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Abstract

In this thesis, we study heat kernel estimates for a class of Markov pro-
cesses and its applications. We first consider heat kernel estimates for Hunt
processes in metric measure spaces corresponds to symmetric Dirichlet forms.
Next we will study the Levi’s method to obtain heat kernel estimates for non-
symmetric nonlocal operators concern with jump processes. The last part of
this thesis is devoted to the applications of heat kernel estimates. We deals
with the boundary regularity estimates for nonlocal operators with kernels of
variable orders. Then, the laws of iterated logarithms for Markov processes
will be introduced. Heat kernel and its estimates plays an important role in

both problems.

Key words: Markov process, heat kernel estimate, Dirichlet form, nonlocal
operator, laws of iterated logarithm, Green function
Student Number: 2015-20273



Contents

Abstract i
1 Introduction 1
1.1 Basic settings and notations . . . . . . ... ... 4

2 Heat kernel estimates for symmetric Dirichlet form on metric

measure space 7
2.1  Symmetric jump processes on Euclidean space . . . . . .. .. 8
2.1.1 Basic properties of scale functions . . . . . . . .. . .. 11
2.1.2  Near-diagonal estimates and preliminary upper bound . 14
2.1.3 Off-diagonal estimates . . . . . . .. .. .. ... ... 17
214 Examples . . ... ... oo 28
2.2 Symmetric jump processes on MMS . . . . . .. ... 30
2.2.1 Settings and Main results . . . . .. ... ... ... 31
2.2.2 Preliminary . . . .. ... ... ... 41
2.2.3 Stability of upper heat kernel estimates . . . . . . . .. 42
2.2.4  Stability of heat kernel estimates . . . . .. ... ... 60
2.2.5 HKE and stability on metric measure space with sub-
Gaussian estimates for diffusion process. . . . . . . .. 70
226 Examples . . ... ... oo 7

3 Heat kernel estimates for nonsymmetric nonlocal operators 83

3.1 Jump processes with exponentially decaying kernel . . . . . . 84

3.1.1

Preliminaries . . . . . . . ... 90

11



CONTENTS

3.1.2 Basic scaling inequalities. . . . . .. .. .. ... ... 93
3.1.3 Convolution inequalities . . . . . .. .. ... .. ... 93
3.1.4 Heat kernel estimates for Lévy processes . . . . . . .. 99
3.1.5  Further properties of heat kernel for isotropic Lévy pro-
CESS  « v v e e 121
3.1.6  Proof of Theorems 3.1.1-3.1.4 . . . ... .. ... ... 131
4 Applications of heat kernel estimates 136
4.1 Boundary regularity for nonlocal operators . . . . . . .. . .. 138
4.1.1 Mainresults . . . . . ..o 141
4.1.2 Holder Regularity up to the Boundary . . . . .. ... 144
4.1.3 Boundary Regularity . . . .. ... ... ... . .... 155
4.1.4 Subsolution and Harnack Inequality . . . . . . . . . .. 165
4.1.5 Proof of Theorem 4.1.2 . . . . . ... .. ... .. ... 171
4.2 Laws of iterated logarithms . . . . . . ... .. .. ... ... 184
4.2.1 Khintchine-type laws of iterated logarithm . . . . . . . 185
4.2.2 Chung-type laws of iterated logarithm . . . . . . . .. 192
Abstract (in Korean) 208

111



Chapter 1
Introduction

The heat kernel provides an important link between probability theory and
partial differential equation. In probability theory, the heat kernel of an op-
erator L is the transition density p(t, z,y) (if it exists) of the Markov process
X, which possesses L as its infinitesimal generator. In the field of partial
differential equation, it is called the fundamental solution of the heat equa-
tion O,u = Lu. However, except in a few special cases, obtaining an explicit
expression of p(t,z,y) is usually impossible. Thus finding sharp estimates
of p(t,x,y) is a fundamental issue both in probability theory and partial
differential equation.

Although heat kernels for diffusion processes have been studied for over
a century, heat kernel estimates for discontinuous Markov processes have
only been studied in recent years. After pioneering works such as [14, 30,
64], obtaining sharp two-sided estimates of heat kernels for various classes
of discontinuous Markov processes has become an active topic in modern
probability theory (see [1, 5, 6, 8, 9, 16, 10, 17, 23, 24, 25, 28, 22, 31, 32, 34,
36, 35, 43, 44, 45, 47, 50, 51, 48, 52, 53, 54, 55, 61, 62, 63, 67, 68, 70, 71, 72,
73, 78, 88, 89] and references therein). Moreover, heat kernel estimates for
Markov processes on metric measure spaces provide information on not only
the behaviour of the corresponding processes but also intrinsic properties

such as walk dimension of underlying space ([5, 6, 48, 68]).
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Let us consider a symmetric pure jump Markov process on a general
metric measure space (M, d, 1) that satisfies volume doubling conditions (see
Section 1.1 for the settings). In [31], the authors investigated heat kernel
estimates for symmetric discontinuous Markov processes (on a large class of
metric measure spaces) whose jumping intensities are comparable to radially
symmetric functions of variable order. In particular, the heat kernel estimates
therein cover the class of symmetric Markov processes X = (X;, P,z €
M,t > 0), without diffusion part, whose jumping kernels J(z,y) satisfy the

following conditions:

1
V(z,d(z,y)(d(z,y))

where B(x,r) = {y € M : d(z,y) < r} and V(z,r) = u(B(x,r)) are open

ball and its volume, and % is a strictly increasing function on [0, co) satisfying

J(x,y) < r,y € M, (1.0.1)

cl(R/r)Pr < (R) /(1) < ca(R/r)2, 0 <r < R < o0 (1.0.2)

with 0 < 81 < B3 < 2. Here we have used the notation f = ¢ if the quotient
f/g remains bounded between two positive constants. We say that ¢ is the
rate function since Y gives the growth of jump intensity according to its
size. Under the assumptions (1.0.1), (1.0.2) and V (z,7) = V(r) for strictly
increasing function ‘7, the transition density p(t, z,y) of Markov process has

the following estimates: for any ¢t > 0 and x,y € M,

1 t
ptoo) = (v A Vo) 009

(See [31, Theorem 1.2]. See also [32] where the extra condition V(z,r) =<
V(r) is removed). We call a function ® the scale function for p(t,z,y) if
®(d(x,y)) = t provides the borderline for p(t,z,y) to have either near-
diagonal estimates or off-diagonal estimates. Observe that by (1.0.3) we have
p(t,z,z) < p(t,z,y) for y € Bz, (t)). Thus, 9 is the scale function

in (1.0.3) so that the rate function and the scale function coincide when
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0<pr <fBa<2.

Moreover, we see that (1.0.1) is equivalent to (1.0.3) since p(t,z,y)/t —
J(z,y) weakly as t — 0. Thus, for a large class of pure jump symmetric
Markov processes on metric measure space satisfying volume doubling prop-
erties, (1.0.1) is equivalent to (1.0.3) under the condition (1.0.2).

One of major problems in this field was to obtain heat kernel estimates
for jump processes on metric measure space without the restriction B, < 2.
When the process X is a subordinate Brownian motion, Ante Mimica [70]
established the heat kernel estimates for the case that 5, may not be strictly
below 2. Also, [89] partially generalized to Lévy processes. In [3, 2], we study
heat kernel estimates for general jump processes without imposing 8, < 2.
In particular, we obtained that the rate function and scale function may not
be comparable. [3] deals with processes in R?, and [2] is for metric measure
spaces. The results will be introduced in Chapter 2.

Since we highly rely on the symmetric Dirichlet form theory to obtain
heat kernel estimate, the symmetricity of the process is indispensable. In [92],
the authors obtained the heat kernel estimates for the operator A +b -V
with Holder continuous drift b, which may be nonsymmetric, by using Levi’s
method. In this paper, the heat kernel of nonsymmetric operator, which is
the solution of heat equation, is constructed by the heat kernel of symmetric
operator and its perturbation. [34] generalized this result to nonsymmetric
a-stable like processes in R?, in other words the jumping kernel J(z,y) =<
W. The methods in [34] are quite robust and have been applied to non-
symmetric and non-convolution operators (see [19, 24, 35, 36, 61, 55, 53] and
references therein). In Chapter 3, we consider the case that J(z,y) decays
exponentially or subexponentially when |r — y| goes to oo and we obtain
sharp two-sided estimates for the heat kernel. This chapter is based on [60].
In the last part, my ongoing research project related to this topic will be
introduced.

Besides heat equation, there are many applications of heat kernel esti-

mate. Parabolic and elliptic Harnack inequalities are the most well-known
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consequences of heat kernel estimate (see [10, 12, 26, 33, 79] and references
therein). Chapter 4 contains various applications of heat kernel estimate in-
cluding Green function estimate and laws of iterated logarithms. This chapter
is based on the my papers ([3, 2, 58]) and preprints ([37, 38]). In particular,
[58] obtains boundary decaying rate for the Poisson equation with respect
to nonlocal operators which is infinitesimal generator for a class of isotropic

Lévy processes. The result will be introduced in Section 4.1.

1.1 Basic settings and notations

In this section, we gather some definitions and concepts which will be used
throughout this thesis. First we define the weak scaling condition, which de-

scribes the polynomial growth rate of the function.

Definition 1.1.1. Let g : (0,00) — (0,00) and 5,C > 0.

(1) For a € (0,00], we say that g satisfies L,(5,C) (resp. L*(3,C)) if
g(R)/g(r) > C(R/r)? for all r < R < a (resp. a < r < R). We also say
that the condition L, (5, C, g) (resp. L*(58,C, g)) hold. In particular, we write
Lo (B, ¢) or Us(B2,C) as L(p1,c) or U(Bs, C).

(2) For a € [0,00), we say that ¢ satisfies U,(8,C) (resp. U*(3,C)) if
g(R)/g(r) < C(R/r)? for all r < R < a (resp. a < r < R). We also say
that the condition U,(5,C,g) (resp. U*(B, ¢, g)) hold.

The following lemmas are useful tools to deal with weak scaling conditions.

Lemma 1.1.2. Let g : (0,00) — (0,00) be a non-decreasing function. Then,
(1) For any a € (0,00] and 3,¢ > 0, Lo(B, ¢, g) implies lim,_,q g(r) = 0.
(2) For any a € [0,00) and 3,¢ >0, U*(B, ¢, g) implies lim,_,, g(r) = oc.

Lemma 1.1.3. ([2, Remark A.1]) Let g : (0,00) — (0,00) be a non-
decreasing function and a € (0, 00). Then, Ly(83, ¢, g) implies Ly(3, c(a/b)?, g)
for any a < b. Similarly, L%(3, ¢, g) implies L°(3, c(a=1b)?, g) for any b < a.

Let g7'(s) := inf{r > 0: g(r) > s} be the generalized inverse function of g.

4
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Lemma 1.1.4. (|2, Remark A.2]) Let g : [0, 00) — [0, 00) be a nondecreasing
function with ¢(0) = 0 and g(oc0) = oo. Then, for § > 0 and ¢, C' > 0,

(1) If g satisfies L,(83,¢) (resp. U,(3,C)), then g 'satisfies Ug(a)(%,c’l/ﬁ)
(resp. Ly (3,C~/9)).

(2) If g satisfies L(3,¢) (resp. U*(3,(C)), then g~lsatisfies Ug(“)(%,c’l/ﬁ)
(resp. Lg(“)(%,C_l/ﬂ)).

Lemma 1.1.5. ([2, Lemma 3.7]) Let g : (0, 00) — (0, 00) be a non-decreasing
function satisfying U (5, C'). Then, for any ¢ > 0,

Ct<g(g'(t) <Ct, (1.1.1)

where ¢g~! is the generalized inverse function of g.

Throughout this thesis, we consider Euclidean space R? or metric measure
space (M, d, i), where (M, d) is a locally compact separable metric space, and
1 is a positive Radon measure on M with full support. As mentioned above,
we denote B(z,r) := {y € M : d(z,y) < r} and V(z,r) := pu(B(z,r)) an
open ball in M and its volume, respectively. We introduce local versions of
volume doubling properties for the metric measure space (M,d,u), whose

original version is in [32].

Definition 1.1.6. (i) We say that (M, d, ) satisfies the volume doubling
property VD(ds) if there exists a constant C,, > 1 such that

V(z, R)
V(z,r)

d2
<, (E) forallz € M and 0 <r < R. (1.1.2)
r

(ii) We say that (M, d, u) satisfies the reverse volume doubling property
RVD(d,) if there exist constants d; > 0, ¢, > 0 such that

R\*"
>c (—) forallz € M and 0 < r < R.
r
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It is obvious that R? satisfies both VD(dy) and RVD(d,). Note that V (x,r) >
0 for every x € M and r > 0 since p has full support on M. Also, under
VD(d,), we have from (1.1.2) that for all z € M and 0 < r < R,

V(z,R) _V(y,d(z,y) + R) d(z,y) + R\
V) S Vi) SC“( r ) |

Notations : Throughout this thesis, the constants C;, «;, 5;, v and ¢;
for i € N, C, ¢z, Cp, Cr, cy, Cy, di, do will retain throughout the sec-
tion, whereas ¢, C, €, n and 6 represent constants having insignificant values

that may be changed from one appearance to another. All these constants

are positive finite. The labeling of the constants ¢y, cs, ... begins anew in
the proof of each result. ¢; = ¢;(a,b,¢,...), i = 0,1,2,..., denote generic
constants depending on a,b,c,.... Recall that we use the notation f =< ¢

if the quotient f/g remains bounded between two positive constants. De-
fine a A b = min{a, b}, a Vb := max{a,b}. Also, for any point = and set
D, define dp(z) = dist(x, D) for the distance between z € D and D¢
For d > 1, let wy = f]Rd 14y<13dy be the volume of d-dimensional ball. Let
[a] :==sup{n € Z :n < a}. In any set S, we define diag := {(z,z) : x € S}.
Let Ry = (0,00) and R} := {z = (21, ...,2,) € R" | 2, > 0} be the upper
half plane.



Chapter 2

Heat kernel estimates for
symmetric Dirichlet form on

metric measure space

In this chapter, we study the transition densities of pure-jump symmetric
Markov processes in R? or a metric measure space (M, d, i) equipped with
volume doubling condition, whose rate function enjoys weak scaling condi-
tion. Under some mild assumptions on rate functions, we can establish sharp
two-sided estimates of the transition densities for such processes.

Recall that if the rate function ¢ of jumping kernel of a symmetric Markov
process X satisfies L(f1,¢,1) and U(fPs, C, 1) for some 0 < f; < fy < 2,
the scale function for such Markov process coincides with the rate function.
On the other hand, in [3, 2, 70], new forms of heat kernel estimates for
symmetric jump Markov processes in Euclidean spaces were obtained without
the condition 3y < 2. In particular, the results in [3, 2, 70] cover Markov
processes with high intensity of small jumps. In this case, unlike [32], the
rate function and the scale function may not be comparable and the heat
kernel estimates are written in a more general form.

This chapter consists of two sections. In the first section we study the

heat kernel estimates in [3], which deals with Euclidean space. In Section
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2.2 we will consider the processes on metric measure spaces. This section is
based on [2]. Heat kernel estimates for Markov processes on metric measure
spaces provide information on not only the behaviour of the corresponding
processes but also intrinsic properties such as walk dimension of underlying
space ([, 6, 48, 68]). The result covers metric measure spaces whose walk
dimension is bigger than 2 such as Sierpinski gasket and Sierpinski carpet
(See Subsection 2.2.6).

2.1 Symmetric jump processes on Euclidean
space

Throughout this subsection, we will assume that ¢ : (0,00) — (0,00) is a

non-decreasing function satisfying L(/1, CL), U(B2, Cy), and

/0 o) ds < o0. (2.1.1)

Denote diag = {(z,z) : € R?}. Assume that J : R? x R?\ diag — [0, c0) is

a symmetric function satisfying

¢! < J(z,y) < ¢
=yl %z —yl) = Y e =yl — )

(2.1.2)

for all (z,y) € R? x R:\diag, with some C' > 1. Note that (2.1.1) combined
with (2.1.2) and L(f;,CL) on # is a natural assumption to ensure that

[ Gt e e (1505 7 505 < e

For u,v € L*(R¢,dx), define

fue) = [ (ule) = u(p)(o() ~ o) o p)dady (214
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and F = {f € L*(R?) : £(f, f) < oo}. By applying the lower scaling assump-
tion L(f1,CL) on 9, (2.1.2) and (2.1.3) to [81, Theorem 2.1] and [82, The-
orem 2.4], we observe that (€, F) is a regular Dirichlet form on L?(R?, dz).
Thus, there is a Hunt process X associated with (£, F), starting from quasi-
everywhere point in R%. Moreover, by (2.1.3) and [69, Theorem 3.1], X is
conservative.

We define our scale function by

2

(I)(T) = PO e
2f0 Ws)ds

In general, the function ® is strictly increasing, and is less than 1 (see
(2.1.10)-(2.1.12) below). However, these two functions may not be compa-
rable unless #; < 2. We remark here that the function ® has been observed
as the correct scale function (see [50, 51, 60, 70, 79]).

Theorem 2.1.1. Let v be a non-decreasing function satisfying L(31,C1) and
U(Bs,Cy). Assume that conditions (2.1.1) and (2.1.2) hold. Then, there is a
conservative Feller process X = (X;,P*,x € Rt > 0) associated with (€, F)
that can starts from every point in R?. Moreover, X has a jointly continuous
transition density function p(t,z,y) on (0,00) x R? x R with the following

estimates: there exist ay,C, 61 > 0 such that

C Ct C _ayle—y|?
p(t,x,y) < A + e ®H®* (2.1.5
(h8:9) = Gy (rx—yrwqx—yn 10y 219

and

C™ Lo yi<no—1 (1) C't
— 1 r—y|>61 P! . (216)
(T R

p(t,z,y)>

Using our scale function ®, we define for a > 0,

2(b)
SUDg<p<s —p s s> a,

H(8) = sup 20) and . (s) =

: (2.1.7)
bss a=2®(a)s, 0<s<a.
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If ® satisfies L,(5,C) with § > 1, then 2 (0) = 0 and ¢ is non-decreasing.
Thus, the generalized inverse £ ~1(t) := inf{s > 0 : #(s) > t} is well
defined on [0, sup,., @)

If  satisfies L(8, C1,) with 6 > 1, % and the generalized inverse H 1
are well-defined and non-decreasing on [0, 00). Some properties of # and

Jo are shown in Subsection 2.1.1.

Theorem 2.1.2. Let 1 be a non-decreasing function satisfying L(B1,CrL)
and U(Bs, Cy). Assume that conditions (2.1.1) and (2.1.2) hold, and ® sat-
isfies Lq(6,Cr) or L4(8,C) for some a > 0 and & > 1. Then, the following
estimates hold:

(1) When ® satisfies Lo(6,CL): For every T > 0, there exist positive con-
stants ¢, = ¢1(T), a, 9, B1, B2, Cr, Cr,Cy) > 1 and ay < ayp, such that for any
(t,z,y) € (0,T) x R? x RY,

_ 1 t 1 _%
Cll(i*%w”(|m—y|dw<rx—yr>+®—l<t>de e )>> .

1 ; R =y
< ta ) < A ( H =t/ Je—y ) .
svibey) <ol g M=y iate =) T o @

Moreover, if ® satisfies L(5,CL), then (2.1.8) holds for all t € (0, 00).

(2) When & satisfies L(5,C1): For every T > 0, there exist positive con-
stants co = co(T, a, 6, By, P, 6,;, CL,Cy) > 1 and a}; < a), such that for any
(t,z,y) € [T,00) x RY x RY,

(1 ! 1 el
o A ( n . %zwt/\x—yn)
2\ t)d " \ |z —yld(lz —y])  P-1(t)
alyle—y|

! ! L e
St CQ<@W e e ”)) -

In particular, if 6 = 2, then H ' (t) <t fort >T.

A non-negative C'*° function ¢ on (0, 00) is called a Bernstein function

10
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if (—1)"¢™(X\) < 0 for every n € N and A > 0. The exponent (r/®~!(¢))?
in (2.1.5) is not comparable to /¢ ~1(t/r) in general (see Lemma 2.1.9 and
Corollary 2.1.26 below). However, the following corollary indicates that we
can replace r/ ¢ ~1(t/r) with a simpler function (r/®~!(t))? if we addition-

ally assume that r +— ®(r~'/2)7! is a Bernstein function.

Corollary 2.1.3. Let 1 be a non-decreasing function satisfying L(B1,Cp)
and U(fy, Cy). Assume that conditions (2.1.1) and (2.1.2) hold, ® satisfies

L.(6,C1) somea >0 and d > 1, andr — ®(r~/2)"1 is a Bernstein function.
Then, for any T > 0, there exist positive constants ¢ > 1 and ay < ay, such
that for all (t,z,y) € (0,T) x R x R?,

lz—y|?

L 1 ; e
C (q)_l(t)d/\ <!~”L’—y!%(lw—y|)+<I>—1(zt)de o )) (2.1.9)

1 ¢ 1 a2l
<p(t,z,y)<c A( + e ¢ “)) :
(h0:8) (cb—l(wd o=yl — ) S

Moreover, if ® satisfies L(6,Cy) with 6 > 1, (2.1.9) holds for all t € (0,00).

2.1.1 Basic properties of scale functions

In this subsection, we will observe some elementary properties of scale func-
tions 1, ® and . This is based on [3, Subsection 2.1 and 2.2]. Since 1 is
non-decreasing and lim, ¢ (r) = 0 by L(S1, CL) for ¥, we have that

2 2

Q(r) = —— <
2IOWS)dS QIOWCZS

= (r). (2.1.10)

Thus, under (2.1.2), we obtain that for any z,y € RY,

- C
=z —ylle(jr —yl)

J(z,y) (2.1.11)

11
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Since (1/®(r)) = %(T) - 7%(” < 0, 7+ ®(r) is strictly increasing. Note that,

since r2/®(r) is increasing in r, we have that for any 0 < r < R,
®(R)/®(r) < (R/r)*. (2.1.12)

The following two lemmas will be used several times. In particular, the second

lemma shows that the scaling index for ® is always in (0, 2].

Lemma 2.1.4. Assume that 1 satisfies L(3,c) and U(B\, C). Then, for any
zeR andr >0, [T (sw(s)) tds =< 1/(r).

Lemma 2.1.5. Leta € (0,00], 0< < 3,0<c<1<C.
(1) If ¢ satisfies Ua(B\, (), then ® satisfies Ua(g/\ 2,0).
(2) If ¢ satisfies (2.1.1) and L,(B,c), then B < 2 and ® satisfies Lq(B,c).

We remark here that the comparability of ¢ and ® is equivalent to that
the index of the weak upper scaling condition is strictly less than 2 (see [16,
Corollaries 2.6.2 and 2,6,4]). Next we establish some basic properties of £
and 75, defined in (2.1.7).

Lemma 2.1.6. If ® satisfies L, (0, 5,;) with 6 > 1 and a € (0,00], then
)/t < A (t) < Co'®(t)/t fort < a, and

C?(t)s) ' < (1)) H (s) < Col't)s, for s<t<a (21.13)
Lemma 2.1.7. (1) For any t > 0, ®,(t) < ®(t) and for t > ¢ > 0, y(t) >

((c/a)> A V)B(t). (2) For 0 < s < t, ®(t)/Pa(s) < t2/s2. (8) Suppose ®
satisfies L2(5,C1) with some § < 2. Then, ®, satisfies L(5,Cy).

Lemma 2.1.8. Let a € (0,00). If & satisfies L2(5,C) with § > 1, then
D, (1) [t < Hooalt) < Ci'®,(t)/t fort >0, and

C? (1)) < Hat)) Hooa(s) < Cilt)s, for t>s>0. (2.1.14)

12
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Moreover, for any c; > 0, there exists co = ca(cy,a, 0, 5L) > 1 such that for

any t > cq,

eyt sup ®(b)/b < Hioalt) < ¢y sup ®(b)/b.

c1<b<t c1<b<t

We also have some inequalities between ®~! and # !, and between ®~!
and 7.

Lemma 2.1.9. (1) Suppose ® satisfies Lo(5,Cp) with§ > 1 and for some a >
0. For any T > 0 and b > 0 there exists a constant ¢; = ¢1(b, 6’,;, a,0,T) >0
such that

t
bd—1(t)

() < ert ( ) forall t € (0,7), (2.1.15)

and there exists a constant co = c3(a, 5,;, 0, T) > 1 such that for every t,r > 0
satisfying t < ®(r) AT,

(r/® () < 7/ M (t)r) < eo (r)@ (1) (2.1.16)

Moreover, if a = oo, then (2.1.15) and (2.1.16) hold with T = oo. In other
words, (2.1.15) holds for all t < oo and (2.1.16) holds fort < ®(r).

(2) Suppose ® satisfies L(5,Cr) with 6 > 1. For any T > 0 and b > 0 there
exists a constant cz = c3(T, b, Cr, 0) > 1 such that fort > T,

O (t) < ezt (bq)tl(t)),

and for any T > 0 there exists a constant cy = c4(a, 5,;,5, T) > 1 such that
for every t,r > 0 satisfying T <t < &(r),

& (r/®7N 1)) < r) ATt r) < e (r/@TN @)Y (2.117)

13
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2.1.2 Near-diagonal estimates and preliminary upper

bound

Here we will prove (weak) Poincaré inequality with respect to our jumping
kernel J.

Lemma 2.1.10. For r > 0, let g : (0,7] — R be a continuous and non-
increasing function satisfying [; sg(s)ds > 0 and h : [0,r] = [0,00) be a
subadditive measurable function with h(0) = 0, i.e., h(s1)+h(s2) > h(s1+s2),
for 0 < sy,80 <71 with s;+ sy <r. Then, fOT h(s)g(s)ds > 0.

By applying the above lemma, we have the following (weak) Poincaré

inequality.

Proposition 2.1.11. There exists C > 0 such that for every bounded and

measurable function f, xo € R and r > 0,

C , 2
B(r) /B (f(y) — f(x))*dedy < /B(f(y) — f(2))*J (z, y)dzdy2.1.18)

(zo,r)x B(zo,r) (z0,3r)x B(z0,3)

Proof. Denote B(r) := B(xo,r). For 0 < s < 2r, let

d/ . 8)/|z B flz+2) — f(2)) o(dz)da,

where o is surface measure of the ball. We observe that the left hand side of
(2.1.18) is bounded above by

rdq) /)/ /| flx+2) = f(2)) o (dz)dsdx

J 1 2r
< qu)( )/o h(s)s%ds < @(27“)/0 h(s)ds,

where the last inequality follows from (2.1.12). On the other hand, the right
hand side of (2.1.18) is bounded below by

2r 1
% oy oy 0+~ F 0 gt = s [ 800 s

14
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Let g(s) = o) q)(lr). Then, g¢(s) is continuous, non-increasing and
fo sg(s)ds = fo w(ss

B (f(z + s€) — f(x))’
h(s) _/§|—1/ - . dxo(d§)

(f(x+56) — flx+596))"  (fla+ s28) — ()
= /§| 1/ 3r—s) S "

1 52

S9 > 0 with s; + s9 1= 5 < 27,

dxo(d§)

S1

(f(z + 91€) — f(2))?
< /5 y / o dz0(d) + h(s2) < h(s1) + h(s:),

where the first inequality follows from M S - —i— bz . Thus, the functions

g and h satisfy the assertions of Lemma 2.1.10. Therefore, by Lemma 2.1.10
we have [ h(s @%T)ds N h(s)@ds, which implies (2.1.18). O

Using Proposition 2.1.11 and

Corollary 2.1.12. There exists a constant C' > 0 such that for any bounded
feFandr >0,

1 2
ﬁ/Rd /BW (f(x) = f(y)) dydz < CO(r)E(f, f). (2.1.19)

Proof. Fix r > 0 and let {z,}.en be a countable set in R satisfying
UnZ i B(@g,r) = R? and sup,cga [{n : y € B(x,,6r)}| < M. Then by , the
left hand side of (2.1.19) is bounded above by

L VY
Z rd /B(mn 2r)xB(xn,2r)(f($) fy)) dydz

< c12<b )/ (F() = F(0))% ()

(2n,61) X B(xn,61)

< et MO(r / / (f(z) — f()* T (2, y)dydx < c;MO(r)E(S, f).
R J B(z,12r)

This finishes the proof. O

Using (2.1.12) and (2.1.19) and following [31, Section 3], we obtain Nash’s

15
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inequality for (£, F) and the near-diagonal upper bound of p(¢, z,y) in terms
of ®.

Theorem 2.1.13. There is a positive constant ¢ > 0 such that for every
u € F with ||jull; = 1, we have 9(||ul|2) < c&(u,u) where I(r) :=r/®(r~1/%).

Recall that X is the Hunt process corresponding to our Dirichlet form
(€, F) defined in (2.1.4) with jumping kernel J satisfying (2.1.2). By us-
ing our Nash’s inequality Theorem (2.1.13) and [9, Theorem 3.1], X has a
density function p(¢, z,y) with respect to Lebesgue measure, which is quasi-

continuous, and that the upper bound estimate holds quasi-everywhere.

Lemma 2.1.14. There is a properly exceptional set N of X, a positive sym-
metric kernel p(t, z,y) defined on (0,00) x (RT\ N') x (RY\ N), and positive
constants C depending on C in (2.1.2) and B, Cy, such that E*[f(X;)] =
Jpap(t 2, y) f(y)dy, and p(t,z,y) < CP~H(t)™ for every x,y € R\ N and
for every t > 0. Moreover, for everyt >0, and y € RI\N, x — p(t,x,y) is

quasi-continuous on R,

Moreover, following the proof of [31, Theorem 3.2] with the above Nash-

type inequality we obtain

Theorem 2.1.15. There exists a constant C' > 0 such that for any t > 0
and z,y € R\ N,

1 ;
plt,,y) < C((I)—l(t)d ¥ TrE y|d>. (2.1.20)

The upper bound in Theorem 2.1.15 may not be sharp. However, using
the main results in [32, 33], there are several important consequences which
are induced from (2.1.20).

Lemma 2.1.16. There exists a constant C > 0 such that IPI(TB(M) <t) <
Ct/®(r) for anyr >0 and x € R\ N

Again, by [33, Theorem 1.19] we have the interior near-diagonal lower

bound of pP(t,z,y) (and parabolic Harnack inequality).

16
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Lemma 2.1.17. There exist ¢ € (0,1) and ¢; > 0 such that for any xq € R?,
r>0,0<t<®er) and B = B(xg,r), pP(t,z,y) > c1® ()~ for all
z,y € B(zg,e®7(1)).

Lemma 2.1.18. For any r > 0 and x € R, E*[1p5(, ] < ®(r).

2.1.3 Off-diagonal estimates

Recall that for p > 0, (€7, F) is p-truncated Dirichlet form of (€, F). Also,
the Hunt process associated with (€7, F) is denoted by X*, and p”(t,x,y) is
the transition density function of X7.

For any open set D C R? let {PP} and {Q””} be the semigroups of
(€, Fp) and (E°, Fp), respectively. We write {QF ’Rd} as {QV} for simplicity.

We also use 77, to denote the first exit time of the process {X/} in D.

Lemma 2.1.19 ([32, Lemma 5.2]). There exist constants ¢, Cy,Cy > 0 such
that for any t,p >0 and x,y € R,

t —
Pt x,y) < c([)’l(t)’d exp <Clq)(P> — Oy |z P y|>

Proof. Note that by Lemma 2.1.5, ® satisfies U(B2A2, Cyy) and L(By,Cr). By
Theorem 2.1.14, (2.1.11), and Lemma 2.1.18, the assumptions of [32, Lemma
5.2] are satisfied. Thus, the lemma follows. i

Also, from (2.1.2) we obtain the relation between p'?) (¢, z,y) and p(t, z,y)

Lemma 2.1.20. ([11, Lemma 3.1] There exists a constant ¢ > 0 such that
for any t,p >0 and z,y € RY,

n ct
|z — | (lz —yl)

p(t,z,y) < pP(t, z,y)

The following lemma is a key to obtain upper bound of transition density

function and will be used in several times.
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Lemma 2.1.21. Let f: R, x Ry — R, be a measurable function satisfying
that t — f(r,t) is non-increasing for all v > 0 and that r — f(r,t) is non-
decreasing for all t > 0. Fiz T € (0,00]. Suppose that the following hold: (i)
For each b > 0, sup,cp f(b®7'(t), ) < 0o (resp., supyp f(bPT(t), 1) < 00);
(i) there exist n € (0, 1], a3 > 0 and ¢; > 0 such that

PP (| Xy — 2| >r) <ci(@ ' () /r)" + crexp (— ar f(r, 1)) (2.1.21)

for all t € (0,T) (resp. t € [T,00)) and r > 0, x € R%

Then, there exist constants k,c > 0 such that

< ct
= e —yl%(|r —yl)

plt, ) e® (1) exp (— arkf(le — yl/(16k),1))

for all t € (0,T) (resp. t € [T,0)) and z,y € RY,

Proof. Since the proofs for the case t € (0,7) and the case t € [T, 00)
are similar, we only prove for ¢t € (0,7). For zy € RY, let B(r) = B(xg, 7).
By the strong Markov property, (2.1.21), and the fact that ¢t — f(r,t) is
non-increasing, we have that for © € B(r/4) and t € (0,7/2),

]P]I(TB(T) S t) S Px(XQt & B(?”/Q)C) + ]P)m(TB(r) S t,th c B(T’/Q))
< P*(Xy € B(z,r/4)°)+ sup P*( Xy € B(z,r/4))

z€B(r)c,s<t

< (4 H(2t)/4)" + crexp (— ar f(r/4,2t)).

From this and Lemma 1.1.4, we have that for x € B(r/4) and t € (0,7/2),

1= PPLp(e) = P(rs < 1) < (M> +evexp(— anf(r/a,20).

,
(2.1.22)
By [47, Proposition 4.6] and Lemma 2.1.4, letting p = r we have
T T t
PP () — Q7 )1B(r)<x>‘ < 2t esssup / J(zy)dy < .
z€R?  J B(z,r)¢ ¢(T)

18
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Combining this with (2.1.22), we see that for all z € B(r/4) and t € (0,7/2),

P*(7hy < 1) = 1= Q77 Lpg(2) < 1= PPV 1pp(2) + JE:)
< (7 (8)/r)" + crexp (—arf(r/4,2t)) + es(t/1(r) =t ¢u1(r,-1.23)

Applying [32, Lemma 7.11] with r = p to (2.1.23), we see that for t € (0,77/2),
/ P (t, 2, y)dy = Q) 1p(wanre(x) < d1(r,t)". (2.1.24)
B(xz,2kr)°

Let k = [(Ba+d)/n]. For t € (0,T) and x,y € R satisfying 4k®~1(t) >
|z — y|, by using that r — f(r,t) is non-decreasing and the assumption (i),
we have f(|x — y|/(16k),t) < f(®71(t)/4,t) < M < oo. Thus, by Theorem
2.1.14,

p(t,z,y) < cpe™MP (1) exp ( —arkf(]x — y]/(16k),t)>. (2.1.25)

For the remainder of the proof, assume t € (0,7) and 4k®~1(t) < |z —y],
and let r = |z —y| and p = r/(4k). By (2.1.24) and Lemmas 1.1.4, 2.1.5 and
2.1.19, we have

Pt ) = / P12, 2, )P ()2, 2 y)d=
Rd

(/ +/ )pp(t/2,w, 2)pF(t)2,y,2)dz  (2.1.26)
B(z,r/2)¢ B(y,r/2)¢
< (SUP pp(t/Z,z,y)> / pP(t)2, 2, 2)dz

z€R4 B(z,2kp)°

IN

4 (suppp(t/Q,x,z)>/B ()2, y, 2)d

z€R? (y,2kp)°

< cs®7 ) " py(p, t/2)".

Note that kB8; > kn > By + d, and p > ®~1(¢) > ~(¢). Thus, by L(51,C1)
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on ¢ and using Lemmas 1.1.4 and 2.1.5,

rd ®=1(t)
Ce _ 1 B2 crt
< T ONTEET < G
Applying this to (2.1.26) we have
1
Pitay) < e (074 p(t))”’“ (- aki/an) + (5)")
< rdszr) @ (1) exp ( — arkf(r/(168).1)).
Thus, by Lemma 2.1.20 and U (5, Cyy) on ¥, we have
pt,z,y) < p°(t,z,y) + pf;—o(tp) (2.1.27)
c11t -
< o=y ()~ exp ( — arkf(r/(16k), t)).
Now the lemma follows immediately from (2.1.25) and (2.1.27). O

The following inequality will be used several times in the proofs of this
section: For any ¢y > 0 and « € (0,1), there exists ¢; = ¢1(cp, ) > 0 such
that 2n < ;—32”(1*“) + ¢; holds for every n > 0. Thus, for any n > 0 and
k> 1,

24 exp(—ce2"1 k) < 27 exp(2nd — 2"V k)
e ot . P o (2.1.28)
< 127 exp (52”( —@) _ 2! _O‘)/{) < e exp(—Em).

Recall that, without loss of generality, whenever ® satisfies the weak lower
scaling property at infinity with index 6 > 1, we have assumed that ¢ satisfies
L'(6,C}) instead of L(8,C).

We are now ready to prove the sharp upper bound of p(¢, z,y), which is
the most delicate part of [3]. Since the proof of Theorem 2.1.1 is easier, we

only provide the proof of the upper bound of Theorem 2.1.2 in this thesis.
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Theorem 2.1.22. (1) Assume that ® satisfies Lq(0, C1) with § > 1. Then
for any T > 0, there exist constants ay > 0 and ¢ > 0 such that for every
r,y €ERY and t < T,

ct ¢ __ aylr —y|
) € = e o e —ap) 21

Moreover, if ® satisfies L(5,Cy), then (2.1.29) holds for all t < co.
(2) Assume that ® satisfies L'(5,Cp) with 6 > 1. Then for any T > 0, there
exist constants ay; > 0 and ¢ > 0 such that for every x,y € R and t > T,

dt d ay |z —y|
t,xr,y) < + exp | — .
o) < s+ i o (- )

Proof. Take 0 = -2:0-U_ 4nq 50 = ( 20 )1/(671), where C] and Cy are

26d+6531+B1 C2C2
constants in Lemma 2.1.19. Without loss of generality, we may and do assume
that 50 > 1. Note that 6 satisfies %% = % and 6 < 6 — 1. Let

a€ (d/(d+ pr),1).
(1) Again we will show that there exist a; > 0 and ¢; > 0 such that for
any t < T and r > 0,

_ ar
pt,z,y)dy < (@) /r) P+ eexp( — ———). (2.1.30)
[, pemiise e (= 7 7m)
When r < 5()(1)*1@) using (2.1.15) we have for ¢t <T
,
pt,z,y)dy <1 <eZexp| — ———). (2.1.31)
/;(:z:,'r)C ( v 1<t/7")>

The proof of case r > 60‘1)1;1—?;);9 is exactly same as the corresponding part

in the proof of (2.1.5) in Theorem 2.1.1.

Now consider the case Co® 1(t) < r < Co® 1(t)'*0/y~1(¢)?. In this
case, there exists 6y € (0,6] such that r = Co®~L(£)*% /1y~ 1(t)%. Define
p = "t/r) and p, = Co2"p for integer n > 0. Note that for ¢ < T and
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Co®~'(t) < r, we have t < T A ®(r). Thus, by (2.1.16)
p < po=Cop < Co® ' ()2 /r < Co® (T () /r < & H(T)(2.1.32)

By Lemma 1.1.3, we may assume that ®~*(7") < a. Thus, by (2.1.32), Lemma
2.1.6, the condition L, (0, 5L) on @, and the definition of Cy, we have
LT o )t Gt
D (pn) Pn (po) ®(p) C, p
_Cor <6001 O(p) 2,1(1_&)> < Cor <65—5~01
C’op C,C, ®(po) T Cop N (2

_ g(_ _ 2n(1—a)> < _632n(1—a)f
Cop 2 B P

Ci—/=

- 2”<1—a>> (2.1.33)

Combining (2.1.33) and 2.1.19, we have that

o0

/ p(t, z,y)dy < Z/ p(t, z,y)dy
B(z,r)c n—=0 * B(z,2" 1)\ B(z,2"r)

d 2% \d on(l—a). 2%
<3 () e (o) re X (5) g =
n=0

We first estimate I;. Note that by (2.1.16), r/p > (r/®7(t))* > ég Using
this, (2.1.16), and (2.1.28) we have

I < ¢ 3 (r/p) 22" exp(—es2 "1 /p) < crexp (= 2 %esr/p)
n=0

We next estimate I5. By using (2.1.16), r = Co®~1(£)11% /=2 (t)%, ¢p~L(t) <
®~1(t), and 0y < 0 < § — 1, we have

>~(t) rNYOD ey (RTHE) N /0D -1 @7H(E)
< = < —_—
csp ((ID—l(t)> Co (1/1—1(25)) = Co Yt

~—

Thus, we have p,, > p > 051551/(6_1%_1(75). Using this, L(;, Cy) condition
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on v, and (2.1.16),

Iy < ¢y <£)d+61 (M)Bl < ¢ <w>_5f1(d+61)<w)51.

T r

= Since 1(t) < L(t) < r = Co® ()% /= 1(t)% and 6, < 0, using
S(d+81) 0 2 weh

0—1 1406

ave

(‘Pl(t))—a“l(dwl) < GO /(-1) (@Dl(t))—ﬁl/?

T 0 T

which implies I, < ¢;(1p~1(t)/r)?/2. Using estimates of I; and I, and com-
bining (2.1.31) and Lemma 2.1.21 we obtain (2.1.30).

Let f(r,t) := %+(t/r) Then, by (2.1.32) and Lemma 2.1.9, we see that
f(r,t) satisfies the condition in Lemma 2.1.21. Thus, by Lemma 2.1.21, we
obtain

Clgt 1 —d 013|l’ - y|
p(t,z,y) < @ (1) exp(— = )
|z — yl“Y(lz — yl) H et/ |x —yl)

Since |z —y| > Co®L(t) > cy5t/® > 15T/, we can apply (2.1.13) and
get " egt/|r — y|) < cor 7t/ |z — y|). We have proved the first claim
of the theorem.

(2) The proof of the second claim is similar to the proof of the first claim.
We skip the proof.

Combining Theorems 2.1.14 and 2.1.22 and Lemma 2.1.9, we get the
desired upper bounds of p(t, z,y). O

We now prove the lower bound in (2.1.6).

Proposition 2.1.23. There ezist constants 6; € (0,1/2) and C5 > 0 such
that

L{jz—y|<s0-1(1)} Cit
O=1(t) |z =yl (jx —y)

p(t,%y)ZC:a 1{\x—y\261<1>*1(t£]2-1'34)

Proof. Let 0, = £/2 < 1/2 where ¢ is the constant in Lemma 2.1.17. Then
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by Lemma 2.1.17, for all |z — y| < §;®7(1),
p(t,z,y) > pPEe 0/ (t,z,y) > cg® ' (t) ™4 (2.1.35)

Thus, we have (2.1.34) when |z — y| < 6;971(¢).

By Lemma 2.1.16 we have P*(7p(y,) < t) < ¢1t/®(r) for any r > 0 and
x € R Let 6, := (C1/2)Y/516;, € (0,6;) so that §;071((1 — b)t) > 5@ (t)
holds for all b € (0,1/2]. Then choose A < ¢;'C;*(265/3)%2/2 < 1/2 small
enough so that ¢ \/®(20,®71(t)/3) < AeiCp(265/3)7%2 < 1/2. Thus we
have A € (0,1/2) and 2 € (0,9;) (independent of ¢) such that

51P7H((1 = N\)t) > 6.@7(t), forallt>0 (2.1.36)
and
P (Tp(wase-1(ty/3) < At) < 1/2, forall ¢ >0 and z € R (2.1.37)

For the remainder of the proof we assume that |z — y| > §;®71(¢). Since,
using (2.1.35) and (2.1.36),

Dty y) > / POz, 2)p((1 — N, 2, y)d=
B(y,01 271 ((1-M)t))

> ot (- Vs [ p(M,z, 2)dz

2€B(y,0: 21 ((1-A)t)) B(y,01®~1((1=\)t))

> @' (1) P (Xn € Bly, 627 (1))),

it suffices to prove

td~1(t)d

]P)I(X)\t c B<y7(52q)7 (t))) Z C2|[E — y|d¢(|x — y|)

(2.1.38)

Using the strong Markov property, Lévy system, the lower bound of
J(z,y), (2.1.2), and (2.1.37), the proof of (2.1.38) is standard. (See [32,

Proposition 5.4(ii)].) We omit the details. 0
By using the properties of J# and %, we give the lower bound of
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p(t,x,y) under L,(9, 5L) or L(8,Cr) on ® with § > 1. See [89, Lemmas

3.1-3.2] for similar bound for Lévy processes.

Proposition 2.1.24. Suppose ® satisfies L, (9, éL) with § > 1 and for some
a > 0. For T > 0 there exist C > 0 and ay, > 0 such that for any t <T and
z,y € RY,

p(t,x,y) > CO(t) Texp <_aL,%/—1|(xtﬂxy|— y|)> : (2.1.39)

Moreover, if a = 0o, then (2.1.39) holds for all t < oo.

Proof. Let r = |z —y|. By Proposition 2.1.23 and Lemma 1.1.3, without loss
of generality, we assume that §;®71(t) < r and a > 6, (T) where §; is
the constants in Proposition 2.1.23. Let k = [3ré; '/ ~*(376:¢/r)]. Note
that by (2.1.16), 1 (t/r) < &~ 1(t)?/r < 6,971(t) < 6;97(T) < a. Thus
by (2.1.13) we have #~1(t/r) < C71(3/6,).¢ (37161t /r). Since 3716t /r <
37161®(r/01)/r < 371 (r/d1), we see that ' (37161¢/r) < 5, hence

4r 12C; '

< k< < .
SRS S B et S A ()

(2.1.40)

On the other hand, by Lemma 2.1.6 and our choice of & we have

3r 51/6 3r (5125
Pl — ) — < _— < —.
(51k) r = i (511{:) —or

Thus, we obtain J < %“I)_l(t/k). Let z; = x + é(y —x),l=0,1,--+ Jk—1.
For § € B(z, 207 (1)) and {1 € B(zi1, 2@7'(1)), & — & < 1§ —
21 4+ 12 — 21| + |z — &o1| < 861971(¢/k). Thus by Proposition 2.1.23,

p(5:&-1,&) > Cs®~1(t/k)~? Using the semigroup property and (2.1.40), we
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get
p(t,2,y)
2/ . t / ) t (5w, &) (5, &1, y)dEy - - - dEgy
B(zp-1,5271(3) B(z1,5271(%)
kF—1/t —dkkil 31 t k t\—dk 01 —1/t dggjl)[ll)
> G507 (3) ‘B(Zl,gq’ %) ‘—020:@ (%) (g‘b (E)>
=1
> (801 kcb*l(t)*d > @1 (1) e Ok > & (1) e
= 2 3d = 2 = L2 :

This finishes the proof. Here we record that the constant Cy in (2.1.41) de-
pends only on d and constants d;, C3 in (2.1.34). O

Next one is infinite version of lower heat kernel estimates. Since the proof

is similar, we skip it.

Proposition 2.1.25. Suppose ® satisfies L'(9, 6L) with 6 > 1. For any
T > 0 and 0 > 0 satisfying % + 0(% — é)
ay > 0 such that for (t,z,y) € [T,00) x R x R? satisfying 5;®~1(t) <

| =yl < 1@ ()P,

< 1, there exist ¢1, co > 0 and

p(t,z,y) > c® (1) exp( aL%/ |<xtﬂj|_ y|))’

where 01 is the constant in Proposition 2.1.23.

Proof of Theorem 2.1.2. The both upper bounds of p(¢, z,y) in Theorem
2.1.2 follows from Theorems 2.1.14 and 2.1.22 and Lemma 2.1.9. The lower
bound in (2.1.8) is a direct consequence of Propositions 2.1.23 and 2.1.24.
By Propositions 2.1.23 and 2.1.25, to complete the proof of Theorem 2.1.2,
it is enough to show that for t > T and (c;®~1(¢)1*? /v~ 1 (#)?) v, 071 (t) < 7,

p(t,x,y)ZC’CI)_l(t)_dexp< S T(t/r)) (2.1.42)

where ¢; and @ are the constants in Proposition 2.1.25.
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By Proposition 2.1.23 we have that,

2

e )

Cgt

()

p(t,z,y) >

By (2.1.14) and Lemma 1.1.4, J¢,, satisfies L( — 1,6’;2/(5_1)). Using this
property and (2.1.17) (note that r > §;®71(¢) and T' < t), we get

(5f_”")2<c o,
o-1(t)) ~ orgi(antfr) =

G2/(6=05=8/6-1),
H M (/)

Thus, (2.1.42) holds. O

Proof of Corollary 2.1.3. Since the upper bound is a direct consequence
of Theorem 2.1.1, we show the lower bound in (2.1.9). Let r = |z — y| and
d(s) = ®(s/2)71. Since ® satisfies Lo(8,CL), ¢ satisfies LY (6/2,Cy).
Let Z be a subordinate Brownian motion whose Laplace exponent is ¢ and
pZ(t,|z — w|) be its transition density. Then, by [70, Proposition 3.5] and
Theorem 2.1.2 |, for any T > 0, there exist positive constants ay, ay, ¢; and
co such that for all (t,z,y) € (0,T) x R? x R?,

oven (<505 < g <o o (- ) Sy

Let a;, > ay be a constant in Theorem 2.1.2 and A := ay/ay > 1. Then, for
all t € (0,7) s > 0,

ap A%s? A td-1(¢)d
c1 exp (—u) < ¢y exp (— s ) + (CQ ®)

O-1(¢)2 A (L) As) As)dp(As)
ars cst®1(t)4
< S T VA
=20 ( %1<t/s>> ()
Thus, by Theorem 2.1.2, we obtain the desired results. O
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2.1.4 Examples

In this section, we will use the notation f(-) ~ g(-) at oo (resp. 0) if % —1
as t — oo (resp. t — 0). We denote R (resp. RY) by the class of slowly
varying functions at oo (resp. 0). For £ € R, we denote I13° (resp. I19) by
the class of real-valued measurable function f on [c,00) (resp. (0,c¢)) such
that for all A > 0, f(\) — f(-) = log M(-) at oo (resp. 0) I13° (resp. I19) is
called de Haan class at oo (resp. 0) determined by ¢.

For { € Ry (resp. RY), we say 4 is de Bruijn conjugate of ¢ if both
C(t)0u(tl(t)) ~ 1 and L4 (t)0(tly(t)) ~ 1 at co (resp. 0). Note that |f| € R
if f eI (see [16, Theorem 3.7.4]).

In the following corollary and examples a; = a; 1 or a; = a;y depending

on whether we consider lower or upper bound.

Corollary 2.1.26. Let T € (0,00) and 1) be a non-decreasing function that
satisfies L(B1,Cr) and U(Bs, Cy).

(1) Let £ € RY be such that fol s < 0o and f(s) == [; Lt € 1Y satisfies
f(sf7(s)) ~ f(s) at 0 for v = 1/2,1. Suppose that (s) < % for s < 1.
Then fort < T,

1 t 1 __ajle—y|?
#t.5:0)= gy (st = * e )

Furthermore, if f(s?) < f(s) for s <1, then fort <T,

0= g (== )
POBD= @) ™ \Je =yl — o)) (tf ()72 '

(2) Assume that { € R satisfies [~ @dt = 0.
Suppose that ¢(s) < % for s > 1 and f € 11 satisfies f(sf7(s)) =~ f(s)
at oo forv=1/2,1. Then fort > T,

_ ag|r—1 2
1 A<mm o, 1 —ﬁ%%).

P29 = Gy e =i+ e
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Furthermore, if f(s*) =< f(s) for s > 1, then fort > T,

_ 1 tl(lz —yl) 1 gl
pltxy) = Grptyyar <|x o eyt > |

Proof. Let r = |z — y| and é; > 0 be the constant in Proposition 2.1.23.
(1) By [16, Corollary 2.3.4], (f7)x ~ 1/f7 at 0. Thus, using [16, Theorem
3.6.8], we have for s < T,

D(s) = —, O7Y(s) = sV, T (s) =< sf(s).

Therefore, by Theorem 2.1.2(1) and Theorem 2.1.1, we obtain the first claim
and the upper bound in the second claim.

For the lower bound in the second claim, choose small # > 0 such that
%4—9(%—%) =:¢; < 1. Note that f(s) < f(s?) for s < 1 implies f(s*) < f(s)
for all b > 0 since f is non-decreasing. Since the last term in the heat kernel
estimates dominate other terms only in the case §; P71 (t) < r < (51¢;(1—t(););€,
it suffices to show f(t/r) > cf(t) for this case. Using (2.1.12) and L(/,CL)
for ¢ we have ®~1(t)/yp~1(t) < c1t? 71 for t < T. Thus we have f(t/r) >
fleat?™1) < f(t) for every t < T and 6,9 (t) <r < 51%.

(2) Similarly, (f7)x ~ 1/f7 at oo by [16, Corollary 2.3.4]. Thus, using
[16, (1.5.8), Theorem 3.7.3], we have that for s > T,

O(s) = s°/f(s), @ H(s) = sAFR(sYR), SN (s) = sf(s).

Note that (r) < % when r > §;®71(¢) since r > 5;971(t) > 597 1(T).

Since the second term in the heat kernel estimates dominate only in the case
r > §;®71(t), the first claim and upper bound in the second one follow from
Theorem 2.1.2(2) and Theorem 2.1.1.

Now choose small 6’ > 0 such that § +6'(5 — ﬁiz) =: g9 < 1. Without loss

of generality we can assume that f is non-decreasing since f(s) < fls @dt.

Now f(s) < f(s?) for s > 1 implies f(s°) < f(s) for all b > 0. Similarly, using

L(5,C1) for ® and U(fs, Cyy) for ¢ we have z:—igg < c3t%_% so f(t/r) >
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fleat?™2) < f(t) for every t > T and r < 51%. This finishes the proof.
U

2.2 Symmetric jump processes on MMS

In this section, we will deal with several different types of heat kernel esti-
mates on metric measure space so we consider different assumptions in each
case to obtain our results. First, under the assumption that the lower scaling
index of the scale function is strictly bigger than 1, we establish an upper
bound of heat kernel and its stability which generalize Theorem 2.1.22. As in
Section 2.1, the scale function is less than the rate function. Since M may not
satisfy chain condition in general, upper bounds and lower bounds in a gen-
eralized version of Theorem 2.1.2 may have different forms. To obtain sharp
two-sided estimates, we further assume that metric measure space satisfies
chain condition. Under the same assumption on the scale function and the
chain condition, in Theorems 2.2.11, 2.2.14 and 2.2.15 we establish a sharp
heat kernel estimates and their stability.

For the extension of heat kernel estimates in Section 2.1 and the corre-
sponding stability result, we assume that underlying space admits conser-
vative diffusion process whose transition density has a general sub-Gaussian
bounds in terms of an increasing function F' (see Definition 2.2.2). The func-
tion F' serves as a generalization of walk dimension for underlying space.
Note that in Theorem 2.1.1, (d(z,y)/® '(¢))* appears in the exponential
term of the off-diagonal part and the order 2 is the walk dimension of Eu-
clidean space. It is shown in [48] that the general sub-Gaussian bounds for
diffusion is equivalent to the conjunction of elliptic Harnack inequality and
estimates of mean exit time for diffusion process if volume double property
holds a priori. Diffusion processes on Sierpinski gasket and generalized Sier-
pinski carpets satisfy our assumption ([6, 13]). See also [8, 10, 43, 71, 78] for
studies on stability of (sub-)Gaussian type heat kernel estimates for diffusion

processes on metric measure spaces. Under the general sub-Gaussian bound
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assumption on diffusion with F', we can define scale function explicitly by
using the rate function and F' (see (2.2.18)). It is worth mentioning that we
do not assume neither that the chain condition nor the lower scaling index of
the scale function being strictly bigger than 1 in Theorem 2.2.17. Note that,
GHK(®,1) in Theorem 2.2.17 is not sharp in general. Without the chain
condition, even the transition density of diffusion may not have the sharp
two-sided bounds. However, if the upper scaling index 5 of the rate function
is strictly less than the walk dimension, our heat kernel estimates GHK(®, )
is equivalent to (1.0.3).

2.2.1 Settings and Main results

Recall that (M,d) be a locally compact separable metric space, and p be a
positive Radon measure on M with full support and pu(M) = oo. We also
assume that every ball in (M, d) is relatively compact. Note that V(z,r) > 0
for every x € M and r > 0 since p has full support on M. It is easy to see
that under VD(dz), we have

V(z, R)
V(y,r)

<

Viyd@y +R) (M)” (2.2.1)

Viy,r) r

for all z € M and 0 < r < R. We introduce several conditions on metric

measure space to establish stabilities of heat kernel estimates.

Definition 2.2.1. We say that a metric space (M,d) satisfies the chain
condition Ch(A) if there exists a constant A > 1 such that, for any n € N and
x,y € M, there is a sequence {z; }7_, of points in M such that zp =z, 2z, =y

and
d(x,y)

n

d(zp—1,2,) < A

forall k=1,...,n.

Definition 2.2.2. For a strictly increasing function F' : (0,00) — (0, 00),
we say that a metric measure space (M, d, ) satisfies the condition Diff (F')
if there exists a conservative symmetric diffusion process Z = (Z;)i>o on M

such that the transition density q(¢,x,y) of Z with respect to u exists and it
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satisfies the following estimates: there exist constants ¢ > 0 and ag > 1 such

that for all ¢ > 0 and z,y € M,

c ! cexp (— agFy(d(z, y),t)
Ve Fiq) Sresn q(t,z,y) < (V(xf)pll(t)) )(2.2.2)

where the function F} is defined as

r t
Fi(r,t) := - — . 2.2.3
1(r,t) = sup [S F(S)] (2.2.3)

Throughout this subsection, we will assume that ¢ : [0,00) — [0, 00)
is a non-decreasing function satisfying L(f;,Cy) and U(fs, Cy) for some
0 < 1 < fBo. Note that 1(0) = 0 by Lemma 1.1.2. We also assume that there
exists a regular Dirichlet form (€, F) on L*(M, ), which is given by

E(u,v) = /M i (u(z) = u(y))(v(z) = v(y))J (=, y)p(dr)u(dy]2.2.4)

for u,v € F, where J is a symmetric and positive Borel measurable function
on M x M \ diag. In terms of Beurling-deny formula in [41, Theorem 3.2],

the above Dirichlet form has jump part only.

Definition 2.2.3. We say J, holds if there exists a constant C' > 1 so that
for every x,y € M,

¢ < J(z,y) < ¢ :
Vi, dz, y))(dz,y)) = 77 = Viz,d(z,y))¢(d(z,y))

(2.2.5)

We say that Jy < (resp. Jy>) if the upper bound (resp. lower bound) in
(2.2.5) holds.

Associated with the regular Dirichlet form (£, F) on L*(M;u) is a u-
symmetric Hunt process X = {X;,t > 0;P*, 2z € M \ N'}. Here N is a
properly exceptional set for (£, F) in the sense that u(N) = 0 and P*(X; €
N for some ¢t > 0) = 0 for all z € M \ M. This Hunt process is unique up to
a properly exceptional set (see [41, Theorem 4.2.8].) We fix X and N, and
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write My = M\ N.
For a set A C M and process X, define the exit time 74 = inf{t > 0 :
Xy € A Let F/:i={u+b:ue F,be R}

Definition 2.2.4. Let U C M be an open set, A be any Borel subset of
U and k > 1 be a real number. A s-cutoff function of pair (A4,U) is any
function ¢ € F such that 0 < ¢ < k p-ae. in M, p > 1 p-ae. in A and
v =0 p-a.e. in U¢. We denote by k-cutoff(A, U) the collection of all k-cutoff
function of pair (A4, U). Any 1-cutoff function will be simply referred to as a

cutoff function.

Definition 2.2.5 (c.f. [45, Definition 1.11]). For a non-negative function ¢,
we say that Geap(¢) holds if there exist constants k > 1 and C' > 0 such
that for any v € F' N L*> and for all o € M and R,r > 0, there exists a
function ¢ € k-cutoff(B(xg, R), B(xg, R+ r)) such that

C
E(uPp, @) < —/ udp.
( ) (b(T) B(zo,R+r)

Definition 2.2.6. For a non-negative function ¢, we say that E4 holds if

there is a constant ¢ > 1 such that
c'o(r) <E*[rpn) < co(r) for all x € My, r > 0.

We say that Es < (resp. E,>) holds if the upper bound (resp. lower bound)

in the inequality above holds.

Remark 2.2.7. Suppose VD(dy), RVD(d;) and Jy > hold. Let x € M, and
r > 0. By the Lévy system in [32, Lemma 7.1] and J, >, we have that for
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t >0,

TB(z,r)
12 P (X, < B2 28 [ [T [ e
0 B(z,2r)c

> B [7B(z,m] zegbfc o J(z,y)p(dy)

dy).

By RVD(d;), there exists a constant ¢; > 1 such that V(x,cir) > 2V (2, 7)
for any x € M and r > 0. Using this and U(Ss, Cy, 1) we obtain

V(z,2c1m) = V(z,2r) 1 o

pldy) = V(x,2ci7) ¥ (2err) - v(r)

1
L(x,Qr)c Vid(z,y)¢(d(z,y))

Combining two estimates, we obtain
Emp@m] < cp(r), x € My, r>0,

which implies Ey <.

By Remark 2.2.7, we expect that our scale function with respect to the
process X, which is comparable to the exit time E*[75(, )], is smaller than
.

Let @ : (0,00) — (0, 00) be a non-decreasing function satisfying L(aq, cy)

and U(ag, cy) with some 0 < oy < ap and ¢, ¢y > 0 and
O(r) < (r), forall r>0. (2.2.6)

By the virtue of Remark 2.2.7, the assumption (2.2.6) is quite natural for
the scale function. For any ¢ > 1, (2.2.6) can be relaxed to the condition
O(r) < c(r). Recall that ay is the global upper scaling index of ®. If ®
satisfies L, (0, 6’L), then we have ap > J. Indeed, if 6 > as, then for any
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0 <r <R <a, we have

& (

-
which is contradiction by letting » — 0. Also, we define a function ®; :
(0,00) x (0,00) — R by

B, (r,t) = sup {f _ @fs) } . (2.2.7)

s>0 S
For ag,t,r > 0 and x € M,, we define

t 1
G(ag, t,z,r) = Vo0 + X =I0) exp (—ag P1(t, 1)),

where @' is the generalized inverse function of ®, i.e., ®7!(¢) := inf{s > 0:
®(s) >t} (with the convention inf () = oo).

Definition 2.2.8. (i) We say that HK(®, ) holds if there exists a heat
kernel p(t,x,y) of the semigroup {P;} associated with (&, F), which
has the following estimates: there exist 1,ay > 0 and ¢ > 1 such that
for all t > 0 and x,y € M,,

¢! et

—1 -1 1 _
Vi, ®1(0) D= Y )b (d(, ) e

<p(t,z,y) <c (W A Q(aoi,%d(%y))) -

(ii)) We say UHK(®, 1) holds if the upper bound in above estimate holds.

(iii) We say UHKD(®) holds if there is a constant ¢ > 0 such that for all
t>0and x € My,

ST RO}

(vi) We say that SHK(®,) holds if there exists a heat kernel p(t,z,y)
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of the semigroup {P,} associated with (£, F), which has the following
estimates: there exist a > 0 such that for all ¢ > 0 and =,y € M,,

1

m AN g(a, t, xZ, d(.ﬁC, y))

p(t,@,y) <

(v) Assume that (M, d, p) satisfies VD(dz), RVD(d;) and Diff(F'). We say
that GHK(®, ¢) holds if there exists a heat kernel p(t, z, y) of the semi-
group {F;} associated with (€, F), which has the following estimates:
there exists 0 < ay, 0 < n and ¢ > 1 such that for all £ > 0 and

xvyeMOa

< + o1 1
V(w, &1 () = O TV ( d(, y))ed(, y)) =)
< plt, 7,) (228)

C

= Vo) (V(xad(fv,y))w(d(w,y)) T Ve )

Ct ce—aUF1 (d(r,y),F(qu(t))) )

(vi) We say GUHK(®, ) holds if the upper bound in (2.2.8) holds.

Remark 2.2.9. For strictly increasing and continuous function ® : [0, 0c0) —
[0,00) with ®(0) = 0 satisfying L(aq,cr) and U(ag, ¢y) and for any C' > 1,
the condition HK(®, C'®) is equivalent to the existence of heat kernel p(t, z, y)
such that for all £ > 0 and z,y € M,,

1 t

p(t,z,y) < A

V(z, (1)) " V(z,d(z,y)0(d(z,y))’ (2.2.9)

This shows that if ® =< ¢, then the condition HK(®,1) is equivalent to
(2.2.9).

From now on, we denote HK(®, C'®)(resp. UHK(®, C®)) by HK(®) (resp.
UHK(®)). By Remark 2.2.9, the condition HK(®) is equivalent to the con-
dition HK(®) of [32].

Let F;, be the collection of bounded functions in F.
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Definition 2.2.10. We say that the (weak) Poincaré inequality PI(®) holds
if there exist constants C' > 0 and x > 1 such that for any ball B, := B(z,r)
with x € My, r > 0 and for any f € F,

[ = dnpdn <o [ (1) - FPI 0 uldyaddz),

[d BN’I‘XBK,T
where fp = @ ) B, fdu is the average value of f on B,.

Recall that we always assume that ¢ : [0,00) — [0, 00) is a non-decreasing
function satisfying L(S1,Cr) and U(fs, Cy) for some 0 < 81 < f3s.
For the function ® satisfying (2.2.6) and L*(8, C1,) with § > 1, we define

~ _1®(a)
(I)(S) = CUl a(a2)8 21{S<a} + (I)<5)1{52a}- (2.2.10)
Note that for s < a we have (s) _ o152 O(a) < 1. Thus,

) B(s) U 052 B(s)

O(r) < O(r) <i(r), r>0. (2.2.11)

Also, L(0, Cr, Zf>) holds. Indeed, for any 0 < r < a < R,

®(R) ®(R) d(a) LG (5)
&) = VL

() a

The other cases are straightforward. By the same way as (2.2.7), let us define

&, (r,t) := sup
>0

T t
- — = . 2.2.12
. @(s)] ( )

The following are the main results of this subsection.

Theorem 2.2.11. Assume that the metric measure space (M,d, ) satisfies
VD(dy), and the process X satisfies Jy <, UHKD(®) and E¢, where ¢ is a
non-decreasing function satisfying L(1,Cr) and U(Bs, Cy), and ® is a non-
decreasing function satisfying (2.2.6), L(aq,cp) and U(ag,cy), where 0 <
B1 < By and 0 < aq < .
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(i) Suppose that ® satisfies L, (9, 5’L) with some a > 0 and 6 > 1. Then,
for any T € (0,00), there exist constants ay > 0 and ¢ > 0 such that for any
t<T and xz,y € My,

ct c

p(t,z,y) < Ve, d(z,9)ildxy) | Ve, o)

exp ( —ay®y(d(z,y), t))
(2.2.13)
Moreover, if ® satisfies L(6,CL,), then (2.2.13) holds for all t < co.
(ii) Suppose that ® satisfies L*(0, éL) with some a > 0 and 6 > 1. Then,
for any T € (0,00) there exist constants ay > 0 and ¢ > 0 such that for any
t>T and x,y € My,

ct c
V(e @, g)odz,y) | Ve, & (1)

p(t,x,y) < exp (—ayan(d(x, ), t))

(2.2.14)

Theorem 2.2.12. Assume that (M, d, p) satisfies RVD(dy) and VD(ds). Let
¥ be a non-decreasing function satisfying L(B1,CL) and U(Ps, Cy), and P
be a non-decreasing function satisfying (2.2.6), L(aq,cr) and U(ag, cy) with
1 < ay < ay. Then the following are equivalent:

(1) UHK(®, ) and (€, F) is conservative.

(2) Jy.<, UHK(®) and (€, F) is conservative.

(3) Jy.c, UHKD(®) and Eq.

See [32, Definitions 1.5 and 1.8] for the definitions of FK(®), CSJ(®) and
SCSJ(®).

Corollary 2.2.13. Under the same settings as Theorem 2.2.12, each equiv-
alent condition in above theorem is also equivalent to the following:

(4) FK(®), Jy < and SCSJ(D).

(5) FK(®), Jy < and CSJ(D).

(6) FK(®), Jy < and Geap(®).

Theorem 2.2.14. Assume that the metric measure space (M, d, ) satisfies
Ch(A), RVD(d;y) and VD(dy). Suppose that the process X satisfies Jy, Eg
and PI(®), where 1 is a non-decreasing function satisfying L(51,Cr) and
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U(Ba, Cy), and ® is a non-decreasing function satisfying (2.2.6), L(ay,cp)
and U(az, cy).

(i) Suppose that L,(9, Cr, ®) holds with 6 > 1. Then, for any T € (0,00),
there exist constants ¢ > 0 and ayp > 0 such that for any x,y € My and
t € (0,77,

SN RO

ct c

(vu,d(ay))w(d(x,y» X S0)

exp (—ap®q(d(x,y), t))92.2.15)

Moreover, if L(8,Cyp, ®) holds, then (2.2.15) holds for all t € (0,00).
(1) Suppose that L*(9, Cr, ®) holds with 6 > 1. Then, for any T € (0, 00),
there exist constants ¢ > 0 and ar, > 0 such that for any x,y € My andt > T,

p(tz,y) > m/\ (2.2.16)

ct c

(wx,d(x,ywd(x,y)) TV o)

Theorem 2.2.15. Under the same settings as Theorem 2.2.12, the following
are equivalent:

(1) HK(®, ¢).

(2) Jy, PI(®), UHK(®) and (&, F) is conservative.

(3) Jy, PI(®) and Es.

If we further assume that (M,d) satisfies Ch(A) for some A > 1, then the

following 1s also equivalent to others:

(4) SHK(®, ).

exp (—aLil(d(x, Y), t))) .

By Theorem 2.2.15 and Corollary 2.2.13, we also obtain that

Corollary 2.2.16. Under the same settings as Theorem 2.2.12, each equiv-
alent condition in Theorem 2.2.15 is also equivalent to the following:

(5) Jy, PI(®) and SCSI(P).

(6) Jy, PI(®) and CSJI(®).

(7) Jy, PI(®) and Geap(®).
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We now consider a metric measure space that allows conservative diffusion
process which has the transition density with respect to p satisfying Diff (F').
In this case, we can find ® explicitly from F and 1.

From now on, let F be a strictly increasing function satisfying L(vi, cp')
and U(7e,cr) with some 1 < 71 < 79, and we assume that ¢ : (0,00) —
(0,00) is a non-increasing function which satisfies L(1, Cr), U(B2, Cyy) and
that

LdF(s)
0 (s)

Recall that the function Fi(r,t) = sup,-, [2 _

< 0. (2.2.17)

ﬁ} has defined in (2.2.3).

Consider -
O(r) := %, r > 0. (2.2.18)

0 (s 98

Then & is strictly increasing function satisfying (2.2.6) and U(yz, Cy). Also,
there is ¢ > 0 such that L(aq, ¢, @) holds. (see Section 2.2.5).

Theorem 2.2.17. Assume that the metric measure space (M, d, ) satisfies
RVD(dy) and VD(ds). Assume further that Diff(F') holds for a strictly in-
creasing function F : (0,00) — (0,00) satisfying L(y1,cz') and U(ys, cr)
with 1 < v < 9. Let ¥ be a non-decreasing function satisfying L(51, CL),
U(B2,Cy) and (2.2.17), and ® be the function defined in (2.2.18).

(1) Jy is equivalent to GHK(®, ). Moreover, both equivalent conditions
imply PI(®) and Eg.

(ii) If we further assume that (M,d) satisfies Ch(A) for some A > 1
and that ® satisfies L(ay,cr) with oy > 1, then Jy is also equivalent to
SHK(®, ).

Finally, we now state local estimates of heat kernels.

Corollary 2.2.18. Assume that the metric measure space (M,d, ) satis-
fies RVD(d;) and VD(ds). Assume further that Diff (F') holds for a strictly
increasing function F : (0,00) — (0,00) satisfying L(v1,cz') and U(ys, cr)
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with 1 < v < 9. Let ¥ be a non-decreasing function satisfying L(51,CL),
U(B2,Cy) and (2.2.17), and ® be the function defined in (2.2.18). Suppose
that the process X satisfies Jy.

(i) Assume that Lo(6,CL, ®) holds with some § > 1 and a > 0. Then,
for any T € (0,00), there exist constants 0 < ay < ar, and ¢ > 0 such that
(2.2.13) and (2.2.15) holds for allt € (0,T] and x,y € Mp.

(ii) Assume that L*(6,CL,®) holds with some § > 1 and a > 0. Then,
for any T € (0,00), there exist constants 0 < ay < ar, and ¢ > 0 such that
(2.2.14) and (2.2.16) holds for all t € [T, 00) and x,y € M.

2.2.2 Preliminary

Consider a non-decreasing function ¢ : R, — R, satisfying L(«y,cr) and
U(ag, cy) with some 0 < oy < ap. Recall that ¢~ 1(t) := inf{s > 0: ¢(s) > t}
is the generalized inverse function of ¢. We further assume that L,(, 5L, o)
holds for some a > 0 and 6 > 1. We define

r t
T(p)(r,t) :=su [— — —} , rt>0. 2.2.19
(@00 =sup |© = 2:219)
Note that from L(aq,cp, ¢) and Le(6, CL, ¢), we obtain lim ¢(s) = oo and
§—00
lir%@ = 0, respectively. This concludes that T (¢)(r,t) € [0,00) for all
s—0 §

r,t > 0. Also, comparing the definitions in (2.2.7) and (2.2.19), we see that
T(®) = &, and T(F) = F;. for instance. It immediately follows from the
definition of T (¢) that for any ¢, r, ¢t > 0,

T(Qb) (CTv Ct) = CT(¢) (T’ t)'

We first observe when the supremum in (2.2.19) occurs.

Lemma 2.2.19. Let §; = ﬁ. For any T € (0,00), there exists constant
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b€ (0,1) such that for any r >0, t € (0,T] with r > 2cyd~ (),

F— ! } L (2.2.20)

T(¢)(T, t) = sup S ¢(S> > 2¢_1(t).

selbr=o16-1 (511,267 (1)

Moreover, if L(6,Cyp, ¢) holds, (2.2.20) holds for all t € (0,00).

Lemma 2.2.20. (i) For any T > 0 and cy,co > 0, there exists a constant
¢ > 0 such that for any r >0 and t € (0,T] with r > 2cy¢™1(t),

T (@) (err, cot) < T (P)(r,t). (2.2.21)

(i) For any T > 0 and c3 > 0, there exists a constant ¢ > 0 such that for
any t € (0,T] and r < c3¢71(¢),

T(o)(rt) <. (2.2.22)

Moreover, if L(6,Cy,¢) holds, both (2.2.21) and (2.2.22) hold for all t €
(0, 00).

2.2.3 Stability of upper heat kernel estimates

In this section we prove Theorems 2.2.11 and 2.2.12, and Corollary 2.2.13.
Throughout this subsection, we assume that the function ¢ satisfies L(/;, Cp)
and U(fy, Cy) with 0 < 1 < [, and & satisfies (2.2.6), L(ay,cr) and
U(as, cy), with 0 < a; < as.

Assume that there exists regular Dirichlet form (€, F) defined in (2.2.4)
satisfying Jy <. Let X be the Hunt process corresponds to (€, F). Fix p > 0
and define a bilinear form (€7, F) by

£ (u,v) = /M o ) = W) 0l) = 0 < )y

Clearly, the form £°(u,v) is well defined for u,v € F, and P (u,u) < E(u,u)
for all w € F. Let J,(2,y) = J(2,9)1{d@y)>p}- Since ¥ satisfies L(B;,Cr)
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and U(fs, Cy), for all u € F,

()~ (1) = [ (u(o) ~ uly)) (. y)n(de)n(dy)

<a [ @nta) [ 0w < G

|2

collull3

Thus, & (u,u) = E(u,u) + ||ul|3 is equivalent to & (u,u) := EP(u,u) + |Jul|3
for every u € F, which implies that (£°, F) is also a regular Dirichlet form on
L*(M,du). We call (€7, F) the p-truncated Dirichlet form. The Hunt process
associated with (€7, F) which will be denoted by X” can be identified in
distribution with the Hunt process of the original Dirichlet form (&, F) by
removing those jumps of size larger than p. Let p°(t,x,y) and 75 be the
transition density and exit time of X* correspond to (€7, F), respectively.
For any open set D C M, Fp is defined to be the &;-closure in F of
FNCu(D). Let {PP} and {P/"} be the semigroups of (£, Fp) and (7, Fp),

respectively.

Lemma 2.2.21. Assume VD(dy), Jy < and Eg. Then, there is a constant
¢ > 0 such that for any p > 0, t > 0 and x € My,

tq ct t O\t
E* ds < 1+ .
/0 VIXZ )" = Vi, p) ( <I>(ﬂ)>

Proof. Following the proof of [32, Proposition 4.24], using J, < we have

“|[ e

o Co o (22.23)
= E”* [/ —ds: Tl < t< TP ] = 1.
— 0 v(Xg,p) B(z,(k—1)p) B(z,kp) ;

When t < 75 we have d(X? x) < kp for all s < ¢. This along with

(z,kp)’
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VD(d,) yields that for all k > 1 and s <t < Tg(x’kp),
1 c1 k2 c1k® crk®
V(XS p) = V(XL 2kp) = inf  V(2,2kp) = V(z,p)

d(z,2)<kp

(2.2.24)

On the other hand, by [32, Corollary 4.22], there exist constants ¢; > 0 with
1 =2,3,4 such that for all t,p > 0, £ > 1 and z € M,,

Pe(74 <t)<cyexp ( —c3k 4+ ¢y (2.2.25)

t
o)

Let ko = 2;,4 3 p)] + 1. Using (2.2.24) and definition of kg, we have

(z:kp)

kd2+1

C1 k’d2t C5 CGt ( t ) datl
I, < < 1+ — :
Z ’ Z V(e,p) = Ve U 2(p)

On the other hand, for any kg < k, using (2.2.24) and (2.2.25) with ky =

2024 (bfpﬂ + 1 we have

Clk’d2t - ClCdeQt C3
I < B (e S 1) S Ty P (—Ek) .

Thus, we conclude

- creat = g g cst
Z I < Z ke ok = 2
k=ko+1 V(l’, p> k=ko+1 V(I', p)

. . oo cet d
From above two estimates, we obtain »_;7, I < 38— (1+ ﬁ) 271 Com-

bining this with (2.2.23), we obtain the desired estimate. O

In the next lemma, we obtain a priori estimate for the upper bound of

heat kernel.

Lemma 2.2.22. Assume VD(ds), Jy <, UHKD(®) and E¢. Then, there are
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constants ¢ > 0 and Cy, Cy > 0 such that for any p > 0,t > 0 and x,y € My,

d(z,y)\*
p(t,z,y) < m(l + CI>—1(t)> exp (C

ct t \det+l
TV (@ 00 p) (1+ W>~

t L dz,y)
3 )

Proof. Recall that X! and p?(¢,z,y) are the Hunt process and heat ker-
nel correspond to (£, F), respectively. Using [11, Lemma 3.1, (3.5)] and [9,
Lemma 3.6], we have for ¢ > 0 and z,y € M,,

p(t,z,y) < p°(t,x,y) —i—E””{//J p(t —s,z,9)u dzds(}2226

Also, using symmetry of heat kernel, J,, < and Lemma 2.2.21 we obtain

[/ / 2)a(e.x8)zp} (2 )p(t—s,z,y)u(dz)ds]

<oe | W‘“} < oo ()

Combining the estimates in [32, Lemma 5.2] and Lemma 2.2.21, we conclude

1(2:2.27)

the proof. Note that since J, < and (2.2.6) imply Jg <, the conditions in [32,
Lemma 5.2] are satisfied. O

Lemma 2.2.23. Assume VD(dy), Jy <, UHKD(®) and Eg. Let T > 0 and
f Ry xRy — Ry be a measurable function satisfying that t — f(r,t) is non-
increasing for all v > 0 and that r — f(r,t) is non-decreasing for all t > 0.
Suppose that the following hold: (i) For each b > 0, sup,<p f(b®(t),1) < 00

(resp., sup,sp f(bP71(t), 1) < o0); (it) there exist n € (0,51], ay > 0 and
¢ > 0 such that

P (d(z, X;) > r) < c((t)/r)" + cexp (— a1 f(r, 1)) (2.2.28)

forallt € (0,T) (resp. t € [T, 0)), r >0 and x € M.
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Then, there exist constants k € N, cy > 0 such that

Cot
Vi(x,d(z,y))(d(z,y))

+ m (1 + %)“ exp ( - alk;f(d(x,y)/(16k),t))

p(t,z,y) <

forallt € (0,T) (resp. t € [T,00)) and x,y € M.

Proof. Since the proofs for cases t € (0,7] and t € [T, 00) are similar, we
only prove for t € (0, 7). For g € My, let B(r) = B(xq, )N M. By the strong
Markov property, (2.2.28), and the fact that ¢ — f(r,t) is non-increasing, we
have that for z € B(r/4) and t € (0,7/2],

]PJI(TB(T) S t) S ]Pﬂ(th c B(T’/Q)C) + Px(TB(r) S t,XQt - B(T’/2))
< P*(Xy € B(z,r/4)°)+ sup P*(Xy_s € B(z,r/4)°)

z€B(r)°,s<t

< (47 (2t)/r)" + cexp ( — a1 f(r/4,21)).

From this with L(8,CL,v) and Lemma 1.1.4, we have that for xz € B(r/4)
and t € (0,7/2],

B(r) . ()"
1= P g (x) =P (7p() <) < 1 . + CeXp<— arf(r/4, 2?5))‘
(2.2.29)
By [47, Proposition 4.6] and [32, Lemma 2.1], we have
t
PP (2) — PZ"’B(T)lB(r)(x)’ < 2t sup / J(zy)dy < .
zeM B(z,r)c w(r)

Combining this with (2.2.29), we see that for all x € B(r/4) and t € (0,7/2],

P*(7hy < 1) = 1= PP 10 (2) < 1= PP (2) + ﬁ:)
< e () /1) + crexp (= anf(r/4,2t)) + ca(t/y(r)) =: ¢(r, €2.2.30)

Applying [2, Lemma 3.3] with » = p to (2.2.30), we see that for any ¢ €
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(0,7/2], x € B(r/4) and k € N,
/( Pt z,y)u(dy) = PtrlB(:v,2kr)C($) < ¢(r, t)k- (2.2.31)
B(z,2kr)c

Let k := [@] + 1. For t € (0,T] and z,y € My satisfying 4k®~1(t) >
d(x,y), by using that r — f(r,t) is non-decreasing and the assumption (i),
we have f(d(z,y)/(16k),t) < f(®71(t)/4,t) < C < oo. Thus, using [32,

Lemma 5.1],

C5ea1kC

P S e )

exp ( —ak f(d(x,y)/(le),t)). (2.2.32)

For the remainder of the proof, assume ¢ € (0,7T] and 4k®~1(t) < d(z,y).
Also, denote r = d(x,y) and p = r/(4k). Using [32, Lemma 5.2], (2.2.31) and
(2.2.1), we have

PPt 2,y) = /M P2, 2, ) (t)2, 2 y)uld2)

< (/ +/ )p”(t/2,:c,z)p’°(t/2,Z;Z/)M(dz)
B(z,r/2)c B(y,r/2)¢

o ()

)2 (p,/2)F. (2.2.33)

< Vo) &0

Note that kB; > kn > 0o + 2dy and p > ®'(¢t) > ¢'(¢). Thus, by
L(,Cp,1) we obtain
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Applying this to (2.2.33) and using VD(dy) and U(Bs, Cy, 1) we have
p(t, 2, y)

C11 T

= Ve, d-1(t)) =

do ¢_1(t) nk ¢ .
(t)) <( P )"+ e ( - alkf(p/4,t)) - (W) )
€12 T nda (YT Bar2de
< V(z, (I)—l(t))(q)—l(t)) (( ” ) +6Xp(—a1kf(p/47t))>

< v(ﬁ)@(ﬂ + ) (1 * <1>—<t>> exp (= arkf (r/(16K). 1)

Thus, by (2.2.26), (2.2.27) and U(f2, Cy, ), we conclude that for any ¢ €
(0,T] and z,y € My with 4k®~1(t) < d(z,vy),

c14t t dz+1

Vi, p)¢(p) (
2.34
01567“1”((1(1%}3) ) ( N d(x, y)>d2 N 15t (2231
Vi, @1(1)) o=1(1) V(z,d(z,y))v(d(z,y))

Here in the second inequality we have used ®(p) > ¢. Now the conclusion
follows from (2.2.32) and (2.2.34). O

Lemma 2.2.24. Suppose VD(dz), Jy. <, UHKD(®) and Eg. Then, there exist
constants ag,c > 0 and N € N such that

y iyt e [ 0 )Y
p(t,z,y) < V. d(, g))(d(z,p) Vin @Oy e ( Q)_l(t)(lQ/]; 3)5)

forallt >0 and z,y € M.

Proof. Let N := [ﬁlﬁ%dﬂ + 1, and n:= py — (81 +d2)/N > 0. We first claim
that there exist a; > 0 and ¢; > 0 such that for any ¢, > 0 and x € M,

1/N

v )" ar
/{y:d(%y)mp(t,x,y)u(dy) <c (T) +c1 exp (_W)' (2.2.36)

When r < ®7(¢), we immediately obtain (2.2.36) by letting ¢ = exp(ay).
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Thus, we will only consider the case r > ®7!(t). Fix a € (do/(dy + 51),1)
and define for n € N,

Pn = pn(r’ t) — 2nar171/N(I)fl(t)1/N.

Since r > ®71(t) , we have ®71(¢) < p, < 2"r. In particular, t < ®(p,).
Thus, using Lemma 2.2.22 with p = p,, we have that for every ¢ > 0 and
x,y € My with 2"r < d(z,y) < 2""'r,

p(t,z,y) < i ;)2‘1@)) (;i:z;n))d”l exp (01% _ Czd(f;;y))

CQt t dat1
TV, o)) <1 * <I><pn>>
cs oy \ 2T (_ 2”_7“) cst
= Vo) («1>—l<t>> N R
B 3 oy d2+1 o 2n(1a)r1/N> N st
V(@ o(1) (@-1@)) o (‘ TN ) TV (@, p)don)

Using the above estimate and VD(d;) we get that

o0

[ vt =Y [
B(z,r)c n—o v B(z,2"T1r)\ B(x,2"r)

o0 V(:U 2n+1,r.) oy da+1 . on(l-a),.1/N
< ’ G N —
=S LY o 1(r) (@1@)) eXp( 2 1) UN )

n=0

= V(x,20 )t
+c =: I, + L.
’ Z V(x, pn) ¢(Pn) ! ?

p(t, =, y)u(dy)

We first estimate ;. Observe that for any dy > 1, there exists ¢; = ¢1(c, ) >
0 such that 2n < 207002”(1_6‘) + ¢ holds for every n > 0. Thus, for any n > 0
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and Kk > 1,

2ndo exp (_022n(1—a)/€) < 9~ndo exp <2nd0 — 022"(1_0‘),%)

< 27" oxp ((266;2 gn(l=a) 4 cl> dy — Cy2"1—) )
0

0 C
< 9—ndo exp (ézn(l—a)ﬁ + c1do — C22”(1—a)/§) — ec1dog—ndo exp <_72I<L> .

(2.2.37)

Using &~ 1(t) < r, VD(dy), (2.2.37), and the fact that

sup 522+ exp(——2sN) 1= ¢4 < o0,

1<s 4

we obtain
o V(:c 2n+1r) oy da+1 2n(1 a).1/N
I, = - -,
O A O R W =T O
0 2do+1 1— 1/N
T on(l=a)p1/
- n(2dz+1) o, 2.2.38
ﬁc@i%(@ww) ey Cb@%ﬂﬂN) (2239

Cng/N
4@-%wVN)

We next estimate I. Note that by (2.2.6) and t < ®(p,,), we have =1 (t) <
O 1(t) < py. Thus, using VD(dy) and L(S, Cp, ) for the first line and using
a(ds 4+ 1) > dy for the second line, we obtain

2n+1 2/}( Iy w— () B1
- A e () (50
_datBy L oo
. (@) N <¢;(t)) HZ:O2n(d2a(d2+51))

e (w)‘”*ﬂl ()" <., (M)ﬁld*ﬁ_

Thus, by above estimates of I; and I, we obtain (2.2.36).
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By n < 1 and (2.2.36), assumptions in Lemma 2.2.23 hold with f(r,t) :=
(r/®1(t)) """ Thus, by Lemma 2.2.23, we have

Cgt
P S U da, p)tda, )
Cg d(z,y)\d d(z,y) 1N
+V(x,(I>— i ))(1 1(15)) exp[—alk(m) /N,

Using the fact that sup,.,(1 + s)% exp(—cs'/N) < oo for every ¢ > 0, we
conclude (2.2.35). O

Lemma 2.2.25. Suppose VD(dy), Jy <, UHKD(®) and E¢. Then, for any
0 > 0 and co,cqy > 1, there exists ¢ > 0 such that for any x € My, t > 0 and

l(clt)l+0
-1 B1
[ stsatan <e (1)
B(z,r)e r

r > Co = 1(cit)? 7

Proof. Denote t; = c;t and let ag, N be the constants in Lemma 2.2.24. By
(2.2.6) we have that for any y € My with d(z,y) > r, there exists 0y € (0, 00)
satisfying d(z,y) = co®1(t1)1 1% /b= (t1)%. Note that there exists a positive

constant co = c2(6) such that for any s > 0,
§72=P=B2/0 > ) exp(—ags'™). (2.2.39)
Also, since ¢y > 1 we have
() < et () < @7 (t) < d(x,y) = co® () T/ ()

Thus, using VD(ds) and U(Bs, Cy, 1) for the first inequality and (2.2.39) for
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the second, we have

t _ o V(x,co® '(t1)) Y~ (t1))
e d o)~ Va0 Vie dey) o)
o co® 1 (t1) \ o Y (t) 5
2 Vo a1 >>C“ ' d( ) (d<x,y>)

B Cl 60’820 IC d26o — (1+60)82
~ V(x, @t

g 100ﬁ20 10 ( (t1)> —da— 52 52/90
- V(0@ )) ()

cocy 0552051051051 ag® 1 (t,)0/N
Vi@, a7 (h)) <_ ()N )

020f106ﬁ20510u1 o . ~aod(z, y) N
V(x,co®'(t1)) (1)

Applying Lemma 1.1.4 for L(ay, cr, @), we have U(1/ay, cLl/O‘1 ®~1), which
yields @71(t) < &71(t;) < czl/alc}/alfb 1(t). Thus, using this and VD(ds)
again, we have

1 1/on 1/aiNd 1
> C; I
V(z, co® () = e ey )" V(x, ®1(t))

Thus, by Lemma 2.2.24 and above two estimates, we have that for every

y € My with d(x,y) > r,

PPN S
p 7x7y — ¢
Vi, d(z,y))¢(d(z,y)) Ve, ®'(t))

CQt

= Viz,dz,9)d(d@.y)

Using this, [32, Lemma 2.1] and L(3;, Cr, %) with the fact that r > ¢y~ (et)
which follows from (2.2.6), we conclude that

/B(m,,.)cp(t?xa Yu(dy) < e (w—;(t))ﬁl |
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This proves the lemma. U

Now we are ready to prove the first main result in this section.
Proof of Theorem 2.2.11. Note that under the condition L*(4, Cr, ®), we have
(0] Z oV aq. Take
0—1)B

0 .= €(0,0—-1
5(2d2 + 51) =+ (Bl + 2@2 + 2d20&2) ( )

and Cy = %—QU, where C'; and C5 are the constants in Lemma 2.2.22. Without
loss of generality, we may and do assume that C; > 2 and C; < 1. Let « be
a number in (d;fﬁl, 1).

(i) We will show that there exist a; > 0 and ¢; > 0 such that for any ¢t < T,

x € My and r > 0,

-1 B1/2
/B( )Cp(t,x,y) p(dy) < 01(¢ T<t)> + crexp (—a1Pq(r,t)) . (2.2.40)

Firstly, since ®,(r,t) is increasing on r, by (2.2.21) and (2.2.22) we have that
for r S COCI)_l(Clt),

<I>1(r, t) < (I)l(CO(I)il(Clt)’t) < C2(I)1(COCI)71(Clt>, Clt> < c3.

Here for the second inequality, Cy > 2¢y yields the condition in (2.2.21).
Thus, for any z € My and r < Co®~!(C4t) we have

/ Pt 2, y)u(dy) < 1 < ¢ exp (—ar®y(r,1)).
B(z,r)e

Also, when r > Co®~1(C1)10 /4p=1(C1t)?, (2.2.40) immediately follows from
Lemma 2.2.25 and the fact that r > 71 (¢).

Now consider the case Co®1(Cit) < r < Co® H(C1t)1+0 /=1(Ct)?. In
this case, there exists 6y € (0,6] such that r = Co®~1(Cyt) % /oh=1(Cyt)%

by (2.2.6). Since Cy = 45—2‘], applying Lemma 2.2.19 with the constant CT
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we have p € [b(Cyr/2)~%1®~1(Cyt)+ 20-1(C1t)] such that

C(]CQ < CQT _ Clt
8 T 2  @(p)

(I)l(CQT/Q,Clt) — S @1(027’/2,0115),

where §; = ﬁ. Also, let p, = 2"*p for n € Ny. Then, we have

Pn 2p P 277 2p +4<I>*1(Clt)

Using this, r > Co®'(Cit) and (2.2.21) with U(l/al,czl/al,q)*l), which
follows from L(ay,cp, ®) and Lemma 1.1.4, yield that for any n € Ny,

Clt _ CQQ”T < Clt . C2T CQT 2n(17a)

lpn)  pa  Rlp) 20 ADY(Cat)

CoCl Cor n(1—a)
o _
< =0, (Cyr/2,Cht) + 3 4@‘1(C1t)2

Cor _
2 gn(l-a) 2.2.41
8@71(Clt) ( )

< =0y (Cor/2,Cht) - %(CL/CH)”‘“Q”“—“)

< —®y(Cor/2,Cht) —

o=1(1)

n(l—a
S —C4(I)1(7’, t) — 652 ( )CI)—l(t) .

Combining (2.2.41) and Lemma 2.2.22 with p = p,,, we have that for ¢ € (0, 7]
and y € B(z,2""r)/B(z,2"r),

ot y da+1
p(t,z,y) — V(z, pu)¥(pn) (1 ' <I>(pn))

cr on+1y. \ &2 t o
<9 (142 o2t
—vm@1@><+¢lw>em PR Y

C7 ontly \ © on(l=a)y
<7 (14T ey (1) —
< vy (Fam) o (et - e g

cr 5 2n(1—a)y.
< — —cyP t) — ——— 2.2.42
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where for the last inequality we have used the fact that ©+(t) > 1 and

supsup(l +2""s)Zexp [ — §2”(1_a)s] < 0.
neN s>1 2

With estimates in (2.2.42), we get that

o0

/ p(t, @, y)u(dy) < Z/ p(t,z, y)pu(dy)
B(z,r)c n—0 v B(,2n+1r)\B(z,2"r)

> V(z,2"r c5 2m=)y
< g Z (—71) exp (—c4<I>1(r, t)— = )
n=0

V(z,® (1)) 2 d1(1)
=tV (z,2™) t ol
e 2 V(x, pn)¥(pn) (1 " (I)<:0n>>
=cs(l1 + I2)

Using r > Co®~1(C1t) > ®1(¢), we obtain upper bound of I; by following

the calculations in (2.2.38). Thus, we have
I < cgexp (—ag®y(r,t)).

Next, we estimate . Since 7 = Co®~1(Ct) % /o)~ (C1t)%, =1(t) < d7L(¢)
and 6y < 6 < 1/, we obtain

(Dil(clt) < (Dil<01t)b71(027“/2)61
o = —1(Cyt)oi

5, ®H(C1t)

< bHCoC/2) S(Ch);

Thus, % < p < r. Using this, VD(ds), (1.1.1), L(B;,Cy, %) and
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U(as, cy, P) we have

) o V<x’2n7~) " + da+1
I = nZ—O V(IE Pn) ¢(pn) (1 - @(pn))
UCE N PO (CoCo/2) ) (it \"P
<m§: V(e.pn) 00 (CaCof2lipn)  0lpn) (wwm)
T\ dy 4 Cyt az(dz+1
gcllz%) (" ; e

- n(do—a(da+p1 T\ d2 1/}71(0 t) B1 (C t) as(da+1)
§01222 (d2—o(dz+ ))(;) ( ; 1 ) ( ; 1 ) +1
n=0

— 013,r,d2,¢]—1 (C]_t)ﬁl @—1 (Clt)ocz (d2+1)p—d2—61—a2(d2+1) .

Since br=91®~1(C1t)*1 < p, we conclude that

—1 —1
I < Cl3b—d2—,81—a2<d2+1>(¢ (Clt))ﬁl(q) (Clt))_51(d20¢2+042+51+d2)_(d2+/31)'
T T

(2.2.43)
Using 7 = Co®~1(C1t)11% /oh=1(C1t)%, we have Cop~1(C1t) < Co®~H(C1t) <

r. Since 0y < 6, we have

%@%aw:(%w<aJY””“ (QyAWM)”H?

r r r

(0=1)p1
0(2d2+pB1)+(B1+2a2+2d2a2)

By using 0 = > 0, we have

( d-1 (Cﬁ) ) —61(d2ca+a+B14+d2)—(d2+51)
T

< iy

(¢ ((Juf))"e[51<d2a2+a2+61+d2>—<d2+ﬁ1>} . (¢1(Olt)>_ﬁ i
prm— 14 .
T T

Therefore, using (2.2.43) we obtain

-1 B1/2
I, < c5 (¢ T(t)) .
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By the estimates of I; and Iy, we arrive

Yi(t)

r

B1/2
/ p(t,z,y)dy < cr(l + 1) < Cg( ) + ci5exp ((— as®(r, t)).
B(z,r)°

Combining all the cases, we obtain (2.2.40). Thus the assertions on Lemma
2.2.23 holds with f(r,t) := ®1(r,t). Thus, using Lemma 2.2.23 we have con-
stants k, cp > 0 such that

cot coe~92k®1(d(z,y)/(16k).t) d(z,y) da
PSS VG dGotde) T Ve 0) (1 cp_l(t))
(2.2.44)

forallt € (0, 7] and x,y € M,. Recall that 2¢y > 0 is the constant in Lemma
2.2.20 with ¢ = ®. When d(z,y) < 32cyk®1(¢), using UHKD(®) and (2.2.1)

we have

c
/2 1/2 ~ 16

~ Vi(z, 271(1))
Thus, by (2.2.22) and d(x,y)/16k < 2cy®~*(t) we have

p(t,z,y) < pt,z,2)"*p(t,y,y)

C16 162217k

V(e o 1(0) = Ve, & 1(0))

p(tv C(Z,y) < exp ( - a2kq>1<d(xa y)/(16k)7t))7
which yields (2.2.13) for the case d(z,y) < 32cyk®'(t). Also, for r >
32cpk®1(t) with 0 < t < T, using (2.2.41) with n = 0 and (2.2.21) we
have

C4(I)1<T’, t) + 05%@) S (I)l(CQT, Clt) S 017(I)1<T/16l€, t)

Therefore, using (2.2.44) we obtain

Cot C19
Vi, d(x,y)v(d(z,y) Ve, @71(1))

p(t,z,y) < exp ( —az®(d(z,y), t)),

where we have used sup,. (1 + s)% exp(—cigs) < oo for the last line. Com-

bining two cases, we obtain (2.2.13).

(ii) Again we will show that there exist a; > 0 and ¢; > 0 such that for any

o7

___;rx_-! _'\-.‘I.“:_ -11 -
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t>T,x € Myand r > 0,

/ p(t,z,y) p(dy) < 61(
B(z,r)°

Note that using (2.2.11), the proof of (2.2.45) for the case r < Co®~1(C4t)
and r > Co%

Without loss of generality we may assume a = ®(7"). Then for t > T, we
have ®~1(t) = a)_l(t). Applying this and (2.2.11) for Lemma 2.2.22, we have

for any t > T,

%b;(t))ﬁl/? + ¢y exp <—a1€>1(r, t)> . (2.2.45)

are the same as that for (i).

t d(z,y)
eCl <I>(p)_c2 py

V(z, ®=1(1))

1

d(z, y))

, ¢
p(t,z,y) < o1(1 ‘ a
do Clt
V(z, p)v(p) d(p)

)
cie ¥ T d(z,y)
)

V(x, d=1(t)) O-1(¢

Since L(8,C, ®) holds, following the proof of (i) we have for any ¢ > 0 and
r >0,

w_l(t) )51/2

. +c eXp(_al(T)l(ra t)).

/ Dt 2, y)uldy) < o (
B(z,r)°

Since the assumptions in Lemma 2.2.23 follows from (2.2.22) and the fact
that ®~1(¢) = ®=1(¢) for t > T, we obtain that for any t > T and z,y € M,

cot coe v ()0 d(x,y) \ dz
p(t,z,y) < Ve, dz 9)odzy) + V(z, ®1(1)) (1 + q;—l(t)) )

Here in the last term we have used (2.2.21). With the aid of L(8,Cp, ®), The

remainder is same as the proof of (i). O

Now we give the proof of Theorem 2.2.12 and Corollary 2.2.13.
Proof of Theorem 2.2.12. Since Jy < implies Jg <, [32, Theorem 1.15] yields
that (2) implies (3), and (3) implies the conservativeness of (€, F). Thus, by
Theorem 2.2.11, (3) implies (1). It remains to prove that (1) implies (2). By

o8

___;rx_-! _'\-.‘I.“:_ -11 -
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(2.2.6) and Remark 2.2.9, UHK(®, ) implies UHK(®). Also, following the
proof of [32, Proposition 3.3|, we easily prove that UHK(®, ) also implies
Jy< O

Proof of Corollary 2.2.13. By (2.2.6), Jy, < implies Jg <. Thus, [32, Theorem
1.15] implies the equivalence between the condition in Theorem 2.2.12(3)
and Corollary 2.2.13(4) and (5). We now prove the equivalence between the
condition in Theorem 2.2.12(3) and Corollary 2.2.13(6). To do this, we will
use the results in [32, 45].

Suppose that J, <, UHKD(®) and Eg hold. By [32, Proposition 7.6], we
have FK(®). Since we have Eg, the condition EPg < . in [32, Definition 1.10]
holds by [32, Lemma 4.16]. Since EPg <. implies the condition (S) in [45,
Definition 2.7] with r < oo and t < J®(r), we can follow the proof of [45,
Lemma 2.8] line by line (replace r° to ®(r)) and obtain Gcap(®).

Now, suppose that FK(®), J,, < and Geap(®) hold. Then, by [32, Lemma
4.14], we have Eg <. To obtain Eg >, we first show that [32, Lemma 4.15] holds
under our conditions. i.e., by using Gcap(®) instead of CSJ(®), we derive
the same result in [32, Lemma 4.15]. To show [32, Lemma 4.15], we give the
main steps of the proof only. Recall that for any p > 0, (€7, F) is p-truncated
Dirichlet form. For p-truncated Dirichlet form, we say ABZ(®) holds if the
inequality [45, (2.1)] holds with R" < oo, ®(rAp) and J(z, y)1{4(zy)<,} instead
of R < R, r® and j respectively. Then, by VD(da), Jy <, [32, Lemma 2.1]
and (2.2.6), we can follow the proof of [45, Lemma 2.4] line by line (replace
7 to ®(r)) to obtain AB¢(®). To get AB;/5(®), we use the proof of [45,
Lemma 2.9]. Here, we take different r,,, s, by, a,, from the one in the proof of
[45, Lemma 2.9]. Let A > 0 be a constant which will be chosen later. Take
sp = cre”™2e2 for p > 1, where ¢ = ¢()) is chosen so that Y 00 s, = 7
and s is the upper scaling index of ®. Let 7, = Y ,_, s for n > 1 and
ro = 0. We also take b, = e ™ for n > 0 and a, = b,_1 — b, for n > 1.
(c.f. [32, Proposition 2.4].) With these r,, s,, by, a,, we can follow the proof
of [45, Lemma 2.9] line by line and obtain AB;/s(®) by choosing small A > 0.

Moreover, using the argument in the proof of [32, Proposition 2.3|, we also
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obtain ABY (@) which yields [32, (4.8)] for p-truncated Dirichlet form. Thus,
we get [32, Corollary 4.12]. For open subsets A, B of M with A C B, and
for any p > 0, define Cap”(A, B) = inf{E”(p, ) : ¢ € cutoff(A, B)}. By

Geap(®) with u = 1(c.f. [45, Definition 1.13] and below), we have

Cap’(B(x,R),B(x,R+ 1)) < Cap(B(z, R), B(x, R+ 1)) < cw,
O(r Ap)
which implies the inequalities in [32, Proposition 2.3(5)]. Having this and [32,
Corollary 4.12] at hand, we can follow the proof and get the result of [32,
Lemma 4.15]. Now Eg > follows from the proof of [32, Lemma 4.17]. Since
we have Eg, UHKD(®) holds by [32, Theorem 4.25]. O

2.2.4 Stability of heat kernel estimates

In this section, we prove Theorems 2.2.14 and 2.2.15. Throughout this subsec-
tion, we will assume that the metric measure space (M, d, u) satisfies VD(d2)
and RVD(d;), and the regular Dirichlet form (£, F) and the corresponding
Hunt process satisfy J,, PI(®) and Eg¢, where 9 is non-decreasing function
satisfying L(S1,Cp) and U(Bs, Cy), and @ is non-creasing function satisfying
(2.2.6), L(ay,cp) and Ul(aeg, cp).

From J, and VD(ds), we immediately see that there is a constant ¢ > 0
such that for all x,y € My with x # y,

J(z,y) < / J(z,y) p(dz) for every 0 < r < d(x,y)/2. (UJS)
B(z,r)

c
V(x,r)
(See [28, Lemma 2.1]).

For any open set D C M, let Fp :={u € F:u =0 q.e. in D°}. Then,
(€, Fp) is also a regular Dirichlet form. We use pP(t,z,y) to denote the
transition density function corresponding to (€, Fp).

Note that (£, F) is a conservative Dirichlet form by [32, Lemma 4.21].
Thus, by [32, Theorem 1.15], we see that CSJ(®) defined in [32] holds. Thus,
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by Jy <, PI(®), CSJ(®) and (UJS) with (2.2.6), we have (7) in [33, Theorem
1.20].

Therefore, by [33, Theorem 1.20], UHK(®) and the following joint Holder
regularity hold for parabolic functions. We refer [33, Definition 1.13] for the
definition of parabolic functions. Note that, by a standard argument, we now
can take the continuous version of parabolic functions (for example, see [45,
Lemma 5.12]). Let Q(t,z, 7, R) := (t,t + 1) x B(z, R).

Theorem 2.2.26. There exist constants ¢ > 0, 0 < 0 <1 and 0 < e < 1
such that for all zy € M, tg > 0, r > 0 and for every bounded measur-
able function u = u(t,x) that is parabolic in Q(to, xo, ®(r),r), the following
parabolic Holder reqularity holds:

sup [yl
to ,t0+(1>(1“)} x M

(s —t]) + d(x,m)"
[

r

Jus, ) — u(t, )] < c (

for every s, t € (to,to + ®(er)) and x,y € B(xo,er).

Since pP(t, x,y) is parabolic, from now on, we assume N = ) and take
the joint continuous versions of p(t,z,y) and pP(t,z,y). (c.f., [45, Lemma
5.13]).)

Again, by [33, Theorem 1.20] we have the interior near-diagonal lower

bound of pP(t,z,y) and parabolic Harnack inequality.

Theorem 2.2.27. There exist ¢ € (0,1) and ¢; > 0 such that for any xy €
M,r>0,0<t<®(er) and B= B(xg,r),

C1

Vo) ©Y € Bloc®™()

PPtz y) >

Proposition 2.2.28. Suppose VD(dz), RVD(d,), Jy, PI(®) and E¢. Then,
there exists n > 0 and C3 > 0 such that for any t > 0,

p(t,z,y) > CsV (e, @ (1), x,y € M with d(z,y) < nd(t), (2.2.46)
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and

Cst

V@ dle )o@y x,y € M with d(z,y) > n® ' (t).

p(t,z,y) >

Proof. The proof of the proposition is standard. For example, see [32, Propo-
sition 5.4].

Let n = /2 < 1/2 where ¢ is the constant in Theorem 2.2.27. Then by
Theorem 2.2.27,

Co

y > pB@®(0)/e) (4 S
p(t,z,y) >p (t,x,y) > Vi o 11)

for all d(z,y) < n® ().

(2.2.47)

Note that in the beginning of this section we have mentioned that UHK(®)
holds under Jy <, PI(®) and E¢. Thus, by [32, Lemma 2.7] and UHK(®), we
have

Clt

P (1Bazr < 1) < ——, >0, t>0, M.

Let n; := (Cp/2)YPin € (0,7) so that n®~((1 — b)t) > 7, ®~*(¢) holds for
all b € (0,1/2]. Then choose A < ¢;'C;' (2m1/3)%2/2 < 1/2 small enough so

that Mmgl—ﬁ(t)/i%) < A1Cy(2m/3)7P2 < 1/2. Thus we have A € (0,1/2) and

m € (0,n) (independent of ¢) such that
n® (1 —N)t) >m®'(t), forallt >0, (2.2.48)
and
P (Tp@omao-1@)y3) < At) <1/2, forallt>0and z € M. (2.2.49)

For the remainder of the proof we assume that d(z,y) > n®~'(¢). Since,
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using (2.2.47) and (2.2.48),

Dt a,y) = / POz, 2)p((1 = Mt 2, y)u(dz)
B(yn®~1((1-M\)t))

> inf 1— M)t z, / p(At, x, 2)u(dz
ZGB(y,né‘l((lﬂ)t))p(( ) v) B(ym®@~1((1-\)1)) ( )
Co

> WW(XM € B(y,m® (1)),

it suffices to prove

tV(y, ©7(t))
V(z,d(z,y))¢(d(z, y))

For A C M, let 04 := inf{t > 0 : X; € A}. Using (2.2.49) and the strong

Markov property we have

P*( Xy € B(y,m® (1)) > (2.2.50)

P"(Xy € B(y,m® (1))

> pr < M inf P* (7020 4 > M
(OB me-1()/3) < )ZeB(y,J%—lm/s) (TB(2ma-1(t)/3) > AL)

1
> P (OB me-1wm) < M)

1

= ipz <X(’\t)/\TB(x,2TI1<I>—1(t)/3) € Bly,m® (¢ )/3))

Since d(z,y) > m® (t), clearly B(y,m®~(t)/3) C B(z,2m®-1(t)/3) .
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Thus by (2.2.5), Lévy system and (2.2.49), we have
P <X(/\t)/\TB(z,2m<I>*1(t>/3) < B(y’ nlq)_l(t)/3)>

—E° > Lix.eByma=1(1)/3)

sS(ADATR (3 2m, 0-1(1)/3)

AT (20 0=1()/3)
ds J (X, u)p
0 B(y,m®~1(t)/3)

> 3B [(M) A Tpwama-1)3))V (Y, m® (¢ )/3)

> E*

1

Vi, (w,y))w( (z,y))
V(y, @ (1)
Vi, d(z, y))p(d(z, y))

> cy( AP (Tp(zamae-1()/3) = At) (771/3)d1

tV(y, @7'(t))
Vi(z,d(z,y))¢(d(z,y))’

> 127 A1 /3)"
where in the third inequality we used the fact that
(X, u) < d(Xy,2) + d(z,y) +d(y, u) < d(z,y) +m@ (1) < 2d(z,y).

Thus, combining the above two inequality, we have proved (2.2.50). O

Recall that for A > 1, we call that the chain condition(Ch(A)) holds for
the metric measure space (M, d) if for any n € N and z,y € M, there is a

sequence {zj}7_, of points in M such that zy = z, 2, = y and

d(zi_1,21) < Ad($’y) forall k=1,...,n
n

Lemma 2.2.29. Assume Ch(A), VD(d2) and RVD(d,). We further assume
that there exist n > 0 and ¢ > 0 such that (2.2.46) holds with the function ®
satisfying L (9, 5L) with a > 0 and § > 1. Then, for any T > 0 and C' > 0,
there exists a constant ¢y > 0 such that for any t € (0,T] and z,y € M with
d(w,y) < CO (1),

C1

TCXEION (2.2.51)

p(t,z,y) >
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In particular, if L(9, 6L, ®) holds, then we may take T = oco.

Proof. Without loss of generality we may and do assume a = @~ (7). Fix ¢ >
0 and z,y € M with d(z,y) < CP'(t). Let N := ((%)%5;%W +1eN.
Then, by Ch(A) there exists a sequence {z; }4_, of the points in M such that
20 =x,zy =y and d(zg, 2py1) < A&]\;y) forallk =0,..., N—1. Note that by
Lemma 1.1.4 and Lg-1(1)(0, Cp,®) we have Up(1/3, 6’;1/5@)*1). Using this
and the definition of N, we have

d(z,y) < ACPY(t)  AC

<
AN_ N - N

CTYONYO1(¢/N) < 2&1(¢/N).

w3

For k = 1,...,N, let By := B(z,n® '(¢/N)/3). Then, for any 0 < k <
N —1, & € B, and &1 € Bgy1. So we have

d(&ry Epr1) < d(&g, 21) + d(2k, 26+1) + d(23t1, Er) < @' (E/N).

Thus, by (2.2.46) and (2.2.1) with &1 € Byy1, we have for any k = 0,..., N,
§k € By and &1 € By,

p(t/N, &, Errr) = V(§k+1,¢1‘1(t/N))
- aCt ( d-1(t/N) )d2 - Ca .
= V(#ke1, 7 E/N)) Nd(zrr1s Sprr) + PTHE/N)T T Vizera, ©HE/N))
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Using above estimates and VD(dy), we conclude

p(t,x,y)z/ / p(t/N,x, &) ... p(t/N,En-1,y)p(dér) . .. p(dén—1)

. /B My argmpptdentie . atde-
> 1] V(@' (t/N)/3) [ Via @7 (t/N) !
> et H V (2, @ (t/N)) 1:[ V(z, @1 (t/N))

= V(2,1 (E/N)) L > eV (x, @71 (1)L

This proves the lemma. U

Proposition 2.2.30. Assume that the metric measure space (M,d) satisfies
Ch(A), VD(ds) and RVD(d;). We further assume that there exists n > 0 and
¢ > 0 such that (2.2.46) holds.
(i) Suppose that L,(9, Cr, ®) holds with 6 > 1. Then, for any T € (0,00),
there exist constants ¢ > 0 and ap > 0 such that for any v,y € M and
€ (0,7,

p(t,x,y) > Ve, @ 1(t) " exp (—ar®i(d(z, y),1)). (2.2.52)

Moreover, if L(9, 5L,<I>) holds, then (2.2.52) holds for all t € (0, 00).
(1) Suppose that L*(9, Cr, ®) holds with 6 > 1. Then, for any T € (0, 00),
there exist constants ¢ > 0 and ay > 0 such that for any x,y € M andt > T,

p(t,z,y) > cV(z, @ () exp ( — ar® (d(z,y), t)). (2.2.53)

Proof. (i) Without loss of generality we may and do assume that a = ®~1(T).
Note that by (2.2.51), we have a constant ¢; > 0 such that for any ¢ € (0, 7]
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and z,y € M with d(z,y) < 2cy®1(t),

C1

PR 2 T e )

(2.2.54)
Note that if ¢t € (0,7] and d(z,y) < 2cp® (), (2.2.52) immediately follows
from (2.2.54) since ®q(d(z,y),t) > 0. Now we consider x,y € M and t €
(0, 7] with d(z,y) > 2cy®1(t). Let r := d(z,y) and 6 := L A 2. Define

P t
e=¢e(t,r) :=inf{s >0: (s) >0-}
s r
Note that by (1.1.1) and 6 < 2, we have
O(e(1) cp't HE,
O-1(t) — (2cy)tr T r

which implies e(¢,7) < ®71(t). Also, using lim,_,o %‘9) = 0 we have e(t,r) > 0.
Observe that by the definition of €, we have a decreasing sequence {s,}
converging to ¢ satisfying 2tn) > 0L for all n € N. Using U(as, cy, @) we

Sn

have
5 D) _ P(sp) t

cy(—)2t > >0- forallneN
Sn, € Sn r
Letting n — oo we obtain
t )
bt 26) (2.2.55)
cur €

o) o ot (2.2.56)
€ CL’I“
Also, (2.2.55) yields that
2cyr ot r e 0t cuyr
O, (2eyr, Ot) > > L2y — ) >
1(2e0m,6%) £ d(e) — 5( w ®(e) 7‘) 5

Thus, using Lemma 2.2.20(i) with the fact that r > 2cy®!(t), we have a
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constant ¢; > 0 satisfying

< ' 1 (2cur, 0t) < 1Py (1, ). (2.2.57)

M |3

Define N = N(t,r) := [322] + 1. Since r > 2cy®~'(t) > 2cye, we have
N > [3A] + 1 > 4. Observe that by 23;]’; < N < iUi; and (2.2.56) with
Cre
0 < =53
(I)(?)Ar Sés)gg—?fg 2A0 t <t t
QCUN TCL CUCLN N

This implies 47 < 2cy® (%) On the other hand, since (M,d) satisfies
Ch(A), we have a sequence {2}, of points in M such that zy =z, 2y =y
and d(z-1,2) < Ag forany [ € {1,...,N}.

Thus for any & € B(z, 2cp® (% )) and §_1 € B(z-1, 2cy®71(%)) we have

d(&,&-1) < d(&, z1) +d(z, z1-1) + d(z1-1,&-1)

g 1N + A7 4 2N
2cy

N 3
TH(t/N).

IN

IN

Therefore, using semigroup property and (2.2.51) with N < QAT and (2.2.57)

we have

> / (%, 2,61) - p(F. Ena1,y)dEy - - - dEn—y
) (21”1) (t/N))

>N T Vi, @ (t/N))~ Hvzl, Lt/N)) = e3el V(w, @71 (t/N)) ™!

> C3 (C4Cd1) Ve, ') > csV(z,® ' (t)) texp (—csN) (2.2.58)

> c3V(x,d 71 (t)) ! exp(—cﬁg) > 3V (2, @1 (t)) L exp (—er®i(r, 1)) .
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This concludes (2.2.52). Now assume that ® satisfies L(6, C,). Note that the
case d(z,y) < 2cy®1(t) is same, since we have (2.2.54) for every ¢ > 0. Also,
by the similar way we obtain 0 < e(t,r) < ®71(¢), (2.2.55) and (2.2.56) for all
t € (0,00) and 7 > 2cy®~1(t). Following the calculations in (2.2.58) again,
we conclude (2.2.52) for every ¢t > 0 and =,y € M with d(z,y) > 2cy®1(t).

(ii) Without loss of generality, we may assume a = ®(7’). Then, it suffices

to prove

Pt 2,y) = oV (a, &7 (1) exp(—ar®i(d(r, ). 1), ¢ =T, 2,y € M.

Indeed, ®1(t) = ®1(¢) for t > T. Note that for the proof of (2.2.52) with
T = oo, we only used near-diagonal estimate in (2.2.46) and L(6, Cp, ®) with
semigroup property. Since L(d, 5L,<5) holds, (2.2.53) follows from (2.2.46)
and (2.2.11). O

Proof of Theorem 2.2.14. Combining Proposition 2.2.28 and Proposition
2.2.30 we obtain our desired result. Note that the conditions in Proposi-
tion 2.2.30 follows from Proposition 2.2.28. 0

Proof of Theorem 2.2.15. First we assume (2). Using Theorem 2.2.12 we
obtain UHK(®, ¢). Also, by UHK(®), J,;, < and the conservativeness of (€, F)
with Theorem 2.2.12 we have Eg. Now, the lower bound of HK(®, ¢)) follows
from Proposition 2.2.28. Therefore, (2) implies both (1) and (3).

Now we assume (1). The implication (1) = J, is the same as that in the
proof of Theorem 2.2.12. Since UHK(®) holds, using [33, Theorem 1.20 (3)
= (7)] we obtain PI(®). The conservativeness follows from [32, Proposition
3.1].

Applying [33, Theorem 1.20] and [32, Lemma 4.21], respectively, we easily
see that (3) with (2.2.6) implies UHK(®) and the conservativeness of (£, F).

If we further assume Ch(A), Theorem 2.2.14 yields that (3) = (4). Also,
(4) = (1) is straightforward. d
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2.2.5 HKE and stability on metric measure space with

sub-Gaussian estimates for diffusion process

In this section, we consider a metric measure space having sub-Gaussian
estimates for diffusion process. We will obtain equivalence relation similar
to Theorems 2.2.12 and 2.2.15 without assuming that the the index of local
weak lower scaling conditions is strictly bigger than 1.

Recall that we always assume that ¢ : (0,00) — (0,00) is a nondecreas-
ing function which satisfies L(f1,CL) and U(fs,Cy). We also recall that if
Diff(F') holds, there exists conservative symmetric diffusion process on M
such that the transition density ¢(t,z,y) for the symmetric diffusion pro-
cess Z = (Zy)>0 on M with respect to p exists and satisfies the estimates in
(2.2.2). Throughout this section, we assume VD(ds) and Diff (F') for the met-
ric measure space (M, d, 1), where F' : (0,00) — (0, 00) is strictly increasing
function satisfying (2.2.17), L(71, cz') and U(vz, cp) with 1 < 43 < 7, that

is,

R 71 FR R 72
cpt (—) < ()ch <7) , 0<r<R (2.2.59)

with some constants 1 < 7, < 75 and cp > 1. Note that, by Lemma 1.1.4,

_ . -1 1 T dF(s
F~1 satisfies L(1/72, cp/™) and U(1/71, cy/™). Define ®(r) = F(r)/ [, w(i))
as (2.2.18).

Since v is non-decreasing and liH(l) Y(s) = 0, we easily observe that
S—r

F(r) F(r)
¢(T) - fr dF(s) > fr dF(s) - (I)(’I“), "= 0’
0 (r) 0 4(s)
and - aF(s)
O(R) _F(R) Jo i _ F(R)
= . < < R. 2.2.
o(r)  F(r) foR dqf((s)) = Fr) 0<r<R (2.2.60)

Thus, ¢ satisfies U(vs, cr), and (2.2.6) holds for functions ® and 1. Recall
that 'y = T (F'). Note that Fi(r,t) € (0,00) for every r,¢ > 0 under (2.2.59).
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Here we record [48, Lemma 3.19] for the next use. Since F' is strictly

increasing and satisfying (2.2.59), we have that for any r,¢ > 0,

Fi(r,t) > (@) i A (@) & > (@);— 1 (22.61)

Lemma 2.2.31. ¢ is strictly increasing. Moreover, L(ay,cp, ®) holds for

some aq,cp, > 0.
Proof. Since v is non-decreasing, we may observe that for any 0 < a < b,

F(b) — F(a) YdF(s) _ F(b) — F(a)
W0 S S b

dF(s

regarding —L_ = o0. Thus, there exists a, € (a,b) such that b
8 3(0)

%_ For any r < R, let r, € (0,7) and R, € (r, R) be the constants

satisfying

"dF(s) _ F(r) ®dF(s) _F(R)— F(r)
0 1/}(5) ?/1(7"*) r 1/}(5) d}(R*)

Then, since 1 is non-decreasing,

F(R) F(R)
®(F) = 7 | ER-FG) = Fl) | F®-Fr) Plr.) = (r)
W) T RRY e T eG)

Thus, ® is also non-decreasing. Now suppose that the equality of above in-
equality holds. Then, since F'(R) — F'(r) > 0, we have ¢(r,) = 1 (R.), which

implies that ¥(r,) = 1(r) since ¢ in non-decreasing. Thus, we conclude
rdfGs) F(T , which is contradiction since lim,_,o % (s) = 0. Therefore, ® is
¥(s) (r)

Strlctly 1ncreasmg.
Using L(y1, ¢z, F) and L(By, O, ), there is a constant C' > 1 such that

F(Cr)>4F(r) and ¢(Cr)>4y(r), all r>0. (2.2.62)
Forr > 0,let r; € (0,7), 72 € (r,Cr), r3 € (Cr,C?r) be the constants satisfy-
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r dF s) r) Cr dF(s) _ F(Cr)—F(r) C?r dF s) F(C?r)—F(Cr)
ing Jo 5 = w0 b v = e ad Jo, o(rs)
Then,

F(r)
(I)<T) = dF(s) - ¢(T1)
fO P(s)
e P(C?r) F(c?r)
2
(C ) fC%" dF(s) Z F(r) + F(Cr)—F(r) + F(C2?r)—F(Cr) "
0 P(s) P(r1) P(r1) YP(rs)

By (2.2.62) and the fact that r <r < Cr < rz, we have

P(ry) 1 (C’r) 1
o) =4 ™ Fem S
Therefore, for any r > 0 we have
2(CPr) F(C%r) > 2. (2.2.63)
YU (F(C2r) — F(Cr))

©(r) ~ F(Cr)+ 5

Using (2.2.63) we easily prove that L(aq,cp, ®) holds with oy = ;ﬁ)ggzc and

CL:%. Ol

With the functions 1) and F, let ¢ be the function defined by

d(N) = /000(1 — e_’\t)w(;iﬁ. (2.2.64)

Note that by (2.2.17), L(1,Cr, ) and U(ye, ¢, F),

> dt [T dF(s) o dt -
/o WATETw) ~ Sy o) */Fm ()~

Thus, there exists a subordinator S = (S;,¢ > 0) which is independent of Z

and whose Laplace exponent is ¢. Then, the process Y defined by Y; := Zg,

is pure jump process whose jump kernel is given by
Foleg) = [ altow)
x,y) = , T, Y) ————dLt.
O T O)
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Also, the transition density pY (¢, z,y) of Y can be written by p¥ (¢,2,y) =
I3 a(s,,y)P(S, € ds). Then, from the sub-Gaussian estimates (2.2.2), we

obtain the following lemma.

Lemma 2.2.32. (]2, Lemma 4.2]) J, satisfies (2.2.5). In other words, J
holds for the process Y .

Lemma 2.2.33. There exists ¢ > 0 such that for any A > 0,

(2.2.65)

Proof. Using (2.2.64) and (2.2.18),

© gt 1
o0 = | 0=y > Wy

and by (2.2.18) and (2.2.6),

o _a dt c
o0 = || 0=y < ey

From the above two inequalities we conclude the lemma. Il

Let us define

E(f. f) = //M (F@) = 1)) Telepulde)pdy). S € L),

and {Q;,t > 0} be the transition semigroup with respect to Z on L?(M, ),
thus

Qi () = /M a(t, 2. 9) Fy)uldy).

Following the proof of [27, Lemma 2.3], we obtain a consequence of
Diff (F).

Lemma 2.2.34. Assume that the metric measure space (M,d, i) satisfies
VD(dz), RVD(dy) and Diff(F'). Then, there exist c1,6 > 0 and ¢ € (0,1)
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such that
1

V(xo, F-1(1))
for all zg € My, r > 0, z,y € B(xg,eF~(t)) and t € (0,0F(r)].

R () I

Proof. Assume 0 € (0,1]. Let g € My, r > 0 and denote B, := B(xg,r).
Using (2.2.2), for any z,y € B(zg,eF~(t)) and t € (0,0F (r)],

qBT<t7x7y> = Q(tax7y) - Em[Q(t — 7B, ZTBT7y> S TB, < t]

¢! c

Z Vo ) Ve =)

¢! C

7CLQF1 (d(ZTBT ’y)»thBr )

e 7B, <]

> _ E* —aoF1((1—e)rt—7p, . <t
Z Voo F0) Vg P = 75)) o <4
¢! 1
> P%(rp <t) sup —— e @0P{(1=E)ms)
- V(ZL‘(), F_l(t)) ( Br >0<52t V(xO; F_l(s))
¢t 1

— ¢ sup

Voo FI0) Vi, () P L 00 = ol)

By (2.2.61), we also have

oiligt m exp (— aoFi((1—¢)r,s))

< 2 P Py ()

= S, T P Ve ey o (T (T =
< oty e (o () )

e d ( ey (L= )2\ 7T
=— FF  gupu®Mexp | —agen (—) 2T et
Viwo, F1(£)) 10 P 0

_ C(B)e ™
 Vi(me, F(1)

Since limy_,o C(0) = 0, there is § > 0 such that C(f) < ——L———. With

do/v1 *
20 2/m
2c2e0Cycp
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this, we obtain
1
2V (o, F71(t))

This concludes the lemma. O

q"r(t,x,y) >

Lemma 2.2.35. Suppose that the metric measure space (M,d, i) satisfies
VD(dy), RVD(d;) and Diff(F') where F : (0,00) — (0,00) strictly increasing
function satisfying (2.2.17), L(y1, czt) and U(7yz, cp) with 1 < v, < 4o. There
exist constants ¢ > 0 and ¢ € (0,1) such that for any xo € My, r > 0,
0<t<®Er) and z,y € B(xg,e®1(t)),

Y,B(xo,r) ¢ C .
P Y) 2 )

Proof. Recall that we have defined Y; = Zg,, where S; is a subordinator
independent of Z and whose Laplace exponent is the function ¢ in (2.2.64).
Also, by (2.2.65) we have q)(c—l) < ¢(A) < gr=thomy- Take A by
F(® et 1) and F(®'(e;t7))", and using the fact that ® and F

are strictly increasing we obtain that for any ¢ > 0
F(@ (ei't) <o 't < F(@ (eat)). (2.2.66)

By [70, Proposition 2.4], there exist p, ¢y > 0 such that

1 1
Choose € > 0 such that
é@‘l(t) < 5F‘1(%F(<I>_1(cl_lt))) and F(@‘l(clp_lq)(ér))) < OF(r),

where € € (0, 1) and 6 are the constants in Lemma 2.2.34. Then, by (2.2.66),

we see that for 0 <t < ®(ér) and s € [245*11(15*1)’ (b*l(;t*l)]’ we have
1
S S W S F(Cb_l(clp_lt)) S F(q)_l(clp_l@(é’f’))) S QF(T)
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and
1
207 H(t71)

Thus, by [87, Proposition 3.1], Lemma 2.2.34, (2.2.67), (2.2.66), VD(ds),
(2.2.59) and U(1/ay, ¢, /™, ®1), we see that for 0 < ¢ < ®(ér) and
T,y € B(ZE(), é(I)_l(t))

(o(t) < P (EP@ N (er't)) < eF ) < eFY(s).

2

o0
prPEn (¢, 2 y) > / "0 (s, 2, y)P(S; € ds)
0

1
o~ L(pt=T) B
q (

> (s, 2, y)P(S, € ds)
26— 11
C3 1 1
> P < S
2 Vi P 1) ) a1 =5 5
> C2C3 > Cq
= V(wo, F7HF(@"Ye1p't)))) — Vi(wo, @71(1))
This finishes the lemma. O

Theorem 2.2.36. Suppose that the metric measure space (M, d, i) satisfies
VD(dz), RVD(d,) and Diff(F') where F : (0,00) — (0,00) strictly increasing
function satisfying (2.2.17), L(v1,cz') and U(ya, cp) with 1 < 4 < 7. As-
sume that X is a Markov process on (M, d) satisfying Jy. Then, there exists

a constant ¢ > 0 such that

1 t
p(t,x,y) <c < A\ )
o) =\ Ve 1@) " Vi d, ). 1)
for allt >0 and x,y € M. Moreover, E¢ and PI(®) holds for X.

Proof. Note that from Lemma 2.2.32 and Lemma 2.2.35, the condition (4) in
[33, Theorem 1.20] holds for the process Y. In particular, using [33, Theorem
1.20], the conditions CSJ(®) and PI(®) holds for the process Y. Since the
jump kernel of X and Y are comparable by Lemma 2.2.32, the conditions
PI(®) and CSJ(®) also hold for X. In particular, the process X satisfies
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condition (7) in [33, Theorem 1.20]. Now, using [33, Theorem 1.20] again we
obtain E¢ and UHK(®). This completes the proof. O

Proof of Theorem 2.2.17. Assume J,. Then, with Theorem 2.2.36 and the
fact that T(F) = Fj, the proof of the upper bound in GHK(®,) follows
similarly as the proof of Theorem 2.2.11 (see [2, Theorem 4.5]). Also, using
Theorem 2.2.36 and Lemma 2.2.35 we have Eg and PI(®). Since all conditions
in Proposition 2.2.28 holds, we obtain the lower bound of GHK(®, ).

Also, following the proof of [32, Proposition 3.3], we obtain that GHK(®, )
implies Jy. U

Proof of Corollary 2.2.18. Using Theorem 2.2.17, X satisfies J,,, PI(®) and
Eg. Thus, the conclusion follows from Theorems 2.2.11 and 2.2.14. U

2.2.6 Examples

We give some examples which are covered by our results. Throughout this sec-
tion, (M, d, p) is a metric measure space satisfying Ch(A), VD(dy), RVD(d,)
and Diff (F), where the function F' : (0,00) — (0,00) is strictly increasing
function satisfying L(v1, c}l) and U (79, cp) with some constants 1 < vy, < 7s.

Typical examples of metric measure spaces satisfying the above condi-
tions are unbounded Sierpinski gasket and unbounded Sierpinski carpet in
R? with n > 2. First, let us check that unbounded Sierpinski gasket in R?
satisfies the above conditions. Let (Msg, dsa, tise) be the unbounded Sier-
pinski gasket in R?, which was introduced in [13]. Here dsc(x,y) denotes the
length of the shortest path in Mgg from z to y, and use is a multiple of the
d-dimensional Hausdorff measure on Mgq with dy = log3/log2 (see [13,
Lemma 1.1]). By [13, (1.13)], dsc(z,y) is comparable to |z — y| which is the
Euclidean distance, which implies Ch(A). Also, by [13, Theorem 1.5], Diff (F")
holds for F(r) = r4 with d,, = log5/log2 > 2. Since dsq(z,y) < |v — v
and Mgg is subset of R?, all metric balls in (Msg,dsg) are precompact.
Since Mg is unbounded, by [48, Corollary 7.6], we have VD(ds). Moreover,
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by [46, Corollary 5.3], we also have RVD(d;) since Mg¢ is connected. Thus,
we see that (Msg, dsqa, pse) satisfies Ch(A), VD(dy), RVD(d;) and Diff(F).
This result also holds for unbounded Sierpinski gaskets constructed in n-
dimensional (n > 3) Euclidean space with different d¢(n) > 0 and d,,(n) > 1
(see [13, Section 10]). Now, let (Mgc, | - |, H(dy)) be the unbounded general-
ized Sierpinski carpet constructed in R, which was introduced in [7]. Then,
by [7, Hypotheses 2.1], (Msc,| - |) satisfies Ch(A) and connected. Also, by
[7, Theorem 1.3], Diff(F') holds for F(r) = r® with d,, > 2. Moreover, by |7,
Remark 2.2|, |z — y| < dgc(x,y) for all 2,y € Mge, where dgc(z,y) is the
length of the shortest path in Mgc from x to y. Thus, by the same argument
as in the unbounded Sierpinski gasket case, we see that (Mgc, | - |, H(dy))
satisfies Ch(A), VD(dz), RVD(d;) and Diff (F').

Let X be the symmetric pure-jump Hunt process on (M, d, ), which
is associated with the regular Dirichlet form (€, F) in (2.2.4) satisfying J,,
and p(t,z,y) be the transition density of X. In this section, we will use the

notation f(-) ~ g(-) at oo (resp. 0) if % — 1l ast — oo (resp. t — 0).

Example 2.2.37. Suppose F' is differentiable function satisfying F(s) =<
sF'(s) and F(s)1lg<y < s7(log)"1,cqy for v > 1 and & € R. Suppose
further that ¢ : (0,00) — (0,00) is a non-decreasing function which satisfies
L(f1,Cp) and U(Bs, Cy). Define f, 5(s) := (log 1) ~*(loglog +)~# and D :=
{(a,b) € R? : @ > 1,b € R}U{(1,b) € R* : b > 1}. Then, we observe that
for (o, ) € D, lop(s) = sfl 4(s) =< (log 1) *(loglog1)~?. In particular,
log € Ry and fo5(s) = [ lap(u)u~'du. Assume that for (o, ) € D

1 1
(X)) < F(N)(log X)_O‘(log log X)_ﬁ, 0< A< 27

Then, there exist T = T'(a— &, ) < 27 such that for s < T, f,_x s is mono-
tone and satisfies (fo—k,5)(s7) < (fa—r,p)(s). Thus, by the above observation
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we have the following heat kernel estimates for ¢t < T

(t,2,y) = 1 A :
b, T,y) = V(x,tl/V(faf,{,,B)(t)l/V) Vi(x,d(z,y))(d(z,y))

1 d(z,y)Y 1/(v=1)
“vemreem e (e (@ w) )

Example 2.2.38. Suppose F is differentiable function satisfying F(s) =<

sF'(s) and F(s)1{s=1y < 87 (logs)"1s1y for o/ > 1 and £ € R. Suppose
further that ¢ : (0,00) — (0,00) is a non-decreasing function which satisfies
(2.2.17), L(61,CL), U(B2, Cy) and (r)L1ys16 < F(r)(log r) 1516y for €
R. Let £(s) = (logs) . Then for 8 < 1, [ “2ds = co. For s > 16, let

—_(logs)'=? if B <1,
f(s) _ 1_5< g ) B
log log s if g=1.
Then, there exists " = T'(5,x) > 16 such that for s > T, f(s)/(log s)" is
monotone and f(s)/(logs)* =< f(s7')/(logs")*. Thus we have the following

heat kernel estimates for t > T
H)Ifpg<1:

1
V(gj’ 1/ (log t)(lfﬂf"@)/'Y/)

t
A (v@:, d(z,y))d(w,y)" (log(1 + d(z,y))) 7+

! dayy’ \TT
TV, 07 (og )0 ) P (‘“2 (W) ,

p(t,z,y) <
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(ii) If 8 = 1:
1
V(x, £/ (log t)=/7 (log log t)1/7")

t
: <V(x7 d(x,y))d(z,y)" (log(1 + d(z,y)))**

p(t,z,y) <

1
+ = exp | —a <_d(ﬂc,y)7/ )V*l
V(z,tY7 (logt)=*/" (loglogt)'/") 3 \ t(loglogt)(log 1) = '

Example 2.2.39. Recall that 71,7 > 1 are the constants in (2.2.59).
Suppose F' is differentiable function such that there exists ¢ > 0 satis-
fying 1 F(s) < sF'(s) < cF(s) for all s > 0. Let T > 0 and ¢(r) =
rLg<y + rﬁl{r>1}, where @ < 71 < 7 < (. Then, by Corollary 2.2.17,
we see that for t < T,

1 t
V(w0 " Vi ) (@, 9)

Indeed, for d(z,y) < 1, (2.2.68) follows from Theorem 2.2.36. If d(z,y) > 1,
then v d(x,y)t) ) dominates the upper bound of off-diagonal term in
(2.2.8).

On the other hand, by the condition v, < 3, we have fooo d&(ss)) < c+
¢ [{° SF5ds < oo. Thus, for r > 1, ®(r) defined in (2.2.18) is comparable to

F(r) and ®(r)/r < F(r)/r < F'(r). Now we see that for t > T,

p(t,z,y) < (2.2.68)

t ' ) . "B T
p(t,z,y) =< Ve F1@) "\ Ve dz g)dzy)? | Ve F @)

Recall that 2 () := supg_ < @ appeared in Section 2.1. The following

lemma yields that Theorem 2.1.2 is a special case of Corollary 2.2.18.

Lemma 2.2.40. Suppose ® is non-decreasing function satisfying L(ay,cr),
Uz, cy) and Lo(5,CL) for 6 > 1. Let T € (0,00). Then, there ezists a
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constant ¢ > 1 such that for any t € (0,T) and r > 2c¢5®71(t),

-1 r

C @1(7‘, t) S m S Cq)l(’f’, t) (2269)
Moreover, if L(0, 5L) holds, then (2.2.69) holds for any t € (0,00) and r >
2¢2,071(¢).

Proof. Without loss of generality we may and do assume a = ®~(7T'). Note
that oy > 1. Let Ry := ®Y(T) and ¢; = C;' so that Lg,(d,¢;",®) and
Lemma 2.1.6 hold. Denote ¢ := ﬁ Since r > 2¢4,®71(t), we have

2¢e (I)_l (t)1+€

i <& t) < Ry.

T&‘

It follows from Lemma 2.1.6, Lemma 1.1.5 and U(«s, ¢y, @) that

E(I)—l(t)l-i-a o re B E(I)_l(t)a
H (CQU —e) > CU2 W(D ((I) l(t)C%[ )

r re
> ool ot (D((I)fl(t)czzf (D_Ts(t)s)
- et @(el(1)

>C—2—25f rite 2 @7 ()™ :f
= U i) \ U e r

Thus,

-1 (t)lJrs

pi= Jif*l(f) <cff <270 (t) < Ry.
T

T&

By Lemma 2.1.6, ¢ satisfies Ug, (ap — 1, crcp) and Lg, (6 — 1, ¢;'CL). Thus,

using Lemma 1.1.5 we have

t t
(ClcU)il; < Ji/(p) < clcU;. (2270)
Using (2.2.70) and Lemma 2.1.6, we have
t ®(p)

(ClcU)_I; <H(p)<a

p
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Then, letting ¢y = cicy, the above inequality and (2.2.21) imply that there
exists c3 > 0 such that
2cor t Cor CoT

c3®q(r,t) > D1(2¢or,t) > T3 > n = )

This proves the second inequality in (2.2.69). For the first one, we take a
s > 0 such that

t r t
e < Py(r,t) < 2(g — m).

0<

w | =

(2.2.71)

~—

Since ®q(r,t) > 0, we have ®(s)/s > t/r. Using this, Lemma 2.1.6 and
(2.2.70) we have

d d
% <7 (p) < Clchj < ccy <S) (2.2.72)

Thus, if s < p < Ry, using Lg, (6, c;*, @) and (2.2.72)

lel(g)éfl S qD(pﬂ)/@ < c1cy

Thus, we conclude that there is ¢4 > 0 such that s > ¢4p. Using this and
(2.2.71), we have

r

Oy(r,t) < p < 2t - r
p

_ —1

A tr)

VA

When L(6, GL, ®) holds, we may take Ry = 0o and ¢; = 551. Then, the proof
is same as above since Lemma 2.1.6 holds for all » > 0 and (2.2.21) holds for
all t > 0 and r > 2¢3,®~*(¢). This completes the proof. O
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Chapter 3

Heat kernel estimates for
nonsymmetric nonlocal

operators

Let d > 1, R? be the d-dimensional Euclidean space. Define

L£7f(z) = lm L7 (z) == lim (f(z+2) = f(2)) w(z, 2) ] (|2])d=
© SV S {z€Rd 2] >e}
(3.0.1)

where x : R x R? — R, is a Borel function satisfying the following condi-

tions: there exist positive constants kg, k1, k2 and § € (0, 1) such that
ko < K(z,2) < Ky, K(z,2) = k(z,—2) forall z,z € R? (3.0.2)
and
|k(z,2) — K(y, 2)| < Kolz —y° for all z,y, z € R%. (3.0.3)

In [34], Zhen-Qing Chen and Xicheng Zhang studied the operator £* and
its heat kernel when J(r) = v~ r > 0 and a € (0,2). They proved the
existence and uniqueness of the heat kernel and its sharp two-sided estimates,
cf. [34, Theorem 1.1] for details. The methods in [34] are quite robust and
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have been applied to non-symmetric and non-convolution operators (see [19,
24, 35, 36, 61, 55, 53] and references therein). In particular, [61] studied the
operator L and its heat kernel when J is comparable to jumping kernels of
subordinate Brownian motions and its Lévy exponent satisfying a weak lower
scaling condition at infinity. In this chapter we introduce the result in [60],
which deals with the case that J(r) decays exponentially or subexponentially
when r — oo and we obtain sharp two-sided estimates for the heat kernel of
L.

3.1 Jump processes with exponentially de-
caying kernel

In this section, we study the transition densities for a large class of non-
symmetric Markov processes whose jumping kernels decay exponentially or
subexponentially. We obtain their upper bounds which also decay at the same
rate as their jumping kernels. When the lower bounds of jumping kernels
satisfy the weak upper scaling condition at zero, we also establish lower
bounds for the transition densities, which are sharp.

Again we consider the operator in (3.0.1) where x : R? x R? — R, is a
Borel function satisfying (3.0.2) and (3.0.3).

We assume that J : R,y — R, is continuous and non-increasing function
satisfying that there exist a continuous and strictly increasing function ¢ :
[0,1] — Ry with ¢(0) = 0, and constants b > 0, 0 < < 1 and a > 1 such
that

a a
B
T < J(r) < T 0<r<1 and J(r) <aexp(—br”), r>1.
(3.1.1)
In addition, we assume that J is differentiable in R, and

J/

r— _J) is non-increasing in R . (3.1.2)
r
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Our main assumption on ¢ is the following weak lower scaling condition at

zero: there exist a; € (0,2] and a; > 0 such that

a@m <P cr< (3.13)

r’o T ()’

Since we allow a; to be 2, to guarantee that J is to be a Lévy density, we

also need the following integrability condition for ¢/ near zero:

/o ¢(S>d8 = Cp < 0. (3.1.4)

The monotonicity of J(r) and (3.1.4) ensure the existence of an isotropic uni-
modal Lévy process in R? with the Lévy measure J(|x|)dz, which is infinite
because of (3.1.3) and the lower bound in (3.1.1).

Our goal is to obtain estimates of the heat kernel for £”. First we intro-
duce the function ¥(¢,z) which plays an important role for the estimates of
heat kernel. Let us define the function ¢ and 6 as

T2

ST s 0<r<l1
D(r) = 2 Jo 5tyds (3.1.5)

O (1)r?, r>1

and

1
<1
o(r) = § 700 e

exp(—br®)1ocpary + 7 texp(—=2r) sy, > 1

Note that we define ®(r) := ®(1)r* for r > 1 since ¢ is defined in (1, 00).
and we will study heat kernel estimates for small time.
By (3.1.4), [ Z(ds is integrable so that @ is well-defined. Note that

-1
o(1) = (2 fol @ds) = (2C)! is determined by Cj. Note that as in
Chapter 2, ® is a strictly increasing function in R, and lig)l O(r) = 0. (See

Subsection 2.1.1) So, there exists an inverse function ®~! : R, — R,. For
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t >0 and r > 0, define ¥(¢,7) by

1

— d -
G(t,r) = @ )(t,r) = 1) NG(r).
By an abuse of notation we also define
1
_ d . d

so Y(t,x) = Y(t,|z]). Note that the definition of #(r) for f = 1 is sim-

ply technical and it is harmless for readers to regard (r) as #(T)l{rgl} +

exp(—%r)l{,,>1} as the upper bound of heat kernel for § = 1 in Theorems
3.1.1-3.1.3 below.

Let us compare ¢ with the following function defined by

G(t,z) = G(t, |2]) = t@j(t)d A |I’d£(|x|). (3.1.7)

By [61, Proposition 2.1] and our Lemma 3.1.13 below we see that 9 is the
function used for the upper heat kernel estimates in [61] (see Remark 3.1.6
for details). It is easy to see that 9 (t,z) < ¢¥(t,z) (see Lemma 3.1.5 below).

Here is our main result.

Theorem 3.1.1. Let L be the operator in (3.0.1). Assume that jumping ker-
nel J satisfies (3.1.1) and (3.1.2), that ¢ satisfies (3.1.3) and (3.1.4), and that
K satisfies (3.0.2) and (3.0.3). Then, there ezists a unique jointly continuous

function p*(t,z,y) on Ry x R x R? solving

o (t,w,y) = Lp"(t, -, y)(z), x#v, (3.1.8)

and satisfying the following properties:
(i) (Upper bound) For every T > 1, there is a constant ¢; > 0 such that
for all t € (0,T] and x,y € RY,

Pt zy) <t (t,x —vy). (3.1.9)
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(ii) (Fractional derivative) For any x,y € RY with x # y, the map t
LEpt(t, -, y)(x) is continuous, and for each T > 1, there exists a constant
cy > 0 such that for allt € (0,T], € € [0,1] and x,y € R,

|LEp™(t, - y)(x)| < cﬁé(t, x—y). (3.1.10)

(11i) (Continuity) For any bounded and uniformly continuous function f :
R¢Y — R,

lim sup
th0 erd

[ ot = f@)] <o (.L.11)

Furthermore, such unique function p*(t,x,y) satisfies the following lower

bound: for every T > 1, there exists a constant c3,c4 > 0 such that for
all t € (0,77,

O-1(t), x—y| < e Pt
Ptz y) = s ) I~ 4l < ™) (3.1.12)
tI(le —yl), |l —yl>ca® (1)

The constants ¢;, i = 1,...,4, depend only on d,T,a,ay,aq,b, 5,Co, 9, Ko, K1

and K.

The upper bound of the fractional derivative of p” in (3.1.10), which is
a counterpart of [61, (1.12)], will be used to prove the uniqueness of heat
kernel.

We emphasize here that unlike [61, (1.21)] we obtain (3.1.12) without any
upper weak scaling condition on 1. The estimates in (3.1.9) and (3.1.12) in
Theorem 3.1.1 are not sharp in general. However, when the jumping kernel
J satisfies

J(r) > ayexp(=byr™), r>1, (3.1.13)
and 1) satisfies upper weak scaling condition at zero, that is,

i((f)) < ag(g)‘“, 0<t<R<1 (3.1.14)

where ay > 0 and as € (0,2), then the lower bound in (3.1.12) is comparable
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to that in [49, Theorem 1.2}, which is lower heat kernel estimates for sym-
metric Hunt process with exponentially decaying jumping kernel. Note that
1 is comparable to ® under (3.1.3) and (3.1.14). Therefore, under additional
assumptions (3.1.14) and (3.1.13) we have the following corollary.

Corollary 3.1.2. Let L" be the operator in (3.0.1). Assume that jump-
ing kernel J satisfies (3.1.1), (3.1.2) and (3.1.13), that ¢ satisfies (3.1.3)
and (3.1.14), and that k satisfies (3.0.2) and (3.0.3). Then, the heat kernel
p(t,x,y) for L" satisfies the following estimates: for every T > 1, there is a
constant c; > 0 such that for allt € (0,T] and z,y € R,

o (w‘l(t)_d A 7 — y;dz;(\:c - y\))

<Pt ay) < o (wt)d A

t
[z = yl7 (e —yl)

) eyl <,
and
e 'texp(—bilz — y|?) < pi(t,x,y) < atf(|r —y]), |r—y| > L

The constant ¢; depend on d, T, a,ay, as, g, o, b, by, 3, 51, Co, 6, Ko, k1 and kKs.

Comparing to [61], Corollary 3.1.2 provides further precise heat kernel
estimates for the operator (3.0.1) with exponential decaying function J. We
remark here that, when 8 > 1, the estimates of p" (¢, x,y) are different and so
the result in Corollary 3.1.2 does not hold even for symmetric Lévy processes.
See [28, 89]. We will address this interesting case somewhere else.

More properties of the heat kernel p*(t,z,y) are listed in the following

theorems.

Theorem 3.1.3. Suppose that the assumptions of Theorem 3.1.1 are satis-
fied.
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(1) (Conservativeness) For all (t,z) € Ry x RY,

/ Ptz y)dy =1.
]Rd

(2) (Chapman-Kolmogorov equation) For all s,t > 0 and x,y € R?,
[ v s, 0) de = 50+ s,
R4

(3) (Hélder continuity) For every T > 1 and v € (0,a1) N (0, 1], there is a
constant ¢; > 0 such that for all 0 < t < T and z,2',y € R? with either
r#yora Fy,

p"(t, 2, y) = p(t 2 y)| < erle = 2T (G (L —y) V(L2 —y)).
(3.1.15)

The constant ¢y depends only on d, T, a,ay,a1,b,3,Cy,7,0, ko, kK1 and kKs.

For ¢t > 0, define the operator P} by

Pif@) = [ reniwdy, R (3.1.16)

where f is a nonnegative (or bounded) Borel function on R%, and let P = Id.
Then by Theorems 3.1.3, (Pf):> is a Feller semigroup with the strong Feller
property. Let C’g “(R%) be the space of bounded twice differentiable functions

in R? whose second derivatives are uniformly Hélder continuous.
Theorem 3.1.4. (1) (Generator) Let ¢ > 0. For any f € C2°(R?), we have

lim (P () — f(2) = £ (), (3.1.17)

)

and the convergence is uniform. (2) (Analyticity) The semigroup (Pf)i>o of
L is analytic in LP(R?) for every p € [1,00).

Note that we defined the function ¥(¢,x) from the conditions on J di-
rectly, while in [61] the function p(t, ) is defined by the characteristic expo-
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nent of an isotropic unimodal Lévy process with jumping kernel J(x)dx. The
reason is that, in our situation, it is more convenient than using character-
istic exponent to describe exponential decaying jumping kernel. See Remark
3.1.6 below for the connections between two definitions.

In this section, we denote diam(A) = sup{|zr —y| : z,y € A} and o(dz) =
04(dz) be a uniform measure in the sphere {z € R?: |z| = 1}. For a function
f Ry x RT = R, we define f(t,z +2) = f(t, v+ 2) + f(t,x — 2) and

Op(t,m;2) = f(t,x+2)+f(t,x—2)=2f(t,x) = f(t,xtz)—2f(t,x). (3.1.18)

3.1.1 Preliminaries

We start from the fact that our main results hold for all ¢ < T, while the
definition of ¢ in (3.1.6) is independent of T'. To make our proofs simpler, we

introduce a family of auxiliary functions which will be used mostly in proofs.
Let "> ®(1) and define ¢ : (0,7] x (0,00) — (0,00) by

1
to—1(t)d’

Gr(t,r) = Td%m,

Cr exp(—br5)10<5<1+ %exp(—%r)lgzl, r> & YT,

r < o1,

O(t) <r <dNT),

where Cp := T10~1(T)~4et® (M1, + T1071(T)ei® "(M14_,. Note that
r+— 9r(t,r) is continuous and non-increasing (due to such choice of C7).

Recall that ¢(t,r) is defined in (3.1.7). In the following lemma we show
that &y and ¥(t, ) are comparable and less than & (¢, 7).

Lemma 3.1.5. (a) Let T' > ®(1). Then, there exists a constant ¢; = ¢, (T") >
0 such that
cflggp(t,r) <Y (t,r) < a1%r(t,r) (3.1.19)

for any t € (0,T)] and r > 0.
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(b) There exists a constant co > 0 such that
G(t,r) < 9 (t,r). (3.1.20)

for any t > 0 and r > 0. The constant ¢; depends on d,b,T,®~(T), and
Co, and cy depends on d,b, 5 and Cy.

Proof. (a) Define

r=4d(r)L, r < o YT),

Or(r) =
Crexp(—br?)Locgar + Crr=texp(—2r)15_, r> o~ Y(T).

Note that r + 67(r) is strictly decreasing and 07(®~'(t)) = g for any
0 <t <T'. Thus we can obtain

1
Or(r) < () if and only if ¢ < ®(r). (3.1.21)
By (3.1.21) we have
Yr(t,r) = A0 . 3.1.22
s (3.122)
Let
SUD; <, <a-1(7) @ exp(br?) for 0<p <1,
MT = )
SUD| <, <a-1(7) ﬁ exp(z7) for =
and
inflSTSqi'*l(T) #(7") exp(brﬁ) for 0< ,8 < ].,
mr =
infi<,<o-1(7) qf(;) exp(gr) for =1
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Then, for 0 < g < 1,

m = Or(r), r <1,
o exp(—br’) > My ooy = Mp'or(r),  1<r <@ (D),
)=
exp(—br?) < mz'0r(r), 1<r <o YT),
| exp(—brf) = C0r(r), r>®YT)
and for § =1,
(s = 0r(r), r<i,
6(r) = Td%exp(—%r) > M;lwl(r) = Mz;'0r(r), 1<r <o YT,
exp(—br?) < mp'0r(r), 1<r <o YT,
7 exp(—gr) = Ol 0r(r), r> o YT).

Thus, for any 0 < 8 <1 and r > 0,
(LA M ACIH0p(r) <0(r) < (1Vmpt vV C1or(r).

Using this and (3.1.22) we arrive (3.1.19).
(b) Clearly we have 4(t,r) = 4(t,r) for r < 1. Forany r > 1 and 0 < 8 < 1

we have

G(t,r) = rdcli(r) > (88211) 52®(5s) exp(—bsﬁ)>_ exp(—br?) = ¢(B)4(t,7).

Similarly, for r > 1 and =1

G(t,r) = ——— > () b9) Lt~ e
(t,r) = (1) = b s exp(—ws) ) e =c(1)F(t ).
Combining above estimates with (3.1.19) we arrive (3.1.20). O

In the following remark we will see that our ¢ (t,x) and the function

p(t,x) in [61] are comparable.
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Remark 3.1.6. Let r(¢,7) := ¢ 1 (t 7)) A [top(r~1)r=9 as in [61], where ¢ is
the characteristic exponent with respect to the Lévy process whose jumping
kernel is J(|y|)dy. By Lemma 3.1.13 below we have ¢(r—1)~! < ®&(r) for
all 7 > 0, which implies that r(t,7)/t < &(t,r) for all r > 0. Thus, by [61,
Proposition 2.1] we conclude that ¢(t, x) is comparable to the function p(t, x)
in [61].

3.1.2 Basic scaling inequalities.

Let @ be the function in (3.1.5). Note that L(ay,ay,®) and U(2,1,®) hold
using Ly (a1, a1,1), (2.1.12) and Lemma 2.1.5. Also, by Lemma 1.1.4 we have
that L(1/2,1,®7') and U(1/ay,a; Ve g 1) hold. Now we introduce some

scaling properties of ¢4 which will be used throughout this section.

Lemma 3.1.7. ([60, Lemma 2.5]) Let T" > 1 and € > 0. Then, there exist
constants cy,cy > 0 such that for any 0 < t < T, 2 € R? and » € R?
satisfying ®(|z]) <,

G(ct,x) < 1¥9(t, x) (3.1.23)

and
G(t,x+2) <¥9(t,x), (3.1.24)

where ¢, depends only on d, a1, aq, €, and co depends only on d, T, ay, 1,0, 5

and C().

3.1.3 Convolution inequalities

In this section, we obtain some convolution inequalities for ¢ (¢, ) which will
be used for Levi’s method in Section 5. To get these inequalities we will use
some estimates in [61, Section 2]. Note that by Remark 3.1.6 we already have
convolution inequalities for 4(t,x) (e.g. [61, Proposition 2.8]). For a,b > 0,
let B(a,b) fo =11 — s5)"tds = % be the beta function.

Using L(1/2,c¢” 1, _1) and U(1/ay,c,®7'), the proof of the following

lemma is same as the one in [61, Lemma 2.3]. Thus we skip the proof.
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Lemma 3.1.8. Assume that ¢ satisfies (3.1.3) and 7,6 > 0, n,0 € R are
constants satisfying 1,>0(7v/2)+1y<o(v/on)+9/24+1—n > 0. Then for every
t > 0, we have

t
)
/ 71O (8)(t—s) Dt —5)ds < B(§+1—9, %4—1—77)151”7’9(1)’1(15)7*5.
0
(3.1.25)

For 0 < s <t, let g(s) :=t° + (2 — 1)s” — (t + 5)”. Then we can easily
check that ¢(0) = g(¢t) = 0 and

g (s)=B((2° —1)s° = (t+5)°Y) 20, sel0,k,
<0, seclktt],

where k := ((2° — 1)ﬁ —1)"t € (0,1) is the constant satisfying ¢'(kt) = 0.
Thus, we conclude that g(s) > 0 for any 0 < s < ¢, which implies

9457 > (t45)P+(2-2°)(t°ns”), forall0 < B < 1andt,s>0. (3.1.26)

Using (3.1.26) we prove the following lemma, which we need for our con-

volution inequalities.

Lemma 3.1.9. (a) Let 0 < f < 1 and b > 0. Then, there exists a constant
c1 > 0 such that for any v € RY,

/ exp(—blz — 2|% — b|z|P)dz < ¢; exp(—b|z|?). (3.1.27)
Rd
(b) There exists a constant cy > 0 such that for any v € R with |z| > 1,
/ (2 — 2|~ A 1)(|2[~1 A 1)dz < cala] L. (3.1.28)
R4

The constant ¢ depends only on b, d and (8, and co depends only on d.
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Proof. (a) Let
= 2/ exp(—b(2 — 2°)|2|?)dz < .
Rd
Using (3.1.26) for the second line, we arrive
/ exp(—blz — z|® — b|z|?)dz
R4
< / exp(—blz[?) exp ( — b2 — 2) (1217 A |z — 2)%))dz
Rd

< exp(—b|z|?) (/R exp(—b(2 — 2%)|2|%)dz +/Rdexp(—b(2 — )|z — z|ﬂ)dz)

= ¢; exp(—b|z|?).

This proves (3.1.27).
(b) Using |z — z|7' A |2|7! < 2]z|7!, we have

/ (| — 27 A D) (|27 A L)dz
Rd

2
< (=)t (/ (|2|7 A 1)dz —I—/ (| — 2|71 A 1)dz>
|| |z—2z|>2] lz—z|<|z|

2
< ()4t / (|27t Al)dz + / (Jo — 2" A)dz | = ez ™47
|z Rd R?

This concludes the lemma. O

For v, € R, t > 0 and = € R? we define
é . 0 2 . é 7
G (t,x) =07 () (|z|° ADY(t,x) and &) (t, ) := 7' () (|2’ A1) (¢, ).

Note that 4 (t,z) = 4(t,z), and %:f(t,x) is comparable to the function
p(t, x) in [61] by Remark 3.1.6. Also, we can easily check that for T > (1),

G (t,x) < O N (T) " (t,2), (t,r) € (0,T] x RY, 75 < 3.1.29)
GO (t,x) < G2 (L, x), (t,x) € (0,00) x RY, 0 < 6{X180)

Y

IN
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We record the following inequality which immediately follows from (3.1.29)
and (3.1.30): for any T > ®(1), § > 0 and (¢, ) € (0,T] x RY,

(99 +9)(t,x) < (P NT) + )9 (t,x) <207 Y(1)°Y(t,z).  (3.1.31)

Now we are ready to introduce convolution inequalities for ¢4 (¢, x).

Proposition 3.1.10. Assume that v satisfies (3.1.3). Let T > 1 and 0 <
a < a.

(a) There exists a constant ¢ = ¢(d, T, a1, , 1) > 0 such that for any 0 <
t<T,d€e(0,a] and v € R,

5 Go(t,x)dr < ct 'O ()T (3.1.32)

(b) There exists C = C(a,T) = C(d,T, a1, a,a1,b,5) > 0 such that for all
r€RL 61,0, >0 withdy + 0 < a, 1,72 €ERand 0 < s <t <T,

/ GOt — 5,0 — 2)F(s,2) dz (3.1.33)

Rd

< C((t= )07 (1 = 5RO ()2 (1, )

+ ®7Ht — )T DT (5) 2T T2 (¢ )

+ (t— )T DNt — ) TNDT(5)12 92 (¢, 1)

LIt — )LD (s) 2R (1, 1) )
In particular, letting v1 = 2 = 61 = d3 = 0 in (3.1.33) we have

G(t—s,x—2)9(s,2)dz <2C (s + (t — s) " )9(t, x). (3.1.34)
R4

(c) For allz € R, 0 <t < T, 8,00 > 0 and 0,n € [0,1] satisfying 6, +
(52 S «, 1712()(’}/1/2) + 171<0<’)/1/061) + 51/2 —+ 1-— 8 > 0 and 1722()(’)/2/2> +
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1,,<0(72/a1) +02/2+1—1n >0, we have a constant Cy > 0 satisfying

/ / ) 9?451( S, T — 2)8 1_"%%’(8,2) dzds
R4

2—0— 0 6 02
<Cat ! (g’71+72+51+52 + g711+72+52 g471-1—%-!—51) (t’ l‘) (3135)

for any 0 <t < T and x € RY. Moreover, when ~y1,vs > 0 we further have

5 5
02:4(:3(%;1+1—9,72;2+1—n). (3.1.36)

Proof. (a) See [61, Lemma 2.6(a)].

(b) By (3.1.19), it suffices to show (3.1.33) with the function (4r))(t,z) :=
OL(t)7(|z|° A1)%r(t, v). Without loss of generality we assume T' > ®(1) and
for notational convenience we drop 7" in the notations so we use ¥ (t, z) and
G0(t, x) instead of %p(t, ) and (%)) (t, ) respectively.

First let |z| < ® (7). By Remark 3.1.6 and [61, Lemma 2.6(b)], we
already have that there exists ¢; > 0 satisfying (3.1.33) with &. Note that
G(t,x) = 9(t,x) since |z| < ®~(T). Using (3.1.20) for the left-hand side and
&G(t,x) = 4(t, x) for the right-hand side, we obtain (3.1.33) for |z| < &~ 1(T).

Now assume |z| > ®~1(T') and observe that

5451 t—s,o— z)%‘b(s 2)dz =

Rd

(/ +/ +/ +/ )%j;(t—s,x—z)gj;(s,z)dz
|21>®=1(T), ) |s|>0-1(T), J |2|<@=1(T), ] |2]<0-1(T),

le—z[>~1(T) |e—z|<e~U(T) |e—z>@~1(T) |a—z|<e~1(T)

I:]1+IQ+]3+I4.

First we assume 0 < 8 < 1 and obtain upper bounds for [;, : = 1,...4. For
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I, using @ 1(T) > 1 we have

L = / %7511 (t—s,o— z)%jj(s, z)dz
|z—2|>®—1(T),|z|>®—1(T)

= ot — 5)71(13_1(3)72/

lo—2[>®~1(T),2|>®~1(T)

By (3.1.27) we obtain

(3.1.37)

exp(—=blaz — z|® — b|z|%)dz.

I <@t — s)1d 7 (s)2 exp(—b|z|?) = 1@ (t — 5) D (5)2Y (¢, )

< ot — 8) TNt — s) TP (5) 129 (¢ 1),

where we used 01,0, > 0 and ¢t — s < T for the last line. For the estimates of

I, I3 and I, we omit counterpart of the last line above.

For I,, we have

I, = / %fll (t—s,x— 2)%7522(3, z)dz
|z—2z|<®—N(T),|2|>D—1(T)

~ Bt — syl (s) /

lz—2|<@=1(T),[2|>2~1(T)

Since |z — z| < ®~1(T), using triangular inequality we have

GO (t — 5,2 — z) exp(—b|z|")d=.

exp(—0|z|”) < exp(=blz|”) exp(bla — 2|”) < exp(b®™H(T)”) exp(—blz|”).

Thus by (3.1.32),

I <7t — 5)d 7 (5)2 exp(—b|z|?) / GOt — 5,0 — 2)dz
Rd

< st —s) Tt — 5) DT (5)2Y (¢, ).
By the similar way, we obtain

I3 < cgs 107t — 5)M D (s)2 M2 (8, ).
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When |z| > 2071T), we have I, = 0. So we can assume |z| < 2&71(T)
without loss of generality for the estimate of I,. By (3.1.20) we have

I < / S%‘Sll (t—s,x— z)%ifj(s, 2)dz < e, 9 (t, x).
Rd

Using 9 (t,2) < 9(t, > (T)) < exp(b®(T)?)¥(t, x), we can obtain desired
estimates. Combining estimates for Iy, I, I3 and I, we arrive (3.1.33) for
0<pB<1.

For the case f = 1, estimate for I, is same as above. For I, and I3,
instead of (3.1.38) we argue as the following: using |x — 2| < ®!(T) and
z|, |z| > @~ H(T), we have

1 b 2d+1 b . _ b
s (gD < g exp(E07 (7)) exp(— gl

For I, following (3.1.37) and using (3.1.28) for the fourth line and
U(1/ar,a; /™, ®1) for the fifth line we have

b

=7 (- s () A
1=P (t—s (s / <z
oz >®-1(T), || >0-1 (1) [T — 2| |z|4H]
b 1
< ® Mt —8)"d 7 (5)2 exp(—=|z|) / dz
5 |lx—z|>1,|z|>1 |ZE - Z|d+1’2‘d+1

<@t —s) T (s)™ exp(_gm)/ (1 Az — Z|—d—1) (1 A |Z’—d—1)dz
R4

1 b _ _
o (g lel) = a7 (1 )15 (1)

< eyt —8) POt — )T ()G (1 1),

<@ Mt — 5)1 D (s)7

(c) Integrating (3.1.33) with respect to s from 0 to ¢. With (3.1.25), we can
follow the proof of [61, Lemma 2.6(c)]. O
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3.1.4 Heat kernel estimates for Lévy processes

Following the framework of [34, 61], we need the upper bounds of derivatives
of the heat kernel for the symmetric Lévy process whose jumping kernel is
J(ly|) (see, for example, [61, Proposition 3.2]). To be more precise, in our
case, to get the upper bound of heat kernel for non-symmetric operator of
the form (3.0.1), we need correct upper bounds of the first and second order
derivatives of the heat kernel for unimodal Lévy processes. In this section, we
will prove that (3.1.1) and (3.1.2) are sufficient condition for the estimates of
the second order derivatives in Proposition 3.1.12, which decay exponentially
or subexponentially.

In this section, we fix T' < [1,00) and let v(dy) = v(|y|)dy be an isotropic
measure in R? satisfying [, (1A|y]?*)v(dy) < oo. Throughout this section we
further assume that v : Ry, — R, is non-increasing, differentiable function.

Here are our goals in this subsection.

Proposition 3.1.11. Let X be an isotropic unimodal Lévy process in R?
with Lévy measure v(|y|)dy satisfying the following assumptions: ¢ is a non-
decreasing function with ¥(0) = 0 satisfying (3.1.3) and (3.1.4), and there
exist constants a > 0 and 0 < § <1 such that

a a

)

0<r<1 and v(r)<aexp(—br?), r>1.
(3.1.39)
Then its transition density x — py(z) is in C°(RY) and satisfies gradient

estimates

1

|VEpy(2)| < ct 9°, (t,x) = D1 (t) 7" <m

A «9(|x|)> . k=01

for any 0 <t < T and x € R,

With the above result, we can obtain the second gradient estimate for the

isotropic unimodal Lévy process whose jumping kernel satisfies (3.1.1) and
(3.1.2).
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Proposition 3.1.12. Suppose that 1) is nondecreasing function with 1(0) =
0 satisfying (3.1.3) and (3.1.4), and that Lévy measure J(|y|)dy satisfies
(3.1.1) and (3.1.2) with 0 < B < 1. Then, its corresponding transition density

x> p(t,x) is in C°(RY) and satisfies gradient estimates

1

VEn(t.a)| < et 9ut.0) = 070 (i

A 9(|g;|)) (3.1.40)

fork=1,2,3, for any 0 <t < T and x € R%.

Now we will combine some results in [67, 54, 55| to prove Proposition
3.1.11. Recall that we have assumed that v : Ry — R, is non-increasing dif-
ferentiable function satisfying [r. (1 A [y[*)v(|y|)dy < oc. In this subsection,

instead of the function ®, we mainly use

2

.
Y T — O <r S 1,

olr) = { Jy s v(s)ds (3.1.41)
o(1)r?, r>1,

Note that the integral [; s*"'v(s)ds above is finite because of our assumption
Joa (LA Ly v(lyl)dy < oo.

To prove Propositions 3.1.11 and 3.1.12 at once, we need to consider the
following conditions on Lévy measure v(|y|)dy which is slightly more general
than (3.1.39). We assume that there exist constants a > 0,0 < f < 1 and
¢ > 0 such that

v(r) <ar fexp(—=br?), r> 1. (3.1.42)

Also, we assume that there exist az > 0 and a3 € (0, 2] such that

E as _ p(R)
w07 = oy

0<r<R<oo. (3.1.43)

For instance, when X is an isotropic Lévy process in Proposition 3.1.11 we
have 5= < v(s)sttt < tyy> Which implies ¢(r) =< &(r). Using this and
(2.1.12) we obtain (3.1.43) with a3 = ay. Thus, the conditions in Proposition

3.1.11 imply (3.1.42) and (3.1.43).
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Under (3.1.43), we have ¢(r) < ¢r®® for r < 1 so that

rogdtl r 1
¢ lpmos S/ —5-v(s)ds S/ sy (s)ds S/ sl(s)ds, <1
0 0 0

”
Thus, letting r | 0 we obtain fo v(s)ds = oo. Also, as in (2.1.12) we
obtain . R
) By cr (3.1.44)
p(r) =

In addition, since v is non-increasing, we have for r < 1,

o(r) ™ = 7"_2/ sy (s)ds > ?"_2/ s (r)dr = : (3.1.45)
0 0

In this subsection except the proofs of Propositions 3.1.11 and 3.1.12 we will
always assume that v satisfies (3.1.42) and (3.1.43). Let X be the Lévy pro-
cess with Lévy measure v(|y|)dy, and & — ¢(]¢|) be the characteristic expo-
nent of X. First note that v(R?) = [, v(|y|)dy = oo because fo v(s)ds =
oo. Also, since X is isotropic, characteristic exponent of X is also isotropic
function. Define W(r) := supy, <, ¢(|y|) and let P(r) := [oq (1A |i’,’—|22)1/(|y|)dy
be the Pruitt function for X. By [17, Lemma 1 and Proposmon 2], we have
that for » > 0,

%P(rl) < o(r) < U(r) < 7(r) <27*P(rY), r>0.  (3.1.46)

Using (3.1.46), we can prove the following lemma.

Lemma 3.1.13. Assume that v(|y|)dy satisfies (3.1.42) and (3.1.43). Then,

U(r) is comparable to o(r=')71, i.e., there exists a constant ¢ > 0 such that

clo(r DT <U0r) <cp(r T, r>0. (3.1.47)

P(r) < ¢(r)™" for r>0. (3.1.48)
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First assume r» < 1 and observe that

|2

P(r) = /]Rd (1A - Jv(z)dz

~ ¢(d) <r_2 /0 " (s)ds + / Ly (5)ds + /1 N sd—ly(s)ds)

=:c(d) ([, + I + I3).

By the definition of ¢ we have I; = ¢(r)”". To estimate I, let us define

k= Hgi 5], the largest integer smaller than or equal to %. Then we have

2i+1y

k k
0<L <) s(s)ds =Y I
i=0 /2T i=0

Using (3.1.43), we have

2it1y
I; < (QiT)2/ s™ My (s)ds = 4p(271r) 7! < az22 3 ()7L
2

Thus,
b C
Dot (3.1.49)

Also, using (3.1.42) and (3.1.43) we obtain

catp(1)
asp(r)’

0<I3< a/ s exp(—bs?)ds = ¢y <
1

where we used ag < ag(%)ag < % for the last inequality. Combining esti-

mates of Iy, I and I3 we have proved the claim (3.1.48) for r < 1.
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Now assume r > 1. Then we have

P(r)= /Rd (1A ﬁ)V(z)dz

72

— (d) (T—Q /0 sty (5)ds + /1 N (1Ai—z)sd_1u(s)ds)

= c(d)(p(r)”" + I).

Also, using (3.1.42) we have

oo 2 [e's]

0< < / S—2sd_11/(s)ds < ar_Q/ gd=t1 exp(—bsﬁ)ds < cqr72,
1 T 1

Using o(r) = ¢(1)r? for 7 > 1 we obtain that P(r) < r=2 =< p(r)"! for

r > 1, which implies (3.1.48) for » > 1. Therefore, (3.1.48) holds for any

r > 0. Combining (3.1.48) and (3.1.46) we conclude the lemma. d

Using (3.1.47), (3.1.43) and (3.1.44) we obtain the following weak scaling

condition for W: there exists a constant ¢ > 0 such that

c—l(E)% < ‘f’p((]f; < c(§)2, 0<r<R<oo. (3.1.50)

Let p:(x) be a transition density of X. Since X is isotropic, x — p(z) is
also isotropic function for any ¢ > 0. By an abuse of notation we also denote
the radial part of the heat kernel p;(z) of X as py(r), r > 0.

To obtain gradient estimate for p,(z), we first follow the proof of [67,
Proposition 3.1] to construct a (d + 2)-dimensional Lévy process Y whose

heat kernel estimate implies gradient estimate of X.

Lemma 3.1.14. Assume that isotropic unimodal Lévy measure v satisfies
(3.1.42) and (3.1.43). Then there exists an isotropic Lévy process Y in RI*2
such that its characteristic exponent is & — ¢(|€|), € € R™2. Let vy (|z|) and
q:(|z|) be the jumping kernel and heat kernel of Y, respectively. Then for any

r >0,
(=L (3.1.51)
Uu\r) = 27T7“drpt r o
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and

v (r) = —%V’(T). (3.1.52)

Proof. The existence of Y and (3.1.51) are immediately followed by [67,
Proposition 3.1]. Note that using (3.1.46) and (3.1.50) we have

as
lim _¢(p) > lim —\Il(p) > lim ar” _

p—oologp ~ pooom2logp — peo logp

)

which is one of the conditions in [67, Proposition 3.1]. For (3.1.52), we just
need to follow the corresponding part in the proof of [67, Theorem 1.5]. Here
we provide a brief sketch for the proof for reader’s convenience; As in the proof
of [67, Theorem 1.5], without using the assumption that —v/(r)/r is non-
increasing, one can show that there exists an isotropic Lévy process X (¢+2)
in R with jumping kernel v (dy) and that the characteristic exponent of
X(4+2) i ¢(r). Thus, X@+?) and Y are identical in law, which concludes the
proof. To show this, only [67, (8) and (9)] are used, which follow directly from
the fact that v is isotropic, unimodal measure satisfying [ (|y[*A1)v(dy) <

00. O

We emphasize here that we don’t impose the condition (3.1.2) on v. Thus
the function » — v4(r) in the above lemma may not be non-increasing.

Now we are going to establish heat kernel estimates for the process Y
obtained in Lemma 3.1.14, which will imply heat kernel estimate and gra-
dient estimate of X as a consequence of (3.1.51). To do this, we will check
conditions (E), (D), (P) and (C) (when < 1) in [55] for the process X
and Y, and apply [55, Theorem 4] and [54, Theorem 1].

First, we verify the condition (E) in [55]. Recall ¥(r) = supy, <, ¢(|yl).

Lemma 3.1.15. Assume that isotropic unimodal Lévy measure v satisfies

(3.1.42) and (3.1.43). Then for any n,m € N, there exists a constant ¢ =
c(n,m) > 0 such that

/ e WU My < UM > 0.
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Proof. By (3.1.46) and (3.1.50) we have that for 0 < ¢,

-l 00 .
/ e_t¢(|z‘)|z|mdz < cl/ rtmeldr 4 cl/ e ter)pntm=l g,
Rd 0 i1

< 02\11_1<t_1)n+m+01/ e—c;,»t\If(\I/—l(t—l))(r/\lr—l(t—l))agTn—i—m—ldr
U-1l(¢g—1)

o
= <C2 + 01/ 6_c3sa18”+m_1d7’> gt hrtm = e, wt (et
1

where we have used the change of variables with s = ﬁ in the last line.
O

Note that Lemma 3.1.15 for (n,m) = (d,1) and (n,m) = (d+2, 1) implies
the condition (E) in [55] for the process X and Y, respectively.
For 0 < 8 <1 and ¢ > 0, we define non-increasing functions f and f by

e(1) (1)
D e P NN R R = (O M
f(r) = and f(r) := (3.1.53)
p-le=tr? o p s rle=tr’ p > 1

The functions f and f above are non-increasing since for any 0 <r < R < 1,

o
~ Rip(R)

1 1
= / t™* oy (rt)dt > / t" 1y (Rt)dt
0 0

rio(r)

Here we used that v is nonincreasing. Note that by (3.1.42) and (3.1.45),
—L <ef(r) and w(r) <cf(r) for >0 (3.1.54)

In the next lemma we verify the condition (D) in [55] for both X and Y.
In fact, we are going to verify (D) for X with the above f and v = d, while we
use f and v = d+1 to verify (D) for Y. Let By(x,r) :=={y € RY: |[z—y| < r}
and recall that diam(A) = sup{|z —y| : z,y € A} and v, (r) = —5=1/(r).

Lemma 3.1.16. Assume that v satisfies (3.1.42) and (3.1.43). Then both

v(RY) and v1(R™2) = [oars vi(|z|)de are infinite, and there exists ¢ > 0 such
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that
v(A) < cf(6(A))[diam(A))¢, A € B(RY). (3.1.55)

and
1 (A) = /Al/1(|x|)dx < cf(é(A))[diam(A)]dH, Ae B(Rd+2). (3.1.56)

for some ¢ > 0, where §(A) :=inf{|y| : y € A}.

Proof. We have already showed that v(B4(0,1)) = v(R?) = oco. For any
A € B(R?), using (3.1.54) we have

v(4) = / v(ly))dy < v(5(A))[diam(A))* < cf(5(A))[diam(A)]".

This concludes (3.1.55). Using v/(r) < 0, (3.1.39), the integration by parts
and the fact v(B,4(0,1)) = co we have

v (RT?) > /

Bgy2(0,1)

w1 (lyl)dy = c(d) / P () dr

1 1
=0 limui)nf/ —rl (r)dr = ¢, limui)nf (-[rdy(r)]; + d/ rd—ly(r)dT)

1
=c limui)nf (e%v(e) + d/ ry(r)dr — v(1)) = oo.

Now it remains to prove (3.1.56). First observe that using the integration by

parts, we have that for any 0 < r < R,

R 1 (R 1 R
/ sy (s)ds = ~5- s/ (s)ds = gy (—[sdy(s)]f + d/ sdlu(s)ds>

<L (Tdy(r) + y(r)d/rR sd_lds> = %U(T)Rd (3.1.57)

- 27

where we used that v is non-increasing. Denote 7 := §(A) and [ :=diam(A).
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When [ > r/2, using A C {y € R™?:r < |y| <r +1} we obtain

r+l
n(A) <y r <yl <r+1}) = e(d) / Sy, (5)ds
< c(d)

v\r
< Doy 1y < e it < ey ey,

where we used (3.1.57) and (3.1.54) for the last line.
When | < r/2, choose a point yy € A with |y| = 7.
Since A C Bay2(Yo,1)\Bat2(0,7), there exists ¢y = ¢4(d) > 0 such that

/ La(y)o(dy) < cal
ly|=s

for any s € [r,r +{]. Thus, by (3.1.57) and (3.1.54) we have

r+l ld+1 r+l
1 (A) < v (B(yo, )\B(0,7)) < 05/ 11y (s)ds < %m/ sy (s)ds

Cs ld+1 v

d d+1 7") d+1
< %m(r—kl) V(T’) §C6l T §C7f<r)l )

which proves (3.1.56). O

Recall ¥(r) = supy, <, ¢(|y|)-

Lemma 3.1.17. Assume that v satisfies (3.1.42) and (3.1.43). For every
Kk < 1, there ezists ¢ = c(k) > 0 such that

1
/ exp (brly|?)v(dy) < c¥(=), >0 (3.1.58)
{yeRrd:[y[>r} "
and .
/ exp (bely|?)vi(dy) < c¥(=), r>0 (3.1.59)
{yeRd+2:|y|>r} "

Proof. Since (3.1.58) can be derived directly from the estimate of I below,
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we only prove (3.1.59) here. Using the integration by parts, we have

/ (bl () = () / " exp (bRt (= (1))t

= c(d) ([exp(bmtﬁ)td(—u(t))}:o + /oo(exp(bmtﬂ)td)’y(t)dt) :

= c(d) (I + I).

For Iy, by (3.1.54) tlim exp(brt?)th(t) < tlim aexp(—b(1 — k)Nt =0 so
—00 —00
I = exp(brr?)riv(r) < cip(r)~t. Now let us estimate I. First we observe

that

-1 t<1

d )
— ( exp(b/itﬁ)td) < ¢y
dt exp(brtP)tdtA=1 0t > 1.

Thus, for » > 1 we have

C3SO<1)
p(r)

/ (exp(brt? )t v(t)dt < 02/ exp(—b(1 — )t 1at <

For r < 1, using above estimate, (3.1.49) and (3.1.43) we get

/Too(exp(bmtﬁ)td)'V(t)dt = (/Tl +/100) (exp(brt?)thY v(t)dt
< e (/Tl t () dt + /100 exp(—b(1 — /ﬂ)tﬁ)td”ﬂldt)

Cy Cs
+ C3 S

= o0 o)

Combining above two inequalities and (3.1.47), we obtain I1 + I, < cg¥(1).

Therefore, we have proved the lemma. U

Using Lemma 3.1.17, we verify the condition (P) in [55] for both X and Y.

We continue to use the non-increasing functions f and f defined in (3.1.53).

Lemma 3.1.18. Assume that isotropic unimodal Lévy measure v satisfies
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(3.1.42) and (3.1.43). Then, there ezists ¢ > 0 such that
; lyl o1
FlsViyl =2 ) vidy) <cf(s)¥(=), rs>0  (3.1.60)
{yeRt:ly|>r} 2 r
and
lyl 1
flsViyl =5 )nldy) <cf(s)¥(=), rs>0 (3.1.61)
{yeRI*2:|y|>r} 2 "

Proof. We only prove (3.1.61) here, since (3.1.60) can be verified similarly.
We claim that for any 0 < 8 < 1, there exists ¢; > 0 such that for any
s,t >0,

f(svit— %) < c1f(s) exp(brt?) (3.1.62)

where £ = (277 4 1). First we define

(1)
) = { TR sz

r~Lexp(—br?), r>2.

Then, since f(r) = fi(r) for r € (0,1] U (2, 00) we have
' f(r) < filr) S eaf(r), r>0. (3.1.63)

Now assume sVt > 2. Then, using 1V 3 < sVit— % and triangular inequality,

t t t
f(svit— 5) = (s\/t—§)_€_lexp(—b(s\/t— 5)5)

S\ _y_ t t
< (1V 3 exp(-bs”) exp(b()°) < s (s) exp(b(5)°).
Here in the last inequality we used ¢ > 0 and exp(—bs”) < c3f(s) for 0 <
s < 2. When s < 2 and ¢t < 2, using (3.1.63), (3.1.43) and (3.1.44) with

sVt—1%>2 we obtain

t cyp(1)

f(Svt—%)SCQfl(Svt—i)Sm
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els) . _ols) _o(s/2) -1 ;
Here we used vl = 2/ povi=D) < 4az; " which follows from (3.1.43)

and (3.1.44). Thus, we conclude (3.1.62). Combining (3.1.62) and Lemma
3.1.17, we have proved the lemma. O

Now we obtain a priori heat kernel estimates for the process X and Y.
To state the results, we need to define generalized inverse of ¢ by ¢ 1(t) :=
inf{s > 0 : p(s) > t}. Using Lemmas 1.1.4 and 1.1.5, there exists ¢,¢c; > 1
such that L(1/2,c¢7% oY), U(as, ¢, p~t) hold and

il (r) <7 < ap(e™(r), (3.1.64)

First we apply [54, Theorem 3] to obtain the regularity of the transition
density p;(z) of X.

Proposition 3.1.19. Let X be an isotropic unimodal Lévy process in R?
with jumping kernel v(|y|)dy satisfying (3.1.42) and (3.1.43) with 0 < § < 1.
Then x — pi(z) € C2(RY) and for any k € Ny there exists ¢, > 0 such that

k x c -1 —k -1 —d t
Vi) < a0 (970 A ) (3,165

for any t >0 and x € R%.

Proof. Define h(t) := #t*l) as in [54]. Note that by (3.1.47) and (3.1.64)

we have

Applying [54, Theorem 3] for the process X, pi(x) € C°(R?) and for any
ke N, v € [l,d] and n > v we have constants ¢y, satisfying

k T c —d—k min t[h(t)]’y efb(|z|/4)ﬁ ﬂ -
‘prt( )l < k,n(h(t>> {17 |x|“/g0(|x|) + <1 + h(t)) }

Note that we already verified [54, (8)] at Lemma 3.1.15. Thus, using h(t) =<
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¢~ 1(t) we obtain
Vipe(@)] < Crnp™ ()7

Also, taking v = d, n = d + 2 and using h(t) < ¢ (t) we get

t

[VEpe(2)] < Crom (h(t)—kwe b/ 4 ()] (1+ f@)) )
90_1(75) 2L
(W CIARNE ")

EREED) (\xl)

< G (8)”

The last inequality is straightforward when |z| < ¢~!(¢) and it follows from
L(1/2,¢,07 ') and (3.1.64) when |z| > ¢~ !(¢). Therefore, we conclude that

-k [ —1—d t
in o) < ™07 (707 s )
[l

Note that the gradient estimates in Proposition 3.1.19 is same as the ones
in [61, Proposition 3.2] except that the gradient estimates in [61, Proposition
3.2] is for t < T (see Remark 3.1.6).

Combining above estimates with Lemmas 3.1.15, 3.1.16 and 3.1.18, we
can apply [54, Theorem 1] for the process X and Y. Here is the result.

Lemma 3.1.20. Assume that v satisfies (3.1.42) and (3.1.43) and 5 = 1.
Then for any T > 1, there exists a constant ¢ > 0 such that

p(z) < ctexp(—g|x|) and g (z) < cto '(t)7! exp(—%x\) (3.1.66)

for any 0 <t <T and |z| > ¢ 1(T).

Proof. Define h(t) := m as in [54] and denote ¢;(|x|) = ¢:(z). Applying
Lemmas 3.1.15, 3.1.16 and 3.1.18 to [54, Thoerem 1] for the process Y in
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Lemma 3.1.14, we have

qu(r) < crh(®) (AN L) + b exp (— o log(1+ )
4 h(t) h(t)

)—é—l

for any ¢,7 > 0. First observe that using f(%) = ( exp(—2r) for r > 4,

we obtain
—1/pn—1p/T ——1 b b
to (1) f(é_l) < cgtr exp(—zr) < cqt exp(—zr), r > 4.

Let ¢(T') > 4 be a constant which is large enough to satisfy

() 5 . o(T)
2o1(T) BT o)

b
)ZZ_L’ r > 1.

Then, for any 0 < ¢t < 7T and r > ¢(7T") we have

(,0_1(15)_d_1 exp ( — 04%(15) log(1 + C5g0+(t))>
<m0 exp (— ) exp (- 5wl + e 00))

r b cot

< ()Tt exp(—Cs(pT(t) - ZT) = rd+ip(r)

eXp(—Zr) < cot exp(—gr)

+1

where co = sup s*7* exp(—cgs) < oo. Thus,

s>1

alr) < cate™ () exp(—1r), 7> e(T) = (o™ (e(T)))

Meanwhile, by (3.1.51) and (3.1.65) we have

1, r cute ()t

_ —1 —1
q(r) = - %pt(r)’ < R ON < et (1) exp(

b be(T)
U )

for oY(T) < r < ¢(T). Therefore, combining above two estimates we con-
clude the estimate on ¢ in (3.1.66).
Note that, applying Lemmas 3.1.15, 3.1.16 and 3.1.18 to [54, Thoerem 1]
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for the process X and using h(t) < ¢ ~1(t) we have

< LA |t (r/4) + o (1) L exp(——2log(1 +—2 )| | .

) < el 7O A [ef(r/0) + 7 ) exp(— o1+
(3.1.67)

for any ¢,7 > 0. Using (3.1.67), the estimate on p in (3.1.66) can be verified

similarly. O

Now we check condition (C) in [55] with ry = 1, ¢, = co and v = d for
X (y =d+1 for Y, respectively). We need additional condition 0 < g < 1
to verify the condition (C).

Lemma 3.1.21. Assume v satisfies (3.1.42) and (3.1.43) with 0 < g < 1.
Then, there exists constant ¢ > 0 such that for every |z| > 2 and r € (0, 1],

flz —ylv(dy) < c¥(=)f(jz]) and

1
yERL: |z —y|>1,|y|>r} r

Fr) < ertu(d), /{

r

ROy (ke =y (dy) < W) (Jal).

r yeERI2: |z —y|>1,|y|>r}

Proof. The first inequalities immediately follow from (3.1.47) and (3.1.53).
Let us show the second inequality in the first line. When |z — y| > ‘gzc—l,
using (3.1.26) and triangular inequality, we have |z|? < |z —y|®+ (2% —1)|y|".

Thus, using this inequality and Lemma 3.1.17 we obtain

/ F(lz — ) (dy) = / & — 4] exp(=blz — 4" (dy)
\ |

a—y[> 2L |y >r e—y[> 2 jy|>r

< (G077 [ expltlal) explo(2” = iyl a)

= 7(l) | 2" Dl ) < a9

So, it suffices to show that there exists a constant co > 0 such that for every
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2| > 2,
/1<| e T () < cof(lal). (3.1.68)

To show this, we will divide the set D := {y : 1 < |z —y| < ‘%l} into cubes

with diameter 1. Let x = (21, ..., 2442). For (ay, ..., a412) € Z42, we define

a:= (vVd+2)"Yay, ..., aq42), and let

d+2

C H[ +2ai—1 +2a¢+1)
a = Li y i T
e 2vd+2 2vVd +2

be a cube with length (v/d + 2)~!. Since diam(C,) = 1 and z +a is the center

of cube C,, for any |a| < MTH we have ¢ > 0 independent of a such that

2 2
< cafjo] = lal) ™ exp (=bllal — lal|) < calal " exp (<b(J2| — Ja])")

n(Co 1 D) < e f(5(Cy N DY) < caf <(|g;| ol = Hyv m)

where we used Lemma 3.1.16 for the first inequality and triangular inequality

for the second line. Thus, using |a| — 3 < |z — y| on C, and

we obtain

/ oy ) < Y [

1<a|< 120 P
< S (ol = 2y exp(=b(la] — 2)?)a(Ca 1 D)
- 2 2
1<|a|§‘mIJrl
<eole ™S (ol exp(—blal®) exp(=b(la] — |al)?).
1<laj< 241
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Since |a| < MTH, by (3.1.26) we have
lal” + (Je] = lal)” +1 > |al® + (Jo] + 1 = |a])” > |27 + (2 = 27) a/”.
Thus,

o[ Y exp(=blal’) exp(=b(lz| —|a])?)

1<[a|< l2bH
< crla[rexp(=blal”) Y ol exp(=b(2 — 27)]al”) < csf(|x]).

a€z4\ {0}

Combining above inequalities and using (3.1.47), we arrive (3.1.68). The re-

mainder is similar. O

Now we have that conditions (E), (D) and (C) in [55] holds for the process
Y when v satisfies (3.1.42) and (3.1.43) with 0 < 5 < 1. Thus, we can apply
[55, Thereoem 4] for both X and Y.

Lemma 3.1.22. Let T > 1 and assume that v satisfies (3.1.42) and (3.1.43)
with 0 < B < 1. Then, there exists a constant ¢ > 0 such that

pi(r) < ctr~texp(—brP) (3.1.69)

and
< cto M) lrf exp(—brf) (3.1.70)

d
()
forany 0 <t <T andr > 4.

Proof. Applying [55, Theorem 4] for Y and (3.1.47) we have that for 0 <
t<t,=T and r > 4ry = 4,

@(r) < et H )T (r) = et ) T L exp(—brP).

Combining with (3.1.51), |Lp,(r)| < 27rq(r) < cote™(£)7'r~ exp(—br?).
This concludes (3.1.70). (3.1.69) immediately follows from applying [55, The-
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orem 4] for X. O

For reader’s convenience, we put the heat kernel estimates and gradient
estimates in Proposition 3.1.19, and Lemmas 3.1.20 and 3.1.22 together into

one proposition.

Proposition 3.1.23. Let X be an isotropic unimodal Lévy process in R? with
gumping kernel v(|y|)dy satisfying (3.1.42) and (3.1.43). Then, x — pi(z) €
C2(RY) and the following holds.

(a) There ezists a constant ¢, > 0 such that for k > 0,

t
rio(r)

VEp(a)] < crp)(6)F (so_l(t)_d A ) 450, zeRE

(b) Assume B = 1. Then for any T > 1, there exists a constant c3 > 0 such
that for k =0,1,

b
|V§‘,pt(a:)| < cﬂ?cp_l(t)_’c exp(—zr), t € (0,7], || > go_l(T).

(c) Assume 0 < 8 < 1. Then for any T > 1, there exists a constant c3 > 0
such that for k =0,1,

Vap(@)] < esto™ () r~ exp(=0r),  t € (0,71, o] > ¢~ !(T).

Proof. (a) and (b) immediately follow from Proposition 3.1.19 and Lemma
3.1.20, respectively.
(c) Observe that for any ¢ € (0,7], ¢ (T) < |z| <4 and k=0, 1,

|V§pt(x)| < clcp_l(t)_k < 0415<,0_1(7ﬁ)_k7‘_Z exp(—brﬁ).

rip(r)

This and Lemma 3.1.22 finish the proof. O

Now we are ready to prove Propositions 3.1.11 and 3.1.12.

Proof of Proposition 3.1.11. Now assume that X is an isotropic Lévy
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process in Proposition 3.1.11 with Lévy measure v(]y|)dy. Recall that ¢(r) <
®(r), and v satisfies (3.1.42) with ¢ = 0 and (3.1.43). Therefore, we can
apply results in Proposition 3.1.23 with ths function ® instead of ¢. Using
Proposition 3.1.23 and (3.1.19), we conclude that for any ¢ € (0,7] and
r € R?

Vipi(2)] < eito™ ()7 Gr(t,2) < eat9Yy(t,2), k=0,1.
U

Proof of Proposition 3.1.12. (3.1.40) for k£ = 0,1 and that ¢ — p(t, z) is
in Cg°(RY) immediately follow from Proposition 3.1.11.

Now it suffices to prove (3.1.40) when k& = 2. Let X be an isotropic
unimodal Lévy process with jumping kernel J(|z|)dx satisfying (3.1.1) with
0 < <1and (3.1.2), and let ¢(|z|) = ¢(z) be a characteristic exponent of
X. By Lemma 3.1.14, there exists an isotropic Lévy process Y in R%*2 with
characteristric exponent ¢(r) satisfying (3.1.51) and (3.1.52). In particular,
by (3.1.2) and (3.1.52), Y is unimodal. Denote J;(|z|)dz and g¢:(|z|) be the
Lévy density and transition density of Y respectively. Using (3.1.52) we have

27r/:J1(t)dt_—/: Jl(t)dt—M—M—/:&dt.

t S r 12

Since J; is non-increasing by (3.1.2), we obtain that for any 0 < s <7,

" J(s)
(r—s)Ji(r) < /S Ji(t)dt < Srs (3.1.71)
and
" 1
(r = 5)a(s) > / MY > S (J(s) = J). (317)
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We claim that there exists a constant ¢ > 0 such that
c’l C
g < A < e, TSl

(3.1.73)
Ji(r) < er~texp(—brf), r>1.

For r < 1, letting s = £ in (3.1.71) we have J;(r) < J0/2) <

2 Tr2 = rd+22)1(r/2)
by (3.1.1). Also, taking (r,s) = (Cr,r) with constant C' = (a%)?/d > 1in
(3.1.72) we have

J(r)—J(Cr) - 1 a 1

I 2 o Ce 1 2 200 — 12 () alCnieen)

.1 <_ 1) 1 a |
=0 -0 \"" a0?) () T 20(C — 1) r2(r)’

where we used ¥(Cr) > (r) and a — -7 = % in the second line.

When 7 > 1, letting s = r — 1 in (3.1.71) we have

Jr—1) 1

Ji(r) < < —exp(—b(r — 1)) < eb1 exp(—br?),
r r

r

where we used the assumptions 7 > 1 and 0 < g < 1 for the last inequality.
We have proved (3.1.73).

Let ¢ be the function (3.1.41) with » = J; and the dimension d + 2
(instead of d). Note that (3.1.73) implies that ¢ satisfies that for r < 1,

C_17"2 7,2

< ¢lr) = Jo s3I (s)ds

a1 ®(r) <2¢7'0(r/2) =

= < 2¢d(r)
fO ¥(s/2)

ds —
Thus, J; satisfies (3.1.42) with ¢ = 0 and (3.1.43) since U(2,1,®) holds.
Combining ¢(r) < ®(r) and Proposition 3.1.23 for the process Y, we have

that there is a constant cy > 0 satisfying

a(r) < et (e r) and \diqtm < eot® (1) G (1, )
T

for any 0 < ¢t < T and r > 0. From now on, assume ¢ € (0,7] and z € R<.
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Also, let r = |z|. Combining above inequalities and (3.1.51) we have

V2p(t,2)] = | Sgpltr) + Tt gt )| = 21l (rar) + (4 Da(r) |
< omd (qtm ¥ r%qt(rﬂ) <ot (14107 (1)) 914431, 1)

<eut (L+ 7071 (1) ") 9 (t,7) (3.1.74)
where we used (3.1.19) for the last line. Thus, we obtain for r < ®~1(),
|V2p(t, )| < 2e4tG D (t, 1) < 26,07 1(t) %G (t, 7). (3.1.75)

Also, for @71(¢) < r < 7 1(T) we have

< 2cqtr
()

< 2c,071 (1) 72

2c4tr?
@+2) ¢ p)y < 2
g ( 7T) — @,1(1;)2

=2c,@7 () *Gr(t, 7).

IV2p(t, x) G (¢, )

(3.1.76)

rid(r)

Note that above estimates are valid for any 0 < 5 < 1.
Now assume 0 < 3 < 1. Let us recall that J; satisfies (3.1.42) with ¢ =1
and (3.1.43). Applying Proposition 3.1.23(c) for the process Y we have

q(r) < cstrtexp(—br®)  and |diqt(r)| < cst® ()Tl exp(—br?)
r
for r > ®~1(T). Thus, by (3.1.74)
9 d
Vap(t,2)] < 2md { @(r) + 7l -a(r)]
<cat(rt + 127 (t) ) exp(—br’) < crt® (1) 2% (L, 1)
for r > ®~!(T"). Combining this with (3.1.75), (3.1.76) and (3.1.19) we obtain

IV2p(2)| < cst® H(t) 2% (t, x) < o9 (t, 1), 0<t<T,zeR
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This concludes (3.1.40) for 0 < 8 < 1.
Similarly, for § = 1 using Proposition 3.1.23(b) for the process Y we have

b d b
q:(r) < cipt exp(—Zr) and |%qt(r)| < clOtCD_l(t)_l eXp(—ZT)

for r > ®~1(T). Thus, for r > &~ (T') we have

V20(t2) < 204 (a(la) + lell b))

b
< et ®H(t) 2 exp(—g|:p|) < cpgt® ) T2 Gy (t, 7).
Hence, combining this with (3.1.75), (3.1.76) and (3.1.19) we obtain
IV2pi(2)| < c1at® (1) °Gp(t, ) < 15t9%(t,x), 0<t < T,z € R

which is our desired result for § = 1. Il

3.1.5 Further properties of heat kernel for isotropic

Lévy process

In this section we assume that J satisfies (3.1.1) with 0 < 8 <1 and (3.1.2),
and that nondecreasing function ¢ satisfies (3.1.3) and (3.1.4). As in the
previous section, let X be an istropic unimodal Lévy process with jumping
kernel J(|y|)dy and p(t,z) be the transition density of X. Also, let £ be an
infinitesimal generator of X.

Recall that 6 is defined in (3.1.18). The following results are counterpart
of [61, Proposition 3.3].

Proposition 3.1.24. For every T" > 1, there exists a constant 0 < ¢ =
c(d, T,a,a1,a1,b, 3,Cy) such that for every t € (0,T] and x,y,z € R?,

Ip(t,x) — p(t,y)| < c (g:él)‘ A 1) t(G(t,x)+9(ty)) , (3.1.77)

121



CHAPTER 3. HEAT KERNEL ESTIMATES FOR NONSYMMETRIC
NONLOCAL OPERATORS

and

||

10, (t, 25 2)] < ¢ (Cb—l(t) A 1) t(G(t,xt2)+9(t,x)), (3.1.78)

Proof. (a) Since (3.1.77) is clearly true when ®~1(¢) < |z — y| by (3.1.40),
we assume that ®~1(t) > |z — y|. Let a(f) = 2+ 0(y — ), 0 € [0,1] be a

segment from z to y. Then, for any 6 € [0, 1] we have
2(0)] = 2] = |z — a(0)] = |z] — |z = y| = [x] = 27(2),

here we used |z — y| < ®71(¢) for the last inequality. Thus, we obtain

1 1
plt.) = plt.) = | [ 0)- Vaplt.a0) 8] < [ |/ (0)|[V.plt,al6)] do
0 0
1
< cl/ /()| @ (t) 14 (t, (0)) db < c1|w — y|® (1) G (¢, |x| — (1))
0
< cylr—yl® () Y (t, 7).
Here we used (3.1.40) with k& = 1 for the second line and (3.1.24) for the last
line. This concludes (3.1.77).
Note that using (3.1.40) for & = 2 and following the same argument as

the above we can estimate |Vp(t,z) — Vp(t,y)|. Hence, we have a constant

cg > 0 satisfying
[Vp(t,z) = Vp(t,y)| < eslz —y|@7 (O *HG(t2) +9(ty)  (3.1.79)

for 0 <t <T and |z —y| < P71(¥).
(b) (3.1.78) is clearly true when ®!(¢) < 2|z|. Now assume ®~'(¢) > 2|z|.
Let a(0) =z + 6z, 0 € [—1,1] be a segment from x — z to = + z. Then, for
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any 0 € [—1,1] we have |a(0)| > |z| — ®7'(¢)/2, hence
10p(t, 25 2)| = [(p(t, ) — p(t, 2 — 2)) — (p(t, 2 + 2) — p(t, 2))]
|/ ) - Vp(t, a(0)) — o' (—0) - Vp(t, af d9|

|/ (Vp(t, () — Vp(t, a(—0)))do)|
< Adeg || @7 (1) 7P (|2t (¢ |2 — 27(1)))
<y 7N P19 (¢, @),

Here we used |a(f) — a(—0)| < 2|z] < ®&7!(¢) and (3.1.79) for the first
inequality, and (3.1.24) for the second one. O

Proposition 3.1.25. For every T' > 1, there exist constants ¢; > 0,1 =1, 2,
such that for any t € (0,T] and xz € R,

/Rd 10, (t, 25 2)| J(|2])dz < Cl/Rd<<I>E|(t) A 1)2t (G(t,xt2)+9(t,x)) J(|z])d=

< a¥(t,2)
Proof. By (3.1.78) we have
/ 16, (6,23 )| J(|2]) d=
<o /R (q)u(t) NG (o £ 2) + D, 7)) T(|2]) d

2| 2 .
< </}Rd (‘P‘l(t) AL tG (tx + 2)J(|2]) dz + t9(t, 2)P(P (t)))

=:Cy (]1 + [2>

Clearly, by (3.1.48) we have

I < e39(t,x).
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To estimate I, we divide I; into two parts as

_ 2| |2 - N ds . s
h= /| o Try) 2T (el de / 19tz + 2)(|2]) d

2[>®~1(2)

= 111 + [12 .

By using (3.1.24) in the first inequality below and (3.1.48) in the third, we

have

2
In gc4tg¢(t,x)/ 2 A1) J(2]) dz

<o-1)  PTH(E)?
< ct9(t, )P (1)) < Y (L, x) .
For the estimates of I15, we will use

J(|z]) < c6b(|2]) = cs%r(t, 2), |2z| > @71 (1), (3.1.80)

which follows from (3.1.1) and (2.1.12). Using (3.1.19), (3.1.80) and (3.1.34),

we arrive
I < cﬁat/ G(t,x —2)9(t,2)dz < 79 (t,x).
|z[>@~1(2)

Here we used (3.1.23) for the last inequality. The lemma follows from the

estimates of I11, I1o and Is. O

Recall that £ f(z) = lim. le\>€ (f(z+ 2) — f(x)) k(x, 2)J(|2]|)dz where
J : Ry — R, is a non-increasing function satisfying (3.1.1) and (3.1.2) with
strictly increasing function v satisfying (3.1.3) and (3.1.4). Let & : R —

(0,00) be a symmetric function satisfying
ko < R(2) <Ky forall z € R? (3.1.81)

where kg and k; are constants in (3.0.2). We denote Z® symmetric Lévy

process whose jumping kernel is given by £(z)J(|z]),z € R%. Then the in-
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finitesimal generator of Z* is a self-adjoint operator in L?(R?) and is of the

following form:

L () =lim [ (f(z+2) = f(2)) (=) (|2])dz

?0 el (3.1.82)
= 5 lim |Z‘X(f(iﬁ +2) + flz — 2) = 2f(2))R(2) J (|2])dz.

(3.1.1) implies that when f € CZ(RY), it is not necessary to take the principal
value in the last line in (3.1.82). The transition density of Z%(i.e., the heat
kerenl of £?) will be denoted by p®(t,z). In this section, we will observe

further properties of p*(¢, z).

Remark 3.1.26. The operator (3.0.1) satisfies all conditions in [61] with re-
spect to the function 4 (¢, z) and ®(r~1)~"! except [61, (1.7)]: Recall from Re-
mark 3.1.6 that ¢ (¢, x) is comparable to the function p(t, z) in [61]. Moreover,
by Lemma 3.1.13, The characteristic exponent of any symmetric Lévy pro-
cess whose jumping kernel comparable to J(|z]), is comparable to ®(r=!)~!.
Clearly L(ay,ay,®), U(2,1,®) and [61, Remark 5.2] with (3.1.1) imply [61,
(1.4), (1.5) and (1.9)]. Also, we obtain gradient estimates with respect to
g (t,x) in Proposition 3.1.19, which are same as the gradient estimates in
[61, Proposition 3.2]. Under these observations, one can follow the proofs
of [61] using (3.1.1) instead of the condition [61, (1.7)] and see that [61,

Theorems 1.1-1.3] hold under our setting.

Using the above Remark 3.1.26, from the remainder of this section we use
[61, Theorems 1.1-1.3] without any further remark.

Let R = R — . Then, B < ?i(z) < K;. Let pﬁ be the heat kernel
of symmetric Lévy process Z% whose jumping kernel is ft(z)J (|z])dz and
p? (t,z) = p(52t, z) be the heat kernel of symmetric Lévy process 7% whose
jumping kernel is 52 J(|z|)dz. Without loss of generality, we can assume that

Z% and Z% are independent. By [49, Theorem 1.2], there exists a constant
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c=c(T)=c(d,T,a,ay,a1,b,B,Co, ko, k1) > 0 such that
pﬁ(t,x) <ct9(t,x) forall 0<t<T zcR?

for every R satisfying (3.1.81). Also, by Remark 3.1.26 we have [61, (3.21)].

We record this for the readers:

opi(t, x)

_ R R LR _
5 L™ (t, x), 15’(1)1]7 (t,x) = do(x). (3.1.83)

Since Z% and Z% are independent, Z* and 784 7' have same distributions.

Thus, we have

P = [ pE - ey
R
) )
= [ gt = iy
Rd

Now, by the convolution inequalities in Proposition 3.1.10, we can extend
the estimates in Propositions 3.1.12 and 3.1.24-3.1.25, and obtain continuity
of transition density with respect to K. We skip the proof.

Proposition 3.1.27. ([60, Proposition 4.4]) There ezists a constant ¢ =
c(d,T,a,ay,aq,b,3,Cy, ko, k1) > 0 such that for any t € (0,T] and z,y,z €
Rd

Vo (t, 2)| < ct®d ()19 (¢, )

Pt 2) =Pty < (@7 () Mo —y[ AD)(G (8 ) + 9(ty)  (3.1.84)

10,5 (8, 3 2)| < ct((@H() 2| AL (G (t, 2 £ 2) + 9(t,2))

/Rd 10,2 (t, 23 2)|J(|2])dz < ¢4 (1, ) (3.1.85)

Theorem 3.1.28. ([60, Theorem 4.5]) for any two symmetric functions £
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and Ry in RY satisfying (3.1.81), any t € (0,T] and v € RY, we have
‘pﬁl(t,x) —pﬁQ(t,m)’ < ][R — Rl t9 (L, 2),
VD™ (8, 2) = V™ (t )| < cf| &1 — Kol @71 (1) 7Y (t,2)
and

/d |6y (t, 75 2) — 0,0 (F, 75 2)[ (| 2])dz < cf| R1 — Rao|9 (2, 7).
R

Estimates in this section are almost same with [61, Section 2 and 3] except
these: First of all, the function ¢ is different from [61], hence our estimates
are more precise than estimates in [61]. However, we don’t have estimates for
third derivatives in terms of ¢ of the heat kernel in Proposition 3.1.12. Thus,
we do not have the improvements on [61, (3.14) and (3.18)], which are used
for the gradient estimate of the function p”(¢,x,y) in Theorems 3.1.1-3.1.4,
for instance, [61, Theorem 1.1(2) and 1.2(4)].

From now on, until the end of this section we always assume that s :
R? x R — (0,00) is a Borel function satisfying (3.0.2) and (3.0.3), that J
satisfies (3.1.1)-(3.1.2) with the function v satisfying (3.1.3) and (3.1.4).

For a fixed y € R?, let &,(2) = k(y, ) and let L% be the freezing operator
defined by

L% f(z) = lim d¢(z; 2)k(y, 2)J(|2])d=. (3.1.86)

0 |z|>e€

Let p,(t,z) := p™(t, z) be the heat kernel of the operator £%. Note that &,
satisfies (3.1.81) so that there exists a constant ¢ > 0 such that

py(t, ) < ct9(t,x) forall z,y € R%t € (0,7).

By Remark 3.1.26 and [61, Theorem 1.1}, we have a continuous function
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p*(t,z,y) on (0,00) x R? x R? solving (3.1.8) and it satisfies
p“(t,x,y)ﬁct?é(t,m—y), 0<t<T and z € R?

In this part, we will investigate further estimates and regularity of p*(t, z, y).
We first recall the construction of p* from [61, section 4]. For ¢ > 0 and
z,y € R, define

oltoa9) =5 [ (b = 352 (n(e.2) = rly. )Tz (3.157)

= (L% = LY)py(t, )z —y)-

For n € N, we inductively define the function ¢, (¢, z,y) by

t
qn(t,z,7y) ::// qo(t — 8,2, 2)qn-1(8, z,y)dzds
0 JRrd

and

g(t,2,y) ==Y ault,z,y). (3.1.88)

Finally we define

Py (t,x) = /0 Yy (t,x, s)ds = /o /Rd p.(t —s,x — 2)q(s, z,y)dzds

and

itz y) = py(t,r —y) + P, (t, x) (3.1.89)

As [61, section 4], the definitions in (3.1.87)—(3.1.89) are well-defined. In other
words, each integrand in (3.1.87)—(3.1.89) is integrable and series in (3.1.88)
is absolutely converge on (0,00) x RY x R?.

In the next lemma, we will establish the upper bounds of p*.

Theorem 3.1.29. For every T > 1 and 6y € (0,0] N (0,1/2), there are
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constants ¢, and cy such that for any t € (0,T) and z,y € RY,
9, (t, 2)| < ert (9 + G0 (t,x—y) (3.1.90)

and
Pt z,y) < et (t,x —y). (3.1.91)
The constants ¢; and co depend on d, T, a,ay,aq,b, 5,Cq, g, 0, Ko, K1 and Ks.

Proof. We first claim that for n € Ny,
4a(t.2.9)] < du( D, + G (10— ) (3.1.92)

with

I'(60/2)"*
[((n+1)do/2)

dy = (16C (80, T)ea)" ™ [ [ B(J0/2, kbo/2) = (16Cco)™ !
k=1

where C' = C(dy,T) is the constant in (3.1.33). Without loss of generality,
we assume that C' > 1/16.
For n = 0, using (3.1.87), (3.0.2), (3.0.3) and (3.1.85) we have

ot )l < 5 [ 18062 = 33 2)(s(, ) — nly, DI el
<alle=al® A1) [ |16t = g2l

<es -y AD)G (e —y) = % (te —y).

Suppose that (3.1.92) is valid for n. Then for ¢t < T,

t
(g (b, 2, 9)] < / / Jaolt = 5., 2)an(s, 2,9)\dzds

¢

< Can/ / GOt — 5,0 — z)(g&ﬂ)éo + ffggo)(:ﬁ, z —y)dzds
0 JRd

< 16C¢ad, B(60/2, (n+ 1)60/2) (D0rs950 + Diti1s,) (17— ¥)

= dps1 (gn+2 st g(iﬂ )(t T —y)
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here we used induction in the second line, and used (3.1.35) and (3.1.36)
in the last line. For the third line, we need the following: let § = n = 1,
71 =02 =0, 07 = 0y and 5 = (n + 1)dg which satisfy conditions in Lemma
3.1.10(c) since dy € (0, a1/2). Then, by (3.1.35) we have

t
/ / GOt — s, — z)%&ﬂ)éo(s, z —y)dzds
0 JR4
< 4CB(60/2, (n + 1)80/2)(Drs2150 + D110 + Goiyse) (17 — )
< 8CB(60/2, (n +1)80/2) (Gray50 + Lw11s,) (87 — 1)

Also, letting 8 = n =1, vy = 0, 61 = 03 = dy and 7, = Jy which satisfy

conditions in Lemma 3.1.10(c),

¢
/ / GOt — 5,0 — z)grfgo(x, z —y)dzds

0 JRrd

§403(50/2,(n+1)(50/2)(%81” —l—giﬂ +%f§’+1 )(t,m—y)

< 8CB(do/2, (n+1)00/2) (Y125, +%n+1)§o)(t,x—y).
Thus, (3.1.92) is valid for all n € Ny. Note that
> d, N T)™ = C1(60, T) < o0

since d"*;(b@__ll((j;))(zzol)ao = 16Ccy® H(T)% B(60/2, (n + 1)8/2) — 0 as n — oo.

So, by using (3.1.29) in the second line we obtain

i |gn(t, z,y)| < idn(g((’:z—l—l)éo + 95 ) (tx—y)
n=0 —s
< i dnCID’l(T)”‘;O (%% + goéo)(t, r—y)=0C (%% + goéo)(t, r—y)
n=0
for t < T. Therefore, for every t € (0,T] and z,y € RY,
lq(t, 2, y)| < CL(Gy +9°)(t,x — ). (3.1.93)

130



CHAPTER 3. HEAT KERNEL ESTIMATES FOR NONSYMMETRIC
NONLOCAL OPERATORS

To obtain (3.1.90) and (3.1.91), we calculate that

[0y (L, )] S/O /dez(t—S,x—z)|q(s,z,y)\dzds

t
< 63/ / (t—s)9(t—saz—2) (9 +9°) (5,2 —y)dzds
0 Jrd
<cit (92 +9°) (tox —vy)

< 2e407 N (T)0tG (t, 2 — y) = st (t,x —y), forallt € (0,T].

Here we used (3.1.83) and (3.1.93) for the second line, (3.1.35) for the third
line and (3.1.31) for the last line. Therefore, using (3.1.83) we arrive

p“(t,x, y) < py(ta T — y) + |¢y(t,l’>| < C6tg<t’x - y)‘ U
We concludes this section with some fractional estimates on p*(t, z,y).

Lemma 3.1.30. For every T > 1 and v € (0,1] N (0,ay), there ezists a
constant cz such that for any t € (0,T] and z,2',y € R,

pE(t, ) — pi(t, ' y)| < csla — 2 L‘(gf)w(t, z—y)+ 90 (t, 2~ y))-

The constant cs depends on d, T, a,ay,aq,b, 5, Co, 7,0, kg, K1 and K.

Proof. Assume that z,2’,y € R? and t € (0,7]. By (3.1.84) and the fact
that v < 1, we have

p=(s,2 — 2) = ps(s,2" — 2)| < er|lw — 2/ ['s(92, (s, 0 — 2) + 9° (s,2" — 2)) .

for any 0 < s < T and z € R? Thus, using above inequalities, (3.1.93)
and a change of the variables, we further have that for dg := (6 A a1 /4) €
(07 6] A (Oa 041/2),
¢
(62t < [ [ = s = 2l = .07 oo, 20 d= s
0Jr
<eole = P s (b7 — I (6,3 — gD (1 y 4G (1, 7'~ )

<2007 N (1) | — &' "t(40, (t, 2 — y) + 9°,(t, 2" — y))
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for all t < T'. Since v < ay, the penultimate line follows from (3.1.35) (with
6 = 0), and the last line by (3.1.29) and (3.1.30). The lemma follows by

combining above two estimates and (3.1.89). O

3.1.6 Proof of Theorems 3.1.1-3.1.4

In this subsection we prove the main theorems in this chapter. We first prove
that the function p®(¢,x,y) defined by (3.1.89) satisfies all statements in
Theorems 3.1.1-3.1.4, then we show that p" (¢, x,y) is the unique solution to
(3.1.8) satisfying (i)—(iii) in Theorem 3.1.1.

Proof of Theorems 3.1.3 and 3.1.4. It follows from Remark 3.1.26
that we can apply the results in [61, Theorem 1.1-1.4] for operator (3.0.1)
with the function ¥ (¢, x). Note that the function p*(¢,z,y) in [61, Theorems
1.1-1.4] is constructed by the same way as (3.1.89). Therefore, Theorems 3.1.3
and 3.1.4 except (3.1.15) immediately follow from Remarks 3.1.6 and 3.1.26,
and [61, Theorem 1.1(iii), 1.2 and 1.3]. Finally (3.1.15) is proved in Lemma
3.1.30. U

Now we prove the lower bound estimates in Theorem 3.1.1 and Corollary
3.1.2 for the function p*(¢,x,y) in (3.1.89). By Theorems 3.1.3 and 3.1.4, we
have that (P}");>o defined by p”(t,z,y) in (3.1.89) with (3.1.16) is a Feller
semigroup and there exists a Feller process X = (X;,[P,) corresponding to
(PF);0. Moreover, by (3.1.17) for f € C2¢(R%),

F(X) — fl) - /0 £FF(X,) ds (3.1.94)

is a martingale with respect to the filtration o(Xjs, s < t). Therefore, by the
same argument as that in [34, Section 4.4], we have the following Lévy system

formula: for every function f : R? x R? — [0, 00) vanishing on the diagonal
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and every stopping time S,

S
Be 3 F(N X0 =B [ F(X )X diis,

0<s<S

where Jx(z,vy) := s(z,y — 2)J(|Jx — y|). For A € B(R?) we define 74 :=
inf{t > 0: X; ¢ A} be the exit time from A.

Using (3.1.94), (3.0.2) and (3.1.48), the proof of the following result is the
same as the one in [61, Lemma 5.7]. We skip the proof.

Lemma 3.1.31. Let T' > 1. For each € € (0,1) there ezists A = A(e) > 0
such that for every 0 <r < & 1(T),

sup P, (Tp@n < A(r)) <e. (3.1.95)
zeRY

We record that by (3.1.95), for any x € R? and 0 < r < ®~1(T') we have
Eo[m8w.m] 2 A(1/2)®(r)Pe(T8am > AR(r)) =

Now we are ready to prove the lower bound in (3.1.12).
Lemma 3.1.32. The function p*(t,z,y) in (3.1.89) satisfies (3.1.12).

Proof. Fix T > 1. Let p,(t,x) be the heat kernel of the freezing operator
in (3.1.86), and J,(2) := k(y, 2)J(|z|) and ¢,(z) be the corresponding Lévy
measure and characteristic exponent, respectively. By [54, Theorem 2], there

exist constants C7, Cy > 0 such that
py(t, ) > C1d ()™, t€(0,T],y € R and |z| < Co® (). (3.1.96)

Indeed, J,(2)dz is symmetric and infinite Lévy measure by (3.0.2) and that

J(|z])dz is infinite Lévy measure. To check the condition [54, (3)], we need
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to show that there exists a constant ¢ > 0 such that
/ e B 2ldz < ehy ()", 0<t,y € RY
Rd

where h,(t) := ﬁ and W, (r) = sup,c, ¢y(2). Let P(r) == [pa (1A
ﬁ)J(!z\)dz and Py(r) := [pa (1A E—LQ)Jy(|z|)dz. Then, by [54, (11)] we have

c1koP(r™) < e Py(r7h) < W, (r) < 2P,(r™") < 25, P(r7 ). (3.1.97)

On the other hand, by the symmetry of J, and [54, (10)], we have

0,(2) 2 (1= cos) [

€ 2Py (dE) > ¢ / € 2P I(€])de.
1€1<1/|#|

[€1<1/]=|

Since by a rotation

/ € 2PI(leNde = |2P / EI(e)de, i=1,....d
|€1<1/|=]

§1<1/1z|

we have

6y(2) = d ko1 — cos 1)]? /5 _ er e

Thus, when |z| < 1 we have

0u(2) = d ol = cos DIP [ |6 I(dE) = ealof = (] ),

l§1<1

whereas by (3.1.1) we have

S

¥(s)

1/]z|
6,(2) > |2 / EPI(E) > ealf? / ds = cyd(|2] )

1€1<1/]z|

for |z| > 1. Therefore, using (3.1.48) and (3.1.46) we obtain

¢y(2) = es@(|2] ™) = eP(|2]) = (co/2)9(]2])- (3.1.98)
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NONLOCAL OPERATORS

Moreover, (3.1.48) and (3.1.97) also imply that h,(t) < ®7(t) < h(t) =
ﬁ. From this and (3.1.98) we can follow the proof of Lemma 3.1.15 and
obtain for ¢t > 0 and y € R,

/ e @) 2 dz < / e~ )2 21 dz < erh ()7 < eghy ()7
R4 R4

Note that every constant above is independent of y. Therefore, letting f(r) =
0 we obtain all conditions in [54, Theorem 2] so we have (3.1.96) where C; > 0
is independent of y. The rest of the proof is almost identical to the one of
[61, Theorem 1.4]. O

Proof of Theorem 3.1.1. By Remarks 3.1.6 and 3.1.26, p"(t,z,y) de-
fined in (3.1.89) satisfies (3.1.8), (3.1.10) and (3.1.11). Also, (3.1.9) and
(3.1.12) follow from Theorem 3.1.29 and Lemma 3.1.32, respectively. It re-
mains to show the uniqueness part of Theorem 3.1.1. Recall that we observe
in Remark 3.1.26 that [61, (1.9)] holds. Thus all results in [61, Sections 5.1
and 5.2] hold for our case. Since properties (i)—(iii) are stronger than ones in
[61, Theorem 1.1], we now see that the proof of the uniqueness part of The-

orem 3.1.1 is exactly same as the one of the uniqueness part of [61, Theorem
1.1]. O
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Chapter 4

Applications of heat kernel

estimates

Heat kernel estimates are not only important themselves, but also applicable
to many related topics. For instance, as a corollary of Theorem 2.1.1, we

obtain a global sharp two-sided estimate of the Green function G(z,y) =
Jo p(t, 2, y)dt.

Corollary 4.0.1. ([3, Corollary 1.3]) Suppose that the assumptions in The-
orem 2.1.1 hold and d > Bo A 2. Then for any x,y € RY, G(z,y) < ®(jx —
yP)lz =y~

It is well known that the Green function defined above is the fundamental

solution of Poisson equation Lu = f with respect to the operator

Lu(z) := lim (uly) — u(z))J (2, y)dy.
e—0 ‘y—I|>€
For instance, if J(z,y) = m with a € (0, 2), the corresponding operator

is fractional Laplacian —(—A)®/2. Thus, heat kernel estimates are helpful to
study partial differential equations. In Section 4.1 we will see how it works.
One of the most important consequences of heat kernel esimate is Har-

nack inequality. Harnack inequalities and Hoélder regularities for harmonic
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CHAPTER 4. APPLICATIONS OF HEAT KERNEL ESTIMATES

functions are important components of the celebrated De Giorgi-Nash-Moser
theory in harmonic analysis and partial differential equations.

Equivalent characterizations for parabolic Harnack inequalities (that is,
Harnack inequalities for caloric functions) were obtained by [42] and [78] for
Brownian motions (or equivalently, Laplace-Beltrami operators) on complete
Riemannian manifolds. They showed that parablic Harnack inequalities are
equivalent to the two-sided Guassian type heat kernel estimates. This result
was extended to general processes in many spaces, such as graphs or metric
measure spaces including fractals (see [10, 33, 39] and references therein).

For instance, if the two-sided heat kernel estimates p(t, z,y) <

t
V(z,d(z,y))¢(d(z,y)
ric measure space (M, d, ) with volume doubling condition, then by [33,

1
T Ty

) in (1.0.3) holds for symmetric pure-jump process X in met-

Theorem 1.17], the following parabolic Harnack inequality holds : there exist
constants 0 < ¢; < 3 < 3 < ¢4, 0 < ¢5 < 1 and ¢g > 0 such that for
every x € M, tyg > 0, r > 0 and for every non-negative function u(t,z) on
[0,00) x M that is caloric on cylinder @ := (to, to + c4t0(r)) x B(x,r),

esssupu < Cgessinf u,

Q- Q+
where Q_ := (to+c19(r), to+catp(r)) x B(w, csr) and Q4 := (to+c39(r), lo+
cq(r)) X B(z, csr). Moreover, parabolic Harnack inequality implies the fol-
lowing elliptic Harnack inequality : there exist ¢ > 0 and § € (0, 1) such that
for every x € M, r > 0 and for every nonnegative function v on M that is
harmonic in B(z,r),

esssup h < cessinf h.
B(x,0r) B(,6r)

In this chapter, we introduce some applications of heat kernel estimates.
First one is boundary regularity for the solutions of Poisson equation based
on [58]. Next one is the laws of iterated logarithms, which are properties of
the sample paths of stochastic processes. We obtain various types of laws of

iterated logarithms from the heat kernel estimates.
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4.1 Boundary regularity for nonlocal opera-

tors

In this section, we study the boundary regularity of solutions of the Dirichlet
problem for the nonlocal operator with a kernel of variable orders. Let D be

a bounded C'! open set in R?. We consider the following Dirichlet (exterior)

problem
—Lu=f in D,
(4.1.1)
u=0 in RN\ D,
where L is symmetric operator of the form
Lu@ =po [ (uloty) - @) Iubdy. (412)
R4\ {0}

which is infinitesimal generator for a class of isotropic Lévy processes.

The main results of this section are the existence and the uniqueness
of the viscosity solution u of (4.1.1), obtaining boudary decaying function
V' of such solution u and the regularity of the quotient u/V(dp) up to the
boundary, where dp(z) := dist(z, D¢) is distance function.

The first result is the Holder estimates up to the boundary of solutions of
the Dirichlet problem (4.1.1). Unlike the case of the fractional Laplacian, it is
inappropriate to represent Holder regularity as a single number since kernel
in (4.1.2) has variable orders. Therefore it is natural to consider a generalized
Holder space.

The operators we consider in this section coincides with infinitesimal gen-
erators of isotropic unimodal Lévy processes for C?(R?) functions. Thus, we
first explain the definitions and properties of Lévy processes, and some re-
lated concepts. Then we introduce some additional conditions that will be
needed in this paper. With these concepts, we state our main results.

We denote by C(D) the Banach space of bounded and continuous func-
tions on D, equipped with the supremum norm || f|lc(py := sup,¢p | f(2)], and

denote by C*(D), k > 1, the Banach space of k-times continuously differen-
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tiable functions on D with the norm || fllorpy == 22}, <4 SWPsep D7 f(2)].
Also, denote Cy(D) := {u € C(D) : u vanishes at the boundary of D}. For
x € R% define C'(x) as the collection of functions which are C! in some
neighborhood of . Similarly, we define C?(x), C*!(x), etc. For 0 < o < 1,
the Holder space C%(R?) is defined as

CYRY) == {f € CRY) | Ifllca@a) < o0},
equipped with the C'*-norm

[ fllce@ay = [ fllo@asy +  sup M

z,y€R Ay |I - y|a
Also, for given open set D C R? we define C%(D) by
(D) = {f € C(D) | [ fllca(p) < oo}
with the norm

flx)— f(y
[ fllcey == I flley + sup #e) = 7yl c(y N'
syeDazy | — Y|

For given function A : (0,00) — (0, 00), we define Generalized Holder space
C"(D) for bounded open set D by

C*"(D) = {f e C(D) [ Ifllerpy < OO},

equipped with the norm

_ /@) = )
I lerwy = llew + S0 “hia—al)

We define seminorm [ - |cn(py by

_ /(@) = fy)l
Horwy = s “he—g)
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We denote the diameter of D by diam(D). Note that if hy < hy in 0 < r <
diam(D), || - [|ori(py and || - [|ore(py are equivalent and C*' (D) = C*2(D).

We say that D C R? (when d > 2) is a Cb! open set if there exist a
localization radius Ry > 0 and a constant A > 0 such that for every z € 9D
there exist a CM-function ¥ = ¥, : R"~! — R satisfying ¥(0) = 0, V¥ (0) =
(0,...,0), [VV]le <A, [VU(2) — V¥ (w)| < Alz —w| and an orthonormal
coordinate system C'S, of z = (21, -+, 2n_1,2n) := (2, 2,) with origin at z
such that D N B(z, Ry) = {y = (y,yn) € B(0,Ry) in CS., : y, > ¥(y)}. The
pair (Ry, A) will be called the C'! characteristics of the open set D. Note
that a C1! open set D with characteristics (Ry, A) can be unbounded and
disconnected, and the distance between two distinct components of D is at
least Ry. By a C! open set in R with a characteristic Ry > 0, we mean an
open set that can be written as the union of disjoint intervals so that the
infimum of the lengths of all these intervals is at least Ry and the infimum
of the distances between these intervals is at least Rj.

Next we define the wviscosity solution of Lu = f in D. A function u :
R? — R which is upper (resp. lower) semicontinuous on D is said to be a
viscosity subsolution (resp. viscosity supersolution) to Lu = f, and we write
Lu > f (resp. Lu < f) in wiscosity sense, if for any x € D and a test function
v € C?(x) satisfying v(z) = u(z) and

v(y) > u(y) (resp. <), y€ R4 \ {z},
it holds that

Lo(@) > f(z) (resp. <).

A function u is said to be a wiscosity solution if u is both sub and supersolu-

tion.
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4.1.1 Main results

Let X = (X;,P*,t > 0,2 € R?) be a Lévy process in R? defined on the
probability space (€2, F,P?).For the precise definition of Lévy process, see
[80, Definition 1.5]. By Lévy-Khintchine formula, the characteristic exponent

of Lévy process is given by
EO[eiz.Xt] _ et(b(z)’ = Rd,
where

1 .
O(z) = -5z Uz tiv-z +/ (€7 =1~ iz 21{a<1y) J(dx)

Rd

with an d x d symmetric nonnegative-definite matrix U = (U;;), v € R? and

a measure J(dx) on RY\{0} satisfying

/ (1A [z|*)J(dz) < oo.
RN\ {0}

Let (P,)>o be a transition semigroup for X. Now, define the infinitesimal

generator A of X by

o Pu() — u()
Au(z) = ltlf?f

if the limit exists. By [85, Section 4.1], Au is well-defined for u € C?*(R?) and
represented by

1 n n
=1

1,j=1

[ () = ule) = Ly V() J(dy).
R4\ {0}
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Recall that
Lu(z) = p / (u( + ) — u(z)) I(ly|)dy,
R4\ {0}

with the function J: R, — R, . Let X be an isotropic pure jump Lévy pro-
cess in R? with generating triplet (0,0, J(|Jy|)dy) and ® be its characteristic
exponent. We say that the condition (A) holds if the following conditions
(A1)-(A3) hold :

(A1) @ satisfies L'(2ay,a; ") and U'(2as,a;) for some a; > 1 and 0 < a3 <
g < 1.

(A2) There exists a constant ay > 1 such that

J(r) < agJ(r+1) for all » > 0. (4.1.3)

(A3) r— J(r), —@ is non-increasing.
Let

By [17], for any ¢ > 0 we have ®(r~1)~! < ¢(r) in 0 < r < ¢ with com-
parison constant depending only on ¢ and d. Thus, there exists a constant
az = as(d,a;) > 1 such that L(2ay,a3",¢) and U(2ay, as, ¢) hold. Note that
L(2a1,a3", ) implies that o(r) < er?® for r < 1, so by definition of ¢ we
see that J(|y|)dy is an infinite measure.

For every open subset D C R?, the transition density pp(t,z,y) of killed

process X satisfies
po(t, z,y) = p(t, |z — y|) = E*[p(t — 7p, | X7, —yl); 7D < 1],
and its transition semigroup (PP);>o is represented by
PP (@)= B D] = | ot ) dy

Note that, under settings above, the infinitesimal generator can be rewrit-
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ten as

Aufa) =+ / (u(z +y) +u(z —y) = 2u(z)) J(jy))dy ~ (4.14)
RA\(0}

2
for u € C?(R%). Moreover, it is known in [4, Lemma 2.6] that (4.1.4) still
holds for u € C%*(z) N Cy(R?). Thus, we have that Au(z) = Lu(z) for any
u € C?(x) N Cy(R?) for the next use.

Next we will define the renewal function V', which will be act as a barrier.
Let Z = (Zi)i>0 be an one-dimensional Lévy process with characteristic
exponent ®(|z|) and M; := sup{Z; : 0 < s < t} be the supremum of Z. Let
L = (Lt)t>0 be a local time of M; — Z; at 0, which satisfies

t
Lt:/ 1{Mt:Zt}(S)dS~
0

Note that since t — L, is non-decreasing and continuous with probability 1,

we can define the right-continuous inverse of L by
L7Yt) :=inf{s > 0: L(s) > t}.

The mapping ¢ — L~'(t) is non-decreasing and right-continuous a.s. The
process L' = (L; )50 with L;! = L71(t) is called the ascending ladder time
process of Z. The ascending ladder height process H = (Hy);>o is defined as

M, (=Z,- if L' < oo,
Ht;: Ltl( Ltl) !

00 otherwise.

(See [40] for details.) Define the renewal function of the ladder height process
H with respect to ® by

V(z) = / P(H; < x)ds, z€R.
0

It is known that V(xz) = 0if x <0, V(0c0) = oo and V is strictly increasing,
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differentiable on [0, 00). So, there exists the inverse function V! : [0, 00) —
[0, 00).

Now we are ready to introduce main assumptions in this section.

Theorem 4.1.1. ([58, Theorem 2.1]) Assume that D is a bounded C™' open
set in RY and L is an operator of the form (4.1.2) satisfying (A). If f € C(D),
there exists a unique viscosity solution u of (4.1.1) and v € CV (D). Moreover,

we have

lullev oy < Clifllew,

where ¢(r) = @(r)'/2, for some constant C > 0 depending only on d, D, and
J.

Theorem 4.1.2. ([58, Theorem 2.2]) Assume that D is a bounded C*' open
set in R? and L is an operator of the form (4.1.2) satisfying (A). If f € C(D)
and u 1is the viscosity solution of (4.1.1), then u/V (ép) € C*(D) and

< Ol fllew
C>(D)

It

for some constants a > 0 and C' > 0 depending only on d, D, and J.

4.1.2 Holder Regularity up to the Boundary

In this section, we give the proof of Theorem 4.1.1. We start from collecting

some basic properties of renewal function in [17] and [18].

Lemma 4.1.3. For any ¢ > 0, There exist constants C;(c) > 0 fori=1,2,3
such that

Crlo(r) <V(r) < Cip(r), 0<r<g (4.1.5)
L (RBR\"" _V(R) R\
L= < < = < R< 1
C, (T) _V(r)_02<r) , 0<r<R<c and (4.1.6)
T 1/ V-1 T) T 1/an
e < <Cy (= <T L (4L
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Proof. By [17, Corollary 3] and [18, Proposition 2.4], we have
(Vi) ?2=< e, r>0.

with comparison constant depending only on d. Combining with ®(r~1)~1 <
@(r) in 0 < r < ¢, we conclude (4.1.5). By (4.1.5) with L(20,a3',¢) and
U(2aq, as, ¢) we have (4.1.6). Using [17, Remark 4], we also obtain the weak

scaling property of the inverse function in (4.1.7). OJ

The most important property of renewal function is the following: w(z) :=

V(z,) is a solution of the following Dirichlet problem :

Lw=0 in R%,
(4.1.8)
- d\ Tod
w=0 in RANRY,

where L is of the form (4.1.2) satisfying (A). (see [49, Theorem 3.3]).
The following estimates for derivatives of V' are in [49, Proposition 3.1]
and [66, Theorem 1.2].

Lemma 4.1.4. Assume X is an isotropic pure jump Lévy process satisfying
(4.1.3). Then r — V(r) is twice-differentiable for any r > 0. Moreover, for
any ¢ > 0 there ezists a constant C(c) = C(c,n, a1, a1, as) > 0 such that

V'(r)
rAc

vir)

|7 <C :
V7(r) .

. V(i <cC (4.1.9)

We are going to utilize the space C'V (D) in Section 4.1.2 and adopt V (dp)
as a barrier in Section 4.1.3.

Next we introduce the following Dirichlet heat kernel estimates from [29,
Corollary 1.6] and [66, Thoerem 1.1 and 1.2]. We reformulate here for the

usage of our proofs.

Theorem 4.1.5. Let X be an isotropic unimodal Lévy process satisfying
(4.1.3). Let D C R? be a bounded C*' open set satisfying diam(D) < 1 and
pp(t,z,y) be the Dirichlet heat kernel for X on D. Then x — pp(t,x,y)
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is differentiable for any y € D,t > 0, and there exist constants C; =
Ci(n, D, ay,as, 1,0, P(1)) > 0, i = 1,...,4 satisfying the following esti-

mates:
(a) For any (t,x,y) € (0,1] x D x D,

polt2,y) < O (1 A W) (1 A M) plt, |z — yl/4)

and
Vanta )| < Co | Vg ol
X 7‘/1;’ f— 7",'U7 N
Pp Y 2 Sp(@) Al V—l(\/f) Pp Yy
(b) For any (t,z,y) € [1,00) x D x D,
pD<t7 x??/) < 0367)\1tv(6D($))V(6D(y))
and . .
X t? ) S t? ) Y
|v pD( x y)‘ Cy 5D(x) Al v V_l(l) pD( x y)
where —A\1 = —Ai1(n, a1, az, a1, a0, P(1)) < 0 is the largest eigenvalue of the

generator of XBOD.

In the estimates of Theorem 4.1.5, we used dp(x)Vdp(y) < diam(D) < 1,

V(r) < o(r)/?in0<r <1and w+(\/2) = ¢~ 1(t) to reformulate theorems

in our references. In addition, estimates in [29, Corollary 1.6] are of the form
pD(t7 z, y) < CG_A(D)tV((SD(m))V((;D (y))

where —\(D) < 0 is the largest eigenvalue of the generator of X?. Using [41,
(6.4.14) and Lemma 6.4.5], we have A(D) = inf{ [, —Lu(z)u(x)dz | ||ull; =
1,supp(u) C D}, thus we can obtain A\; < A(D). This implies heat kernel
estimates in Theorem 4.1.5(b).

Without loss of generality, we will always assume diam(D) < 1 in this
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section. We define the Green function of XP by
GP(x,y) = / po(t,x,y)dt
0

for z,y € D with x # y. Note that by Theorem 4.1.5(b), GP(z,y) is finite
for any x # y.
We define a potential operator R for X as

RPf(z) = / N /D po(t, 2. 9) f (y)dydt. (4.1.10)

Using definitions of PP and G, we also have

RPfa) = [ RGOS | perwar @i

0

In the next subsection, we will see that R” acts as the inverse of —A.
First we will prove interior Holder estimate of R” f. For the next usage,

we prove the following proposition for the functions in L>*(D).

Proposition 4.1.6. For any f € L*(D) and any ball B(xy,r) C D sat-
isfying op(xo) < 2r, we have RPf € CV(B/2) and there is a constant
C =0C(n,a1,as, 01,00, D, (1)) > 0 satisfying

IR” fllovsz < C (I fll=m) + | R” fllow) (4.1.12)

Here we have denoted B = B(xq,r) and B/2 = B(xg,7/2).

We next capture a behavior of the function R” f near the boundary by
using various estimates in [18, 29, 49]. Especially, the second assertion in the

following lemma will provide the optimality of Theorem 4.1.2.

Lemma 4.1.7. There exists a constant C' > 0 such that

[RP f(@)] < CllfllL=)V (dp(x))
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for any f € L>®(D) and x € D. Moreover, if we further assume that f > 0
in D, then for any 6 > 0 there exists a constant ¢ > 0 such that

RDf(a:) > cV(dp(x)) fdm

Dy

for every x € D, where Dy :={y € D : 6p(y) > 6}.

Remark 4.1.8. As a corollary of Lemma 4.1.7, we have

IR” fllr(py < C|l fllzo=(p)-

Hence we can simplify (4.1.12) to

HRDf”CV(B/Q) < éHfHLoo(D) (4.1.13)

for some constant C' = C(n, ay, as, a1, o, D, ®(1)) > 0.
Now we are ready to prove Theorem 4.1.1 for the function R” f.

Proposition 4.1.9. Assume f € L>(D). Then, RPf € CV(D) and there

exists a constant C' > 0 such that
IR" fllcv oy < ClIf | ()-

The constant C > 0 depends only on n,ay,as, oy, s, D and ®(1).

Proof. By (4.1.13) we have

[RPf(z) = R f(y)] < il fllzoe(myV (|2 = yl) (4.1.14)

for all z, y satisfying |z —y| < dp(x)/2. We want to show that (4.1.14) holds,
perhaps with a bigger constant, for all x,y € D.

Let (Ry, A) be the C'! characteristics of D. Then D can be covered by
finitely many balls of the form B(z;, dp(2;)/2) with z; € D and finitely many
sets of the form B(z}, Ry) N D with 25 € dD. Thus, it is enough to show that
(4.1.14) holds for all =,y € B(2}, Ry) N D possibly with a larger constant.
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Fix B(z}, Ry) N D and assume that the outward normal vector at z; is
(0,---,0,—1). This is possible because the operator is invariant under the
rotation. Now let z = (2/, x,,) and y = (v/, y,) be two points in B(z§, Ry)N D,
and let r = |x — y|. Let us define for £ > 0

P = (@ g+ Nr) and = (g + Ar),

for some 1 — 271 (14 A?)71/2 < X\ < 1. Since (1 4+ A?)~V2(2*), < dp(z¥), we

have
2P — 2P = N (1 = M) <
Thus, we have from (4.1.14) that

|RP f(2*) = RP f(a")] < cul|fll ooy V (2" — 2*F1))
= 1| fllzoey VN (1 = X))

and similarly that |R” f(y*) — R” f(y*™)| < 1| fll )V (A¥(1 = A)r). More-
over, note that the distance from the line segment joining z° and ° to the
boundary 0D is more than r(1—A/2). Thus, this line can be split into finitely
many line segments of length less than (1 — A/2)/2. The number of small
line segments depends only on A. Therefore, we have |RP f(2°) — RP f(y°)] <
ca|| fllee(pyV (1) and hence

IRP f(z) — R f(y)| < |RP (") — RP f(°)]
+ ) (IRPf(*) = RP (@] + [RP F(y*) = RP f ("))

k>0

< sl fllzoco) (V(r) + D VARL = A)r))

k>0

< cal[fllzepyV(r) (1 tesy (N1~ A))al> < G| fll ooy V (1)

k>0

Recall that r = |x — y|. This finishes the proof. d
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From now on, we will prove that the function v = —RP f is the unique
viscosity solution for (4.1.1) when f € C(D) by establishing the relation

between viscosity solutions of (4.1.1) and solutions of the following:

Au=f in D,

(4.1.15)
u=0 inRND.

In [4], the authors discussed the relation between operators A and L, for
instance, domain or values of the operators; see [4] for the application to
heat equations.

At the beginning of this section we apply the strategies in [4] to our set-
tings and obtain some related properties. After then, we obtain comparison
principle for the viscosity solution. Combining these results, we finally ob-
tain the existence and uniqueness for Dirichlet problems (4.1.1) and (4.1.15).
Moreover, these two solutions coincide under some conditions. Also, in Sec-
tion 4.1.4 we obtain Harnack inequality, which is one of the key ingredients
for the standard argument of Krylov in [65]. In Section 4.1.5 we will make
use of Harnack inequality and the comparison principle to prove Theorem
4.1.2. Let

D=D(D):={ue CyD):Aue C(D)}

be the domain of operator A. Recall that by [4, Lemma 2.6] we have
Au(z) = Lu(x) (4.1.16)

for any u € C%(z) N Cy(RY), x € D. We first show that u = —RP f satisfies

(4.1.15) when f is continuous.

Lemma 4.1.10. Let f € C(D) and define w = —RP f. Then, u is a solution
for (4.1.15).

Proof. First we claim that for any u € Cy(D) and = € D,

_ 1 PPu(r) — u(x)
Au(z) = ltlf(r)l . :

(4.1.17)

150



CHAPTER 4. APPLICATIONS OF HEAT KERNEL ESTIMATES

To show (4.1.17), we follow the proof in [4, Theorem 2.3|. Note that our
domain of operator is slightly different from it in [4, (2.8)].
We first observe that for any u € D and = € D,

PPu(z) — Pau(z) = E*u(XP) — E*u(X,)
= E[u(X7) 1y o0] — E*[u(Xe) 1] — E7[u(Xe) (<]
= —E"[u(Xi) Lrp<ny)-

Indeed, the first and the third term in the second line cancel. Hence

PPu(x) — Pu(x) B [u(X) 1<) B [(u(Xrp) = u(X0)) 1irp <))

t t t

Meanwhile, by the strong Markov property we obtain

‘Ez [(U’(XTD) - u(Xt))l{TD<t}} ‘ S E® HEXTD [U(XO) - u<Xt—TD)H 1{TD<t}} .

Since u € Cy(D) is uniformly continuous, with stochastic continuity of Lévy

process we have that for any e > 0 there is 6 = 6(¢) > 0 such that
B [u(X,)] —u(z)] <e
for any z € D and 0 < s < 6. Combining above two equations we conclude
E*[(w(Xop) = u(X0) Lirpen]| < eP(p < 1)

for 0 < t < 0. Since D is open, for any x € D we have a constant r, > 0 such
that B(x,r,;) C D. Using [20, Theroem 5.1 and Proposition 2.27(d)] there
exists some M > 0 such that

]P)x(TD < t) < ]Pm(TB(x,rz) < t)

" < <M forall ¢>0.
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Combining above inequalities we obtain that

Plu(z) — u(x) PPu(z) —u(z)  Pu(z) — u(z)

lim = lim

— Au(x)

tl0 10 t t
P <t
< elim M < eM.
tl0 t

Since € > 0 is arbitrarily, this concludes the claim.

Now we prove the lemma. Note that v = 0 in D¢ immediately follows
from the definition of RP. Then, by (4.1.17) and (4.1.11) we have that for
reD,

Au(w) = AR f)(z) = —ljn ZLEN@ = B (@)

0 s
_ _13&)1% [ptD(/ow PP f()ds) (2) —/OOO Pst(x)ds}

. 15)&% (_ /0 T PP f(w)ds + /0 T pp f(x)ds) (4.1.18)
:1%1% (— /too PSDf(x)ds+/OOO PSDf(x)ds)

=lim Jo PsDt s f(z)

Indeed, the third line follows from the semigroup property PPPP = PE,
and that RPf € Cy(D) which follows from Proposition 4.1.6. This finishes
the proof. O

The next lemma shows that every solution of (4.1.15) is a viscosity solu-
tion of (4.1.1).

Lemma 4.1.11. Assume that f € C(D) and u € D satisfies Au = f in D.

Then, u is a viscosity solution of Lu = f.

Proof. For any 7y € D and test function v € C?(R?) with v(z¢) = u(x)
and v(y) > u(y) for y € RY\ {zo}, we have

Av(zg) = Lv(xg).

152

___;rx_-! _'\-.‘I.“:_ -11 -



CHAPTER 4. APPLICATIONS OF HEAT KERNEL ESTIMATES

Since v(xg) = u(zy) and PPv(xg) > PPu(xy) for every t > 0, we have

PPu(zo) — v(xo) PPu(wo) — u(xo)

i > 1i = :
Av(xg) ltlfgl . > ltlfgl Au(zg)
Thus, we arrive
Lv(zg) > Au(zy),
which concludes that u is a viscosity solution of (4.1.1). O

Now we see comparison principle in [21]. This implies the uniqueness of

viscosity solution for (4.1.1).

Theorem 4.1.12 (Comparison principle). Let D be a bounded open set in
R, Let u and v be bounded functions satisfying Lu > f and Lv < f in D
in viscosity sense for some continuous function f, and let u < v in R\ D.
Thenu <wvin D.

Proof. We first claim that L satisfies [21, Assumption 5.1]. More precisely,
there exists constant ry > 1 such that for every r > rq, there exists a constant
6 = 0(r) > 0 satisfying Lw > 6 in B,, where w(z) = 1 A ‘f—';

Let ro =4, r > 4 and x € B,. Note that by » > 4 we have

y Yy < BQT.

Thus, for y € B, we obtain

ety Al -y 202 2[y)?
o r3 _ r3

w(z +y) +w(z —y) = 2uw(z)

On the other hand, for y € B¢ we have

2ly?
7‘3

w(x +y) +wlr —y) —2w(x) > A (1 —2w(x)) > 0.
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Therefore, since w € C*(R?) we have

Lu(a) = / (o4 y) + wle ) — 20() J) dy

1

> 5 [ et g) +wle = 9) ~ 20) Jw)dy
1

B’V‘
> —3/ lyl?J(y)dy =: 0(r) >0
T B,

for every r > ry = 4 and x € B,. Since L satisfies [21, Assumption 5.1}, we

can apply Theorem 5.2 therein, which proves the theorem. O

The following uniqueness of viscosity solution is immediate.

Corollary 4.1.13. Let D be a bounded open set in RY and let f € C(D).

Then there is at most one viscosity solution of (4.1.1).
Here is the main result in this section.

Theorem 4.1.14. Assume that f € C(D). Then, u = —RPf € D is the

unique solution of (4.1.15). Also, u is the unique viscosity solution of (4.1.1).

Proof. By Lemma 4.1.10, we have that u = —RP f € D is solution of (4.1.15).
Now, Lemma 4.1.11 and Corollary 4.1.13 conclude the proof. U

Proof of Theorem 4.1.1 By Theorem 4.1.14, the unique viscosity solution
for (4.1.1) is given by u = —RP f. Therefore, Proposition 4.1.9 yields the
Holder regularity of viscosity solution with respect to CV-norm. By (4.1.5),
we have V < ¢ and this concludes the proof. U

Remark 4.1.15. Every viscosity supersolution u to the problem

Lu< -1 wmD,
u=0 in R4\ D,

satisfies u > ¢V (0p) for some constant ¢ > 0. Indeed, letting v = RP1,
we have Lv > —1 by Theorem 4.1.14. Thus, by Theorem 4.1.12 we obtain
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u < v = RP1. Now the conclusion follows from Lemma 4.1.7. This provides
the optimality of Theorem 4.1.2.

4.1.3 Boundary Regularity

Throughout this subsection, D C R? is a bounded C! open set. Without
loss of generality, we assume that diam(D) < 1. Since dp is only C™! near

0D, we need to use the following “regularized version” of ép, defined in [76,
Definition 2.1].

Definition 4.1.16. We call ¢ : D — (0,00) the regularized version of dp if
Y € CHY(D) and it satisfies

Ctop(a) < Y(2)<Cop(a), |Vi(2)|| < C and [V (z) = Vi(y)]| < Cla —y|
(4.1.19)
for any x,y € D, where the constant C > 0 depends only on D.

For D = B(0, 1), there exists a regularized version of 05,1y which is C?
and isotropic. Denote this function by ¥ and let C' = C(n) be the constant
in (4.1.19) for the function W. For any open ball B, := B(xq,r), we will take
the regularized version of dp, which is defined by ¥, (z) := ¥(*=*¢). Then,

V.. satisfies

C
C7lop,(2) < Up(2) < Cop,(2), VT <C and [V (2)] < —
,
(4.1.20)
for any z,y € B(zo,r). The last estimate follows from the fact that U €

C?*(B,).
We first introduce the following three lemmas which will be used to con-

struct a barrier for L.

Lemma 4.1.17. Assume that D is a bounded C*' open set and let ¢ be a

reqularized version of §p. Then, for every x € R% and xo € D we have

[¥(2) — (o) + Vi (o) - (& — 20))+| < Clar — o’ (4.1.21)
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where C' is the constant in (4.1.19). In addition, when D = B(0,r) and
¢ =W, we have (4.1.21) with C = £ where C' is the constant in (4.1.20).

Proof. The proof for (4.1.21) is exactly the same as [76, Lemma 2.4], but we
provide the proof to see the dependence of the constant C' on r for the case
D = B(0,r).

Let ¢ be a C! extension of Y| p satisfying Y <0in R\ D. Then, since
Y € CVHRY) we have

() —tb(w0) — Vi (x0) - (z—20)| = |th(x) = (wo) — Vb (x—20)| < Clz—10|?

for all z € RY. Using |a, — by| < |a —b] and (¢); = v, we have

[¢(z) = (Y(wo) + V(o) - (2 = m0)) | _ [§(x) = (o) — V(o) - (& — o)

|z — x0)? - |z — x|

for all z € R%. If D = B(0,r) and ¢ = ¥,., the constant C' become % Thus,

the conclusion of lemma follows. O

Next lemma is a collection of inequalities which will be used for this
section. Note that we can easily check these inequalities when ¢(r) = r**
and V(r) = r* with 0 < a < 1. The inequalities (4.1.23) and (4.1.25) are in
[18, Lemma 3.5]. We skip the proof.

Lemma 4.1.18. ([58, Lemma 4.3]) There exists a constant Cy > 0 such that
forany0<r <1,

" s 017“2
/0 ORI O) (4.1.22)
0o 1 Cl
/T sgo(s)ds = o(r)’ (4.1.23)
"l Cir "V(s)
/0 V(S)ds = V() /0 < ds < C 1V (r) (4.1.24)
and
= Vi(s) C
/r sgp(s)ds = V) (4.1.25)
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Also,

The following lemma is the counterpart of [76, Lemma 2.5]

Lemma 4.1.19. Let U C R? be a C*' open set, which can be unbounded.
Then there exists a constant Cy = Cy(n,U, a1, as, a1, ) > 0 such that for

any x € U and 0 <r <1,

[ V) dy _ G
Un(Bla)\B(a.du(2)/2)) ou(y) |v—y|"2o(lz —y|) — V(r)

(4.1.26)

Proof. Fix x € U and denote p := dy(z) < 2r, B, := B(x,r) for r > 0 and
B, = () for r < 0. First note that there is a constant k = x(U) > 0 such that
the level set {0y > t} = {z € Uldy(x) > t} is CH! for any ¢ € (0, k] since
U is CY1. Without loss of generality we can assume x < r because x can be
arbitrarily small.

Since Bgr N {oy > Kk} = 0 for every R < k — p, we have

/ V(6u(y)) dy

(BAB,nlovzry  0u(y) |z —y|"2o(lz —yl)

-~ / V(ou(y)) dy

S BABaayanntoozsy 0(y) =y 2p(jz —y)

V(ou(y)) dy

< / |
(By\ By, s3)"{6u>r} ou(y) |z —yl"2o(lz —yl)

where the last line follows from p/2 V (k — p) > %¢. Using

2
k<dy(y) <r+rx<2r and §§|x—y|§r
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for every y € (By\Baws) N {0y > K}, we arrive that for any = € U,

/ V(dn(y)) dy
(Br\Bay3)N{6u>r} op(y) |z —y["2p(lr —yl)
/ V(2r) dy
(BA\Boo)nfiuzry K |2 —y"2o(lz —yl)
V(r) [T s r?
< ds < <
<am ) gt S g S ey
where we used (4.1.5) and (4.1.22) for the second last inequality. Thus, it
suffices to estimate the integrand (4.1.26) in the set (5B,\B,/2)N{0 < éy < K}.

We will utilize the following estimates on Hausdorff measure in [RV15],

<

(4.1.27)

that is, there exists a constant c¢3(U) > 0 such that that for every z € U and
te(0,k),

H" ' ({6y =t} N (By-ri1,\Byr,)) < c3(2 )"t (4.1.28)

which follows from the fact that the level set {0y =t} is CM! for ¢ € (0, k).

Let us denote C,, := B,s-» for n > 0 and let M € N be the natural
number satisfying 2=Mr < p/2 < 27M*ly Using |x — y| > 27%r for every
y € Cx—1\Ck and ¢ is increasing for the third line, we have

/ V(éu(y)) dy

(Br\B,,2)N{0<dy <r} ou(y) |z —yl"2o(lz —yl)

PR / V(du(y)) dy

N 1 (Ch1\Cr)N{0<dy <k} ou(y) |z —yl"2o(lz —yl)
M

1 / V(ou(y))

< ——dy

kz:; (27Fr)n=20(27%r) Jiop \confo<sy<ny U (Y)

_— Vion(y)
7 (27" 20(270) Jiew_nconto<ap<ny 00 (Y)

M=

[Vou(y)ldy.

B
Il

Here we used |Véy(y)| =1 for y € {0 < 0y < s} for the last line. (See [77].)
For any 1 < k < M and y € Cj_; we have dpy(y) < 27Flr +p < (27FF1 +
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2-M+2)p < 6.2 %y which implies Cj,_; C {0y < 6 - 27%r}. Thus, combining
this with above inequality we have

/ V(v (y)) dy
(BB, 2)nfo<sy<x}  OU(y) |z —y["Pe(lz —yl)
¢ (4.1.29)

1 / V(5U(y))
< L0 576 (y) | dy.
2 2o Jiey nemiocinconin Ouly) 0

Plugging u(y) = dy(y) and g(y) = V((SZU(S)/)) into the following coarea formula

/Dg(y)IW(y)|dy = /Z (/u_l(t)g(y)dHn—l(y)) dt,

we obtain

1 / V(v (y))
——=|Véy(y)|dy
Zl (27Fr)"=20(27Fr) Jiop \cnfo<sy<62-try  OU(Y) Vou(y)

M 6-2~Fp
—2dH" (y)dt
Z(Q—kr)”‘%(?"“?“) 0 (Cr1\Cr)nfd=t} Y

- (4.1.30)
i 1 /6.2 o (2—1: )n_1V(t) dt
@ F) o) Jy T T
M —k M
2~k 6270 (¢ 2~k
= ngm/o %dtﬁ&;Z—V@-?kr),
k=

“ p(27r)

M
k=

IN

where we used (4.1.28) for the third line and (4.1.24) for the last line. Also,
by (4.1.6) and (4.1.5),

where in the last two inequalities we have used that V is increasing and
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(4.1.24). Using (4.1.29), (4.1.30), and (4.1.31), we conclude

[ V(5u(3)) dy _ aesr
(Br\B,2)N{d<r} ou(y) |z —yl"2o(lz—yl) — V(r)

This and (4.1.27) finish the proof. O

With Lemmas above, we are ready to show that V' (¢) acts as a barrier of L
on D.

Proposition 4.1.20. Let L be given by (4.1.2) and 1) be a regularlized version
of 6p. Then there exists a constant Cy = C’g(n, ay, az, ay, ag, D) > 0 such that

IL(V())] < Cs in D. (4.1.32)

where V' is the renewal function with respect to ®. In addition, if D = B(0,r)
is a ball with radius r, there exists a constant C5 = C3(n, a1, as, aq, ) > 0

such that
Cs

Vi(r)
where 1 = VU, is a reqularized version of dp(o,) defined in (4.1.20). Note that
Cs5 is independent of r.

|L(V ()] < in B(0,r), (4.1.33)

Proof. This proof is mainly motivated by [76, Proposition 2.3]. Here we only
prove (4.1.33), and the proof of (4.1.32) is similar.
Let xg € B, := B(0,r) and p := 0p,.(x¢). First we prove (4.1.33) for the
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case p > rr > 0 with £ = 1/(8C?). In this case, we have

|L(V () (w0)]
_ / (V(i/)(:coer)) + V(o —y) ) J(1) '
= (V(@o)) ) T d
R 2 lyl?e(|yl)
< / V2V (@ ()] A, (4.1.34)
B w0 ()
V(@(zo+y) + V(¥(zo —y))

2

),

where x* is a point on the segment between zy — y and xy + vy, so that
0p,(x.) > kr/2 when y € B,, ;. Using (4.1.6), (4.1.20), and Lemma 4.1.4,

we have

e ORI
Vil 0”’ Wiy = T

c
KT/2

IV @) < V) IV@)I? + V)V < S

which yields to estimate the first term of (4.1.34) by

V(r) / 1 V(r) /"""/2 s 3
I <c? - _dy=c ds < .
e s e () 2o els) V(r)

In the last inequality above, we have used (4.1.22) and (4.1.5). For the second
term, using ¢ (x) < Cép, (x) < Cr for any = € B,, we have

[l 2D V0 =)y < 2V < V)

Therefore,

1 CG(I{)
b < Vi) // o0 = Vi)

In the last inequality we have used (4.1.23) and (4.1.5). Therefore, (4.1.33)
for the case p > kr holds with C5 = c3 + ¢.
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Now it suffices to consider the case p < kr. Denote

() := (Y(w0) + V(20) - (* — 20))+,

which satisfies
L(V())=0 on {l>0}

by (4.1.8). Note that ¥ (zg) = l(zo) and Vip(xg) = Vi(zg). Moreover, by
(4.1.21) we have
C
(@) = U(z)] < —fo = zol” (4.1.35)

For any 0 < a < b < (| there exists a. € [a,b] satisfying |V (a) — V(b)| =
la — b|V'(a,). Using Lemma 4.1.4 in the first inequality we have

V(a) = V(b)| = |a—blV'(ay) < erla — b[@ < cgla — 0|

*

Vi)

Here we used (4.1.6) with ¢ = C' for the second inequality. Therefore, for any
a,b € (0,C] we have

Via) - V()| < csla—b (@ N @) |

Also, one can easily see the following inequality

V(@) = V(B)] < csla— ] (fo” ey + 0. 1{b>o}) (4.1.36)

for any 0 < a,b < C' by using Lemma 4.1.4.
By (4.1.35) and (4.1.36) we have that for any x € B,(zo),

Vo) - Vil < Ho oo (“H D 1 gws0 + U s
< o — ol <—V§ZB(S)) Lisp, (2)>0) + —Véfg)) 1{e<w>>0}) : (4.1.37)

where we used ¥(z) < Cép,(x) < C and l(z) < Cép,(xg) + Cr < C for
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the first inequality and (4.1.6) for the second. On the other hand, for any
x € B,a(x) with p < kr we have

C C
@) = 0(@)] < o —wl* < Zp? < Crip

and

C*lg < 075 (z) < ¥(x).

Thus, using £ = 1/(8C?) we obtain

S0(r) < Ur) S 2(x) forany 7 € Byp(a).

Using § < dp,(x) < 2p, we arrive at
U(x), ((x) € [(4C) " p,4C].

Therefore, there exists y € ((4C)~'p,4Cp) satisfying

V(i(r))
b(x)

so using (4.1.35) and (4.1.9), we have

V() .

V() = V() = 0le) — €@V ) < Lo = P22 (0.138)

V(U4C)p) _ Y ,zw
4oy T or U

< Lip— g
T

for x € B,/(xo). Here we used (4.1.9) and (4.1.6) for the second line. Also,

for any x € BS(zo) we have
V(l(x)) = V(@(wo) + (& = 20) Vip(20)) < V(Cp+Cla — o) < casV (| — o)
and
V((z)) <V(Cr) S V(Clx —xol) < casV (| — xol),
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where we have used (4.1.6) and p < r < |z — x¢|. Thus we obtain
V() - V(OI() < eVl — o) (4.1.39)

for x € BS(xg). Therefore, by taking x = y + x¢ for (4.1.37), (4.1.38), and
(4.1.39) we have

V() = VI(OI(y + o)

1%
L for y € By/z
2 (V(éB, (zo+ V((z
sc ‘% ( ((555(4(301;;))1{537-(m0+y)>0}+ z((iolzg))l{l(%*y)”}) fory € BBy
V(lyl) for y € B¢

where ¢ = ¢y V ¢12 V c14. Hence, recalling that L(V(€))(zo) = 0 and ¢(xg) =
{(zg), we find that

LV )] = 1LV () ~ V(ED) o)
= [ V) - VOl + i)Y

ly["e(lyl)
V) [ IO J()
e /Bp/z et ™ /Bg”'y‘ﬂmwﬂybd@’

> (V(0p,(zo +y)),  V(lzo+y) J(1)
”/BT\BP/Q : ( S50+ y) Tl +y) 1) PIRE(

=: I+ II 4 IIL

For I, using (4.1.22) we have

p/2
Bp/2 0 (10

rop ly|"e(lyl) rop (s)
cs Vip) (p/2)* _ ar (pVI(r) C1g
= <;V p)) =

ST el SV Vi) S VY

where we used (4.1.5) and (4.1.6) for the last two inequalities. Also, using
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(4.1.25) we obtain

=c & =cC N V<S) s =
II= 5 V(|y|)|y|ngp(|y|)dy 19/T sgo(s)d = Vi(r)

For the estimate of III, we first observe that for any y € {¢ > 0} := H,

Ly) | .
@%;vawowscx
Thus, by (4.1.6) we have
Vi) _ | VICkw) _ | V(En)
Wy) — 7 ouly) — % ouly)

Therefore, using Lemma 4.1.19 for B, and the half plane H := {¢ > 0} for

each line, we conclude

7 JB.n(Bi(@o)\B, 2 (x0)) 6B, (y) |y — zo|"2p(ly — wol)
o Vew)  Ja
T JHA(Bi(20)\B, 2(20) ) y) |z —yl"2p(lzo — yl)
Co3 | Cas V(u(y)) 1
< + —/ dy
V(r) r Hﬂ(Bl(xo)\Bp/Q(:co)) ou(y) |z —y|"2p(lzo —yl)

Combining estimates of [,II and III we arrive

|L(V(2/)))<LE0)| < [+ 1T+ III < (Clg + Co0 + 025) V(T‘)

and (4.1.33) follows.

4.1.4 Subsolution and Harnack Inequality

<

C25

Vi(r)

In this section we construct a subsolution from the barrier we have obtained

in Proposition 4.1.20. Recall that we defined the domain of infinitesimal
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generator A by
D=D(D)={ueCyD): Auec C(D)}.

It is uncertain whether V(1) € D(D) since A(V(¢)) is not continuous in
general. To make our barrier included in the domain of operator, we construct
anew domain of generator which contains V (1). For given C'! bounded open

set D and open subset U in D, define
F=FD,U):={ueCyD):Auec L>*{U)}.

for the usage of proof. Denote F(D) = F(D, D). Clearly for any U; C Us,
F(D,Us) C F(D,U;). We first prove that V(i) € F(D).

Lemma 4.1.21. Let ¢ be the regularized version of ép. Then, A(V (¢)) =
L(V(¥)) in D. Moreover, V (¢) € F(D).

Proof. Let u € Cy(D) be a twice-differentiable function in D. Assume that
V?u is bounded in some U CC D. We first claim that

Lu(z) = Au(z) forany z € U.

Indeed, fix x € U and let 7, > 0 be a constant satisfying B = B(x,r,) C U.
Without loss of generality we can assume r, < 1. Note that there exists a

constant ¢; > 0 such that 2|u| + r2||V?u|| < ¢; in U. Then we have

utie) =ty D (s ot iy — uto)
:1&61 5 <u($+y)‘;u(x—y) —U(ZE)) Mdiy (4140)

Since there is a constant ¢y > 0 such that 7@ < ¢y J(r) for any t > 0 and
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r > 0, we have

u(z +y) +u(:1: -y u(x)‘ p(t,t]y\)dy
(/ /) e M(m_y)—u(aﬂlwdy

2 eiplt, cipl(t, 2
< [artbly, . [, <o [ A A <o
BT, t c t Re T

T

for any ¢t > 0 so that we can apply dominate convergence theorem in the
right-handed side of (4.1.40). Thus, using hJ%l 2 = J(r) we obtain

Au(w) =t [ (U(x ty) tulr—y) _ u(:c)) Pt 1y

10 2 t

— /Rd <U(x + ) -QF uz —y) u(m)) Hydy = Lu(x).

This concludes the claim. Now, by Lemma 4.1.4 we have that V() € Cy(D)
is twice-differentiable and V2V (1)) is locally bounded on D. Therefore, we
arrive L(V(¢)) = A(V(¢)) in D. It immediately follows from (4.1.32) that
V(v) € F(D). O

Now we are ready to construct a subsolution with respect to the generator

A.

Lemma 4.1.22 (subsolution). There ezist a constant Cy > 0 independent of

r and a radial function w = w, € F(By,) satisfying

(Aw >0 in By \ By,
w < V(r) in By,

4

w > CyV(4r —|z|) in By \ By,

(w=0 in R\ By,

where B, := B(0,r).

Proof. Let ¥ = Wy, be the regularized version of dp,, in (4.1.20) and choose
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a function n € C°(B,) satisfying ||n|/c(s,) = 1 and n = 1 on Bys. Define
ne-(z) ==V (r)n(z/r) € C*(B,). Then, we have

n-(r +y) +n.(r —y)
2

IAnAﬁ)%ZILnAi)ISl/1 — n(@)| J(y])dy

R4

EZ(HVQUJhﬂ%Ba-+HnAhﬂ%Bn)j[ (9P A 1) J(y])dy < o0

Rd
for any x € R?, which implies 7, € F(By,). Also, for x € By, \B,,

TR S U ) 3 Gl VA
An,(z) = Lny( >—/Rd 2 v ()

:/ﬂgdn"(ﬂy)L))dyZ/B V(r)J(@) ,

lyme(lyl (—ars2) 1Ym0 (lyl) V(4r)

Here we used (4.1.5) and (4.1.6) for the last inequality.

Define a function w, by

- Co
T:_V\II Ty
W c, (V) +n

where C is the constant in Proposition 4.1.20. We have w, € F(By,.) by
Lemma 4.1.21. Also, for x € By, \B,, using Proposition 4.1.20 and Lemma

4.1.21 again, we have

Ay (2) 2 ~ G LV (D)@ + Ane (&) 2 =55+ 1 =
and
() = GV (@) > eV (6p(x)) = 3V (4r — a]).
For z € B,,

(1) < 2—23\/(407") YV < eV(r)

by (4.1.20) and (4.1.6). Define w,(z) := éu?r(x) Then w, satisfies all asser-

tions in Lemma 4.1.22 with constant Cy = 2—2, which is independent of r. [

168



CHAPTER 4. APPLICATIONS OF HEAT KERNEL ESTIMATES

We end with the Harnack inequality and the maximum principle of prob-
abilistic version. For local operators, the Harnack inequality implies Holder
regularity of solutions of differential equations. However for nonlocal opera-
tors, as Silvestre mentioned in [84], this is not true because the nonnegativity
of the function w is required in the whole space R?. The Harnack inequality,
maximum principle, and the subsolution constructed in Lemma 4.1.22 will
play a key role in the proof of Theorem 4.1.2. We emphasize that the fol-
lowing theorem is the Harnack inequality for harmonic function with respect
to A, and it does not imply the Harnack inequality for the viscosity solu-
tion with respect to L. See [21] for the statement of Harnack inequality for

viscosity solution.

Theorem 4.1.23. ([86, Theorem 2.2]) Let D be a bounded C'' open set.
Then, there exists a constant C' > 0 such that for any ball B(xzo,7) C D, and
any nonnegative function u € F(D) satisfying Au = 0 a.e. in B(zo,7), we

have

sup u<C inf .
Bl(zo,r/2) B(zo,r/2)

Also, we have the following maximum principle.

Lemma 4.1.24 (Maximum principle). Let D be a bounded C*' open set and
U be an open subset of D. If the function u € F(D,U) satisfies Au =0 a.e.
in U and u > 0 in US, then u > 0 in RZ.

Proof. Suppose that there exists € U satistying u(z) < 0. Since u € Cy(D),
the set U_ := {z € R? : u(z) < 0} is bounded and open set with positive
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Lebesgue measure. For any ¢ > 0 we have

/ Pou(x) —u(z d:v—/ / (y)p(t, ]x—y’)dydx—/U u(z)dx

= [t [ wele=yhdzas— [ utyiy

:/wa/m(tM—Mdﬂ@+z;u (/i tm—wﬂm—ody

> [t ([ pttlo =iz = 1) ay.

Since U_ is bounded, diam(U_) =: R < oo. Thus, for any y € U_ C B(y, R),

L Jo p(t e —ylde 1= [ m et e —yhde  PO(X,| > R)
t B t t .

Using heat kernel estimates in [17, Theorem 21], p(t,r) < (gpfl(t)*” A r"gi(r))
for (t,7) € (0,1] x Ry. Note that - “L(t)™" for t < ¢(r). Thus, there
exists € = ¢(R) > 0 satisfying

”w( )

PYX,|>R) 1 S|
Mz—/ p(t,|z[)dzzc/ dr > ¢
t t R<|z|<2R R 7'(,0(7“)

for all ¢ € (0, p(R)].Combining above estimates we obtain

/ Md$ > _6/ u(y)dy for all t e (0,p(R)].

Letting ¢ — 0, we conclude

P _
0= / Au(z)dr = lim de > —5/ u(y)dy > 0,
2 =0 Jir t -~
which is contradiction. Therefore, u > 0 in R%. O
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4.1.5 Proof of Theorem 4.1.2

In this subsection we will prove Theorem 4.1.2. More precisely, we prove the
Hoélder regularity for the function u/V(dp) up to the boundary of D. We
will control the oscillation of this function using the Harnack inequality, the
maximum principle and the subsolution constructed in Lemma 4.1.22.

Let us adopt notations in [75, Definition 3.3]. Let £ > 0 be a fixed small
constant and let &’ = 1/2 + 2k. Given zg € 9D and r > 0, define

D, = D,(x¢) = B(xg,7)N D
and
D}, = D} (x0) = B(zo,k'r)N{x € D: —x-v(xg) > 2kr},

where v(zg) is the unit outward normal at z,. Since D is a bounded C!
open set, there exists pg > 0 such that for each xy € 9D and r < po, there
exists an orthonormal system C'S,, with its origin at x5 and a C!-function
U : R*! — R satisfying ¥(0) = 0, Vs, ¥(0) = 0, | ¥[crr < &, and

{y = (7,yn) in CSy, : |y < 2r,V(y) <y, <2r} C D.
Then we have
B(y, kr) C D,(x0) for all y € DY, (o), (4.1.41)
and we can take a C''! subdomain D} satisfying D, C DM C D,, and
dist(y,dD}) = dp(y) (4.1.42)

for all y € D,. Since D, is not C'! in general, we will use this subdomain
instead of D,.

Since D is bounded and C*! again, we can assume that for each zq € 9D
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and r < po,
B(y* — 4krv(y*),4kr) C D,(zo) and B(y* — 4krv(y*), kr) C DY, (4d)43)

for all y € D, /s(x0), where y* € 9D is the unique boundary point satisfying

[y — | = dn(y).
The following oscillation lemma is the key lemma to prove Theorem 4.1.2.

Lemma 4.1.25 (Oscillation lemma). Assume f € C(D) and let u € D be
the wviscosity solution of (4.1.1). Then there ezist constants v € (0,1) and
C > 0, depending only on d,ay, as, a1, a0 and D, such that

u
OSC

< CyV(r)? oo 4.1.44
Wik Vi) = VUM e A

for any xq € 0D and r > 0.

To prove the oscillation lemma, we need some preparation. Note that
in the following two lemmas we aim to verify inequalities for every function
u € F, since we want to utilize the subsolution constructed in Lemma 4.1.22.

The first one is a generalized version of Harnack inequality.

Lemma 4.1.26 (Harnack inequality). There exists a constant Cy > 0 such
that for any r < po, zo € 0D and nonnegative function v € F(D, D}),
u

sup < C inf + |Aull; o, 10 V(7)) | . (4.1.45
D%, (z0) V(D) 2<D:,T(zo) V(0p) [AU] oo 1y V(r) | - ( )

Proof. We first prove that if a nonnegative function v satisfies Av = 0 a.e.
in D}, then

sup <c¢ inf —° (4.1.46)

v
Dt (o) V(00) T D, () V(9D)

for a constant ¢ > 0 which is independent of r and v. Indeed, for each
y € D, , we have B(y,xr) C D! by (4.1.41) hence Av = 0 a.e. in B(y, kr).

K'r
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We may cover D}, by finitely many balls B(y;, xr/2). Here the number of
balls is independent of r. By the Theorem 4.1.23, we have for each i,

sup v<¢ inf .
B(yi,kr/2) B(yi,kr/2)
If © € B(y;, kr/2), we have kr/2 < dp(z) < r/2+ 5kr/2. Thus, using (4.1.6)

we obtain
v CoU

< inf < inf 2
in in )
= Blyiwr/2) V(r/2 4+ 5K1/2) T B(yisr/2) V(0p)

Bnwrs2) V (00)
Now (4.1.46) follows from the standard covering argument, possibly with a
larger constant. We next prove (4.1.45). Let us write u = u; + ug, where
Uy = u + RP*' Ay and Uy 1= —RP"' Au. We claim that uy > 0 in R¢ and
Aup =0 a.e. in D}
Following the calculations of (4.1.17) we obtain that for any open subset
UcCD,zeUanduec F(D,U),

Au(x) = lim —Ptu(x) — ulz) = lim B uz) — u(x)

(4.1.47)
10 t t,0 t

Let us emphasize that we only have used u € Cy(D) in (4.1.17) so we can
repeat the same argument for v € F(D,U).

Let g € L®(U). Deducing RVg € Cy(U) from Proposition 4.1.6 and
(4.1.10), we obtain the following counterpart of (4.1.18): For any = € U,

ARg(a) = ([ PYais) o)

0

g (277 Patas) @ - [T Pyt

NI N (4.1.48)
= lim -~ PY,g(x)ds — [ PYg(x)d
im ( /0 s+e9(2)ds /O s 9(w) S)
t t
b fo PYgq(z)ds b fo Psg(x)ds'
t10 t t10 t
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Here we used (4.1.47) for the first line. Let

o1
Uy ={xeU: hm—/( : l9(7) — g(y)|dy = 0}.
B(x,r

rlo 7

Then, we have |U \ U,| = 0 since g € L>*(U) C L*(U). For z € U,, we have
Pg(e) ~ 9@)| < | pltlx = y)latw) - g(a)ld.
R

Let ¢ > 0. Using p(t,r) =< (gp‘l(t)_" A W) for t € (0,1] x Ry in [17,
Theorem 21| again, there exist constants c3(g), cs(€) > 0 such that for any
t € (0,1] and r > 0,

pt,r) < ()™ and PU(|X| > 307l (1)) < e

Indeed, using (4.1.23) and L(20, a3, ¢) we have

o dr
P%Mﬂ>@¢1@):/ p@pmhgcg/ <o
|z|>c3p1(t)

csp~1(t) TS‘)(T)

Thus, we obtain

|am@—guﬂs(/‘ - )mum—ymmw—g@ww
B(z,c3p~1(t)) B(z,cap~1(t))°

§q¢*@Y”/ |mw—g@ww+2wmg/ p(t, |z —y|)dy
B(z,c30~1(1)) B(z,c3p71(t))

<ew 0 [ o) - glo)ldy + 2lglee
B(z,c3071(t))
Since € > 0 is arbitrary and x € U,, we conclude

lim | Pig(z) — g()| = 0.

Combining this with (4.1.48) we arrive that for any open subset U C D and
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g € L>(D),

ARVg=—g ae.in U, (4.1.49)
Since u € F(D,U), we have Au € L>(U). Thus, taking U = D} and g = Au
n (4.1.49) we conclude

Auy = Au+ ARP" Au=0 ae. in DM

Also, u; > 0 follows from applying Lemma 4.1.24 with above equation and
up =u >0 in R\ DM
Applying (4.1.46) to uy, we get

sup < ¢ 1nf

DY, V((; ) V<5D)

Meanwhile, using (4.1.42) and Lemma 4.1.7 we have

|z ()| < csl|Aul| oo prry V(diam(D"))V (dist(x, 0D>'))
< col|Aul| oo (pr1yV (1)V (p(2))

for all x € DY Therefore, combining above two inequalities we conclude

that

+ su U2
V((SD) DP V(n)

SUp ——— < sup ——— +sup ——— < ¢; 1 f

Y, V(5D) ¥, V(5D) Dt V((SD)

Ccsu [(c5 + 1)us| : U
f —— < (! f Al ;oo 11y V- .
= Vo Tl Vo - e Vi 1A V)

g

The next lemma gives the link between DY, and D, ;. Here we are going

to use the subsolution w in Lemma 4.1.22.

Lemma 4.1.27. Let r < pg,zg € 0D. If u € F(D, D} is nonnegative,
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then there ezists a constant C3 = C3(n,aq, as, a1, as, D) > 0 such that

inf —o gcg( inf —o

Aull; oo/t '
D, (wo) V(dp) Dy a(z0) V(0p) + | uHL (D} 1)V<T))

Proof. First assume that Au is nonnegative. As in the proof of Lemma 4.1.26,
we write u = u; + ug, where u; = u + R Ay and Uy = —RP" Au. Then Uy

is a nonnegative solution for

Au; =0 a.e. in DM,

up=u in R\ DML

Let

For y € D, 5, we have either y € D}, or dp(y) < 4kr by (4.1.43).
If y € DY, , then clearly

Uy (y)
™= Vo)

If 6p(y) < 4kr, let y* be the closest point to y on DM and let § =
y* — 4rkrv(y*). By (4.1.43), we have By, (9) C D, and B,,(§) C D}, .
Now consider w € F(Bur(9)) C F(D, Buyr(9)\Brr(9)) satisfying

(Aw >0 in Buer (7) \ Ber (5),
w < V(kr) in By, (9),

w > cV(4rr — v —g|) in Bue(9) \ B (9),
(w=0 in R\ By (9),

which can be obtained by translating the subsolution in Lemma 4.1.22. Since
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Auy = 0 a.e. in By, (7), we have

Aup =0 < A(mw)  a.e. in By (9) \ Ber(9),
uy > mV (ép) > mw in B (7),

u; >0 =muw in R\ By, (7).

Now by the maximum principle in Lemma 4.1.24 with the function u; — mw

and U = By (9) \ Ber(§), we obtain u; > mw in R In particular, for
Yy € B4m‘<g) \ Bm‘(g)a

ui(y) = comV (4kr — |y — g|) = comV (dp(y)).
Therefore, we obtain

. Uy . U1
f < f )
Il)%,r V(op) — “ f-l’I:/z V(dp)

On the other hand, uy satisfies
us ()| < esl|Aul| poo 1y V (r)V (0p ()

for all x € D! which gives the desired result. O

We prove the oscillation lemma (4.1.44) by using Lemmas 4.1.26 and
4.1.27.
Proof of Lemma 4.1.25 As a consequence of Remark 4.1.8, by dividing
|| fl|zo=(py on both sides of (4.1.1) if necessary, we may assume || f||zpy < 1
and [[ullepy = |R” fllo(py < 1 without loss of generality. Fix zg € 0D. We
will prove that there exist constants co > 0, p; € (0, pp/16], and v € (0,1) and

monotone sequences (mg)r>o and (Mg)r>o such that My —my = V(rg1/2)7,

—V(p1/16) < my < mpyq < My < My, < V(p1/16),
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and

my < < My in Drk = Drk@jO)

u
CQV(5D)
for all k& > 0, where 1, = p187*. If we have such constants and sequences,

then for any 0 < r < p; we have k > 0 satisfying r € (rp41, 7% and

su Y me<su Y — inf Y < M, —m
by V(0p) b V(op) — DTS V(ep) Dy V(op) = " "

Also, for any r > p; we have

u ) u
Sup ——— —

— inf <ez < Vi) <eV(r)
D, V<5D) Dy V(éD) == (pl) = “4 ()

by Lemma 4.1.7. Above two inequalities conclude the lemma so it suffices to
construct such constants and sequences.

Let us use the induction on k. The case k = 0 follows from Lemma 4.1.7
provided we take co large enough. The constants p; and  will be chosen later.
Assume that we have sequences up to my and M. Let i) be the regularized

version of dp. We may assume that ¢ = dp in {0p(x) < p1}. Define

u = V() (Cz‘fw) — mk) = éu —miV (1Y)
in R Note that u;, € F(D) since Au = f by the consequence of Theorem
4.1.14. Moreover, for x € Di};1/4 we have u; € C?(z) since we know that u, =
0 in B(xg, 7)) by the induction hypothesis. Thus, we have Au, (v) = Lu, ()
by (4.1.16), which implies that Au; is well-defined in Dikl/ 4 and so is Auj.
We will apply Lemmas 4.1.26 and 4.1.27 for the function u; and r = /4 to
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find my,1 and Myyq. By (4.1.32) and Lemma 4.1.21, we have
1
|Auy | < |Aug| + | Ay, | < 'C—Au - mkAV(l/J)‘ + |Auy |
2

s(ém+vmﬂ®wwwm)ﬂmMS@+Mw|

in D. Thus, we need to estimate |Au, | in D:;1/4 for the usage of Lemmas
4.1.26 and 4.1.27.

Let x € D},]’C1/4. By the induction hypothesis, we have u;, = 0 in B(zo, ry),
which implies that u; € C?(x). Thus, we compute the value Au; (x) using

the operator L as follows:

_ _ 1 _ _ J(1)
0 < Au, (x) = Lu x:—/ u, (r+h)+u, (x—h)) ——————dh
- J(1)
= u, (x + h)=————dh.
/x+h¢B,«k g |h"p([R])
(4.1.50)
For any y € B,, \ B,,, there is 0 < j < k such that y € B, \ B, ,. Since

¢z 'u>m;V(y) and dp = ¢ in B,,, we have

ue(y) = ¢ uly) —meV ((y)) = (my — me)V (¥(y))
> (mj — My + My, —my)V(6p(y)) > —(V(rjt1/2)" = V(resa/2))V ().

It follows from r; 11 < |y — xo| < r; < 8y — zo| < 1 that

u (y) < ea(V(Jy = 2ol /2)7 = V(re/16)7) V(8ly — o)

(4.1.51)
< e5 (V(ly — 20l /2)" = V(re/16)") V(ly — 0| /2).

Note that (4.1.51) possibly with a larger constant also holds for y € R%\ B,
because [|uy||oga) < c1c3' + V(1/16)V(C) for any k and

__“’()’)Z(v(pl/Q)V — V(p1/16)7) V(p1/2)

(Vlly — 20l/2)7 ~ V167 V(L
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for any y € R\ B,,. Thus, by (4.1.50) and (4.1.51), we have

14 — xo]/2
[ Auy (2)] < ¢ / (V(la+ b — 2ol/2) — Va6 LY =20/ )
a+y&Br, |ho(|h])
If x+y ¢ B, then |h| > |z 4+ h — zo| — | — 29| > 1 — 11/2 = 1/2 and
|z + h — xo| < 1i/2 + |h| < 2|h|. Thus, recalling that Py(r) = [~ _ds_ we

T sp(s)’
obtain

Al < [ VO - V/6)) VARD_ g,

h|>r1/2 |h["([R])
<o / (V(s)" = V(re/16)") V(s)d(—Py) ()

k/2

= 07( [= (V(s)” = V(rx/16)7) V(s)PL(s)]}, 2

£/2

+ /OO (1+~)V(s)” = V(rg/16)7) V’(S)Pl(s)ds) = ¢ (I+10).

By (4.1.23) we have

lim (V(s)" = V(1 /16)") V(5)P1(5) < s lim LV = VIO _ o

S5—>00 $—>00 V(s)

hence

V(r/2)" = V(r/16)"

IR A (E)

Also, using (4.1.23) again we have

1< e /m (1 + V() = V(re/16)) 28 g
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Therefore, combining above two inequalities and using (4.1.6) we get

Ay (@) < e (%V(m/?)” - 2V(7‘k/16)7) W
2 o\ —1oar )Y V(rise/2)"
< e (2 G =2 sy’ e

— o V(rie2/2)”
OV (/)

and hence

Va2

+
|| Auyf ||L°°(Di,;1/4) < <1 + &5 V(ry/4)

Note that e, — 0 as v — 0.
Now we apply Lemma 4.1.26 and 4.1.27 for u} € .F(D,Di};lﬂ). Since
ur = u and dp = ¢ in D,,, we have

u

su — m
DY, p/ (C2V(w> k)
KT /4

< 19 ( inf ( v mk) + V(rr/4) +€7V(7“k+2/2)7>

+ eV (¢)

—
<ci3 ( irfkli (@VL(Q/}) - mk) + V(re/4) + €7V(7“k+2/2)7) :

Repeating this procedure with the function u, = MV (0p) — c; 'u instead of

up = ¢y u —mV(6p), we also have

u . u
P (M’“ N C2v(w)) < gt (M’“ N cQV(w)) TV + e Vine/2)

K'ry /4

Adding up these two inequalities, we obtain

U
Mk — Mg S 615( - D?i(jl W + Mk — Mg + V(Tk/4) + SWV(T‘k+2/2)7).
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Thus, recalling that My — my = V(ri41/2)7, we get

u C15 — 1
< 1 2)7 + V(ry/4) + e,V 2)7
D?ffl 02V(¢) - Ci5 (Tkﬂ/ ) " (rk/ )+€7 (THQ/ )

—1
< ( o+ AV (o) + ) V(rpsa/2)".

C15
Now we choose v and p; small enough so that

015—1

C15 clo + i V(p)' T ey <1,

and it yields that

u
OSC

D%-H 62V(¢) S V(rk+2/2)’y.

Therefore, we are able to choose my1 and My, . Il

Finally, we prove the Theorem 4.1.2 using the Lemma 4.1.25.
Proof of Theorem 4.1.2 By Remark 4.1.8, by dividing || f||z~(p) on both
sides of (4.1.1) if necessary, we may assume that || f||L=(p) < 1 and [Jul|c(p) <
c1. We first show that the following holds for any = € D:

765 e = 77
V(ép) CB(B(z,r/2)) rPV(r)

for each 0 < 8 < vy, where r = dp(x). We are going to use the inequality

1
V(ép)

(4.1.52)

[%} < lulle [@} e

By (4.1.13), [u]ev(Br/2) < c2. Thus, we have [u]csppr/2)) < c3 for each
0< B S 7.
Since 0p(y) > r/2 for y € B(x,7/2), we have

C

Cy

<
C(B(z,r/2)) V(r)

et
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and

-1 _ -1

{ 1 ] < swp [V (én(y)) V(dp(2)) |
V(dD) CO1(B(z,r/2)) y,2€B(x,r/2) ’y - Z’

V'(d") [6n(y) — dp(2)|

< sup
yzeBar/2) V(d¥)? ly — 2|
. |
=~ Cs sup e — CON (Bl
y,zeB(zry2) AV (d*) (B(z.r/2))
Ce
<
=iy

where d* is a value in [dp(y), dp(z)], so d* > r/2. Thus, by interpolation, we

obtain

1
V(ép)

D :| B r,r/2
< C

1-8 1 B c
T o = 7V
C(B(z,r/2)) V(dp) COY(B(z,r/2)) | V(r)

and it follows from (4.1.52) that

[W@Jmfﬁﬁ%+ﬁ5§ﬂﬁm' (4159

Next, let x,y € D and let us show that

< Clz —y|*

for some o > 0. Without loss of generality, we may assume that r := dp(z) >
dp(y). Fix any 0 < f < oy and let p > 1 + ao/fB. If |z — y| < rP/2, then
we have |z —y| < r/2 and y € B(z,7/2) since r < 1. Thus, by (4.1.53) we
obtain

u(x) u(y) cole —yl® _ crolz —y|? 0/

Vo) Vos@)| = V() = V(e =yt = cule —

_ Btay
y’ .

On the other hand, if |z — y| > rP/2, let zg,yo € 0D be boundary points
satisfying dp(z) = |r — xo| and dp(y) = |y — yo|- Then by the oscillation

183



CHAPTER 4. APPLICATIONS OF HEAT KERNEL ESTIMATES

lemma 4.1.25 we have

u(z)  u(m) ) S
‘V(dp)(aj) V(60 (z0) < 12V (dp())7, (4.1.54)
u(y) u(yo)

’V(ép)(y) Vo)) | = 2V 0nl)”

and

u(zo) u(3o)

’x/(aD)(xo)) V(dp)(wo)

S 612V ((SD(ZIZ') + |CE — y| + 5D(y))7 (4155)

Using inequalities (4.1.54) and (4.1.55) we obtain

u(z) — u(y) ’ <RV +VE@2r+|x—y|)) <cgle — yl%

‘V((SD)(SU)) V(ép)(y)

Therefore, taking o« = min {5 — (8 + az)/p, a1y/p} gives the result. O

4.2 Laws of iterated logarithms

Consider a random walk (S, )neny on R with ES; = 0 and var(S;) = 1. [57, 56]

proved that
5]

lim su =1 a.s.
ool (2nloglogn)l/2
Moreover, for Brownian motion in R, we have
B
lim sup |5 =1 as.

i—00roo (2tlog | logt|)1/2

Observe that compare to the scaling property B < 4 2B, there exists
(loglogt)'/? difference between distribution and the limsup or liminf dis-
tance of the sample path. Thus we call these properties the law of iterated
logarithm.

In this time, let B} := sup{|Bs| : 0 < s < t} be the supremum of the

Brownian motion in the time interval [0,¢]. Similarly, the following Chung-
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type liminf law holds :

lim inf By
imi =— as.
t—0oroo (2t/log |logt])1/2 4 o

3

Various types of the laws of iterated logarithm appears for may processes.
For example, let (X;)>o be a symmetric a-stable process(0 < o < 2) in R?
without drift and X; := sup{|X| : 0 < s < ¢}. Then, by [90, 74] we have
the following Chung-type liminf law : there is ¢; > 0, ¢ = 1,2 such that

X*

it e — ¢ (ore) o

However, for any non-decreasing function A : (0,1) — (0, 00), we have lim sup
t—0
|

1Xel h(” = 0 a.s. if and only

r = oo a.s. if and only if fol

h(”it)a = 00, and lim sup

0
if fo h(t)a < 00. Thus we conclude that
limsup|X—t| =0 or c©
t—0 h(t>

for any non-decreasing function h : (0,1) — (0, 00). Similarly, for any non-

decreasing function A : (1,00) — (0, 00), we have llm sup I)((t)‘ oo a.s. if and

only if floo h(cga = 00, and hr?s&lp ‘h(” =0 a.s. if and only if fo

See [80, Proposition 47.21] for instance.

h(t

Chung-type liminf law of the a-stable processes are similar as Brownian
motion. On the other hand, totally different form of Khintchine-type law

appears at the a-stable case.

4.2.1 Khintchine-type laws of iterated logarithm

In this subsection, we observe when the Khintchine-type laws of iterated
logarithm at the infinity holds for some class of jump processes. Furthermore,
we will also see that Khintchine-type laws of iterated logarithm imply certain

finite moment condition. In particular, it is finite second moment condition
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in Euclidean space. This is the corollary of heat kernel estimates in [3, 2] (see
Section 5 of both papers). In this thesis we only introduce the Khintchine-
type laws in [2] which is more general.

Throughout this subsection, we assume that (M, d, ) satisfies Ch(A),
RVD(d,), VD(d2) and Diff(F), where F is strictly increasing and satisfies
(2.2.59) with 1 < 4, < .

Let (£,F) be a regular Dirichlet form given by (2.2.4), which satis-
fies Jy, with a non-decreasing function ¢ satisfying (2.2.17), L(f;,C}) and
U(B2,Cy). Recall that X = {X;,t > 0;P*, 2 € M} is the p-symmetric
Hunt process associated with (£, F). Recall that ® is the function defined in
(2.2.18).

We first establish the zero-one law for tail events. We say that an event

A is tail event (with respect to X)) if A is N2 0 (X, : s > t)-measurable.

Lemma 4.2.1. Let A be a tail event with respect to X. Then, either P*(A) =
0 for all x € M or else P*(A) =1 for all x € M.

From (2.2.18) and (2.2.17) with VD(dy), we easily see that the following three

conditions are equivalent:

sup (or inf) /M F(d(z,y))J(z, dy) < oo; (4.2.1)

zeEM zeM

Jc¢>0 suchthat ¢ 'F(r) < ®(r) <cF(r), forall r>1; (4.2.2)
“dF
(5)
L Y(s)
We will show that from GHK(®, ), the above conditions (4.2.1)-(4.2.3) are

also equivalent to the following moment condition.

0. (4.2.3)

Lemma 4.2.2. ([2, Lemma 5.2]) Suppose that (M,d, ) satisfies RVD(dy),
VD(dy) and Diff(F) where F is strictly increasing and satisfies (2.2.17),
L(yi,cz') and U(ye, cp) with 1 < vy < yo. Let (€, F) be a regular Dirichlet
form given by (2.2.4), which satisfies J, with a non-decreasing function
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satisfying (2.2.17). Then the following is also equivalent to (4.2.1)-(4.2.3):
sup (or inf) E?[F(d(z, X:))] < oo, ¥(or3d)t>0.
xeM zeM

Let us define an increasing function h(t) on [16,00) by

).

h(t) := (loglogt)F~! (log o1

Lemma 4.2.3. For any ¢; > 0, c3 € (0,1] and t € [16, 00),
Fi((c1 + 1)h(t),t) > 1 loglogt (4.2.4)

and
Fy(eah(t),t) < il " Veyloglogt. (4.2.5)

Proof. By the definition of F}, letting s = h(t)(loglogt)™! we have that for
t>16,

Fi((e1 + 1)h(t),t) = sup (

(1 + 1)h(t) _8> t
~ h(t)(loglogt)=t  F(h(t)(loglogt)~1)

(i +Dh(t) ¢ )
s F(s)

= ¢y loglogt.

For (4.2.5), we fix t > 0 and let 5o := cp Y=V (t)(loglogt)™ <
h(t)(loglogt)~'. If s < sg, using L(y1,cz', F) we have

s L (h(®)(oglogt) """ h(t)(loglogt)™t  _ h(t) _ coh(t)
W”( 5 ) Fhn(loglog) D) ~ ¢ = 1

Thus, we obtain CZZ(t) — Ffs) < 0 for s < s¢. Since Fy(r,t) > 0 for all r,t > 0,

we have

h(t t h(t -
c2h(t) > < c2h(t) _ C;/(“ﬂ 1)02 log log t.

Fi(eah(t),t) = E;spo < s F(s) 5o
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Note that if (M,d, u) = (R%,| - |,dm), we have F(r) = r? and so h(t) =
(tloglogt)'/?. Thus, the next theorem is the counterpart of [3, Theorem 5.2].

Theorem 4.2.4. Suppose that (M,d, u) satisfies Ch(A), RVD(d;), VD(d2)
and Diff(F) where F is strictly increasing and satisfies (2.2.17), L(y1,cz")
and U(vys, cp) with 1 < v < 7,. Let (€, F) be a reqular Dirichlet form given
by (2.2.4), which satisfies Jy, with a non-decreasing function v satisfying
(2.2.17). (i) Assume that (4.2.1) holds. Then there exists a constant ¢ €
(0,00) such that for all x € M,

d(z, Xy)

lim sup =c for P’-a.e. (4.2.6)

oo D(T)

(11) Suppose that (4.2.1) does not hold. Then for all x € M, (4.2.6) holds

with ¢ = oo.

Proof. Here we only provide the proof of (i). See [2, Theorem 5.4] for the
proof of (ii). Fix x € M. We first observe that by (2.2.59), there exist con-
stants @ > 16 and ¢;(a) > 1 such that for any t > 16,

(2cp) Y 1(t) < h(at) < eih(t). (4.2.7)

In particular, combining (4.2.7) and L(v, ', F') we have

2F(h(t)) < F(h(at)). (4.2.8)

Also, using L(yi,cz', F), we have for ¢t > 16, tﬁgg@é ;= F(h(g(/}ﬁgg))log 5 =
¢! (loglogt)”. Thus,

ci't(loglogt)” ' < F(h(t), t>16. (4.2.9)
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Using (4.2.8), (4.2.7) and U(Bs, Cy, ) we obtain that for n > 1,

M dE(s) TR ! F(h(a"*))

/W) o) = (FOa) = Fik( ”M(h(aw))z )
ogntr (logloga™ =t 7 (loglogt)™~!

= G S / OO

In particular, this and a > 16 imply that

< AR, [
/h@ Bs) 2 3 Sy ™ (4.2.10)

(i) Let ko € N be a natural number satisfying 2* > a. By (4.2.3) and (4.2.10),

> ok oo ok+1 gt - "
k;ﬁom C“kzzko/gk ) = 04/a ooy <o 421D

By (4.2.2), we have cg't > F(®~!(u)) for any u > 16 and t < u < 4¢. Thus,

we have
Fi(d(z,y), F(® ' (u)) > Fi(d(z,y),c5't) = cg  Fi(csd(w, y),t). (4.2.12)

Using GUHK(®), VD(ds) and (4.2.12) we have

P*(d(z, X,) > Ch(t)) = / p(u, x,y)pu(dy) (4.2.13)

{y:d(z,y)>Ch(t)}
< ot / p(dy)
(dzyy>chiy V(@ d(z,y))Y(d(x, y))

e~erbilesd@n)t) )y (dy) .= 5 (I 4 IT).

Cs

—
V(x, F7Yt)) Jiay>cnen

Let us choose C' = cg'(1+44¢; ') for (4.2.13). By [32, Lemma 2.1], we have
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I< Cllw(h() For 11, using VD(ds) and (2.2.61) we have

=0l
V(z, F~(t)) )

=2
= exp(—crFy(csd(z,y dy
V(z, F! Z C2ih(t) <d(e,y) <2+ h(t)} (erbalesd(z, ). )uldy)

V(x, C’2”1h
Syt

< cg exp ( - EFl((l + 407_1)h(t),t)>.

II = exp(—crFi(csd(z, ), ) pu(dy)

exp ( — erFy (1 + 42 h(1), t))

Note that by (4.2.9), we have h(t) > cF~1(t). Using (4.2.4), we obtain

c
IT <cjpexp <—§7F1((1+4c7_1)h(t), t)) < cizexp (—2loglogt) = cip(logt) ™
Thus, for C = cgl(l + 407_1) and any ¢t > 16 and ¢t < u < 4¢, we have

P*(d(z, X,) > Ch(t)) < en( + (logt)™?).

t
¥(h(t))
Using this and the strong Markov property, for t;, = 2% with & > ko + 1 we
get

P*(d(z, X;) > 2Ch(s) for some s € [tp_1,tx]) < P (TB@,cnte1) < tk)

1 ok
<2 P*(d(z, Xiy., ) > Chltey)) < = ).
<2 swp Pz Xipyims) > Chlts)) (k ¢<h<2k>>)

Thus, by (4.2.11) and the Borel-Cantelli lemma, the above inequality implies
that
P*(d(z, X;) < 2Ch(t) for all sufficiently large ¢) = 1.

Thus, limsup,_, (h(t)t) <2C.
On the other hand, by (4.2.2) and L(v1,cz', F), we have L'(y1,cp, ®)
with some ¢, > 0. Also, by (2.2.60) we have U(y2, cp, ®). Since y; > 1, using
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(2.2.53) we have for any z,y € M and t > T,
p(ta z, y) 2 013V(3§', (I)_l(t))_l eXp ( - aLEIv)l(d(ma y)? t))v (4214)

where ®(r) = r2®(1)1<1y + (r)1g>1) and Oy (r,t) = T(®)(r,t) are the
functions defined in (2.2.10) and (2.2.12). Note that by U(7, cp, F') we have
®(r) = r2d(1) < cp {2 for r < 1. Using this and (4.2.2), we obtain that
O(r) < cF(r) for all » > 0. Thus, by the definitions of ®; and F; we obtain

t
Oy(r,t) < Fy(r,-), rt>0. (4.2.15)
c

Combining (4.2.14) and (4.2.15), we have that for all ¢y € (0,1),¢ > 16 and
t <u < A4t

P*(d(x, X,) > coh(t)) = / p(u, 7, y)u(dy)

{d(z,y)>coh(t)}

C16 / —ar®1 (d(z,y),u)
> e” W EARI (dy)
V(x, @~ Hu)) J{d@y)>eoh(t)}

Clg / —ar Py (d(z,y),%)
> 0 e < u(dy).
V(x, F7Yt)) Jid@y)>cono)}

Note that by RVD(d;), we have a constant ¢;7 > 0 such that
V(z,cyr) > 2V (z,r), forall e M, r>0.
Thus, using this and (4.2.9) we have that for u > t,

1 / —apFi(d u
e ay, 1( (wvy)’c)u<d'y)
V(JH F_l(t)) {d(z,y)>coh(t)}

v

1 / e P
eI D i (dy)
Vi, F~1(t)) {coh(t)<d(z,y)<coci7h(t)}

V(z, coh(t))

2 i — -1
= V(z, F1(1)) exp ( ar,Fi(cocirh(t), te ))
> 0820;1 exp ( — c18F1 (cocr9h(t), t))
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Since the constants cig, ¢15, 19 are independent of ¢, provided ¢y > 0 small

and using (4.2.5), we have

Pw(d(‘f, Xu) > Coh(t)) > C16 €XP ( — ClgFl(C()Clgh(t), t))
(4.2.16)
> cg2016C’;1 exp ( — C90Cp log log t) > cgzcwC’;l(log t)_l/Z.

Thus, by the strong Markov property and (4.2.16), we have

pr(d(th’thﬂ) > coh(ty)|Fe,) > Z 0320160;1(1052; tk)_l/2 = 00.
k=1 f—d

Thus, by the second Borel-Cantelli lemma,

P*(lim sup{d(Xy,, Xy,,,) > coh(ty)}) = 1.

Whence, for infinitely many k > 1, d(z, Xy, ,,) > %(t’“) or d(z, Xy, ) > COhQ(t’“).
Therefore, for all x € M,

lim su ‘ > limsup ———%= > ¢y, PP-a.e.,

where c3; > 0 is the constant satisfying cy1h(2t) < 2h(t) for any ¢ > 16.

Since

P?(co; < limsup dle, Xi) <2C) =1,

by Lemma 4.2.1 there exists a constant ¢ > 0 satisfying (4.2.6).

4.2.2 Chung-type laws of iterated logarithm

In this subsection, we introduce my ongoing research project, that is, Chung-
type liminf laws of iterated logarithm for Markov processes. We focus on such
laws in general metric measure spaces under assumptions locally either near
zero or near infinity. We show that, when the transition densities satisfy the
near-diagonal lower bound for small time (for large time, respectively) in

terms of a scale function ¢, then Chung-type liminf law of iterated logarithm
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at zero (at infinity, respectively) holds in terms of the scaling function ¢.
Let us now describe the main result of this paper more precisely and at
the same time fix the setup and notation of the paper. As in the previous
section we will assume that (M,d) is a locally compact separable metric
space, and p is a positive Radon measure on M with full support. We denote
B(z,r) :={y € M : d(z,y) < r} and V(z,r) := pu(B(x,r)) an open ball
in M and its volume, respectively. We add a cemetery point 9 to M and
define My := M U {0} . We first introduce local versions of volume doubling

properties in Definition 1.1.6 for the metric measure space (M, d, u).

Definition 4.2.5. (i) For an open set U C M, Ry € (0,00] and dy > 0, we
say that (M, d, u) satisfies the volume doubling property VDg,(d2, U) if there

exists a constant C, > 1 such that

V(z, R R\®

(z, )gCM — forallz €¢ U and 0 <r < R < Ry.
V(z,r) r

For an open set U C M, Ry € (0,00] and d; > 0, we say that (M,d, u)

satisfies the reverse volume doubling property RVDg,(dy, U) if there exists a

constant ¢, > 0 such that

d
“//((xx”f)) > ¢, (?) 1 forallz € U and 0 <r < R < Ry.
For simplicity, we write VD(dy) and RVD(d;) instead of VD (dy, M) and
RVD...(dy, M).

(ii) For Ry, > 0 and dy > 0, we say that (M,d, u) satisfies the volume
doubling property VD> (dy) if there exists a constant C,, > 1 such that

do
Viz, R) <C, R forallz € M and Ro. <7 < R.
Vi(z,r) r

For R, > 0 and d; > 0, we say that (M, d, u) satisfies the reverse volume
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doubling property RVDT>(d,) if there exists a constant ¢y > 0 such that

R\"
>c (—) forall x € M and R, <r < R.

r

We assume that X = (Q, Fy, Xy, 0,,t > 0;P* 2 € My) is a Borel standard
Markov process on M. Here (6;,t > 0) is the shift operator with respect to
the process X which is defined as X;(0;w) = Xgi4(w) for all t,s > 0 and
w € Q.

A family of [0, co]-valued random variables (A, ¢ > 0) is called a (perfect)
positive continuous additive functional (PCAF) of the process X, if A satisfies
that Ag = 0, As(+) is Fr-measurable for all ¢ > 0, ¢ — A; is continuous in

[0,00) a.s. and
Aprs(w) = Ay(w) + Ag(6yw) for all s,t >0 and a.s. w € )

See [41] for detail.

Since X is a standard process on M, it is known that X admits a Lévy
system (N, H). (see [15, 83].) Here H is a PCAF of X with bounded 1-
potential and N (z,dy) is a kernel on M with N(z,{z}) =0 for all z € M.

We assume that there exists a version of Lévy system (N, H) of X where
Revuz measure vy of H is absolutely continuous with respect to the reference
measure p. Thus, there exists a nonnegative measurable function vy (z) such
that vy (dz) = vy(x)p(dr). Let J(z,dy) = N(x,dy)v(z). Then, we see from
the Lévy system that for any nonnegative Borel function F' on M x My
vanishing on the diagonal, z € M and t > 0,

E* ) F(X,, X,)

s<t

— E° U;/Ma F(X,,y)J (X, dy)ds]| .

The measure J(z,dy) is called the Lévy measure of the process X in the
literature. See [91]. We emphasize here that J(z,dy) can be identically zero

and J(z,dy) may not be absolutely continuous with respect to the reference
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measure p. Let (P);>o be the associate semigroup of X in L*(M; 1), defined
by P, f(x) := E*[f(X})] for any t > 0, 2 € M and bounded Borel measurable
function f.

We call that a function p : (0,00) X M x M — [0,00] is heat kernel of
semigroup (P;);>o if the followings hold :

1. for any ¢t > 0, x € M and any bounded Borel measurable function f

vanishing at infinity,

Pof(x) = /M plt, ) ()l dy).

2. For any t,s > 0 and =,y € M,

p@+&xw)=j;Mt%zmwzwﬂWh)

For an open subset D C M, we denote the heat kernel of killed process
XD by pP(t,z,y). Note that if heat kernel p(t,z,y) exists, pP(t,z,y) also
exists. From now on, we always assume that the function ¢ : [0, 00) — [0, 00)
is an increasing function with ¢(0) = 0.

The following local versions of the condition NDL in Section 2.2 will be

one of the main assumptions of this paper.

Definition 4.2.6. (i) For an open set U C M and R, € (0, 00|, we say that
the condition NDLg, (¢, U) holds if the heat kernel p(t, z,y) exists and there
are constants ¢ > 0 and n € (0,1) such that for any z € U, r < Ry and
0 <t <o),

pBEN(t,y, 2) > % y,z € B(z,ne~ (1))

(z, 071 (1))’

For simplicity, we write NDL(¢) instead of NDLy (¢, M).
(ii) For Ry € [0,00), we say that the condition NDL®*(¢) holds if the heat
kernel p(t,z,y) exists and there are constants €, € (0,1) and ¢ > 0 such

195



CHAPTER 4. APPLICATIONS OF HEAT KERNEL ESTIMATES
that for any x € M, r > R and egp(nr) <t < ¢(nr),

PPy, 2) > y,z € B(z,ng~\(t)).

(z,071(1))’

We will also consider local assumptions on upper bounds of tails of Lévy

measure J.

Definition 4.2.7. (i) For an open set U C M and R, € (0, 00|, we say that
the condition Tailg, (¢, U) holds if there exist ¢ > 0 such that for any = € U
and r < Ry,
c
J(x, My \ B(x,r)) < —.
(0,20 \ Bor) < o

For simplicity, we write Tail(¢) instead of Tail. (¢, M).
(ii) For Ry € [0,00), we say that the condition Tail™>(¢) holds if for any

xr € M and r > Ry,

J(x, My \ B(z,r)) < %

Note that Tail(¢) holds trivially if the process X is a conservative diffusion
process.

Here is the main results.

Theorem 4.2.8. Let ¢ : (0,00) — (0,00) be an increasing function.

(i) For Ry € (0,00] and an open subset U C M, assume that the conditions
VDg,(d2,U), RVDg,(d1,U), Li(51,CL, ), Ui(Bs, Cu, @), NDLg,(¢,U) and
Tailg, (¢, U) hold. Then, there exist constants ¢y, co € (0,00) such that for all
x € U, there exists a constant c, € [c1, ca] satisfying

su d(Xs, x
lim inf —o0<s<t ( ) = Cp, P*-a.s.

t=0  ¢~1(t/log |logt|)

(ii) For Ry € [0,00), assume that the conditions VDT> (dy), RVD">(d,),
LY(By,CL, ¢), UN(By, Cy, ¢), NDLF> () and Tail™ (¢). Then, there exists a
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constant ¢ € (0,00) such that for all x,y € M,

d(Xs,
lim inf St A X ¥) =c, P*-a.s.

tooo ¢ 1(t/loglogt)

Our results extend [59, Theorems 3.7 and 3.8] where two-sided and mixed

stable-like heat kernel estimates were assumed. See [59, (3.17)].
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