C1,1(⌦T ), satisfying u � u in ⌦T .

The main strategy to have Theorem 5.1.1 is the penalization method.

Since we expect the solution to stay below the obstacle, a discontinuity of

the velocity ut occurs when the solution touches the obstacle. This makes

the problem di�cult and that is why the optimal regularity of the solution

to (PMAo) is expected to be C1,1 (see Section 5.2 for the definition). To

have the optimal regularity of the solution to (PMAo), we approximate the

obstacle problem (PMAo) by allowing the solution can pass the obstacle,

with the property such that the more the solution pass the obstacle, the

more “penalty” is imposed on the velocity ut. This approximation problem is

formulated as (PMAo✏) in Section 5.3. We will prove various a priori estimates

for solutions u✏ of the approximation problem (PMAo✏) in Subsections 5.3.1-

5.3.3. The existence of u✏ and Theorem 5.1.1 can be given by a priori C2,↵-

estimates of u✏ and the method of continuity (see Theorem 3.13 in [61] for

instance).

We note that all the equations (5.1.1)-(5.1.3) can be viewed as concave

operators which are homogeneous of degree one. However, this homogeneity

causes some di�culties if we try to obtain interior C1,1-estimates since second

derivatives of homogeneous operators of degree one must be degenerate in

some direction. The equations (5.1.2) and (5.1.3) can make it possible to

overcome the di�culties by taking logarithm to both sides, which is not

the case for (5.1.1). Thus, the convexity condition (A3) for the forcing term

f(x, t, u,Du) is assumed due to the special character of the parabolic operator

(5.1.1). Including (A3), general and reasonable structure conditions which

have been considered in the literature are supposed to f(x, t, u,Du), see

Section 5.1.3 below for details.
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As we mentioned above, we also discuss the existence of the following

Cauchy-Dirichlet problem:

8
<

:
�@tu+

�
detD2u

� 1
n = f(x, t, u,Du) in ⌦T ,

u = g on @p⌦T .
(PMA)

This result will be used to prove the existence of penalization problem (PMAo✏).

Our proof will be based on the a priori estimates by using the method of con-

tinuity. To deal with the dependence on u and Du of the forcing term, we use

a Pogorelov type computation while obtaining interior C1,1-estimate. When

the forcing term f depends only on x and t, this problem has been studied

by some authors (see [39, 25, 69]).

Theorem 5.1.2. If the assumptions (A2)-(A5) hold, then there exists a

unique strictly convex solution u 2 C3(⌦T ) to (PMA) satisfying u � u in

⌦T .

The last result is the free boundary regularity of (PMAo). Since the op-

erator (detD2u)
1
n is defined only in the space of positive definite matrix, the

reduced problem, the obstacle problem with zero obstacle, is not appropriate

in the problem for Monge-Ampère operator. Hence, contrary to Laplacian and

fully nonlinear operator [53, 31, 32, 56], we develop the theory for (PMAo)

as it is without using the reduced problem.

Theorem 5.1.3 (Regularity of free boundary). Let u 2 P1(M) with an

obstacle � such that

P�� f � c > 0 in Q�
1 .

Let v := �� u and suppose

�r(v,X) � ✏0 for all r < 1/4, X 2 Q�
1/2 \ @N(v). (5.1.4)

Then there is r0 = r0(u,�) > 0 such that �(u) \Q�
r0

is C1 graphs.
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We note that the linearized operator Lu = �@t + Fij(D2u) · @ij plays an

important role throughout Section 5.4 in such as non-degeneracy (Lemma

5.4.5), the classification of the global solutions (Proposition 5.4.7), and the

directional monotonicity (Proposition 5.4.10).

5.1.3 Discussion on the conditions

The assumption (A1) implies f > 0 which is not assumed in Theo-

rem 5.1.2. Unlike (PMA), the assumption (A1) is almost necessary condition

in most cases. In fact, when the solution of (PMAo) touches the obstacle, we

can deduce

(detD2u)
1
n � ut + f = �t + f � f � (�t)

�

in the contact set, which ensures the convexity of the solution u. Here we

used f = f(·, u,Du).

The monotone assumption (A2) is essential for uniqueness assertions. The

assumption (A4) has been appeared in many literature, see [8] for instance.

The convexity assumption (A3) is assumed to have the optimal regularity

in Theorem 5.1.1. This assumption has been commonly used in the Hessian

equation (see [61]). For example, S1/k
k

for 1  k < n+ 1 and (Sk/Sm)1/(k�m)

for 1  m < k  n + 1 need the convexity assumption in the gradient

variable of f , where Sk = Sk(D2u,�ut) denotes the elementary symmetric

polynomial of degree k in the eigenvalues of

 
D2u 0

0 �ut

!
. In case of S1/(n+1)

n+1 ,

the second form in (5.1.3), the convexity assumption is not needed since it

can be considered as an operator which is non-homogeneous and still concave,

by taking logarithm to both sides. Our equation, the first form in (5.1.3), is

more likely to S1/k
k

for k < n+ 1.

The assumption (A5) will be used to show the preservation of convexity,

see Lemma 5.3.3. Such conditions also appeared in [39, 69].
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5.1.4 Notations

Q�
r
(x, t) Br(x)⇥ (t� r2, t]

⌦T ⌦⇥ (0, T ]

⌦(t) ⌦⇥ {t} the time section with respect to t

N(u) {(x, t) 2 ⌦T | u(x, t) < �(x, t)} the non-coincident set

⇤(u) {(x, t) 2 ⌦T | u(x, t) = �(x, t)} the coincident set

�(u) @N(u) \ ⌦T the free boundary

S
n⇥n the set of symmetric n⇥ n matrices

Sn
{x 2 Rn+1

| |x| = 1} the unit n-sphere

F (M) (detM)
1
n for M 2 S

n⇥n

Pu �@tu+ F (D2u)

Lu �@t + Fij(D2u) · @ij

Pr(M), P1(M) see Definitions 5.4.2 and 5.4.3

�r(u, x), �r(u) see Definition 5.4.1

Lq(⌦T ),W 2l,l
q

(⌦T ) see Section 5.2

Ck(⌦T ), Ck,↵(⌦T ) see Section 5.2

5.1.5 Outline

The organization of the chapter is as follows. In Section 5.2, we provide

definitions of viscosity solutions and give a proof of the fact that the n-th

root of the determinant is a concave operator. In Section 5.3, a priori C1,1-

estimates for the approximation problem (PMAo✏) are established and finish

the proof of Theorem 5.1.1 and Theorem 5.1.2. Finally, in Section 5.4, we

study the regularity of the free boundary of the obstacle problem.

5.2 Preliminaries

We give definitions of function spaces over space-time domain. Also, we in-

troduce the concept of viscosity solutions that is useful to define solutions

of obstacle problem for non-divergence form operator. Finally, we prove the

concavity of the operator F which we use later in the chapter.
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The Lebesgue space Lq(⌦T ) for q � 1 consists of all measurable functions

on QT with a finite norm

kuk
Lq(⌦T ) =

✓ˆ
T

0

ˆ
⌦

|u(x, t)|qdxdt

◆ 1
q

and kuk
L1(⌦T ) = ess sup

⌦T

|u|.

The Sobolev space W 2l,l
q

(⌦T ) for integer l and q � 1 consists of the ele-

ments of Lq(⌦T ) having generalized derivatives of the form Dr

t
Ds

x
with any

r and s satisfying the inequality 2r + s  2l. We define its norm to be

kuk
W

2l,l
q (⌦T ) =

2lX

j=0

hhuiij
q,⌦T

, where hhuiij
q,⌦T

=
X

2r+s=j

kDr

t
Ds

x
uk

q,⌦T
.

Given a nonnegative integer k, the function space Ck(⌦T ) is the Banach

space of all continuous functions on ⌦T with derivatives of the form D�

x
Ds

t

for all |�|+ 2s  k, where

� = (�1, · · · , �n), |�| = �1 + · · ·+ �n, and D�

x
=

@|�|

@x�1
1 · · · @x�n

n

,

under the norm

kuk
Ck(⌦T ) =

X

|�|+2sk

sup
(x,t)2⌦T

|D�

x
Ds

t
u(x, t)| < 1.

Given a nonnegative integer k and 0 < ↵ < 1, the Hölder space Ck,↵(⌦T )

is the Banach space of functions in Ck(⌦T ) under the norm

kuk
Ck,↵(⌦T ) = kuk

Ck(⌦T )

+
X

|�|+2s=k

sup
(x1,t1) 6=(x2,t2)2⌦T

|D�

x
Ds

t
u(x1, t1)�D�

x
Ds

t
u(x2, t2)|

(|x1 � x2|
2 + |t1 � t2|)↵/2

< 1.

For simplicity of notation, we define

kuk
k
= kuk

Ck(⌦T ) and kuk
k,↵

= kuk
Ck,↵(⌦T ) ,
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and denote Ck,1(⌦T ) = W k+1,(k+1)/2
1 (⌦T ). For a forcing term f(x, t, z, p),

f 2 Ck,1(⌦T ⇥ R⇥ Rn) is understood in a natural way.

Now we consider definitions of superjet and subjet. The concept of vis-

cosity solutions to (PMAo) will then follow.

Definition 5.2.1 (Superjet and Subjet). Let u be an upper (resp. lower)

semi-continuous function on ⌦T and (z, s) 2 ⌦T . The superjet J+
⌦T

u(z, s)

(resp. subjet J�
⌦T

u(z, s)) of u at (z, s) is defined to be the set of points

(a, p,X) 2 R⇥ Rn
⇥ S

n⇥n such that

u(x, t)  (resp. �)u(z, s)+a(t�s)+hp, x�zi+
1

2
hX(x�z), x�zi+o(|t�s|+|x�z|2)

as (x, t) ! (z, s) in ⌦T .

We also set J
0�
⌦T

u(z, s) = J�
⌦T

u(z, s)\(R⇥Rn
⇥S

n⇥n

+ ), where Sn⇥n

+ denotes

the set of positive semi-definite symmetric n⇥ n matrices.

The following lemma explains the reason why we do not consider J
0+
⌦T

u(z, s).

Lemma 5.2.2 ([1]). Let u be an upper semi-continuous in ⌦T . Then, u(·, t)

is convex for each t 2 [0, T ] if and only if X � 0 for all (a, p,X) 2 J+
⌦T

u(z, s)

and (z, s) 2 ⌦T .

Now we are ready to define viscosity solutions.

Definition 5.2.3 (Viscosity Solutions). Let u be a function on ⌦T such that

u(·, t) is convex in ⌦ for each t 2 [0, T ].

(i) We say that an upper (resp. lower) semi-continuous function u on ⌦T

is said to be a viscosity subsolution (resp. supersolution) of

� @tu+ (detD2u)
1
n = f(x, t, u,Du) (5.2.1)

in ⌦T if for all (x, t) 2 ⌦T and (a, p,X) 2 J+
⌦T

u(x, t) (resp. J
0�
⌦T

u(x, t)),

�a+ (detX)
1
n � (resp. )f(x, t, u(x, t), p).
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(ii) We say that u 2 C(⌦T ) is a viscosity solution of (5.2.1) if it is both a

viscosity subsolution and a viscosity supersolution of (5.2.1).

(iii) A viscosity solution of (PMAo) is an upper semi-continuous function

on ⌦T such that u is a viscosity subsolution in ⌦T and a viscosity

supersolution in N(u) of (5.2.1), u  � in ⌦T , and u = g on @p⌦T .

We close this section by showing that the operator (detM)
1
n is concave.

Lemma 5.2.4. Let F (M) = (detM)
1
n be an operator defined for M 2 S

n⇥n

+ ,

where Sn⇥n

+ is the set of positive semi-definite symmetric n⇥n matrices. Then

F is a concave operator.

Proof. By continuity of the operator F , it su�ces to assume M is positive

definite matrix. We observe that the concavity assertion is equivalent to

F̈ (N ,N ) =
X

i,j,k,l

F ij,klNijNkl  0 for any matrix N = (Nij). (5.2.2)

To show this, we need the formulas

F ij =
1

n
FM ij, (5.2.3)

F ij,kl =
1

n2
FM ijMkl

�
1

n
FM ikM jl, (5.2.4)

whereM ij is the (i, j)-component of the inverse matrix ofM. We may assume

M is a diagonal matrix since F (M) = F (UMU
�1) for any invertible matrix

U . Let us denote this diagonal matrix by M = diag(M1,M2, · · · ,Mn), where

each Mi is positive. Then the left hand side of (5.2.2) becomes

F̈ (N ,N ) =
X

i,k

F

n2MiMk

NiiNkk �

X

i,j

F

nMiMj

N2
ij

=
X

i

(1� n)F

n2M2
i

N2
ii
+
X

i 6=j

F

n2MiMj

NiiNjj �

X

i 6=j

F

nMiMj

N2
ij

= �
F

2n2

X

i 6=j

✓
Nii

Mi

�
Njj

Mj

◆2

�

X

i 6=j

F

nMiMj

N2
ij
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which is clearly nonpositive. This completes the proof.

5.3 The optimal regularity

In this section we will obtain the existence and optimal (C1,1) regularity of

solutions to (PMAo), as stated in Theorem 5.1.1. Our proof will be based on

the uniform a priori estimates for the singular perturbation problem defined

below in order to use the method of continuity. Throughout the section, we

assume the assumptions in Theorem 5.1.1.

Let us introduce the following singular perturbation problem with a penalty

term:

8
<

:
�u✏

t
+
�
detD2u✏

� 1
n = f(x, t, u✏, Du✏)� �✏(�� u✏) in ⌦T ,

u✏ = g on @p⌦T ,
(PMAo✏)

for given " > 0, where �✏ 2 C1(R) is a so called penalty function satisfying

8
>>>>>><

>>>>>>:

�✏(z) < 0, �0
✏
(z) > 0, �00

✏
(z)  0 for z < 0,

�✏(z) ! �1 if z < 0, ✏! 0,

��(z) = 0 if z � 0,

�✏(�") = �1.

We begin with the uniform boundedness of �✏(��u✏) which is important

when we deal with convergence.

Lemma 5.3.1. Let u" be a solution of (PMAo✏). Then

�C  ��(�� u")  0,

where the constant C = C(k�k2 , n) is independent of ".

Proof. By the definition of ��, we see that ��(� � u")  0 on ⌦T . To have
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the lower bound of ��, we define

w(x, t) := �✏(�(x, t)� u✏(x, t))

and take X0 2 ⌦T such that w(X0) = inf⌦T
w < 0. Since u" = g < � on @p⌦T

and ��(z) = 0 if z � 0, we have X0 2 ⌦T . Thus it follows from the monotone

increasing property of �� on (�1, 0) that �� u✏ also has a minimum at X0,

and consequently D2�(X0) � D2u✏(X0) and @t�(X0)  @tu✏(X0). Hence,

f(x, t, u✏, Du✏)� w(X0) = �@tu
✏(X0) + (detD2u✏(X0))

1
n

 �@t�(X0) + (detD2�(X0))
1
n = P�(X0).

Therefore, we have w(X0) � �P�(X0). This completes the proof.

Our next task is to show the uniform C1 estimate which enables us to

control the forcing term f . It is exploited that the subsolution u in the

assumption (A4) is also a subsolution of (PMAo✏).

Lemma 5.3.2. Let u" be a solution of (PMAo✏) and assume (A1) and (A4).

Then

ku✏
k1  C0,

for some constant C0 = C0(kuk1 , kgk1 ,⌦T , n) independent of ".

Proof. We start with a unique function h satisfying

8
<

:
�@th+

1

n
�h = 0 in ⌦T ,

h = g on @p⌦T .
(5.3.1)

Since (detD2u")
1
n 

1
n
�u" and f � �� > 0, u" is a subsolution of (5.3.1)

and u"
 h in ⌦T . On the other hand, since the function u  � and thus

��(� � u) = 0, u is a subsolution of (PMAo✏) and u"
� u in ⌦T . Thus, we

have u  u"
 h in ⌦T and from the strictly convexity of u", it is easy to
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show

sup
⌦T

|Du"
| = sup

@p⌦T

|Du"
|.

Furthermore, it follows from u = u" = h on @p⌦T that for any x 2 @⌦ and

0  t  T ,

Deu(x, t)  Deu
"(x, t)  Deh(x, t),

where e denotes the inward unit normal to @⌦ at x. Thus we can conclude

ku"
k1  C0(kuk1 , kgk1 ,⌦T , n).

This completes the proof.

Using Lemma 5.3.2, there exist constants µ1 and µ2 (independent of ")

such that

0 < µ1 = inf
⌦T

f(·, u", Du")  sup
⌦T

f(·, u", Du") = µ2 < 1. (5.3.2)

From the initial data g, there are also constants 1 and 2 such that

1 = min

⇢
inf

@⌦⇥[0,T ]
gt, inf

⌦⇥{0}

�
(detD2g)

1
n � f(·, g,Dg)

��

 max

(
sup

@⌦⇥[0,T ]
gt, sup

⌦⇥{0}

�
(detD2g)

1
n � f(·, g,Dg)

�
)

= 2.

5.3.1 Preservation of convexity and a priori speed es-

timate

This subsection will be devoted to the proof of a preservation of convexity

and a speed bound. We start with the preserving of convexity whose direct

consequence is a lower bound for the speed. From the assumptions (A1) and
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(A5) in Theorem 5.1.1, we can take a positive constant ⌫ such that

min{�t, 0}+ µ1 � ⌫ and 1 + µ1 �
1

2
ad2 � ⌫. (5.3.3)

Lemma 5.3.3. Let u" be a solution of (PMAo✏) and assume (A1), (A2),

and (A5). Then

(detD2u")
1
n = u"

t
+ f(·, u", Du") � ⌫,

where ⌫ is the constant defined in (5.3.3). In particular, u"

t
� ⌫ � µ2.

Remark 5.3.4. When f = f(x, t) and max(ft)+ < 1, we may take a =

max(ft)+ as in [39, 69].

Proof. Let ⌫ be a positive constant satisfying (5.3.3). By translation, we can

assume ⌦ ⇢ Bd/2. Let L1 = �@t + F ij@ij � fpi@i � fz. Then we have

L1u
"

t
= Dt(f � ��(�� u"))� fpi(u

"

t
)i � fzu

"

t
= ft + �0

�
(u"

� �)t.

For a small constant b > 0, consider an auxiliary function w = 1
2a|x|

2
� bt,

where a is the constant in the assumption (A5) of Theorem 5.1.1. Since
P

n

i=1 F
ii = F

n
tr((D2u")�1) � 1, we obtain

L1w � a
�
1� fpixi � fz|x|

2/2
�
+ b � a

�
1� |fp|d� fzd

2/2
�
+ b � ft + b.

Thus, we have shown L1(u"

t
� w)  �0

�
(u"

� �)t � b.

If ut � w attains an interior minimum over ⌦T , we have L1(u"

t
� w) �

�fz(u"

t
� w) at the minimum point. Since both u"

t
� w and u"

t
� �t are less

than or equal to u"

t
�min{�t, 0}+ bT , we obtain

b  fz(u
"

t
� w) + �0

�
(u"

t
� �t)  (fz + �0

�
)(u"

t
�min{�t, 0}+ bT )
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which implies u"

t
� min{�t, 0}� bT from fz + �0

�
� 0. Otherwise, we have

u"

t
� min gt �

1

2
ad2.

In any case, it follows from (5.3.3) that

u"

t
+ f � ⌫ � bT.

By taking b ! 0, we have the desired result.

Next, we will show an upper bound for the speed.

Lemma 5.3.5. Let u" be a solution of (PMAo✏) and assume (A2). Then we

have

u"

t
 eT max

(✓
inf
v2A

inf
⌦T

ft(·, v,Dv)

◆�

,2,�t

)
.

Proof. Let us define v = e�tu"

t
and then, it is easy to verify that

L1v = e�t(ft + u"

t
� �0

�
(�t � u"

t
)), (5.3.4)

where L1 = �@t + F ij@ij � fpi@i � fz. If a maximum of v is attained on the

parabolic boundary @p⌦T , then we are done. Suppose that v has its positive

maximum over ⌦T at X0 2 ⌦T . Then we have L1v  0 at X0, and therefore,

(5.3.4) becomes

ft + u"

t
� �0

�
(�t � u"

t
)  0 at X0.

At this point, if �t � u"

t
 0, then u"

t
 �ft. Otherwise, u"

t
 �t. In any case,

we have 0 < v(X0)  u(X0)  max{�ft,�t}, and the conclusion follows.

Remark 5.3.6. In case of (PMA), we also have the similar results to Lemma 5.3.3
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MONGE-AMPÈRE EQUATION

and Lemma 5.3.5. More precisely, we can obtain

ut + f(·, u,Du) � ⌫ and ut  eT max

(✓
inf
v2A

inf
⌦T

ft(·, v,Dv)

◆�

,2

)

without assumption (A1) in Theorem 5.1.1 by applying the comparison prin-

ciple directly.

5.3.2 A priori interior C1,1
-estimate

We will prove a priori interior C1,1-estimate for u✏. From the results of the

previous subsection, Lemmas 5.3.3 and 5.3.5, we note that

0 < ⌫  F  kFk0 < 1, (5.3.5)

where

kFk0 :=
��F (D2u✏)

��
0
= sup

(x,t)2⌦T

|F (D2u✏(x, t))| = sup
(x,t)2⌦T

���det(D2u✏(x, t))
1
n

���

is a bounded quantity. We also notice from Lemma 5.3.2 that

kfk⇤1,1 := kfk
C1,1(⌦T⇥[�C0,C0]⇥[�C0,C0]n)

< 1,

and we define kfk⇤
k,1 in a similar way.

As we mentioned in the introduction, the operator Pumust be degenerate

in some direction so we need to assume the convexity of f in the gradient

variable to have C1,1 estimate.

Lemma 5.3.7. Let u" be the solution of (PMAo✏) and assume (A1)-(A3)

and (A5). Then we have

sup
⌦T

|D2u"
|  C

 
1 + sup

@p⌦T

|D2u"
|

!
,

where the constant C depends only on n, |⌦|, ⌫, kFk0, k�k2,1 , kfk
⇤
2, and kuk1.
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Proof. In this proof, we will use u instead of u" for simplicity. For ⇠ 2 Rn,

we set

w := u⇠⇠ exp

⇢
a

2
|D(u� �)|2 +

b

2
|x|2
�
,

where a and b are positive constants to be determined later. Since ⌦T ⇥

Sn�1 is compact, w has a maximum over this set. We may assume that the

maximum of w is achieved at some point (x0, t0, ⇠) in ⌦T ⇥Sn�1. By rotating

the coordinates {x1, · · · , xn}, we also assume that ⇠ = e1 = (1, 0, · · · , 0) and

that D2u(x0, t0) is diagonal.

If u11(x0, t0)  �11(x0, t0), we are done. So we assume u11(x0, t0) �

�11(x0, t0). Setting F (D2u) = (detD2u)
1
n , we have

F ij =
F

n
uij and F ij,kl =

F

n2
uijukl

�
F

n
uikujl. (5.3.6)

The linearized operator at (x0, t0) is given by

Luv = �@tv + F ij@ijv.

Now, we compute that

wt

w
=

u11t

u11
+ a(u� �)k(u� �)kt,

wi

w
=

u11i

u11
+ a(u� �)k(u� �)ki + bxi,

wij

w
=

wiwj

w2
�

u11iu11j

u2
11

+
u11ij

u11

+ a(u� �)ki(u� �)kj + a(u� �)k(u� �)kij + b�ij.

Since F ij wiwj

w2 = F

n

1
w2uijwiwj, we have

Luw

w
� �

F iju11iu11j

u2
11

+
Luu11

u11
+ a(u� �)kLu(u� �)k

+ aF ij(u� �)ki(u� �)kj + bF ij.

(5.3.7)
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Recall the equation (PMAo✏) and di↵erentiate this to get

Luuk = Dkf � �0
�
· (�� u)k,

Luu11 = �F ij,kluij1ukl1 +D11f � �0
�
· (�� u)11 � �00

�
· (�� u)21.

Since �0
�
� 0, �00

�
 0, and u11(x0, t0) � �11(x0, t0), we obtain at (x0, t0),

(u� �)kLuuk � (u� �)kDkf

Luu11 � �F ij,kluij1ukl1 +D11f.
(5.3.8)

Moreover, we calculate

aF ij(u� �)ki(u� �)kj �
aF

n
(�u� 2��). (5.3.9)

By multiplying (5.3.7) by u11(x0, t0) and replacing (5.3.8) and (5.3.9) into it,

we infer that at (x0, t0),

0 �
Lw

w
� �

F iju11iu11j

u11
� F ij,kluij1ukl1 +D11f + a(u� �)kDkfu11

� a(u� �)kL�ku11 +
aF

n
(�u� 2��)u11 +

bF

n
uiju11.

(5.3.10)

The first inequality is obtained from that w has it maximum at (x0, t0).

On the other hand, from (5.3.6) and the fact that D2u(x0, t0) is diagonal,

we get

�
F iju11iu11j

u11
� F ij,kluij1ukl1 = �

Fu2
11i

nu11uii

+
Fu2

ij1

nuiiujj

�
Fuii1ujj1

n2uiiujj

=
X

i

X

j 6=1

Fu2
ij1

nuiiujj

�
F

n2

 
X

i

uii1

uii

!2

� �
Fu2

111

nu2
11

,

(5.3.11)

88



CHAPTER 5. THE OBSTACLE PROBLEM FOR PARABOLIC
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by the Cauchy-Schwarz inequality,

F

n2

 
X

i

uii1

uii

!2


F

n

X

i

u2
ii1

u2
ii

.

Next, we consider terms involving f . By simple computation,

Dkf = fk + fzuk + fpiuik,

D11f = f11 + 2f1zu1 + fzzu
2
1 + 2f1piui1 + 2fzpiu1ui1 + fzu11

+ fpipjui1uj1 + fpiui11.

(5.3.12)

Combining (5.3.10), (5.3.11) and (5.3.12),

0 � �
Fu2

111

nu2
11

+ fp1p1u
2
11 + fpiui11 + a(u� �)kfpkukku11

+
aF

n
(�u� 2��)u11 +

bF

n
uiju11 � a(u� �)kL�ku11

� C � C(1 + a)u11,

(5.3.13)

where C is a positive constant depending only on kuk1, kfk
⇤
2, and k�k1. From

the convexity of u and the boundedness of F ,

aF

n
(�u� 2��)u11 �

aFu2
11

n
� Cau11 (5.3.14)

where C depends only on n, kFk0, and k�k2. On the other hand, if we define

b := a sup
⌦T

|(u� �)k�ijk|,

we see that

bF

n
uiju11 � a(u� �)kL�ku11 � a(u� �)k�tu11. (5.3.15)
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Combining (5.3.13), (5.3.14), and (5.3.15), we arrive at

0 � �
Fu2

111

nu2
11

+

✓
F

n
a+ fp1p1

◆
u2
11 + fpiui11 + a(u� �)kfpkukku11

� C � C(1 + a)u11,

where the constant C depends only on n, kFk0, k�k2,1, kfk
⇤
2, and kuk1.

Notice that wi = 0 at (x0, t0), which implies

0 =
u11i

u11
+ a(u� �)k(u� �)ki + bxi,

and therefore,

fpiui11 + a(u� �)kfpkukku11 = fpiu11(a(u� �)k�ki � bxi),

�
Fu2

111

nu2
11

� �
F

n
a2(u� �)21u

2
11 � Ca2(u11 + 1),

where C depends only on n, kFk0, k�k2,1, and kuk1. If we define

⇥ := sup
⌦T

|D(u� �)|2,

we finally obtain that

0 �

✓
�
F⇥

n
a2 +

F

n
a+ fp1p1

◆
u2
11 � C(1 + a2)� C(1 + a+ a2)u11.

Notice that

�
F⇥

n
a2 +

F

n
a+ fp1p1 = �

F⇥

n

✓
a�

1

2⇥

◆2

+
F

4n⇥
+ fp1p1

and that f is convex with respect to p variable so that fp1p1 � 0. Choosing

a = (2⇥)�1, we conclude that

u11  C,
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where the constant C depends on n, |⌦|, ⌫, kFk0, k�k3,1 , kfk
⇤
2, and kuk1. This

completes the proof.

5.3.3 A priori boundary C1,1
-estimate

In this subsection, we consider a more general equation without the obstacle,

(PMA), 8
<

:
�@tu+

�
detD2u

� 1
n = f(x, t, u,Du) in ⌦T ,

u = g on @p⌦T .

The goal here is to prove the a priori boundary C1,1-estimate for a solution

of (PMA).

Proposition 5.3.8. Let u be a solution of (PMA) and assume (A2), (A4),

and (A5). Then we have

sup
@p⌦T

|D2u|  C

where the constant C depends only on kfk⇤2, kgk3,1, kuk2, ⌦T , and n.

We postpone its proof for a moment. Assuming this, we have the following:

Proposition 5.3.9. Let u" be the solution of (PMAo✏) and assume (A1),

(A2), (A4), and (A5). Then we have

sup
@p⌦T

|D2u✏
|  C

where the constant C depends only on kfk⇤2, kgk3,1, kuk2, ⌦T , and n.

Proof. Let h be the solution of (5.3.1) in Lemma 5.3.2. Then, u"
 h in ⌦T

and h = g on @p⌦T . Let ⌘0 :=
1
2 inf@p⌦T (� � h) = 1

2 inf@p⌦T (� � g) > 0. Now

define a set

U = {X 2 ⌦T : �� h > ⌘0}
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so that U contains a tubular neighborhood of @p⌦T . Then we deduce

�� u"
� �� h > ⌘0 in U

and we see that �✏(�� u") = 0 in U . Thus, u" satisfies

8
<

:
�@tu

" + (detD2u")
1
n = f(X, u", Du") in U,

u" = g on @p⌦T .

Now the conclusion follows from Proposition 5.3.8.

Now we prove Proposition 5.3.8. First, we remark that (5.3.5) is still

valid for solutions of (PMA) since we can easily repeat the arguments in

Lemma 5.3.3 and Lemma 5.3.5 (see also Remark 5.3.6). Let us take a point

(x0, t0) 2 @p⌦T . It is enough to consider the case that t0 > 0, sinceD2u(x0, 0) =

D2g(x0, 0) is controlled by the initial data. Thus, we consider the case x0 2

@⌦ and t0 > 0. We may assume that x0 is the origin and the interior unit

normal vector of @⌦ at x0 = 0 is en. In a small neighborhood U 0 of 00 in Rn�1,

the boundary @⌦ is given by a graph (x0, ⇢(x0)) where x0 = (x1, · · · , xn�1),

and we can express ⇢ as

xn = ⇢(x0) =
1

2

X
B↵�x↵x� +O(|x0

|
3), (5.3.16)

where B↵� = ⇢↵�(00) and Greek letters ↵ and � go from 1 to n� 1. We note

that since ⌦ is strictly convex and bounded, B↵� is bounded below and above

with constants depend only on the boundary of ⌦.

We start with the estimate of the second derivates with respect to tan-

gential directions for the solution u.

Lemma 5.3.10. Let u be a solution of (PMA). Then we have

|@↵�u(0, t0)|  C, for 1  ↵, �  n� 1,

where the constant C depends only on @⌦, kuk1 and kgk2.
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Proof. Since u� g vanishes on the lateral boundary @⌦⇥ (0, T ], we see

u(x0, ⇢(x0), t0) = g(x0, ⇢(x0), t0) in U 0. (5.3.17)

This implies

D↵�(u� g)(x0, ⇢(x0), t0) = 0 for 1  ↵, �  n� 1,

so that

(@↵ + ⇢↵@n)(@� + ⇢�@n)(u� g)(x0, ⇢(x0), t0) = 0.

Since ⇢(00) = 0 and ⇢↵(00) = ⇢�(00) = 0, this gives

(u� g)↵�(0, t0) = �⇢↵�(0
0)(u� g)n(0, t0). (5.3.18)

Now we have

|@↵�u(0, t0)|  |@↵�g(0, t0)|+ ⇢↵�(0
0)|(u� g)n(0, t0)|,

and therefore, the conclusion follows.

We briefly remark that (5.3.18) shows the relation of the normal and

tangential derivatives, i.e., the normal derivative is heuristically equal to the

second tangential derivatives. We also remark here that this tangential second

derivative implied by not the equation but the regularity of domain ⌦, the

boundary data g, and Lipschitz regularity of u up to the boundary.

Now, we claim that u"

⇠⇠
has a uniform lower bound on the boundary for

any tangential direction ⇠.

Lemma 5.3.11. Let u be a solution of (PMA) and assume (A1), (A2), and

(A5). Then there is a uniform constant c0 = c0(@⌦, kgk3,1 , ⌫) such that

X

↵,�<n

u↵�(0, t0)⇠↵⇠� � c0 > 0,
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for any unit vector ⇠ = (⇠1, · · · , ⇠n�1).

Proof. We may assume that ⇠ = e1. In the neighborhood U 0
⇥(0, T ] of (00, t0),

we can write

g(x0, ⇢(x0), t0) = g(0, t0) + g↵(0, t0)x↵ +
1

2
�↵�x↵x� +O(|x0

|
3). (5.3.19)

Let � = �11

⇢11(00)
= �11

B11
, A = (g1(0, t0), · · · , gn�1(0, t0),�),

ũ = u� g(0, t0)� A · x,

and

f̃(x, t, z, p) = f(x, t, z + g(0, t0) + A · x, p+ A).

Then, it is easy to verify that

�@tũ+ (detD2ũ)
1
n = f̃(x, t, ũ, Dũ).

Moreover, from (5.3.17), (5.3.19), and the definitions of ũ and �, we have

D11ũ(0, t0) = D11u(0, t0)� �⇢11(0
0) = D11g(0, t0)� �B11 = �11 � �B11 = 0,

(5.3.20)

which implies

u11(0, t0) = ũ11(0, t0) = �ũn(0, t0)⇢11(0
0)

since D11ũ(0, t0) = ũ11(0, t0) + ũn(0, t0)⇢11(00).

It remains to show that �ũn(0, t0) has a uniform positive lower bound.

Hence, we construct a barrier function for ũ. By (5.3.16) and Young’s in-
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equality,

x3
1 =

2x1

B11

0

@xn �
1

2

X

(↵,�) 6=(1,1)

B↵�x↵x� +O(|x0
|
3)

1

A


2

B11
x1xn + C

 
X

1<�<n

x2
�
+ |x|4

!
in U 0,

(5.3.21)

where C = C(@⌦). On the other hand, we see from (5.3.17), (5.3.19) and

(5.3.20) that

ũ = u� g(0, t0)� A · x =
1

2

X

(↵,�) 6=(1,1)

�↵�x↵x� +O(|x0
|
3) in U 0. (5.3.22)

Therefore, by (5.3.21), (5.3.22) and Young’s inequality, there is C(@⌦, kgk3,1)

such that

ũ|@⌦ 

X

1<jn

a1jx1xj + C

 
X

1<�<n

x2
�
+ |x|4

!
,

for some constants a1j, 1 < j  n.

Consider a barrier function h defined by

h = �axn + b|x|2 +
1

2B

X

1<jn

(a1jx1 +Bxj)
2,

where constants a, b, and B will be determined below. Denoting the k ⇥ k
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identity matrix by Ik, we see that

D2h = 2bIn +

0

BBBBB@

1
B
(a212 + · · ·+ a21n) a12 · · · a1n

a12
... BIn�1

a1n

1

CCCCCA

⇠

0

BBBBB@

2b+ ( 1
B
�

1
2b+B

)(a212 + · · ·+ a21n) 0 · · · 0

a12
... (2b+B)In�1

a1n

1

CCCCCA

and thus detD2h = (2b + B)n�12b
⇣
1 + 1

B(B+2b)(a
2
12 + · · ·+ a21n)

⌘
. First, we

take a constant B = B(C) such that

X

1<jn

a1jx1xj + C

 
X

1<�<n

x2
�
+ |x|4

!


1

2B

X

1<jn

(a1jx1 +Bxj)
2 on @⌦.

Then, choose small b = b(@⌦, kgk3,1 , ⌫) > 0 such that

(detD2h)
1
n < ⌫  @tu+ f(x, t, u,Du) = @tũ+ f̃(x, t, ũ, Dũ) = (detD2ũ)

1
n

in ⌦⇥{t0}, where ⌫ is the positive constant in Lemma 5.3.3. Since ⌦ is strictly

convex, there is a small positive constant a = a(b, @⌦) = a(@⌦, kgk3,1 , ⌫) such

that �axn + b|x|2 > 0 for x 2 @⌦ and therefore we have

ũ  h on @⌦.

From the maximum principle, ũ  h in ⌦⇥ {t0} and ũ(0, t0) = h(0, t0) =

0. By taking a derivative with respect to xn, we have �ũn � �hn = a > 0

at (0, t0). This completes the proof.

In the next lemma, we shall estimate the mixed derivative u↵n(0, t0) for

↵ = 1, 2, · · · , n� 1.
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Lemma 5.3.12. Let u be a solution of (PMA) and assume (A1), (A2), (A4),

and (A5). Then we have

|@n↵u(0, t0)|  C for 1  ↵  n� 1,

where the constant C = C(@⌦, kuk1 , kfk
⇤
2 , kgk3 , ⌫).

Proof. Let us consider the vector field

T↵ =@↵ +
X

�<n

B↵�(x�@n � xn@�)

and the linearized operators

Lu = �@t +
F

n
uij@i@j, L0 = Lu � fpi@i,

where uij denotes (i, j) component of inverse matrix of D2u. Recall that

u� g = 0 in U 0
⇥ [0, t0], where U 0 is the neighborhood of 00 introduced at the

beginning of this subsection. Di↵erentiating this with respect to u � g and

recalling (5.3.16), we obtain that

0 = D↵(u� g) = (@↵ + ⇢↵@n)(u� g)

=

 
@↵ +

n�1X

�=1

B↵�x�@n

!
(u� g) +O(|x0

|
2)

= T↵(u� g) +O(|x0
|
2) in U 0

⇥ [0, t0].

Thus, we have

|T↵(u� g)|  C1|x
0
|
2 in U 0

⇥ [0, t0] (5.3.23)

for some C1 = C1(@⌦). On the other hand, by a direct computation (or using

97



CHAPTER 5. THE OBSTACLE PROBLEM FOR PARABOLIC
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that our operator is invariant under the rotations), we can get

Lu(T↵u) = T↵(Luu) = T↵f(x, t, u,Du)  fpiT↵ui + C(@⌦, kfk⇤1 , kuk1),

L0(T↵g) � �C(@⌦, kfk⇤1 , kgk3)� C(@⌦, n, kfk⇤2 , kgk3)
X

uii,

which yields

L0(T↵(u� g))  C2

⇣
1 +

X
uii

⌘
in ⌦t0 , (5.3.24)

Cwhere 2 = C2(@⌦, kfk
⇤
2 , kgk3 , kuk1).

Next, we shall construct a barrier function for T↵(u � g) in ⌦�
⇥ [0, t0],

where ⌦� := {|x| < �} \ ⌦. In order to do this, we use

w(x0, xn) = xn �
1

2
B↵�x↵x� �

1

2
Mx2

n
+

1

4
µ|x0

|
2,

where µ denotes the minimum eigenvalue of the matrix B↵� and M will

be determined later. We start with estimates on the lateral boundary of

⌦�
⇥ [0, t0]. On (@⌦�

\ @⌦)⇥ [0, t0], by (5.3.16),

w =
1

4
µ|x0

|
2
�

1

2
Mx2

n
+O(|x0

|
3) �

1

4
µ|x0

|
2
� C3|x

0
|
3, for C3 = C3(⌦,M) > 0.

If �  µ

8C3
, we have

w �
1

8
|x0

|
2 on (@⌦� \ @⌦)⇥ [0, t0]. (5.3.25)

On K1 ⇥ [0, t0], where K1 := @⌦�
\ ⌦ \ {

1
4µ|x

0
|
2
� Mx2

n
}, using xn > ⇢(x0)

and (5.3.16), we see that

w � ⇢�
1

2
B↵�x↵x� �

1

2
Mx2

n
+

1

4
µ|x0

|
2 = �

1

2
Mx2

n
+

1

4
µ|x0

|
2 +O(|x0

|
3)

� �C4|x
0
|
3 +

1

8
µ|x0

|
2,
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for some C4 = C4(@⌦). If � 
µ

16C4
, we have

w �
1

16
µ|x0

|
2
�

Mµ

4(µ+ 4M)
�2 on K1 ⇥ [0, t0]. (5.3.26)

Finally, on K2 ⇥ [0, t0], where K2 := @⌦�
\ ⌦ \ {

1
4µ|x

0
|
2
 Mx2

n
}, using

xn �

q
µ

(4M+µ)�, we see that

w �

r
µ

4M + µ
� � C5(⌦,M, µ)�2.

If �  1
2C5

q
µ

(4M+µ) , we have

w � C5�
2 on K2 ⇥ [0, t0]. (5.3.27)

From (5.3.23), (5.3.25), (5.3.26), and (5.3.27), it is immediate that if we

take su�ciently small constant � > 0 and a constant A > 0 such that � <

min
⇣

µ

8C3
, µ

16C4
, 1
2C5

q
µ

(4M+µ)

⌘
and A > C1/min

⇣
1/8, Mµ

4(µ+4M) , C5

⌘
, then

Aw ± T↵(u� g) � 0 on @⌦�
⇥ [0, t0].

Our next task is to show that

L0(Aw ± T↵(u� g))  0 in ⌦�
⇥ (0, t0]. (5.3.28)

Indeed, from the definition of w and µ, we calculate that

Luw =
F

n
uij

⇣
�Bij �M�in�jn +

µ

2
�ij
⌘
 �

F

2n
µ
X

i<n

uii
�

F

n
Munn.

Using the arithmetic-geometric mean inequality, we have

F

4n
µ
X

i<n

uii +
F

2n
Munn

�
µ(n�1)/n

4
(2M)1/n,
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and then we see that if M � µ/2,

Luw  �
F

4n
µ
X

i<n

uii
�

F

2n
Munn

�
µ(n�1)/n

4
(2M)1/n  �

F

4n
µ
X

uii
�

µ(n�1)/n

4
(2M)1/n.

Therefore, by the definition of L0 and w,

L0w  �
F

4n
µ
X

uii
�

µ(n�1)/n

4
(2M)1/n + C6(1 +M�) in ⌦�,

for some C6 = C6(kfk
⇤
1 , @⌦). If we choose M so that µ

(n�1)/n

4 (2M)1/n �

2C6 + 1 and for this M we take � so that M�  1, then we have

L0w  �
F

4n
µ
X

uii
� 1  �C7

⇣
1 +

X
uii

⌘
,

for some C7 = C7(⌫,M), by (5.3.5). By choosing A � C2/C7 and recalling

(5.3.24), we have the desired result, (5.3.28).

In order to finish the proof, we need to prove that

Aw ± T↵(u� g) � 0 on ⌦�
⇥ {0}.

Since u � g = 0 on ⌦ ⇥ {0}, we obtain T↵(u � g) = 0 on ⌦ ⇥ {0}. Now it

su�ces to show that w � 0 in ⌦�, which follows from the maximum principle

to w in ⌦� since w � 0 on @⌦� and F

n
uij@ijw < 0 in ⌦�.

From the comparison principle, we have

|T↵(u� g)|  Aw in ⌦� ⇥ [0, t0].

Using this and T↵(u� g)(0, t0) = w(0, t0) = 0, we conclude that

|@nT↵(u� g)|  A@nw = A at (0, t0),
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which implies

|@n↵u(0, t0)|  C(@⌦, kuk1 , kfk
⇤
2 , kgk3 , ⌫) for 1  ↵  n� 1.

This completes the proof.

The last lemma in this section is bound for unn(0, t0).

Lemma 5.3.13. Let u be a solution of (PMA) and assume (A1), (A2), (A4),

and (A5). Then we have

|@nnu(0, t0)|  C

where the constant C = (@⌦, kuk1 , kfk
⇤
2 , kgk3,1 , ⌫, kFk0).

Proof. Denoting the cofactor of uij by Aij, we have

nX

i=1

Aniuin = detD2u = (f + ut)
n,

and

|Annunn|  (f + ut)
n +

X

i 6=n

|Aniuin| at (0, t0). (5.3.29)

From Lemma 5.3.11, we see that Ann(0, t0) has a uniform positive lower

bound. By (5.3.5), the first term in the right hand side of (5.3.29) is uni-

formly bounded (see also the remark at the beginning of the proof of Propo-

sition 5.3.8). Moreover, Lemma 5.3.10 and Lemma 5.3.12 gives the uniform

upper bound for the second term of the right hand side of (5.3.29). This

completes the proof.

5.3.4 The optimal regularity of the obstacle problem

The results of the previous subsections read as follows:
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Theorem 5.3.14. Let u"
2 C3(⌦T ) \ C4(⌦T ) be a solution of (PMAo✏).

Assume that (A1)-(A5). Then

ku"
k1,1  C,

where the constant C depends on kgk3,1, kfk
⇤
2, k�k2,1, kuk2, ⌦T , and n, and

is independent of ".

We also have the higher order estimates.

Proposition 5.3.15. Let u 2 Ck+1(⌦T )\Ck+2(⌦T ) be a solution of (PMAo✏).

Assume that (A1)-(A5). Then we have for 0 < ↵ < 1,

kuk
k,↵

 C",

where the constant C" depends on ", kgk
k+1,1, kfk

⇤
k,1, k�kk,1, kuk2, ⌦T , and

n.

Sketch of proof. From Krylov-Safonov’s estimate in [51], we may obtain the

Hölder regularity of @tu as in Step 1 of [70, Theorem 2.1]. Observe that our

equation is

�
detD2u

� 1
n = f + ut � ��(�� u).

Since (detD2u)
1
n is a concave operator, we have a space Hölder estimate by

Evans-Krylov theory (see [29] and [50]). Now the Hölder estimate for D2u

in t follows from the same argument as in Step 2 of [70, Theorem 2.1]. By

standard Schauder theory, we have the desired result.

Using the method of continuity and the a priori estimates which have

been shown above, we can prove the existence of solutions to (PMAo✏) having

uniform C1,1 bound.

Lemma 5.3.16. Assume that (A1)-(A5). There exists a unique solution u"
2
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C3(⌦T ) \ C4(⌦T ) of (PMAo✏) for each 0 < " < 1 satisfying

u"
� u in ⌦T and ku"

k2  C,

where the constant C is independent of ".

Proof. The uniqueness assertion follows from the comparison principle since

fz � 0. We prove the existence assertion in two cases.

Case 1. Assume that u 2 C1(⌦T ). Let us define

f = �u
t
+ (detD2u)

1
n ,

and f "(x, t, z, p) = f(x, t, z, p)���(��z). Since u is a subsolution of (PMA),

we know that f � f(·, u,Du) � µ1 > 0. For each s 2 [0, 1], we consider the

Cauchy-Dirichlet problem

�@tu+
�
detD2u

� 1
n = sf "(x, t, u,Du) + (1� s)f(x, t) in ⌦T ,

u = g on @p⌦T .
(5.3.30)

Let u 2 C3(⌦T ) be a solution of (5.3.30) and let B be the class of solutions

v of (5.3.30) such that v � u in ⌦T . Since u is also a subsolution of (5.3.30),

it follows from the comparison principle that any strictly convex solution

u 2 C1(⌦T ) satisfies u � u. This gives u 2 B, and by the Proposition 5.3.15,

kuk2,↵  C" independent of s.

Hence, it is possible to show, by using the method of continuity, that for each

s 2 [0, 1], the equation (5.3.30) has a strictly convex solution in C3(⌦T ). As

in Proposition 5.3.15, it follows from the standard regularity theory that

u 2 C4(⌦T ).

Case 2. We now consider the case u 2 C2(⌦T ). Take a sequence of strictly

convex functions u
m

2 C1(⌦T ) converging to u in C2(⌦T ). Since u is a
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subsolution of (PMA), we may assume that

�@tum
+
�
detD2u

m

� 1
n � (1� 2�m)fm(x, t, um

, Du
m
) in ⌦T .

Setting gm = u
m
|@p⌦T , we consider Cauchy-Dirichlet problem

�@tu+
�
detD2u

� 1
n = (1� 2�m)f in ⌦T ,

u = gm on @p⌦T .
(5.3.31)

By the result of Case 1 and the fact that u
m

is a subsolution of (5.3.31),

there exists a strictly convex solution um 2 C1(⌦T ) of (5.3.31) satisfying

kumkk,↵  C(k,↵, kuk2)

for k � 2 and 0 < ↵ < 1. Here the constant C(k,↵, kuk2) also depends on

the other known data. Thus we can extract a subsequence converging to a

solution of (PMA) in C1(⌦T ).

proof of Theorem 5.1.1. We begin with the uniqueness assertion. It was shown

in [45] that the comparison principle holds for viscosity subsolutions and su-

persolutions of equation (5.2.1) if fz � 0. Assume that there are two viscosity

solutions u1 and u2 of (PMAo) with u1(x1, t1) < u2(x1, t1) for some (x1, t1) 2

⌦T . Let G be a connected component of {(x, t) 2 ⌦T : u1(x, t) < u2(x, t)}

containing (x1, t1). Since u1 < u2  � in G, it follows that u1 is a viscosity

solution of (5.2.1) in G. On the other hand, u2 is a viscosity subsolution

in G. Then by the maximum principle, we have u2  u1 in G, which is a

contradiction.

From the uniform C1,1 estimate, we can extract a subsequence u"k con-

verging to a function u 2 C1,1(⌦T ) in C1,↵(⌦T ) for all 0 < ↵ < 1. Since

u"
� u in ⌦T for any ", we thus have u � u in ⌦T . Moreover, u  � follows

from the uniform boundedness of ��, Lemma 5.3.1. To finish the proof, it

remains to show that u is the viscosity solution of (PMAo), which is a direct

consequence of the stability property in [22].
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Remark 5.3.17. The solution u has, in fact, C3,↵-regularity in the non-

coincidence set N(u) as in the same argument in Proposition 5.3.15.

We close this section by giving the proof of Theorem 5.1.2. Since the

main part of proof is simpler and similar to that of Theorem 5.1.1, we do not

repeat here.

proof of Theorem 5.1.2. Without the penalty term in (PMAo✏), we can ob-

tain the same a priori estimates in this section. Moreover, as we explained

in the Remark 5.3.6, the assumption (A1) in Theorem 5.1.1 can be removed.

Following the proof of Lemma 5.3.16, we have the desired result.

5.4 Regularity of the free boundary

In this section, we study the regularity of the free boundary �(u) = @N(u)\

⌦T of the solution u to (PMAo). Precisely, we discuss the local regularity of

the free boundary N(u) at a free boundary point X0 = (x0, t0) 2 �(u). For

simplicity, we set (x0, t0) = (0, 0) and consider the problem in a neighborhood

of (0, 0): 8
>><

>>:

Pu � f(x, t) in Q�
r
,

Pu = f(x, t) in Q�
r
\N(u),

u  � in Q�
r
,

(5.4.1)

with u(0, 0) = �(0, 0) = 0, ru(0, 0) = r�(0, 0) = 0 by subtracting the a�ne

function �(0) +D�(0) · x, and the obstacle � such that @t� 2 W 2,1
1 (Q�

r
) and

D� 2 W 2,1
1 (Q�

r
).

In contrast with the theory for the uniformly elliptic or parabolic fully

nonlinear operator in [53, 31, 32, 56], introducing the problem with lower

zero obstacle for the Monge-Ampère operator is not appropriate since the

modified operator �@t + G (see (5.4.2)) for F (M) = det
1
n (M) is not the

Monge-Ampère operator. Hence, in this section, we deal with the problem

(5.4.1) as it is without using the simplified problem with the zero obstacle

such as in [53, 9, 31, 32, 56].
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First, for a detailed explanation, we briefly introduce the reduced obstacle

problem for the uniformly fully nonlinear operator, F . The modified operator

is defined as follow:

G(M, x) = �F (�M+D2�(x)) + F (D2�(x)). (5.4.2)

Then, for the solution u of the obstacle problem for F , v = ��u is a solution

the reduced obstacle problem with the zero obstacle function:

� @tv +G(D2v, x) =
�
�@t�+ F (D2�)� f

�
�{v>0}, v � 0 in Q�

1 .

(5.4.3)

The operator G is also a uniformly parabolic with the same parabolicity.

Hence, to have the regularity of the free boundary, it is enough to discuss

the regularity for the reduced problem (5.4.3).

In the case that F = det
1
n , G is not the Monge-Ampère operator and

defined only in {(M, x) | � M + D2�(x) � 0} ⇢ S
n⇥n

⇥ Rn. Hence, to

have the regularity theory of the free boundary with the operator �@t + G,

additional mathematical justification is needed to apply general theories (like

maximum principle or regularity theory) to the solution u of PDEs with the

operator G although (D2v, x) is exactly in the subspace. Therefore, instead

of G and the reduced form (5.4.3), in this section, we deal with the original

problem (5.4.1).

We note that the linearized operator

Lu := �@t + Fij(D
2u) · @ij

of P := �@t + F (M), where F (M) = (detM)
1
n and

Fij(D
2u) · M =

1

n
F (D2u)tr((D2u)�1

M)

is used throughout this section. Since Fij(D2u) depends on D2u, Lu is an

operator with continuous coe�cient only on N(u). By the optimal regularity
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of the solution, Theorem 5.1.1, we know that D2u and @tu are bounded and

moreover, by Lemma 5.3.3 and the convergence of u✏ to u, we know that

(detD2u)
1
n � f + @tu � ⌫ > 0 in ⌦T ,

and the eigenvalues of u also have a lower bound. Therefore, Lu is uniformly

parabolic in N(u).

In Subsection 5.4.1, we discuss rescalings, blowup functions, and the thick-

ness of ⇤(u) for the solution u of (5.4.1) and define the solution spaces of

the local and global solutions. We note that since it is needed to consider the

global solution with the uniform thickness assumption, we introduce a class

of global solution including the global solution of the obstacle problem for

Monge-Ampère equation, (5.4.1) in Rn
⇥ (�1, 0].

In Subsection 5.4.2, the non-degeneracy of u 2 P1(M) is proved by using

(5.4.4) and it is discussed that the blowup function u0 of u 2 P1(M) is a

solution of the global solution, u0 2 P1(M).

In Subsections 5.4.3 and 5.4.4, we will discuss the classification of the

global solutions and the directional monotonicity of the local solutions, re-

spectively. We note that since the linearized operator Lu depends on D2u,

in the proof of the classification of the global solutions and the directional

monotonicity, we will carefully deal with the case that the Lu applied on the

functions such as @t�, @e�, and @ee�.

Finally, in Subsection 5.4.5, we prove the regularity of the free boundary

�(u) = @⌦(u) \Q�
1 .

5.4.1 Preliminaries

The rescalings of the solution u of (5.4.1) and � at 0 with u(0, 0) = �(0, 0) = 0

and ru(0, 0) = r�(0, 0) = 0 for r > 0 are

ur(X) :=
u(rx, r2t)

r2
and �r(X) :=

�(rx, r2t)

r2
, X 2 Q�

1/r.
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By theW 2,1
1 -regularity of solution u (Theorem 5.1.1),W 2,1

1 -norm of the rescal-

ings ur are uniformly bounded. Then, we can extract a limit function which

is called a blowup. Specifically, for the solution u of (5.4.1), there exists a

sequence ri and u0 2 W 2,1
1,loc

(Rn
⇥ (�1, 0]) such that

uri ! u0 in W 2,1
p,loc

(Rn
⇥ (�1, 0]) , for any n < p < 1.

The limt function u0 is called a blowup of u at 0.

Definition 5.4.1. We denote by �r(u,X0) the thickness of ⇤(u) on Br(x0)⇥

{t0 � r2}, i.e.,

�r(u,X
0) :=

MD (⇤(u) \ (Br(x0)⇥ {t0 � r2}))

r
,

where MD(A) is the least distance between two parallel hyperplanes contain-

ing A ⇢ Rn. We will use the abbreviation �r(u) for �r(u, 0).

For the convenience of statement, we define a class of local solutions to

the problem (5.4.1).

Definition 5.4.2. (Local solutions) The class of local solutions Pr(M) (0 <

r < 1) consists of all solutions u of (5.4.1) satisfying:

(i) k@tukL1(Q�
r ) + kD2uk

L1(Q�
r )  M ,

(ii) 0 2 @N(u),

with f(0) = 1, f 2 W 2,1
1 (Q�

r
), @t� 2 W 2,1

1 (Q�
r
), and D� 2 W 2,1

1 (Q�
r
).

In order to have the classification of global solutions, it is needed to

consider global solutions with the uniform thickness assumption, (5.1.4). On

the other hand, we know that non-degeneracy of u 2 P1(M) and the uniform

thickness assumption on u imply that the blowup function u0 of u satisfies

the uniform thickness condition,

�r(u0, X) � ✏0 for all r > 0, X 2 Q�
1/2 \ @Nu0 ,
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where Nu0 = Rn
⇥ (�1, 0] \ ⇤u0 ,

⇤u0 := lim sup
rj!1

{urj = �rj} ⇢ {u0 = �0},

and lim sup
j!1 Aj is the set of all limit points of sequences (xjk

, tjk) 2 Ajk
,

see subsection 5.2 of [9] and subsection 6.2 of [57]. Hence, we define the global

solution as follows:

Definition 5.4.3. (Global solutions) The class of global solutions P1(M)

consists of all solutions u of

8
>><

>>:

Pu � 1 in Rn
⇥ (�1, 0],

Pu = 1 in Rn
⇥ (�1, 0] \Nu,

u  � in Rn
⇥ (�1, 0],

with the obstacle � which satisfying:

(i) k@tukL1(Rn⇥(�1,0]) + kD2ukL1(Rn⇥(�1,0])  M ,

(ii) 0 2 @Nu,

(iii) P� = a > 1 and @t� and D2� are constants,

where Nu is an open set such that Nu � {u < �} and ⇤u = Rn
⇥(�1, 0]\Nu.

Remark 5.4.4. We note that for u 2 P1(M), Pu = P� = a > 1 a.e. in

{u = �}. Hence, Pu = 1 in Nu implies |{u = �} \ ⇤u| = |{u = �} \Nu| = 0.

We note that in the definition of P1(M), @t� 2 W 2,1
1 (Q�

r
) and D� 2

W 2,1
1 (Q�

r
) are assumed. Hence, � 2 C2(Q�

r
) and by Taylor expansion, �0 is a

homogeneous polynomial with homogeneity 1 for t and 2 for x, where �0 is

the blowup of � at 0. Especially, we know that @t�0 and D2�0 are constant in

Rn
⇥ (�1, 0]. Therefore, it is assumed that @t� and D2� are constants in the

definition for the space of global solutions P1(M), where � is the obstacle

function.
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5.4.2 Basic results

Now we prove the non-degeneracy by using the linearized operator Lu and

(5.4.4) below. The non-degeneracy implies that the blowup of � � u at a

free boundary point is not the zero function and the fact that the Lebesgue

measure of the free boundary is zero.

By the concavity of P , we have that

Lu(�� u) � P�� Pu = P�� f in N(u). (5.4.4)

Indeed, from the definition of operators, Pu = Luu = f in N(u) and more-

over, the arithmetic-geometric mean inequality gives

P�  Lu� in ⌦T .

Precisely, by the inequality, we have

F (D2u)�1F (D2�) =
�
det
�
(D2u)�1D2�

�� 1
n 

1

n
tr
�
(D2u)�1D2�

�

and

P� = �@t�+ F (D2�)  �@t�+
1

n
F (D2u) tr

�
(D2u)�1D2�

�
= Lu� in ⌦T .

For u 2 P1(M), by Lemma 5.3.3 and the convergence of u✏ to u, we know

that

F (D2u) = (detD2u)
1
n � f + @tu � ⌫ > 0 in ⌦T ,

and the eigenvalues of D2u have upper and lower bounds, i.e. there is ✏0 =

✏0(M, ⌫) > 0 such that ✏0I  D2u 
1
✏0
I.

Lemma 5.4.5 (Non-degeneracy). Let u 2 P1(M). If P� � f + c in Q�
1 for

some positive constant c, then

sup
X2Q�

r (X0)

(�(X)� u(X)) � �(X0)� u(X0) + 2↵r2, X0 2 N(u) \Q�
1 ,
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for any Q�
r
(X0) ⇢ Q�

1 , where ↵ := c

(1+2(µ2+M)/✏0)
.

Proof. Let v = �� u and X0 2 N(u) = {u < �} \Q�
1 = {v > 0} \Q�

1 and

define an auxiliary function

w(x, t) = v(x, t)� v(x0, t0)� ↵
�
|x� x0|

2
� (t� t0)

�
.

Recalling (5.3.2), we have

Lu

�
|x� x0|

2
� (t� t0)

�
= 1 +

2

n
F (D2u)tr((D2u)�1)  1 +

2

✏0
(f + @tu)

 1 +
2

✏0
(µ2 +M) =

c

↵
.

(5.4.5)

Then, the inequality (5.4.4) implies

Luw � Lu(�� u)� c � P�� f � c � 0 in Q�
r
(X0).

Since w(X0) = 0 and w(X)  0 on @{v > 0} \ Q�
r
(X0), by the maximum

principle, we have

w(X0) = 0  sup
{v>0}\@pQ�

r (X0)

w

and the desired inequality holds for X0 2 N(u) \Q�
1 .

For X0 2 @N(u) \Q�
1 ,we will take a sequence of points Xj

2 N(u) such

that Xj
! X0 as j ! 1. By passing to the limit as j goes to 1, we have

the desired inequality for X0 2 N(u) \Q�
1 .

Lemma 5.4.6. Let u 2 P1(M) with the obstacle function � such that P� �

f + c in Q�
1 , for some positive constant c. Then any blowup u0 at 0 is in

P1(M).

Proof. Let uri be a sequence of the rescalings converging to a blowup u0. The
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MONGE-AMPÈRE EQUATION

rescaling uri satisfies

8
>>><

>>>:

Puri � f(rix, r
2
i
t) in Q�

1/ri
,

Puri = f(rix, r
2
i
t) in Q�

1/ri
\N(uri),

uri  �ri in Q�
1/ri

,

(5.4.6)

Take a point X0 in Nu0 , where Nu0 = Rn
⇥ (�1, 0] \ ⇤u0 and ⇤u0 =

lim sup
rj!1{urj = �rj}. Then, there exist � > 0 and i0 such that Q�

�
(X0) ⇢

{uri < �ri} for all i � i0 and

Puri(x, t) = �@turi(x, t) + (detD2uri(x, t))
1
n

= �@tu(rix, r
2
i
t) + (detD2u(rix, r

2
i
t))

1
n

= f(rix, r
2
i
t) in Q�

�
(X0).

By the interior uniform C2,↵ bound, we may assume strong convergence

of uri to u0 in C2,�(Q�
�
(X0)), for some 0 < � < ↵. Thus, we have that

�@tu0(X) + (detD2u0(X))
1
n = f(0) = 1 in Q�

�
(X0)

and

�@tu0(X) + F (D2u0(X)) = 1 in Rn
⇥ (�1, 0] \Nu0 .

Moreover, we obtain 0 2 @Nu0 by using the non-degeneracy. Therefore, u0 is

in P1(M).

5.4.3 Classification of the blowup

In this subsection, we will prove that any global solution u 2 P1(M) with

the uniform thickness assumption (5.1.4) are of the form

v = �� u =
c

2
(x+

n
)2 in Rn

⇥ (�1, 0].

For the first step, in Proposition 5.4.7 below, we show that @tv  0 in
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Rn
⇥ (�1, 0] by using the method which is introduced by [9] for the reduced

problem (5.4.3) with the heat operator.

In the proof of Proposition 5.4.7, we define limit functions u0 and �0 of

the rescalings, uj and �j, (5.4.7), respectively, such that Pu0 = 1 in Nu0[Q
�
1 .

Then, @t(Pu0) = Lu0@tu0 = 0 in Nu0 [Q�
1 . By the fact that @t� is constant,

@t�0 is also constant, Lu0@t�0 ⌘ 0 in Rn
⇥ (�1, 0], and

Lu0@tv0 = Lu0@t�0 � Lu0@tu0 = 0 in Nu0 [Q�
1 (0, 0).

Thus, we could utilize the maximum principle to @tv0 and have the result of

the proposition.

Proposition 5.4.7. Let u 2 P1(M). Then,

@tv(x, t)  0 in Rn
⇥ (�1, 0].

Proof. Since u 2 P1(M), the function @tv is globally bounded. Suppose that

m := sup
Rn⇥(�1,0]

@tv > 0

and let (xj, tj) be a sequence such that

@tv(xj, tj) ! m = lim
j!1

@tv(x, t) > 0.

We denote dj by the supremum of r such that Q�
r
(xj, tj) is contained in Nu �

N(u) = {u < �}. Let (yj, sj) 2 @pQ
�
dj
(xj, tj)\�(u), (ỹj, s̃j) :=

⇣
yj�xj

dj
, sj�tj

d
2
j

⌘
,

uj(x, t) :=
u(djx+ xj, d2j t+ tj)

d2
j

, �j(x, t) :=
�(djx+ xj, d2j t+ tj)

d2
j

, (5.4.7)

and

vj := �j � uj.

Since (yj, sj) 2 @Nu, u(yj, sj) = �(yj, sj), and ru(yj, sj) = r�(yj, sj),
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MONGE-AMPÈRE EQUATION

we have that uj  �j in Rn
⇥ (�1, 0],

uj(ỹj, s̃j) = �j(ỹj, s̃j), ruj(ỹj, s̃j) = r�j(ỹj, s̃j),

and
��D2uj

��
L1 + k@tujkL1  M.

Furthermore, Q�
1 ⇢ Nuj , Puj = 1 in Nuj [ Q�

1 and (ỹj, s̃j) 2 @pQ
�
1 \ @Nuj ,

where Nuj := {(y, s) | (djy + xj, d2js+ tj) 2 Nu} such that Nuj � {uj < �j}.

Hence, uj and �j have at most quadratic growth at infinity and we can

extract subsequence of uj converging to global solutions u0 such that

Pu0 = 1 in Nu0 [Q�
1 , @tv0  m in Rn

⇥ (�1, 0], and @tv0(0, 0) = m,

where v0 := �0 � u0.

Since @t� is constant, @t�0 is also constant and Lu0@t�0 ⌘ 0 in Rn
⇥

(�1, 0]. Thus, @t(Pu0) = Lu0@tu0 = 0 in Nu0 [Q�
1 implies

Lu0@tv0 = Lu0@t�0 � Lu0@tu0 = 0 in Nu0 [Q�
1 (0, 0).

Since Lu0 is uniformly parabolic, by the maximum principle, @tv0 ⌘ m

in Q�
1 . Furthermore, by the same method, we have that @tv0 ⌘ m in the

connected component ⌦̃(u0) of Q
�
1 [Nu0 , which containing Q�

1 and there is

a point (ỹ0, s̃0) 2 @pQ
�
1 \ @Nu0 .

Then,

v0(x, t) = mt+ f(x) in (B1 ⇥ R�) \ ⌦̃(u0),

where f(x) := v0(x, 0) � 0 and R� := (�1, 0]

Then, the free boundary @⌦̃(u0) is represented by t(x) = �f(x)/m in

B1 ⇥ R�. Since

rv0 = rf(x) in {(x, t) | t > t(x)} \ (B1 ⇥ R�),

rv0 = 0 on {(x, t) | t = t(x)} \ (B1 ⇥ R�),
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and rv0 is continuous in Rn
⇥ R�, we know that rf(x) = 0 in B1. Hence

v0(x, t) = mt+c0 and u0(x, t) = �mt+�0�c0 in {(x, t) | t > t(x)}\(B1⇥R�),

for a nonnegative constant c0.

Since P�0 = a > 1,

Pu0 = m+ P�0 > 1 in {(x, t) | t < t(x)} \ (B1 ⇥ R�) ⇢ Nu0

and we have a contradiction.

By using an argument in [57] with rescaled functions such as (5.4.7), we

could have that @tv � 0 in Rn
⇥ (�1, 0]. This together with Proposition

5.4.7 implies @tv ⌘ 0 in Rn
⇥ (�1, 0] and then the results for the elliptic

case which is discussed in [54] implies the classification of the global solutions,

see the comment prior to Proposition 5.4.8.

Precisely, by @tv ⌘ 0 in Rn
⇥(�1, 0], we know that the free boundary @Nu

is time-invariant and @tu = @t� is constant in Rn
⇥ (�1, 0]. Hence, for the

classification of the global solution, it is enough to consider the classification

for the elliptic obstacle problem:

8
>>><

>>>:

�
detD2ũ

� 1
n � @tu(0, 0) + 1 in Rn,

�
detD2ũ

� 1
n = @tu(0, 0) + 1 in Rn

\N(ũ),

ũ  �̃ in Rn,

(5.4.8)

where ũ := u�@tu(0, 0)t, �̃ := ��@tu(0, 0)t = ��@t�(0, 0)t, andNũ := Nu(0).

Since the linearized operator Fij(D2ũ)M = 1
n
F (D2ũ)tr((D2ũ)�1M) is

uniformly elliptic, the classification of the global solution for the elliptic

problem, (5.4.8), is obtained by the method in [53, 31] with the considera-

tion of the special characteristics of the Monge-Ampère operator, F (D2u) =

(detD2u)
1
n , which is discussed in the introduction of this section.

Indeed, for a solution u to F (D2u) = (detD2u)
1
n = c in a domain ⌦ ⇢ Rn,
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the concavity of F implies

Fij(D
2u)D2uee � 0 in ⌦.

On the other hand, since D2�(x) is constant, we have Fij(D2u)D2�ee = 0

and

Fij(D
2u)(D2(�� u)ee)  0 in ⌦. (5.4.9)

Then, the method in [53, 31] with (5.4.9) to v = � � u implies that v is

convex and

v = �� u = c(x+
n
)2 in Rn

⇥ (�1, 0],

for a global solution u of (5.4.8) with obstacle �.

Proposition 5.4.8. [57] Let u 2 P1(M) and assume that

�r(v,X) > ✏0 for all r > 0, X 2 @Nu

then,

@tv(x, t) ⌘ 0 in Rn
⇥(�1, 0] and v := ��u = c(x+

n
)2 in Rn

⇥(�1, 0],

for an appropriate system of coordinates and a positive constant c.

By using Proposition 5.4.8, with the same method as in Lemma 4.1 of

[32], we have the following proposition.

Lemma 5.4.9. Let u 2 P1(M) and assume that

�r(v,X) > ✏0 for all r > 0, X 2 N(u).

Then,

@tv(X) ! 0 as X ! (x0, t0)

for any (x0, t0) 2 �(u).
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5.4.4 Directional monotonicity

Now we are ready to prove the directional monotonicity, Proposition 5.4.10.

In the proof of the property, we use the C1,↵ convergence of ur and �r to u0

and �0, respectively, Lemma 5.4.9, and the regularity of u, f , and �.

Precisely, for u 2 P1(M) with u  � in Q�
1 , the rescaling ur at 0 satisfies

(5.4.6) in Q�
1/ri

and ur converges to the blowup function u0 in C1,↵(Q�
1 ). Then

we have

kur � u0kC1,↵(Q�
1 ) and k�r � �0kC1,↵(Q�

1 ) ! 0 as r ! 0. (5.4.10)

On the other hand, by Lemma 5.4.9, 0 2 �(u), the optimal W 2,1
1 regularity

of u, and @t� 2 W 2,1
1 , we have that

k@t (�r � ur)kL1(Q�
1 ) =

��@tv(rx, r2t)
��
L1(Q�

1 )
= k@tvkL1(Q�

r ) ! 0 as r ! 0.

(5.4.11)

Then, by using (5.4.10) and (5.4.11), for a unit vector ẽ := (ex, et) 2 Sn such

that C@ẽv0 � v0 � 0 in Q�
1 , we have C@ẽvr � vr � �✏0 in Q�

1 .

Furthermore, since f 2 W 2,1
1 (⌦T ), @t� 2 W 2,1

1 (⌦T ), and D� 2 W 2,1
1 (⌦T ),

for fr := f(rx, r2t), we have

k@ifrkL1(Q�
1 ) = r k@ifkL1(Q�

r ) ! 0,

k@tfrkL1(Q�
1 ) = r2 k@tfkL1(Q�

r ) ! 0,
��(D2 + @t)@t�r

��
L1(Q�

1 )
= r2

��D2@t�+ @t@t�
��
L1(Q�

r )
! 0,

��(D2 + @t)@i�r

��
L1(Q�

1 )
= r

��D2@i�+ @t@i�
��
L1(Q�

r )
! 0 as r ! 0.

(5.4.12)

Thus, by using (5.4.4), we know that the auxiliary function ŵ in (5.4.13)

is a supersolution. Finally, the maximum principle to the auxiliary function

ŵ in (5.4.13) implies that C@ẽvr � vr � 0 in Q�
1/2 and @ẽvr � 0 in Q�

1/2.

We note that this argument for the parabolic obstacle problem for the

heat operator was introduced in [9, Chapter 13] and [57].

Proposition 5.4.10. (Directional monotonicity) Let u 2 P1(M) and P��

117



CHAPTER 5. THE OBSTACLE PROBLEM FOR PARABOLIC
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f � c > 0 in Q�
1 . Let

v0(x, t) = �0(x, t)� u0(x, t) =
1

2
(x+

n
)2,

where u0 and �0 are blowup functions of u and �, respectively. Then, for any

� 2 (0, 1], there exists r� = r(�, u,�) > 0 such that

@ẽv � 0 in Q�
r�

for any ẽ 2 Sn such that ẽ · (en, 0) � �.

Proof. For any � 2 (0, 1], by direct computation, we know that there is

C� > 0 such that

C�@ẽv0 � v0 � 0 in Q�
1 for any ẽ 2 Sn such that ẽ · (en, 0) � �.

By (5.4.10) and (5.4.11), for su�ciently small r = r(�, u,�),

C�@ẽvr � vr � �
↵

32
in Q�

1 ,

where ↵ is the constant in Lemma 5.4.5. We claim that

C�@ẽvr � vr � 0 in Q�
1/2

Suppose that there is a point Y0 = (y0, s0) 2 Q�
1/2 \ {vr > 0} such that

C�@ẽvr(Y0)� vr(Y0) < 0 and consider

ŵ(Y ) := C�@evr(Y )� vr(Y ) +
↵

2

�
|y � y0|

2
� (s� s0)

�
, (5.4.13)

where ↵ is the constant in Lemma 5.4.5. Recalling (5.4.5), we obtain

↵

2
Lu

�
|y � y0|

2
� (s� s0)

�
=

c

2
.

Then, by Lur@ẽur = @ẽPur = @ẽ(f(rx, r2t)) in N(u), Lur@ẽ�r = �@t@ẽ�r +
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1
n
F (D2u)tr((D2u)�1D2@ẽ�r) in Q�

1 , and (5.4.12), we may assume that

kLur@ẽvrkL1(Q�
1 ) 

c

2C�

in N(ur)

and have

Lurŵ(Y ) = C�Lur@ẽvr(Y )� Lurvr(Y ) +
c

2

 c� (P�r � fr(ry, r
2s))  0 in Q�

1/4(Y0) \N(ur).

Thus, by the maximum principle for ŵ on Q�
1/4(Y0) \N(ur), we have

inf
@pQ

�
1/4(Y0)\N(ur)

ŵ  ŵ(Y0) < 0 and inf
@pQ

�
1/4(Y0)\N(ur)

(C@ẽvr � vr) < �
↵

32
.

Hence, we arrive at a contradiction and have C�@ẽvr � vr � 0 in Q�
1/2. By the

nonnegativity of vr, we have @ẽv � 0 in Q�
r/2.

5.4.5 Proof of the regularity of the free boundary

Lemma 5.4.11. Let u 2 P1(M) be as in Theorem 5.1.3. Then, there is

r01 = r01(u,�) > 0 such that blowup functions of v = �� u at X 2 �(u)\Q�
r
0
1

are half-space functions, i.e., blowups of v at X are of the form c(x+
n
)2/2, up

to a rotation, for some constant c.

Proof. By Proposition 5.4.8,

v0 =
1

2
(x+

n
)2

in an appropriate system of coordinates, for any blowup of v at 0.

For X = (x, t) 2 �(u) \ Q�
r
0
1
and t = 0, by the thickness assumptions

(5.1.4) and the same methods as in Proposition 5.4.8, we have that any

blowup v0 of v at X,

v0(x, t) = �0 � u0 = c(x · ex)
2
+ in Rn

⇥ (�1, 0],
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for ex 2 Sn�1, some positive constant c.

For the case X = (x, t) 2 �(u) \ Q�
r
0
1
and t < 0, By using the argument

in Proposition 5.4.8 in Rn
⇥ R (as in Appendix of [57]), we have that

v0(x, t) = �0 � u0 = c(x · ex)
2
+ in Rn

⇥ R,

for some ex 2 Sn�1 and positive constant c.

Now, we are ready to prove the regularity of the free boundaries of u 2

P1(M), Theorem 5.1.3.

Proof of Theorem 5.1.3. By the directional monotonicity, Proposition 5.4.10,

the free boundary �(u)\Q�
r�/2

is a graph xn = f(x0, t) where f is a Lipschitz

function with the Lipschitz constant less than �/
p
1� �2. Furthermore, in

Proposition 5.4.10, � 2 (0, 1] could be arbitrary small. Hence, we have a

tangent plane of �(u) and the normal vector (en, 0) at 0. For any point

Z 2 �(u) \ Qr
0
1
, by Lemma 5.4.11, we know that there is a tangent plane

of the free boundary at Z with normal vector ⌫Z . By Proposition 5.4.10, for

Z 2 �(u) \Q�
r�
, we have ⌫Z · ẽ � 0, for any ẽ · (en, 0) � �. Hence, ⌫Z is close

to en. Therefore, �(u) \Q�
r
0
1
is C1 at 0.

By the same argument in Propositions 5.4.7 and 5.4.8, for any free bound-

ary point Z = (z, ⌧) 2 �(u) \ Q�
r
0
1
, ⌧ < 0, the blowup of v at Z is of the

form c(xn)2+ in Rn
⇥ R and we have a directional monotonicity for v in

Qr0(Z), i.e., we obtain that for some r0 > 0, for any � 2 (0, 1] there exists

r� = r(�, u,�, Z) > 0 such that

@ẽv � 0 in Q�
r�

for any ẽ 2 Sn such that ẽ · ⌫Z � �.

Then, by the same argument in the previous paragraph, �(u) is C1 at Z.
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Partial Di↵erential Equations, 26(1-2):33–42, 2001.

[55] K.-A. Lee and T. Lee. Gauss curvature flow with an obstacle. preprint,

2019.

[56] K.-A. Lee and J. Park. Obstacle problem for a non-convex fully nonlinear

operator. J. Di↵erential Equations, 265(11):5809–5830, 2018.

[57] K.-A. Lee and J. Park. The regularity theory for the parabolic double

obstacle problem. Mathematische Annalen, to appear, 2020.

[58] K.-A. Lee and H. Shahgholian. Regularity of a free boundary for viscos-

ity solutions of nonlinear elliptic equations. Comm. Pure Appl. Math.,

54(1):43–56, 2001.

[59] S.-H. Lee and J. K. Seo. Noise removal with Gauss curvature-driven

di↵usion. IEEE Trans. Image Process., 14(7):904–909, 2005.

[60] T. Lee, K.-A. Lee, and J. Park. The obstacle problem for parabolic

monge-ampère equation. preprint, 2020.

[61] G. M. Lieberman. Second order parabolic di↵erential equations. World

Scientific Publishing Co., Inc., River Edge, NJ, 1996.

[62] H. Minkowski. Volumen und Oberfläche. Math. Ann., 57(4):447–495,
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