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Evaluation of image partitioning 
strategies for preserving spatial information 
of cross-sectional micrographs in automated 
wood recognition of Fagaceae
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Abstract 

Although wood cross sections contain spatiotemporal information regarding tree growth, computer vision‑based 
wood identification studies have traditionally favored disordered image representations that do not take such infor‑
mation into account. This paper describes image partitioning strategies that preserve the spatial information of wood 
cross‑sectional images. Three partitioning strategies are designed, namely grid partitioning based on spatial pyramid 
matching and its variants, radial and tangential partitioning, and their recognition performance is evaluated for the 
Fagaceae micrograph dataset. The grid and radial partitioning strategies achieve better recognition performance than 
the bag‑of‑features model that constitutes their underlying framework. Radial partitioning, which is a strategy for 
preserving spatial information from pith to bark, further improves the performance, especially for radial‑porous spe‑
cies. The Pearson correlation and autocorrelation coefficients produced from radially partitioned sub‑images have the 
potential to be used as auxiliaries in the construction of multi‑feature datasets. The contribution of image partitioning 
strategies is found to be limited to species recognition and is unremarkable at the genus level.
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Introduction
In the field of wood science, there is a growing interest in 
computer vision (CV)-based wood identification. Appli-
cations of CV are expanding from automated wood iden-
tification systems to wood anatomical approaches [1–4]. 
The recent emergence of open wood image databases, 
such as the forest species database of the Laboratory of 
Vision, Robotics and Imaging at the Federal University of 
Parana [5, 6] and the Xylarium Digital Database for wood 
information science and education (XDD) [7], provides 
an opportunity for the further application of CV technol-
ogies in wood science.

Feature extraction from images is the most impor-
tant process in determining the performance of CV-
based wood identification systems. In the classification 
of micrograph datasets, several studies have proven that 
local feature techniques for extracting morphological 
information about wood cells, represented by the scale-
invariant feature transform (SIFT), are superior to tex-
ture features such as the gray-level co-occurrence matrix 
and local binary patterns [4, 8]. Moreover, local features 
encoded within the bag-of-features (BOF) framework [9] 
not only allow indirect quantification of anatomical ele-
ments, but can also improve classification performance 
[4, 10]. However, the CV-based wood identification strat-
egies using micrograph datasets that have been reported 
to date have only focused on the morphological charac-
terization of wood cells and their quantification, neglect-
ing the spatial information among the features extracted 
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from an image. The BOF model basically loses the spatial 
relationship among the features because it represents an 
image as a feature histogram. This characteristic may be 
an advantage for recognizing highly deformable objects 
such as animals, but negatively affects the recognition 
of objects with a fixed shape, such as cars or buildings 
[11]. When using cross-sectional micrographs of wood, 
the spatial information among the wood cells should also 
be considered, because the structure and arrangement 
of the cells within one annual ring exhibit fixed patterns 
between species.

Spatial pyramid matching (SPM) is an image partition-
ing technique that is designed to compensate for the fact 
that BOF does not consider spatial information within 
images [11]. Various SPM models have demonstrated its 
effectiveness in general image classification [12, 13], but 
this approach has not yet been used for wood recogni-
tion. Image patch extraction and blocking techniques 
for automated wood identification have been reported 
[14, 15], but the main purpose of these strategies was to 
reduce computation costs and so they do not preserve 
any spatial information. Application of image partition-
ing techniques in wood recognition may be helpful as it 
preserves geometric information such as cell arrange-
ment and distribution within images.

This paper describes three image partition strategies 
based on SPM, namely conventional SPM, radial-SPM, 
and tangential-SPM, that preserve the spatial information 
of Fagaceae cross-sectional micrographs, and evaluates 
their recognition performance through a comparison 
with other recognition strategies. Radial- and tangential-
SPMs are modified partitioning techniques that preserve 
spatial information in the radial and tangential direc-
tions of an image. In addition, the correlation coefficients 
among the image features in the partitioned sub-images 
and the autocorrelations of each feature are computed to 
evaluate their effectiveness as auxiliary features.

Methods
Dataset
The Fagaceae micrograph dataset from the Xylarium 
Digital Database for wood information science and edu-
cation (XDD_005) was employed to evaluate the image 
partitioning strategies [16]. The dataset contains 18 
species from five genera of the Fagaceae family, and is 
composed of 2446 cross-sectional optical micrographs 
(Table 1). The micrographs were acquired at a low mag-
nification with Olympus™ 2× (0.08NA) PlanApo objec-
tive lens, using a BX51 optical microscope equipped with 
DP73 CCD (charge-coupled device) camera (Olympus, 
Japan). The Fagaceae dataset is well suited for evaluating 
spatial partitioning strategies because it consists of tree 
species with various porosities. All images in the dataset 

are 8-bit grayscale and have a pixel resolution of 4.44 μm, 
corresponding to a size of 600 × 600 pixels. Image pro-
cessing such as the exclusion of specific anatomical fea-
tures or adjustment of the annual ring width was not 
considered to preserve the anatomical diversity of the 
original images.

Recognition procedure
The proposed models follow the recognition pro-
cedures presented in Fig.  1. The XDD_005 dataset 
was split into training and test sets at a ratio of 4:1 
by individual units, rather than by images. The SIFT 
keypoints were extracted from the training set, then 
codewords were generated by mini-batch k-means 
clustering of the keypoints. Subsequently, the images 
were divided into several levels in predefined ways 
for each partitioning strategy. The correlation coef-
ficients among the codewords for the partitioned 
sub-images and the autocorrelation of each codeword 
were calculated, and the correlation data were com-
bined with each feature histogram of the SPMs to 
generate multiple features. The data produced at each 
stage of feature extraction, feature encoding, image 
partitioning, and multiple feature generation were 
input to a support vector machine (SVM) classifier 

Table 1 Fagaceae micrograph dataset in  the  Xylarium 
Digital Database for  wood information science 
and education

# INDV, number of individual trees; #IMG, number of images
a Radial-porous is a subset of diffuse-porous in wood porosity

Genus Species Porositya #INDV #IMG

Castanea crenata Ring‑porous 14 177

Castanopsis cuspidata Ring‑porous 11 148

sieboldii Ring‑porous 11 150

Fagus crenata Diffuse‑porous 13 225

japonica Diffuse‑porous 10 180

Lithocarpus edulis Radial‑porous 9 99

glaber Radial‑porous 3 59

Quercus crispula Ring‑porous 15 266

dentata Ring‑porous 4 39

serrata Ring‑porous 11 116

acutissima Ring‑porous 9 109

variabilis Ring‑porous 7 51

acuta Radial‑porous 13 143

gilva Radial‑porous 9 109

glauca Radial‑porous 12 132

myrsinifolia Radial‑porous 10 168

salicina Radial‑porous 13 188

phillyreoides Semi‑ring‑porous 
(radial pattern)

11 87

Total 185 2446
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to build recognition models. The recognition perfor-
mance of the models when learning the data produced 
in the feature extraction and encoding steps was com-
pared with that of the image partitioning and multiple 
feature strategies. In addition, the recognition perfor-
mance of the VGG16 model [17], a family of convo-
lutional neural networks, on the codeword data was 
used as a benchmark.

Feature extraction and encoding
Local features were extracted from images using the 
SIFT algorithm. The superiority of SIFT has been dem-
onstrated in comparative studies of major local feature 
extraction algorithms in general image classification [18]. 
For wood identification, it has been reported that SIFT, 
which actively detects cell corners, is superior to other 
local feature algorithms [4]. As parameters of the SIFT 
algorithm for feature extraction, the number of layers in 
each octave was set to 3, the contrast and edge thresholds 
were set to 0.06 and 10, respectively, and the sigma value 
of the Gaussian applied to the image at octave number 0 
was set to 1.6.

To encode the SIFT keypoints into codewords, mini-
batch k-means clustering with a processing batch size 
of 100 was applied to all the extracted features [19]. The 
optimal number of codewords (k) was determined by 
threefold cross-validation with various values of k.

Image partitioning
Three different image partitioning strategies based on 
SPM, namely conventional SPM (SPM), radial-SPM 
(RSPM), and tangential-SPM (TSPM), were employed 
to preserve the spatial information in the cross-sectional 
micrographs.

SPM divides the image into a grid with pyramid kernels 
(Fig. 2a). SPM has two partitioning schemes, single level 
and pyramid level. Higher single levels further subdivide 
the image and apply higher weights to the codeword his-
togram of each sub-region. The process of producing the 

feature histogram is performed within the BOF frame-
work, and the histogram at single-level 0 is exactly the 
same as that of the BOF. The pyramid level is a combina-
tion of all previous single levels (Fig. 2e). The computa-
tional efficiency of SPM can be poor because the feature 
dimension increases exponentially as the level increases. 
Therefore, we set the maximum pyramid level to 2.

In this study, we designed RSPM, which partitions 
images along the radial direction of the wood, and TSPM, 
which divides images along the tangential direction, by 
considering the growth process of wood. For RSPM and 
TSPM, only single levels were considered and no pyra-
mid kernel was applied, which resulted in a low compu-
tational cost compared with SPM. The feature histograms 
of sub-images divided at each partition level were con-
nected linearly to preserve the spatial information of all 
sub-regions.

Feature correlations and multi‑feature combination
The sub-images are represented by the codewords, and 
codeword histograms with different patterns for each 
sub-image will be generated. Therefore, the correlations 
among the codewords in the sub-images may provide 
useful image features regarding spatial information from 
cross-sectional images of wood.

From the sub-images of the partitioning strategy that 
achieved the highest recognition performance, we calcu-
lated the Pearson correlation (PC) of the codewords and 
the autocorrelation (AC) of each codeword, and com-
bined them with the codeword histogram of the selected 
strategy. However, if PC and AC were calculated using all 
codewords chosen through k-fold cross-validation, the 
data dimension may increase exponentially. Based on the 
study of Kobayashi et al. [3], which reported good recog-
nition results using the SIFT keypoint-based feature his-
togram with 18 codewords from the XDD_005 dataset, 
we regenerated 18 codewords and used them for the PC 
and AC calculations.

Fig. 1 Pipeline for Fagaceae recognition based on image partitioning strategy
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The PC coefficient takes a value from − 1 to 1, where 
− 1 indicates negative correlation between two vari-
ables and 1 indicates positive correlation. The formula 
for the PC coefficient (r) is:
r =

∑n
i=1

(xi−x)(yi−y)
√

�n
i=1

(xi−x)2
√

�n
i=1(yi−y)

2
 , where n is the sample 

size, xi and yi are the feature vectors (codeword histo-
grams), and x ̄ and ȳ are the means of the vectors. r is 
the covariance divided by the product of the standard 
deviations.

Similar to PC measuring the magnitude of a linear 
relationship between two variables, AC measures the 
linear relationship between time-lagged values in a 
time series data. The formula for AC (rk) is:
rk =

�T
t=k+1

(yt−y)(yt−k−y)

�T
t=1(yt−y)

2
 , where T is the length of a 

time series. For example, r1 measures the relationship 
between yt and yt−1 and r2 measures that between yt 
and yt−2.

The usefulness of PC and AC as auxiliary features 
was evaluated by comparing the recognition perfor-
mance of models trained using multi-feature sets with 
that of models trained using single features.

Data learning and performance metric
The SVM classifier with a radial basis function (RBF) 
kernel was used for wood recognition [20]. To optimize 
the parameters, we set up a grid search with a logarith-
mic grid ranging from  10−3 to  103 for gamma (a Gaussian 
kernel parameter for nonlinear classification) and from 
 10−8 to  10−2 for cost (a parameter that controls the cost 
of misclassification of the training data).

Because the XDD_005 dataset has quite imbalanced 
classes, the F1 score was used as a metric to evaluate the 
performance of the established models. The F1 score is 
the harmonic mean of the precision and recall, and is 
more appropriate than the accuracy for evaluating mod-
els that have been trained using an imbalanced dataset 
[4].

Results and discussion
Determination of the number of codewords
The cross-validation errors produced using various num-
bers of codewords were computed to determine the 
optimal number of codewords. The results showed that 
the minimum error was achieved with 300 codewords. 
Similar errors were produced with larger numbers of 

Fig. 2 Image partitioning strategies based on the SPM kernel. a Cross‑sectional micrograph of Quercus acutissima; b conventional SPM kernel; c, d 
modified SPMs that partition the image into radial (c) and tangential (d) directions; e image partitioning scheme of SPM
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codewords. Indeed, 300 codewords is relatively small 
compared with that for the Lauraceae dataset (XDD_008) 
[21]. In a study on Lauraceae image recognition using the 
BOF framework, the optimal number of codewords was 
found to be 500 [4]. The Fagaceae dataset may require 
fewer codewords because the Fagaceae species have 
more distinctive structures than the Lauraceae species, 
and/or because of the lower pixel resolution of the data-
set. Differences in pixel resolution affect the discrimina-
tive power of feature extraction algorithms. Indeed, at 
the pixel resolution of 4.44 μm tested in this study, some 
morphological structures on small wood fibers appeared 
blurred, but this was not the case in the study using the 
Lauraceae dataset, where the pixel resolution is 2.94 μm 
[4]. In a recognition study of the XDD_005 dataset using 
SIFT keypoints and connected component analysis data 
as image features, there was no significant difference in 
recognition performance between pixel resolutions of 
4.44 μm and 2.94 μm [3]. This may be because many of 
the species in the Fagaceae dataset, particularly Quercus, 
have almost completely closed fiber lumina with thick 
cell walls [22].

Image partitioning models
Conventional SPM
The recognition performance of the SPM model with 
various partition levels is listed in Table 2. In the single-
level cases, the F1 scores decrease as the level increases. 
Interestingly, the highest F1 score of 0.722 is produced at 
pyramid level 1, which is a combination of the histograms 
of single levels 0 and 1. This result suggests that image 
partitioning that preserves spatial information within 
the images is an effective strategy for wood recognition. 
Even though there are subtle inter- and intra-species 
variations, the distribution patterns and types of wood 
cells are broadly stationary and the patterns are repeated 
in the direction from pith to bark in xylem. Owing to 
such structural characteristics of wood cells, preserving 
spatial information is a better strategy than disordered 
representations like BOF. Barmpoutis et  al. [23] also 
reported that horizontal and vertical image patch mod-
els combined with higher-order linear dynamical systems 
within the BOF framework were successful in recogniz-
ing the WOOD-AUTH macroscopic image dataset [24]. 

Partition level 2 was neither cost effective nor perfor-
mance effective.

Modified SPMs
The F1 scores of RSPM, a partitioning strategy that con-
siders the direction of wood growth, and its counterpart 
TSPM are presented in Fig. 3. The RSPM model further 
improves the recognition performance of SPM. At par-
tition level 2 (three sub-regions), RSPM achieves an F1 
score of 0.738, which is the best score of all the partition-
ing strategies tested. In contrast, the F1 scores of TSPM 
continue to decrease as the partition level increases. 
These results confirm that the performance improve-
ment in the conventional SPM model is the result of 
the discriminative power of radial partitioning, rather 
than tangential partitioning. The radial direction con-
tains spatiotemporal information about the growth of 
the wood, whereas the tangential direction does not. It 
was expected that the recognition performance would 
be improved by TSPM for tree species with broad rays 
or radial-porous species, but it was not. Since more than 
half of the species, Fagus and Quercus species, in the 
dataset have broad rays, the features detected from them 
are genus-specific features rather than species specific.

Figure  4 shows confusion matrices for BOF, SPM, 
and RSPM. The confusion matrix of BOF (Fig.  4a) 
was used as a benchmark to evaluate the partitioning 
strategies. Figure  4b, c show the differences between 
the matrices of SPM and BOF and between those of 
RSPM and BOF, respectively. The former indicates 
both improvement and deterioration of recognition in 
various species (Fig. 4b). In particular, the recognition 
results for Fagus crenata, a diffuse-porous species, 
and Quercus serrata, a ring-porous species, exhibit 
relatively strong improvement; whereas, the results for 
Castanopsis cuspidata, another ring-porous species, 

Table 2 F1 scores of the SPM model at single and pyramid 
levels

Level Single Pyramid

0 0.708 –

1 0.704 0.722

2 0.669 0.693
Fig. 3 F1 scores of the RSPM and TSPM models with various partition 
levels
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have deteriorated. Figure  4c, in contrast, exhibits a 
noticeable improvement in the recognition of radial-
porous species. The performance has improved for all 
radial-porous species in the genus Quercus, except for 
Q. acuta.

Lithocarpus glaber was the most difficult species to 
recognize. In all of the models tested, all images of this 
species were misrecognized as Lithocarpus edulis or 
Quercus salicina. Although the recognition improved 
slightly when using the SPM model, it was not enough to 
improve the overall performance. The difficulty in recog-
nizing L. glaber may result from anatomical similarities 
with L. edulis and Q. salicina, insufficient species-specific 
information or image resolution, and/or a lack of learn-
ing about the anatomical diversity of the species in the 
model because of the relatively small number of images. 
In fact, L. glaber is very similar to L. edulis and Q. sali-
cina in terms of anatomical composition, as well as in the 
frequency and maximum tangential diameter of vessels 
[25].

Multi‑feature schemes
To extract additional features from the sub-images of 
RSPM, the AC of each codeword and the PC of the 18 
regenerated codewords were calculated. The AC and PC 
coefficients were combined individually or together with 
the codeword histogram of RSPM with partition level 2 
(R2SPM), which achieved the highest F1 score among 
the models trained using the single-feature set. Conse-
quently, three multi-feature sets were created, and each 
of them was used to establish respective recognition 
models.

In models trained by the multi-feature sets that 
combined AC or PC coefficients with R2SPM data, 
the recognition performance improved slightly from 
that of R2SPM. These models achieved the highest F1 
scores of 0.742 and 0.746 at partition levels 7 and 9, 
respectively (Fig.  5). It is interesting to note that the 
recognition rates of Fagus crenata, Quercus acuta, 
and Quercus crispula, which are diffuse-, radial-, and 
ring-porous species, respectively, improved in the 
feature set combined with PC; whereas in the AC-
combined set, the recognition rates of the ring-porous 
species Quercus serrata and Castanopsis cuspidata 
were particularly improved. Ring-porous species 
have a somewhat different cell composition ratio, 
arrangement, and size between earlywood and late-
wood, because there is a concentration of large vessels 

in the earlywood. As seen in Fig.  6a, b, the different 
positions of earlywood and latewood between given 
images lead to significant differences in the feature 
data produced from the spatial partitioning strategies 
(Fig.  6c). Interestingly, the difference is flattened out 
by AC (Fig. 6d). AC is not only an indicator of changes 
in specific anatomical elements with wood growth, 
but may also contribute to the recognition of ring-
porous species through this property of flattening the 
difference between earlywood and latewood positions. 
The model trained by the multi-feature set in which 
AC and PC were combined together with the R2SPM 
data achieved the best F1 score of 0.750 among all the 
proposed strategies.

Performance comparison
In the process of implementing the SPM-based models, 
feature sets were inevitably produced from the SIFT and 
BOF models. To evaluate the performance of the image 
partitioning strategies, we also established recognition 
models that learned the SIFT and BOF data, as well as 
VGG16, a convolutional neural network model, and com-
pared their recognition performance with the XDD_005 
dataset (Table 3).

From the F1 scores of the strategies presented in 
Table 3, it can be seen that the extraction of more sophis-
ticated features from the wood images results in better 
recognition performance of the model. The codeword 
histogram of the BOF model, which is the quantifica-
tion of features based on the morphological similarity 
of wood cells, is more discriminating in terms of wood 
recognition than the SIFT descriptor, which is the sum 
of the morphological information of the wood cells. Fur-
thermore, the SPMs, which add spatial information of 
the codewords to the histogram of BOF, and especially 
RSPM, which preserves spatial information in the direc-
tion of wood growth, produce even more discriminative 
feature sets. Multi-feature strategies combined with cor-
relation coefficients also help to further improve the rec-
ognition performance.

The image partitioning strategies proposed in this study 
achieve higher F1 scores than the VGG16 model, which 
has reported good results for both wood recognition and 
general image recognition. To achieve good recognition 
performance, deep learning models generally require 
a larger database than conventional machine learning 
models using feature engineering techniques [26]. With 
this empirical fact in mind, the size of XDD_005 may 

Fig. 4 Confusion matrices on the test set for BOF (a), SPM at pyramid level 1 (b), and RSPM at partition level 2 (c). b, c Are confusion matrices of SPM 
and RSPM indicating the difference in the number of images correctly classified compared to that of BOF

(See figure on next page.)
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have been insufficient to allow the VGG16 model to 
achieve good performance.

As seen in Table  4, the genus-level recognition 
exhibits different aspects from the species recogni-
tion. All the established models produce significantly 
better genus recognition than species recognition, 
with F1 scores above 0.9, suggesting that the spe-
cies within a given genus share similar anatomical 

characteristics. The F1 scores of SPM and RSPM do 
not surpass that of BOF. In other words, the image 
partitioning strategies contribute to preserving spe-
cies-specific spatial information, but not genus-spe-
cific spatial information.

Conclusion
Wood recognition models based on spatial parti-
tioning strategies were established to identify cross-
sectional micrographs of Fagaceae species. While 
the SPM and RSPM models achieved improved rec-
ognition performance over that of their underlying 
framework, BOF, the TSPM model did not. The strat-
egy of radial partitioning, which contains spatiotem-
poral information on wood growth, was particularly 
effective for wood recognition, and the performance 
improvement in SPM was mainly the result of the 

contribution of radial partitioning. The AC and PC 
coefficients calculated from the sub-images divided in 
RSPM were found to provide good auxiliary features 
for creating multi-feature sets. However, it is neces-
sary to determine an appropriate tradeoff between 
recognition performance and computation cost, 
because higher levels of image partitioning and multi-
feature combination result in increased computational 

Fig. 5 Recognition performance of multi‑feature schemes with 
various partition levels. R2SPM radial‑SPM with partition level 2, AC 
autocorrelation, PC Pearson correlation

Fig. 6 Flattening of differences in feature intensity caused by the position of early‑ and latewoods by autocorrelation. a, b SIFT keypoints (red dots) 
belonging to a feature cluster representing vessels in Quercus serrata; c feature intensities of the keypoints of images a and b; d autocorrelation of 
the feature intensities in c 
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complexity. Rapidly evolving CV and machine learn-
ing techniques provide a variety of tools that enable 
a better understanding of wood. Therefore, further 
efforts are required to interpret and utilize these tech-
niques from the perspective of wood science.
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