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Abstract

This paper investigates the volatility of the stock market in two ways. We decom-
pose the one minute scale trading data of the stock market into the frequency and
spectrum part using Discrete Fourier Transform(DFT).

The first methodology is to observe the average value of the high-frequency part
of the spectrum using DFT with sliding windows of trading data. We are able to find
a characteristic pattern of trading activity during a normal trading day. In addition,
we detected an unusually high value of this spectrum information before a flash crash
happens, suggesting a possibility for predicting flash crashes. Moreover, we apply this
methodology to other days when there was a steep rise or drop in price to show the
method explains the market well.

The second methodology is to directly analyze the spectrum using DFT of sliding
windows of trading data to find resonance in the stock market. This has an implica-
tion that we can infer the trading pattern of the automated trading algorithm without

additional data.

keywords: Discrete Fourier Transform, Time-series, Spectrum, Resonance, Stock

transaction data

student number: 2018-29001
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Chapter 1

INTRODUCTION

More than 70% of the US stock equities are executed by High Frequency Trading
(HFT) [1], which uses a powerful computer algorithm for stock trading. If the algo-
rithms try to buy or sell large amounts of shares at the same time, the market is likely
to fluctuate. As an example, about the flash crash that happened on May 6, 2010, ex-
perts estimate that HFT exacerbated the crash [2]. Thus, one might think that trading
frequency and spectrum of HFT are related to the volatility of the stock market. There
are numerous studies to quantify the volatility of the stock market suggesting that can
be a key to predict flash crashes [3]. In this paper, we are able to find a preliminary
signal of unusual market crashes by observing the frequency of trading systems in the
stock market. Instead of looking at the frequency of HFT directly, which happens at
timescales of milliseconds, we look at minute scale frequencies.

In Chapter 2, we apply the Discrete Fourier Transform (DFT) to decompose the
time-series into frequency and spectrum components. Since it is nearly impossible or
inconvenient to compute the entire real-time data at once, we select a suitable size
of the length of M of the sliding window for DFT, which is used in [4]. The entire
time-series is processed shifting the window by time-delay parameter 7.

In Chapter 3, we observe the average value of the high frequency part of the spec-

trum using DFT with sliding windows of trading data, which is detailed in Definition



3.2.2. Unless otherwise stated, we call the value briefly as the high-frequency part of
the spectrum. We use transaction data from the US futures in this chapter. First, we ob-
serve the distribution of the high-frequency part of the spectrum of each data segment
along trading time and over a period D. Second, we investigate how trading activity
varies typically during the day by looking at this spectrum information that might re-
flect trading pattern of trader or HFT system. Then, we are able to find a characteristic
pattern of trading activity during normal trading day. Third, we observe how the high-
frequency part of the spectrum varies on flash crash days and suggest a possibility for
predicting flash crashes. Finally, we repeat the same process to predict unusual crash
in the market.

In Chapter 4, we give a definition of resonance, which is a phenomenon that the
amplitude of a wave increases when several waves are synchronized. Then, we observe
resonance in transaction data. By searching for a certain pattern in the frequency of the

data, we might surmise trading patterns of trader and HFT algorithms.



Chapter 2

Preliminaries

2.1 Definitions and Motivation

We begin this section by introducing the classical Fourier Transform. The Fourier

transform decomposes a signal into sum of sines, and corresponding amplitude.

Definition 2.1.1. Ler f be an Ly integrable function f : R — C. Then, the Fourier
transform of f at £ is

f(e) = / f(x)e 2T dy

forany £ € R. At & = &, f(&o) represents a spectrum component of the sinusoidal

signal e2™€0%

Definition 2.1.2. Let x be an independent variable, and £ be transform variable that

represents frequency. f is determined by f by via the inverse transform

fo) = [ feoemag
forany x € R

Definition 2.1.3. Time-series fisamap f : T — RwhereT = {t;li=1,...,N}is

an ordered set of time, which are successively equally spaced.



The Discrete Fourier Transform (DFT) acts on a finite time-series to decompose
it into the frequency and the spectrum part on the assumption that the sequence is

generated by a continuous signal.

Definition 2.1.4. Let N data points be denoted f[0], f[1],..., f[N — 1]. The discrete
Fourier Transform of time-series f|t] is defined by

) N-1 -
finl =Y flKle= "
0

e
Il

The |f[n]\ is called the nth spectrum of f forn =0,1,... N — 1.

Next, we introduce some mathematical tools compute DFT in computer as referred

from [5].

Definition 2.1.5. Let n be a positive integer. Then, complex number w is called an nth

root of unity if " = 1.

Remark 2.1.1. Lef wg, w1, ... ,wn—1 be nth root of unity. Then, wy, is explicitly repre-

2k
n

- 2km _
sented by exp ( ) = cosmfor k=0,1,...,n—1. Thus, w; and w,_j, are

complex conjugate each other.

Definition 2.1.6. Vandermonde matrix for nth root of unity w, which is denoted by

1 1 1 1

1 w w2 e w1
Vo=VDM(Lw,...,0" =11 12 w2

1 wl-1)  ,=2(n-1) w—(n=1)?

_ (wjk> e cnxn
0<j,k<n

We may write Discrete Fourier Transform of signal f[¢] using Vandermonde matrix



as following

fl0] Lo 1 1 f10]

fl 1w w2 (VD i

flzl =11 w'? w2V f[2)
fIN —1] 1w MV 2N =V ) FIN - 1

Remark 2.1.2. Consider

) N-1 , N-1 e
f[N _ n] _ f[k}e_% (N—n) Z f N nk e27rik
]’;:_01 k=0 Q2.1
= 3" flk)e T = fn)
k=0

where f* represents complex conjugate of f. Thus, f[n] = f*N — n)], and therefore
\fnl| = | F*IN —n]|. Thus, for odd N, £(0) to f(gj —1) have the same spectrum
from f(N —1) 10 f([ J ).Foreven integer N, £(0) 10 f([%J —1) have the
same spectrum from f(N — 1) to f (L J) .

In this paper, we deal with the spectrum from £(0) to f (L%J — 1).

1

Theorem 2.1.1. Let w be a primitive nth root of unity. Then w™" is a primitive nth

root of unity and V., - V,,—1 = nl where I is the n X n identity matrix.

Definition 2.1.7. The inverse transform of f[n] is defined by

1 N 2
= N Z f[”]eTnk
n=0

The inverse Discrete Fourier Transform decomposes a signal f[k] into sinuous
functions of frequency n/N of amplitude f[n].
We now introduce the Fast Fourier Transform(FFT) algorithm and its computa-

tional complexity.



Definition 2.1.8. Let f be a real or complex valued function and g be a real valued
function. Let both functions be defined on some unbounded subset of real positive
numbers, and g(x) be strictly positive for all large enough values of x. Then, f(x) =
O(g(x)) implies that there exists a positive real number M and a real number x( such

that |f(z)| < Mg(x) forall x > xg

Then, for DFT, we need N? times of multiplication for N data points. With Fast

Discrete Fourier Transform algorithm, we can reduce it to O(Nlog(N)) [5]
Step 1. If N = 1, return f[0].

Step 2. Let f[0], f[1],..., f[N — 1] are real-valued data points.Separate this signal into
two sequences of length /2. One is with odd indices, say foqq = [f[1], f3], .. ]

and foven = [£]0], F[2], .- .].

Step 3. Letro(z) = Zogjgn/g(f[j]+f[j+n/2])xj and let 1 () = Zogjgn/Q(f[j] -
fli+n/2)wial.

Step 4. Call the algorithm recursively to evaluate 7 and 7% at the powers of w?.
Step 5. Retumn = (ro(1), 7§ (1), ro(w?), 71 (w2), . ro(w™2), 7§ (w"2)).

Theorem 2.1.2. Let N be a power of 2 and w € C be a primitive Nth root of unity.
Then the algorithm correctly computes DFT,, using N log N additions in C and
(N/2)log N multiplications by powers of w, in total %N log N additions in C and
(N/2)log N multiplications by powers of w, in total %N log N operations.



Chapter 3

Frequency in Financial Data

3.1 Data

In this chapter, we study historical data of Dow Jones Industrial(DJIA) Futures, Nas-
daq(mini) Futures, and S&P500 Futures from April 2, 2007 to April 2, 2019. The range
of periods may vary for each section. These datasets are consisted of trading informa-
tion of OHLC(opening, high, low, closing) price, and trading volume for every minute
from opening to closing of the stock market. Unless there is no missing data or break
of the market, there are 401 minutes of trading data from 8 : 31 am to 3 : 11pm. We
refer to days having 401 minutes of trading history as full-trading day for the above
three futures indices. We may say normal trading day when there are more than 390
minutes of trading history for a day. We re-sampled the data by taking the average
price of the OHLC price by every minute. We represent this average price of data with

time-series. We use the following terminologies.

e Let D be a set of trading days that satisfies certain condition for a given period.

Then, we say ¢th trading day to indicate ¢th date in D.

e Time sequence 7' is a sequence of time by minute scale from opening to closing

of the market.



e jth trading minute indicates jth time in a time sequence 7.

o To indicate the time-series of volume of ith trading day of a period D, we use
fi[T] where T' is a minute-scale time-series while the market is open. Depending
on the context, it may refer time-series of the average price of OHLC (open-

high-low-close) prices.
e The set of f; is written as P(D)

e When we need to refer real date(time)of ith trading day(jth trading minute),we

say corresponding date(minute) of ¢th(jth) trading day(minute).

3.2 The high-frequency part of the spectrum

We begin this section by introducing the concept of sliding windows for time-series.

Sliding window is widely used in computer science to use data efficiently.

Definition 3.2.1. LetT = {tz}f\i 61 be a sequence of time and M be a positive integer.
Then, j-th sliding window of size M of T' is a set of M consecutive elements up to t;

in T, which is denoted by Wy ; for j = M, ..., N.i.e.,
Wi = {tj s}ty (3.1

fork=0,...,M — 1.

Similarly, j-th sliding window for time-series f[T| = {f [tz]}f\; 61 of size M is a

set of M consecutive elements up to f[t;] in f[T]. ie.,
FIWars] = {flti—al bty (3.2)
forj=M,...,N where Wy ; is a jth sliding window of size M of T

Remark 3.2.1. To avoid using future data in predicting future, when we use jth sliding
window we need data up to jth trading day(or minute), not over jth trading day(or

minute).



Remark 3.2.2. Otherwise stated, we assume that sequence of time or dates are sorted

in ascending order.

Definition 3.2.2. Let f[T| be a times-series of length N and k be a quarter of N.
Then, the high-frequency part of the spectrum of f[T] is defined by the average value
of spectrum of the k-highest frequency of discrete Fourier transform of f[T], and is

denoted by
k—1
1 TN
) = - 5] -l
WS (T = 3 f 15)-1]
In this chapter, we observe this value for every sliding window. When f is a time-

series of trading price or volume, the high-frequency part of the spectrum hS (f[T1])

may represent the trading activity or volatility of the market in time 7.

Correlation between volume and the spectrum of high-frequency part

Now, we deal with transaction data from the US futures: Dow Jones Industrial Aver-
age(DJIA) futures, Nasdaq(mini) futures, S&P 500 futures. In this section, we define
D and f; as follows.

e Period D is {normal trading days of trading history from Jan 01, 2010 to Jan 01, 2019}.

e f;[T] is a time-series of price on ith trading day of a period D where T is a

minute scale time sequence during the market opens.

Correlation shows relation between variables. In financial data, trading volume is
one of important indicators to analyze the trend of the stock market. To observe the
impact of frequency in stock market, we study correlation between trading volume and

the high frequency part of the spectrum of discrete Fourier Transform.

Definition 3.2.3. Let X, Y be random variables with expected values px and vy and

standard deviation o x and oy . Then, correlation between X and'Y is defined as

E[(X — px)(Y — py)]

corr(X,Y) =
oXOy




where E is the expected value operator.

In this chapter, we focus on the high-frequency part of the spectrum of time-series
of price to observe high frequency trading or volatility of the stock market.

In Figure 3.1(left), each point represents kS (f;[T]) on ith trading day of D to
detect unusual day. The average and standard deviation of hS (f;[T7]) is 54.623 and
50.925, respectively. We investigated the days when hS (f;[T]) > 258.322, which
value is 4 standard deviation further from the average. There were five days: Jan
23,2008, Oct 9, 2008, August, 2015, Feb 6, 2018, and December 26, 2018.

Next, we calculated correlation between the trading volume and hS (f;[7]), and it
comes out to be 0.642 which can be considered high in psychology. Figure 3.1(right)
shows trading volume in horizontal axis and hS (f;[T]) in vertical axis. Figure 3.1 are

plotted with giotto-tda([6])

Figure 3.1: (a) The high-frequency part of the spectrum of f;[T] over a period D. (b)

Correlation between volume and the high-frequency part of the spectrum for period D.

In Figure 3.1, we would say that the average value of the high-frequency part of the

spectrum is a measure for the activity level of the market. Thus, a high average value

] 2-t) &) 3

10
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of the high-frequency part of the spectrum may suggest that the market is turbulent,

often occurring high volume of trade.

3.3 Distribution of daily trading activity via spectral analy-
sis

In this section, we find a characteristic pattern of trading activity during a normal

trading day. We investigate how trading activity varies typically during the day by

looking at the high-frequency part of the spectrum of sliding windows f[Wyy ;]. In

this section, we define f; as follows.

e fi[T] is a time-series of price on ith trading day of a period D where T is a

minute scale time sequence during the market opens.

We observe the high-frequency part of the spectrum using DFT with sliding win-
dows. To check whether the high-frequency part of the spectrum has a characteristic
pattern according to trading time, we observe mean and standard deviation for each

sliding window Wy pr415; of size M = 32 over a period D.

Remark 3.3.1. We regard the set of hS(fi[W ;]) for fi € P(D) as random variables

that are normally distributed.

Definition 3.3.1. Let D be a period f;[T| € P(D) where T is a minute scale time
sequence while the market opens. We denote the average of the high-frequency part of

the spectrum of sliding window f[Wyy ;| over a period D by 1 (P(D)Mj) ,Le.,

K (P(D)M,j) = |73(1D) ]Z;)hs (fi[WM,jD

Similarly, standard deviation of the high-frequency part of the spectrum of sliding

window f;[Wr ;| over a period D is denoted by

(o))

11



Remark 3.3.2. In the rest of this chapter, we use the high-frequency part of the spec-
trum to refer the high-frequency part of the spectrum of sliding window f[Wy ;| when

sliding windows Wy ; are defined in the context.

In Figure 3.2 and 3.3, we slide windows by 15 minutes. Thus, sliding windows
are represented by Wy ar415;. We observe (j, i (P(D) M7j>> in the plane where
k=M +15jforj=0,...,24.

o In Figure 3.2, each green, red, orange, and blue graph corresponds to the graphs
of i (P(D) M, j> where D is 1st, 2nd, 3rd, and 4th quarter of the year, respec-
tively, and grey plot is for a period D of the year. The horizontal axis corresponds

to the jth sliding window in time.

e For instance, green graph of Figure 3.2a is plotted with connected points of
( Jy 1t <P(D) M, ])> over a period D where D is a set of full-trading days in the
1st quarter of 2013’s, that is, from Jan-01-2013 to March-31-2013.

e Red graph of Figure 3.2a is plotted with a period D, where D is a set of full-
trading days in the 2nd quarter of 2013’s, that is, from April-01-2013 to June-
30-2013

o In Figure 3.3, the graphs are plotted over period
D = {full-trading days from April-02-2007 to April-02-2019}
, and the whole value is divided by their minimum value to normalize the graphs.

e In Figure 3.3, blue graph used price of DJIA futures to obtain the average of the

high-frequency part of the spectrum over a period D.

o In Figure 3.3, green graph used price of Nasdaq futures to obtain the average of

the high-frequency part of the spectrum over a period D.

e In Figure 3.3, red graph used price of S&P 500 futures to obtain the average of

the high-frequency part of the spectrum over a period D.

12
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Figure 3.2: Average of the high-frequency part of the spectrum over a period D.

Results

In Figure 3.2, we can observe that there are no quarterly characteristics in the high-
[frequency part of the spectrum, instead, in any quarter in any year, we can find a pattern
with wide U-shape. This is more clear in Figure 3.3.

In Figure 3.3, We can observe that the graphs have the highest value when the
market opens. we can observe that the highest value is almost twice the minimum
value which appears around noon for all three futures. We may interpret this result as
follows. First, stock trading is most active in the morning during 32 trading minutes
right after the market opens. Traders or algorithms are busy to make decisions based

on the information generated in the last night. Second, after 200 minutes of opening
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Figure 3.3: Characteristic pattern of the spectrum information during typical trading

day for 13 years.

of market, around 12 O’clock, trading is the least active, it may be related to lunch
time or they had trade enough in the morning. Last, at the end of the market, trading
gets gradually active, even if it is not active as in the morning. They are likely to make
orders to hold shares that are likely to rise in price in the night. This pattern appears

regardless of season and year.

Next, we observe the relation between the number of shares and the high-frequency
part of the spectrum. The number of full-trading days were 2832, 2867, and 2880 for
DIJIA futures, Nasdaq(mini) Futures, and S&P500 Futures, respectively. All of them
has maximum value of the high-frequency part of the spectrum at the first window that
contains trading information from 8:30am to 9:02 am. DJIA futures and Nasdaq(mini)
futures have their minimum values at 212th sliding window, which contains 32minutes
of trading information up to 12:02 pm. Similarly, S&P 500 futures has its minimum at
227th sliding window that contains 32minutes of trading information up to 12:17 pm.
Then, transaction becomes gradually activated until the market is closed.

Table 3.1 shows values before dividing minimum of the high-frequency part of the
spectrum. Over all, the average of the high-frequency part of the spectrum of Dow
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Dow Jones Nasdaq(mini) S&P500
# of full-trading days | 2832 2867 2880
maximum 26.587 > | 8.093 > | 2973
minimum 13.551 > | 3.758 > | 1.589
# of stocks 30 < | 100 < | 500

Table 3.1: Comparison between three futures

Jones Futures has the highest value, Nasdaq(mini) futures was the second highest,
and S&P500 has the lowest spectrum. Considering that the number of stock they in-
clude has opposite relation, high frequency of trading is more sensitive of collection

of smaller number of stocks.

3.4 Predicting Flash Crash

A flash crash in stock market is a phenomenon in which a plunge and a surge occur
in a very short time. Experts estimate that one of the causes of this phenomenon is
High Frequency Trading(HFT). HFT is literally an extremely fast stock trading. Their
transaction is concluded within milliseconds using powerful algorithms. The computer
analyzes multiple markets, and places orders according to the algorithms. A huge scale
of transactions is done in a very short time, and it can have a significant impact on the
entire stock market. For example, on May 6, 2010, due to the concern of the Greeks’
economic crisis, the Dow Jones Industrial Average had a severe drop of 998.5 point
in its price in the day and 600 point loss of which took only 5 minutes. Though it
recovered most of its loss in 20 minutes, the market had almost a trillion-dollar loss,

see Figure . In this section, we define f; as follows.

e f;[T] is a time-series of price on ith trading day of a period D where T is a

minute scale time sequence during the market opens.

In Figure 3.3, we observed that there is a similar pattern of the high-frequency part

15



of the spectrum among DJIA futures Index, Nasdaq(mini) futures Index, and S&P 500
futures Index. Thus, in the rest of this chapter, we focus on DJIA futures based on an
assumption that same strategy can be applied on the other futures. Sometimes market
breaks for minutes or data are missing, even in trading days. In this section, we deal
with normal-trading days that have more than 390 minutes of trading history for one
day. Thus, size of time sequence for a day satisfies 391 < |T'| < 401.

We use sliding windows of time sequence 7' of size M = 32, and shift window
for every minute for real-time analysis of trends of the high-frequency part of the
spectrum. There are windows Wy pryj for j = M, M +1,...,N — M where N =
|T'|. We can find that there was an extremely high value in the high-frequency part of
the spectrum more than 30 minutes before flash crash on May 6, 2010. Note that the
red plot is (P(D)MJ) + 20 (P(D)MJ) with a period D that is a whole year that
includes the flash crash day. This plot plays a role of baseline to show clearly how high

hS (fi[Wa;]) is on flash crash days, for each window Wz a7 ;.

Results

Each column of Figure 3.4 shows charts of the index and the high-frequency part of
the spectrum of a day when a flash crash happened. First column is for May 6, 2010,
and second column is for April 23rd, 2013. First row is index chart of DJIA futures,
and second row is the high-frequency part of the spectrum of jth sliding window size
of M shifting by one minute. Red line is a baseline for unusual volatility of the market.
To closely observe the change in the high-frequency part of the spectrum value before
the flash crash occurs, the graphs of the second row are zoomed in the third row.

On May 6, 2010, DJIA futures had its lowest index at 13:45pm, that is, at 315th
trading minute. However, the high-frequency part of the spectrum had already ex-
ceeded its baseline at 268 trading minute (See Fig. 3.4c. That is, there were preliminary
sign at 268 trading minute, which is 47 minutes before the actual crash. From on eco-

nomic point of view, on the day, the world economy was unstable due to Greek crisis.

16



14660

10800
14640
10600 14620

14600
10400 14580
14560

10200
14540

10000 9 14520 b

0 S 100 150 200 250 300 350 400 D S 100 150 200 250 300 350 400

(a) DJIA futures chart on May 6, 2010.Crash(b) DJIA futures chart on April 23rd, 2013.

happened at 315 trading minute Crash happened at 219 trading minute
400
350 80
300

250
200

150

100
20

©)

-
300 1
1

1 80
250 !
1
1

200 H e
1
1
150 i
1

s
100 I
1
1

50 1 20
1
1
1

PSRRI  D

(e) ()

Figure 3.4: (a) DJIA futures chart on May 6, 2010. Crash happened at 219 trading

minute. (b)DJIA futures chart on April 23rd, 2013. Crash happened at 315 trading

minute. (¢),(d) the high-frequency part of the spectrum of trading price in sliding win-

dows of size M = 32 of the chart (a),(b), respectively, shifting by one minute. Red

line is baseline for defining usual day. (e) Zoomed figure of (c) from 267 to 315 trading

minute. (f) Zoomed figure of (d) from 212 to 230 trading minute.. _iﬂ :‘,‘r 1_” \j]r T]'_
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Concerns might be reflected in HFT algorithms, making the market in a panic.

On the other hand, on April 23, 2013, the high-frequency part of the spectrum had
exceeded its baseline one minute before the actual crash. Crash happened at 12:09 pm
which is 219 trading minute.the high-frequency part of the spectrum does not have
strange value until 218 trading minute. That is, we cannot find meaningful signal of
the crash. In society on the day, Associated Press news(AP) twitter account was hacked
and made false claim of explosions at White House. It took only two minutes to get
1% drop of Dow Jones futures Index at 12:09pm(219th trading minutes). In this case,
people may have rarely known the news in advance, and neither it did not have effect
on the stock market. In this case, a preliminary signal cannot present in the data before

12:09. Thus, it is more natural that the flash crash cannot be detected.

3.5 Spectral analysis of some other crashes

This methodology can be applied to other days not severe drop as flash crashes as. We
begin this section by defining abnormal trading time, and days with the high-frequency
part of the spectrum for each sliding window of size M = 32.In this section, we define

D and f; as follows.
e Period D is {normal trading days from Jan 01, 2010 to Jan 01, 2014}.

e fi[T] is a time-series of price on ith trading day of a period D where T is a

minute scale time sequence during the market opens.

In this section, baseline is p (P(D) M, j) +4o (P(D) M, j> with the period D for
j = M,M+1,...,391. This baseline is more strict than that of previous section
which is plotted with red in Figure 3.5. We call jth trading minute as an unusual
trading minute when the high-frequency part of the spectrum exceeds the baseline in
the time window W)y, ;, and a trading day is called as an unusual trading day when

there are more than 15 minutes of unusual trading minutes.
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Figure 3.5: top: index chart of DJIA futures. bottom: the high-frequency part of the

spectrum(blue) and baseline(red) for each sliding window.

In the Figure 3.5, we choose three unusual days that are randomly selected to
explain how the high-frequency part of the spectrum behaves on days of the fluctuating
market: May 7, 2010, and August 9, 2011, and November 17, 2011. Figures in the first
row are index charts of DJIA futures on these days. The height of the boxes is limited
up to 1.04% minimum index of the day. Each figure in the second row has two plots,
red plot is baseline, and blue plot is the high-frequency part of the spectrum. We can
observe a pattern similar to that analyzed on days of flash crashes. For example, on
November 17, 2011, crash happened around trading minute 190, and hS (f[Wy ;])

exceeds the baseline at trading minute 150.
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Chapter 4

Resonance in Financial Data

4.1 Resonance

Resonance is a phenomenon that the amplitude of a signal is increased when the signals
are synchronized. The collapse of Takoma bridge is a famous example and it shows
how resonance can have a powerful impact. In Topological Data Analysis(TDA) point
of view, resonance can be detected using persistence homology and its barcode [7].
However, since DFT is a very effective method in computing frequency, we keep using
DFT to find resonance. When f [k] is outstanding compared to its neighborhood, then
it means that the original function f has many compositions of frequency k.
Definition 4.1.1. A function f is T — periodic if f(t +T) = f(t) fort € [0, 27].
Definition 4.1.2. Let f1, fo be T1,T5 — periodic functions, respectively. Then, we say
f1, fa are in resonance, if T1 /T5 € Q.

Since we deal data of finite points, f[k] has period in Q. Thus, any pair of f [k:]e%”k
and f [k ]e%”k/ resonance, mathematically. To observe strong features in data, we de-

fine strong resonance.

Definition 4.1.3. Ler 1 = n/m be a rational number for n,m € Z. Then, r is called

a nice rational number if m,n € {1,2,3,4} .
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Then, for two periodic functions f1, fo of period T1,Ts, respectively, we say f1, fo are

in strong resonance if Ty /Ty are nice rational number.

Results

We observe strong resonance in stocks listed on KOSPI(Korea Composite Stock Price

Index) as shown in the Figure 4.1.
e Period D is whole trading days in June,2016.
e Index is KR7000210005, DAELIM INDUSTRIAL CO.,LTD.

In Figure 4.2a and 4.2b, average spectrum of DFT of f;[W)y ;] for f; € P(D) for fixed
M =64 and j = M,...,391 where period D is a set of trading days during June,
2016. Pattern in 4.2a lasts while j shifts from M to M + 27, and 4.2b lasts for 55
minutes while j shifts from M + 52 to M + 107.

We can observe that these strong resonances are dominated by one day, respec-
tively. The first resonance that has peaked for every 5 frequency seems to be domi-
nated by June 24, 2016 (See 4.1c). On June 23, 2016, a referendum was conducted in
the U.K for Brexit agenda. In the midnight, voting and counting had been broadcast
worldwide. The impact of the vote had hit the World economy, including South Korea.
We may guess the result is reflected in frequency.

On the other hand, the second resonance that has peaked for every 8 frequency
seems to be dominated by June 21, 2016 (See 4.1d)

Also, we can find a strong resonance in some companies. We selected two repre-
sentative examples of ISIN KR7078930005 and KR7007570005 as shown in 4.2. This
phenomenon might happen because a large number of trading systems are synchro-
nized. We might infer the trading pattern of the automated trading algorithm without

additional data.
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Figure 4.1: Resonance in DAELIM INDUSTRIAL CO.,LTD.
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