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Abstract 

Background: Metastatic breast cancer (mBC) is a complex and life‑threatening disease and although it is difficult to 
cure, patients can benefit from sequential anticancer treatment, including endocrine therapy, targeted therapy and 
cytotoxic chemotherapy. The patient‑derived xenograft (PDX) model is suggested as a practical tool to predict the 
clinical outcome of this disease as well as to screen novel drugs. This study aimed to establish PDX models in Korean 
patients and analyze their genomic profiles and utility for translational research.

Methods: Percutaneous core needle biopsy or punch biopsy samples were used for xenotransplantation. Whole 
exome sequencing and transcriptome analysis were performed to assess the genomic and RNA expression profiles, 
respectively. Copy number variation and mutational burden were analyzed and compared with other metastatic 
breast cancer genomic results. Mutational signatures were also analyzed. The antitumor effect of an ATR inhibitor was 
tested in the relevant PDX model.

Results: Of the 151 cases studied, 40 (26%) PDX models were established. Notably, the take rate of all subtypes, 
including the hormone receptor‑positive (HR +) subtype, exceeded 20%. The PDX model had genomic fidelity and 
copy number variation that represented the pattern of its donor sample. TP53, PIK3CA, ESR1, and GATA3 mutations 
were frequently found in our samples, with TP53 being the most frequently mutated, and the somatic mutations 
in these genes strengthened their frequency in the PDX model. The ESR1 mutation, CCND1 amplification, and the 
APOBEC signature were significant features in our HR + HER2‑ PDX model. Fulvestrant in combination with palbociclib 
showed a partial response to the relevant patient’s tumor harboring the ESR1 mutation, and CCND1 amplification was 
found in the PDX model. AZD6738, an ATR inhibitor, delayed tumor growth in a relevant PDX model.

Conclusions: Our PDX model was established using core needle biopsy samples from primary and metastatic tis‑
sues. Genomic profiles of the samples reflected their original tissue characteristics and could be used for the interpre‑
tation of clinical outcomes.
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Background
Breast cancer is the most prevalent cancer in women, and 
metastatic breast cancer (mBC) remains a difficult-to-
treat disease, with a 5-year survival rate still below 40% 
[1]. Treatment decisions are largely based on well-classi-
fied molecular markers based on immunohistochemistry 
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(IHC) for hormone receptors (HRs) and IHC with fluo-
rescence in  situ hybridization (FISH) for human epider-
mal growth factor receptor 2 (HER2). However, clinical 
molecular subtyping is insufficient when patients fail to 
respond to standard case therapies, and precise molecu-
lar markers are needed to select targeted drugs for each 
patient and to implement precision medicine [2]. Moreo-
ver, tumor heterogeneity results in differences even in the 
same subtype [3]. Due to insufficient molecular mark-
ers and drug resistance, various chemotherapeutic drug 
combinations used for the treatment of mBC have been 
unsuccessful [4]. Thus, there is an eager need to identify 
novel molecular markers using better techniques and 
understand the characteristics of the individual tumor.

Patient-derived xenograft (PDX) models are known 
to provide a more accurate reflection of tumor biol-
ogy than cell lines [5]. Previous studies have reported 
that established PDX models retain the histological and 
genetic characteristics of their donor tumor; therefore, 
it is assumed that this model has the potential to predict 
clinical outcomes and can be used to screen newly devel-
oped drugs [6]. Moreover, the PDX model is also utilized 
for precision medicine and therapeutic marker discov-
ery. The key technology for precision medicine is high-
resolution sequencing, and the genome data obtained 
from it can provide insight to understand each tumor 
and to select precise treatments. It is not easy to obtain 
a sufficient amount of tumor tissue for multiple analyses 
from metastatic breast cancer; thus, the establishment 
of the PDX model can be a practical solution. Despite 
these advantages, the PDX model also has a few limita-
tions. Primary surgical tissues are usually used to engraft 
the PDX model; hence, PDX models using metastatic tis-
sues are scarce. The difference in take rates between the 
subtypes is also a critical issue. The take rate exceeds 50% 
in triple-negative breast cancer, which is an aggressive 
subtype; in contrast, the take rate in the estrogen (ER)- 
or progesterone receptor (PR)-positive subtype, which 
is relatively indolent, is usually less than 10% [6, 7]. In 
addition, there are still disparities in ethnic and racial dis-
tributions. In previous studies, most PDX models were 
established from Caucasian women, followed by Afro-
American and Hispanic women [8]. PDX models from 
Asian breast cancers are relatively scarce, and their char-
acteristics are underrepresented.

In this study, we report 40 PDX models established 
using percutaneous core needle biopsy or punch biopsy 
samples of Korean patients with mBC. The overall take 
rate was 27%. We analyzed the histological and genomic 
profiles of the patient tumor and engrafted PDX tis-
sues to verify the similarity between the PDX model and 
donor tissue. After PDX establishment, the tumor tissues 
were analyzed using whole-exome sequencing (WES) to 

assess the mutation and copy number variation (CNV) 
patterns. Moreover, to evaluate the potential use of PDX 
in translational research, we tried to apply the informa-
tion from the PDX models to the selection of drugs for 
some patients, and we investigated an inhibitor of ataxia 
telangiectasia and Rad3 related (ATR) using relevant 
models.

Methods
Patient recruitment and tissue collection
Patients diagnosed with locally advanced or metastatic 
breast cancer were enrolled in this study for PDX estab-
lishment and genomic profiling from 2014 to 2017. The 
patient tissues of the primary breast or various meta-
static sites (Additional file 1: Table S1) were acquired by 
percutaneous needle biopsy and placed in RPMI 1640 
tissue culture medium (Thermo Fisher Scientific Inc., 
Waltham, MA, USA) supplemented with 10 U/ml peni-
cillin and 10 µg/ml streptomycin. The maximum portion 
of the tissue was used for mouse transplantation, whereas 
the remaining portion was used for genetic analysis. The 
study protocol was approved by the Institutional Review 
Board of Seoul National University Hospital (SNUH) 
(IRB No.: 1402-054-555).

Establishment of the PDX mouse model
The xenograft experiment was performed after approval 
from the Institutional Animal Care and Use Commit-
tee. NOD.Cg-Prkdcscid  Il2rgtm1Wjl/SzJ (NSG) mice were 
purchased from Jackson Laboratories (Bar Harbor, ME, 
USA). Fresh biopsy tissue was prepared within 30  min 
and was implanted into the mammary fat pad near the 
left leg of NSG mice within 1  h. The mouse was moni-
tored until the tumor reached a size of 200  mm3 or for 
6  months. When the xenograft tumor size exceeded 
200 mm3, tumor xenografts were excised, and the tissue 
fragments were transplanted into other mice to increase 
the number of tumor-bearing mice or were preserved in 
liquid nitrogen for future engraftment. A portion of the 
tumor tissue was fixed in formalin for pathological analy-
sis, and the remaining portion was preserved for genomic 
analysis.

Each sample was named as follows: ’IMT_’ or ’T_’ 
stands for patient tumor sample, and ’IMX_’ or ’X_’ 
stands for PDX tumor sample.

DNA extraction, library preparation, and genome analysis
Genomic DNA was extracted from frozen tissue. 
Genomic DNA from PDX and patient biopsy tissues was 
prepared with a DNeasy Blood and Tissue Kit (Qiagen, 
Hilden, German). Genomic DNA from patient blood 
samples was prepared with a Qiagen Gentra Puregene 
Blood Kit. Agilent SureSelectXT Human All Exon V5 
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(Agilent Technology Inc., CA, USA) was used for DNA 
library preparation. All experiments were performed 
according to the manufacturer’s instructions.

WES was performed using the HiSeq 2500 system (Illu-
mina). WES reads were mapped to the combined refer-
ence for human GRCh19 and mouse mm10 genome 
versions using BWA [9]. We used a combined refer-
ence, as mixed samples from different species could be 
obtained. Multiple mapped reads were discarded because 
they likely span the human and mouse references. Then, 
we separated BAM files using the human reference to 
obtain human specific reads. Additional preprocessing 
followed the recommendations of the Genome Analysis 
Tool Kit (GATK) [10]. The genomic data analysis process 
is depicted as a flow chart in Fig. 1.

The mean depth of our sequencing data was 150X in 
the tumor tissue of the patient and the PDX and 100X 
in the blood sample. The samples achieved an average of 
97.87% of the targeted exome bases covered to a depth of 
10X or greater. The detailed information on sequencing 
data from individual samples is attached in Additional 
file 2.

Variant calling and copy number alteration analysis
Single nucleotide polymorphisms (SNPs) and small 
insertions and deletions (Indels) were analyzed using 
MuTect (1.1.7) and IndelGenotyper provided by GATK 
(3.6.0), respectively [11]. Variants with at least four read 
depths were selected, and the nonsilent somatic mutation 
was assessed using an in-house filtering method (total 
depth ≥ 4, exonic splicing, or nonsynonymous SNV or 
frameshift InDel or population DB frequencies ≤ 0.01). 
Additionally, various population study databases (ExAC 
(Exome Aggregation Consortium) [12], esp6500 (Exome 
Sequencing Project v. 6500) [13], and the 1000 Genomes 
project [14]) were used to filter common variants. We 
distinguished germline mutations by paired sequencing 
of blood samples. Moreover, we investigated whether 
the CNVs were maintained in the PDX models. CONI-
FER [15] was used to enumerate the read fragments in 
the WES data. The logarithm of blood and tumor sam-
ple sequencing data was used for CNV analysis, and the 
somatic CNVs were segmented with “DNA copy.” B allele 
frequencies (BAFs) were selected by MuTect and visual-
ized with Integrative Genomics Viewer (IGV).

Fig. 1 Flow chart of WES and transcriptome data processing. Detailed information on the data mapping process and the variant calling process is 
given
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Mutational signature analysis
The mutational signature was analyzed using decon-
structSigs [16], which allows an individual analy-
sis of each sample. The mutation fractions were 
calculated from the somatic mutations from each sam-
ple. Extracted signatures were characterized based on 
96 trinucleotide contexts. To efficiently distinguish the 
signature, cosine similarity was obtained by compari-
son with the COSMIC signatures [17].

RNA sequencing and normalization
The tumor tissues obtained from the PDX were used 
for transcriptome sequencing. TruSeq v2 (TruSeq RNA 
Library Prep Kit v2, Illumina Inc., CA, USA) was used 
to prepare the RNA library. Transcriptome sequencing 
data were mapped to the same reference as WES data 
using STAR aligner [18]. Subsequent processing was 
performed as the Best Practices workflow for RNA-seq 
using GATK. Gene expression levels were quantified 
for BAM files by fragments per kilobase of exon per 
million mapped reads (FPKM) using HTSeq-count [19]. 
The transcriptome data analysis process is depicted as 
a flow chart in Fig.  1, and the detailed information of 
transcriptome data from individual samples is attached 
in Additional file 2.

The transcriptome data were used for subtyping the 
PDX samples into 4 subtypes (luminal A, luminal B, 
HER2-enriched, and basal like) according to previous 
methods [20].

Differentially expressed genes and ontology analysis
The DESeq2 algorithm was used to determine the 
expression level change between ESR1-mutant and 
ESR1 wild-type HR + samples [21]. g:Profiler, which is 
a web-based tool, was used to evaluate the ontology to 
identify the different pathways and their mechanisms 
[22], and REVIGO was used to reduce ontologies [23].

Antitumor efficacy study of targeted agents using PDXs
AstraZeneca provided AZD6738, an ATR inhibitor 
[24]. This drug was administered by oral gavage once 
daily at a concentration of 50  mg/kg for 4  weeks. The 
tumor was measured every other day using calipers, 

and the volume was calculated with the following for-
mula: [(width)2 × (height)]/2. Following 4 weeks of drug 
treatment, the mice were monitored to assess tumor 
growth.

Results
Patient characteristics
In total, 151 core needle biopsy tissues were obtained 
from 130 patients between 2014 and 2017 for the estab-
lishment of PDXs. The enrolled patients presented with 
locally advanced breast cancer or mBC during tissue 
collection. Of the 151 tissues, 38 were collected from 
the primary breast tumor site, and 113 originated from 
various metastatic tissues. The tumor subtype based 
on estrogen receptor (ER), progesterone receptor (PR), 
and HER2 expression was determined by IHC (aided 
by FISH for HER2). The HR + HER2- subtype was the 
most commonly observed (64/151, 42.4%), whereas 
the prevalence of the HR + HER2 + subtype was the 
lowest (18/151, 11.9%). Most of the tumor histologic 

Table 1 Characteristics of the PDX specimen

a The number of enrolled patients was 130

Characteristic Number 
of samples 
N = 151a(%)

Age (years)

 Median (range) 53 (28–78)

Biopsy site of origin

 Primary site (Breast) 38 (25%)

 Metastatic site 113 (75%)

Tumor subtype

 HR + HER2‑ 64 (42.4%)

 HR + HER2 + 18 (11.9%)

 HR − HER2 + 28 (18.5%)

 TNBC 41 (27.2%)

Histologic subtype

 Invasive ductal carcinoma 140 (92.7%)

 Invasive lobular carcinoma 7 (4.6%)

 Mixed ductal and lobular carcinoma 3 (2.0%)

 Metaplastic carcinoma with matrix‑producing and 
squamous cell carcinoma

1 (1.3%)

Fig. 2 The statistics of PDX model establishment and fidelity between the PDX model and donor. a The total numbers of enrollment and take cases 
and those subdivided (enrollment cases and take cases) are represented by a bar graph. The take rate is also marked. b The take rate by tissue origin 
is represented by a bar graph. c The take rate by Ki‑67 expression in patient tissues is represented by a bar graph. d The subtype composition of 
the established PDX model and its tissue of origin. The subtype was compared with PDX IHC analysis and clinical records. e The somatic mutation 
patterns of the patient tissue and its corresponding PDX model. The case number with IMT indicates the results of patient tissue analysis, and 
the case number with IMX indicates the results of PDX tissue analysis. The list of genes is ordered by mutational frequency, and the number of 
somatic mutations of each sample is marked in the figure. f CNV concordance between patient and PDX tissues. The correlation was determined by 
Pearson’s correlation analysis using the log2‑fold change value of each sample

See firure on next page
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types were infiltrating ductal carcinoma (IDC, 140/151, 
92.7%), 7 (4.6%) were invasive lobular carcinoma (ILC), 
and 3 (2.0%) represented a mixture of IDC and ILC 
(Table 1). The characteristics of each individual and the 
corresponding PDX model are presented (Additional 
file 1: Table S2).

The established PDX model was concordant with the tissue 
of origin
The PDX take rate in our system was 26% (40/151). 
We subdivided this rate according to the tissue sub-
type. The TNBC subtype exhibited the highest take rate 
(34%). Notably, the take rate of all subtypes exceeded 
20% (Fig. 2a). The take rate of the PDX model using pri-
mary tissues tended to be higher than that using meta-
static tissues (37% (14/38) vs. 23% (26/113), p = 0.114), 
although the difference was not statistically significant. 
The absolute case numbers were higher in the metastatic 
model (Fig. 2b). In particular, the take rate of the TNBC 
subtype using primary tumors was 60% (9/15), but that 
using metastatic site tumors was 19% (5/26). We further 
analyzed whether the degree of Ki-67 expression was rel-
evant to the PDX take rate. Among the 151 cases, 85 were 
available for analysis. We divided these cases into two 
groups based on the median degree of Ki-67 expression 
(n = 15). The take rate was more than twice in the group 
of 15 and above compared to the other group (Fig.  2c). 
The histological characteristics were approximately 
90% concordant between the primary and PDX tumors 
(Fig. 2d, Additional file 1: Fig. S1a).

The somatic mutation pattern was inspected to con-
firm the similarity between the PDX model and patient 
tissue (Fig.  2e). This result demonstrated that the PDX 
and patient genomes presented considerably identical 
mutations. We further analyzed whether the CNVs were 
altered in the PDX model. Using Pearson’s correlation 
analysis, we compared the CNVs between patient tumors 
and PDX tumors. As presented in Fig. 1f, the overall CNV 
patterns were well correlated between the tissue of origin 
and the PDX model (Additional file  1: Fig.  S1c). These 
results indicate that our metastatic breast PDX model has 
high concordance with its origin.

Genomic alterations in PDX samples
The genomic variations in the PDX samples were 
analyzed using WES. We found that 6094 nonsilent 

mutations led to insertions and deletions. The range of 
nonsilent mutation counts in individual samples var-
ied from 24 to 631. Next, we arranged the mutated gene 
list from high to low frequencies (Fig. 3a). TP53 was the 
most commonly mutated gene among our samples, with 
a mutation rate of 64.7%. Unlike TP53, the mutation 
rate of other genes did not exceed 20%. The frequency 
of PIK3CA mutations was 17.6%, ESR1 mutations were 
detected in 15% of all samples, and GATA3 mutations 
were detected in 15% of all samples.

To evaluate the features of our models, the public data-
sets were analyzed and compared with our data. Specifi-
cally, 145 cases were from “the metastatic breast cancer 
project” [25], and 216 cases were from “the SAFIR01, 
SAFIR02, SHIVA, or Molecular Screening for Cancer 
Treatment Optimization (MOSCATO) prospective tri-
als” [26]. The mutation frequencies of TP53, KMT2C, 
and ESR1 were higher in our model, but the mutation 
frequency of PIK3CA was relatively low (Additional file 1: 
Fig. S2a). To eliminate the sample number differences of 
each subtype in the individual dataset, the mutation fre-
quencies of three representative genes from each dataset 
were compared according to the subtypes. As presented 
in Fig.  3b, the frequency of TP53 and ESR1 mutations 
were significantly higher in our dataset compared with 
other datasets, whereas the frequency of PIK3CA muta-
tions was lower. The mutation burden of our model 
was significantly higher than that of the other datasets 
(Fig. 3c). A comparison of the allele frequencies between 
the patient and PDX tumors revealed that the germline 
and somatic alterations in breast cancer-related genes 
were stably conserved and amplified in the PDX tumors 
(Fig. 3d).

ESR1 mutation and CCND1 amplification were frequently 
detected in the HR + PDX model.
Establishment of the HR + HER2- breast cancer PDX 
model was challenging, and the take rate was 2–6.7% [7, 
8]. The take rate of the HR + HER2- PDX model was 22% 
(14/64) in our study. Two cases originated from the same 
patient; thus, we analyzed 12 cases of the HR + HER2- 
PDX model. As presented in Fig. 4a, among the 12 PDX 
cases, 5 (41%) harbored the pathogenic ESR1 mutation, 
which was more frequently detected in our HR + HER2- 
PDX model than in a previous model (Fig. 3b). Interest-
ingly, CCND1 amplification was associated with the ESR1 

Fig. 3 Genomic profile characteristics of the Korean metastatic breast PDX model. a Somatic mutations in our PDX model are arranged according 
to frequency. The samples are arranged by their subtype. The mutation burden of each sample is also presented. The genes are listed according to 
their mutation frequency, from high to low. b The mutation frequencies of TP53, PIK3CA, and ESR1 were analyzed by subtype and are represented 
by a bar graph (a comparison with the other datasets is also shown). c Mutation burden of each subtype. d The mutation frequency of actionable 
mutation genes. The mutations that were detected in the patient and PDX tumor samples derived from the same patient were compared

See firure on next page
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mutation by Fisher’s exact test (Fig. 4b, p = 0.0289). Fur-
thermore, CCND1 expression was elevated in the ESR1-
mutated PDX model (Fig. 4c).

APOBEC3B expression was elevated in luminal B subtype 
and PIK3CA‑mutant samples
Recently, mutational signature analysis has been widely 
used to understand the mutation patterns and underlying 
biological processes. We performed mutational signature 
analysis to determine whether our PDX model has a spe-
cific mutational signature. The highest and second high-
est signatures based on cosine similarity were used for 
clustering. The APOBEC (COSMIC signatures 2 and 13), 
CpG (COSMIC signature 1), MSI (COSMIC signature 6), 
and BRCA (COSMIC signatures 3 and 8) signatures were 
prominent in our models (Fig.  5a). In particular, signa-
ture 3 was dominant in the TNBC subtype, whereas the 
APOBEC signature was prominent in the HR + HER2- 
subtype, following signature 1 (Fig. 4d).

Since APOBEC3B is reported to promote breast cancer 
cell growth depending on the ER status [27, 28], we ana-
lyzed the correlations between the APOBEC signature 
and success rate of the establishment of the HR+ HER2- 
PDX model. Among the 12 HR+ HER2- PDXs, 5 (41.7%) 
had a clustered APOBEC signature. A previous study 
reported that APOBEC3B expression is associated with 
poor clinical outcomes and proliferative features [29]. 
Accordingly, we further analyzed APOBEC3B expression 
in our model. Initially, we observed that samples with 
the APOBEC signature presented high transcription lev-
els of APOBEC family genes. Only the expression level 
of APOBEC3B showed differences among all APOBEC 
family gene groups, and the APOBEC group showed the 
highest level (Additional file  1: Fig. S3a). The results of 
our APOBEC3B expression analysis revealed differences 
between each subtype and PIK3CA mutation. We divided 
the cases into 4 subtypes (luminal A, luminal B, HER2-
enriched, and basal like) using transcriptome sequencing 
data from the PDX samples [20]. APOBEC3B expression 
was the highest in the basal-like subtype, followed by 
luminal B, HER2, and luminal A (Fig. 4e). This result indi-
cated that our HR + HER2- PDX model exhibited aggres-
siveness. The relationships between APOBEC activity 
and PIK3CA mutations have been reported in a previous 
study [30]. In our PDX model, all PIK3CA-mutant cases 
except for one case clustered in the APOBEC signature. 

Moreover, APOBEC3B expression was higher in the 
PIK3CA-mutated samples than in the wild-type samples 
(Fig. 4f ). Therefore, our HR + HER2- PDX model showed 
an APOBEC-related signature and elevated expression 
of APOBEC3B. The PIK3CA mutation seems to cor-
relate with signatures 2 and 13 and the expression of 
APOBEC3B.

Clinical implications of the PDX model
After performing genomic profiling of our established 
PDX model, we examined the clinical application of the 
PDX model and analyzed its genomics.

To demonstrate that PDX genomic profiling can pre-
dict the clinical outcome of a disease, we analyzed the 
genetic features of IMX-158 cases originating from a 
metastatic liver specimen of a patient who received vari-
ous endocrine therapies, including tamoxifen, letrozole 
and exemestane with everolimus. The IMX-158 PDX 
model harbored two ESR1 mutation sites in L536H and 
D538G (Fig. 5a), with CCND1 amplification (Fig. 5b). The 
donor of the IMX-158 model was treated with fulvestrant 
and the CDK4/6 inhibitor palbociclib. After 4  months 
of treatment, the patient achieved partial response by 
RECIST 1.1 (Fig.  5c). The maximal standardized uptake 
value (SUV) with FDG PET/CT was reduced from 8.6 to 
6.0 in the liver and 6.8 to 2.5 in the pelvic bone during the 
treatment. At 15 months, the disease progressed in previ-
ously noted bone lesions (maximal SUV from 3.6 to 5.1). 
Our patient had a longer PFS duration than those in the 
fulvestrant plus palbociclib group in the phase III PAL-
OMA-3 trial, with a median PFS duration of 9.5 months 
(95% CI 9.2–11.0 months) [31, 32], and these data suggest 
that CCND1 amplification and the ESR1 mutation might 
affect the long-term benefits of treatment. Moreover, the 
genomic analysis of the PDX model may facilitate inter-
pretation of the clinical outcome of a certain treatment.

The X89 model was established from ER + HER2 + sub-
type mBC. The donor of X89 was treated with several 
anti-HER2 therapies, including trastuzumab, lapatinib, 
and margetuximab (MGAH22). The WES data of the 
PDX model revealed ERBB2 amplification, similar to the 
patient data (Fig.  5d). Moreover, this model conferred 
the somatic mutations ATR  E1986K and BRCA2 E1734K 
(Fig.  5e, Additional file  1: Table  S3). Biological func-
tion was not reported initially in these two mutations; 
however, they were revealed to play a pivotal role in the 

Fig. 4 Significant features in the HR + PDX model. a ESR1 mutations in the HR + PDX model. b CCND1 amplification was analyzed by Fisher’s exact 
test in all of our PDX models. c The FPKM values of the CCND1 gene were analyzed, and those from ESR1‑mutated samples and wild‑type samples 
were compared. d Mutation signature analysis was performed, and the signatures were clustered. The signatures depict the 1st and 2nd highest 
cosine similarity. e, f APOBEC3B expression is presented as its FPKM value by subtype (e) or the PIK3CA gene mutation (f)

(See figure on next page.)
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Fig. 5 Utility of PDX genomic data and in vivo drug tests for clinical implications. a ESR1 mutation site and its domain in the IMX‑158 sample. b 
CNV in the IMX‑158 sample. c PET scan of the donor of the IMX‑158 sample. Baseline indicates before the initiation of palbociclib and fulvestrant 
treatment. The best response was observed four months after initiation. White arrows indicate hypermetabolic lesions in the liver and pelvic bone. d 
CNV in the X89 sample. e ATR mutation site and its domain in the X89 sample. g The X89 PDX model was treated with the ATR inhibitor AZD6738 for 
4 weeks. The tumor volumes are presented as graphs
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DNA repair pathway. Thus, we adjusted for the ATR 
inhibitor in this model to evaluate drug efficacy. PDX 
tumor growth was delayed in the ATR treatment group 
compared with the vehicle group (Fig. 5f ). These results 
indicate that the administration of an ATR inhibitor to 
ATR-mutated tumors could be a good treatment option. 
Additionally, PDX models could be a useful tool for test-
ing drug sensitivity in vivo and provide strong evidence 
to expand the drug’s clinical indications.

Discussion
Breast cancer is highly heterogeneous, not only across the 
patient population but also in intratumoral features. The 
NGS technique has been used to understand the behav-
ior of breast cancer, and the genomic alterations involved 
in tumorigenesis or tumor progression have been exten-
sively described; however, these efforts focused only 
on early-stage breast cancer [33, 34]. Although several 
mutation profiles of mBC are available [26], they are 
insufficient to completely understand breast cancer char-
acteristics. Moreover, numerous novel agents have shown 
better responses than those used previously, but the 
response rate to systemic chemotherapy is approximately 
50% to 90% for primary tumors [35]. Thus, it is essential 
to reveal the genomic profile of metastatic tissue and to 
explore an efficient therapeutic strategy for patients with 
mBC.

The PDX model is known to play a pivotal role in 
retaining the molecular and biological features of 
donated tumor tissue [8]. The CNV and exome sequenc-
ing data demonstrate high fidelity between the paired 
samples [6]. Moreover, drug efficacy tests using the PDX 
model have shown promising results; a test of cetuximab 
and gemcitabine using the PDX model yielded results 
similar to those obtained in clinical trials [36–38]. Nev-
ertheless, the PDX model has certain limitations. As not 
all PDX implantations lead to PDX model establishment, 
an improvement in the PDX take rate is a major issue. In 
particular, because of the low take rate of the HR + HER2- 
PDX model, reports analyzing genomic and ethnic diver-
sity in the HR + HER2- model are not sufficient. In this 
study, we report a take rate of 26% using core needle 
biopsy specimens (Fig. 2a). In contrast to previous stud-
ies [6, 7, 39, 40], the take rate of the HR + HER2- PDX 
model in our system was significantly high (22%). The 
patients enrolled in this study had mBC, which is con-
sidered an aggressive form of breast cancer. Among the 
established PDX models, 67.6% of donor tumor tissues 
were histology grade 3. In addition, we aimed to create 
an efficient and rapid system to establish PDX models. 
Most (86%) fresh tumor biopsy tissues were delivered to 
the implant team within 30 min and implanted within an 

hour. We speculate that these factors might have affected 
the elevated take rate in our system.

Model fidelity was analyzed between the paired tumor 
tissues from donors and those from the PDX model. 
The tumor subtype based on the IHC results showed 
90% concordance (Fig.  2d). The somatic mutation and 
CNV fidelity between the donor and PDX models were 
also well matched (Fig.  2e, f ). The take rate of the pro-
liferative tumor was higher in our PDX model (Fig.  2c). 
Additionally, we further analyzed the Ki-67 index in the 
HR + HER2- PDX model, and the Ki-67 index was higher 
in graduation cases than in fail cases (Additional file  1: 
Fig. S1b). The PDX model presented a higher frequency 
of TP53 and ESR1 mutations, as well as a higher tumor 
mutation burden than other metastatic regimens. The 
somatic mutation allele frequency tended to be higher in 
the PDX model. This might have been due to clonal com-
position changes or as a result of increased human tumor 
DNA purity in the PDX model [6].

We also analyzed the RNA expression pattern using 
PDX tumor tissue. Unsupervised hierarchical cluster-
ing analysis revealed that each sample was clustered 
by its respective subtype (Additional file  1: Fig. S4a). 
HR + HER2- and HER2 + samples tended to cluster into 
one group, whereas the TNBC samples clustered into 
another. We further analyzed ontologies based on the 
differentially expressed gene (DEG) analysis (Additional 
file 1: Fig. S4b). g:Profiler was used to analyze and deduct 
ontologies using REVIGO. Enriched pathways were asso-
ciated with blood vessel development, cell proliferation, 
cell adhesion, and extracellular matrix organization. In 
contrast, the pathways related to cell projection organiza-
tion and hormone transport were downregulated (Addi-
tional file  1: Fig. S4c). In general, the RNA expression 
profile tended to cluster based on the subtype of each 
sample, and the proliferation and cell adhesion-related 
ontologies were upregulated in the TNBC-dominant 
cluster.

Our HR + HER2- PDX model is better established than 
the previously reported PDX model using therapy-naïve 
biopsy samples (22% vs 6.7%, [7]). Among the 12 hor-
mone-positive PDX models, 5 harbored ESR1 mutations 
(41%). Moreover, all mutations that we found are known 
pathogenic mutations (L536H, Y537S, and D538G). The 
donors of our PDX model were usually heavily pretreated 
using many lines of therapy, including aromatase inhibi-
tors. The mutational burden of our PDX model tended 
to be higher than that of the database. This also might 
have contributed to the high take rate in this study. As 
the amount of the needle biopsy specimen was limited, 
we did not have available remaining tissue for the failed 
cases.
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The APOBEC signature and the high expression of 
APOBEC3B were prevalent in our PDX model. The 
HR + HER2- PDX model clustered into aging- and 
APOBEC-related signatures, and the mutation pat-
terns were also matched. Moreover, APOBEC3B 
expression was upregulated in the luminal subtype 
and PIK3CA-mutated samples. The PIK3CA mutation 
samples were clustered into signatures 2 and 13. The 
relationship between the APOBEC signature and the 
PIK3CA mutation is well reported, but that between 
APOBEC gene expression and the mutational signature 
remains unclear. From the recent report of Cescon DW 
et  al., APOBEC3B expression is related to a lack of ER 
expression and to the expression of key proliferation-
associated genes (AURKA, MK167 and CCNB1) [27, 
29]. Based on these data, we surmised that the meta-
static tissue of HR + HER2- tumors tends to have a 
more aggressive phenotype; thus, the take rate of our 
HR + HER2- PDX was higher than that described in 
previous reports.

The PDX model can be efficiently used for translational 
research. IMX-158, an ER + HER2- breast cancer model, 
harbors an ESR1 mutation and CCND1 amplification. 
The ESR1 D538G mutation was reported to promote the 
estrogen-independent activation of estrogen receptor 
[41]. Moreover, mBCs with ESR1 mutations are associ-
ated with a poor prognosis and are not highly responsive 
to aromatase inhibitors [42]. However, this mutation 
was shown to elicit a response to fulvestrant treatment 
in mouse models and in clinical trials [43]. In addition 
to the ESR1 mutation, CCND1 amplification might also 
affect treatment decisions. Cyclin D1 is a binding partner 
of CDK4/6, the target of palbociclib, and regulates the 
cell cycle in G1 phase [44]. Cyclin D1 is a transcriptional 
target of ER [45], and CCND1 amplification is found in 
15% of breast cancers [46]. Moreover, over 50% of breast 
cancer cells overexpress cyclin D1 [46]. The response 
to palbociclib in cell lines is associated with cyclin D1 
expression [47]. Based on these studies, the donor of this 
model was treated with fulvestrant and palbociclib. This 
patient experienced a prolonged progression-free sur-
vival (PFS) duration of 15 months, which was longer than 
the median PFS duration reported in the PALOMA-3 
trial (9.5  months; 95% CI 9.2–11.0  months). This case 
highlights that genomic analysis of the PDX model can 
be utilized for treatment selection and the prediction of 
clinical outcomes. Moreover, the PDX genomic profile 
and the PDX model itself can contribute to translational 
research. In drug tests using X89, an HR- HER2 + PDX 
model, genomic analyses of the PDX model could be used 
to expand a drug’s indication to unknown somatic muta-
tions. These results also implicate that our PDX models 
could be helpful to test the sensitivity of specific drugs 

in vivo and provide some evidence to facilitate their clini-
cal application.

Conclusion
A hormone-positive breast cancer PDX model was estab-
lished in this study. The genomic profile of PDX tissue 
well reflects the characteristic of donor tissue. The ESR1 
mutation, CCND1 amplification, and the APOBEC sig-
nature, which represent the aggressive phenotype, are 
outstanding in our HR + HER2- PDX model. Moreover, 
our PDX model proved its potential for use in clinical 
implications.
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