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Abstract 

Rationale: The clinical application of biomarkers reflecting tumor immune microenvironment is hurdled by 
the invasiveness of obtaining tissues despite its importance in immunotherapy. We developed a deep 
learning-based biomarker which noninvasively estimates a tumor immune profile with fluorodeoxyglucose 
positron emission tomography (FDG-PET) in lung adenocarcinoma (LUAD). 
Methods: A deep learning model to predict cytolytic activity score (CytAct) using semi-automatically 
segmented tumors on FDG-PET trained by a publicly available dataset paired with tissue RNA sequencing (n = 
93). This model was validated in two independent cohorts of LUAD: SNUH (n = 43) and The Cancer Genome 
Atlas (TCGA) cohort (n = 16). The model was applied to the immune checkpoint blockade (ICB) cohort, which 
consists of patients with metastatic LUAD who underwent ICB treatment (n = 29). 
Results: The predicted CytAct showed a positive correlation with CytAct of RNA sequencing in validation 
cohorts (Spearman rho = 0.32, p = 0.04 in SNUH cohort; spearman rho = 0.47, p = 0.07 in TCGA cohort). In 
ICB cohort, the higher predicted CytAct of individual lesion was associated with more decrement in tumor size 
after ICB treatment (Spearman rho = -0.54, p < 0.001). Higher minimum predicted CytAct in each patient 
associated with significantly prolonged progression free survival and overall survival (Hazard ratio 0.25, p = 
0.001 and 0.18, p = 0.004, respectively). In patients with multiple lesions, ICB responders had significantly lower 
variance of predicted CytActs (p = 0.005). 
Conclusion: The deep learning model that predicts CytAct using FDG-PET of LUAD was validated in 
independent cohorts. Our approach may be used to noninvasively assess an immune profile and predict 
outcomes of LUAD patients treated with ICB. 

Key words: Immunotherapy, tumor microenvironment, fluorodeoxyglucose positron emission tomography, 
deep learning, gene expression profile 

Introduction 
Lung adenocarcinoma (LUAD) is one of the most 

benefitted cancers in the era of cancer immunotherapy 
according to several landmark clinical trials 
supporting the use of immune checkpoint blockades 

(ICB), anti-programmed cell death 1 (PD-1) antibody 
and anti-programmed cell death ligand 1 (PD-L1) 
antibody [1–3]. Many of these clinical trials used 
PD-L1 immunohistochemistry (IHC) expression 
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scores as a biomarker to predict responders to ICB. 
Although the higher PD-L1 IHC expression level is 
associated with better response rates, the level alone is 
unsatisfactory for clinicians to refer to as a sole 
biomarker [4]. In this regard, other potential 
biomarkers, including tumor mutation burden and 
tumor-infiltrating lymphocytes, have been 
introduced, and integration of these mechanism- 
based biomarkers has been suggested to accurately 
predict the response to ICB [5,6]. 

However, tissue-based biomarkers have 
limitations to unleash the complexity of inter-tumoral 
heterogeneity, since they mostly rely on a single 
tumor sample from approachable lesion in practice. 
Furthermore, immune-escape mechanism would 
evolve dynamically during anti-cancer treatment; 
thus, it is difficult to identify the current status of 
immune profiles from an archival sample [7,8]. Also, 
each of metastatic lesions would confer unique 
immunogenic profiles, derived from various factors 
including clonal heterogeneity and tumor micro-
environment, and result in different genomic/ 
transcriptomic signature, even in a single patient 
[9-12]. This spatial heterogeneity of the tumor micro-
environment (TME) causes atypical responses to ICB, 
such as simultaneous development of a new lesion 
despite regression of tumor burden [13]. These 
atypical and variable responses are unpredictable 
before the treatment using such tissue-based 
biomarkers of a small subset of the tumor. 

Therefore, to facilitate the understanding in the 
dynamics of all metastatic tumors in real-world 
clinical practice, noninvasive methods to assess the 
immune landscape of tumors are necessary. This may 
be achieved through the application of radiomics 
incorporating medical images and deep learning 
technologies to mine novel data that are associated 
with clinical events [14]. Fluorodeoxyglucose positron 
emission tomography (FDG-PET) is widely used to 
identify primary and all metastatic tumors of the 
whole body at once. As FDG-PET reflects the 
metabolic features of the tumor, which are highly 
associated with the tumor immune microenvironment 
[15–18], the pattern and heterogeneity of FDG uptake 
in the tumor could be related to immune profiles of 
the TME. 

In this study, we developed and validated a deep 
learning-based biomarker to predict an immune 
profile of the TME using FDG-PET and RNA 
sequencing (RNA-seq) data of LUAD. We used 
cytolytic activity score (CytAct) to represent the 
immune profile of TME, as CytAct is associated with 
cytotoxic CD8+ T cell activity against tumor and is 
simple to calculate [19]. We also tried to demonstrate 
if our deep learning model can be applied to predict 

not only response to ICB of individual lesions, but 
also overall response and survival of corresponding 
patients. 

Methods 
Training cohort and validation cohort 

To develop a deep learning model for estimating 
an immune profile in the TME of LUAD, we used a 
publicly available dataset, The Cancer Imaging 
Archive (TCIA) dataset [20], defined in this study as a 
Stanford cohort [21]. The FDG PET imaging data was 
downloaded from TCIA [20], and RNA-seq data was 
downloaded from Gene Expression Omnibus (GEO) 
(http://www.ncbi.nlm.nih.gov/geo/) under 
accession number GSE103584 [21]. 

To validate this model, two cohorts were used; 
one from our center (SNUH cohort) [22], and the other 
from The Cancer Genome Atlas (TCGA cohort). 
Patients with both FDG-PET and RNA-seq data were 
only included in each cohort. The presurgical imaging 
data of SNUH cohort were retrospectively collected 
and the RNA expression dataset of the SNUH cohort 
was available at GEO under accession number 
GSE40419 [22]. The imaging data and RNA expression 
data of TCGA LUAD were downloaded from TCIA 
[20] and cbioportal [23], respectively. 

The ICB cohort consisted of the metastatic LUAD 
patients who received ICB monotherapy outside the 
clinical trial setting and underwent FDG PET 
evaluation within 3 months before the start of ICB. 
Patients with no measurable lesion by Response 
evaluation criteria in solid tumors (RECIST) or no 
available response evaluation were excluded [13]. 
Demographics and treatment history of ICB cohort 
patients were retrospectively reviewed. Lesions were 
measured according to RECIST 1.1, and response 
evaluation was done according to iRECIST criteria 
[13,24]. All lesions were reviewed by 2 medical 
oncologists (C.Y.O. and C.P.) and 1 nuclear medicine 
physician (H.C.) and underwent thorough discussion 
on the consensus of measures. Flow chart for overall 
study design is summarized in Figure 1. 

Choosing target gene expression signature 
CytAct is defined by the mean value of the 

expression of granzyme A (GZMA) and perforin 1 
(PRF1) normalized by z-score, which is easy to 
calculate with RNA-seq data [19]. Although CytAct is 
known to represent cytotoxic CD8+ T cell activity 
against tumor [19], we first evaluated whether CytAct 
would represent the immune profile of TME in the 
training cohort by analyses on correlations of CytAct 
with interferon-γ related profile (IFNG score) and 
Immune score by xCell tool [25,26]. IFNG score was 
calculated by the mean value of the expression of 6 
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genes (IDO1, CXCL9, CXCL10, IFNG, HLA-DRA, and 
STAT1) [25]. Immune score was calculated by using 
the xCell tool (http://xcell.ucsf.edu/) [26]. The 
RNA-seq data of the training cohort was log 2 
normalized before these analyses. 

 

 
Figure 1. Schematic flow charts of overall study design. Deep learning model 
was trained using Stanford cohort (n = 93) with RNA-seq and FDG-PET images to 
predict CytAct. After cross validation and optimization, the model was then applied 
to two independent external validation cohorts; SNUH cohort (n = 43), and TCGA 
cohort (n = 16). To further demonstrate whether the CytAct predicted by our model 
correlates with response to ICB and survival outcome, the model was applied to ICB 
cohort (n = 29), which consists of metastatic lung adenocarcinoma treated with ICBs. 
Abbreviations: FDG PET, fluorodeoxyglucose positron emission tomography; ICB, 
immune checkpoint blockade. 

 

Deep learning model for predicting immune 
profiles 

The overall approach for the development of the 
deep learning model is summarized in Figure 2A. A 
primary LUAD mass was visually identified and 
semi-automatically segmented using an adaptive 
threshold-based method [27]. This tumor 
segmentation process was performed on LIFEx 
software (ver 4.0.0, www.lifexsoft.org) [28]. More 
specifically, the threshold of tumor was defined 
by 𝑇𝑇 = 𝛽𝛽 × 𝐼𝐼70 + 𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 , where I70 is the mean 
uptake value of voxels with an uptake greater than 
70% of the maximum uptake and Ibackground is the mean 
uptake value of background voxels. We set the 
parameter β = 0.3 [29]. A 3D cube-shaped volume that 
included a segmented tumor lesion was used as an 

input for the deep learning model. The architecture of 
the model was based on the 3-dimensional 
convolutional neural network (Figure S1) [30]. To 
overcome the limited number of training data (n = 93), 
image augmentation using random rotations was 
performed. More specifically, image augmentation 
was aimed to develop a robust deep learning model 
against the rotation of tumors which can be affected 
by position and location of tumors. Thus, we 
generated random numbers between 0 and 90 degrees 
and rotated the segmented tumor for three-axes. For 
the training process, fifteen volumes of randomly 
rotated tumors were generated for each iteration of 
the training. Such type of image augmentation is 
commonly used in the training of deep learning for 
natural images as well as medical images [31,32]. The 
target output was cytolytic activity score (CytAct), 
defined by the expression of granzyme A (GZMA) 
and perforin 1 (PRF1) normalized by z-score [19]. 
10-fold cross-validation was applied for the training 
cohort and the two external validation cohorts were 
not used until the model was optimized by the 
training/internal validation sets of the cross- 
validation. More detailed methods for FDG-PET 
image acquisition, tumor segmentation and deep 
learning model generation are available in 
Supplementary Methods. 

Validation of the deep learning model 
FDG PET volumes of the segmented tumor were 

acquired from two independent cohorts with the 
same method applied for the training set and used as 
inputs of the model to predict CytAct. These 
predicted CytAct was compared with CytAct 
calculated by the RNA-seq. For immune cell 
enrichment analysis, the xCell tool (http://xcell.ucsf. 
edu/) [26] was employed, and the RNA-seq dataset of 
each cohort was used as input. Hierarchical clustering 
with distance calculation by Pearson correlation 
coefficient was used to cluster results of immune cell 
enrichment analysis. 

Deep learning-based CytAct estimation in the 
ICB cohort 

The deep learning model was applied to the ICB 
cohort, patients with metastatic LUAD who 
underwent ICB treatment. The whole-body FDG PET 
image before the ICB treatment was used as an input. 
We selected target lesions on the baseline scan by the 
RECIST 1.1 criteria [13]. The minimum size of the 
lesion chosen was 1.5 cm in the short axis for the 
lymph node and 1 cm in the long axis for all other 
lesions. Responders were defined as patients who 
experienced partial response (PR) and nonresponders 
were defined as patients who did not. 
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Figure 2. Generation of the deep learning algorithm. (A) An overview of the process of generating a deep learning algorithm to predict immune profiles of a tumor. The 
FDG-avid primary lung cancer lesion was identified and semi-automatically segmented. This segmented tumor was used as an input of a deep neural network. The target outputs, 
immune profiles, were cytolytic activity score (CytAct) and immune cell enrichment scores as representative immune profiles of the tumor microenvironment (TME) calculated 
from RNA-seq data. (B) Plots showing a Spearman correlation of predicted CytAct and calculated CytAct to demonstrate the performance of our deep learning algorithm 
prediction. In each plot, the X-axis represents predicted CytAct, and the Y-axis represents normalized calculated CytAct based on RNA-seq. From left to right, each plot was 
drawn for the training cohort (Spearman rho value 0.39 and p < 0.0001), our independent cohort with both presurgical imaging and RNA-seq data (Spearman rho value 0.32 and 
p = 0.04), and the TCGA cohort (Spearman rho value 0.47 and p = 0.07), respectively. The dashed line in each plot is a regression line. Abbreviations: TME, tumor 
microenvironment. 

 

Statistical analysis 
To evaluate the correlation of two continuous 

variables, Spearman correlation was used. To 
compare differences of continuous variables between 
groups, two-sided Wilcoxon rank-sum test was used. 
Univariate and multivariate logistic regression 
analysis were used to determine whether predicted 
CytAct and PD-L1 IHC levels were significantly 
associated with size changes of the lesions. To 
evaluate the performance of predicted CytAct in 
discriminating responders and nonresponders, 
univariate logistic regression was performed and area 
under curve (AUC) from receiver operating 
characteristic curve was calculated. For survival 
analysis, the Kaplan-Meier method and log-rank test 
was used. A p-value less than 0.05 was considered as 
statistically significant. All statistical analysis was 

performed with R 3.5.0 (https://www.r-project.org/). 

Ethics 
All data of the SNUH and ICB cohort were 

collected and analyzed after approval of the 
institutional review board (No. 1810-149-983) and in 
accordance with the declaration of Helsinki. 

Results 
Correlation of CytAct with other immune 
expression profiles in the training cohort 

 The CytAct estimated by RNA-seq in the 
training cohort significantly correlated with both 
IFNG score and Immune score (Spearman rho = 0.50, 
p < 0.001 and Spearman rho = 0.66, p < 0.001, 
respectively, Figure S2). These findings indicate that 
CytAct may represent the tumor immune profiles in 
the training cohort. 
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Table 1. Demographics of patients included in the study who 
received ICB 

 Number (%) 
Age Median 64 (Range 38-92) 
Sex  
Male 24 (82.8) 
Female 5 (17.2) 
PD-L1 status  
Positive, ≥ 50% 17 (58.6) 
Positive, 1~50% 9 (31.0) 
Negative 0 (0) 
NA 3 (10.3) 
Received ICB  
Pembrolizumab 10 (34.5) 
Nivolumab 18 (62.1) 
Atezolizumab 1 (3.4) 
ICB administered line of treatment  
1st 5 (17.2) 
2nd 15 (51.7) 
3rd or more 9 (31.0) 
Molecular study  
EGFR exon 19 deletion 1 (3.4) 
EGFR exon 20 insertion 1 (3.4) 
ALK translocation 3 (10.3) 
Othersa 3 (10.3) 
None 21 (72.4) 
Best response  
PR 16 (55.2) 
SD 3 (10.3) 
PD 10 (34.5) 
a: Other genomic alterations include KRAS G13D, RET translocation, MET exon 14 
skipping mutation. 
Abbreviations: ICB, immune checkpoint blockade; NA, not available; PD, 
progressive disease; PD-L1, programmed cell death ligand 1; PR, partial response; 
SD, stable disease. 

 
 

Table 2. Characteristics of 60 tumor lesions in ICB cohort 

 Number (%) 
Type of mass  
Primary 13 (21.7) 
Metastatic 47 (78.3) 
Site of mass  
Lung 20 (33.3) 
Lymph node 17 (28.3) 
Adrenal gland 7 (11.7) 
Bone (Osteolytic lesion with soft tissue 
component) 

6 (10.0) 

Mediastinum 4 (6.7) 
Pleural nodule 3 (5.0) 
Soft tissue 3 (5.0) 

 

Prediction of immune profiles of LUAD by 
deep learning application to PET images 

A total of 93 patients with LUAD had both 
RNA-seq data and FDG PET in Stanford cohort. The 
validation cohorts included 43 patients in SNUH 
cohort and 16 patients in TCGA cohort. The deep 
learning based predicted CytAct was positively 
correlated with the CytAct estimated by RNA-seq in 
the training cohort and this correlation was validated 
in the two validation cohorts (Figure 2B). Notably, the 
predicted CytAct of the training cohort was a pooled 
result of internal validation sets using 

cross-validation. In case of conventional features 
represented by FDG PET, standardized uptake value 
(SUV) showed significant but modest correlation with 
RNA-seq based CytAct or predicted CytAct in the 
training cohort but not in the validation cohorts, and 
metabolic tumor volume (MTV) did not correlate with 
either CytAct or predicted CytAct at all (Figure S3). In 
the meanwhile, the predicted and RNA-seq based 
CytAct positively correlated with the enrichment of 
effector immune cells, including CD8+ T-cells in the 
TME (Figure S4). These findings supported that the 
deep learning model captures patterns related to 
immune profiles apart from conventional FDG PET 
features. 

ICB response prediction using deep learning 
based CytAct in metastatic LUAD 

As both multiple metastatic and primary tumor 
lesions can be noninvasively assessed by whole-body 
FDG PET images, the model was applied to each 
tumor lesion of patients in ICB cohort to predict the 
CytAct. A total of 29 patients with 60 tumor lesions 
were analyzed by the deep learning-based model. 
Demographics of the patients available in Table 1 and 
characteristics of the lesions available in Table 2. In 
these lesions, median predicted CytAct was 0.48, 
ranging from -2.78 to 2.36. The size change of tumor 
lesions after the ICB treatment showed significant 
negative correlation with the predicted CytAct 
(Figure 3A). Notably, a patient who showed 
pseudo-progression and eventually experienced PR 
had lesions with the predicted CytAct higher than the 
median value (Figure 3A, Figure 4). Tumor lesions of 
the patients with progressive disease (PD) showed 
significantly lower predicted CytAct than those of 
patients with PR (Figure 3B). A waterfall plot showed 
higher predicted CytAct was associated with 
decreased size of each tumor lesion (Figure 3C). 

To evaluate whether the predicted CytAct 
provides additional predictive value to PD-L1 
expression, another waterfall plot was drawn with 
PD-L1 IHC expression percentage (Figure 3C). It also 
showed higher PD-L1 IHC expression was associated 
with decreased lesion size. Of note, PD-L1 IHC 
expression was evaluated by one representative lesion 
or archived primary tumor sample that was different 
from metastatic tumor lesions. The predicted CytAct 
showed a weak positive correlation with PD-L1 
expression level (Figure 3D). Multivariate logistic 
regression showed that the predicted CytAct was 
significantly associated with the size change of each 
lesion independent from PD-L1 IHC expression level 
(p = 0.001 for the predicted CytAct and p = 0.051 for 
PD-L1). 
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Figure 3. Predicted CytAct estimated by each tumor lesion on baseline FDG PET before ICB. (A) The relationship between predicted CytAct and the percentage 
(%) size change of each lesion was analyzed. Each dot represents a lesion. The color of dots was determined by the best response of each patient on the ICB treatment. The size 
of dots represents pretreatment tumor size. Predicted CytAct and percentage size change showed a Spearman rho correlation of -0.54 (p < 0.001). The regression line is shown 
with a dashed line. (B) A boxplot shows the comparison of the predicted CytAct of each response group. The boxplots depict median, upper quartile and lower quartile values 
with horizontal segments and 1.5× interquartile range with a vertical segment. The response group was determined by the best response of each patient. Predicted CytAct values 
were significantly different between the PD group and other groups by two-sided Wilcoxon rank-sum test (PD vs SD, p = 0.0002; PD vs PR, p < 0.0001; PR vs SD, p = 0.15). (C) 
A waterfall plot was arranged by size changes in individual lesions. Note that each bar on the same X-axis on upper and lower plots represents the same lesion. The bars in the 
upper plot were colored according to predicted CytAct, while those in the lower plot were colored according to PD-L1 IHC status obtained by patientwise evaluation. Note that 
the lesions evaluated for PD-L1 IHC status were different from the lesions of predicted CytAct, as most PD-L1 IHC data were obtained from archival tissue samples or a 
representative tumor among multiple lesions. (D) A relationship between predicted CytAct and PD-L1 IHC percentage was presented (Spearman rho 0.35 and p = 0.009). In the 
upper plot, each dot represents a lesion. The size and color of a dot represents absolute and relative percentage tumor size change, respectively. The dashed line represents a 
regression line. The lower plot is a boxplot according to PD-L1 IHC status, defined as ‘high PD-L1’ if PD-L1 IHC percentage is 50% or more and low if otherwise. The boxplot 
depicts median, upper quartile and lower quartile values with horizontal segments and 1.5x interquartile range with a vertical segment. The high PD-L1 group had a significantly 
higher predicted CytAct by two-sided Wilcoxon rank-sum test (p = 0.0009). Abbreviations: IHC, immunohistochemistry; PD, progressive disease; PD-L1, programmed cell death 
ligand 1; PR, partial response; SD, stable disease. 

 
As aforementioned that PD-L1 IHC was 

obtained from a tissue that was different from lesions 
evaluated for the predicted CytAct, we next sought to 
evaluate the predicted CytAct with available PD-L1 

expression level for exactly corresponding lesions. A 
total of 9 lesions from 9 patients were available for the 
analysis on the exactly corresponding lesions. Despite 
the small number of samples, it showed a tendency 
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that size change seemed to be associated with the 
predicted CytAct more than PD-L1 expression level. 
There was only weak correlation between predicted 
CytAct and PD-L1 expression level (Figure S5). 

Deep learning-based CytAct as a biomarker 
for predicting outcome of patients treated 
with ICB 

Although the predicted CytAct of each tumor 
lesion showed association with the response to ICB, 
patient-wise response evaluation is needed to 
determine whether a patient would benefit from 
treatment with ICB. Therefore, we sought to evaluate 
whether the predicted CytAct also correlates with 
progression-free survival (PFS) and overall survival 
(OS). Since 19 patients had multiple predicted CytAct 
from multiple lesions, we first tried to define a 

representative predicted CytAct for each patient. We 
hypothesized that one among the minimum, mean or 
maximum value of predicted CytAct from multiple 
lesions of a patient would be suitable for a 
representative predicted CytAct. When we compared 
how well those 3 variables discriminate responders 
from nonresponders, the minimum predicted CytAct 
performed significantly (p = 0.021 by univariate 
logistic regression analysis) and the best (AUC of 
minimum predicted CytAct 0.88, 95% CI: 0.74-1.0 vs. 
AUC of mean and maximum predicted CytAct 0.84, 
95% CI: 0.70-0.98 and 0.74, 95% CI: 0.54-0.93, 
respectively, Figure 5A, Figure S6). Therefore, we 
used the minimum predicted CytAct as a 
representative CytAct of each patient. 

 

 
Figure 4. Images and predicted CytAct of a pseudo-progression case. A 69-year-old female patient diagnosed with LUAD underwent 2 cycles of pemetrexed and 
cisplatin, after which the cancer progressed as shown in the images of the baseline column. The patient then received pembrolizumab, and 1st response evaluation was done after 
1 month. Although the 1st evaluation CT scan showed progression, the patient continued pembrolizumab because the general condition of the patient was clinically improving. 
After 2 more months, a 2nd response evaluation CT scan was done and showed regression of tumor masses. The target lesion is marked with green arrows in the figure. Predicted 
CytAct values as shown below the PET images were higher than 0.107, the value that discriminates responders from nonresponders described later in the manuscript. 
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Figure 5. Association of predicted CytAct with clinical outcomes. (A) A receiver operating characteristics curve shows the performance of minimum predicted CytAct 
of a patient in predicting whether a patient showed partial response (PR) to immunotherapy (AUC = 0.88, 95% CI: 0.74 -1.00). The best value discriminating the PR group is 
shown by a blue dot (Representative CytAct -0.107, sensitivity and specificity at which 0.692 and 1.000, respectively). (B) A boxplot shows a comparison of minimum predicted 
CytAct (representative predicted CytAct) according to the response group by two-sided Wilcoxon rank-sum test (p = 0.0003). The boxplots depict median, upper quartile and 
lower quartile values with horizontal segments and 1.5x interquartile range with a vertical segment. (C) Kaplan-Meier survival curves represent progression-free survival (PFS, 
dashed lines) and overall survival (OS, solid lines) of immunotherapy according to the representative predicted CytAct group. The high and low representative predicted CytAct 
was determined according to the threshold value depicted in Figure 5A. High representative predicted CytAct was significantly associated with prolonged PFS (HR: 0.25 and 95% 
CI: 0.10-0.62) and OS (HR: 0.18 and 95% CI: 0.05-0.67). Censored data are marked with cross segments and numbers at risk are demonstrated on the table at the bottom. (D) 
A boxplot shows differences between responders (PR group) and nonresponders (SD/PD group) in terms of variance of predicted CytAct. The nonresponder group had 
significantly higher variance of predicted CytAct by two-sided Wilcoxon rank-sum test (p = 0.005), implicating that higher heterogeneity in the predicted CytAct was associated 
with nonresponse. The boxplots depict median, upper quartile and lower quartile values with horizontal segments and 1.5x interquartile range with a vertical segment. (E) Three 
plots share the same X-axis with each corresponding to an individual patient. The patients were arranged by CytAct variance in increasing order as shown in the upper bar plot. 
The middle plot consists of all predicted CytAct values, size changes of each lesion and best response harbored by each patient. The lower plot shows PFS of each patient to 
immunotherapy. Bars marked with ‘x’ depict the progression, and a triangle depicts censored data. Abbreviations: AUC, area under curve; CI, confidence interval; CYT, cytolytic 
activity score; HR, hazard ratio; PFS, progression free survival; OS, overall survival; PD, progressive disease; PR, partial response; SD, stable disease. 

 
The representative CytAct was significantly 

higher in patients who experienced PR (p = 0.0003, 
Figure 5B). We divided the patients into 2 groups, 
high CytAct group and low CytAct group, by the 
representative CytAct cutoff of -0.107, the optimal 
point according to the receiver operating 
characteristic curve in Figure 5A. The high CytAct 
group had significantly longer PFS and OS (p = 0.0012, 
HR: 0.25, 95% CI: 0.10-0.62 and p = 0.0042, HR: 0.18, 

95% CI: 0.05-0.67, respectively, Figure 5C). The AUC 
of predicted CytAct in discriminating responders and 
nonresponders in subsets of patients who received 
nivolumab or pembrolizumab were 0.81 and 1.0, 
respectively. For the patient who received atezolizu-
mab, the representative CytAct was -0.121 and the 
best response was SD. 

We additionally analyzed whether the 
intratumoral heterogeneity of the CytAct of each 
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patient was associated with the outcome. More 
specifically, we sought to demonstrate whether the 
predicted CytAct can depict the immune hetero-
geneity in 19 patients with multiple lesions. The 
degree of heterogeneity in each patient was calculated 
by a variance of the predicted CytAct. Notably, 
nonresponders had significantly higher heterogeneity 
in predicted CytAct compared to responders (p = 
0.005, Figure 5D), and univariate logistic regression 
analysis showed a higher degree of heterogeneity was 
significantly associated with nonresponse to ICB (p = 
0.04). The overall predicted CytAct distribution, 
response and PFS of the 19 patients are demonstrated 
in Figure 5E. When the 19 patients were divided into 
high and low heterogeneity groups by the median 
value, the high heterogeneity group had a tendency of 
shorter PFS and OS (p = 0.075, HR: 2.67, 95% CI: 
0.89-7.97; and, p = 0.06, HR: 3.66, 95% CI: 0.87-15.38, 
respectively, Figure S7). 

Discussion 
We developed a deep learning model to predict 

CytAct using a noninvasive whole-body image, FDG 
PET. The predicted CytAct was validated by showing 
a positive correlation with RNA-seq data in the 
independent validation cohorts. When we applied our 
model to patients who underwent ICB, the predicted 
CytAct showed association with the size change in 
each lesion including pseudo-progression. Although 
the correlations and associations were weak, these 
findings implicate that by utilizing larger number of 
cases with PET and RNA sequencing, the approach to 
predict CytAct by PET may be a potentially feasible 
method for noninvasive estimation of the immune 
microenvironment of individual tumor lesions. 

Interestingly, we found that the predicted 
CytAct had consistencies with observations in clinical 
assessments. The finding that the minimum predicted 
CytAct best represented the response and survival of 
a patient may be ascribed to criteria used for the 
response and survival measure, in this case, iRECIST 
[13]. The minimum predicted CytAct as a 
representative biomarker for each patient implicates 
that the least immunogenic lesion may be responsible 
for prognosis and ultimately need to be targeted for 
survival prolongation, consistent with the concept 
that the clone that survives the selective pressure from 
anti-tumor effects eventually becomes the main clone 
and progresses [33]. Additionally, higher hetero-
geneity in predicted CytAct among multiple lesions 
was associated with poor outcomes in our study, 
which may be interpreted as the higher heterogeneity 
of immune profiles implicates the higher chance of a 
resistant clone, which will soon affect patient 
outcomes. 

Recently, many multi-omics studies have 
enlightened the complex relationship between the 
tumor and immune microenvironment. Despite the 
comprehensive understandings of the tumor immune 
microenvironment, bringing these results to clinical 
practice is hurdled by requirements for large 
resources and limited available biopsy samples. In 
particular, it is controversy whether a single biopsy 
truly represents all the characteristics of the tumor as 
genomic, transcriptional and immunologic hetero-
geneity in metastatic lesions may result in ICB 
response heterogeneity [12,34]. Previously reported 
deep learning model predicting tumor-infiltrating 
lymphocytes by evaluation of the TME in histology 
also have a limitation of the requirement of tumor 
biopsy [35]. Therefore, PET-based ICB response 
prediction has strengths in being noninvasively 
applicable and reproducible in the clinic and 
reflecting immunogenic features of all metastatic 
lesions, allowing us to evaluate multiple tumor 
lesions in the current state of a patient and in the serial 
follow-up. In this regard, the noninvasive assessment 
may potentially impact the current clinical practice of 
ICB treatment by supporting conventional biomarkers 
based on the tissue biopsy. 

Our model can be applied to FDG PET data of 
various institutions. Technically, the inputs of our 
model are voxels of FDG PET images rather than 
manually extracted features. Although a few papers 
have tried to develop an algorithm to predict immune 
profiles of the tumor using texture features [36,37], 
which are secondary quantitative values estimated by 
the relationship between voxels, these features have 
intrinsic limitations in repeatability and 
standardization [38,39]. Our model is more reliable 
and reproducible, as it used a semi-automatic tumor 
segmentation followed by normalization with uptake 
values and matching voxel sizes for the input of the 
model. These processes can minimize possible 
variations between centers, machines, and image 
reconstruction methods. For the convenience of 
readers, we provided a demo application on a website 
(https://fdgpetdlimmune.appspot.com) to use our 
model predicting CytAct from FDG PET data. 

Our deep learning model estimated the immune 
profiles by identifying patterns of tumor metabolism, 
although it is hardly demonstrable of how the model 
predicts CytAct from FDG PET. This issue regarding 
interpretability is a limitation of recently developed 
artificial intelligence models applied to medical 
imaging [14,40]. A few studies that attempted to 
predict responders to ICB by machine learning 
algorithms trained by comparing responding and 
nonresponding lesions [36,37] also had such an issue. 
Nonetheless, growing evidence of the association 
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between metabolic profiles and immune profiles of 
the TME [15] support our model that FDG uptake 
patterns could be varied by the profiles of the TME. In 
addition, metabolic interactions that occur in tumors 
and the microenvironment are becoming recognized 
as important in the anti-tumor immune reaction [16]. 
A previous study on FDG uptake patterns in primary 
and secondary lymphoid organs to stratify patients 
who receive immunotherapy also implicate potential 
role of FDG-PET in recognizing immune reaction in a 
patient [41]. Thus, we could assume that neural 
networks look at these complex metabolic profiles and 
interactions to define CytAct as a whole, though we 
should solve the issue of interpretability in the future. 

There are limitations in our study. First, this 
study is a retrospective study with a small number of 
samples and involves CytAct which is not validated 
as a biomarker for ICB response. Due to the small 
number of samples, the correlations of predicted 
CytAct with RNA-seq in the training and validation 
cohorts were weak, and power to discriminate 
responders and nonresponders was not sufficient. For 
example, there were lesions with score around 0 and 
broad range of size changes from high increase to 
high decrease (Figure 3A). Therefore, the accuracy of 
our model needs to be improved with larger 
prospective cohorts with both FDG PET and RNA-seq 
data to be applied real world clinical practice. Second, 
although we found that the predicted CytAct 
performed better than PD-L1 IHC status, more 
comparison by evaluating corresponding lesions is 
required since only 9 matched lesions were available 
in our study. In addition, all patients in the ICB cohort 
had positive PD-L1 IHC, which is due to a national 
insurance policy that only allows ICB for PD-L1 
positive LUAD. Therefore, it would be valuable to 
further validate our model in PD-L1 negative tumors. 
Similarly, whether our model to train an algorithm 
predicting CytAct and immunotherapy response 
would work in cancer types other than LUAD is 
another potential research question to be addressed. 
In addition, the performance of our model based on 
each of different ICBs further need to be explored for 
clinical applicability. Nonetheless, our findings still 
demonstrated a possible method to bridge basic 
research and clinical practice and a potential 
biomarker that can be obtained by widely used FDG 
PET without any additional harm to patients. 

Conclusion 
In conclusion, we developed a potentially 

feasible predictive imaging biomarker using a deep 
learning model to predict CytAct and immuno-
therapy response. Our approach may be used to 
noninvasively assess an immune profile and predict 

outcomes of LUAD patients treated with ICB. Further 
studies to improve the performance of our model with 
larger prospective cohorts and to comprehensively 
evaluate predicted CytAct with other immune 
profiles such as PD-L1 IHC and CD8 T cell infiltrate 
are warranted. 
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