Usman Haque
President,
Haque Design + Research

Biography | Usman Haque is an architect specialising in responsive environments, interactive installations, digital interface devices and choreographed performances. His skills include the design of both physical spaces and the software and systems that bring them to life. He has been an invited researcher at the Interaction Design Institute Ivrea, Italy, artist-in-residence at the International Academy of Media Arts and Sciences, Japan and has also worked in USA, UK and Malaysia. As well as directing the work of Haque Design + Research he is currently teaching in the Interactive Architecture Workshop at the Bartlett School of Architecture, London. He is a recipient of a Wellcome Trust Sciart Award, a grant from the Daniel Langlois Foundation for Art, Science and Technology, the Swiss Creation Prize, Belluard Bollwerk International and the Japan Media Arts Festival Excellence prize. His work has been exhibited at the Institute of Contemporary Arts (London), Ars Electronica, Transmediale, Hills Side Gallery (Tokyo), The National Maritime Museum Greenwich and the Tokyo Metropolitan Museum of Photography. His work has also been presented at international conferences including Siggraph, VSMM (International Society on Virtual Systems and Multimedia) and Doors of Perception. Haque Design + Research specialises in the design and research of interactive architecture systems. Architecture is no longer considered something static and immutable; instead it is seen as dynamic, responsive and conversant.
Dressing the Shadows of Architecture
우스만 하크: 건축의 그늘을 장식하기

‘건축’의 영역을 재정의하기 위한 노력은 모든 세대에 걸쳐서 실행되고 있다. 이것은 놀라운 일이 아니다. 왜냐하면 건축은 다른 여러 분야로부터의 물질적이고 철학적인 영역을 끌어올리기 뿐만 아니라 학문이기 때문이다. 그렇게 건축의 영역과 한계는 문화, 예술, 과학에서의 발전을 피하면서 계속 모호해질 것이고, 동요할 것이며, 주관적으로 변하게 될 것이다. 하지만, 건축은 일반적으로 기술적, 사회적 변화의 속도를 따라잡지 못하기 때문에 항상 그 존재에 대해 의문시되며, 그 순간만의 특별하고 흥미로운 범주 내에서만 자리 잡게 되는 것이다. 건축은 주로 가능한 미래에 대해 상상하는 습관을 거부하기 때문에, 주로 단순하게 존재하는 조건에만 반응하는 디자인 현상으로 남게 된다.

(공간디자인의 감각에서 보면) 이런 현상이 나타나는 이유는 부분적으로는 요즘 대부분의 건보한 건축 작품들이 건축가가 아닌 다른 분야의 사람들에 의해 만들어지기 때문이기도 하다. 한편, MIT 미디어랩과 같은 곳에서는 사람들이 공간이 서로 소통하는 예를 들어 투사되는 벽을 통한 원격 기기나 ‘지능형’ 센서와 같은 반응하는 시스템들을 개발하고 있는데, 다른 한편으로 이는, 건설 기술에서의 단가를 줄이거나 효율성을 늘릴 수 등 종종 경제적인 이유로 기술적인 개발을 조장하기도 한다. 6

사용자와 환경에 반응하는 작용은 공간디자이너들의 역할을 빼앗아버리기 때문에, 건축디자인 환경에서도 기술적인 개발은 건축가의 핵심적인 역할에 대해서도 도전하기도 한다. 가정 단순한 예를 들면, 집안의 자동온도조절장치는 거주자에 요구에 따라 온도를 조절하게 되고, 한편 벽의 투명도와 레이아웃, 재질감, 색상의 변화를 가능하게 하는 시스템은 사람들이 환경과 함께 ‘대화’를 하는 순환적인 프로세스를 제안하는데, 이 대화에서는 사람들의 활동과 갈망의 영역을 정의하는데 있어서 건축가들이 더 이상 우수적인 역할을 하지 못한다. 워커들, 컴퓨터, 모바일 커뮤니티, 컨텐츠, 컨텐츠의 아이웨어니스와 RFID 시스템과 같은 발전들은 공간의 디자인과 사용성을 변형시켰는데, 이 시스템들은 공간에서의 사람들의 활동과 작용에 대한 관심으로부터 발생했고, 공간적 경험이의 테두리를 창조하는 인터랙션 시스템을 사용하는 공간적 디자인 모델을 제안하기도 한다는 측면에서 명백하게 공간이라고 할 수 있다.

이러한 건축의 영역은 사람들이 그들의 논리 테두리 안에서 공간을 해석하고, 전용하고, 디자인하고 다시 사용하기 때문에 매우 모호하다고 할 수 있다. 또한 이러한 건축은 그것과 함께 거주하고, 전용하고, 인치하고, 상호작용하고, 담화하는 사람들 이 없이는 존재하지 않는다. 이 거주자들은 자신의 환경을 ‘디자인’하지는 않는다. 결과적으로 공간은 단순히 사람들이 반응하는 방법을 발견하게 하지는 않으며, 실제로 사람들은 공간에 반응을 함으로써 삶의 풍요로움을 경험하게 된다. (공간을 사용
Every generation seeks to redefine the boundaries of “architecture.” This is not surprising, for it is a discipline, which constantly borrows territory, physical and philosophical, from so many other disciplines. As such, its boundaries and limits will always be blurred, fluctuating and subjective, drawing on developments in culture, the arts and sciences. However, architecture has always asked itself what it is and it is in a particularly interesting predicament at the moment because it is generally failing to keep up with the pace of technological and societal change. It has largely become a design phenomenon that responds solely to existing conditions, as opposed to a practice that imagines possible futures.

This is partly because most advanced architectural work (in the sense of “the design of space”) is these days produced by non-architects. On one hand, technologists at places like MIT Media Lab are developing responsive systems that allow people to interface with their spaces, for example through projection walls, remote devices and ‘intelligent’ sensors. On the other hand, it is often property developers who instigate technological development for economic reasons, by increasing efficiency or decreasing cost in construction techniques.

Even in architect-designed environments, technological developments throw into question the very role of the architect, because user—and environmentally—responsive mechanisms allow people themselves to take prime position in configuring (that is, designing) their own spaces. At the simplest end of the spectrum, a thermostat regulates temperature according to inhabitants’ requirements; at the other, systems that allow for changing color, texture, layout and transparency of walls suggest a circular process of “conversation” with one’s environment, a conversation in which architects no longer have priority in defining the boundaries of people’s movements and desires. Developments such as wearable computing, mobile connectivity, contextual awareness and RFID systems have transformed both the use and the design of space. These systems are explicitly spatial: they arise out of concerns for the movements and actions of people in space and they suggest a model of spatial design (and by extension architecture) that employs interaction systems to create frameworks of spatial experience.

The territory of such architecture is ambiguous because people themselves interpret, appropriate, design and reuse spaces within their own frames of logic. Such architecture does not exist without people to inhabit, occupy, perceive, interact or converse with it. These inhabitants “design” their own environments. The resulting spaces don’t merely enable people to develop their own ways of responding, they are actually enriched by them doing so. As people become architects of their own spaces (through use of the space) the word “architecture” ceases to be a noun: instead it becomes a verb. Such architecture is explicitly dynamic, a shift that opens up a wealth of poetic possibilities for designers of space.

Meanwhile, it has been people operating within the constantly fluctuating territories of new media art who have had a particular opportunity to challenge the boundaries of space design and, by extension, architectural design.

Such explorations have taken two distinct approaches. The first has been to look at what might be called “soft-space” technologies: systems that incorporate the ephemeral qualities of architecture including smell, sound, light, heat and electromagnetic fields. This approach has concentrated on the interactions that make up our experience of space and has proposed systems to affect these interactions. It has also explored the psychology of spatial perception, helping to expand the boundaries of those perceptions.

The second approach has been to investigate how people operate within such environments. Movements in art that challenge accepted dichotomies between performers and audiences have parallels in spatial investigations that challenge the distinctions between architects and occupants. These investigations propose new models for environmental design based on systems that welcome the active participation of people operating within those systems, informed by the ways that culture provides frameworks for social interaction. They have considered the notion of “user as designer” and have suggested architectural choreographies and control structures that are improved by participants’ contributions. They have also adopted familiar psychological techniques in new prepositional ways.

Together, these two approaches confront our relationship to designed space because they encourage us to think not of static silent structures that surround us but rather of fluid, transient, dynamic systems within which we are all consumers and all contributors. So how, then, do we determine the difference between “architecture” and “non-architecture” and reconcile the design
우소만 하크: 건축의 그늘을 잡식하기

하면서 사람들이 그들 공간의 건축가가 되면서 ‘건축’이라는 단어를 떠올리게 하며 동작이 된다. 이 상황에서 건축은 도로적으로 역동적이며, 공간디자이너들에게 부에 대한 시각적 가능성을 열어주는 변화가 된다.

반면에 공간디자이너가 두 수가거나 건축디자이너의 영역을 넘어갈 수 있는 기회를 가져 새로운 미디어는 끊임없이 변화하는 영역을 통해서 사람들에게 영향을 미치기도 했다. 사람들은 그들 환경에 대한 관계성의 근본에 대해 탐구했고, 실제적이고 실행할 수 있다는 것을 명확히 했으며, 이를 구조화 하였다.

이러한 탐구는 두 가지의 서로 다른 접근법을 발현했다. 첫 번째 접근법은 전자기기, 빛, 소리, 변형을 포함하는 건축의 단면의 높은 높이를 연장하는 시스템 ‘소프트웨어’ 기술이라고 불리는 것이다. 이 접근법은 우리가 공간에 대한 인터랙션에 집중하고 이러한 상호 작용에 영향을 미치는 시스템을 제안한다. 이는 공간디자이너의 경계를 확장하는 것을 도와주면서, 공간디자이너를 탐구하는 것이다.

두 번째 접근은 사람들이 환경 내에서 어떻게 작용하는지를 조사하는 것이다. 작가와 관객 사이의 유독적 이해관계에 도전하는 예술의 영점은 기존과 기존의 문제를 도전하는 공간적 연구와 평행선을 이룬다. 이 연구는 문화가 사회적 인터랙션을 위함을 제공하는 방법에 의해 알려진 시스템을 조종하는 사람들의 능동적인 참여를 반영하면서 공간디자이너의 새로운 모델을 제안한다. 이 연구는 ‘디자이너로서의 사용자’의 개념을 고려하고 참가자의 기여에 의해 하향된 제어구조와 건축적인 인프라를 제안하며 또한, 비슷한 정신-지리적 기법들을 새로운 계획 방식에 적용하기도 한다.

동시에 이 두 가지 접근법들은 우리를 감싸고 있는 정적이고 고정된 구조를 생각하지 못하게 하지만 우리 모두가 소비자인 기여자들이 있는 역동적인 시스템과 유연성을 생각하게 하기 때문에 디자이너 공간에서의 관계성과 지배관계가 된다. 그럼 우리는 어떻게 ‘건축’과 ‘비건축’의 차이점을 결집하고, 동시에 조건과 의존도를 조화시킬 수 있을까? 우리는 어떻게 이런 행위를 뿌리치지 않으면서 건축의 ‘그림자’에 ‘옷을 입히는’ 것이나? 물론 실마리는 확장한 정의를 내리기 위한 모든 도로를 거부하는 공간에서 찾을 수 있을 것이다. 건축은 경제적 판단에서 반성하고 진행되는 무의미함을 인식해야 하는데, 건축가들은 종종 중용 영역에 대한 감각을 가지고 있는 반면, 경계적으로 동기를 부여한 의례적인 요구자와 주체로 우리가의한 경험이 있다. 우리는 산업자인 이론가인 앤서니 린(Anthony Dunne)이 ‘포스트 유틸리티 오브젝트(실용성을 가진 것이 당연하게 받아들이지는 제품)’를 전자제품의 디자이너로서 가장 힘든 도전은 이제 수행의 최적 단계가 이미 도달 가능한 기술적이고 기호론적 가치성에 근거한 것이 아니라 작은 연구들이 이미 수행되어진 미학이며, 시, 형이상학의 영역 안에 놓여있는 것이다.”라고 일론은 디자인에 접근해가고 있는 것이다.

만약 우리가 건축의 시스템이 구축된 공간의 실용적이고 기능적인 요구사항과 맞물릴 수 있다고 가정한다면 디자인에서의 작품들은 그것을 사용하고 채우며 다시 만드는 누군가의 시각으로부터 온다고 볼 수 있다. 이는 기술자들이 자연에서 실패한 영역이기도 하다. 지력과 예술가능성, 편리함, 효율성을 알기 위한 컴퓨터와 엔지니어링에 맞추어진 건축 기술 연구는 건축에의 ‘기쁨’을 피해한다. 빌 게이츠의 맨션(여기서는 거주자 추적 메커니즘으로 누가 어떤 장소에 있는 가에 따라서 방 을 프로그래밍하도록 한다)과 같은 프로젝트에서, 빌딩 안의 기온을 제어하는 태양 추적시스템이나 우리가 제시한 서비스를 타케 하는 시간 관리 시스템이 좋은 엔지니어링 솔루션의 예가 된다. 하지만 그들은 인터랙션의 시점으로부터 발생하는 건축의 찬란한 기법에는 실패한다.

고든 펜스커(Gordon Pask)의 말을 빌자면, 우리는 ‘해석하고, 의도하고 참여하는’ 건축물을 상상할 수 있으며, 이와 같은 접근이 현재의 단순히 자극에 반응하는 건축 시스템 창조를 위한 시도보다는 더 생산적일 뿐이다. 하지만, ‘지능형 공간 디자인의 개념’은 더 깊은 세분화를 동반하는 것이다. 지능을 가진 타인과의 대화가 즐길을 수도 있고 아닐 수도 있는 것처럼 공간과의 대화 또한 마찬가지다. 우리가 그런 대화를 즐길지는 아무도 모르는 것이다. 우리가 공간이 분위기와 열망을 조성하는 매혹적인 대화를 선택할지, 아니면 지능이지만 평범하고 다르기 술ложений과 같은 양상한 대화를 더 좋아할 것인지 두고 볼 일이다.

건축가들의 전문적 지식은 공간적인 ‘상황’을 디자인하는 것이기 때문에 이런 공간 디자인 연구 부분에 건축가가 가장 많이 참여할 수 있다. 만약 건축이 하드웨어(단단하고 정형적인 벽이나 바닥)와 소프트웨어(단단한 소리, 색상, 온도, 그리고 전자기파의 조합이라면, 어떤 가장 생산적인 건축적 개념은 ‘운영시스템(OS)’의 디자인일 것이다. 유닉스, Mac OS X나 윈도우와 같은 운영 시스템 디자이너들이 (왜 프로그래밍, 그리고 그는 소프트웨어, 동영상 편집 프로그램 등을 통해) 다양한 단계를 통해 사람들이 창의력을 확장하도록 메개해주고는 저처럼 건축가 역시 다양한 건축 프로그램을 위한 메타 시스템을 제공한다. 여기에서 건축가들이 구체화해야 할 과제는 상상력을 배양하면서도 이를 제어할 규범적인 측면을 더하지 않는 건축 시스템의 개발이다. 특히 건축 분야에 적절한 운영시스템은 (공간 디자인은 항상 협동적 과정이므로) 오픈 소스 시스템이라 할 수 있다.
of space with this contemporary condition? How do we “dress” its “shadows” without “repulsing the gesture”? A clue is, of course, that architecture resists all attempts to give it a rigid definition—it thrives on its penumbral condition and it should recognize its ephemeral ongoing. Yet, architects often have a desire for permanence and have tended to remain confined either to the requirements of economically motivated clients or to the boundaries of paper and Perspex. In an age where we are approaching the design of what industrial design theorist Anthony Dunne has called “post-optimal objects” (i.e., objects one designs where practicality and functionality can be taken for granted) “the most difficult challenges for designers of electronic objects now lie not in technical and semiotic functionality, where optimal levels of performance are already attainable, but in the realms of metaphysics, poetry and aesthetics where little research has been carried out.”

If we assume that technology systems in architecture could deal with the practical and functional requirements of constructed spaces then the beauty in design comes from the poetries of those who use / implement / remake it. It is this territory that technologists have failed to deal with. In striving for efficiency, convenience, bandwidth and predictability, most computer-engineer-focused architectural technology research has avoided the “delight” of architecture. Projects like Bill Gates’ mansion (where occupant-tracking mechanisms allow for programming rooms according to who is in them), time-management systems that ensure we catch the bus on time, or sun-tracking louvers that control temperature levels inside a building are fine engineering solutions but they miss out on the real joys of architecture that arise from the poetries of interaction.

Taking Gordon Pask’s words out of context, one can imagine an architecture that “interprets, intends and anticipates” and one can accept that such an approach might be more productive than current attempts to create architectural systems that simply respond to stimuli. However, concepts behind designing “intelligent” spaces are accompanied by further ramifications. Just as conversation with other intelligent human beings can be either enjoyable or not, so too would conversations with intelligent spaces: there is no guarantee that we will appreciate what we discuss! It remains to be seen whether we prefer the captivating moments created by spaces that have moods and aspirations or whether we prefer the predictable ‘conversations’ we have with ordinary light switches, which can be considered intelligent but very amenable devices.

This is where architects can best participate in spatial design research because their expertise lies in designing spatial “situations”. If architecture is a combination of hardware (solid, static walls, roofs and floors) and software (ephemeral sounds, smells, temperatures and electromagnetic waves) then perhaps the most productive conception of an architect is as an “operating system” designer. Just as the designers of operating systems such as Unix, Mac OS X or Windows provide varying levels of openness within which people expand their own creativity (using programs like word processors, drawing software or movie editing suites), so too can architects provide meta-systems that encourage multitudes of architectural programs. The challenge is
건축의 순간적인 성격과 그 공간을 영위하는 사람들의 끊임없는 재해석은 건축을 비평구조이고 일시적인 것으로 여기게 할 수 있다. 건축가는 건축의 거주자와 라이프스타일에서부터 열심히 살아가는 소리까지 모두 재해석하여 안정을 유지하려는 권위주의자라면 알려져 있다. 새로운 건축의 개념이, 건축이 왜 갑지 모든 프로세스를 객관적으로 재해석드는 또 다른 메타시스템이되지 않을 것이 중요하다.

테크놀로지를 사용하는 예술가들이부터 가능한 접근방법을 찾아볼 수 있다. 최근에 예술가들은 새로운 창조적인 연구자 역할을 해내고 있다. 이들은 작업을 통해 테크놀로지와 예술 양면에 확대된 공간을 시험한다. 건축가들은 예술가들의 생산 기술(신속한 시각적과 기술적이 아닌 1:1 실행), 펀딩(funding, 클라이언트보다는 예술, 기술과 기금 등을 통한)과 자기 비평(프로젝트 테이크의 형식에서 건축된 프로젝트의 파드백이 동결되지 않으며 초기 제안에 영향을 미치지 않는다는)을 통해 해당을 얻을 수 있다. 건축가들이 예술가로부터 얻을 수 있는 이익은 사회에 질문을 던지고 기존의 생산 유행을 비평하며 비슷한 유행의 프로세스와 닫힘 수 있는, 매튜 풀러의 말을 따르다면 `순수한 예술에만 마을리지 않는` 개념적 접근 방법을 모색하는 방법이다. 무엇보다 건축가들은 자신이 프로세스를 만들어낸 예술가(순수한 제안만 하는것이 아닌)들을 통하여 다른 이들이 비평을 위해 내부로 들어오게 하는 방법을 배울 수 있을 것이다.

그러한 건축가들의 역할은 `실천자-연구자`의 개념을 발전시킨 `건축의 개념(The Idea of Building)`에서 스튜디온 그로크(Steven Groak)가 제시한 것과도 비슷하다.

"지금 필요한 것은 연구 방법론이며, 의미와 기술로부터, 제작과정로부터, `노하우`의 개념으로부터 유도된 행위를 구조하다. 이는 취침단의 디자인과 생산 방법을 사용할 것이다. 이것은 예술과 가능한 결정론적 개념을 포용하게 될 것이다." ①

80년대와 90년대에는 진보적 건축의 이론상의 작품들이 종이 모델, 갤러리, 책 그리고 책에 선보이기도 하였다. 하지만 현재에는 인터넷이의 시설, 중앙 현실(AIR)에서, 그리고 네트워크된 현실에서 실현되고 있다. 이것은 나의 개인적 건축 연구를 위한 하크 디자인+러시처(Haque Design + Research)와, 이터 아키텍처(Aether Architecture), 서보엔서(Sub and LAB)의 다른 이들 또한 채택한 접근법이다. 디지털 미디어와 인터넷이의 전시 작업을 동시적으로 연구하는 것은 혁신을 넓은 범위의 시각적 이슈들을 탐구할 수 있도록 해준다. ① 내 자신의 프로젝트를 진행하는 동안 이러한 테이크를 시험하고 완성해내기 위하여 예술과 건축의 세계를 모두 포괄해야 했다. 또한 건축적 현실을 탐구하거나 내가 시험적으로 만들기 원하는 건축 시스템의 구현을 위해 예술 분야의 지원금을 지속적으로

우스만 하크: 건축의 그늘을 정식하기

Figure 1.
공간의 향기의 공기흐름도
Scents of Space diagram of interior airflow

으로 모색하였다. ①

초기의 프로젝트는 소리, 난새, 그리고 빛을 산출하고 사람들의 반응에 감동하는 시스템인 `무디 마슈룸 플로어(Moody Mushroom Floor, 1996)`였다. 플로어(floor)는 미리 결정된 개념적인 분위기를 적용한다. 예를 들자, `침묵이` 벽돌은 사람들에게 가까이 오지 않게 한다. 벽돌은 몇 번의 시도를 겪어 빛의 패턴이나 난새, 소리의 형태를 통해 설정 목표를 달성하게 된다. 비슷하게, 다른 벽돌들은 다른 분위기(물리적이나 확률적)과 같은 목표를 부여받는다. 만약 빛의 패턴이나 난새는 시각적으로 설정된 목표를 통과하여 성공적으로 성취하게 되면 벽돌은 비슷한 방법을 통해 분위기를 더 자주 취하기 위해 노력할 것이다. 통합적으로는 이와 같은 벽돌의 커뮤니티가 공간 내부 사람들과의 행동 방식에 기반하여 일련의 행위를 통해 융합된다. 본 프로젝트는 세 가지의 목표를 가지고 있다. 첫째는 소리, 난새, 빛과 같은 일시적인 공간 현상에 의한 건축의 개념을 탐구하기 위함이며, 둘째는 인터랙션 공간에서 인간 행동양식에 기반한 효과적 환경산 산업 시스템을 개발하기 위함이며, 그리고 세번째는 (유전적 알고리즘 형태로) 건축에 적용된 인공지능의 원시적 실험이다.
to develop architectural systems that nourish imagination without adding further layers of prescriptive control. One model of operating system that is particularly relevant to architecture (since the design of space is always a collaborative process) is an open source system.

The ephemera of architecture and the constant reinterpretations of the people who thrive in it suggest that one can consider architecture as something impermanent and ineluctable. However, architects have a reputation for seeking stability, for being authoritarian, controlling everything from the lifestyles of a building's inhabitants to the sound of a key turning in a lock. Within a new architectural concept, it is important to ensure that architecture does not become yet another metasystem that "objectively" controls the process from above.

Again, artists who work with technology demonstrate a possible approach. These days they are pioneering new creative research roles. Their strategies allow them to push both the boundaries of technology and the boundaries of art. Architects can learn from these strategies at a practical level, by employing artists' techniques of production (rapid prototyping and low-tech 1:1 implementation), funding (through art and technology grants rather than clients) and self-critique (where project timing is quick enough that feedback from the built project is not so distant that it no longer has an effect on the original proposal). They can also benefit from artists' conceptual approaches by creating works that are socially inquisitive, that critique their own modes of production and that aspire to conversations with other similar projects; by creating works that are, in Matthew Fuller's words "not-just-art". Primarily, though, they can learn from artists who actually make their projects (as opposed to simply proposing them), which allow others to enter into them in order to critique them.

Such a role for architects is similar to that proposed by Steven Groark in The Idea of Building, where he develops the concept of "practitioner-researchers":

"What is needed now is a research paradigm, a framework of meaning and practice which derives from technology, from the process of making things, from the concept of "know-how". It will use design and production methods as the cutting edge. It will accept the idea of deterministic processes which are unpredictable."

In the eighties and nineties advanced theoretical work in architecture was carried out on paper, in model, in galleries, in books. Now, it is being carried out in interactive installations, in augmented reality, in networked performances. This is the approach adopted by my own architectural research practice, Haque Design + Research and others, such as Aether Architecture, Ser-vo and LAB[au]. By working concurrently in digital media and interactive installations such practices can explore much wider architectural issues. With my own projects I have constantly had to straddle the worlds of art and architecture in order to build and test the theses behind them. I have often sought arts-related grants to explore architectural phenomena or to build architectural systems I would like to prototype.

An early project was the Moody Mushroom Floor (1996), a system of sound, smell and light outputs that develops responses according to how people react to its outputs. The floor adopts notional "moods" determined by their goals; for example, a "sullen" mushroom tries to keep people away from it, though it doesn't know how to do this until it has made several attempts (in the form of sound, smell or light patterns). Similarly, other "moods" (like being "capricious" or "alluring") determine what a mushroom's goals are; if it is successful at achieving a particular mood's goals, it will tend more often to adopt that mood. As a whole, the mushroom community converges on a set of...
우스만 하크: 건축의 그늘을 장식하기

그림 3. '스카이 이어' 인터랙션 흐름도
Sky Ear interaction diagram

그림 4. 그리니치 위에 떠있는 '스카이 이어'
Sky Ear in flight above Greenwich
Photo by Ai Hasegawa

때문에 분산을 최소로 하여 향기를 공간 내에서 삼차원적으로 배치 하는 인터랙티브 냄새 시스템이다. 이 시스템은 단순히 공간 브랜딩을 위해 향기를 이용하는 것보다 한 차원 높은 곳으로 우리를 이끄는다. 우리는 이를 통해 이제 향기를 콜라주한 영역과 즉석 향기 경계선을 창조할 수도 있다. '공간의 향기'는 만약 건축 공간이 정교하게 향기의 영역과 조용이 되어 있다면, 공간을 체험하고 제어하고, 상호 작용할 수도 있을 것이다.

'공간의 향기'에서 방문자들은 봉입품에 진입하게 되고, 디자인으로 제어되는 물리적 경계가 없는 각각의 냄새 영역을 통해 보이지 않지만 실제하는 냄새 환경을 경험한다. 이 설치물은 정교하게 계획된 감각적 환경이다. 냄새는 하나씩 또는 빛을 내는 입방체의 형태와 사각적인 역할과 코드로 함께 방출된다. 방문 자들에게 새로운 향기 영역을 직면하게 만드면서, 인터랙션 영역의 수평 그리고 수직의 측을 따라 12가지 각각의 냄새들은 정교하게 그리고 역동적으로 움직이며 삼차원공간에 자리 잡게 된다.

이 프로젝트에 사용된 향기는 유쾌하기도 불쾌하기도 하며, 식별이 가능하기도하고 낯설기도하며, 자연적이기도하고 인공적이기도하다. 이 주요 지역에는 바람대로 향기를 내고 낮에는 안쪽으로 빛을 내는 9미터 길이의 간단한 투명 봉입물이다. 여러 개의 펜의 배열에 의해 공간 내부의 공기 흐름이 생성 된다. 이 기류는 부드럽고 지속적인 약은 촉촉한 향기를 풍으러 산란 칸막이가 제어한다. 컴퓨터로 제어된 향기 분출기와 세심한 공기 제어가 전체 공간으로 퍼지지 않고 특정 공간 부분에만 선택적으로 향기를 나게 만든다. 인터랙션 공간에서 공기는 초속 0.2미터로 움직인다. 이 속도는 느리면서 방문자가 공기의 움직임을 느끼지 못하지만 그들이 움직이면서 냄새가 나타나고 사라지는 것을 느끼게 하기엔 충분하다. 각각의 냄새가 방출되는 벽에선 냄새가 그 영역에서 발생한다는 것을 알리기 위해 빛이 들어온다.

'스카이 이어(Sky Ear, 2003)' 프로젝트는 전차기장 공간의 비가시적인 지형을 탐구한다. 소리, 냄새, 운도처럼 전차기는 사라지기 쉬우면서도 우리의 건축적 경험에는 기본적인 요소이 다. 우리는 모바일 기기들과 상호 작용하며 전차기장을 인식하게 된다. 기기가 작동할 때 우리의 거리와 위치의 이해도는 결정적으로 변형되지만 작동하지 않을 때는(아무 연결 신호가 없는 때) 전차기의 파장을 제갑하게된다.

우리를 둘러싸며 영향을 미치는 보이지 않는 전차기적 지형의 특성을 상상하려면 우리가 전통적인 건축 요소와 관계하는 방식과 비교해 보면된다. 전차기장은 우리를 건축의 특정한 부분으로 인도하기도 하고, 우리의 움직임들을 결정하기도 한다. 그리고 모바일폰 등을 통하여 다른 사람들과 우리가 소통하는 방법에 직접적인 영향을 미친다. 어디서나 언제나 모든 이와 연결될 수 있다는 것 말고도 우리 일상생활의 모바일 기술은 우리를 둘러싼 전차기 환경을 대한 인식을 높여주었다.

이 프로젝트는 모바일폰이 내장된 몇몇 개발 방향 헤럴드 풍선의 '구름'으로 구성된다. 이 풍선의 다양한 주파수의 전차기
behaviors based on how people act within the space. The project had three aims: first, to explore the idea of an architecture created by ephemeral spatial phenomena such as sound, smell and light; second to develop a system whose environmental outputs were largely dependent on the particular ways that people behaved in the interaction space; and, third, to experiment with a primitive approach to artificial intelligence as applied to architecture (in the form of "genetic algorithms").

My interest in smell as an architectural strategy culminated in a project designed and built with Josephine Pletts and Dr. Luca Turin with the help of a Wellcome Trust Sciart award. Scents of Space (2002) is an interactive smell system that allows for the three-dimensional placement of fragrances in space with minimal dispersion due to air movement. The system enables us to move beyond using fragrances for mere branding of space; we are now able to use them to create fragrance collage zones and boundaries on the fly. Scents of Space posits that if an architectural space could be precisely "tuned" with scent collages, it would be possible to create completely new ways of experiencing, controlling and interacting with space.

In Scents of Space, visitors enter the enclosure and experience digitally controlled zones of fragrance that define areas of space without physical boundaries, encouraging them to encounter an invisible yet tangible smell environment. The installation is a carefully orchestrated sensory environment. Smells are emitted singly or in "chords" in combination with a visual cue in the form of glowing cubes. Each of the dozen smells can be precisely and dynamically located in three-dimensional space, allowing visitors to encounter new scent boundaries as they move along the horizontal and vertical axes of the interaction zone.

The fragrances used in the project are pleasant and unpleasant; recognizable and unfamiliar; natural and artificial. The structure is a simple translucent enclosure, 9 meters in length, that glows inwardly during the day and outwardly at night. Airflow within the space is generated by an array of fans. Moving air is then controlled by a series of diffusion screens to provide smooth and continuous laminar airflow. Computer-controlled fragrance dispensers and careful air control enable parts of the space to be selectively scented without dispersing through the entire space. The air in the interaction space moves at a speed of 0.2 m/s—this is slow enough that visitors don’t feel the movement of the air but are merely aware of the smells appearing and disappearing as they move past. As each smell is emitted from the smell wall, the zone from which it comes lights up to indicate that the smell has been activated in that area.

The project Sky Ear (2003) is an investigation into the invisible topographies of electromagnetic space. Like sound, smell and temperature, electromagnetic space is evanescent yet fundamental to our architectural experience. We are aware of it through our interactions with mobile devices: when they work, our understanding of distance and location undergoes a crucial transformation; when they don’t work (we get no signal or connection) the undulating qualities of electromagnetic space are revealed.

Taking Gordon Pask's words out of context, one can imagine an architecture that "interprets, intends and anticipates" and one can accept that such an approach might be more productive than current attempts to create architectural systems that simply respond to stimuli.
장(EMF)의 중을 감지하는 초소형 센서화로가 포함되어 있다. 전원이 들어오면 센서 회로는 아주 밝은 색상의 LED 빛을 발하게 된다. 이 풍선의 둥그런 라디오는 다양한 전파와 극초단파 공간을 통하여 다양한 빛을 발하며 받게 깊임이다. 멀리 떨어진 하늘 로부터의 소리를 듣기 위해(주파수와 공중방전과 같은 들리는 전차기 현상) 사람들이 풍선에 내장된 모바일폰에 전화를 걸는 동안, 모바일폰은 변개의 범위기에 한정된 빛과 흑백의 찜구율을 가열간다. 들는 행위는 사람들이 보고 있는 것을 변화시킨다. 1000개의 큰 음악 풍선에 의해 지형되는 25미터 지름의 탄 소실유 구조는 지면에서 빛이나게 되며, 발광 해파리처럼 하는 로 천천히 떠오르게 된다. 풍선은 이 구조를 부양시키고 풍선 안에 내장된 각각의 선수에 의해 조정되는(혼합되어 수만 가지의 색을 만드는) 6개의 아주 밝은 LED 전구를 발산하게 하는 역할을 한다. 이 풍선들은 적외선을 통해 각각 통신할 수 있으며 '스카이 아이' 구름 전체 패턴들을 조합할 수 있도록 한다.

도시 조건에 좀 더 직접적으로 반응하는 프로젝트인 ‘플로티블’ (Floatables: 뜨는 것들, 2004)은 카페나 사무실 그리고 집에 흔히 보급되어 있는 무선 네트워크인 802.11의 공간에서 Wi-Fi 공간 본질 연구로부터 개발되었다. 이 프로젝트는 '공적' 공간의 개념이 단순한 환상이라 여겼기 때문에 '공적인' 그리고 '사적인' 공간의 구분에 대한 의문에서 출발하였다. 도시 공간 중 이상적 공간 공간이라 분류된 곳들도 그 공간 범위 내에서 일어날 수 있는 행동에 대한 억제의 개념을 지니고 있었다. 동시에 '사적' 공간 개념 또한 개인적 영역이 테크놀로지로 인해 기업이나 공부의 감시로부터 자유롭지 못하게 되면서 빠르게 소멸하고 있다. 우리의 정보는 건축으로부터 세어서 가고, 우리가 사용하는 기기들로 스며들게 되며 적절한 하드웨어와 소프트웨어를 사용하면 누구나 접근 할 수 있다. 우리의 인생과 라이프스타일이 달가게 되는 이 데이터들은 수많은 개인들이 접근 가능하게 되어 더 이상 개인적 영역에 위치하였다고 볼 수 없을 것이다. 물리적이며 가상적인 우리의 공간은 더 이상 우리들의 절대적인 것이 아니다.

'플로티블'은 임시적인 사생활 지역을 만들어내기 위해 도시를 표류하는 해파리같이 생긴 비행선을 제시 한다. 이 곳엔 다른 이들의 전화통화, 전자메일, 소리, 네네 그리고 얼 패턴이 부재한다. 여러 전기 시스템을 통해 GPS 기기 접근, TV방송, 무선 네트워크와 다른 극초단파의 방출을 막을 수 있다. 마지막으로 '모호한 장벽'과 지표면 위장 패턴을 통해 파렴치한 감시카 메라와 감시위성의 응시로부터의 방어막을 제공하게 되는 것이 다. 도시의 활동을 떠나면서, 중력을로부터 자유롭고 살아가는 건축의 전통 안에서, 비행선은 후각의 공간과 청각의 공간과 그리고 시각공간의 사적인 순간을 제공한다. 근방에서 하나를
One can imagine the undulating qualities of this invisible topography that surrounds us and affects the way we relate to space in much the same way that traditional architectural elements do—it guides us to certain parts of a building, it conditions movements we make and how we make them and, through devices like mobile phones, it has direct impact on the way we associate with other people. Apart from issues arising out of being in contact virtually anywhere, anytime, the mobile technologies through which we conduct our daily lives have made us far more aware of the electromagnetic environment that envelopes us.

The project consists of a “cloud” of several hundred glowing helium balloons, embedded with mobile phones. The balloons contain miniature sensor circuits (simple gaussmeters) that detect levels of electromagnetic fields (EMF) at a variety of frequencies. When activated, the sensor circuits cause ultra-bright colored LEDs to illuminate. The cloud glows and flickers brightly as it passes through varying radio and microwave spaces. As people call into mobile phones embedded in the cloud to listen to the distant sounds of the sky (including audible electromagnetic phenomena like whistlers and spheres), their mobile phone calls trigger ripples of light reminiscent of rumbling thunder and flashes of lightning. The act of listening changes what people are looking at. The 25m-diameter carbon fiber framework, supported by 1000 extra-large helium balloons, is released from its ground moorings and slowly floats up into the sky like a glowing jellyfish. The balloons function both as buoyancy / flotation devices and as diffusers for the 6 ultra-bright LED lights (which mix to make millions of colors) controlled by individual sensors inside each balloon. The balloons can communicate with each other via infra red; this allows them to co-ordinate to create larger patterns across the entire Sky Ear cloud.

Floatables (2004), a project that responds more directly to urban conditions, developed out of research into the nature of wifi space—the space of 802.11 wireless networks that are popular in homes, offices and cafes. It is a project that questions the distinctions between “public” and “private” space, for it seems that the notion of “public” space is just an illusion: even those parts of urban space that are said to belong to an idealized “general public” have strict conceptions of the kinds of activity that can take place within their boundaries. At the same time, though, the idea of “private” space is also fast disappearing as our sanctuaries from the glare of corporations and governments are infiltrated by technology: information about us leaks out of buildings, seeps out of our devices and is accessible to anyone with the appropriate bit of hardware or software. The data that portrays our lives and lifestyles is accessible by so many individuals and organizations that it can no longer claim to lie outside the “public” domain. Our spaces, physical and virtual, are no longer exclusively our own.

Floatables proposes the introduction of jellyfish-like vessels that drift around cities to create temporary, ephemeral zones of privacy: an absence of phone calls, emails, sounds, smells and thermal patterns left behind by others. Through various electrical systems they are also able to prevent access of GPS devices, television broadcasts, wireless networks and other microwave emissions. Finally, by creating a “blurry barrier” and a ground-plane camouflage pattern, they provide shielding from the unembarrassed gaze of security cameras and surveillance satellites. Floating around urban environments, in the tradition of architecture that tries to break free from the confines of gravity, the vessels provide fleeting moments of private visual space, auditory space and olfactory space—occupants can wander in at will when they happen to catch sight of one nearby. The spaces of absence created here are left to be filled with people’s own sounds, alpha waves, smells and laughter. The vessels are powered mainly by sunlight and wind but are supplemented by inducted electricity from mobile phones and 802.11 networks (in crowded spaces this amounts to several dozen Watts of unexpended power). Buoyancy is achieved by heating or cooling air in a floatation sac, much like hot air balloons. The entire structure can collapse or expand as necessary to alter surface area in response to wind speed and altitude. The vessels have no particular destinations and drift like flotsam around the city. However, they must keep moving because to be discovered by the authorities means almost certain destruction.

Haunt (2004) continues investigations into a non-visual architecture. Using humidity, temperatures and electromagnetic and sonic frequencies that parapsychologists have associated with haunted spaces, this project aims at building an environment that feels “haunted”. To talk about haunted spaces is to talk about two things that are explicitly psychological: the sensation of haunting, which is clearly subjective; and the sensation of space, which again depends on the perspective of the particular occupant of that space. Objective analysis of these perceptions always seems to give conflicting results. However, there are some observed spatial
보건하게 이용자들은 자발적으로 듣고가 볼 수 있다. 플로터블 내부 공간에 부재하는 것은 이용자 자신의 소리, 악과 웨이브, 맘살과 움직음으로 제어가 되게 된다. 이 비행선은 주로 대형빛과 바람에 의해 동력을 얻지만 휴대폰이나 802.11 네트워크를 추가 전력을 공급 받기도 한다(혼합한 공간에서는 전석보다 몇 십 배나 많은 전력 양을 얻을 수 있다). 열기관과 같이 부족은 부양주머니 안의 의상 공기가 다른 공간으로 변화하면서 얻어진다. 공속이나 고통에 반응하여 필요에 따라 전체 구조는 접착강도하고 확장되기도 한다. 이 비행선은 특별한 목적지가 없으며 도시 주위를 방광자 같이 표방한다. 하지만 그것은 계속 운전이어야 한다. 왜냐하면 단국이 발견하면 페기될 확률이 높기 때문이다.

호트(Haunt, 2004)는 비가시적인 건축의 탑구를 지속한다. 이 프로젝트는 초 심리학자들이 이야기하는 유령이 출몰하는 공간과 관련된 습도, 온도, 자기력, 음향주파수를 이용하여, '유령이 나타날 것 같은 불안'을 느끼는 환경을 구축하는 것을 목적하였다. 무엇에 사로잡힌 공간의 이야기는 명백히 심리적인 두 가지에 대한 것이다. 하나는 불안감인데 명백히 두각이 뚜렷한 감각이고, 또 하나는 공간에 대한 감각인데 이것 역시 공간을 점유하는 사람과의 관계에 따라 달라진다. 이러한 인식의 객관적인 분석은 항상 대조적인 결과를 나타내는 듯하다. 하지만 어떤 이들은 공간에서의 흔들 듯한 불안감을 공간적 현상과 함께 연관지으려고 한다. 18Hz나 19Hz 파장의 가정하(可聽下)음향은 우리의 가정 범위를 벗어나지만, 우리의 몸은 그 낮은 잠재적 음향음을 느낄 수 있다. 이러한 파장은 균형의 감각을 뒤寞거나 불편함을 유도한다. 온도에의 낮은 변동폭은 우리 몸을 높게 움직게 하며 명백히 유령이 출몰한다는 공간과 연관되어 왔다. 마지막으로 전자기장이 소위 헛팅(haunting) 지역이라 불리는 곳에서 특별한 역할을 담당한다. 어떤 이들은 근방의 가전기기, 안테나, 전선에서 발생된 자기장이 무언가에 사로잡힌 느낌을 만들었다고 주장하기도 한다. 이 결과 전자기장의 충돌에 충격하는 데스파디스(Despina Papadopoulos)는 유령 사냥꾼들이 사용하는 주요 도구 중 하나가 되었다. 그리하여 이러한 현상이 발견되며, 외형이 있는 장이 나올 때는 파괴적으로 현존하는 자연과 인공물로부터 발생하는 것에 대한 의문이 제기된다. 제시된 본 프로젝트는 현상의 발현을, 신비로운 불안의 인식을 발생에 대한 것을 설명하려 노력하지 않는다. 대신 이 프로젝트는 인간의 인지 심리가 어떻게 공간을 구축하느냐에 초점을 맞춘다. 건축의 행보를 정반대로 저스트는 본 프로젝트는 불편한 공간을 만드는 시도를 할 것이다.

마지막으로 웨어러블 컴퓨터의 디자인 디스파디스(Despina Papadopoulos (5050 LTD))와 함께 작업한 ‘1000 (커뮤니케이션에 관한 작은 정보, 2005)는 기술적으로 통합된 공간에서 기술을 인식하는 몸체를 고려하는 시스템과 기기를 개발하였다. 이 프로젝트는 환경과 사회체, 그리고 기술의 관계를 탐색하기 위한 RFID, GPS, 스마트 مدى스(smart dust)와 스마트 패이브릭(smart fabric)과 같은 현재의 고해레기 기술을 사용한다. 프로젝트의 총체적인 목표는 웨어러블 기기와 인터랙션 하는 공간의 시스템을 작동하는 프로그래밍 개발이다. 현재 우리는 따로 이러한 문제들을 제시하고 더욱 확장된 프로젝트를 위한 초석로서 일반적 인사들은 체험용을 진행 중이다. 몸체 연구의 끝에서는 전기 라비올리(Electric Ravoli)가 진행되며 보편적 인문관련을 비롯한 몇몇 기술에 비교해 탐구하고 있다. 한편 공간 실험으로, 이기적 호메오스타트(Shelfish Homeostat)가 인간이 환경 내부의 공존성에 대해 만족하는 지 또는 이득을 얻는지에 대한 논쟁의 해답을 모색한다.
phenomena that tend to correlate with a haunted sensation in a space. Infrasound, at frequencies of 18 or 19Hz, is just outside our ability to hear, however our bodies can feel these low rumblings subliminally. Such frequencies have been shown to elicit feelings of unease and to upset the sense of balance. Wide fluctuations in temperature, which can make hair stand on end, have been associated with apparently haunted spaces. Finally, electromagnetic fields appear to play a particular role in so-called hauntings. Some have argued that electric fields from appliances, antennae or nearby power cables have created sensations of haunting. As a result of this, the gaussmeter (which measures levels of EMF) is one of the main tools employed by ghost hunters. There are naturally questions regarding whether these phenomena arise out of existing natural and manmade constructions: power stations, draughty windows, leaking pipes. The project proposed here does not attempt to explain how the phenomena arise, or even how they give rise to haunted perceptions. Rather, the project focuses on how the psychology of human perception gives rise to the construction of space. In pursuing the opposite of what architecture is often assumed to be, this project will attempt to make an uncomfortable space.

Finally, 1000 (little tips of communication) (2005), a project developed in collaboration with wearable computing designer Despina Papadopoulos (5050 ltd), will develop a device and a system that account for technologically aware bodies in technologically animated spaces. The project incorporates current and near-future technologies like RFID, GPS, smart dust and smart fabrics to explore the relationship of technology, social bodies and environments. The overall objective of the project is to develop a working prototype of both a “wearable” device and a spatially oriented system with which it interacts. We are currently working on a series of short experiments that address both of these issues separately and act as stepping-stones to a wider project. At the “body” end of the investigations, Electric Ravioli explores circulation patterns and human relationships to non-precious technology. Meanwhile, as a spatial experiment, Selfish Homeostat questions the contention that people would appreciate or benefit from “intelligence” in their environments.

Bibliography

1. For another form of “architecture by non-architects”, see also the work of Eyal Weizman on the ways that military organisation appropriates architectural strategies and re-reads the urban context according to its particular requirements. “The Politics of Verticality”, http://www.opendemocracy.net/debates/article-2-45-801.jsp

2. See, for example, the work of Juhani Pallasmaa.

3. www.glowlab.com

10. Haque Design and Research, www.haque.co.uk

What is my social function? How am I connected and linked to the society? How am I transforming?

Existing without function has no value of existence, existing without connection leads to isolation that such existence may not be recognized as existence, and existing without transformation may not be recognized as physically existing. Hence, identity is defined as awakening the philosophical answers for the reason of one's existence in connection to the society.

Kim Suzung
Professor, Faculty of Crafts and Design
Seoul National University
Identity is a physiognomic quality in particular object being depicted in one’s mind. Each every individual, product, company, and nation has its own physiognomy. (personal identity, product identity, corporate identity, national identity). When identity is configurated by means of appropriate visual analogy what might be called design, it will be precisely perceived, and efficiently communicated.

Chung Siwha
Professor,
Visual Communication Design,
Kookmin University