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Abstract    

 Donor-specific FoxP3+ regulatory T 

cell-mediated immune tolerance in an 

intrahepatic murine allogeneic islet 

transplantation model by short-term 

blockade of CD40-CD154 interaction 

 

              Seok-Joo Lee 

Program in Immunology and Molecular Microbiology 

Department of Dental Science 

The Graduate School 

   Seoul National University                                                                                                                                        

 

Objectives 

Anti-CD154 blockade-based regimens remain unequaled in prolonging graft 

survival in various organ transplantation models. Several studies have focused on 

transplantation tolerance with the anti-CD154 blockade, but none of these studies 

has investigated the mechanisms associated with its use as the sole treatment in 

animal models, delaying our understanding of anti-CD154 blockade-mediated 

immune tolerance. The purpose of this study was to investigate the mechanism 

underlying the anti-CD154 monoclonal antibody (mAb) blockade in inducing 

immune tolerance using an intrahepatic murine allogeneic islet transplantation 

model. 

Methods 



 

 

B6 mice were intraperitoneally administered with streptozotocin to induce diabetes. 

Allogeneic BALB/c islets were infused into the liver of diabetic B6 mice via a cecal 

vein route. Anti-CD154 mAb (MR1) was administered on -1, 0, 1, 3, 5, and 7 days 

post-transplantation at 0.5 mg per mouse. To elucidate if immune tolerance was 

induced, second BALB/c islets were transplanted under the kidney capsule of B6 

mice engrafted formerly with BALB/c islet in the liver. BALB/c skin grafts were 

transplanted to the flank of B6 mice to investigate if immune tolerance to BALB/c 

islets could be extended to other BALB/c organs. IFN-γ ELISpot assay and depletion 

of regulatory T (Treg) cells in intrahepatic islet transplanted DEREG mouse model 

were conducted in order to reveal the mechanism of immune tolerance. Suppressive 

capacity of FoxP3+ Treg cells isolated from tolerant and naïve B6 mice was analyzed 

by conducting mixed lymphocyte reaction assays.  

Results 

I showed that short-term MR1 monotherapy could prolong the allogeneic islet grafts 

to more than 250 days in the murine intrahepatic islet transplantation model. The 

second islet grafts transplanted under the kidney capsule of the recipients were 

protected from rejection. I also found that rejection of same-donor skin grafts 

transplanted to the tolerant mice was modestly delayed. Using a DEREG mouse 

model, FoxP3+ Treg cells were shown to play important roles in transplantation 

tolerance. In mixed lymphocyte reactions, Treg cells from the tolerant mice showed 

more potency in suppressing BALB/c splenocyte stimulated Teff cell proliferation 

than those from naïve mice. 

Conclusion 



 

 

In this study, I demonstrated for the first time that a short-term blockade of CD40-

CD154 interaction could induce FoxP3+ Treg cell-mediated immune tolerance in the 

intrahepatic murine allogeneic islet transplantation model. My model provided the 

foundation to elucidate the molecular mechanism of in vivo CD154 blockade-

mediated FoxP3+ Treg cell induction. I expect that my animal model will contribute 

to the accomplishment of immune tolerance in pre-clinical and clinical studies.  

                                                                    

Keywords: Anti-CD154 mAb (MR1), Immune tolerance, Regulatory T cell, 

Islet transplantation, Liver 

Student number: 2014-22041 
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I. Introduction 

1. Type 1 diabetes and pancreatic islet transplantation 

Diabetes mellitus is a general term for heterogeneous metabolic disruptions 

for which the main symptom is a loss of glucose homeostasis, resulting in chronic 

hyperglycemia1. The cause of diabetes mellitus is either impaired insulin secretion, 

impaired insulin action or both. Type 1 diabetes (T1D) is classified as a chronic 

autoimmune disease which leads to absolute insulin deficiency2,3. Autoreactive T 

cells are the main mediators of β-cell destruction3. Although patients are given 

exogenous insulin for normal glycemic control, this treatment often increases the 

risk of severe hypoglycemia4. As an alternative strategy, allogeneic islet 

transplantation is a promising therapy for patients with T1D5-7. To date, more than 

1,500 patients have undergone β-cell replacement therapy at 40 different 

international centers, and 50-70% of them have shown insulin independence at 5 

years8. However, patients receiving life-long immunosuppressive (IS) drugs to 

minimize donor-specific immune responses are susceptible to several adverse effects, 

such as infections, malignancies, and organ toxicities9,10 as IS drugs themselves are 

toxic and can suppress autoreactive as well as protective T cell responses.  

IS drugs for graft maintenance are mainly based on a combination of six 

mechanistically different agents: calcineurin inhibitor, mycophenolic acid, 

azathioprine, mTOR inhibitor, belatacept, and corticosteroid (CS)11. In particular, CS 

has been used since the early days of organ transplantation and remains a basic 

component of many IS protocols12. This drug blocks T cell-derived and APC-derived 

cytokine and cytokine expression via various mechanisms13-17. However, chronic 

administration of CS has been reported to induce pancreatic β-cell damage with 
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deteriorative effects on insulin production and peripheral action in healthy people18. 

Thus, to avoid the risk of toxicity with transplanted islets, the Edmonton protocol 

with CS-sparing regimens has been developed for better treatment of T1D19. 

Although this protocol can successfully restore endogenous insulin production and 

glycemic control, long-term graft survival of islets is not still satisfactory. Issues of 

IS regimen-related toxicity, immune response, and unsuitable implantations site are 

yet to be overcome.  

2. Immune tolerance 

2.1. Definition and significance 

Immune tolerance is subdivided into two major types: central tolerance and 

peripheral tolerance. In central tolerance, many immature lymphocytes in generative 

lymphoid organs die as they recognize autoantigens with high avidity20. Some of the 

surviving lymphocytes develop into CD4+FoxP3+ regulatory T (Treg) cells20 or 

undergo receptor editing in order to rescue themselves from apoptosis21. In 

peripheral tolerance, some autoreactive lymphocytes are inactivated or deleted as a 

result of encountering antigens in the absence of co-stimulation or innate immunity22. 

They are also inactivated or deleted by the suppression of FoxP3+ Treg cells22. In 

autoimmunity or transplantation, immune tolerance is more specifically defined as a 

lack of immunological reactivity to autoantigens or foreign tissue antigens (second-

party) in an organ graft, achieved without the need for IS drugs while retaining 

immune cells that are still reactive to all other foreign antigens (third-party)23. IS 

drug-mediated immunosuppression is distinguished from immune tolerance as it 

downregulates the whole immune system including the resistance to third-party 

antigens. Immune tolerance induction is therefore attractive as a strategy for enabling 



3 

 

the acceptance of major histocompatibility complex (MHC)-mismatched allo- and 

xenografts without compromising the host’s resistance to infections or risking other 

complications. Several attempts have been made to induce immune tolerance in 

various rodent models of transplantation using co-stimulatory signal blockades, 

induction and expansion of Treg cells, peripheral T cell deletion, and mixed 

hematopoietic chimerism24,25. Also, the role of novel immunomodulatory cell groups, 

such as mesenchymal stromal cells (MSCs) and regulatory macrophages, in response 

to tolerogenic therapies is currently under investigation26,27.  

2.2. Discrepancies between rodent models and human trials 

Transplantation tolerance induction in a rodent model has been reported28,29. 

For example, Lin and his colleagues demonstrated that the survival of secondary 

transplanted BALB/c skin grafts without the use of IS therapies was achieved in the 

B6 recipient, which accepted vascularized osteomyocutaneous BALB/c allografts. 

In contrast, the C3H (third-party) skin was acutely rejected in the same recipient 

upon re-challenge30. Unfortunately, five decades of pre-clinical and clinical research 

outcomes in solid organ transplantation have demonstrated that, unlike in the studies 

conducted using rodent models, immune tolerance induction in non-human primates 

(NHPs) and humans is extremely difficult to achieve31,32 and may only be applicable 

in a limited subset of patients33-35. The only strategy that has so far achieved 

relatively consistent organ transplantation tolerance in human clinical trials is mixed 

chimerism, but that is extremely short-lived36. The current protocols for mixed 

chimerism with bone marrow transplantation are still accompanied by several risks, 

including graft rejection, graft versus host disease, and regimen toxicity. Another 

side effect is T cell depletion, through infection and loss of memory T cells from the 



4 

 

emergence of new T cells36. These issues show that achieving clinically translatable 

immune tolerance is very challenging. This concern is in line with our previous work, 

in which we found that porcine xeno-islets transplanted into the liver of NHPs 

survived only when the recipients were under regular administration of IS therapies, 

implying a failure of immune tolerance induction in our pre-clinical studies37. 

Although there are several possible explanations for these inconsistent outcomes 

between rodents and NHPs, a lack of definite therapies demonstrating the clear 

success of immune tolerance in the rodent model has delayed our understanding of 

in vivo tolerance, hampering the progress of research to the next level. 

3. Anti-CD154 blockade  

3.1. CD154-CD40 interaction and CD154 antagonism 

CD154 (CD40L) is a type II transmembrane protein belonging to the tumor 

necrosis factor subfamily38. CD154 is a co-stimulatory molecule mainly expressed 

on the surface of activated T cells; its expression is tightly regulated to maintain the 

activation of T cells38. CD40 is constitutively expressed on the surface of antigen-

presenting cells (APCs), including dendritic cells (DCs), macrophages, and B 

cells38,39. On CD154-CD40 co-stimulation, APCs upregulate the expression of 

MHCs and co-stimulatory molecules including CD80 and CD8638, priming the 

cellular immune system. In humoral immunity, CD154-CD40 co-stimulation is also 

important for the function of B cells by way of promoting isotype switching and 

antibody affinity maturation38.  

Blockade of the CD154-CD40 interaction is believed to be the most powerful 

strategy to achieve long-term graft survival in experimental transplantation models40. 
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Most of the studies achieving long-term graft survival, including one of our reports37, 

adopted anti-CD154 blockade based regimens to suppress donor-specific immune 

responses against allografts41-43 and xenografts44-48. The anti-CD154 blockade has 

been reported to have several immune-regulatory mechanisms, including depleting 

CD154-expressing activated T cells49, promoting the conversion of conventional 

CD4+ T cells into peripheral FoxP3+ Treg cells50, suppressing allo-specific CD4+ T 

cells by natural FoxP3+ Treg cells51, preventing the maturation of alloantigen-

presenting DCs52, promoting the generation of tolerance-inducing plasmacytoid 

DCs52, and preventing antibody-mediated rejection53,54. 

Despite the promising effect of CD154 blockade in organ transplantation, 

clinical interest in this strategy is strongly limited by thrombotic complications55,56. 

The undesirable thrombotic effects of anti-CD154 blockade are due to binding to 

CD154 expressed either on activated platelets or in released soluble form57. This 

preformed anti-CD154 mAb immune complex has been demonstrated to cause 

thrombocytopenia, leading to thrombosis in a rodent model58. However, the use of 

clinically applicable heparin has been shown to diminish the thrombotic events 

during anti-CD154 mAb treatment in pre-clinical trials59. The Fc domain of anti-

CD154 mAbs binding to platelet Fc receptors has been reported as contributing to 

platelet activation and aggregation58,60; this suggests that anti-CD154 Ab without the 

Fc domain may avoid the platelet aggregation and subsequent thromboembolism that 

are triggered by anti-CD154 mAbs. For example, use of a clinical translatable Fc-

silent anti-CD154 domain antibody has provided promising results in mouse 

transplant models61, indicating its potential clinical usage in human trials. Also, a 

non-crosslinking monovalent antibody specific to CD154, including a monovalent 

PEGylated anti-CD154 Fab antibody fragment (CDP7657)62, could be a promising 
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strategy to circumvent adverse thromboembolic events.  

3.2. Islet transplantation in experimental animal models 

The superiority of adopting the anti-CD154 blockade in combination therapy 

regimens has been demonstrated in islet transplantation since the long-term survival 

of allo- and xenografts has been achieved in various rodent models63-67. In murine 

islet allotransplantation models, various therapy regimens combined with anti-

CD154 blockade enabled long-term graft survival of allogeneic islets in recipients68-

70. Among these studies, one has shown that the administration of anti-CD154 mAb 

with anti-ICOS mAb achieved transplantation tolerance in a murine islet allo-

transplantation model where re-transplantation of donor islets was accepted by the 

same recipients, without the need to administer IS drugs70. Similar results have been 

reported in porcine islet xenotransplantation models71-73 that the combined blockade 

of CD154 and LFA-1 achieved long-term graft survival with a possible explanation 

of a molecular mechanism via PD-1. Transplantation tolerance has also been 

reported in their models; mice treated with anti-CD154 mAb and anti-LFA-1 mAb 

showed long-term survival of xeno-islets with selective immunomodulatory 

activities over donor islets, but not over third-party antigens73.  

These studies have emphasized the role of FoxP3+ Treg cells in achieving 

long-term graft survival and transplantation tolerance in islet transplantation models. 

However, the combined regimens used make it difficult to establish whether the anti-

CD154 blockade truly induces immune tolerance. There have been reports on the 

effect of anti-CD154 monotherapy in islet transplantation in rodent and NHP 

models74-76; however, none of these studies investigated the mechanisms associated 

with Treg cells, which are known to play a critical role in tolerance induction. This 
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omission makes it difficult to determine the efficacy of anti-CD154 mAb therapy for 

tolerance induction.  

3.3. FoxP3+ Treg cells 

Sakaguchi, Rudensky, Ramsdell, and their colleagues first identified the 

Forkhead box P3 (FoxP3), a master regulator of Treg development77-80. Sakaguchi 

and his team found that neonatal thymectomy in mice resulted in an autoimmune 

oophoritis81, confirming the evident necessity of T cells to prevent organ-specific 

autoimmune disease82,83. They further identified distinct subsets of suppressive T 

cells expressing CD4 and CD25 on their surface. They demonstrated that transferring 

CD4+CD25- cells into athymic nude mice provoked autoimmune disease. However, 

co-transferring these cells with CD4+CD25+ Treg cells was shown to prevent 

autoimmune disease onset84. Although the regulatory role of Treg cells in lymphoid 

tissues has been well characterized, the function of activated Treg cells in non-

lymphoid regions remains unknown. In various transplantation models, Treg cells 

have been found to play a critical role in tolerant grafts because of their suppressive 

activity85. However, the relative importance of Treg cells in grafts versus those in the 

lymphoid tissues has not been clarified. It is not yet known whether they are of the 

same origin or are a different type of cells. 

Anti-CD154 blockade based regimens have been reported to induce the 

expansion of antigen-specific Treg cells in several transplant models86-89. In addition, 

immune tolerance induced by CD154 blockade is transferable, as it can be delivered 

to naïve recipients by the adoptive transfer of CD4+FoxP3+ Treg cells of tolerant 

recipients, demonstrating the potency of CD154 antagonism in inducing infectious 

tolerance90,91. More recent data from another group showed that anti-CD154 
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blockade based regimens could also increase the ratio of intragraft Treg cells to 

effector CD4+ and CD8+ T cells in allogeneic corneal and orthotopic lung 

transplantation models92,93, implicating the efficacy of CD154 blockade in shifting 

the balance from an alloreactive response to a regulatory one.  

CD154 antagonism has been proven capable of inducing peripheral FoxP3+ 

Treg cells in a rodent model where adoptively transferred OT-I & OT-II T cells 

protected transplanted skin grafts expressing ovalbumins89. However, practical 

difficulties in attempting to generate genetically engineered NHPs is making it 

challenging to determine whether the regulatory cell groups observed in pre-clinical 

studies following CD154 antagonism are induced by the peripheral induction of de 

novo inducible Treg (iTreg) cells or the expansion of pre-existing natural Treg (nTreg) 

cells or both. Anti-CD154 blockade can contribute to Treg-mediated immune 

regulation in different forms or by any means with the aid of other IS drugs in several 

rodent and NHP models. However, it remains unknown whether anti-CD154 

blockade alone is truly capable of inducing Treg cell-mediated immune tolerance in 

a transplantation rodent model. Therefore, it is suggested that the MHC-mismatched 

transplantation mouse model should be treated only with anti-CD154 blockade in 

order to elucidate whether anti-CD154 mAb does in fact induce immune tolerance 

by generating graft-protective Treg cells. This information would add a further layer 

of knowledge to enable fine-tuning of CD154 blockade-mediated transplantation 

tolerance at both pre-clinical and clinical levels.  

4. Transplantation sites for human and murine islets 

The kidney subcapsule has been adopted as a site for islet transplantation in 

an experimental rodent model due to the advantage of graft retrieval for histological 



9 

 

and functional analysis of the islet grafts94. However, since the success of the 

Edmonton protocol19, hepatic infusion via the portal vein is currently accepted as a 

clinical site for islet transplantation8 despite the potential risks, including thrombosis, 

hepatic ischemia, and an instant blood-mediated inflammatory reaction (IBMIR)95,96. 

 Although bone marrow cavities and brachioradialis muscles have been 

suggested as alternative sites for clinical islet transplantation97,98, recent 

improvements in islet purification and IS therapies with their minimal invasive 

approach in surgery make intrahepatic islet transplantation a feasible option for most 

patients6,7. The liver also offers anatomical advantages as a result of its first-pass 

exposure to both nutrients and insulin, sensing the blood glucose level to regulate it 

immediately without the delay of insulin secretion99.  

Hence, in order to minimize the interspecies variation, a rodent model of 

intrahepatic islet transplantation, which mimics the clinical islet transplantation, 

seemed more appropriate to expand current understanding of immune tolerance 

across species. In addition, we previously established a novel technique of 

transplanting islets via the cecal vein, which can lead to more effective control of 

bleeding-related death, compared to portal vein infusion100. Using newly developed 

techniques, I chose to transplant MHC-mismatched islet allografts into the liver of 

rodents, aiming to investigate the mechanism behind anti-CD154 mAb on its own in 

inducing immune tolerance.  

5. Aim of this study 

The aims of the study were as follows: 

1. To investigate whether anti-CD154 blockade alone can achieve long-term graft 
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survival in an intrahepatic murine allogeneic islet transplantation model 

2. To evaluate whether immune tolerance is achieved in intrahepatic islet 

transplanted diabetic mice 

3. To elucidate the mechanism of immune tolerance 

6. Summary 

In this study, I demonstrated that, following CD154 blockade, augmented graft-

protective FoxP3+ Treg cells play a critical role in the induction of transplantation 

tolerance, preventing allograft rejection in the intrahepatic murine islet 

transplantation model. 
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II. Material and Methods 

1. Animals 

All experimental procedures were approved by the Seoul National University 

(SNU) Institutional Animal Care and Use Committee and were conducted according 

to international guidelines concerning the care and treatment of experimental 

animals and the SNU animal experiment ethical guidelines and regulations. All 

animals were aged 8 weeks. Female C57BL/6 (B6, H-2b), BALB/c AnHsd (BALB/c, 

H-2d), and C3H/HeJ (C3H, H-2K) inbred mice were purchased from the Jackson 

Laboratory (Bar Harbor, ME, USA). Female knock-in B6 (DEREG) mice expressing 

Forkhead box P3 (FoxP3) together with diphtheria receptor (DTR) and enhanced 

Green Fluorescent Protein (eGFP) were also purchased from the Jackson Laboratory. 

FoxP3 tagged with eGFP reporter mice were kindly provided by Alexander Y. 

Rudensky (Memorial Sloan Kettering Cancer Center, New York, NY, USA).  

2. Monoclonal antibodies and diphtheria toxin treatment 

protocols 

Anti-CD154 mAb (MR1; Bio X Cell, West Lebanon, NH, USA) diluted in 

phosphate-buffered saline (PBS) solution were intraperitoneally administered at 0.5 

mg per mouse on days -1, 0, 1, 3, 5, and 7 post-transplantation. Diphtheria toxin (DT) 

diluted in PBS solution was intraperitoneally injected on days 28, 29, 31, and 32 

post-transplantation at 1.5 μg per mouse. The concentration of DT was carefully 

titrated for every experiment to obtain the optimized in vivo activity with as little 

toxicity as possible101. A working concentration of DT (1 μg DT/ 100 μl PBS) for 

depleting FoxP3+ Treg cells has been recommended in DEREG mouse models101. 
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Administration of 1.5 μg of DT intraperitoneally for 4 days was chosen in this study; 

at this concentration, Treg cells were completely ablated and no pathological signs 

(including gradual weight loss, hypothermia, or slow or labored breathing) were 

observed in the mice.   

3. Diabetic induction 

For diabetic induction, mice were fasted for 5 hours before streptozotocin (STZ; 

Sigma-Aldrich, St. Louis, MO, USA) administration; 120 mg/kg of STZ in citrate 

buffer solution (Sigma-Aldrich) was intraperitoneally injected twice (one time a day). 

Mice injected with STZ had free access to standard laboratory food and water. Only 

the mice with more than 16.8mmol/L (=302.67mg/dL) blood glucose level (BGL) 

for three consecutive days were considered to have diabetic status102,103. The mouse 

tail was snipped to obtain blood, and the BGL was measured with a OneTouch Ultra 

device kit (Lifescan, Inc., Chesterbrook, PA, USA). After diabetic induction, mice 

were caged for the next 5-6 days to excrete the remaining STZ from the body before 

islet transplantation.  

4. Islet isolation  

Collagenase P (Roche, Basel, Switzerland) was dissolved in Hanks’ balanced 

salt solution (HBSS; Mediatech, Herndon, VA, USA) at a concentration of 0.3mg/ml. 

The solution was infused through the bile duct where the right and left hepatic ducts 

converge. The inflated pancreas was then precisely excised from adjacent organs and 

transferred into a sterile glass vial for subsequent incubation at 36°C for 20 minutes. 

Digested islets were sieved and purified using discontinuous ficoll density gradients 

(GE Healthcare Life Sciences, Chicago, IL, USA). Isolated islets located between 
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1.069 and 1.096 density gradients were handpicked and transferred into warmed 

complete RPMI1640 media (Hyclone Laboratories, Inc., Logan, UT, USA) 

supplemented with 10% fetal bovine serum (FBS) (Sigma-Aldrich) and 1% 

antibiotic-antimycotic (Gibco, Carlsbad, CA, USA). The complete media was 

additionally supplemented with 1% L-glutamine (Gibco), 0.1% 2-mercaptoethanol 

(Gibco), 1% HEPES (Gibco), and 1% MEM NEAA (Gibco). Purified islets were 

cultured overnight to enhance viability before transplantation. Pancreatic islet 

transplantation into the liver and kidney is described below: 

 



14 

 

 

Figure 1. Procedure for islet isolation 

1. Schematic diagram for intraductal injection. 2. Intraductal injection and inflating 

pancreas. 3. Digested pancreas 4. Sieving. 5. Washing. 6. Ficoll gradient for islet 

isolation. Isolated islets located between 1.069 and 1.096 density gradients are 

denoted by the white arrow. 7. In vitro islet culture. 

5. Intrahepatic islet transplantation 

All surgical procedures were carried out with isoflurane anesthesia. The lower 

midline abdomen of the anesthetized mouse was incised, and the cecum was exposed 

on the aseptic drape. Under an operating microscope (SZ2-STU3; Olympus, Tokyo, 

Japan), using round forceps, the cecal vein was gently stretched and subsequently 

penetrated by a 26-G needle (Korea Vaccine, Gyeonggi-do, Korea). Using a 

Hamilton syringe (Hamilton, Reno, NV, USA), 700 islet equivalents (IEQs) 

uniformly dispersed in a polyethylene (PE) tube (Becton Dickinson, Franklin Lakes, 

NJ, USA) were precisely infused into the cecal vein. For bleeding control, absorbable 
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hemostats (Johnson & Johnson, New Brunswick, NJ, USA) and aseptic gauze 

(DaeHan FM, Gyeonggi-do, Korea) were immediately placed on the punctured vein 

before retrieving the needle from the vein. The punctured area was covered with 

absorbable hemostats and aseptic gauze and softly compressed by round forceps for 

at least 3 min as the needle was agilely and reliably removed from the vein. The 

opened peritoneum and skin were then sutured with a surgical thread (Ethicon Inc., 

Bridgewater, NJ, USA), and antibiotics and painkiller cocktail drugs (cefazolin 

90mg/kg, Metacam 1mg/kg, Maritrol 30mg/kg) were administered via a 

subcutaneous route. 

 

Re-organized diagram adopted from: N. Byun et al. / Journal of Immunological 

Methods 427 (2015) 122–125 

Figure 2. Procedure for intrahepatic islet transplantation via a cecal vein 

1. 1 cm long silicon tube. 2. 40 cm long polyethylene tube. 3. 26-gauge needle shaft 

with its needle hub separated from the needle adaptor. 4. Needle shaft assembled 

with PE tube and silicon tube. 5. Inserted needle via a cecal vein; penetrated cecal 
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vein is denoted by the white arrow. 6. Punctured area covered with absorbable 

hemostats and aseptic gauze. The site of needle insertion is denoted by the white 

arrow. 7-8. Schematic illustration of needle insertion. 

6. Renal subcapsular islet transplantation 

All surgical procedures were carried out with isoflurane anesthesia. The left 

flank of the anesthetized mouse was incised and the kidney was gently pulled out of 

the abdominal cavity. To advance the islets into the subcapsular renal space (SRS), 

the capsule was carefully scratched (typically less than 1 mm in length) using a 30-

G needle (Korea Vaccine) and the PE tube loaded with aggregated 400 or 500 IEQs 

was inserted into the SRS. Using a Hamilton syringe, islets were agilely advanced 

into the SRS. After retrieving the PE tube from the SRS, the punctured capsule was 

sealed using a cautery kit (Bovie Medical Corporation, Clearwater, FL, USA). The 

islet-bearing kidney was relocated into the abdominal cavity, and the opened 

peritoneum and skin were sutured with a surgical thread.  
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Figure 3. Procedure for renal subcapsular islet transplantation 

1. Kidney exposed on the incised skin. 2. Scratched renal capsule before PE tube 

entry. 3. Entry of PE tube under the capsule. 4. Islet advancement by Hamilton 

syringe. 5-7. Advancing islets from PE tube to SRS. 8. Retrieval of PE tube. 9. 

Sealing the entry site using a cautery kit. 10. Kidney relocation and closure of 

peritoneum and skin. 

7. Skin transplantation  
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All surgical procedures were carried out with isoflurane anesthesia. Allogeneic 

BALB/c and syngeneic B6 skin grafts were adopted as donors and the tail skins were 

removed using a surgical blade (Feather, Osaka, Japan). Truncated BALB/c and B6 

skin grafts were attached on the bottom of a sterile petri dish. After anesthetizing the 

B6 recipient, skin of 1.5 x 1.5 cm size on the left flank was carefully removed without 

damaging the peritoneum. Adequate size BALB/c and B6 skin grafts were cut and 

placed onto the exposed peritoneum. Skin grafts on the peritoneum were secured 

with non-adhering dressings (Johnson & Johnson) and sheer bandages (Johnson & 

Johnson) for 7 days. On day 7 post-transplantation, the bandages were carefully 

removed and the skin grafts were observed daily. 

 

Figure 4. Procedure for skin transplantation 

1. BALB/c skin graft placed on the left flank of a B6 mouse. 2. Non-adhering 

dressings covering the graft. 3. Sheer bandage wrapped around the body. 4. Removal 
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of bandage after 7 days.  

8. Nephrectomy (kidney removal) 

All surgical procedures were carried out with isoflurane anesthesia. The left 

flank of the anesthetized mouse was incised, and the kidney was gently pulled out of 

the abdominal cavity. After separating the kidney from adjacent organs and fat 

tissues, the renal artery and vein were tightly clamped using hemostatic clamp 

forceps. The renal artery and vein were ligated with an aseptic silk thread under the 

jaw of clamping forceps. Using a surgical blade (Feather), the kidney on the jaw of 

clamping forceps was delicately removed. The extracted kidney was then transferred 

into the 4% paraformaldehyde (4% PFA; Santa Cruz Biotechnology, Dallas, TX, 

USA), and the opened peritoneum and skin were securely closed with a surgical 

thread. 

 

Figure 5. Procedure for nephrectomy 
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1. Incised skin and peritoneum before kidney exposure. 2. Islet-bearing kidney 

exposed on the skin. 3. Clamped renal artery and vein using hemostatic clamp 

forceps. 4. Extracted islet-bearing kidney.  

9. Immunohistochemistry 

Immunohistochemistry (IHC) staining was carried out as described previously37. 

Excised liver, kidney, and pancreas were fixed in 4% PFA for overnight. Using a 

microtome, paraffin embedded tissues were sectioned at 4 μm-thickness, and were 

attached onto the glass slides. For deparaffination, the slides were incubated in 

xylene (Thermo Fisher Scientific, Waltham, MA) for overnight, and subsequently 

rehydrated in a graded alcohol series. The target antigens were retrieved by 

microwaving the slides in Tris-EDTA buffer (Zytomed Systems GmbH, Berlin, 

Germany) for 20 minutes. After washing in TBST buffer 3 times, blocking solution 

(Thermo Fisher Scientific) was added for 10 minutes in a wet chamber. Paraffin-

embedded tissue sections were triple stained. For primary antibody staining, anti-

insulin guinea pig IgG (Genetex, Irvine, CA, USA), anti-CD3 rabbit IgG (Dako 

Laboratories, Santa Clara, CA, USA), and anti-FoxP3 rat IgG (eBioscience, San 

Diego, CA, USA) antibodies were used. For secondary antibody staining, goat anti-

guinea pig IgG-AP (Abcam, Cambridge, UK), goat anti-rabbit IgG-HRP (Abcam), 

and goat anti-rat IgG-AP (Abcam) were used. The precipitates, Fast Red (Zytomed 

System GmbH, Berlin, Germany), DAB (GBI Labs, Bothell, WA, USA), and LV 

Blue (Vector Laboratories, Burlingame, CA, USA) were applied for color 

development. The sections were visualized with imaging microscopy (Axio Imager 

A1; Carl Zeiss, Heidenheim, Germany). 

10. Mixed lymphocyte reaction 



21 

 

For stimulators, a BALB/c mouse was sacrificed to obtain the spleen, and 

isolated splenocytes were irradiated with 25 Gy of γ-ray. For responders, a naïve 

FoxP3-eGFP transgenic B6 mouse was sacrificed to obtain the splenocytes, which 

were further purified into Thy1.2+ T cells using a Thy1.2 magnetic bead separation 

(Magnetic-Activated Cell Sorting; Miltenyi, Bergisch Gladbach, Germany). Using a 

FACS Aria sorter III (BD Bioscience, Franklin Lakes, NJ, USA), Thy1.2+ T cells 

were divided into the GFP+ Treg cells and GFP- Teff cells. 5x105 GFP- Teff cells were 

labeled with 1μM of CFSE (Thermo Fisher Scientific) and co-cultured with 

irradiated 5x105 BALB/c splenocytes in 96-well round-bottom plate for 5 days. In 

this co-culture, GFP+ Treg cells isolated from tolerant and naïve FoxP3-eGFP 

transgenic mice were added at a ratio of 2:1 (2.5x105), 8:1 (6.25x104), and 32:1 

(1.56x104), respectively. GFP- Teff cells stimulated with anti-CD3 (eBioscience) & 

CD28 Abs (eBioscience) were used as a positive control. After 5 days of incubation, 

the cells were harvested and stained with PerCP-Cy5.5-anti-mouse H2-Kb Ab 

(Biolegend, San Diego, CA, USA), fixable viability dye eFluor660 (Invitrogen, 

Carlsbad, CA, USA), and PE-anti-mouse FoxP3 (eBioscience) to analyze only the 

proliferation of viable B6 Teff cells. The analysis was conducted using a FACS Canto 

II flow cytometer (BD Biosciences). 

11. IFN-γ ELISpot assay 

Splenocytes of tolerant recipients were stained with APC-Cy7-anti-mouse CD8 

Ab (eBioscience), and CD8+ T cells were subsequently isolated using a FACS Aria 

sorter III (BD Bioscience). Microtitre plates (EMD Millipore Corporation, Billerica, 

MA, USA) were coated overnight at 4°C with anti-mouse IFN-γ mAb (15 μg/ml; 

eBioscience) and then blocked for 2 hours with 10% FBS-supplemented RPMI1640 
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media (Hyclone Laboratories, Inc.) at 37°C in a 5% CO2 incubator. After removing 

the media, 7x104 CD8+ T cells were seeded with 5x105 of 20 Gy irradiated BALB/c 

splenocytes in 10% FBS-supplemented RPMI1640 media for 24 hours at 37°C in a 

5% CO2 incubator. After incubation, cells were washed off, and the plates were then 

washed three times with PBST (0.1% TWEEN20). After washing the plates a further 

three times with sterile PBS, biotinylated anti-mouse IFN-γ detection antibodies 

diluted (3 μg/ml, eBioscience) in PBS (1% bovine serum albumin (BSA)) were 

added and incubated overnight at 4°C. After washing, 1 µg of streptavidin-alkaline 

phosphatase (eBioscience) diluted at a ratio of 1:100 in ELISA diluent buffer 

(eBioscience) was added in 100 µl for 2 hours at room temperature. Then, color was 

developed by adding 100 µl of AEC substrates (BD Bioscience) and stopped by 

washing off using tap water. The spots were analyzed using an ELISpot reader 

system (AID, Strassberg, Germany). 

12. FoxP3 analysis 

For histologic FoxP3 analysis, FoxP3+ cells and CD3+ cells were counted in 

three independent assays using a cell counter-ImageJ (NIH, Bethesda, MD, USA). 

The FoxP3+/CD3+ ratio was calculated. For intracellular FoxP3+ analysis, peripheral 

blood was obtained from the retro-orbital plexus of mice. Red blood cells were lysed 

by Red Blood Cell Lysing Buffer Hybri-MaxTM (Sigma-Aldrich). To block non-

specific binding, the samples were incubated with 2.4G2, which was purified from 

hybridoma supernatant with protein G columns, for 10 minutes at room temperature. 

After FACS buffer washing, the cells were stained with PerCP-Cy5.5-anti-mouse 

CD4 Ab (eBioscience) and PE-anti-mouse CD25 Ab (BD Bioscience) for 1 hour at 

4°C. After fixation and permeabilization, the cells were stained with APC-anti-
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mouse FoxP3 (eBioscience) or IgG2a isotype control (clone:eBR2a; eBioscience) 

for 1 hour at 4°C. The analysis was conducted using a FACS Canto II flow cytometer 

(BD Biosciences).  

13. Statistical analysis 

All statistical analyses were performed using GraphPad Prism 5 (GraphPad 

Software, La Jolla, CA, USA). Statistical significance was determined by paired or 

unpaired two-tailed Student’s t-test. All p-values were defined as: * level of 

significance, p<0.05.  
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III. Results 

1. Anti-CD154 blockade single treatment in intrahepatic islet 

transplantation model 

1.1. Short-term anti-CD154 mAb treatment alone significantly 

prolonged the survival of BALB/c islets transplanted into the 

liver of diabetic B6 mice 

To determine the effect of the CD154 blockade alone, I administered MR1 for 

a short time to diabetic B6 mice transplanted with BALB/c islets via a cecal vein 

route (Fig 1A). STZ-treated mice were caged for the next 5-6 days prior to islet 

transplantation to excrete the remaining STZ from the body and 700 IEQs were 

transplanted to the recipients on day 0 (Fig 1A). It was of note that all mice injected 

with MR1 maintained normoglycemia for more than 100 days (less than 250 mg/dL), 

whereas the untreated mice rejected the islet allografts within 20 days (Fig 1B-C). 

MR1 treatment alone showed statistically significant (p=0.0002) prolongation of the 

allogeneic islet survival compared to the non-treated group (Figure 1C). All mice 

treated with MR1 were normoglycemic until they were euthanized. Altogether, these 

results indicate that MR1 treatment alone results in indefinite islet allograft survival 

in the liver. 
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Figure 1. Effect of short-term MR1 single treatment on intrahepatic islet 

survival in vivo. A. Schematic illustration of the experimental setup. Diabetic 

C57BL/6 mice were transplanted with BALB/c allogenic islets (700 IEQ) through 

the cecal vein route. Anti-CD154 mAb (MR1) were intraperitoneally administered 

on days -1, 0, 1, 3, 5, and 7 (n=8). Non-treated mice were used as controls (n=4). B. 

BGL was measured with a OneTouch Ultra device from day 0. The blood was 

obtained from snipped tail. C. The survival graph was plotted from B. Statistical 

significance was determined by the Mantel-Cox (log-rank) test. Asterisk (*) 

indicates statistical significance (p<0.05). All normoglycemic mice were sacrificed 

at DPT 257 (#1-4) or DPT 105 (#5-8) for histologic analysis. 
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1.2. Engraftment of allogeneic islets by short-term anti-CD154 

mAb treatment  

The immunostaining of the liver showed that islets located near the liver 

sinusoids were positive for insulin and remained intact for more than 250 days in 

MR1-treated mice only and not in untreated mice (Fig 2A-B). FoxP3+ Treg cells 

were not found in the grafts where only a few CD3+ T cells were infiltrated (Fig 2A). 

However, the number of FoxP3+ Treg cells were relatively increased near the grafts 

where infiltrating CD3+ T cells were abundantly detected (Fig 2A). Untreated mice 

showed CD3+ lymphoid aggregates in the liver sinusoids but failed to stain for β-

cells in whole liver (Fig 2B). Also, the MR1-treated mice still showed a complete 

lack of β-cells in the pancreas, whereas these cells were present in wild type mice 

(Fig 2C). These findings proved that the recovered normoglycemia was solely 

controlled by the engrafted allo-islets in the liver, and not by pancreatic regeneration. 

Overall, these results indicate that MR1 treatment alone results in successful 

engraftment of islet allograft in the liver. 
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Figure 2. Successful engraftment of islet grafts in liver. Immunohistochemistry 

(IHC) stain of paraffin-embedded islet transplanted liver and pancreatic tissues. 

Section slides were triple-stained with anti-CD3 (brown), anti-insulin (red), and anti-

FoxP3 (blue) or mono-stained with anti-insulin (red). A. I-II (DPT 105), III-VI (DPT 

257): liver section of islet transplanted mouse. Original magnification 100μm, and 

50μm. B. VII-VIII: liver section of graft rejected mouse. Original magnification 

100μm, and 50μm. C. IX: pancreatic section of islet transplanted mouse. X: 

pancreatic section of non-STZ-treated mouse. Original magnification 200μm. 

Stained islets in pancreatic section were denoted by green arrows. 
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2. Survival of allogeneic islets by immune tolerance 

2.1. Secondly transplanted BALB/c islets under the kidney 

capsule of the B6 mice engrafted formerly with BALB/c islet 

in the liver were permanently accepted 

I investigated whether MR1 alone could induce immune tolerance in my model. 

Thus, without administering additional IS therapy, I transplanted second allo-islets 

under the kidney capsule of B6 recipients that had formerly been transplanted with 

BALB/c islets into the liver. Among those mice which were maintaining 

normoglycemia for more than 100 days, one group was transplanted with second-

party (donor-specific) BALB/c islets, and the other group was transplanted with both 

BALB/c and C3H islets (third-party) beneath the left kidney capsule (Fig 3A). On 

day 14 or 34 post-transplantation, islet-bearing kidneys were removed by 

nephrectomy. Surprisingly, I found that second-party (donor-specific) BALB/c islets 

survived for periods up to kidney removal in all mice, whereas third-party C3H islets 

were completely rejected at 14 days post-transplantation (DPT) (Fig 3B). 

Immunostaining analysis of the surviving graft-bearing kidneys revealed that donor 

islets transplanted under the kidney capsule remained almost intact in all mice, while 

heavy infiltration of CD3+FoxP3+ Treg cells was mostly observed in the peri-graft 

sites (Fig 3C). Subsequent immunostaining showed that allo-islets remained intact 

in the liver even after the removal of islet-bearing kidney (Fig 3D). Considering the 

fact that CD3+FoxP3+ Treg cells were consistently found around the surviving allo-

islets, these immune-regulatory cells might contribute to immune tolerance in my 

model. Overall, these results may indicate that long-term graft survival is due to the 
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immune tolerance induced by MR1 in the intrahepatic islet allo-transplantation 

model. 
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Figure 3. Second transplantation of BALB/c and C3H islets under the kidney 

capsule to confirm tolerance. A. Schematic illustration of the experimental setup. 

After recovery to normoglycemia, second allo-islets were transplanted under the left 

kidney capsule of the recipients without administration of immunosuppressive drugs. 

BALB/c islets (blue line circle) with or without C3H islets (red dot circle) were re-

transplanted under the left kidney capsule without any immunosuppressive drugs. 

400 IEQ (#1, #2) or 500 IEQ (#3, #4) were handpicked and implanted. After 34 or 

14 days, nephrectomy was performed to remove islet-bearing kidneys. B. #1-2 mice 

were transplanted with single BALB/c islets (blue line circle), and #3-4 mice were 

transplanted with BALB/c islets (blue line circle) and C3H islets (red dot circle) at 

different sites of the same kidney. After 34 or 14 days later, the islet-bearing kidneys 

were removed (nephrectomy) and fixed with 4% PFA for subsequent 

immunostaining. C. IHC stain of the surviving islets under the kidney capsule. 

Section slides were triple-stained with anti-CD3 (brown), anti-insulin (red), and anti-

FoxP3 (blue). Original magnification 200μm, 100μm, and 50μm. D. IHC stain of the 

islets in remaining liver. Section slides were triple-stained with anti-CD3 (brown), 

anti-insulin (red), and anti-FoxP3 (blue). Original magnification 100μm, and 50μm. 
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2.2. Modest delay in BALB/c skin graft rejection in tolerant B6 

mice 

Next, in order to investigate whether transplantation tolerance to islet allografts 

could be extended to allogeneic skin grafts in my model, I prepared three groups: 

tolerant B6 mice with engrafted intrahepatic BALB/c islets by MR1 monotherapy, 

naïve B6 mice, and pre-sensitized B6 mice previously injected intraperitoneally with 

irradiated BALB/c splenocytes (Fig 4A). BALB/c splenocytes were irradiated with 

25 Gy of γ-ray and pre-sensitized B6 mice were caged for next 20 days to fully 

develop BALB/c antigen specific immune system (Fig 4A). All groups were then 

transplanted with syngeneic (B6) and allogeneic (BALB/c) skin grafts on the left 

flank of the body, and the skin grafts were inspected daily until they were fully 

engrafted (Fig 4B-C). I found that both tolerant and naïve B6 mice accepted 

syngeneic skin grafts at DPT 10 (Fig 4C). It is of note that, unlike naïve B6 mice, 

which rejected BALB/c skin allografts at DPT 14, tolerant B6 mice showed a modest 

prolongation of skin allograft survival for up to DPT 16-17 (Fig 4B-C). Meanwhile, 

pre-sensitized B6 mice rejected the BALB/c skin graft at DPT 9-10 (Fig 4B-C). 

Altogether, tolerant B6 mice showed a regulated immune response against skin 

allografts.  
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Figure 4. Second transplantation of skin grafts to confirm tolerance. 

A. Schematic illustration of the experimental setup. Tail skin grafts were obtained 

from naïve B6 and BALB/c mice and transplanted into the left flank of (I) tolerant, 

(II) naïve, and (III) pre-sensitized B6 mice. Pre-sensitized B6 mice were prepared by 

intraperitoneally injecting irradiated BALB/c splenocytes (7x105 cells/mouse).  B. 

Survival graph of BALB/c skin grafts was plotted from C. C. On day 7 post-

transplantation, the bandages were carefully removed and skin grafts were observed 

daily. Representative photographs of skin grafts at days 7, 9, 10, 12, 14, 17, 18, 19, 

21 and 23 after transplantation are shown. 
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2.3. Engrafted intrahepatic BALB/c islets was not affected by 

the rejection of same donor skin grafts 

Interestingly, tolerant B6 mice still maintained normoglycemia (Fig 5A) 

throughout the observation period even after the rejection of BALB/c skin, 

implicating that the immune response of skin allograft rejection does not induce the 

rejection of engrafted intrahepatic allo-islets. All tolerant mice were normoglycemic 

until they were euthanized (Fig 5A). Subsequent immunostaining of the liver showed 

undamaged allo-islets, with infiltration of CD3+FoxP3+ T cells in the peri-graft sites 

(Fig 5B). Overall, BALB/c skin graft rejection did not affect the survival of 

intrahepatic BALB/c islets in tolerant B6 mice.  
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Figure 5. Protection of intrahepatic allogeneic islets after same donor skin graft 

rejection. 

A. BGL was measured with a OneTouch Ultra device from day 0. The blood was 

obtained from snipped tail. B. IHC stain of liver tissues of tolerant B6 mice. Section 

slides were triple stained with anti-CD3 (brown), anti-insulin (red), and anti-FoxP3 

(blue). Original magnification 100μm, and 50μm.  
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3. Mechanism of immune tolerance 

3.1. Alloreactive CD8+ T cells were neither anergized nor 

deleted in tolerant B6 mice  

In order to examine the underlying mechanisms of immune tolerance exerted 

by MR1, I first performed an IFN-γ ELISpot assay using CD8+ T cells isolated from 

tolerant B6 mice. Only CD8+ T cells were isolated from the recipients, which were 

maintaining the normoglycemia for more than 100 days. CD8+ T cells stimulated 

with irradiated BALB/c splenocytes secreted comparable amounts of IFN-γ 

compared to the control (Fig 6A), as they showed no significant difference in the 

number and activity of IFN-γ secreting CD8+ T cells between tolerant and control 

mice (Fig 6B), indicating that alloantigen recognizing CD8+ T cells were neither 

anergized nor deleted.  
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Figure 6. Alloreactive CD8+ T cells were neither anergized nor deleted.  

A. Analysis of IFN-γ secreting CD8+ T cells in tolerant mice using an ELISpot assay. 

CD8+ T cells stimulated with PMA (50ng/ml) and Ionomycin (1μg/ml) were used as 

a positive control. The number and activity of IFN-γ secreting CD8+ T cells among 

whole cells in the ELISpot wells were automatically analyzed using an ELISpot 

Reader system. B. The number of IFN-γ secreting CD8+ T cells was calculated from 

A. Statistical significance was determined by unpaired Student’s t test. 
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3.2. CD4+FoxP3+ Treg cells in tolerant B6 mice play a key role 

in protecting islet allografts from rejection 

In order to evaluate the role of Treg cells, I exploited B6 DEREG mice in which 

FoxP3+ Treg cells can be selectively depleted in vivo upon administration of DT. 

Diabetic B6 DEREG mice were transplanted with BALB/c islets via a cecal vein 

route under short-term MR1 monotherapy (Fig 7A). When normoglycemia was 

achieved, DT was intraperitoneally injected at DPT 28, 29, 31, and 32 (Fig 7A). The 

complete ablation of CD4+CD25+FoxP3+ Treg cells was confirmed in peripheral 

blood by FACS analysis (Fig 7B). Within 2 weeks of DT administration, 

hyperglycemia (≥600mg/dL) recurred, indicating that the islet allograft was being 

rejected in the liver (Fig 7C). Immunostaining analysis of the whole liver of these 

mice showed the total absence of islets, with heavy infiltration of CD3+ T cells near 

the sinusoids, confirming the complete rejection of engrafted intrahepatic allo-islets 

(Fig 7D). Collectively, these data suggest that FoxP3+ Treg cells play a critical role 

in protecting the allo-islets from rejection.   
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Figure 7. Analyzing the role of Treg cells in tolerant B6 mice. 

A. Schematic illustration of the experimental setup. Diphtheria toxin was given on 

days 28, 29, 31, and 32 post-transplantation at 1.5 μg per dosage. B. Percentage of 

Treg cells in peripheral blood before and after diphtheria toxin treatment. C. BGL 

was measured with a OneTouch Ultra device from day 0. The blood was obtained 

from snipped tail. D. IHC stain of liver tissues of hyperglycemic B6 mice. Section 

slides were triple stained with anti-CD3 (brown), anti-insulin (red), and anti-FoxP3 

(blue). Original magnification 100μm. 
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3.3. Ratio of FoxP3+ T cell to CD3+ T cell was not increased in 

tolerant B6 mice 

Since anti-CD154 blockade based regimens could augment the ratio of FoxP3+ 

Treg cells to effector T cells in transplantation models92,93, I then assessed the ratio 

of FoxP3+ Treg cells from the tissues to those from the recipients which rejected the 

allo-islets. The ratio of FoxP3+ Treg cells to CD3+ T cells has been obtained from 

three different islet engrafted areas (Fig 8A). However, I could not observe any 

significant difference between those two groups (Fig 8B). I also analyzed the ratio 

of FoxP3+ Treg cells to CD4+ T cells in peripheral blood obtained from tolerant and 

naïve mice. However, the ratio of FoxP3+ Treg cells in peripheral blood was not 

significantly different between those two groups (Fig 8C). Taken together, anti-

CD154 blockade alone failed to increase the ratio of FoxP3+ Treg cells in my 

allogeneic islet transplantation model. 
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Figure 8. Analysis of the ratio of FoxP3+ Treg cells to CD3+ T cells in tolerant & 

rejected B6 mice. 

A. IHC stain of liver tissues of tolerant and rejected B6 mice. Section slides were 

triple stained with anti-CD3 (brown), anti-insulin (red), and anti-FoxP3 (blue). 

Original magnification 50μm. The ratio of FoxP3+ Treg cells (red dot) to CD3+ T 

cells (green dot) in the liver was analyzed using Cell Counter Image J software. The 

ratio was obtained from three different areas, and each group expressed as mean ± 

SD. B. The ratio of FoxP3+ Treg cells to CD3+ T cells near the graft sites was 

analyzed using Cell Counter Image J software. The ratio was obtained from three 

different areas, and each group expressed as mean ± SD. 
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3.4. Donor-specific FoxP3+ Treg cells were enriched in tolerant 

B6 mice 

Thus, by conducting mixed lymphocyte reactions (MLR) analysis, I 

investigated whether Treg cells in tolerant mice would be qualitatively different 

compared with those from the naïve mice, with stronger suppressive capacity against 

alloantigens. The diabetic FoxP3-eGFP mice were infused with BALB/c islets via a 

cecal vein route with short-term MR1 monotherapy. When normoglycemia was 

achieved, FoxP3+ Treg cells and FoxP3- Teff cells were separately obtained from the 

splenocytes of tolerant and naïve B6 mice (Fig 9A). CFSE-labeled FoxP3- Teff cells 

from a naïve B6 mouse was adopted as a universal responder, and irradiated BALB/c 

or C3H APCs were co-cultured to stimulate the proliferation of responder cells (Fig 

9A-B). FoxP3+ Treg cells isolated from tolerant and naïve B6 mice were added at 

ratios of 2:1, 8:1, and 32:1 respectively to the co-culture of stimulator and responder 

cells (Fig 9B). After 5 days incubation, cells were harvested and analyzed to examine 

the proliferation of viable B6 Teff cells. I found that almost one-half of the naïve Teff 

cells proliferated when co-cultured with irradiated BALB/c or C3H splenocytes (Fig 

9C-F). Surprisingly, in the co-culture of Teff cells with BALB/c splenocytes, Treg 

cells from tolerant mice exhibited better suppressive capacity over Teff cell 

proliferation compared to the Treg cells obtained from the naïve mice (Fig 9C-D). 

However, in the co-culture with C3H splenocytes, Treg cells from both tolerant and 

naïve mice showed comparable suppressive capacity over Teff cell proliferation (Fig 

9E-F). Taken together, MR1 monotherapy induced donor-specific Treg cells to 

protect allogeneic islet grafts in the liver. 
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Figure 9. Analysis of the suppressive capacity of FoxP3+ Treg cells isolated from 

tolerant & naïve B6 mice. 

A. Schematic illustration of MLR. Stimulator and responder cells were prepared as 

described Materials and Methods. B. Schematic illustration of cell co-culture. In a 

co-culture of CFSE-labeled naïve effector T cells with irradiated BALB/c or C3H 

splenocytes, Treg cells isolated from tolerant and naïve mice were added at a ratio 

of 2:1, 8:1, and 32:1, respectively. Cells were incubated in a 96-well round-bottom 

plate for 5 days. C & D. The suppressive ability of Treg cells against the proliferation 

of naïve effector T cells in the co-culture with irradiated BALB/c splenocytes was 

evaluated through FACS analysis. E & F. The suppressive ability of Treg cells 

against the proliferation of naïve effector T cells in the co-culture with irradiated 

C3H splenocytes was evaluated through FACS analysis. Naïve effector T cells 

stimulated with anti-CD3 and CD28 Abs were used as a positive control. The 

proliferation of each group was expressed as mean ± SD (n=3). Statistical 

significance was determined by paired Student’s t-test. Asterisk (*) indicates 

statistical significance (p<0.05). 
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IV. Discussion 

Immunostaining of whole liver sections showed successful engraftment of the 

allo-islets near the liver sinusoids. Although revascularization and remodeling of 

islet aggregates beneath the renal capsule have been well characterized,104 islet grafts 

randomly located throughout the whole liver parenchyma are not easily accessed, 

making it relatively difficult to understand their structural changes during 

engraftment. Korsgren and colleagues proposed a model of intrahepatic islet 

revascularization where, unlike in the demarcation of the islet-thrombus mass in 

NHPs or humans, rodent islets generate large necrotic areas; this is probably because 

of acute ischemia that is induced by the sudden restriction of a portal branch and 

reflects the relatively large size of rodent islets compared to the diameter of the portal 

vein in these animals.105 It follows that liver regeneration results in a cascade of 

growth factors that stimulate hepatocyte proliferation and re-modulation of the liver 

parenchyma,106 allowing the incorporation of islets into the newly formed hepatic 

structure on re-vascularization.107 Although this scenario may not be consistent with 

the engraftment in my model, it is worth taking into consideration since the process 

of incorporation and re-vascularization is inevitable for the long-term survival of 

islet grafts in the liver. 

I confirmed that short-term MR1 monotherapy could achieve normoglycemia 

for more than 250 days in intrahepatic islet transplanted diabetic mice. The long-

term survival of allogeneic islets by the short-term MR1 treatment implicates the 

modulation of immune responsiveness to the MHC-mismatched donor antigens in 

recipients. To evaluate whether immune tolerance was achieved in the mice, the 

second graft, along with third-party graft (islets from C3H mice), were transplanted 
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underneath the kidney capsule. Re-challenging allo-islets into the liver was not 

possible since re-administration of STZ could affect the established immune system 

of the recipients with its cytotoxicity108. Hepatic lobectomy was not available either 

because it is not a life-sustaining surgical method. By conducting nephrectomy, islet-

bearing kidneys showed total acceptance of second-party islets but not of third-party 

islets. Successful acceptance of second allo-islets into the non-liver solid organ 

emphasized the apparent ability of MR1 to induce immune tolerance, regardless of 

the microenvironment of anatomic sites for the islet transplantation. Since I found 

the infiltration of Treg cells in the peri-graft sites (Fig 3C), it is conceivable that 

graft-protective Treg cells induced by MR1 treatment might have migrated into the 

kidney capsule, creating the immunologically privileged site where Treg cells may 

prevent immune-mediated graft damage, considering that Treg cells are key 

regulators of dominant tolerance for graft protection109-111. The mechanisms 

underpinning the inhibitory functions of Treg cells and their migration to peri-graft 

sites would be of interest for further investigation.  

Next, I verified whether transplantation tolerance could be extended to organs 

other than islets by exploiting allogeneic skin transplantation. Among transplantation 

models, skin transplantation has been noted to be extremely challenging for 

achieving tolerance induction112. As expected, BALB/c skin transplanted to the 

tolerant B6 was all rejected, but graft survival was modestly prolonged compared to 

the same grafts in the control group. Most interestingly, tolerant B6 mice still 

maintained normoglycemia during and after the rejection phase of skin allografts. 

Similar results were reported in a recent study that in diabetic B6 mice treated with 

anti-LFA-1 and anti-CD154 mAb, intact neonatal porcine islets (NPI) were 

maintained beneath the kidney capsule with normoglycemic control, even after the 
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rejection of re-transplanted porcine skin xenografts73. These mice became diabetic 

when the NPI xenograft-bearing kidney was removed, and abundant FoxP3+ Treg 

cells were observed near the peri-graft sites73. I also confirmed the existence of Treg 

cells near the peri-graft sites in the liver after the rejection of skin allografts, and the 

islets could be protected from potentially fatal immune responses during skin 

rejection by the Treg cells, as shown by Arefanian et al.73. The rejection of same-

donor skin grafts in tolerant mice could be explained by two reasons. First, since the 

primary target of allogeneic immune responses is the MHC molecule113, allogeneic 

MHC-specific tolerance mediated by Treg cells could, in some way, delay the 

rejection of skin allografts in tolerant mice. However, strong T cell-mediated 

immune responses mounted by abundant epidermal and dermal DCs114-116 may 

exceed a threshold of Treg-mediated immuno-regulation, leading to the eventual 

failure of allogeneic skin grafts in all mice. Second, it is possible to consider the split 

tolerance117-120, which corresponds to my observation that re-transplanted donor 

islets were accepted by a recipient while skin grafts from the same donor were 

rejected. Although the mechanism of split tolerance in accordance with anti-CD154 

blockade has barely been studied, strong immunity against skin-specific antigens121-

123 could have been formed to break allogeneic MHC-specific tolerance, resulting in 

skin graft rejection.  

Using the intrahepatic islet allo-transplantation DEREG mouse model, I 

showed that immune tolerance could be mediated by Treg cells. Whole liver sections 

showed complete destruction of the entire islets with the depletion of Treg cells. A 

limitation of this experiment was that upon DT treatment, all FoxP3+ Treg cells were 

eradicated without selectively depleting the Treg cells responsible for graft 

protection. An in-depth study characterizing the distinctive markers of graft-



86 

 

protective Treg cells should be conducted to target them selectively, which would 

lead to more precise interpretation of the role of the Treg cells among the FoxP3+ 

heterogeneous population. Although CD154 blockade was reported as generating 

inducible Treg (iTreg) cells in OT-I & OT-II transgenic mouse transplanted with 

ovalbumin expressing skin grafts89, it still remains controversial to define the lineage 

of Treg cells in the polyclonal T cell population in my model due to the lack of 

universal markers to distinguish natural Treg (nTreg) cells from iTreg cells124.  

Since the ratio of Treg to CD3+ T cells in the peri-graft sites was not 

significantly different from that in the rejected control, further experiments were 

conducted to investigate whether these Treg cells contained qualitatively different 

characteristics. Indeed, the Treg cells in tolerant mice showed higher suppressive 

capacity on effector T cell proliferation after stimulation with the same allogeneic 

donor of BALB/c splenocytes, than with the third-party donor of C3H splenocytes. 

It is evident that MR1 enriched a lineage of donor-specific Treg cells in my model, 

but the underlying molecular mechanisms for the generation of the Treg cells have 

not yet been identified89. Previous work has implicated the tolerogenic plasmacytoid 

DCs in lymph nodes in generating donor-specific peripheral FoxP3+ Treg cells in an 

allo-cardiac transplantation mouse model treated with anti-CD154 mAb and DST52. 

Moreover, immunogenic DCs, which are triggered by CD40 signaling, have been 

shown to convert into tolerogenic DCs when JAK3, a downstream molecule of CD40, 

is inhibited125,126. I assume that the production of co-stimulatory molecules and 

inflammatory cytokines for immunogenic DC activation may be hampered by 

inhibited CD40 signaling127,128, thus driving them into tolerogenic DCs. Therefore, 

further analysis would be necessary if the treatment of anti-CD154 mAb can direct 

the tolerogenic programming of DCs in the co-culture with naïve T cells, thus leading 
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to the generation of Treg cells. The Notch ligand Jagged-1, which is expressed on 

the surface of DCs, has been shown to contribute to the induction and expansion of 

alloantigen-specific Treg cells129-131. Although the common signaling network 

between Jagged-1 and CD40 is yet fully understood, overexpression of Jagged-1 and 

blockade of CD40 signaling seems to be effective in prolonging allograft survival in 

transplantation models132. Therefore, JAK3 and Jagged-1 might be the key factors 

for further investigation of the specific molecular mechanism involved in the 

generation of donor-specific Treg cells by anti-CD154 mAb treatment.  

The key points in my single-drug therapy enabling long-term control of blood 

glucose levels would be partially explained by the difference in MR1 dosage, which 

was higher and more frequently given than those in previous studies. Ferrer and 

colleagues revealed that MR1 monotherapy could decrease the frequency of 

CD44high CD8+ T cells but elevate the frequency of KLRG-1high CD8+ T cells, leading 

to a delay in the expansion of antigen-specific CD8+ T cells89,133. The differentiation 

into antigen-specific CD8+ T cells was also delayed by depleted cytokine production 

at early stage89. Previous studies have also shown that the potent immunoregulatory 

function of anti-CD154 mAb is not simply restricted to blockade of the signal 

pathway of CD154-CD40; elimination of CD154 expressing immune cells by 

recruiting complement-mediated mechanisms is also important in avoiding islet 

allograft rejection64. Although the exact role of anti-CD154 mAb on CD154 

expressing effector T cells was not the main focus of my study, antibody-based 

therapy for CD154-CD40 blockade could provide a beneficial effect in regulating 

immune responses with their additional unknown effects. Therefore, considering the 

effect of anti-CD154 mAb, increased dosage of MR1 administration could be 

effective by taking advantage of sparing time to develop donor-specific Treg cells in 
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weakened alloimmune responses at the early time point after transplantation.  

A fundamental limitation of my study is that the clinical translation of immune 

tolerance by the use of CD154 blockade is currently unavailable due to the 

thromboembolism complications reported in previous clinical studies55,56. Although 

targeting the CD40 molecule expressed on APCs instead of CD154 has been 

attempted as an alternative avenue to obtain the comparable effect of anti-CD154 

mAb without provoking thromboembolism134, no CD40-targeting strategies have as 

yet proven to be satisfactory in organ transplantation. The pre-clinical use of anti-

CD40 mAb is partially encouraging as it was effective in prolonging the survival of 

porcine organs, including the heart and kidney, in NHPs135,136. However, anti-CD40 

mAb was not equally competent in preventing the early loss of porcine islets, as 

shown by our results, leading to a failure of long-term normoglycemic control in 

diabetic NHPs137. In vivo molecular silencing of CD40 by the use of small interfering 

RNA (siRNA) was reported to prolong the survival of renal allografts in rats to some 

extent138; however, several barriers, including the delivery of siRNA and the 

potential immunogenicity of RNA itself, need to be overcome to ensure efficacy and 

safety in translation to the clinic139.  

As anti-CD154 mAb was demonstrated to induce donor-specific FoxP3+ Treg 

cell-mediated immune tolerance in my animal model, there would be merit in 

investigating the role of anti-CD40 mAb in inducing immune tolerance in the same 

animal transplantation model. Interestingly, antagonistic anti-mouse CD40 mAb 

(201A3) has been developed at an opportune moment140; comparing the mechanism 

of transplantation tolerance by the use of either anti-CD154 mAb or anti-CD40 mAb 

in my rodent model advances the knowledge of anti-CD154 mAb mediated immune 

tolerance. I hope that cumulative research aiming to address the issues underlying 
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my animal model will lead to the achievement of CD154 blockade-mediated immune 

tolerance in humans; this will surely contribute to opening a new chapter in the field 

of clinical organ transplantation.  
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V. Conclusion 

In conclusion, I demonstrated for the first time that short-term MR1 

monotherapy could achieve transplantation tolerance, which is critical to protecting 

allo-islets in recipients. In addition, I found that transplantation tolerance is mediated 

by donor-specific FoxP3+ Treg cells. I expect that my model could provide concrete 

evidence for anti-CD154 mAb mediated immune tolerance, securing a beachhead to 

unveil the molecular mechanism of anti-CD154 mAb mediated Treg cell induction 

in the allo-islet transplantation.  
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VI. Schematic summary 
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국문초록    

간 내 동종이형 췌도 이식 

생쥐모델에서 단기간 CD40-CD154 

상호작용 차단에 의한 공여자 특이 

FoxP3+ 조절 T 세포 매개 면역관용 

 

              이 석 주 

서울대학교 대학원 

치의과학과 면역 및 분자미생물학 전공 

 

목적 

CD40-CD154 상호작용은 수지상세포와 T 세포 사이에서 여러 

신호를 제공하는 공동자극분자중 하나이며 T 세포가 활성화하는데 

필수적인 신호이다. CD40-CD154 상호작용를 차단하였을 때 많은 

논문에서 면역반응이 조절됨이 보고되었다. 특히, 항 CD154 단클론 

항체가 포함된 면역억제요법들은 다양한 장기 이식 모델에서 이식 

장기의 생존을 증가시키는데 있어 압도적인 효과를 보인다. 많은 

논문에서 항 CD154 단클론 항체가 면역관용을 유도한다고 주장하지만 

그 어떤 연구에서도 항 CD154 단클론 항체 단일요법을 처리한 

동물모델을 이용하여 해당 약물의 직접적인 기전을 밝히지는 않았기에 

실제 항 CD154 단클론 항체가 면역관용을 유도하는지는 알 수 없다. 
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따라서, 이 연구의 목적은 약물억제제 병용요법을 사용한 이전 

이식동물모델과는 달리 간 내 동종이형 췌도이식 생쥐모델에서 1. 항 

CD154 단클론 단일요법으로도 간 내 동종이형 췌도의 생존이 

증가하는지 확인하고, 2. 성공적으로 생착한 췌도가 면역관용에 의해 

생존하는지 규명하며, 마지막으로 3. 항 CD154 단클론 항체에 의해 

유도된 면역관용의 기전을 밝히고자 한다.  

 

방법 

먼저 동종이형 췌도이식 생쥐모델을 만들기 위해, Streptozotocin을 

녹인Citrate 용액(120mg/kg)을 8주령 B6 생쥐에 하루에 한번씩 2일에 

걸쳐 총 두 번 복강투여하였다. 최소 3일 연속 16.8mmol/L 이상의 

혈당을 보인 생쥐를 당뇨생쥐로 판단하였다. 공여췌도는 BALB/c 

생쥐로부터 췌장을 분리한 뒤 Collagenase P를 이용하여 췌장을 

소화시키고 Ficoll 분리법을 이용하여 순수 췌도만을 분리하였다. 분리한 

공여췌도는 Cecum 정맥으로 주입하여 혈류를 따라 간 내로 이식하였다. 

그리고 항 CD154 단클론 항체는 이식을 전후로 -1, 0, 1, 3, 5, 그리고 

7일에 마리당 0.5mg씩 복강투여하였다. 그리고 꼬리로부터 채혈을 하여 

매일 혈당을 체크하였다. 면역관용이 유도되었는지 확인하기 위해 추가 

면역억제제 없이 BALB/c 또는 C3H 생쥐 (제 3자 항원) 로부터 얻은 

동종이형 췌도를 간 내 BALB/c 동종이형 췌도를 이식하여 정상혈당을 

유지하고 있는 B6 생쥐의 신장피막하로 주입하거나 또는 B6 생쥐의 
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옆구리에 BALB/c 생쥐로부터 얻은 동종이형 피부를 이식하였다. 

신장피막하 췌도의 생존을 보기위하여 신장제거술을 진행하였다. 

피부이식편의 생착을 실험군과 대조군에서 매일 관찰하여 그룹 간의 

피부이식편의 생존기간을 비교하였다. 면역관용의 기전을 보기 위하여 

CD8+ T 세포만을 분리하여 IFN-γ ELISpot 분석을 하거나 또는 

DEREG 생쥐를 사용하여 췌도이식모델을 만든 뒤 Diphtheria 독소를 

투여하여 조절 T 세포만 제거해보았다. 그리고 동종이형 항원에 대한 

조절 T 세포의 억제능을 비교 하기 위해 FoxP3-eGFP B6생쥐를 

사용하여 췌도이식모델을 만들었고 200일 이상 정상혈당을 유지하는 

생쥐에 한 해 비장세포를 분리하고 이어 FoxP3+ 조절 T 세포만을 

분리한 뒤 BALB/c 또는 C3H 생쥐로부터 얻은 조사된 비장세포에 의해 

각각 증식하는 B6 생쥐 유래 효과 T 세포에 대한 조절 T 세포의 

억제능을 혼합림프구반응 실험을 통해 분석하였다. 

 

결과 

당뇨가 유발된 B6 생쥐의 간 내 동종이형 췌도를 이식하고 항 

CD154 단클론 항체를 투여하였을 때 항체를 처리하지 않은 대조군에 

비해 최대 250일 이상 정당혈당을 유지한 것을 확인하였고 이후 간 

조직 절편을 얻은 뒤, 면역조직화학염색을 하여 이식한 췌도가 간 내 

정상적으로 생착하였음을 확인하였다. 그리고 면역관용임을 확인하기 

위해 100일 이상 정상혈당을 유지하고 있는 생쥐의 신장 피막하에 추가 
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면역억제제 없이 BALB/c 동종이형 췌도와 C3H 동종이형 췌도 (제 3자 

항원)를 이식한 결과, BALB/c 동종이형 췌도만이 선택적으로 생존함을 

확인하였다. BALB/c 동종이형 피부를 이식한 결과, 간 내 BALB/c 

동종이형 췌도가 생착된 생쥐에서 피부이식편의 거부반응이 대조군에 

비해 늦춰지는것을 확인하였다. DEREG 생쥐를 이용하여 조절 T 세포가 

동종이형 췌도 보호에 중요한 역할을 하는것을 밝혔고 혼합림프구반응 

실험을 통해 면역관용을 획득한 B6 생쥐의 조절 T 세포가 BALB/c 

생쥐 유래 공여항원에 대해 특이적 억제능을 보임을 확인하였다. 

 

결론 

간 내 동종이형 췌도이식 생쥐모델에서 항 CD154 단클론 항체을 

투여하여 단기간 CD40-CD40L 상호작용을 차단하였을 때, 공여항원에 

대해 특이적인 FoxP3+ 조절 T 세포를 유도함으로서 면역관용을 

획득함을 처음으로 확인하였고 in vivo에서 항 CD154 단클론 항체에 

의해 공여자 특이 FoxP3+ 조절 T 세포가 유도되는 분자기전을 밝힐 수 

있는 첫 동물모델을 확립하였다. 

                                                                      

주요어: 항 CD154 단클론 항체 (MR1). 면역관용, 조절 T 세포, 췌도이

식, 간 

학번: 2014-22041 
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