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Abstract

This paper investigates the volatility of the stock market in two ways. We decom-

pose the one minute scale trading data of the stock market into the frequency and

spectrum part using Discrete Fourier Transform(DFT).

The first methodology is to observe the average value of the high-frequency part

of the spectrum using DFT with sliding windows of trading data. We are able to find

a characteristic pattern of trading activity during a normal trading day. In addition,

we detected an unusually high value of this spectrum information before a flash crash

happens, suggesting a possibility for predicting flash crashes. Moreover, we apply this

methodology to other days when there was a steep rise or drop in price to show the

method explains the market well.

The second methodology is to directly analyze the spectrum using DFT of sliding

windows of trading data to find resonance in the stock market. This has an implica-

tion that we can infer the trading pattern of the automated trading algorithm without

additional data.

keywords: Discrete Fourier Transform, Time-series, Spectrum, Resonance, Stock

transaction data

student number: 2018-29001
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Chapter 1

INTRODUCTION

More than 70% of the US stock equities are executed by High Frequency Trading

(HFT) [1], which uses a powerful computer algorithm for stock trading. If the algo-

rithms try to buy or sell large amounts of shares at the same time, the market is likely

to fluctuate. As an example, about the flash crash that happened on May 6, 2010, ex-

perts estimate that HFT exacerbated the crash [2]. Thus, one might think that trading

frequency and spectrum of HFT are related to the volatility of the stock market. There

are numerous studies to quantify the volatility of the stock market suggesting that can

be a key to predict flash crashes [3]. In this paper, we are able to find a preliminary

signal of unusual market crashes by observing the frequency of trading systems in the

stock market. Instead of looking at the frequency of HFT directly, which happens at

timescales of milliseconds, we look at minute scale frequencies.

In Chapter 2, we apply the Discrete Fourier Transform (DFT) to decompose the

time-series into frequency and spectrum components. Since it is nearly impossible or

inconvenient to compute the entire real-time data at once, we select a suitable size

of the length of M of the sliding window for DFT, which is used in [4]. The entire

time-series is processed shifting the window by time-delay parameter τ.

In Chapter 3, we observe the average value of the high frequency part of the spec-

trum using DFT with sliding windows of trading data, which is detailed in Definition
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3.2.2. Unless otherwise stated, we call the value briefly as the high-frequency part of

the spectrum. We use transaction data from the US futures in this chapter. First, we ob-

serve the distribution of the high-frequency part of the spectrum of each data segment

along trading time and over a period D. Second, we investigate how trading activity

varies typically during the day by looking at this spectrum information that might re-

flect trading pattern of trader or HFT system. Then, we are able to find a characteristic

pattern of trading activity during normal trading day. Third, we observe how the high-

frequency part of the spectrum varies on flash crash days and suggest a possibility for

predicting flash crashes. Finally, we repeat the same process to predict unusual crash

in the market.

In Chapter 4, we give a definition of resonance, which is a phenomenon that the

amplitude of a wave increases when several waves are synchronized. Then, we observe

resonance in transaction data. By searching for a certain pattern in the frequency of the

data, we might surmise trading patterns of trader and HFT algorithms.
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Chapter 2

Preliminaries

2.1 Definitions and Motivation

We begin this section by introducing the classical Fourier Transform. The Fourier

transform decomposes a signal into sum of sines, and corresponding amplitude.

Definition 2.1.1. Let f be an L1 integrable function f : R → C. Then, the Fourier

transform of f at ξ is

f̂(ξ) =

∫ ∞
−∞

f(x)e−2πixξdx

for any ξ ∈ R. At ξ = ξ0, f̂(ξ0) represents a spectrum component of the sinusoidal

signal e2πiξ0x.

Definition 2.1.2. Let x be an independent variable, and ξ be transform variable that

represents frequency. f is determined by f̂ by via the inverse transform

f(x) =

∫ ∞
−∞

f̂(ξ)e2πixξdξ

for any x ∈ R

Definition 2.1.3. Time-series f is a map f : T → R where T = {ti|i = 1, . . . , N} is

an ordered set of time, which are successively equally spaced.
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The Discrete Fourier Transform (DFT) acts on a finite time-series to decompose

it into the frequency and the spectrum part on the assumption that the sequence is

generated by a continuous signal.

Definition 2.1.4. Let N data points be denoted f [0], f [1], . . . , f [N − 1]. The discrete

Fourier Transform of time-series f [t] is defined by

f̂ [n] =

N−1∑
k=0

f [k]e−
2πi
N
nk

The |f̂ [n]| is called the nth spectrum of f for n = 0, 1, . . . , N − 1.

Next, we introduce some mathematical tools compute DFT in computer as referred

from [5].

Definition 2.1.5. Let n be a positive integer. Then, complex number ω is called an nth

root of unity if ωn = 1.

Remark 2.1.1. Let ω0, ω1, . . . , ωn−1 be nth root of unity. Then, ωk is explicitly repre-

sented by exp
(
2kπi
n

)
= cos 2kπ

n+isin 2kπ
n,

for k = 0, 1, . . . , n− 1. Thus, ωk and ωn−k are

complex conjugate each other.

Definition 2.1.6. Vandermonde matrix for nth root of unity ω, which is denoted by

Vω = V DM(1, ω, . . . , ωn−1) =



1 1 1 . . . 1

1 ω−1·1 ω−1·2 . . . ω−(n−1)

1 ω−1·2 ω−1·4 . . . ω−2(n−1)

...
...

...
. . .

...

1 ω−1·(n−1) ω−2·(n−1) . . . ω−(n−1)
2


=
(
ωjk
)
0≤j,k<n

∈ Cn×n

We may write Discrete Fourier Transform of signal f [t] using Vandermonde matrix
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as following

f̂ [0]

f̂ [1]

f̂ [2]
...

f̂ [N − 1]


=



1 1 1 . . . 1

1 ω−1·1 ω−1·2 . . . ω−(N−1)

1 ω−1·2 ω−1·4 . . . ω−2(N−1)

...
...

...
. . .

...

1 ω−1·(N−1) ω−2·(N−1) . . . ω−(N−1)
2


·



f [0]

f [1]

f [2]
...

f [N − 1]


Remark 2.1.2. Consider

f̂ [N − n] =
N−1∑
k=0

f [k]e−
2πi
N

(N−n)k =
N−1∑
k=0

f [k]e
2πi
N
nk · e2πik

=
N−1∑
k=0

f [k]e
2πi
N
nk = f̂∗[n]

(2.1)

where f̂∗ represents complex conjugate of f̂ . Thus, f̂ [n] = f̂∗[N − n], and therefore

|f̂ [n]| = |f̂∗[N −n]|. Thus, for odd N , f̂(0) to f̂
(⌊

N
2

⌋
− 1
)

have the same spectrum

from f̂(N − 1) to f̂
(⌊

N
2

⌋
+ 1
)
. For even integer N, f̂(0) to f̂

(⌊
N
2

⌋
− 1
)

have the

same spectrum from f̂(N − 1) to f̂
(⌊

N
2

⌋)
.

In this paper, we deal with the spectrum from f̂(0) to f̂
(⌊

N
2

⌋
− 1
)

.

Theorem 2.1.1. Let ω be a primitive nth root of unity. Then ω−1 is a primitive nth

root of unity and Vω · Vω−1 = nI where I is the n× n identity matrix.

Definition 2.1.7. The inverse transform of f̂ [n] is defined by

f [k] =
1

N

N−1∑
n=0

f̂ [n]e
2πi
N
nk

The inverse Discrete Fourier Transform decomposes a signal f [k] into sinuous

functions of frequency n/N of amplitude f̂ [n].

We now introduce the Fast Fourier Transform(FFT) algorithm and its computa-

tional complexity.
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Definition 2.1.8. Let f be a real or complex valued function and g be a real valued

function. Let both functions be defined on some unbounded subset of real positive

numbers, and g(x) be strictly positive for all large enough values of x. Then, f(x) =

O(g(x)) implies that there exists a positive real number M and a real number x0 such

that |f(x)| ≤Mg(x) for all x ≥ x0

Then, for DFT, we need N2 times of multiplication for N data points. With Fast

Discrete Fourier Transform algorithm, we can reduce it to O(Nlog(N)) [5]

Step 1. If N = 1, return f [0].

Step 2. Let f [0], f [1], . . . , f [N − 1] are real-valued data points.Separate this signal into

two sequences of lengthN/2.One is with odd indices, say fodd = [f [1], f[3], . . .]

and feven = [f [0], f [2], . . .].

Step 3. Let r0(x) =
∑

0≤j≤n/2(f [j]+f [j+n/2])x
j and let r1(x) =

∑
0≤j≤n/2(f [j]−

f [j + n/2])ωjxj .

Step 4. Call the algorithm recursively to evaluate r0 and r∗1 at the powers of ω2.

Step 5. Return =
(
r0(1), r

∗
1(1), r0(ω

2), r∗1(ω
2), . . . , r0(ω

n−2), r∗1(ω
n−2)

)
.

Theorem 2.1.2. Let N be a power of 2 and ω ∈ C be a primitive N th root of unity.

Then the algorithm correctly computes DFTω using N logN additions in C and

(N/2) logN multiplications by powers of ω, in total 3
2N logN additions in C and

(N/2) logN multiplications by powers of ω, in total 3
2N logN operations.

6



Chapter 3

Frequency in Financial Data

3.1 Data

In this chapter, we study historical data of Dow Jones Industrial(DJIA) Futures, Nas-

daq(mini) Futures, and S&P500 Futures from April 2, 2007 to April 2, 2019. The range

of periods may vary for each section. These datasets are consisted of trading informa-

tion of OHLC(opening, high, low, closing) price, and trading volume for every minute

from opening to closing of the stock market. Unless there is no missing data or break

of the market, there are 401 minutes of trading data from 8 : 31 am to 3 : 11pm. We

refer to days having 401 minutes of trading history as full-trading day for the above

three futures indices. We may say normal trading day when there are more than 390

minutes of trading history for a day. We re-sampled the data by taking the average

price of the OHLC price by every minute. We represent this average price of data with

time-series. We use the following terminologies.

• Let D be a set of trading days that satisfies certain condition for a given period.

Then, we say ith trading day to indicate ith date in D.

• Time sequence T is a sequence of time by minute scale from opening to closing

of the market.

7



• jth trading minute indicates jth time in a time sequence T.

• To indicate the time-series of volume of ith trading day of a period D, we use

fi[T ] where T is a minute-scale time-series while the market is open. Depending

on the context, it may refer time-series of the average price of OHLC (open-

high-low-close) prices.

• The set of fi is written as P(D)

• When we need to refer real date(time)of ith trading day(jth trading minute),we

say corresponding date(minute) of ith(jth) trading day(minute).

3.2 The high-frequency part of the spectrum

We begin this section by introducing the concept of sliding windows for time-series.

Sliding window is widely used in computer science to use data efficiently.

Definition 3.2.1. Let T = {ti}N−1i=0 be a sequence of time and M be a positive integer.

Then, j-th sliding window of size M of T is a set of M consecutive elements up to tj

in T , which is denoted by WM,j for j =M, . . . , N. i.e.,

WM,j = {tj−k}M−1k=0 (3.1)

for k = 0, . . . ,M − 1.

Similarly, j-th sliding window for time-series f [T ] = {f [ti]}N−1i=0 of size M is a

set of M consecutive elements up to f [tj ] in f [T ] . i.e.,

f [WM,j ] = {f [tj−k]}M−1k=0 (3.2)

for j =M, . . . , N where WM,j is a jth sliding window of size M of T.

Remark 3.2.1. To avoid using future data in predicting future, when we use jth sliding

window we need data up to jth trading day(or minute), not over jth trading day(or

minute).
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Remark 3.2.2. Otherwise stated, we assume that sequence of time or dates are sorted

in ascending order.

Definition 3.2.2. Let f [T ] be a times-series of length N and k be a quarter of N.

Then, the high-frequency part of the spectrum of f [T ] is defined by the average value

of spectrum of the k-highest frequency of discrete Fourier transform of f [T ], and is

denoted by

hS (f [T ]) =
1

k

k−1∑
i=0

f̂

[⌊N
2

⌋
− i
]
.

In this chapter, we observe this value for every sliding window. When f is a time-

series of trading price or volume, the high-frequency part of the spectrum hS (f [T ])

may represent the trading activity or volatility of the market in time T.

Correlation between volume and the spectrum of high-frequency part

Now, we deal with transaction data from the US futures: Dow Jones Industrial Aver-

age(DJIA) futures, Nasdaq(mini) futures, S&P 500 futures. In this section, we define

D and fi as follows.

• PeriodD is {normal trading days of trading history from Jan 01, 2010 to Jan 01, 2019}.

• fi[T ] is a time-series of price on ith trading day of a period D where T is a

minute scale time sequence during the market opens.

Correlation shows relation between variables. In financial data, trading volume is

one of important indicators to analyze the trend of the stock market. To observe the

impact of frequency in stock market, we study correlation between trading volume and

the high frequency part of the spectrum of discrete Fourier Transform.

Definition 3.2.3. Let X, Y be random variables with expected values µX and µY and

standard deviation σX and σY . Then, correlation between X and Y is defined as

corr(X,Y ) =
E[(X − µX)(Y − µY )]

σXσY

9



where E is the expected value operator.

In this chapter, we focus on the high-frequency part of the spectrum of time-series

of price to observe high frequency trading or volatility of the stock market.

In Figure 3.1(left), each point represents hS (fi[T ]) on ith trading day of D to

detect unusual day. The average and standard deviation of hS (fi[T ]) is 54.623 and

50.925, respectively. We investigated the days when hS (fi[T ]) ≥ 258.322, which

value is 4 standard deviation further from the average. There were five days: Jan

23,2008, Oct 9, 2008, August, 2015, Feb 6, 2018, and December 26, 2018.

Next, we calculated correlation between the trading volume and hS (fi[T ]), and it

comes out to be 0.642 which can be considered high in psychology. Figure 3.1(right)

shows trading volume in horizontal axis and hS (fi[T ]) in vertical axis. Figure 3.1 are

plotted with giotto-tda([6])

Figure 3.1: (a) The high-frequency part of the spectrum of fi[T ] over a period D. (b)

Correlation between volume and the high-frequency part of the spectrum for periodD.

In Figure 3.1, we would say that the average value of the high-frequency part of the

spectrum is a measure for the activity level of the market. Thus, a high average value

10



of the high-frequency part of the spectrum may suggest that the market is turbulent,

often occurring high volume of trade.

3.3 Distribution of daily trading activity via spectral analy-

sis

In this section, we find a characteristic pattern of trading activity during a normal

trading day. We investigate how trading activity varies typically during the day by

looking at the high-frequency part of the spectrum of sliding windows f [WM,j ]. In

this section, we define fi as follows.

• fi[T ] is a time-series of price on ith trading day of a period D where T is a

minute scale time sequence during the market opens.

We observe the high-frequency part of the spectrum using DFT with sliding win-

dows. To check whether the high-frequency part of the spectrum has a characteristic

pattern according to trading time, we observe mean and standard deviation for each

sliding window WM,M+15j of size M = 32 over a period D.

Remark 3.3.1. We regard the set of hS(fi[WM,j ]) for fi ∈ P(D) as random variables

that are normally distributed.

Definition 3.3.1. Let D be a period fi[T ] ∈ P(D) where T is a minute scale time

sequence while the market opens. We denote the average of the high-frequency part of

the spectrum of sliding window f [WM,j ] over a period D by µ
(
P(D)M,j

)
, i.e.,

µ
(
P(D)M,j

)
=

1

|P(D)|
∑
fi∈D

hS (fi[WM,j ])

Similarly, standard deviation of the high-frequency part of the spectrum of sliding

window fi[WM,j ] over a period D is denoted by

σ
(
P(D)M,j

)
=

√
µ

(
hS (fi[WM,j ])− µ

(
P(D)M,j

)2)

11



Remark 3.3.2. In the rest of this chapter, we use the high-frequency part of the spec-

trum to refer the high-frequency part of the spectrum of sliding window f [WM,j ] when

sliding windows WM,j are defined in the context.

In Figure 3.2 and 3.3, we slide windows by 15 minutes. Thus, sliding windows

are represented by WM,M+15j . We observe
(
j, µ

(
P(D)M,j

))
in the plane where

k =M + 15j for j = 0, . . . , 24.

• In Figure 3.2, each green, red, orange, and blue graph corresponds to the graphs

of µ
(
P(D)M,j

)
where D is 1st, 2nd, 3rd, and 4th quarter of the year, respec-

tively, and grey plot is for a periodD of the year. The horizontal axis corresponds

to the jth sliding window in time.

• For instance, green graph of Figure 3.2a is plotted with connected points of(
j, µ

(
P(D)M,j

))
over a period D where D is a set of full-trading days in the

1st quarter of 2013’s, that is, from Jan-01-2013 to March-31-2013.

• Red graph of Figure 3.2a is plotted with a period D, where D is a set of full-

trading days in the 2nd quarter of 2013’s, that is, from April-01-2013 to June-

30-2013

• In Figure 3.3, the graphs are plotted over period

D = {full-trading days from April-02-2007 to April-02-2019}

, and the whole value is divided by their minimum value to normalize the graphs.

• In Figure 3.3, blue graph used price of DJIA futures to obtain the average of the

high-frequency part of the spectrum over a period D.

• In Figure 3.3, green graph used price of Nasdaq futures to obtain the average of

the high-frequency part of the spectrum over a period D.

• In Figure 3.3, red graph used price of S&P 500 futures to obtain the average of

the high-frequency part of the spectrum over a period D.
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(a) Quarterly graph for 2013’s (b) Quarterly graph for 2014’s

(c) Quarterly graph for 2015’s (d) Quarterly graph for 2016’s

Figure 3.2: Average of the high-frequency part of the spectrum over a period D.

Results

In Figure 3.2, we can observe that there are no quarterly characteristics in the high-

frequency part of the spectrum, instead, in any quarter in any year, we can find a pattern

with wide U-shape. This is more clear in Figure 3.3.

In Figure 3.3, We can observe that the graphs have the highest value when the

market opens. we can observe that the highest value is almost twice the minimum

value which appears around noon for all three futures. We may interpret this result as

follows. First, stock trading is most active in the morning during 32 trading minutes

right after the market opens. Traders or algorithms are busy to make decisions based

on the information generated in the last night. Second, after 200 minutes of opening
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Figure 3.3: Characteristic pattern of the spectrum information during typical trading

day for 13 years.

of market, around 12 O’clock, trading is the least active, it may be related to lunch

time or they had trade enough in the morning. Last, at the end of the market, trading

gets gradually active, even if it is not active as in the morning. They are likely to make

orders to hold shares that are likely to rise in price in the night. This pattern appears

regardless of season and year.

Next, we observe the relation between the number of shares and the high-frequency

part of the spectrum. The number of full-trading days were 2832, 2867, and 2880 for

DJIA futures, Nasdaq(mini) Futures, and S&P500 Futures, respectively. All of them

has maximum value of the high-frequency part of the spectrum at the first window that

contains trading information from 8:30am to 9:02 am. DJIA futures and Nasdaq(mini)

futures have their minimum values at 212th sliding window, which contains 32minutes

of trading information up to 12:02 pm. Similarly, S&P 500 futures has its minimum at

227th sliding window that contains 32minutes of trading information up to 12:17 pm.

Then, transaction becomes gradually activated until the market is closed.

Table 3.1 shows values before dividing minimum of the high-frequency part of the

spectrum. Over all, the average of the high-frequency part of the spectrum of Dow

14



Dow Jones Nasdaq(mini) S&P500

# of full-trading days 2832 2867 2880

maximum 26.587 > 8.093 > 2.973

minimum 13.551 > 3.758 > 1.589

# of stocks 30 < 100 < 500

Table 3.1: Comparison between three futures

Jones Futures has the highest value, Nasdaq(mini) futures was the second highest,

and S&P500 has the lowest spectrum. Considering that the number of stock they in-

clude has opposite relation, high frequency of trading is more sensitive of collection

of smaller number of stocks.

3.4 Predicting Flash Crash

A flash crash in stock market is a phenomenon in which a plunge and a surge occur

in a very short time. Experts estimate that one of the causes of this phenomenon is

High Frequency Trading(HFT). HFT is literally an extremely fast stock trading. Their

transaction is concluded within milliseconds using powerful algorithms. The computer

analyzes multiple markets, and places orders according to the algorithms. A huge scale

of transactions is done in a very short time, and it can have a significant impact on the

entire stock market. For example, on May 6, 2010, due to the concern of the Greeks’

economic crisis, the Dow Jones Industrial Average had a severe drop of 998.5 point

in its price in the day and 600 point loss of which took only 5 minutes. Though it

recovered most of its loss in 20 minutes, the market had almost a trillion-dollar loss,

see Figure . In this section, we define fi as follows.

• fi[T ] is a time-series of price on ith trading day of a period D where T is a

minute scale time sequence during the market opens.

In Figure 3.3, we observed that there is a similar pattern of the high-frequency part

15



of the spectrum among DJIA futures Index, Nasdaq(mini) futures Index, and S&P 500

futures Index. Thus, in the rest of this chapter, we focus on DJIA futures based on an

assumption that same strategy can be applied on the other futures. Sometimes market

breaks for minutes or data are missing, even in trading days. In this section, we deal

with normal-trading days that have more than 390 minutes of trading history for one

day. Thus, size of time sequence for a day satisfies 391 ≤ |T | ≤ 401.

We use sliding windows of time sequence T of size M = 32, and shift window

for every minute for real-time analysis of trends of the high-frequency part of the

spectrum. There are windows WM,M+j for j = M,M + 1, . . . , N −M where N =

|T |. We can find that there was an extremely high value in the high-frequency part of

the spectrum more than 30 minutes before flash crash on May 6, 2010. Note that the

red plot is µ
(
P(D)M,j

)
+ 2σ

(
P(D)M,j

)
with a period D that is a whole year that

includes the flash crash day. This plot plays a role of baseline to show clearly how high

hS (fi[WM,j ]) is on flash crash days, for each window WM,M+j .

Results

Each column of Figure 3.4 shows charts of the index and the high-frequency part of

the spectrum of a day when a flash crash happened. First column is for May 6, 2010,

and second column is for April 23rd, 2013. First row is index chart of DJIA futures,

and second row is the high-frequency part of the spectrum of jth sliding window size

ofM shifting by one minute. Red line is a baseline for unusual volatility of the market.

To closely observe the change in the high-frequency part of the spectrum value before

the flash crash occurs, the graphs of the second row are zoomed in the third row.

On May 6, 2010, DJIA futures had its lowest index at 13:45pm, that is, at 315th

trading minute. However, the high-frequency part of the spectrum had already ex-

ceeded its baseline at 268 trading minute (See Fig. 3.4c. That is, there were preliminary

sign at 268 trading minute, which is 47 minutes before the actual crash. From on eco-

nomic point of view, on the day, the world economy was unstable due to Greek crisis.
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(a) DJIA futures chart on May 6, 2010.Crash

happened at 315 trading minute

(b) DJIA futures chart on April 23rd, 2013.

Crash happened at 219 trading minute

(c) (d)

(e) (f)

Figure 3.4: (a) DJIA futures chart on May 6, 2010. Crash happened at 219 trading

minute. (b)DJIA futures chart on April 23rd, 2013. Crash happened at 315 trading

minute. (c),(d) the high-frequency part of the spectrum of trading price in sliding win-

dows of size M = 32 of the chart (a),(b), respectively, shifting by one minute. Red

line is baseline for defining usual day. (e) Zoomed figure of (c) from 267 to 315 trading

minute. (f) Zoomed figure of (d) from 212 to 230 trading minute.
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Concerns might be reflected in HFT algorithms, making the market in a panic.

On the other hand, on April 23, 2013, the high-frequency part of the spectrum had

exceeded its baseline one minute before the actual crash. Crash happened at 12:09 pm

which is 219 trading minute.the high-frequency part of the spectrum does not have

strange value until 218 trading minute. That is, we cannot find meaningful signal of

the crash. In society on the day, Associated Press news(AP) twitter account was hacked

and made false claim of explosions at White House. It took only two minutes to get

1% drop of Dow Jones futures Index at 12:09pm(219th trading minutes). In this case,

people may have rarely known the news in advance, and neither it did not have effect

on the stock market. In this case, a preliminary signal cannot present in the data before

12:09. Thus, it is more natural that the flash crash cannot be detected.

3.5 Spectral analysis of some other crashes

This methodology can be applied to other days not severe drop as flash crashes as. We

begin this section by defining abnormal trading time, and days with the high-frequency

part of the spectrum for each sliding window of sizeM = 32.In this section, we define

D and fi as follows.

• Period D is {normal trading days from Jan 01, 2010 to Jan 01, 2014}.

• fi[T ] is a time-series of price on ith trading day of a period D where T is a

minute scale time sequence during the market opens.

In this section, baseline is µ
(
P(D)M,j

)
+ 4σ

(
P(D)M,j

)
with the period D for

j = M,M + 1, . . . , 391. This baseline is more strict than that of previous section

which is plotted with red in Figure 3.5. We call jth trading minute as an unusual

trading minute when the high-frequency part of the spectrum exceeds the baseline in

the time window WM,j , and a trading day is called as an unusual trading day when

there are more than 15 minutes of unusual trading minutes.
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(a) May 7, 2010 (b) August 9, 2011 (c) November 17, 2011

Figure 3.5: top: index chart of DJIA futures. bottom: the high-frequency part of the

spectrum(blue) and baseline(red) for each sliding window.

In the Figure 3.5, we choose three unusual days that are randomly selected to

explain how the high-frequency part of the spectrum behaves on days of the fluctuating

market: May 7, 2010, and August 9, 2011, and November 17, 2011. Figures in the first

row are index charts of DJIA futures on these days. The height of the boxes is limited

up to 1.04% minimum index of the day. Each figure in the second row has two plots,

red plot is baseline, and blue plot is the high-frequency part of the spectrum. We can

observe a pattern similar to that analyzed on days of flash crashes. For example, on

November 17, 2011, crash happened around trading minute 190, and hS (f [WM,j ])

exceeds the baseline at trading minute 150.
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Chapter 4

Resonance in Financial Data

4.1 Resonance

Resonance is a phenomenon that the amplitude of a signal is increased when the signals

are synchronized. The collapse of Takoma bridge is a famous example and it shows

how resonance can have a powerful impact. In Topological Data Analysis(TDA) point

of view, resonance can be detected using persistence homology and its barcode [7].

However, since DFT is a very effective method in computing frequency, we keep using

DFT to find resonance. When f̂ [k] is outstanding compared to its neighborhood, then

it means that the original function f has many compositions of frequency k.

Definition 4.1.1. A function f is T − periodic if f(t+ T ) = f(t) for t ∈ [0, 2π] .

Definition 4.1.2. Let f1, f2 be T1, T2− periodic functions, respectively. Then, we say

f1, f2 are in resonance, if T1/T2 ∈ Q.

Since we deal data of finite points, f̂ [k] has period in Q. Thus, any pair of f̂ [k]e
2πi
N
nk

and f̂ [k′]e
2πi
N
nk′ resonance, mathematically. To observe strong features in data, we de-

fine strong resonance.

Definition 4.1.3. Let r = n/m be a rational number for n,m ∈ Z. Then, r is called

a nice rational number if m,n ∈ {1, 2, 3, 4} .
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Then, for two periodic functions f1, f2 of period T1, T2, respectively, we say f1, f2 are

in strong resonance if T1/T2 are nice rational number.

Results

We observe strong resonance in stocks listed on KOSPI(Korea Composite Stock Price

Index) as shown in the Figure 4.1.

• Period D is whole trading days in June,2016.

• Index is KR7000210005, DAELIM INDUSTRIAL CO.,LTD.

In Figure 4.2a and 4.2b, average spectrum of DFT of fi[WM,j ] for fi ∈ P(D) for fixed

M = 64 and j = M, . . . , 391 where period D is a set of trading days during June,

2016. Pattern in 4.2a lasts while j shifts from M to M + 27, and 4.2b lasts for 55

minutes while j shifts from M + 52 to M + 107.

We can observe that these strong resonances are dominated by one day, respec-

tively. The first resonance that has peaked for every 5 frequency seems to be domi-

nated by June 24, 2016 (See 4.1c). On June 23, 2016, a referendum was conducted in

the U.K for Brexit agenda. In the midnight, voting and counting had been broadcast

worldwide. The impact of the vote had hit the World economy, including South Korea.

We may guess the result is reflected in frequency.

On the other hand, the second resonance that has peaked for every 8 frequency

seems to be dominated by June 21, 2016 (See 4.1d)

Also, we can find a strong resonance in some companies. We selected two repre-

sentative examples of ISIN KR7078930005 and KR7007570005 as shown in 4.2. This

phenomenon might happen because a large number of trading systems are synchro-

nized. We might infer the trading pattern of the automated trading algorithm without

additional data.
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(a) Average of spectrum of fi[WM,j ] for fi ∈

P(D) for fixed M = 64, j = 0

(b) Average of spectrum of fi[WM,j ] for fi ∈

P(D) for fixed M = 64, j = 101

(c) DFT of fi[WM,j ] for j = M, . . . ,M + 27

where fi is a time-series of price on June 24,

2016

(d) DFT of fi[WM,j ] for j =M+52, . . . ,M+

107 where fi is a time-series of price on June

21, 2016

Figure 4.1: Resonance in DAELIM INDUSTRIAL CO.,LTD.

(a) DFT of time-series of price of

KR7078930005 on June 24, 2016

(b) DFT of time-series of price of

KR7007570005 on June 24, 2016

Figure 4.2: Strong resonance
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초록

본 논문은 주식 시장의 변동성을 관측하고, 플래시 크래시를 예측하기 위해 진

동수를두가지방법으로분석한다.우리는주식거래의분봉데이터셋을진동수와

스펙트럼으로분해하는이산푸리에변환을이용하여분석한다.

첫 번째 방법은 가격 데이터의 슬라이딩 윈도우를 이산 푸리에 변환을 취하여

고진동수부분의평균스펙트럼을관찰한다.우리는이값을통해거래활동의경향

성을 발견할 수 있다. 또한, 플래시 크래시 전에 고진동수 부분의 평균 스펙트럼이

비정상적으로 높아짐을 감지하였으며, 이를 통해 플래시 크래시를 예측 가능성을

제시한다.또한,우리는이방법론을주가의급락및급증이있는날에적용하여우

리가제시한모델이실제시장을잘설명함을보인다.

두 번째 방법은 가격 데이터의 슬라이딩 위도우의 이산 푸리에 변환을 있는 그

대로분석하여주식시장에서의공명현상을관찰한다.이는,자동매매알고리즘에

대한정보를추가데이터없이거래데이터로부터추론한것에의의를가진다.

주요어:이산푸리에변환,시계열분석,스펙트럼,공명현상,주식거래데이터

학번:2018-29001
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