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Abstract

Knowledge bases have been successfully applied to many real world applications

such as question answering, recommender system and natural language understand-

ing. However, building a large knowledge base using human annotations takes a lot of

time, effort, and money. Moreover, it is almost impossible to manually update a large

amount of newly created relational facts in a timely manner. Accordingly, automated

knowledge base construction has attracted a lot of attention over the last decade.

Knowledge fusion is a method to automatically construct knowledge bases from

the entire web. It first extracts information from many web pages by using multiple

relation extractors. Since the collected information is usually noisy due to extraction

errors, knowledge fusion next identifies the correct information by using truth dis-

covery techniques and appends the new information to the knowledge base. In this

dissertation, we focus on extending the coverage and improving the accuracy of the

knowledge fusion process.

With the development of deep learning, many recent works on relation extrac-

tion make use of deep learning techniques to improve accuracy. Since neural relation

extraction models require a large amount of training data, they usually use distant su-

pervision which automatically generates training data by assuming that if a relation

between a pair of entities exists in a knowledge base, all sentences that contain these

two entities express this relation. However, distant supervision inevitably suffers from

the wrong labeling problem which degrades the accuracy of relation extraction. We

develop a method to effectively train relation extraction models by also using human

annotated data to improve their accuracy.

To extend the coverage of relation extraction, we also investigate the problem of

extracting information about the topic entity. The topic entity of a document is the

entity that is mainly described in the document. Since the topic entity is often missing
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from some sentences, existing relation extraction models often fail to find the relations

with the omitted topic entity. To extract those relations, we propose a topic-aware

relation extraction model.

After extracting the relations from web pages, a truth discovery algorithm resolves

the conflicts in the extracted information and identifies the correct information. Ex-

isting works on truth discovery usually assumed that claimed values are mutually ex-

clusive and only one among them is correct. However, many claimed values are not

mutually exclusive due to their hierarchical structures and so we need to take account

of the hierarchical structure to infer the truths. We propose a probabilistic model that

infers the truth by considering the hierarchical structures for the claimed values. Nev-

ertheless, if many relation extractors generate similar errors, some of the errors might

not be corrected by unsupervised truth discovery algorithms. Thus, we take advantage

of human cognitive abilities by crowdsourcing the refinement of extracted information.

We present a task assignment algorithm to optimize accuracy improvement given the

constraint of a fixed budget for crowdsourcing.

keywords: Knowledge base, knowledge fusion, relation extraction, truth discovery,

crowdsourcing

student number: 2012-20862

ii



Contents

Abstract i

Contents iii

List of Tables vii

List of Figures ix

1 Introduction 1

1.1 Contributions of This Dissertation . . . . . . . . . . . . . . . . . . . 5

1.2 Overview of This Dissertation . . . . . . . . . . . . . . . . . . . . . 7

2 Related Work 9

2.1 Knowledge Base Construction . . . . . . . . . . . . . . . . . . . . . 9

2.2 Relation Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Truth Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Background 13

3.1 Relation Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Truth Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Topic-aware Relation Extraction 19

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Proposed Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

iii



4.2.1 Encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.2 Output Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . 25

4.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 27

5 Dual Supervision Framework for Relation Extraction 33

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Existing Works on Relation Extraction . . . . . . . . . . . . . . . . . 35

5.3 Dual Supervision Framework . . . . . . . . . . . . . . . . . . . . . . 36

5.3.1 An Overview of the Dual Supervision Framework . . . . . . . 37

5.3.2 Separate Prediction Networks . . . . . . . . . . . . . . . . . 38

5.3.3 Disagreement Penalty . . . . . . . . . . . . . . . . . . . . . 39

5.3.4 Parameter Networks . . . . . . . . . . . . . . . . . . . . . . 41

5.3.5 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3.6 Analysis of the Disagreement Penalty . . . . . . . . . . . . . 42

5.3.7 Extension to Document-level Relation Extraction . . . . . . . 43

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . 43

5.4.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . 45

5.4.3 Comparison with Existing Methods . . . . . . . . . . . . . . 46

5.4.4 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4.5 Quality Comparison . . . . . . . . . . . . . . . . . . . . . . 52

5.4.6 Topic-aware Relation Extraction . . . . . . . . . . . . . . . . 53

5.4.7 Generalization Performance . . . . . . . . . . . . . . . . . . 54

6 Truth Discovery in the Presence of Hierarchies 57

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

iv



6.2 Hierarchical Truth Discovery . . . . . . . . . . . . . . . . . . . . . . 59

6.2.1 Our Generative Model . . . . . . . . . . . . . . . . . . . . . 59

6.2.2 Estimation of Model Parameters . . . . . . . . . . . . . . . . 63

6.2.3 Extension to Numerical Data . . . . . . . . . . . . . . . . . . 67

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3.1 Test Environments . . . . . . . . . . . . . . . . . . . . . . . 67

6.3.2 Implemented Algorithms . . . . . . . . . . . . . . . . . . . . 70

6.3.3 Comparison with Existing Truth Discovery Algorithms . . . . 71

6.3.4 Comparison with Multi-truths Discovery Algorithms . . . . . 73

6.3.5 Performance Evaluation on a Numerical Dataset . . . . . . . 75

7 Task Assignment for Truth Discovery 77

7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.2 Task Assignment to Workers . . . . . . . . . . . . . . . . . . . . . . 79

7.2.1 The Quality Measure . . . . . . . . . . . . . . . . . . . . . . 79

7.2.2 The Incremental EM Algorithm . . . . . . . . . . . . . . . . 81

7.2.3 The Task Assignment Algorithm . . . . . . . . . . . . . . . . 82

7.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.3.1 Test Environments . . . . . . . . . . . . . . . . . . . . . . . 85

7.3.2 Comparison of Task Assignment Algorithms . . . . . . . . . 86

7.3.3 Simulated Crowdsourcing . . . . . . . . . . . . . . . . . . . 89

7.3.4 Crowdsourcing with Human Annotators . . . . . . . . . . . . 94

7.3.5 Crowdsourcing on AMT . . . . . . . . . . . . . . . . . . . . 96

8 Conclusion 98

A Appendix 113

A.1 Inflation in DocRED dataset . . . . . . . . . . . . . . . . . . . . . . 113

A.2 An Additional Experiment with T-REX: Effect of the Number of Entity

Mentions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

v



Abstract (In Korean) 118

⇣¨X� 120

vi



List of Tables

3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Locations of tourist attractions . . . . . . . . . . . . . . . . . . . . . 17

4.1 Statistics of DocRED dataset . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Proportion of topic-related triples . . . . . . . . . . . . . . . . . . . . 27

4.3 Performance of the document-level RE models . . . . . . . . . . . . 28

4.4 Performance of pairwise ensemble models . . . . . . . . . . . . . . 30

4.5 Comparison with baseline output layers . . . . . . . . . . . . . . . . 31

5.1 The result of K-S test . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Statistics of datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Sentence-level RE (KBP) . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4 Sentence-level RE (NYT) . . . . . . . . . . . . . . . . . . . . . . . . 47

5.5 Document-level RE (DocRED: Dev) . . . . . . . . . . . . . . . . . . 48

5.6 Document-level RE (DocRED: Test) . . . . . . . . . . . . . . . . . . 49

5.7 Examples of documents and extracted relations . . . . . . . . . . . . 53

5.8 Dual supervision with T-REX model for topic-aware RE . . . . . . . 54

5.9 Triples extracted from a wikipedia article ‘Lark Force’ . . . . . . . . 55

5.10 Evaluation of the generalization performance . . . . . . . . . . . . . 56

6.1 Locations of tourist attractions . . . . . . . . . . . . . . . . . . . . . 58

6.2 Statistics of datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

vii



6.3 Performance of truth discovery algorithms . . . . . . . . . . . . . . . 71

6.4 Comparison with multi-truth discovery algorithms . . . . . . . . . . . 74

6.5 Performance evaluation for numerical data . . . . . . . . . . . . . . . 76

7.1 Accuracy of the algorithms after the 50th round . . . . . . . . . . . . 89

A.1 Inflations of relation types in DocRED dataset . . . . . . . . . . . . . 116

viii



List of Figures

1.1 Knowledge fusion process . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Overview of this dissertation . . . . . . . . . . . . . . . . . . . . . . 7

4.1 An example of relations in a document . . . . . . . . . . . . . . . . 20

4.2 Architecture of the proposed model . . . . . . . . . . . . . . . . . . 22

4.3 F1 score by the distance from the topic entity . . . . . . . . . . . . . 29

5.1 The overall architecture of existing RE models . . . . . . . . . . . . . 36

5.2 The overall model architecture of our dual supervision framework . . 37

5.3 F1 scores of different groups . . . . . . . . . . . . . . . . . . . . . . 50

5.4 Precision-recall curves . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.5 Varying the size of HA data . . . . . . . . . . . . . . . . . . . . . . 52

6.1 Generalization tendencies of the sources . . . . . . . . . . . . . . . . 59

6.2 A graphical model for truth discovery . . . . . . . . . . . . . . . . . 60

6.3 E-step for the proposed truth inference algorithm . . . . . . . . . . . 66

6.4 Source reliability distribution in BirthPlaces . . . . . . . . . . . . . 73

7.1 Crowdsourced truth discovery in KF . . . . . . . . . . . . . . . . . . 78

7.2 Evaluation of task assignment algorithms . . . . . . . . . . . . . . . 87

7.3 Actual and estimated accuracy improvement by EAI and QASCA . . 88

7.4 Accuracy with crowdsourced truth discovery . . . . . . . . . . . . . . 90

ix



7.5 GenAccuracy with crowdsourced truth discovery . . . . . . . . . . . 90

7.6 AvgDistance with crowdsourced truth discovery . . . . . . . . . . . . 91

7.7 Varying ⇡p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.8 Execution time per round . . . . . . . . . . . . . . . . . . . . . . . . 93

7.9 Execution time for task assignment per round . . . . . . . . . . . . . 94

7.10 Accuracy with human annotations . . . . . . . . . . . . . . . . . . . 94

7.11 GenAccuracy with human annotations . . . . . . . . . . . . . . . . . 95

7.12 AvgDistance with human annotations . . . . . . . . . . . . . . . . . . 95

7.13 Crowdsourced truth discovery in Heritages . . . . . . . . . . . . . . 97

A.1 F1 score by the number of entity mentions . . . . . . . . . . . . . . . 117

x



Chapter 1

Introduction

A knowledge base is an online database that consists of a set of entities and the rela-

tions between the entities. In knowledge bases, the information is stored in the form

of hhead entity, relation, tail entityi triples. For example, the fact that ‘Statue of

Liberty is located in New York’ is represented by hStatue of Liberty, located in,

New Y orki. Knowledge bases have been successfully applied to many real word ap-

plications such as question answering [80, 69], recommender system [22, 84] and nat-

ural language understanding [50, 86]. However, manually building a large knowledge

base takes a lot of time, effort, and money. Moreover, it is almost impossible to man-

ually update a large amount of newly created relational facts in a timely manner. Ac-

cordingly, automated knowledge base construction has been attracted a lot of attention

from both industry and academia over the last decade.

YAGO [62] and DBpedia [37] are popular knowledge bases which are automat-

ically constructed. However, since they mainly extract triples from Wikipedia pages

by exploiting website-specific information extractors, the coverage is limited. Knowl-

edge fusion is a method to automatically construct knowledge bases from the entire

web and has been extensively investigated in [15, 65, 42, 13, 17]. As shown in Fig-

ure 1.1, knowledge fusion collects the triples through two steps: relation extraction

and truth discovery. In the first step, multiple relation extractors identify triples from
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Figure 1.1: Knowledge fusion process

web pages. Due to extraction error or wrong information provided by web sources, the

extracted triples can be erroneous. In the second step, a truth discovery algorithm finds

the correct triples from the extracted triples with assessing and exploiting the reliabili-

ties of information sources. For example, two conflicting triples hStatue of Liberty,

located in, New Y orki and hStatue of Liberty, located in, Las V egasi can be

simultaneously extracted from different web pages or by different extractors. In this

case, knowledge fusion identifies the correct triples by using truth discovery tech-

niques and append the correct triples to the knowledge base.

In this dissertation, we focus on extending the coverage and improving the ac-

curacy of the knowledge fusion process. Specifically, we present machine learning

techniques for relation extraction and truth discovery in knowledge fusion.

With the development of deep learning, neural networks have become major tools

for relation extraction [47, 83, 67, 6, 73]. The previous studies use deep neural net-

works to find relations without handcrafted features. In [83] and [82], convolution

neural networks (CNN) [7] are used to encode the text and the entity pairs that we

want to find the relations. Some of the previous works [6, 67] exploit recurrent neural

networks (RNNs) [26]. More recently, [73] proposed a fine-tuned model of BERT for

2



document-level relation extraction. Unlike the previous works that propose standalone

relation extraction models, we mainly focus on the knowledge fusion process which

utilizes multiple relation extraction models. Thus, we first propose a method to effec-

tively train existing relation extraction models regardless of the model architecture.

In addition, we present a new relation extraction model to find the triples that can be

easily missed by existing relation extraction models.

Since neural relation extraction models usually require a large amount of training

data, distant supervision [56] is used to automatically generate labeled training data.

Distant supervision assumes that if a text contains an entity pair which has a relation

in a knowledge base, the text actually expresses the relation in the knowledge base.

Thus, there exists a labeling bias in distant supervision. For example, many cities have

their ‘sister cities’. Distant supervision produces the label heh, sister city, eti when

the two cities eh and et appear in the same text. However, ‘sister city’ relation rarely

appears in human-annotated labels because the relationship is not frequently expressed

in the text data. In a real dataset DocRED [77], we observed that the ‘sister city’ rela-

tion is annotated 86 times more frequently by distant supervision compared to human

annotators. It implies that most of the labels annotated by distantly supervision is in-

correct for some relations. The labeling bias can substantially degrade the accuracy of

relation extraction even though we utilize human annotations and distant supervision

together. We propose a new method to effectively train relation extraction models with

distant supervision and human annotation by considering the labeling bias.

To extend the coverage of relation extraction, we study the problem of extracting

relation with the topic entity. The topic entity of a document is the entity that is mainly

described in the document. In many sentences, the topic entity is replaced by a pronoun

or even omitted because people can infer it from context. In this case, existing models

often fail to extract the relation with the omitted topic entity. Consider the following

example sentence in the wikipedia article for the United States:

With a population of over 328 million, it is the third most populous

3



country in the world.

Without considering the topic entity ‘United States’ and the other sentences, we cannot

extract the triple hUnited States, population, 328 millioni from the above sentence.

We propose a topic-aware relation extraction model to extract relations even when the

topic entity is omitted.

After extracting the relations from web pages, a truth discovery algorithm resolves

the conflicts in the extracted information and identifies the correct information. Since

the information sources (web pages and relation extractors) have different accuracies,

truth discovery algorithms assess the reliabilities of sources to find the correct triple

among the conflicting triples. Hierarchical structures in entities can help us find the

correct triples and accurately estimate the reliabilities of sources. Suppose that the rela-

tion extractors retrieved the three triples in Figure 1.1. Considering the fact that Liberty

Island is an island in New York, ‘New York’ and ‘Liberty Island’ are not conflicting

with each other. In this case, the geographical hierarchy provides strong evidence to

support that the Statue of Liberty stands on Liberty Island, New York. Moreover, if we

do not consider the hierarchical structure, we may underestimate the reliability of some

sources because only one of ‘New York’ and ‘Liberty Island’ is regarded as a correct

value for the location of the Statue of Liberty. In addition, we observed that infor-

mation sources have different generalization tendencies as well as different accuracy.

Some sources usually provide more generalized values (e.g., countries and continents)

and other sources provide more specific values (e.g., cities or more specific locations).

Although many entities are hierarchically structured, most of the existing works on

truth discovery do not consider the hierarchical structure. We propose a novel truth

discovery model that considers the different generalization tendencies of sources.

Knowledge fusion is an error-prone process because it extracts and integrates in-

formation from various types of web pages. According to [15], up to 96% of the false

triples are made by extractors rather than by the information sources. Such extraction

errors can be easily corrected by manually checking the information sources. To reduce
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the noise in the triples to be appended to knowledge bases, we utilize human resources

through crowdsourcing. Since the budget for crowdsourcing is limited, we study the

problem of maximizing the accuracy improvement with a budget constraint. We pro-

pose a method to estimate the expected accuracy improvement from a task as well as

an efficient algorithm to assign the tasks which are expected to increase accuracy the

most.

1.1 Contributions of This Dissertation

Contributions of this dissertation are as follows:

• We first introduce and study a new problem named topic-aware relation extrac-

tion. We propose the T-REX model to find the relations with the topic entity even

when the topic entity is omitted in some sentences.

• We present a new framework to effectively train relation extraction models with

both human annotation and distant supervision. We analyze the labeling bias

of the distant supervision which can significantly deteriorate the accuracy of

relation extraction. To deal with the labeling bias, we propose a new structure

for the output layer of relation extraction models that prevents overfitting to the

noisy labels obtained from distant supervision. In addition, we propose a loss

function based on the analysis of the labeling bias.

• We next investigate the problem of truth discovery in the presence of hierarchies.

We point out that information sources on the web have different generalization

tendencies as well as different reliabilities. We propose a truth discovery algo-

rithm utilizing the hierarchical structures in the extracted values. To the best of

our knowledge, it is the first work that assesses both the reliabilities and the

generalization tendencies of the sources.

• We finally study the problem of assigning tasks in crowdsourcing platforms. To
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assign a task that will most improve the accuracy, we develop an incremental

EM algorithm to estimate the accuracy improvement for a task. We also devise

an efficient task assignment algorithm to enable the interactive crowdsourcing

with low latency.

Although the relation extraction and truth discovery are used in many applica-

tions other than the knowledge fusion, the techniques presented in this dissertation are

mainly devised for the knoweldge fusion. For example, our topic-aware relation ex-

traction model is not directly applicable to question answering, which is a well-known

application of relation extraction, because it does not extract all relations in the doc-

ument. However, it can be a useful tool for the knowledge fusion since it identifies

many relations which can be easily missed by the other relation extraction models

in the knowledge fusion process. Moreover, we utilize crowdsourcing for truth dis-

covery since the extraction errors can be easily corrected by human workers. In this

dissertation, we propose several techniques to effectively and efficiently utilize ex-

isting knowledge bases and human resources for knowledge fusion. In the relation

extraction task, we propose a method to train relation extraction models with both hu-

man annotated data and distantly supervised data which is labeled by using knowledge

bases. To improve the process of truth discovery, we utilize the hierarchy of entities

obtained from knowledge bases. In addition, we devise a task assignment algorithm to

efficiently utilize crowdsourcing.

Automated knowledge base construction is a complex process that requires many

techniques such as semantic parsing, entity linking, relation extraction, truth discovery,

entity resolution and schema alignment. In this dissertation, we focus on two main sub

procedures to find new relational facts to be appended to knowledge bases: relation

extraction and truth discovery. For example, in the relation extraction task, we assume

that entity mentions in text are already annotated by entity recognition and linking

techniques such as [24, 36, 52]. Note that most chapters of this dissertation have been

published in peer-reviewed papers [28, 29, 30].
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Figure 1.2: Overview of this dissertation

1.2 Overview of This Dissertation

The overview of this dissertation is summarized in Figure 1.2. In the next chapter, we

review the related works on automated knowledge base construction. In Chapter 3, we

provide important definitions and technical backgrounds. The remaining part of this

dissertation is organized into two main parts: 1) relation extraction (Chapters 4-5), and

2) truth discovery (Chapters 6-7). In Chapter 4, we propose a topic-aware relation ex-

traction model. Chapter 5 presents the dual supervision framework for training relation

extraction models with distant supervision and human annotation. Chapter 6 proposes

7



a truth discovery algorithm which utilizes hierarchical structures in extracted values. In

Chapter 7, we introduce an algorithm for the efficient assignment of tasks to workers

in crowdsourcing platforms. We finally present our conclusions in Chapter 8.
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Chapter 2

Related Work

2.1 Knowledge Base Construction

The researches on automated knowledge base construction can be classified into 2

groups. YAGO [62] and DBpedia [37] are popular knowledge bases which belongs

to the first group. They mainly extract triples from Wikipedia pages using a prede-

fined format. For example, they utilize infoboxes to extract the properties of entities.

This approach provides accurate extraction results. However, the coverage is limited

because other websites have different formats. The works [15, 65, 42, 13, 17] in the

second group exploits relation extraction and truth discovery (data fusion) techniques

to construct knowledge bases from the entire web. Our work also belongs to the second

group. In the rest of this chapter, we review the related works on relation extraction

and truth discovery.

2.2 Relation Extraction

We briefly survey the existing works for relation extraction (RE). [56] propose distant

supervision to overcome the limitation of the quantity of human-annotated labels. They

utilize lexical, syntactic and named entity tag features obtained by existing NLP tools
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to extract relations. Other early works in [64, 27] also utilized hand-crafted features to

find the relations in text. However, since such RE models take the input features from

NLP tools, the errors generated by the NLP tools are propagated to the RE models. In

order to deal with the error propagation, the works [47, 83, 82, 67, 73] use deep neural

networks such as CNN, LSTM and BERT instead of handcrafted features to encode

the text for finding the relations. Since many relational facts are expressed across mul-

tiple sentences, the recent works [77, 73] studied document-level RE. [77] provide a

document-level RE dataset (DocRED) as well as compare the models adapted from

the sentence-level RE models [83, 26, 6, 67]. Moreover, a fine tuned model [73] of

BERT [12] for document-level RE achieved a higher F1 score than the baselines on

DocRED. The works on document-level RE do not consider the topic entity since they

want to extract all relations including the relations between non-topic entities. Relation

extraction with the topic entity of the document has been addressed in previous works

for semi-structured data such as HTML web pages[8, 51, 76]. However, since they

utilize HTML tags and DOM tree structures, those works are not directly applicable to

relation extraction from plain text.

The wrong labeling problem in distant supervision has been addressed in many

previous works [82, 47, 79, 3]. Some of the works [82, 47, 79] build a bag-of-sentences

for a pair of entities and extract relational facts from the bag-of-sentences with at-

tention over the sentences. [3] propose a bag-of-sentences-level model which utilizes

human annotation. However, they use the human annotated labels only to determine

whether there exist a relationship or not since the labels are obtained from a different

domain. The goal of these works is different from ours which is to find the relations

appearing in a given text (e.g., a document). Thus, the bag-of-sentences-level models

have a limitation to be used for some applications such as question answering.

The most relevant work to our dual supervision is [78]. This paper proposes the

bias adjustment methods to utilize a small amount of human annotated data to improve

RE models trained on distantly supervised data by considering the different distribu-
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tion of human annotated labels and distantly supervised labels. However, they do not

use human annotated data to train the models and use the HA data only to obtain a

statistic to be used the determine the size of the bias adjustment. Thus, the bias adjust-

ment methods cannot consider contextual information. In addition, since the models

are trained only on distantly supervised data, the performance improvement is limited

although many human annotated labels are available.

2.3 Truth Discovery

The problem of resolving conflicts from multiple sources (i.e., truth discovery) has

been extensively studied in [11, 14, 16, 72, 61, 41, 43, 45, 81, 87, 89, 88, 46, 11, 75,

10, 92, 32]. Truth discovery for categorical data has been addressed in [11, 14, 16,

61, 41, 89, 43, 81]. According to a recent survey [90], LFC [61] and CRH [41] per-

form the best in an extensive experiment with the truth discovery algorithms [90, 40,

11, 75, 10, 92, 32]. There exist other interesting algorithms [14, 16, 43, 89] which

are not evaluated together in [90]. Accu [14] and PopAccu [16] combine the conflict-

ing values extracted from different sources for the knowledge fusion process in [15].

They consider the dependencies between data sources to penalize the copiers’ claims.

DOCS[89] utilizes the domain information to consider the different levels of worker

expertises on various domains. MDC[43] is a truth discovery algorithm devised for

crowdsourcing-based medical diagnosis. The works in [45, 72, 87] studied how to re-

solve conflicts in numerical data from multiple sources.

The truth discovery algorithms in [87, 88, 58, 89] are based on probabilistic mod-

els. Resolving the conflicts in numerical data is addressed in [87] and discovering

multiple truths for an object is studied in [88]. Probabilistic models for finding a single

truth for each object is proposed in [58, 89]. However, none of those algorithms exploit

the hierarchical relationships of claimed values for truth discovery. A previous work

ASUMS [4] adopts an existing algorithm to consider hierarchical relationships. To find
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the true value for each object, it greedily traverses down the hierarchy tree from the

root until the confidence on the node is higher than the given thresholds ✓. However,

it requires a threshold to control the granularity of the inferred truth. In addition, since

ASUMS uses existing method to evaluate the quality of sources, it does consider the

different generalization tendencies of information sources. On the contrary, our pro-

posed truth discovery algorithm considers the generalization tendencies of sources and

automatically finds the truth without any given threshold.

Task assignment algorithms [5, 25, 91, 54, 89, 20] for crowdsourcing have been

studied widely in recent years. The works in [5, 91, 89] can be applied to our crowd-

sourced truth discovery. For task assignment, AskIt [5] selects the most uncertain ob-

ject for a worker. Meanwhile, the task assignment algorithm in [89] selects the object

which is expected to decrease the entropy of the confidence the most. QASCA [91]

chooses an object which is likely to most increase the accuracy. Since QASCA out-

performs AskIt in the experiments presented in [91, 89], we do not consider AskIt in

our experiments. In [25], task assignment for binary classification was investigated but

it is not applicable to our problem to find the correct value among multiple conflict-

ing values. Meanwhile, the task assignment algorithm is proposed in [54] for the case

when the required skills for each task and the skill set of every worker is available.

However, it is not applicable to our problem. A task assignment algorithm proposed

in [20] assigns every object to a fixed number of workers. However, since we already

have claimed values from sources, we do not have to assign all objects to workers.
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Chapter 3

Background

Knowledge base is a repository of information that contains a set of entities and the

relations between the entities. In the rest of this dissertation, we study two main prob-

lems of automated knowledge base construction: relation extraction and truth discov-

ery. In this chapter, we introduce the notations and problem definitions to be used in

this dissertation.

3.1 Relation Extraction

Relation extraction is a task to identify the semantic relationships between entities

from unstructured data (e.g., text) semi-structured data (e.g., html). In this disserta-

tion, we focus on relation extraction from text data. We assume that the set of relation

type R is given in advance and each text is annotated with entity mentions. Relation

extraction from text is classified into two categories according to the type of text:

sentence-level relation extraction and document-level relation extraction. We next for-

mally define the problems of the sentence-level relation extraction and document-level

relation extraction.

For a pair of entities, since a sentence usually describes a single relationship be-

tween them, the sentence-level relation extraction is generally regarded as a multi-class
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classification problem.

Definition 1 (Sentence-level relation extraction). For a pair of the head and tail en-

tities eh and et, a relation type set R and a sentence s annotated with entity mentions,

we determine the relation r 2 R between eh and et in the sentence. Note that R in-

cludes a special relation type NA which indicates that there does not exist any relation

between eh and et.

Since multiple relationships between a pair of entities can be expressed in a docu-

ment, document-level relation extraction is usually defined as a multi-label classifica-

tion problem.

Definition 2 (Document-level relation extraction). For a pair of the head and tail

entities eh and et, a relation type set R and a document d annotated with entity men-

tions, we find the set of all relations R⇤ ⇢ R between eh and et appearing in document

d. Note that R does not include NA in this case since it can be represented by an empty

set of R⇤.

We present the dual supervision framework which can improve both sentence-level

and document-level relation extraction models in Chapter 5.

We also introduce a new problem named topic aware relation extraction which is a

special case of the document-level relation extraction. The topic entity of a document

is the entity which is mainly described in the document. For example, the title of each

Wikipedia article usually is a topic entity of the article. The goal of topic-aware RE is

to find all distinct relations between the topic entity and the other entities that expressed

in a document. The problem of topic-aware RE is formally defined as follows:

Definition 3 (Topic-aware relation extraction). Let R be a set of relation types and d

be a document with annotated mentions of an entity set E. Given a document d and

its the topic entity etopic 2 E, we find all triples X = {x1, x2, ..., x|X|} from the

document where xi = hhi, ri, tii, ri 2 R, si 2 E, oi 2 E, and either hi or ti is the

topic entity etopic.

14



We provide the topic-aware relation extraction model in Chapter 4.

3.2 Truth Discovery

Truth discovery is an unsupervised learning problem to resolve conflicts of noisy val-

ues. We study truth discovery problem to resolve the conflicts between triples extracted

from multiples sources by multiple relation extractors. As discussed in Chapter 1, we

utilize a hierarchy and crowdsourcing to improve the performance of truth discov-

ery. In this section, we provide the definitions and the problem formulation of crowd-

sourced truth discovery in the presence of hierarchy.

Definitions and notations. A triple describe a particular attribute value of an ob-

ject (i.e., entity). For example, a triple hUnited States, capital, Washington D.C.i

represent the capital of the United States. For a pair of triples that have the same

head entity and relation, we say that the triples are conflicting if the tail entities are

different (e.g., hUnitedStates, capital, New Y orki and hUnited States, capital,

Washington D.C.i). Truth discovery algorithms find the correct value among the

candidate attribute values ‘New York’ and ‘Washington D.C.’. For the ease of presen-

tation, we assume that we are interested in a single attribute of entities although our

algorithms can be easily generalized to find the truths of multiple attributes. Thus, we

use ‘the target attribute value of an object’ and ‘the value of an object’ interchangeably.

A source is a structured or unstructured database which contains the information on

target attribute values for a set of objects. In knowledge fusion process, each (extractor,

web page) pair or (extractor, website) pair is regarded as a source. In this dissertation,

we call a human worker in crowdsourcing platforms as a worker to avoid the confusion

with the web information sources. The information of an object provided by a source

or a worker is called a claimed value.

Definition 4. A record is a data describing the information about an object from a

source. A record on an object o from a source s is represented as a triple (o, s, vso)
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Symbol Description

s A data source

w A crowd worker

vso Claimed value from s about o

vwo Claimed value from w about o

R Set of all records collected from the set of sources S

A Set of all answers collected from the set of workers W

Vo Set of candidate values about o

So Set of sources which post information about o

Wo Set of workers who answered about o

Os Set of objects that source s provided a value

Ow Set of objects that worker w answered to

Go(v)
Set of values in Vo which are ancestors of a value v

except the root in the hierarchy H

Do(v) Set of values in Vo which are descendants of v

Table 3.1: Notations

where vso is the claimed value of an object o collected from s. Similarly, if a worker w

answers that the truth on an object o is vwo , the answer is represented as (o, w, vwo ).

Let So be the set of the sources which claimed a value on the object o and Vo be

the set of candidate values collected from So. Each worker in Wo answers a question

about the object o by selecting a value from Vo.

In our problem setting, we assume that we have a hierarchy tree H of the claimed

values. If we are interested in an attribute related to locations (e.g., birthplace), H

would be a geographical hierarchy with different levels of granularity (e.g., continent,

country, city, etc.). We also assume that there is no answer with the value of the root
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Object Source Claimed value

Statue of Liberty UNESCO NY

Statue of Liberty Wikipedia Liberty Island

Statue of Liberty Arrangy LA

Big Ben Quora Manchester

Big Ben tripadvisor London

Table 3.2: Locations of tourist attractions

in the hierarchy since it provides no information at all (e.g., Earth as a birthplace). We

summarize the notations to be used present our truth discovery algorithm in Table 3.1.

Example 1. Consider the records in Table 3.2. Since the source Wikipedia claims that

the location of the Statue of Liberty is Liberty Island, it is represented by vso =‘Liberty

Island’ where o =‘Statue of Liberty’ and s =‘Wikipedia’. If a human worker ‘Emma

Stone’ answered Big Ben is in London, it is represented by vwo =‘London’ where

o =‘Big Ben’ and w =‘Emma Stone’.

Problem definition. The proposed truth discovery algorithm repeatedly alternates

the hierarchical truth discovery and task assignment until the budget of crowdsourcing

runs out. Given a set of objects O and a hierarchy tree H , we define the two subprob-

lems of the crowdsourced truth discovery in the presence of hierarchies.

Definition 5 (Hierarchical truth discovery problem). For a set of records R collected

from the sources and a set of answers A from the workers, we find the most specific

true value v⇤o of each object o 2 O among the candidate values in Vo by using the

hierarchy H .

Definition 6 (Task assignment problem). For each worker w in a set of workers W ,
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we select the top-k objects from O which are likely to increase the overall accuracy of

the inferred truths the most by using the hierarchy H .

We present a hierarchical truth discovery algorithm in Chapter 6 and a task assign-

ment algorithm in Chapter 7.
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Chapter 4

Topic-aware Relation Extraction

4.1 Motivation

Relation extraction (RE) is a task to identify the semantic relations between entities

from text. Most of the existing works for relation extraction [56, 47, 83, 82] mainly

focus on the sentence-level extraction which finds the relations between entities in a

sentence. However, many relational facts are expressed across multiple sentences. In

a large-scale document-level relation extraction (DocRED) dataset published in [77],

46.4% of the relation instances are associated with multiple sentences and 40.7% of

the relational facts cannot be found by the sentence-level extraction [77]. Extending

the relation extraction from sentence-level to document-level enables us to find the

relational facts over multiple sentences. Thus, recent works [77, 73] proposed models

for document-level relation extraction. However, those models still do not fully take

account of the unique characteristics of document-level RE.

A lot of documents are each written to describe a topic entity. For example, there is

a title for each Wikipedia article and the title usually represents an entity that is mainly

described in the article. Besides, the product pages on Amazon and the IMDb movie

pages also have their topic entities. When the subject of a sentence is the topic entity,

it is often represented by a pronoun or even omitted since the subject is obvious in
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Robert K. Huntington

[1] [Robert Kingsbury Huntington: E1] ([13 March 1921: E2] - [5 June

1942: E3]), was a naval aircrewman and member of Torpedo Squadron 8. [2] He

was radioman/gunner to Ensign George Gay’s TBD Devastator aircraft. [3] Along

with his entire squadron, [Huntington: E1] was shot down during the Battle of

Midway, on 4-5 June 1942. [4] Born in [Los Angeles: E4], California, enlisted

in the United States Navy 21 April 1941. [5] He served on board Lexington (CV-

2) and was rated aviation radioman third class before being transferred to Torpedo

Squadron 8 on board Hornet (CV-8). ...

Entities

E1: Robert K. Huntington

E2: 13 March 1921

E3: 5 June 1942

E4: Los Angeles

Relations

R1: hE1,date of birth, E2i

R2: hE1,date of death, E3i

R3: hE1,born in, E4i

Figure 4.1: An example of relations in a document

many cases. Figure 4.1 shows an example of Wikipedia pages whose title is ‘Robert

K. Huntington’. While the relational fact that Robert K. Huntington was born in LA is

presented in the 4th sentence, it is not explicitly stated in the text that the person born

in LA is Robert K. Huntington. RE with the topic entity in semi-structured HTML

web pages has been addressed in [8, 51, 76]. However, since they utilize HTML tags

and DOM tree structures, those works are not directly applicable to plain text. In a

large-scale document-level RE dataset [77], the title entities are involved in 28.8% of

all relation instances. However, existing models [77, 73] for extracting relations from

text documents do not distinguish the topic entity from the other entities. Thus, they

often fail to find the relations with the implicit mentions of the topic entity. To find

such relations, we propose a Topic-aware Relation EXtraction (T-REX) model which
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is robust to the omitted mentions of topic entities. As far as we know, this is the first

work that utilizes the topic entities to extract relations from plain text.

An entity tends to be mentioned multiple times in a document, whereas it is usually

mentioned once in a sentence. Moreover, each mention of an entity can be involved in

a different relationship with the topic entity. For example, if a singer-songwriter writes

and performs a song, the two different relations (i.e., performer and composer)

can be separately expressed in a document for the song. Previous works [77, 73] build

a vector representation of each entity by averaging the corresponding mention vectors

before determining the relationships between entities. However, the different meanings

of the mentions of an entity may disappear while averaging the mention vectors. To

tackle the problem, we first predict the relationship between the topic entity and each

mention of other entities. Then we combine the results by using a smooth-maximum

function which is an approximation of the maximum function. Thus, our model can

extract the relationships by taking advantage of the subtle meaning of each mention.

As we discussed in Chapter 1, knowledge fusion employs multiple relation extrac-

tors and ensemble them to improve the accuracy. Thus, the improvement in ensemble

accuracy is an important performance indicator as well as the accuracy of the stand-

alone model. Since our proposed model is the only one that considers the topic entity

of a document, it can find the relations which cannot be detected by existing models.

Thus, the accuracy of the extracted relations with the topic entity can be significantly

improved when existing algorithms are ensembled with T-REX.

In this chapter, we propose the T-REX model to find the relations with the topic en-

tity even when the topic entity is omitted in the sentence. By conducting experiments

on the DocRED dataset, we show that T-REX outperforms the existing models in ex-

tracting relations with topic entities. We also show that the accuracy of the extracted

relations with the topic entity is significantly improved when existing algorithms are

ensembled with T-REX.
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Figure 4.2: Architecture of the proposed model

4.2 Proposed Model

An entity mention is a string that refers to a real-world entity in a text. Since an entity

can be mentioned multiple times in a document, there can be several entity mentions

in a document for an entity. For instance, in Figure 4.1, ‘Robert Kingsbury Hunting-

ton’ and ‘Huntington’ in the input document are entity mentions of the entity ’Robert

K. Huntington’. We assume that each entity mention is annotated in the text and the

topic entity of each document is known in advance. Given an entity annotated docu-

ment and its title entity, the goal of the task is to extract relations with the title entity

of the document. The overall architecture of T-REX is shown in Figure 4.2. T-REX

consists of three stacked encoders (text encoder, mention encoder, topic encoder) and

an output layer. The text encoder receives a document and produces the embedding

of each word in the document. For each entity mention in the document, the mention

encoder generates the vector representation of the entity based on the embeddings of

corresponding words. Title encoder produces the title vector from the mention vectors

of the title entity. The output layer takes the title vector and the mention vectors of the

other entity as input. Finally, the output layer predicts the relations between the title

entity and the other entity. We next describe the encoders and the output layer in detail.
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4.2.1 Encoders

The text encoder receives a document and produces the embedding of each word in the

document. For each entity mention, the mention encoder generates a mention vector

based on the embeddings of corresponding words. The topic encoder produces a topic

vector from the mention vectors of the topic entity.

Text encoder. We use the pre-trained language model BERT [12] for the text encoder

following the previous work [73]. BERT has a large model capacity that can be fine-

tuned for many NLP tasks [68]. Thus, it enables us to use simple structures for the

mention encoder and topic encoder. Let xi denote the dbert-dimensional embedding of

the i-th token obtained from BERT. For each token in entity mentions, we use a linear

layer to calculate a word vector x̂i to be given as an input to the mention encoder as

follows:

x̂i = Wxi + b

where W 2 Rdbert⇥d and b 2 Rd are trainable parameters.

Mention encoder. For each entity mention mk spanning from the bk-th token to the

ek-th token of the document, we compute the mention vector mk by averaging the

corresponding word vectors as

mk =
1

ek � bk + 1

ekX

i=bk

x̂i.

Topic encoder. It computes the representation of the topic entity by averaging the

mention vectors. Let Met be the set of mentions of the topic entity et. Then, the topic

entity vector utopic is computed as

utopic =
1

|Met |
X

k2Met

mk.

Note that the previous works [77, 73] build a entity vector by averaging the mention

vectors. However, we do not take the averages for the non-topic entities since different

mentions can be involved in different relations.
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4.2.2 Output Layer

The output layer takes the vector representation of the topic entity et and mention vec-

tors of an entity e. Let phr and ptr be the probabilities that the relations hetopic, r, ei and

he, r, etopici are expressed in the document, respectively. The output layer estimates

phr and ptr for r 2 R. As discussed in Section 4.1, we first make a prediction for each

entity mention and combine the mention-wise result because different mentions of an

entity can be involved in a different relationship with the topic entity. We first present

how to compute phr and briefly introduce how to compute ptr later.

Mention-wise prediction. Let ph
k = {ph

k(1),ph
k(2), ...,ph

k(|R|)} be a |R|-dimensional

vector where ph
k(r) represents the probability that the relation het, r, ei is expressed

with the mention mk 2 Me where Me is the set of mentions of entity e. For each

mention mk 2Me of an entity e, we compute ph
k using a bilinear layer and a sigmoid

activation function �(.) as:

vh
k = utopic

>Wpmk + bp,

ph
k = �(vh

k)

where Wp 2 Rd⇥|R|⇥d and bp 2 R|R| are trainable parameters, and utopic
>Wpmk is

a bilinear tensor product which results in a |R|-dimensional vector.

Combining the mention-wise predictions. We want to output the relation if it is

expressed at least once in the document. Thus, we combine the mention-wise proba-

bilities via max-pooling as follows:

phr = max
mk2Me

ph
k(r).

Since the sigmoid function � is monotonically increasing, we can interchange the

max operation and � as below.

phr = max
mk2Me

ph
k(r) = max

mk2Me

�(vh
k) = �

⇣
max

mk2Me

vh
k(r)

⌘

Previous works [9, 71] report that a smooth maximum function LogSumExp (LSE)

leads to faster training than the hard maximum function which has sparse gradients.
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Thus, we also employ LSE to compute the document-level prediction as follows:

phr = �
⇣
LSE(vh

k(r))
⌘

where LSE(vh
k(r)) = log

P
mk2Me

exp(vh
k(r)).

Computing ptr. To compute the ptr, we use the same network and interchange the

inputs as

vt
k = m>

k Wputopic + bp,

ptr = �
⇣
LSE(vt

k(r))
⌘

where Wp and bp are the parameters used to compute phr .

4.2.3 Training

Binary cross entropy function is used as the loss function. We used the Adam [35]

optimizer with a learning rate 10�5, �1 = 0.9, and �2 = 0.999. Each training batch

contains 8 documents. The hidden dimension size d is set to 128. We used the BERT-

base model that provides 768-dimensional embeddings (dbert = 768).

4.3 Experiments

We compared T-REX
1 with five existing models: FTB[73], CNN[83], LSTM[77],

BiLSTM [6] and CA[67]. FTB is a Fine-Tuned model of the BERT [12] for the document-

level RE. The rest of them are originally proposed for sentence-level RE and adapted

to document-level RE in [77]. All models are implemented in PyTorch and trained on

a machine with a TITAN RTX GPU.

4.3.1 Experimental Settings

Dataset. We conducted experiments on the DocRED dataset [77], which is a large-

scale dataset for document-level RE. The training set of DocRED contains 3,053 docu-
1The source code is available at https://github.com/woohwanjung/T-REX
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Data Docs. # relations Labeling

Train-HA 3,053 96 HA

Train-DS 101,873 96 DS

Dev 500 96 HA

Test 500 96 HA

Table 4.1: Statistics of DocRED dataset

ments with human annotated labels and 101,873 documents with distantly supervised

labels. DocRED includes 1,000 documents with human annotated labels for testing.

We remove 500 documents from the testing set to use them for validation. In super-

vised setting, we use the documents with human annotation for training. In weakly

supervised setting, we use the documents with distantly supervised labels for training.

To evaluate the models, we splitted the test set Table 4.1 shows the statistics of the

dataset.

Note that we only use the relations with the topic entity to train our model and to

test all models. The topic entity of each document is not given in DocRED. Thus, we

annotate the topic entity of each document using string matching. More specifically,

we choose the mention that has the maximum overlap of tokens with the title of the

document and set the corresponding entity to the topic entity. Table 4.2 shows the

number of all triples and topic-related triples in DocRED where a triple is a topic-

related triple if its head entity or tail entity is the topic entity. Among 50,503 human

annotated triples in DocRED, 14,544 triples are (28.8% of all triples) topic-related

triples. The statistics indicate that a significant number of triples can be extracted by

topic-aware relation extraction.

Evaluation measures. We use two widely used measures, F1 and AUC, to evaluate

the models. As in [77], we also report the scores excluding the relations that exist in

the training set. We refer to the scores as Ign F1 and Ign AUC, respectively. Note that
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Data
Number of

all triples

Number of

topic-related triples

Proportion of

topic-related triples

Train-HA 38,180 10,918 28.6%

Dev 6,316 1,788 28.3%

Test 6,007 1,838 30.6%

Total 50,503 14,544 28.8%

Table 4.2: Proportion of topic-related triples

we only use the relations with the topic entity to train our model and test all models.

Thus, we compute the evaluation measures by using the relations where the subject or

object is the topic entity.

4.3.2 Experimental Results

Comparison with existing models. Table 4.3 shows the experimental results under

the weakly supervised and supervised settings. T-REX outperforms all compared mod-

els in the weakly supervised setting. Besides, it shows the highest F1 and Ign F1 under

supervised setting. FTB trained with human annotations has the highest AUC and Ign

AUC among the models trained with human annotations. However, interestingly, FTB

shows the worst performance under weakly supervised setting. The result implies that

FTB is not robust to the false labels in weakly supervised setting.

Distance vs. F1 score. To validate the necessity of utilizing topic entities, we analyze

the correlation between F1 score and the distance from the topic entity to other entity

mentions in the document. Given a pair of entities, the distance is defined as the min-

imum number of sentences between the mentions of the two entities. For example, if

the two entities are mentioned in the same sentence, the distance is 0. In Figure 4.3, we

plotted F1 scores varying the distance d with weakly supervised setting. Every model

shows the highest F1 score when the two entities are mentioned in the same sentence
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Model F1 AUC Ign F1 Ign AUC

Weakly
supervised

setting

CNN [83] 0.5461 0.5666 0.5271 0.5373

LSTM [77] 0.6275 0.6463 0.5964 0.6055

CA [67] 0.6397 0.6480 0.6168 0.6104

BiLSTM [6] 0.6572 0.6704 0.6287 0.6288

FTB [73] 0.5710 0.5650 0.5248 0.4965

T-REX 0.6624 0.6978 0.6364 0.6634

Supervised
setting

CNN [83] 0.5635 0.5564 0.5603 0.5512

LSTM [77] 0.5797 0.5896 0.5746 0.5844

CA [67] 0.5855 0.5969 0.5796 0.5886

BiLSTM [6] 0.5774 0.5892 0.5739 0.5851

FTB [73] 0.6491 0.6631 0.6458 0.6577

T-REX 0.6569 0.6456 0.6589 0.6468

Table 4.3: Performance of the document-level RE models
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d = 0 d = 1 d = 2 d � 3

Num. Labels 1,237 339 113 149
Improvement -1.8% � 14.4% 6.2% � 35.5% 0.3% � 43.8% 12.6% � 68.7%
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Figure 4.3: F1 score by the distance from the topic entity

(i.e., d = 0). The performance gap between T-REX and other models widens consid-

erably when the two entities are not mentioned in the same sentence. Especially, when

we have d � 3, T-REX achieves 13 - 69% of performance improvement over the ex-

isting models. Since the distance becomes larger if the topic entity is omitted in some

sentences, the result implies that T-REX finds the relations with the omitted topic entity

better than the existing models. It shows that T-REX extracts many relations that are

not detected by the existing models.

Performance of ensemble models. As we discussed in Section 4.1, improvement in

ensemble accuracy is an important performance indicator as well as the accuracy of

the stand-alone model. We conduct an experiment to see the additional accuracy im-

provement when T-REX is ensembled with the existing models. To ensemble a pair of

RE models, we use a multilayer perceptron which has two hidden layers with 5 hidden

units per each layer. For a triple het, r, ei, the input feature vector consists of the out-

put probabilities obtained from the two models and the minimum distance between the

mentions of et and e. The ensemble model is a 2-layer MLP with 5 hidden dimensions.

The ensemble model is implemented by using scikit-learn [60] and trained with Adam

optimizer. We report the F1 scores of all possible pair-wise ensemble results of the
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Weakly supervised setting

T-REX BiLSTM CA FTB LSTM CNN

T-REX - 0.7472 0.7455 0.7206 0.7430 0.7367

BiLSTM 0.7472 - 0.7084 0.7139 0.7112 0.6931

CA 0.7455 0.7084 - 0.6914 0.7088 0.6895

FTB 0.7206 0.7139 0.6914 - 0.7050 0.6843

LSTM 0.7430 0.7112 0.7088 0.7050 - 0.6599

CNN 0.7367 0.6931 0.6895 0.6843 0.6599 -

Supervised setting

TEX BiLSTM CA FTB LSTM CNN

TEX - 0.6896 0.6898 0.7122 0.6867 0.6897

BiLSTM 0.6896 - 0.6248 0.6872 0.6041 0.6210

CA 0.6898 0.6248 - 0.6882 0.6367 0.6247

FTB 0.7122 0.6872 0.6882 - 0.6860 0.6886

LSTM 0.6867 0.6041 0.6367 0.6860 - 0.5914

CNN 0.6897 0.6210 0.6247 0.6886 0.5914 -

Table 4.4: Performance of pairwise ensemble models

implemented RE models in Table 4.4. For each row, we underlined the best ensemble

result of the model. We found that every compared model shows the best performance

when it is ensembled with T-REX. The result means that the accuracy of knowledge

bases can be improved when T-REX is used to build knowledge bases with knowledge

fusion.

Effectiveness of the output layer. Recall that the output layer of T-REX first make

a prediction for each mention and combines the results by using the LogSumExp

function. We implemented three baselines to validate the effectiveness of the output
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Output layer F1 AUC F1 Ign AUC Ign

Weakly
supervised

setting

Avg + Prediction [77, 73] 0.6450 0.6218 0.6168 0.5814

Attention + Prediction 0.6489 0.6632 0.6225 0.6238

Prediction + Max 0.6326 0.6855 0.6034 0.6525

Prediction + LogSumExp 0.6624 0.6978 0.6364 0.6634

Supervised
setting

Avg + Prediction [77, 73] 0.6480 0.5795 0.6494 0.5811

Attention + Prediction 0.6454 0.6361 0.6489 0.6395

Prediction + Max 0.6594 0.6512 0.6609 0.6525

Prediction + LogSumExp 0.6569 0.6456 0.6589 0.6468

Table 4.5: Comparison with baseline output layers

layer. The first baseline (Avg+Prediction) is inspired by the models in [77, 73]. For a

given entity e, it first computes the entity vector e by averaging its mention vectors.

Then it feeds the entity vector e and the topic vector t to the output layer that consists

of a Bilinear layer and the sigmoid activation function. The second baseline (Atten-

tion+Prediction) is obtained by substituting the simple averaging of the first baseline

with the attention mechanism [2]. The last one (Prediction + Max) is obtained by re-

placing the LogSumExp(LSE) function of our proposed model with the maximum

function. Our proposed output layer always outperforms the first two baselines. The

result shows that our approach, making a prediction for each mention and combining

the results, is effective for the task we addressed. Moreover, LSE significantly outper-

forms Max in weakly supervised setting while Max shows slightly higher accuracy

than LSE in the supervised setting. Since LSE considers all predictions while Max

takes into account of a single prediction with the highest confidence, LSE generally

exhibits better performance than Max.

Case study. Figure 4.1 shows a part of the document titled ‘Robert K. Huntington’

which is in the testing set of DocRED. The relations R1 and R2 are expressed in
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the first sentence with explicit mentions of the subjects and objects. Thus, all models

correctly identify the relations. Meanwhile, the relation R3 is represented in the fourth

sentence and the subject of R3, which is the topic entity, is omitted in the sentence.

Thus, all models except T-REX fail to find the relation in supervised setting while T-

REX extracts the relation. With weakly supervised setting, T-REX and LSTM find the

relation while the others cannot find the relation.
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Chapter 5

Dual Supervision Framework for Relation Extraction

5.1 Motivation

As we discussed in Section 2.2, recent works [47, 83, 82, 67, 73] proposed deep neural

networks for relation extraction to overcome the drawbacks of traditional works that

utilize handcrafted features. To train a deep relation extraction model, we need a large

volume of fully labeled training data in the form of text-triple pairs. Although human

annotation provides high-quality labels to train the relation extraction models, it is

difficult to produce a large-scale training data since manual labeling is expensive and

time-consuming. Thus, distant supervision [56], which labels the relations between

entities in a sentence using existing knowledge bases, is proposed to automatically

produce a large labeled data. For a text with a head entity eh and a tail entity et, when a

triple heh, r, eti exists in the KB for any relation type r, distant supervision produces a

label heh, r, eti even though the relationship is not expressed in the text. Thus, it suffers

from the wrong labeling problem. For instance, if a triple hUK,capital, Londoni

is in the KB, distant supervision labels the triple even for the sentence ‘London is the

largest city of the UK’.

Although each of the two labeling methods has a certain weakness, most of the

existing works for RE utilize either human-annotated (HA) data or distantly supervised
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(DS) data. To take advantage of the high accuracy of human annotation and the cheap

cost of distant supervision, we propose to effectively utilize a large DS data as well

as a small amount of HA data. Since DS data is likely to have labeling bias, simply

combining the two types of data to train a RE model may decrease the prediction

accuracy. To take a close look at the labeling bias, let the inflation of a relation type

be the ratio of the average frequencies of the relation type per text in DS data and

HA data, respectively. We say that a relation type is unbiased if the average frequency

of the relation type in DS data is the same as that in HA data (i.e., the inflation of

the relation is 1). By examining a document-level RE dataset (DocRED) [77] with

96 relation types, we found that the inflations of the relation types are from 0.48 to

85.9. It indicates that distant supervision tends to generate a large number of false

labels for some relation types. Thus, although we train a model with additional true

labels obtained by human-annotation, this bias produces a significant number of false

positives since the number of false labels is much larger than that of true labels.

Recently, a domain adaptation approach to tackle the labeling bias problem for RE

was proposed in [78]. It trains a RE model on DS data and adjusts the bias term of the

output layer by using HA data. Although the bias adjustment achieves a meaningful

accuracy improvement, it has a limitation. An underlying assumption of the method

is that the labeling bias is static for every text since it adjusts the bias term only once

after training and uses the same bias during the test time. However, the labeling bias

varies depending on contextual information. For example, in DocRED dataset, most

of the capital relation labeled by distant supervision are false positive. However,

if the phrase ‘is the capital city of’ appears in the text, the label is likely to be a true

label. Thus, we need to take account of contextual information to extract relations more

accurately by considering the labeling bias.

To effectively utilize DS data and HA data for training RE models, we propose the

dual supervision framework that can be applied to most existing RE models to achieve

additional accuracy gain. Since the label distributions in HA data and DS data are quite
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different, we cast the task of training RE models with both data as a multi-task learn-

ing problem. Thus, we employ the two separate output modules HA-Net and DS-Net

to predict the labels by human annotation and distant supervision, respectively, while

previous works utilize a single output module. This allows the different predictions of

the labels for human annotation and distant supervision, and thus it prevents the degra-

dation of accuracy by incorrect labels in DS data. If we simply separate the prediction

networks to apply the multi-task learning, HA-Net cannot learn from distantly super-

vised labels. To enable HA-Net to learn from DS data, we propose an additional loss

term called disagreement penalty. It models the ratio of the output probabilities from

the prediction networks HA-Net and DS-Net by using maximum likelihood estima-

tion with log-normal distributions to generate the calibrated gradient to update HA-Net

to effectively reflect distantly supervised labels. Furthermore, our framework exploits

two additional networks µ-Net and �-Net to adaptively estimate the log-normal dis-

tribution by considering contextual information. Moreover, we theoretically show that

the disagreement penalty enables HA-Net to effectively utilize the labels generated

by distant supervision. Finally, we validate the effectiveness of the dual supervision

framework on two types of tasks: sentence-level and document-level REs. The experi-

mental results confirm that our dual supervision framework significantly improves the

prediction accuracy of existing RE models. In addition, the dual supervision frame-

work substantially outperforms the state-of-the-art method [78] in both sentence-level

and document-level REs with the relative F1 score improvement of up to 32%.

5.2 Existing Works on Relation Extraction

The dual supervision framework provides a method to modify the structure of existing

RE models to improve the accuracy. Thus, we first review existing models for relation

extraction before presenting our dual supervision framework. A typical RE model con-

sists of a feature encoder and a prediction network, as shown in Figure 5.1. The feature
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encoder converts a text into the hidden representations of the head and tail entities. [6]

and [73] exploit Bi-LSTM and BERT, respectively, to encode the text. On the other

hand, [83] and [82] use CNN for the encoder. In addition, [83] propose the position

embedding to consider the relative distance from each word to head and tail entities.

The prediction network outputs the probability distribution of the relations be-

tween the entities. Since sentence-level RE is a multi-class classification task, sentence-

level RE models [6, 83, 82] utilize a softmax classifier as the prediction network and

use categorical cross entropy as the loss function. On the other hand, document-level

RE models [77, 73] use a sigmoid classifier and binary cross entropy as the predic-

tion network and the loss function, respectively. Since the labels obtained from distant

supervision are noisy and biased, with a single prediction network, it is hard to make

accurate predictions for DS data and HA data together.

Figure 5.1: The overall architecture of existing RE models

5.3 Dual Supervision Framework

We first present an overview of the dual supervision framework which effectively uti-

lizes both human-annotated (HA) data and distantly supervised (DS) data for training

RE models. We next introduce the detailed structure of the output layer in our frame-

work and propose our novel loss function with disagreement penalty that considers
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Figure 5.2: The overall model architecture of our dual supervision framework

the labeling bias of distant supervision. Then, we describe how to train the proposed

model with both types of data as well as how to extract relations from the test data.

Finally, we discuss how the disagreement penalty makes each prediction network learn

from the labels for the other prediction network although we use separate prediction

networks.

5.3.1 An Overview of the Dual Supervision Framework

As shown in Figure 5.2, our framework consists of a feature encoder and an output

layer with 4 sub-networks. It is general enough to accommodate a variety of existing

RE models to improve their accuracy. We can apply our framework to an existing RE

model by using the feature encoder of the model and building the four sub-networks

which exploit the structure of the original prediction network. Since our framework

uses the feature encoder of the existing models, we briefly describe only the output

layer here.

Unlike the previous works, to allow the difference in the predictions for human

annotated labels and distantly supervised labels, we exploit multi-task learning by em-

ploying two separate prediction networks HA-Net and DS-Net to predict the labels in

HA data and DS data, respectively. We also use HA-Net to extract relations from the

test data. The separation of the prediction networks prevents the accuracy degradation
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caused by incorrect labels from distant supervision. If we simply utilize two predic-

tion networks to apply the multi-task learning, HA-Net cannot learn from distantly

supervised labels although the prediction networks share the feature encoder. To en-

able HA-Net to learn from distantly supervised labels, we introduce an additional loss

term called disagreement penalty. It models the disagreement between the outputs of

HA-Net and DS-Net by using maximum likelihood estimation with log-normal distri-

butions. Furthermore, to adaptively estimate the parameters of the log-normal distribu-

tion by considering contextual information, we exploit two parameter networks µ-Net

and �-Net.

For a label heh, r, eti, let IHA be an indicator variable that is 1 if the label is

obtained by human annotation and 0 otherwise. The proposed framework uses the

following loss function for a label heh, r, eti

Lh,t = IHA · LHA
h,t + (1� IHA) · LDS

h,t + � · LDS-HA
h,t (5.1)

where LHA
h,t and LDS

h,t denote the prediction loss of HA-Net and DS-Net, respectively,

and LDS-HA
h,t is the disagreement penalty to capture the distance between the predic-

tions by HA-Net and DS-Net. The hyper parameter � controls the relative importance

of the disagreement penalty to the prediction errors. By using a separate prediction net-

work for each type of data and introducing the disagreement penalty, HA-Net learns

from distantly supervised labels while reducing overfitting to noisy DS data.

5.3.2 Separate Prediction Networks

To alleviate the accuracy degradation from the noisy labels in DS data, we utilize two

prediction networks. The network HA-Net is used to predict the human-annotated la-

bels from the train data and to predict relations from the test data. The other prediction

network DS-Net predicts the labels obtained by distant supervision. We use the predic-

tion network of an existing model for both prediction networks of our framework with-

out sharing the model parameters. The prediction networks HA-Net and DS-Net out-

put the |R|-dimensional vectors pHA = [p(r1|eh, et, HA), ... , p(r|R||eh, et, HA)] and
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pDS = [p(r1|eh, et, DS), ... , p(r|R||eh, et, DS)], respectively, where p(r|eh, et, HA)

and p(r|eh, et, DS) are the probabilities that there exists a label heh, r, eti, in HA data

and DS data, respectively. We simply denote p(r|eh, et, HA) and p(r|eh, et, DS) by

pHA
r and pDS

r , respectively.

5.3.3 Disagreement Penalty

Distant supervision labels are biased and the size of the bias varies depending on the

type of relation. Moreover, the bias can vary depending on many other features such

as the types of head and tail entities as well as the contents of a text. Thus, we propose

to use an effective disagreement penalty to model the labeling bias depending on the

context where the head and tail entities are located.

Distribution p-value

Log-normal 0.008

Weibull 0.001

Chi-square 4.6⇥ 10�10

Exponential 3.6⇥ 10�13

Normal 1.2⇥ 10�15

Table 5.1: The result of K-S test

Distribution of inflations. We measure the labeling bias by using the inflations of re-

lations. Recall that the inflation of a relation type is the ratio of the average frequencies

of the relation type per text in DS data and HA data, respectively. To investigate the

distribution of inflations, we computed the inflations of 96 relation types in DocRED

data1. Since Kolmogorov-Smirnov (K-S) test [53] is widely used to determine whether

an observed data is drawn from a given probability distribution, we used it to find the

best-fit distribution of the inflations. Since the range of the inflation is [0,1), we eval-
1The inflations are shown in Appendix A.1
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uated p-values of the four probability distributions supported on [0,1): Log-normal,

Weibull, chi-square and exponential distributions. In addition, we include the normal

distribution as a baseline. Table 5.1 shows the result of K-S test for DocRED data.

Note that a probability distribution has a high p-value if the probability distribution fits

the data well. Since the log-normal distribution has the highest p-value, it is the best-

fit distribution among the five probability distributions. Based on the observation, we

model the disagreement penalty between the outputs of the two prediction networks.

Modeling the disagreement penalty. We develop the disagreement penalty based on

the maximum likelihood estimation. Let Xr be the random variable which denotes the

ratio of pDS
r to pHA

r . Since the inflation is the ratio of the number of labels in DS data

and HA data, the ratio pDS
r /pHA

r represents the conditional inflation of the relation

type r conditioned on the text with head and tail entities. Thus, we assume that Xr

follows a log-normal distribution L(µr,�2r ) whose probability density function is

f(x) =
1

x�r
p

2⇡
exp

✓
�(log x� µr)2

2�2r

◆
. (5.2)

The disagreement penalty LDS-HA
h,t is defined as the negative log likelihood of

the conditional inflation pDS
r /pHA

r , which is obtained by substituting pDS
r /pHA

r into

Equation (5.2) as follows:

� log f
�
pDS
r /pHA

r

�

=
1

2

✓
log pDS

r � log pHA
r � µr

�r

◆2

+ log pDS
r � log pHA

r + log �r +
log 2⇡

2
.

(5.3)

Since log 2⇡
2 is constant, we utilize the disagreement penalty in Equation (5.3) without

the constant term.

If we set µr and �r to fixed values, we cannot effectively assess the conditional

inflation since it can vary depending on the context. For example, although the inflation

of the relation type capital is high, the conditional inflation should be lower if a

particular phrase such as ‘is the capital city of’ appears in the text. To take account of

the contextual information, we employ two additional networks µ-Net and �-Net to

estimate the µr and �r that are the parameters of log-normal distribution L(µr,�2r ).
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5.3.4 Parameter Networks

The parameter networks µ-Net and �-Net output the vectors µ = [µ1, ..., µ|R|] and � =

[�1, ...,�|R|], respectively, which are the parameters of the log-normal distributions to

represent the conditional inflation for r 2 R. Both µ-Net and �-Net have the same

structure as those of the prediction networks except their output activation functions.

For a log-normal distribution L(µ,�), the parameter µ can be positive or negative,

and � is always positive. Thus, we use a hyperbolic tangent function and a softplus

function [18] as the output activation functions of µ-Net and �-Net, respectively.

For example, if the prediction network of the original RE model consists of a bi-

linear layer and an output activation function, the parameter vectors µ 2 R|R| and

� 2 R|R| are computed from the head entity vector h 2 Rd and tail entity vector

t 2 Rd as
µ = tanh(h>Wµt + bµ),

� = softplus(h>W�t + b�) + "

where softplus(x) = log (1 + ex) and " is a sanity bound preventing extremely

small values of �r from dominating the loss function, and Wµ 2 Rd⇥|R|⇥d, W� 2

Rd⇥|R|⇥d, bµ 2 R|R| and b� 2 R|R| are learnable parameters. We set the sanity bound

" to 0.0001 in our experiment.

5.3.5 Loss Function

For sentence-level relation extraction, we use the categorical cross entropy loss as the

prediction losses LHA
h,t and LDS

h,t . For a label heh, r, eti, we obtain the following loss

function from Equations (5.1) and (5.3)

Lh,t =IHA · LHA
h,t + (1� IHA) · LDS

h,t + � · LDS-HA
h,t

=� IHA · log pHA
r � (1� IHA) log pDS

r + �

"
1

2

✓
`r � µr

�r

◆2

+ `r + log �r

#

(5.4)
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where `r = log pDS
r � log pHA

r , and IHA is 1 if the label is from HA data and 0

otherwise.

5.3.6 Analysis of the Disagreement Penalty

Let wHA be a learnable parameter of HA-Net which predicts relations in the test time.

We investigate the effect of the disagreement penalty by comparing the gradients of

loss functions with respect to wHA for a human annotated label and a distantly super-

vised label.

For a label heh, r, eti, let �r = (log (pDS
r /pHA

r ) � µr)/�2r . If the label is human

annotated, we obtain the following gradient of the loss Lh,t with respect to wHA from

Equation (5.4)

rLh,t = rLHA
h,t + 0 + �rLDS-HA

h,t = � (1 + �(1 + �r))
1

pHA
r
rpHA

r . (5.5)

On the other hand, if the label is annotated by distant supervision, the gradient

becomes

rLh,t = 0 + 0 + �rLDS-HA
h,t = �� (1 + �r)

1

pHA
r
rpHA

r . (5.6)

The two gradients in Equations (5.5) and (5.6) have the same direction of�rpHA
r .

It implies that a human annotated label and a distantly supervised label have similar

effects on training HA-Net except that the magnitudes of gradients are calibrated by

1+�(1+�r) and �(1+�r), respectively. Thus, HA-Net can learn from not only human

annotated labels but also distantly supervised labels by introducing the disagreement

penalty. Recall that the log-normal distribution L(µr,�r) describes the conditional

inflation for a given sentence with a head entity and a tail entity. If the median eµr

of L(µr,�r) has a high value, the distantly supervised label is likely to be a false

label. Thus, we decrease the size of �r to reduce the effect of a distantly supervised

label. On the other hand, as the median eµr becomes lower, the size of �r increases to

aggressively utilize the distantly supervised label.
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5.3.7 Extension to Document-level Relation Extraction

For the document-level RE, we use the binary cross entropy as the prediction losses

LHA
h,t and LDS

h,t . For a pair of entities hand t, let Rh,t be the set of relation types between

the entities. In the train time, we use the following loss function for document relation

extraction

Lh,t =� IHA

0

@
X

r2Rh,t

log pHA
r +

X

r2R\Rh,t

log (1� pHA
r )

1

A

� (1� IHA)

0

@
X

r2Rh,t

log pDS
r +

X

r2R\Rh,t

log (1� pDS
r )

1

A

+ �
X

r2Rh,t

"
1

2

✓
`r � µr

�r

◆2

+ `r + log �r

#
.

where `r = log pDS
r /pHA

r , and IHA is 1 if the labels are from HA data and 0 otherwise.

We obtain the same property shown in Section 5.3.6 for the above loss function. In the

test time, we regard that the model outputs the triple heh, r, eti if pHA
r is greater than a

threshold which is tuned on the development dataset.

5.4 Experiments

We conducted performance study for sentence-level and document-level REs by fol-

lowing the experimental settings of [78] and [77, 73], respectively. All models are im-

plemented in PyTorch and trained on a V100 GPU. We initialized HA-Net and DS-Net

to have the same initial parameters.

5.4.1 Experimental Settings

Compared methods. We compare our dual supervision framework, denoted by DUAL,

with the state-of-the-art methods BASet and BAFix in [78]. For sentence-level RE,

we compare DUAL with two additional baselines MaxThres [63] and EntThres [49]
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Data
Number of instances # of relation

typesTrain-HA Train-DS Dev Test

KBP 378 132,369 14,103 1,488 7

NYT 756 323,126 34,871 3,021 25

DocRED 38,269 1,508,320 12,332 12,842 96

Table 5.2: Statistics of datasets

which are only applicable to multi-class classification and cannot be used in document-

level RE. MaxThres outputs NA if the maximum output probability is less than a thresh-

old. Similarly, EntThres outputs NA if the entropy of the output probability distribution

is greater than a threshold. While our dual supervision framework uses both types of

data to train relation extraction models, the existing methods first train models on DS

data and adjust the bias of the output layer or the output threshold by using HA data.

We implemented an additional baseline named DS+HA which trains relation extraction

models on both DS data and HA data with the original architecture of the models.

Dataset. KBP [48, 19] and NYT [64, 27] are datasets for sentence-level RE, and

DocRED [77] is a dataset for document-level RE. The statistics of the datasets are

summarized in Table 5.2. Since KBP and NYT do not have HA train data, we use 20%

of the HA test data as the HA train data. In addition, we randomly split 10% of train

data on KBP and NYT for the development (dev) data. Note that the ground truth of the

test data in DocRED is not publicly available. However, we can get the F1 score of the

result extracted from the test data by submitting the result to the DocRED competition

hosted by CodaLab (available at https://competitions.codalab.org/competitions/20717).

We report both the F1 scores computed from the dev data and the test data. Note that

document-level RE data has much more training instances than the sentence-level re-

lation extraction datasets.
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Used relation extraction models. For sentence-level RE, we used the six models:

BiGRUS [85], PaLSTMS [85], BiLSTMS [85], CNNS [83], PCNNS [82], and BERTS

[73]. On the other hand, for document-level RE, we used the five models: BERTD [73],

CNND [83], LSTMD [77], BiLSTMD [6] and CAD [67]. Note that CNND, BiLSTMD,

and CAD are originally proposed for sentence-level RE and we used the adaptation

of them to document-level RE provided in [77]. In addition, we adapt BERTD to the

sentence-level RE by changing the output activation function from sigmoid to softmax

and denote it by BERTS.

5.4.2 Implementation Details

Our implementation is available at https://github.com/woohwanjung/dual.

Sentence-level RE. We use the code which is made publicly available by [78] at

https://github.com/INK-USC/shifted-label-distribution. All mod-

els except BERTS are trained by stochastic gradient descent. Learning rate is initially

set to 1.0, and decreased to 10% if there is no improvement on the dev data for 3 con-

secutive epochs. For the models, we set the hyperparameters � and d to 10�3 and 200,

respectively. To train BERTS model, we used Adam optimizer with learning rate 10�5.

Moreover, the hyperparameters � and d are set to 10�4 and 128, respectively. We al-

ternately used an HA batch and a DS batch for dual supervision where an HA batch

consists of training instances with human annotated labels and a DS batch consists of

training instances with distantly supervised labels.

Document-level RE. For BiLSTMD, LSTMD, CAD and CNND, we utilized the code

which is available at https://github.com/thunlp/DocRED and implemented

by [77]. In addition, we used the implementation of BERTD that is available at https:

//github.com/hongwang600/DocRed and provided by [73]. We used Adam

optimizer [35] to optimize the RE models. For the BERTD model, we set the batch

size to 12 and learning rate to 10�5. For the other models, we followed the setting

provided in [77]: batch size is 40, learning rate is 10�3. We set the hyperparameters
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RE models BiGRUS PaLSTMS BiLSTMS PCNNS CNNS BERTS

HA-Only 0.1984 0.1153 0.1787 0.3410 0.2586 0.1631

DS-Only 0.3909 0.3521 0.3519 0.2705 0.2810 0.3610

DS+HA 0.4375 0.4150 0.4338 0.4067 0.3220 0.3977

BASet 0.3972 0.4055 0.4053 0.2410 0.2400 0.3858

BAFix 0.4241 0.4027 0.3581 0.2931 0.2473 0.3383

MaxThres 0.4264 0.3630 0.4053 0.2815 0.2645 0.3751

EntThres 0.4470 0.4018 0.4248 0.2925 0.2826 0.3539

DUAL 0.4749 0.4420 0.4207 0.3872 0.2969 0.4013

Table 5.3: Sentence-level RE (KBP)

� and d to 10�5 and 128, respectively. Each training batch has half of the instances

with human-annotated labels and the other half of instances with distantly supervised

labels.

5.4.3 Comparison with Existing Methods

We compare the dual supervision framework with the existing methods on the sentence-

level and document-level RE datasets.

Sentence-level RE. Table 5.3 and Table 5.4 show F1 scores for relation extraction on

KBP and NYT, respectively. Note that DS-Only and HA-Only represent the original

RE models trained only on distantly supervised and human-annotated labels, respec-

tively. DUAL shows the highest F1 scores with all RE models except BiLSTMS. Since

KBP and NYT have a small number of human-annotated labels in train data, HA-Only

shows worse F1 scores than DS-Only. Furthermore, DUAL achieves improvements

of F1 score from 5% to 40% over DS-Only by additionally using the small amount

of human annotated labels. On the other hand, the compared methods BAFix, BASet,
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RE models BiGRUS PaLSTMS BiLSTMS PCNNS CNNS BERTS

HA-Only 0.0884 0.1259 0.1504 0.4463 0.3978 0.1953

DS-Only 0.4532 0.4429 0.4297 0.4177 0.4463 0.4625

DS+HA 0.5185 0.4662 0.4764 0.1387 0.2350 0.4027

BASet 0.4966 0.4555 0.4561 0.3584 0.4358 0.5081

BAFix 0.4613 0.4507 0.4707 0.4023 0.4532 0.5145

MaxThres 0.4531 0.4462 0.4350 0.4258 0.4655 0.4952

EntThres 0.4553 0.4472 0.4210 0.4154 0.4427 0.4940

DUAL 0.5455 0.5210 0.4524 0.4986 0.4744 0.5300

Table 5.4: Sentence-level RE (NYT)

MaxThres and EntThres often perform worse than DS-Only and HA-Only. Interest-

ingly, with three RE models, the baseline DS+HS outperforms all other methods in

KBP dataset which has a very few human annotated labels. This result implies that

even with a few human annotated labels, it is more effective to use the labels to train

relation extraction models than to use it to adjust the threshold or bias. In NYT dataset,

the dual supervision framework outperforms all other methods with all relation extrac-

tion models except for BiLSTM. We will provide a detailed comparison of DS+HS and

our dual supervision framework in Section 5.4.4 with varying the number of human

annotated labels.

Document-level RE. We present F1 scores on DocRED in Table 5.5 and Table 5.6.

DUAL outperforms all compared methods with all RE models. Especially, the F1 score

of dual framework with BERTD shows more than 22% of improvement over BASet and

BAFix. Since DocRED has a large human-annotated train data, HA-Only shows better

performance than DS-Only. For BERTD and CNND, the existing methods show lower

F1 scores compared to HA-Only. It shows that the accuracy can be degraded although
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RE models BERTD BiLSTMD CAD LSTMD CNND

HA-Only 0.5513 0.4992 0.4986 0.4817 0.4788

DS-Only 0.4683 0.4951 0.4890 0.4877 0.4166

DS+HA 0.5263 0.5389 0.5291 0.5313 0.4914

BASet 0.4807 0.5123 0.5024 0.5012 0.4349

BAFix 0.4802 0.5136 0.5070 0.5166 0.4365

DUAL 0.5880 0.5510 0.5372 0.5392 0.4967

Table 5.5: Document-level RE (DocRED: Dev)

we use additional DA data in addition to HA data due to the labeling bias. Meanwhile,

we achieve a consistent and significant improvement by applying DUAL. In the rest

of this section, we will provide detailed evaluation of performance on DocRED data

which is the largest dataset in this experiment. For the test data of DocRED, the ground

truth is not publicly available and only a F1 score can be obtained from the DocRED

competition. Thus, we provide detailed evaluations of performance on the dev data

only.

Through experiments with sentence-level relation extraction and document-level

relation extraction tasks, we have found that our framework generally and significantly

improves relation extraction performance. Therefore, we expect dramatic performance

gains when applying our framework to relation extraction models in the knowledge

fusion task.

Inflation vs. accuracy. To investigate the effect of the inflation to the accuracy of

relation extraction, we split the relation types into 4 groups based on the inflation of

the relation types. In Figure 5.3, we present the characteristics of each group and plot

the F1 scores by groups for BERTD model and BiLSTMD model. All methods have the

highest F1 scores when the inflation is close to 1 (at the 2nd group). Furthermore, the
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RE models BERTD BiLSTMD CAD LSTMD CNND

HA-Only 0.5478 0.4982 0.4992 0.4815 0.4681

DS-Only 0.4587 0.4809 0.4772 0.4713 0.4160

DS+HA 0.5244 0.5280 0.5203 0.5229 0.4771

BASet 0.4716 0.4949 0.4905 0.4905 0.4320

BAFix 0.4730 0.5061 0.4989 0.4977 0.4354

DUAL 0.5774 0.5379 0.5306 0.5277 0.4909

Table 5.6: Document-level RE (DocRED: Test)

improvement of F1 score by DUAL compared to the second best performer increases as

the inflation moves away from 1. Thus, it confirms that our dual supervision framework

effectively utilizes both human annotation and distant supervision by modeling the

bias of the distant supervision. Since the other models CAD, LSTMD and CNND show

similar results with BiLSTMD, we omit the result.

Precision-recall curves. The precision-recall curves of the compared methods are

shown in Figure 5.4. As expected, DUAL consistently outperforms all compared meth-

ods. BAFix and BASet have similar precision-recall curves with DS-Only. Although

HA-Only shows comparable precisions with DUAL when recall is low, the precision

of HA-Only drops faster than that of DUAL with increasing recall. It implies that hu-

man annotated labels are not enough for training a model to extract a large number of

relations. Meanwhile, DUAL extracts more relations from the document compared to

existing models at the same precision level.

5.4.4 Ablation Study

We conducted an ablation study with the existing model BERTD on DocRED to val-

idate the effectiveness of individual components of our framework. We compared
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(a) BERTD

(b) BiLSTMD

Figure 5.3: F1 scores of different groups

DUAL (separate prediction networks + disagreement penalty) and two variations of

our framework Multitask (separate prediction networks only) and Single. Multitask

denotes a variation of DUAL which does not utilize the disagreement penalty while

Single is the baseline DS+HA introduced in Section 5.4.1. Note that Single is also

trained on both HA data and DS data together.

To show the effectiveness of the components depending on the size of HA data,

we plotted the F1 scores with varying the number of human-annotated documents
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(a) BERTD (b) BiLSTMD

(c) CAD (d) LSTMD

(e) CNND

Figure 5.4: Precision-recall curves
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Figure 5.5: Varying the size of HA data

from 152 to 3,053 (i.e., from 5% to 100% of the documents in HA data) in Figure 5.5.

As we expected, DUAL outperforms both variations in all settings. Furthermore, sep-

aration of the prediction networks significantly improves the accuracy when we have

enough number of human-annotated labels. However, when we use less than 10% of

the human annotated documents, Multitask suffers from the sparsity problem. By uti-

lizing the disagreement penalty additionally, DUAL outperforms Single even when we

use only 5% of the human-annotated documents for training the model. It implies that

the disagreement penalty enables HA-Net to effectively learn from DS data as well as

HA data.

5.4.5 Quality Comparison

To give an idea of what false relations are found by existing methods, we provide two

example documents in the dev data of DocRED and the relations extracted by DUAL,

BAFix and DS-Only with BERTD in Table 5.7. The relation hSweden,capital,

Stockholmi is expressed in the document titled ‘Kungliga Hovkapellet’ and all meth-

ods find the relation correctly. In the document titled ‘Loopline Bride’, the relation
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Documents

Title: Kungliga Hovkapellet Title: Loopline Bridge

[1] Kungliga Hovkapellet is a

Swedish orchestra, originally part

of the Royal Court in [Sweden]’s

capital [Stockholm]. [2] Its exis-

tence ...

[1] The Loopline Bridge (or the

Liffey Viaduct) is a railway bridge

spanning the River Liffey and sev-

eral streets in [Dublin], [Ireland].

[2] It joins ...

Relations

Ground truth hSweden,capital, Stockholmi NA

DUAL hSweden,capital, Stockholmi NA

BAFix hSweden,capital, Stockholmi hIreland,capital, Dublini

DS-Only hSweden,capital, Stockholmi hIreland,capital, Dublini

Table 5.7: Examples of documents and extracted relations

hIreland,capital, Dublini does not exist. However, BAFix and DS-Only output

the incorrect relation. Since DUAL adaptively assess the labeling bias with µ-Net and

�-Net, DUAL does not output the false relation. In addition, since the RE models

trained with BAFix and DS-Only fail to learn the text pattern corresponding to the re-

lation type due to the labeling bias, they output many false labels such as hV ietnam,

capital, Taipeii in many documents. It shows that the dual supervision framework

effectively deal with the labeling bias of distant supervision by considering contextual

information.

5.4.6 Topic-aware Relation Extraction

We apply the dual supervision framework to the T-REX model proposed in Chapter 4.

Similar to document-level relation extraction models, we use bilinear layers for µ-Net
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F1 AUC

HA-Only 0.6569 0.6456

DS-Only 0.6624 0.6978

DUAL 0.6930 0.7125

Table 5.8: Dual supervision with T-REX model for topic-aware RE

and �-Net. Table 5.8 shows the performance of T-REX model on DocRED dataset

trained with HA-Only, DS-Only and DUAL. The result shows that our dual supervision

framework is also effective in the topic-aware RE task.

5.4.7 Generalization Performance

Recall that our goal is to extract new triples to populate the knowledge base. To verify

the utility of the extracted triples for knowledge base population, we manually ex-

amine the triples extracted from a wikipedia article ‘Lark Force’. Table 5.9 shows 23

triples extracted by DUAL +BERTD. Among the 23 extracted triples, 18 triples are cor-

rect. In addition, we manually check whether each triple exists in wikidata knowledge

base. We found that 7 correct triples do not exist in the knowledge base. The newly

discovered triples can be used to populate the knowledge base. Consider two conflict-

ing triples hHMAT Zealandia, country, Australiai and hHMAT Zealandia,

country, Japani. Since document-level relation extraction models independently ex-

tract triples from a document, conflicting triples can be extracted at the same time.

Thus, we think that it would be an interesting research direction to develop a relation

extraction model which considers the relationships between the triples.

To quantitatively evaluate the generalization performance of DUAL, we provide

the F1, IgnF1 and their difference in Table 5.10 where IgnF1 is the F1 score computed

without the triples that exist in the training data. We can see that the gap between

F1 and IgnF1 is the smallest when we use the dual supervision framework. The result
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Head entity Relation Tail entity Correct Exists in KB

Lark Force operator Australian Army O X

Lark Force inception ”March 1941” O X

Lark Force conflict World War II O O

Lark Force country Australia O O

Lark Force operator Imperial Japanese Army X -

Australian Army conflict World War II O O

Australian Army country Australia O O

John Scanlan military branch Australian Army O X

John Scanlan conflict World War II O X

John Scanlan country of citizenship Australia O X

John Scanlan military branch Imperial Japanese Army X -

Australia participant of World War II O X

Australia ethnic group Japanese X -

MV Neptuna country Australia O O

HMAT Zealandia country Australia O O

HMAT Zealandia country Japan X -

Imperial Japanese Army conflict World War II O O

Imperial Japanese Army country Australia X -

Imperial Japanese Army country Japan O O

Imperial Japanese Army country Japanese O O

Japan participant of World War II O X

Japan ethnic group Japanese O O

USS Sturgeon conflict World War II O O

Table 5.9: Triples extracted from a wikipedia article ‘Lark Force’

implies that the generalization performance of the dual supervision is higher than those

of the existing methods.
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F1 IgnF1 F1-IgnF1

HA-Only 0.5513 0.4949 0.0564

DS-Only 0.4683 0.3556 0.1127

BAFix 0.4802 0.3720 0.1082

BASet 0.4807 0.3622 0.1185

DUAL 0.5880 0.5574 0.0306

Table 5.10: Evaluation of the generalization performance
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Chapter 6

Truth Discovery in the Presence of Hierarchies

6.1 Motivation

As pointed out in [13, 15, 44], the extracted values can be hierarchically structured. In

this case, there may be multiple correct values in the hierarchy for an object even for

functional predicates and we can utilize them to find the most specific correct value

among the candidate values. For example, consider the three claimed values of ‘NY’,

‘Liberty Island’ and ‘LA’ about the location of the Statue of Liberty in Table 6.1.

Because Liberty Island is an island in NY, ‘NY’ and ‘Liberty Island’ do not conflict

with each other. Thus, we can conclude that the Statue of Liberty stands on Liberty

Island in NY.

We also observed that many sources provide generalized values in the real-life.

Figure 6.1 shows the graph of the generalized accuracy against the accuracy of the

sources in the real-life datasets BirthPlaces and Heritages used for experiments in

Section 6.3. The accuracy and the generalized accuracy of a source are the propor-

tions of the exactly correct values and hierarchically-correct values among all claimed

values, respectively. If a source claims the exactly correct values without generaliza-

tion, it is located at the dotted diagonal line in the graph. This graph shows that many

sources in real-life datasets claim with generalized values and each source has its own
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Object Source Claimed value

Statue of Liberty UNESCO NY

Statue of Liberty Wikipedia Liberty Island

Statue of Liberty Arrangy LA

Big Ben Quora Manchester

Big Ben tripadvisor London

Table 6.1: Locations of tourist attractions

tendency of generalization when claiming values.

Most of the existing methods [88, 58, 89, 14, 16] simply regard the generalized

values of a correct value as incorrect. Thus, it causes a problem in estimating the

reliabilities of sources. According to [15], 35% of the false negatives in the data fusion

task are produced by ignoring such hierarchical structures. Note that there are many

publicly available hierarchies such as WordNet [70] and DBpedia [1]. Thus, a truth

discovery algorithm to incorporate hierarchies is proposed in [4]. However, it does not

consider the different tendencies of generalization and may lead to the degradation of

the accuracy. Another drawback is that it needs a threshold to control the granularity

of the estimated truth.

We propose a novel probabilistic model to capture the different generalization ten-

dencies shown in Figure 6.1. Existing probabilistic models [58, 89, 14, 16] basically

assume two interpretations of a claimed value (i.e., correct and incorrect). By in-

troducing three interpretations of a claimed value (i.e., exactly correct, hierarchically

correct, and incorrect), our proposed model represents the generalization tendency and

reliability of the sources.

In this chapter, we propose a truth discovery algorithm utilizing the hierarchical

structures in claimed values. To the best of our knowledge, it is the first work which
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Figure 6.1: Generalization tendencies of the sources

considers both the reliabilities and the generalization tendencies of the sources. Note

that our proposed truth discovery algorithm can also work without the answers ob-

tained from workers. We empirically show that the proposed algorithm outperforms

the existing works with experiments on real-life datasets.

6.2 Hierarchical Truth Discovery

For the hierarchical truth discovery, we first model the trustworthiness of sources and

workers for a given hierarchy. Then, we propose a probabilistic model to describe the

process of generating the set of records and the set of answers based on the trust-

worthiness modeling. We next develop an inference algorithm to estimate the model

parameters and determine the truths.

6.2.1 Our Generative Model

Our probabilistic graphical model in Figure 6.2 expresses the conditional dependence

(represented by edges) between random variables (represented by nodes). While the

previous works [11, 75, 31, 61] assume that all sources and workers have their own
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Figure 6.2: A graphical model for truth discovery

reliabilities only, we assume that each source or worker has its generalization tendency

as well as reliability. We first describe how sources and workers generate the claimed

values based on their trustworthiness. We next present the model for generating the true

value. Finally, we provide the detailed generative process of our probabilistic model.

Model for source trustworthiness. For an object o, let v⇤o be the truth and vso be the

claimed value reported by a source s. Recall that Vo is the set of candidate values for

an object o. Furthermore, we let Go(v) denote the set of candidate values which are

ancestors of a value v except for the root in the hierarchy H .

There are three relationships between a claimed value vso and the truth v⇤o : (1)

vso = v⇤o , (2) vso 2 Go(v⇤o) and (3) otherwise. Let �s = (�s,1,�s,2,�s,3) be the trust-

worthiness distribution of a source s where �s,i is the probability that a claimed value

of the source s corresponds to the i-th relationship. In each relationship, a claimed

value is generated as follows:

• Case 1 (vso = v⇤o): The source s provides the exact true value with a probability

�s,1.

• Case 2 (vso 2 Go(v⇤o)): The source s provides a generalized true value vso with a

probability �s,2. In this case, the claimed value is an ancestor of the truth v⇤o in

H . We assume that the claimed value is uniformly selected from Go(v⇤o).

• Case 3 (otherwise): The source s provides a wrong value vso not even in Go(v⇤o).
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The claimed value is uniformly selected among the rest of the candidate values

in Vo.

The probability distribution �s is an initially-unknown model parameter to be esti-

mated in our inference algorithm. Accordingly, the probability of selecting an answer

vso among the values in Vo for an object o is represented by

P (vso|v⇤o ,�s) =

8
>>>>><

>>>>>:

�s,1 if vso = v⇤o ,

�s,2
|Go(v⇤o)|

if vso 2 Go(v⇤o),

�s,3
|Vo|�|Go(v⇤o)|�1 otherwise.

(6.1)

For the prior of the distribution �s, we assume that it follows a Dirichlet distribu-

tion Dir(↵), with a hyperparameter ↵ = (↵1,↵2, ↵3), which is the conjugate prior of

categorical distributions.

Let OH be the set of objects who have an ancestor-descendant relationship in their

candidate set. In practice, there may exist some objects whose candidate values do not

have an ancestor-descendant relationship. In this case, the probability of the second

case (i.e., �s,2) may be underestimated. Thus, if there is no ancestor-descendant rela-

tionship between the claimed values about o (i.e., o /2 OH ), we assume that a source

generates its claimed value vso with the following probability

P (vso|v⇤o ,�s) =

8
><

>:

�s,1 + �s,2 if vso = v⇤o ,

�s,3
|Vo|�1 otherwise.

(6.2)

Model for worker trustworthiness. Let vwo be the claimed value chosen by a worker

w among the candidates in Vo for an object o. Similar to the model for source trust-

worthiness, we also assume the three relationships between a claimed value vwo and

the truth v⇤o : (1) vwo = v⇤o , (2) vwo 2 Go(v⇤o) and (3) otherwise. Each worker w has

its trustworthiness distribution  w = ( w,1, w,2, w,3) where  w,i is the probabil-

ity that an answer of the worker w corresponds to the i-th relationship. We assume
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that the trustworthiness distribution is generated from Dir(�) with a hyperparameter

� = (�1,�2,�3).

Since it is difficult for the workers to be aware of the correct answer for every

object, a worker can refer to web sites to answer the question. In such a case, if there

is a widespread misinformation across multiple sources, the worker is also likely to

respond with the incorrect information. Similar to [16, 58], we thus exploit the popu-

larity of a value in Cases 2 and 3 to consider such dependency between sources and

workers.

• Case 1 (vwo = v⇤o): The worker w provides the exact true value with a probability

 w,1.

• Case 2 (vwo 2 Go(v⇤o)): The worker w provides a generalized true value with

a probability  w,2. We assume that the claimed value vwo is selected according

to the popularity Pop2(vwo |v⇤o) = |{s|s2So,vso=v}|
|{s|s2So,vso2Go(v⇤o)}|

which is the proportion of

the records whose claimed value is vwo out of the records with generalized values

of v⇤o .

• Case 3 (otherwise): The claimed value is selected from the wrong values ac-

cording to the popularity Pop3(vwo |v⇤o) = |{s|s2So,vso=v}|
|{s|s2So,vso /2Go(v⇤o),v

s
o 6=v⇤o}|

.

By the above model, the probability of selecting an answer vwo for the truth v⇤o of

an object o is formulated as

P (vwo |v⇤o , w) =

8
>>>>><

>>>>>:

 w,1 if vwo = v⇤o ,

 w,2 · Pop2(vwo |v⇤o) if vwo 2 Go(v⇤o),

 w,3 · Pop3(vwo |v⇤o) otherwise.

(6.3)

Similar to the model for source trustworthiness, if there is no ancestor-descendant re-

lationship in the candidate values of an object o, the probability of selecting a claimed

value vwo is
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P (vwo |v⇤o , w) =

8
><

>:

 w,1 +  w,2 if vwo = v⇤o ,

 w,3 · Pop3(vwo |v⇤o) otherwise.
(6.4)

Model for truth. We introduce the probability distribution over the candidate answers

to determine the truth, called confidence distribution. Each object o has a confidence

distribution µo = {µo,v}v2Vo
where µo,v is the probability that the value v 2 Vo is the

true answer for o. We also use a dirichlet prior Dir(�o) for the confidence distribution

µo where �o = {�o,v}v2Vo
is a hyperparameter.

Based on the above three models, the generative process of our model works as

follows.

Generative process. Given a set of objects O, a set of sources S and a set of workers

W , our proposed model assumes the following generative process for the set of records

R and the set of answers A:

1. Draw �s ⇠ Dir(↵) for each source s 2 S

2. Draw  w ⇠ Dir(�) for each worker w 2W

3. For each object o 2 O

(a) Draw µo ⇠ Dir(�o)

(b) Draw a true value v⇤o ⇠ Categorical(µo)

(c) For each source s 2 So

i. Draw a value vso following P (vso|v⇤o ,�s)

(d) For each worker w 2Wo

i. Draw a value vwo following P (vwo |v⇤o , w)

6.2.2 Estimation of Model Parameters

We now develop an inference algorithm for the generative model. Let ⇥ = ��� [   [µµµ

be the set of all model parameters where ��� = {�s|s 2 S},    = { w|w 2 W} and
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µµµ = {µo|o 2 O}. We propose an EM algorithm to find the maximum a posteriori

(MAP) estimate of the parameters in our model.

The maximum a posteriori (MAP) estimator. Recall that R = {(o, s, vso)} is the

set of records from the sources and A = {(o, w, vwo )} is the set of answers from the

workers. For every object o, each source s 2 So and each worker w 2Wo generates its

claimed values independently. Then, the likelihood of R and A based on our generative

model is

P (R, A|⇥) =
Y

o2O

Y

s2So

P (vso|�s, µo)·
Y

o2O

Y

w2Wo

P (vwo | w, µo)

where the probability of generating a claimed value by a source or a worker becomes

P (vso|�s, µo) =
X

v2Vo

P (vso|�s, v⇤o = v) · µo,v (6.5)

P (vwo | w, µo) =
X

v2Vo

P (vwo | w, v⇤o = v) · µo,v. (6.6)

Consequently, the MAP point estimator is obtained by maximizing the log-posterior

as

⇥̂ = arg max
⇥

{log P (R, A|⇥) + log P (⇥)} = arg max
⇥

F (6.7)

where the objective function F is

F =
X

o2O

X

s2So

log
X

v2Vo

P (vso|�s, v⇤o = v) · µo,v

+
X

o2O

X

w2Wo

log
X

v2Vo

P (vwo | w, v⇤o = v) · µo,v (6.8)

+
X

s2S
log p(�s|↵) +

X

w2W
log p( w|�) +

X

o2O
log p(µo|�o).

Note that although we assumed that each claimed value is generated indepen-

dently according to its probability distribution defined in Eq. (6.5) and (6.6), the de-

pendencies between sources and workers are already considered in Pop2(vwo |v⇤o) and

Pop3(vwo |v⇤o).
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The EM algorithm. We introduce a random variable Cv to represent the type of the

relationship between the claimed value v and the truth v⇤o . It is defined as follows:

Cv =

8
>>>>><

>>>>>:

1 if v = v⇤o ,

2 if v 2 Go(v⇤o),

3 otherwise.

In the E-step, we compute the conditional distributions of the hidden variables

Cvso , Cvwo and v⇤o under our current estimate of the parameters ⇥. Let fv
o,s, fv

o,w, gto,s and

gto,w denote the conditional probabilities P (v⇤o = v|vso, µo,�s), P (v⇤o = v|vwo , µo, w),

P (Cvso = t|µo,�s) and P (Cvwo = t| µo, w), respectively. Using Bayes’ rule, we can

update the conditional probabilities as shown in Figure 6.3 where Do(v) = {v0|v 2

Go(v0) ^ v0 2 Vo} is the set of descendants of v among the candidate values and

¬Do(v) = Vo �Do(v)� {v} is the set of candidate values each of which is neither a

descendant of the value v nor the v itself.

In the M-step, we find the model parameters ⇥ that maximize our objective func-

tion F. We first add Lagrange multipliers to enforce the constraints of model parame-

ters.
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We obtain the following equations for updating the model parameters ⇥ by taking

the partial derivative of the Lagrangian L with respect to each model parameter and

setting it to zero:

µo,v =

P
s2So

fv
o,s +

P
w2Wo

fv
o,w + �o,v � 1

|So| + |Wo| +
P

v02Vo

�
�o,v0 � 1

� (6.9)

�s,t =

P
o2Os

gto,s + ↵t � 1

|Os| +
P3

t0=1 (↵t0 � 1)
(6.10)

 w,t =

P
o2Ow

gto,w + �t � 1

|Ow| +
P3

t0=1 (�t0 � 1)
(6.11)
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fv
o,s =
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>>:

P
v2Do(vso)

�s,2
|Go(v)| ·µo,vP

v2Vo
P (vso|v⇤o=v,�s)·µo,v

if o 2 OH

�s,2·µo,v
s
oP

v2Vo
P (vso|v⇤o=v,�s)·µo,v
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|Vo�Go(v)|�1 · µo,v

P
v2Vo
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v2Vo
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g2o,w =

8
>><

>>:

P
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 w,2·µo,v
w
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v2Vo
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otherwise
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P
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P (vwo |v⇤o = v, w) · µo,v

Figure 6.3: E-step for the proposed truth inference algorithm
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where Os and Ow are the sets of objects claimed by s and w, respectively. We infer the

truth by choosing the value with the maximum confidence among the candidate values

as

v⇤o = arg max
v2Vo

µo,v. (6.12)

6.2.3 Extension to Numerical Data

In the world wide web, numerical data also have an implicit hierarchy due to the sig-

nificant digits which carry meaning contributing to its measurement resolution. For

example, even though the area of Seoul is 605.196km2, different websites may rep-

resent the area in various forms depending on the significant figures (e.g., 605.2km2,

605km2). An existing algorithm [40] to handle numerical data utilizes a weighted sum

of the claimed values to consider the distribution of the claimed values. However, such

method is sensitive to outliers and thus need a proper preprocessing to remove the

outliers. To overcome the drawbacks, we generate the underlying hierarchy in the nu-

merical data by assuming that vd is a descendant of va if a value va can be obtained

by rounding off a value vd. Then, we can use our TDH algorithm to find the truths

in numerical data by taking into account the relationship between the values in the

implicit hierarchy. Our algorithm is also robust to the outliers with extremely small or

large value since we estimate the truth by selecting the most probable value from the

candidate values rather than computing a weighted average of the claimed values.

6.3 Experiments

6.3.1 Test Environments

The experiments are conducted on a computer with Intel i5-7500 CPU and 16GB

of main memory.1 In this section, we only provide the experimental results without
1Code is available at https://github.com/woohwanjung/truthdiscovery
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crowdsourcing. The empirical evaluation with crowdsourcing will be presented in the

next chapter after proposing the task assignment algorithm for crowdsourcing.

Datasets. We collected the two real-life datasets and made it publicly available at

http://kdd.snu.ac.kr/home/datasets/tdh.php. Statistic of the datasets

are summarized in Table 6.2.

BirthPlaces: We selected 6,005 celebrities and crawled 13,510 records about the

birthplaces of the celebrities from 7 websites (sources). For the gold standard data to

evaluate the correctness of discovered birthplaces, we used IMDb biography which is

available at http://www.imdb.com. Moreover, the hierarchy was created by integrating

the birth information from the IMDb data. For example, if there is a person who was

born in ‘LA, California, USA’, we assigned ‘LA’ as a child of ‘California’ and ‘Cali-

fornia’ as a child of ‘USA’. The hierarchy contains 4,999 nodes (e.g., countries, cities

and etc.) and its height is 5.

Heritages: This is a dataset of the locations of World Heritage Sites provided by

UNESCO World Heritage Centre, available at http://whc.unesco.org. We queried about

the locations of 785 World Heritage Sites with Bing Search API and obtained 4,424

claimed values from 1,577 distinct websites. Since we searched through the search

engine without specifying a pool of sources, this dataset contains far more sources than

BirthPlaces. Instead, each source in this dataset has a few claimed values. Thus, we

can evaluate the when the data is sparse to accurately evaluate reliabilities of sources.

The hierarchy was created in the same way as we did for BirthPlaces and it has 1,027

nodes. The height of this hierarchy tree is 6.

Quality Measures. We use Accuracy, GenAccuracy and AvgDistance to evaluate the

truth discovery algorithms. Let to be the truth of the object o in the gold standard and

v⇤o be the estimated truth by an algorithm. Note that to may not exist in the set of candi-

date values. In this case, the most specific candidate value among the ancestors of the

truth is assumed to be to. Accuracy is the proportion of objects that the algorithm dis-

covers the truth exactly. It is widely used in [89, 17, 91, 90] to evaluate truth discovery
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|O| |R| |S| |ho|

BirthPlaces 6,005 13,510 7 4,999

Heritages 785 4,424 1,577 1,027

Table 6.2: Statistics of datasets

algorithms.

(Accuracy) =

P
o2O I(v⇤o = to)

|O|

The ancestors of to are less informative but still correct values. Thus, we develop an

evaluation measure named GenAccuracy which is the proportion of objects o whose

estimated truth v⇤o is either the truth to or an ancestor of the truth.

(GenAccuracy) =

P
o2O I(v⇤o 2 GH(to)[{to})

|O|

Ancestors of the truth have a different level of informativeness depending on the

distance to the truth. For example, ‘New York’ is more informative than ‘USA’ as the

location of the Statue of Liberty. Thus, we utilize another evaluation measure named

AvgDistance which weights the estimated truth based on the distance from the ground

truth. More specifically, it is the average number of edges d(v⇤o , to) between the truth

to and the estimated truth v⇤o in the hierarchy H .

(AvgDistance) =

P
o2O d(v⇤o , to)

|O|

AvgDistance is robust to the case where the ground truth is less specific than the es-

timated truth. The estimated truth is regarded as a wrong value when we compute

Accuracy and GenAccuracy even though the estimate truth is correct and more spe-

cific. Since the distance between the less specific ground truth and the estimated truth

is generally small, AvgDistance compensates the drawback of Accuracy and GenAc-

curacy.
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6.3.2 Implemented Algorithms

We implemented following 10 truth discovery algorithms in Python for comparative

experiments.

• TDH: This is our algorithm proposed in Section 6.2. For the prior distribution

Dir(↵), we set the hyperparameter ↵ = (3, 3, 2) since correct values are more

frequent than wrong values for most of the sources. For the other hyperparameters

� and �, we set every dimension of � and � to 2.

• ACCU: It is the algorithm proposed in [14] which considers the dependencies be-

tween sources to find the truths. The algorithm exploits Bayesian analysis to find

the dependencies.

• POPACCU: This denotes the algorithm in [16] which extends ACCU. It computes

the distribution of the false values from the records while ACCU assumes that it is

uniform.

• LFC: This algorithm is proposed in [61] and utilizes a confusion matrix to model a

source’s quality.

• CRH: It is proposed in [41] to resolve conflicts in heterogeneous data containing

categorical and numerical attributes.

• LCA: It is a probabilistic model proposed in [58]. We select GuessLCA to be com-

pared in this paper which is one of the best performers among the 7 algorithms

proposed in [58].

• ASUMS: This is proposed in [4] by adapting an existing method SUMS [57] to

hierarchical truth discovery.

• MDC: This denotes the truth discovery method designed for medical diagnose from

non-expert crowdsourcing in [43].

• DOCS: This is the state-of-the-art technique presented in [89] that suggests the

domain-sensitive worker model.
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Dataset

BirthPlaces Heritages

Algorithm Accuracy GenAccuracy AvgDistance Accuracy GenAccuracy AvgDistance

TDH 0.8913 0.8988 0.3151 0.7414 0.8726 0.5210

VOTE 0.7900 0.8924 0.4961 0.6892 0.8994 0.6382

LCA 0.8834 0.8923 0.3414 0.6930 0.8866 0.6611

DOCS 0.8828 0.8916 0.3409 0.6904 0.8866 0.6599

ASUMS 0.8543 0.8571 0.4573 0.6229 0.7414 1.2000

MDC 0.8263 0.8432 0.5320 0.7254 0.8087 0.6869

ACCU 0.8137 0.8296 0.6063 0.5834 0.7656 1.0637

POPACCU 0.8133 0.8300 0.6070 0.6561 0.8586 0.7554

LFC 0.8085 0.8743 0.4669 0.6803 0.8076 0.8076

CRH 0.8083 0.8271 0.6120 0.6841 0.8828 0.6688

Table 6.3: Performance of truth discovery algorithms

• VOTE: This is a baseline that selects a value with the highest frequency in the

claimed values.

6.3.3 Comparison with Existing Truth Discovery Algorithms

We first provide the performances of the truth discovery algorithms without using

crowdsourcing in Table. 6.3.

BirthPlaces. Our TDH outperforms all other algorithms in terms of all quality mea-

sures since TDH finds the exact truths by utilizing the hierarchical relationships. Since

TDH estimates the reliabilities of the sources and workers by considering the hier-

archies, it does not underestimate the reliabilities of the sources and workers. Thus,

TDH also finds more correct values including the generalized truths. We will discuss

the reliability estimation in detail at the end of this section by comparing TDH with

71



ASUMS. LCA is the second-best performer and VOTE shows the lowest Accuracy

among all compared algorithms. However, in terms of GenAccuracy, VOTE performs

the second-best. It is because many websites claim the generalized values rather than

the most specific value. As truth inference algorithms estimate the truths more specifi-

cally, the differences between Accuracy and GenAccuracy become smaller. Thus, TDH

and ASUMS, which utilize the hierarchy information, have smaller differences be-

tween Accuracy and GenAccuracy compared to the other algorithms.

Heritages. In terms of AvgDistance and Accuracy, TDH performs the best among

those of the compared algorithms. VOTE shows the highest GenAccuracy because

many sources provide the generalized truths. In fact, a high GenAccuracy with low

Accuracy and AvgDistance can be easily obtained by providing the most general values

for the truths. However, such values usually are not informative. Since our algorithm

shows much higher Accuracy and much lower AvgDistance than VOTE, we can see

that the estimated truth by TDH is more accurate and precise than the result from

VOTE. Heritages contains many sources and most of the sources have a few claims.

Thus, it is very hard to estimate the reliability of each source accurately. Therefore,

most of the compared algorithms show worse performance than VOTE in terms of

AvgDistance. In particular, ACCU has the lowest Accuracy. The reason is that ACCU

requires many shared objects between two sources in order to accurately determine the

dependency between the sources. The average accuracy of the sources in Heritages is

58.0% while that of the sources in BirthPlaces is 72.1%. Thus, every algorithm shows

a lower Accuracy in this dataset than in BirthPlaces.

Comparison with ASUMS. Since ASUMS [4] is the only existing algorithm which

utilizes hierarchies for truth inference, we show the statistics related to the reliability

distributions estimated by TDH and ASUMS for BirthPlaces dataset in Figure 6.4.

Accuracy and GenAccuracy represent the actual reliabilities of each source computed

from the ground truths. Recall that �s,1 and �s,2 are the estimated probabilities of

providing a correct value and a generalized correct value respectively for a source s
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Figure 6.4: Source reliability distribution in BirthPlaces

by our TDH, as defined in Section 6.2. In addition, t(s) is the estimated reliability

of a source s by ASUMS which ignores the generalization level of each source. In

each source s, the leftmost bar denotes accgen where the portion of Accuracy is also

shown, the middle stacked bar shows �s,1 and �s,2 together, and the rightmost bar

represents t(s). The reliabilities of the sources 4, 5 and 7 computed by ASUMS (i.e.

t(s)) are quite different from the actual reliabilities (i.e., Accuracy). As we discussed in

Section 6.1, for a pair of sources that provide different claimed values with an ancestor-

descendant relationship in a hierarchy, existing methods may assume that one of the

claimed values is incorrect. Thus, the reliability of the source with the assumed wrong

value tends to become lower by the existing methods. ASUMS suffers from the same

problem and underestimates the reliabilities of the sources 4, 5 and 7 which provide a

small number of claimed values. Meanwhile, our proposed algorithm TDH accurately

estimates the reliabilities of the sources by introducing another class of the claimed

values (generalized truth).

6.3.4 Comparison with Multi-truths Discovery Algorithms

Since there are multiple correct values including generalized values, The problem of

truth dicovery in the presence of hierarchies can be regarded as a special case of the

multi-truth discovery problem. We implement multi-truth discovery algorithms such

as DART[46], LFC[61] and LTM[88] to compare with our TDH algorithm. Since
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Dataset

BirthPlaces Heritages

Algorithm Precision Recall F1 Precision Recall F1

Single

truth

TDH 0.899 0.921 0.910 0.873 0.795 0.832

VOTE 0.892 0.804 0.846 0.899 0.717 0.798

LCA 0.892 0.913 0.903 0.878 0.711 0.786

DOCS 0.892 0.913 0.902 0.887 0.722 0.796

ASUMS 0.857 0.888 0.872 0.741 0.660 0.698

POPACCU 0.847 0.858 0.852 0.859 0.694 0.768

LFC 0.874 0.838 0.856 0.808 0.727 0.765

MDC 0.844 0.853 0.848 0.807 0.792 0.800

ACCU 0.830 0.842 0.836 0.766 0.631 0.692

CRH 0.827 0.833 0.830 0.883 0.716 0.791

Multi

-truths

LFC-MT 0.763 0.723 0.742 0.898 0.684 0.777

DART 0.590 0.855 0.698 0.357 0.994 0.525

LTM 0.780 0.472 0.588 0.871 0.672 0.759

Table 6.4: Comparison with multi-truth discovery algorithms

the multi-truths discovery algorithms independently generate the correct values, they

may output the true values where there exist a pair of true values without ancestor-

descendant relationship in the hierarchy. For example, from the given claimed values

in Table 6.1, the multi-truth algorithms can answer that the ‘Statue of Liberty‘ is lo-

cated in LA and Liberty island. In this case, we cannot evaluate the result by our

evaluation measures Accuracy, GenAccuracy and AvgDistance. Thus, to evaluate the

performance of the tested algorithms, we utilize precision, recall and F1-score which

are the evaluation measures typically used for multi-truths discovery. To use the multi-

truths algorithms and the evaluation measures, we treat the ancestors of v and v itself
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as the multi-truths of v. LFC can work as either a single truth algorithm or a multi-

truths algorithm. We refer to the multi-truth version of LFC as LFC-MT to avoid the

confusion.

Table 6.4 shows the performance of the truth discovery algorithms in terms of pre-

cision, recall and F1-score. For both datasets, the TDH algorithm is the best in terms of

F1-score. Recall that the VOTE algorithm tends to find a generalized value of the ex-

act truth. Since a generalized truth generates a small number of multi-truths, the VOTE

algorithm shows the highest precision in Heritages dataset. However, since its recall

is much lower than that of our TDH algorithm, the F1-score of the VOTE algorithm is

lower than that of the TDH algorithm. Similarly, although the DART algorithm has the

highest recall in Heritages dataset, the precision of the DART algorithm is the smallest

among the precisions of all compared algorithms.

6.3.5 Performance Evaluation on a Numerical Dataset

To evaluate the extension to numerical data, we conducted an experiment on the stock

datatset [42] which is trading data of 1000 stock symbols from 55 sources on every

work day in July 2011. The detailed description of the data can be found in [42]. As

we discussed at the end of Section 6.2.2, we can utilize our TDH algorithm for nu-

meric dataset with implied hierarchy. We select three attributes ‘change rate’, ‘open

price’ and ‘EPS’ of the dataset, and compared our TDH algorithm with the LCA,

CRH, CATD[40], VOTE and MEAN algorithms. Note that CRH[41] and CATD[40]

are designed to find the truth in numerical data. Recall that VOTE is a baseline al-

gorithm which selects the candidate value collected from majority sources. We also

implemented a baseline algorithm, called MEAN, which estimates the correct value as

the average of the claimed numeric values.

Table 6.5 shows the mean squared error (MAE) and the relative error (R/E) of

the tested algorithms. The TDH algorithm performs the best for every attribute. The

MEAN and CATD algorithms show worse performance than the other algorithms.
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Change rate Open price EPS

Algorithm MAE R/E MAE R/E MAE R/E

TDH 0.0006 0.1011 0.0195 0.0354 0.0352 1.9513

LCA 0.0006 0.1011 0.0195 0.0354 0.3831 16.2212

CRH 0.0020 1.6339 0.0195 0.0354 0.0610 1.9882

CATD 0.0104 2.3529 0.0211 0.0395 0.0803 3.2059

VOTE 0.0006 0.1011 0.0195 0.0354 0.0765 2.8402

MEAN 0.2837 30.8747 0.4047 0.5782 0.1762 7.3937

Table 6.5: Performance evaluation for numerical data

Since they utilize an average or a weighted average of the claimed values, they are

sensitive to outliers. The result confirms that our TDH algorithm is effective even for

numerical data.
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Chapter 7

Task Assignment for Truth Discovery

7.1 Motivation

According to [15], upto 96% of the false triples are made by extraction errors rather

than by the sources themselves. Human can easily correct the extraction errors by

directly checking the information sources. Since crowdsourcing is an efficient way to

utilize human intelligence with a low cost, it has been successfully applied in various

areas of data integration such as schema matching [21], entity resolution [74], graph

alignment [33] and truth discovery [91, 89]. Thus, we utilize crowdsourcing to improve

the accuracy of the truth discovery.

It is essential in practice to minimize the cost of crowdsourcing by assigning proper

tasks to workers. A popular approach for selecting queries in active learning is uncer-

tainty sampling [38, 5, 34, 89]. It asks a query to reduce the uncertainty of the confi-

dences on the candidate values the most. However, it considers only the uncertainty

regardless of the accuracy improvement. QASCA algorithm [91] asks a query with

the highest accuracy improvement, but measures the improvement without consider-

ing the number of collected claimed values. It can be inaccurate since an additional

answer may be less informative for an object which already has many records and

answers.
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Figure 7.1: Crowdsourced truth discovery in KF

Assume that there are two candidate values of an object with equal confidences.

If only a few sources provide the claimed values for the object, an additional answer

from a crowd worker will significantly change the confidence distribution. Meanwhile,

if hundreds of sources already provide the claimed values for the object, the influence

of an additional answer is likely to be very little. Thus, we need to consider the num-

ber of collected answers as well as the current confidence distribution. Based on the

observation, we develop a new method to estimate the increase of accuracy more pre-

cisely by considering the number of collected records and answers. We also present an

incremental EM algorithm to quickly measure the accuracy improvement and propose

a pruning technique to efficiently assign the tasks to workers.

As illustrated in Figure 7.1, our crowdsourced truth discovery for knowledge fu-

sion consists of two components: hierarchical truth discovery and task assignment.

The hierarchical truth discovery algorithm finds the correct values from the conflicting

values, which are collected from different sources and crowd workers, using hierar-

chies. The task assignment algorithm distributes objects to the workers who are likely

to increase the accuracy of the truth discovery the most. The proposed crowdsourced

truth discovery algorithm repeatedly alternates the truth discovery and task assignment

until the budget of crowdsourcing runs out. As discussed in [39], some workers an-

swer slower than others and increase the latency. However, we do not investigate how
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to reduce the latency in this work since we can utilize the techniques proposed in [23].

7.2 Task Assignment to Workers

In this section, we propose a task assignment method to select the best objects to be

assigned to the workers in crowdsourcing systems. We first define a quality measure

of tasks called Expected Accuracy Increase (EAI) and develop an incremental EM

algorithm to quickly estimate the quality measure. Finally, we present an efficient al-

gorithm for assigning the k questions to each worker w in a set of workers W based

on the measure.

7.2.1 The Quality Measure

Given a worker w, our goal is to choose an object to be assigned to the worker w

which is likely to increase the accuracy of the estimated truths the most. Thus, we

define a quality measure for a pair of worker and an object based on the improvement

of the accuracy. As discussed in [91], the improvement of the accuracy by a task can

be estimated by using the difference between the highest confidence as follows:

(Accuracy improvement) =
maxv µo,v|w �maxv µo,v

|O| (7.1)

where µo,v|w is the estimated confidence on v if the worker w answers about an object

o.

The quality measure used by QASCA. The QASCA[91] algorithm calculates the

estimated confidence by using the current confidence distribution and the likelihood of

the answer vwo given the truth v⇤o = v as

µo,v|w / µo,v · p(vwo = v0|v⇤o = v)

where v0 is a sampled claimed value. There are two drawbacks in the quality measure

of QASCA. First, since it computes the estimated confidence µo,v|w based on a sam-
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pled answer vwo = v, the value of the quality measure is very sensitive to the sampled

answer. In addition, QASCA does not consider the number of claimed values collected

so far and the estimated confidence µo,v|w may not be accurate. For instance, assume

that there exist two objects which have identical confidence distributions. If one of the

objects already has many collected claimed values, an additional answer is not likely

to change the confidence significantly. Thus, task assignment algorithms should select

another object who has a smaller number of collected records and answers.

Our quality measure. To avoid the sensitiveness caused by sampling answers, we de-

velop a new quality measure Expected Accuracy Improvement (EAI) which is obtained

by taking the expectation to Eq. (7.1). That is,

EAI(w, o) =
E[maxv µo,v|w]�maxv µo,v

|O| . (7.2)

By the definition of expectation, E[maxv µo,v|w] becomes

E[max
v

µo,v|w] =
X

v02Vo

P (vwo = v0| w, µo)·max
v

µo,v|vwo =v0 . (7.3)

where µo,v|vwo =v0 is the conditional confidence when a worker w answers with v0 about

the object o.

Since P (vwo = v0| w, µo) can be computed by Eq. (6.6), to compute E[maxv µo,v|w]

by Eq. (7.3), we need the estimation of the conditional confidence µo,v|vwo =v0 with an

additional answer vwo = v0. Recall that the estimated confidence computed by QASCA

may not be accurate because it does not consider the collected records and answers so

far. To reduce the error, we use them to compute the conditional confidence µo,v|vwo =v0 .

We can compute the conditional confidence µo,v|vwo =v0 by applying the EM algorithm

in Section 6.2.2 with the collected records and answers including vwo = v0. However,

since it is computationally expensive, we next develop an incremental EM algorithm.
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7.2.2 The Incremental EM Algorithm

Let Fvwo =v0 be the objective function in Eq. (6.7) after obtaining an additional answer

(o, w, v0). Then, we have

Fvwo =v0 = F + log
X

v2Vo

P (vwo = v0| w, v⇤o = v) · µo,v

by adding the related term of the additional answer (log likelihood of the additional

answer) to Eq. (6.8). Instead of running the iterative EM algorithm in Section 6.2.2,

we incrementally perform a single EM-step to speed up for only the additional answer

with the current model parameters and the above objective function.

E-step. Since we use the current model parameters, the probabilities of the hidden

variables for collected records and answers are not changed. Thus, we only need to

compute the conditional probabilities of the hidden variable given the additional an-

swer as

fv
o,w|vwo =v0 =

P (vwo = v0|v⇤o=v, w) · µo,vP
v002Vo

P (vwo = v0|v⇤o =v00, w) · µo,v00
(7.4)

based on the equation for fv
o,w used at the E-step in Figure 6.3.

M-step. For the objective function Fvwo =v0 , we obtain the following equation of the

M-step for the confidence distribution µo with the additional answer vwo = v0

µo,v|vwo =v0 =

P
s2So

fv
o,s+

P
w02Wo

fv
o,w0+fv

o,w|vwo =v0+�o,v � 1

|So|+|Wo|+1+
P

v002Vo

�
�o,v00 � 1

�

by adding the related terms fv
o,w|vwo =v0 and 1 to the numerator and the denominator of

the update equation in Eq. (6.9), respectively. Let No,v and Do be the numerator and

the denominator in Eq. (6.9), respectively. Then, the above equation can be rewritten

as

µo,v|vwo =v0 =
No,v + fv

o,w|vwo =v0

Do + 1
. (7.5)

By substituting fv
o,w|vwo =v0 in Eq. (7.5) with Eq. (7.4), the conditional confidence be-

comes

µo,v|vwo =v0 =
No,v + P (vwo =v0|v⇤o=v, w)·µo,vP

v002Vo
P (vwo =v0|v⇤o=v00, w)·µ

o,v00

Do + 1
. (7.6)
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Since No,v and Do are proportional to the number of the existing claimed values, the

confidence will be changed very little if there are many claimed values already. Thus,

we can overcome the second drawback of QASCA. Since No,vs and Dos are repeatedly

used to compute µo,v|vwo =v0 , our truth discovery algorithm keeps No,vs and Dos in main

memory to reduce the computation time.

Time complexity analysis. To calculate E[maxv µo,v|w] by Eq. (7.3), P (vwo = v0| w, µo)

is computed |Vo| times and µo,v|vwo =v0 is calculated for every pair of v and v0 (i.e.,

O(|Vo|2) times). Moreover, computing P (vwo = v0| w, µo) and µo,v|vwo =v0 take O(|Vo|)

time. Thus, it takes O(|Vo|3) time to compute EAI(w, o) by Eq. (7.2). In reality, |Vo|

is very small compared to |O|,|S| and |W |. In addition, by utilizing the pruning tech-

nique in the next section, we can significantly reduce the computation time. Therefore,

the task assignment step can be performed within a short period of time compared to

the EM steps of the truth discovery algorithm. The execution time for each step will

be presented in the experiment section.

7.2.3 The Task Assignment Algorithm

To find the k objects to be assigned to each worker, we need to compute EAI(w, o)

for all pairs of w and o. To reduce the number of computing EAI(w, o), we develop a

pruning technique by utilizing an upper bound of EAI(w, o). Since it takes O(|W ||O|·

(maxo2O|Vo|)3) time to compute EAI(w, o) for all pairs of w and o, we first derive

an upper bound of EAI(w, o) and next propose an efficient task assignment algorithm

by exploiting the upper bound to reduce the computation overhead.

An upper bound of EAI. We provide the following lemma which allows us to com-

pute an upper bound UEAI(o).

Lemma 1. (Upper Bound of Expected Accuracy Increase) For an object o and a

worker w, we have

EAI(w, o)  UEAI(o) =
1�maxv µo,v

|O| · (Do + 1)
. (7.7)
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Proof. From Eq. (7.6), since
P

v0 P (vwo = v0| w, µo) = 1, we get

E[max
v

µo,v|w] =
X

v02Vo

P (vwo =v0| w, µo) · max
v

µo,v|vwo =v0

 max
v,v0

µo,v|vwo =v0 ·
X

v02Vo

P (vwo =v0| w, µo)

= max
v,v0

µo,v|vwo =v0 . (7.8)

Moreover, from Eq. (7.5), we obtain

µo,v|vwo =v0 =
No,v + fv

o,w|vwo =v0

Do + 1
 No,v + 1

Do + 1
. (7.9)

By substituting Eq. (7.9) for µo,v|vwo =v0 in Eq. (7.8), we derive

E[max
v

µo,v|w]  max
v,v0

µo,v|vwo =v0 
maxv No,v + 1

Do + 1
. (7.10)

In addition, by applying Eq. (7.10) to Eq. (7.2), we get

EAI(w, o)  (maxv No,v+1
Do+1 �maxv µo,v)/|O|.

Since µo,v = No,v

Do
, we finally obtain the upper bound of EAI(w, o).

EAI(w, o)  (maxv No,v+1
Do+1 � maxv No,v

Do
)/|O|

=
1�maxv No,v

Do

|O|·(Do+1) = 1�maxv µo,v

|O|·(Do+1) = UEAI(o).

We devise an algorithm to assign the best k objects to each available worker in

crowdsourcing systems. Since a single answer is sufficient to find the correct value for

some objects, we assign an object to only a single worker in each round. If the answer

is not sufficient to find the correct value of the object, we assign the object to another

worker in the next round.
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Algorithm 1 Task Assignment
Input: set of workers W , number of questions k

1: Compute the upper bound UEMCI(o) for o 2 O

2: hUB  BuildMaxHeap({hUEAI(o), oi—o 2 O})

3: Sort workers in the decreasing order of  w,1

(i.e.,  1,1� 2,1� · · ·� |W |,1).

4: for w = 1 to |W | do

5: hEAI [w] BuildMinHeap({})

6: while True do

7: hUEAI(o), oi  hUB .extractMax()

8: if hEAI [|W |].size = k and hEAI [w].min>UEAI(o) for all w then

9: break

10: for w = 1 to |W | do

11: if w already answered on o or hEAI [w].min>UEAI(o) then

12: continue

13: Compute EAI(w, o)

14: hEAI [w].insert(hEAI(w, o), oi)

15: if hEAI [w].size  k then

16: break

17: o hEAI [w].extractMin().value()

Our task assignment algorithm sequentially assigns each object to a worker by

scanning the objects o with non-increasing order of the upper bound UEAI(o). To al-

locate an object to a worker, since  w,1 is the probability of answering the truth, we

consider the workers w with non-increasing order of  w,1. After assigning an object

to a worker w, if the number of assigned objects to the worker w exceeds k, we re-

move the object o with the minimum EAI(w, o) and assign the deleted object to the

next worker and perform the same step. While scanning the objects, we stop the as-
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signment if the upperbound UEAI(o) is smaller than the minimum EAI(w, o0) among

the EAI(w, o0)s of all assigned objects and each worker has k assigned objects. The

reason is that the EAI(w, o) of the remaining objects o can be larger than that of any

assigned object.

The pseudocode. It is shown in Algorithm 1. We first compute the upper bound

UEAI(o) for every object o 2 O by Lemma 1 and build a maxheap hUB of all objects

by using UEAI(o) as the key to assign the objects to workers in the decreasing order of

UEAI(o) (in lines 1-2). The workers are sorted in the decreasing order of  w,1 to give

a higher priority to reliable workers (in line 3). We next initialize a minheap hEAI [w]

for each worker w to contain the k assigned objects (in lines 4-6). Then, we repeatedly

extract an object from hUB and assign the object to a worker in the sorted order of  w,1

(in lines 12-18). Before assigning an object o, if the heaps hEAI [w]s of all workers are

full and the minimum value of EAI(w, o0) of the objects o0 in all hEAI [w]s is larger

than the upper bound UEAI(o), we stop immediately.

7.3 Experiments

7.3.1 Test Environments

Basically, we conducted experiments with the same setting in Chapter 6 except for the

followings. In this section, we utilized crowdsourcing to evaluate the task assignment

algorithms. Since we cannot change the quality of workers, we first conducted exper-

iments with simulated crowdsourcing. Next, we also verify the results with crowd-

sourcing with human annotators (workers).

Settings for simulated crowdsourcing. To evaluate the truth discovery algorithms

with varying the quality of the answers from workers, we conducted experiments with

simulated crowd workers. In our simulation, we assumed that each simulated worker

answers a question correctly with its own probability pw and randomly selects an an-

swer from the candidate values with probability 1�pw. We sampled the probability
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pw from a uniform distribution ranging from ⇡p�0.05 to ⇡p+0.05 where the default

value of ⇡p is 0.75. In the experiments, each of 10 worker answers 5 questions for each

round.

Crowdsourcing with human annotators. We evaluated truth discovery algorithms

and task assignment algorithms by crowdsourcing real human annotations in the in-

teractive setting. In the experiment, 10 human annotators answered the assigned tasks

for 20 rounds. However, this result in the interactive setting is less repeatable because

other researchers cannot conduct the same experiment with the same workers. There-

fore, we collected answers from 20 workers in Amazon Mechanical Turk (AMT) for

all objects of Heritages dataset and made it publicly available. We also present the

result with the answers obtained from AMT.

Implemented algorithms. We implemented the following task assignment algorithms.

• EAI: This is our proposed algorithm in Section 7.2.

• MB: It is the task assignment algorithm used by DOCS [89].

• QASCA: It is a task assignment algorithm proposed in [91].

• ME: This is our baseline algorithm which utilizes an uncertainty sampling. It selects

an object o⇤ whose confidence distribution has the maximum entropy. (i.e., o⇤ =

argmaxo2O (�
P

v2Vo
µo,v · log µo,v))

Note that EAI and MB are the task assignment algorithms specially designed to

work with TDH and DOCS, respectively. QASCA can work with truth discovery algo-

rithms based on probabilistic models such as TDH, DOCS, LCA, ACCU and POPACCU.

All the truth discovery algorithms can be combined with ME.

7.3.2 Comparison of Task Assignment Algorithms

Before providing the full comparison of all possible combinations of truth inference

algorithms and task assignment algorithms, we first evaluate the task assignment al-

gorithms with our truth discovery algorithm TDH proposed in Chapter 6. We plotted
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(a) BirthPlaces

(b) Heritages

Figure 7.2: Evaluation of task assignment algorithms

the average Accuracy of the truth discovery algorithms with different task assignment

algorithms for every 5 round in Figure 7.2. The points at the 0-th round represent the

Accuracy of the algorithms without crowdsourcing. All algorithms show the same Ac-

curacy at the beginning since they use the same truth inference algorithm TDH. As the

round progresses, the Accuracy of TDH+EAI increases faster than those of all other

algorithms. The Accuracy of TDH+ME is the lowest since ME selects a task based

only on the uncertainty without estimating the accuracy improvement by the task.

As discussed in Section 7.2.1, our task assignment algorithm EAI estimates the
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(a) BirthPlaces-EAI (b) BirthPlaces-QASCA

(c) Heritages-EAI (d) Heritages-QASCA

Figure 7.3: Actual and estimated accuracy improvement by EAI and QASCA

accuracy improvement by considering the number of existing claimed values and the

confidence distribution whereas QASCA considers the confidence distribution only.

We plotted the actual and estimated accuracy improvements by EAI and QASCA in

Figure 7.3. The graphs show that the estimated accuracy improvement by EAI is sim-

ilar to the actual accuracy improvement while QASCA overestimates the accuracy

improvement at every round. On average, the absolute estimation errors from EAI

are 0.08 and 0.26 percentage points (pps) while those errors from QASCA are 0.28
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and 2.66 pps in BirthPlaces and Heritages datasets, respectively. This result confirms

that EAI outperforms QASCA by effectively estimating the accuracy improvement. In

terms of the other quality measures GenAccuracy and AvgDistance, our proposed EAI

also outperforms the other task assignment algorithms in both datasets. Due to the lack

of space, we omit the results with the other quality measures.

7.3.3 Simulated Crowdsourcing

We first evaluate the performance of crowdsourced truth discovery algorithms with the

simulated crowdsourcing.

For all possible combinations of the implemented truth discovery and task assign-

ment algorithms, we show the Accuracy after 50 rounds of crowdsourcing in Table 7.1

where the impossible combinations are denoted by ‘-’. As expected, TDH+EAI has the

highest Accuracy in both datasets for all possible combinations. The result also shows

that both TDH and EAI contribute to increasing Accuracy. The improvement obtained

BirthPlaces Heritages

EAI MB QASCA ME EAI MB QASCA ME

TDH 0.9601 - 0.9500 0.9109 0.9304 - 0.8999 0.8884

DOCS - 0.9052 0.9341 0.8842 - 0.7546 0.7661 0.7631

LCA - - 0.8823 0.9089 - - 0.7136 0.8507

POPACCU - - 0.9295 0.8987 - - 0.7512 0.8336

ACCU - - 0.8468 0.8257 - - 0.5796 0.5896

ASUMS - - - 0.8700 - - - 0.7427

CRH - - - 0.9000 - - - 0.8459

MDC - - - 0.8254 - - - 0.7241

LFC - - - 0.8287 - - - 0.7327

VOTE - - - 0.8261 - - - 0.8634

Table 7.1: Accuracy of the algorithms after the 50th round
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(a) BirthPlaces (b) Heritages

Figure 7.4: Accuracy with crowdsourced truth discovery

(a) BirthPlaces (b) Heritages

Figure 7.5: GenAccuracy with crowdsourced truth discovery

by EAI can be estimated by comparing the result of TDH+EAI to that of the second

performer TDH+QASCA. The accuracies of TDH+EAI in BirthPlaces and Heritages

datasets are 1 and 3 percentage points (pps) higher than those of TDH+QASCA, re-

spectively. In addition, for each combined task assignment algorithm, the improve-

ment by TDH can be inferred by comparing the results with those of other truth in-

ference algorithms. In both datasets, TDH shows the highest Accuracy among the ap-

plicable truth inference algorithms for each task assignment algorithm. For example,

TDH+QASCA shows 2.6 and 13 pps higher Accuracy in BirthPlaces and Heritages

datasets, respectively, than the second performer DOCS+QASCA among the combi-
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(a) BirthPlaces (b) Heritages

Figure 7.6: AvgDistance with crowdsourced truth discovery

nations with QASCA. In the rest of the paper, we report Accuracy, GenAccuracy and

AvgDistance of TDH+EAI, DOCS+MB, DOCS+QASCA, LCA+ME and VOTE+ME

only since these combinations are the best or the second-best for each task assignment

algorithm.

Cost efficiency. We plotted the average Accuracy of the tested algorithms for every 5

rounds in Figure 7.4. TDH+EAI shows the highest Accuracy for every round in both

datasets. For the BirthPlaces dataset, DOCS+QASCA was the next best performer

which achieved 0.9341 of Accuracy at the 50-th round. Meanwhile, TDH+EAI only

needs 17 rounds of crowdsourcing to achieve the same Accuracy. Thus, TDH+EAI

saved 66% of crowdsourcing cost compared to the second-best performer DOCS+

QASCA. Likewise, TDH+EAI reduced the crowdsourcing cost 74% in Heritages dataset

compared to the next performer. In terms of GenAccuracy and AvgDistance, TDH+EAI

also outperforms all the other algorithms as plotted in Figure 7.5 and Figure 7.6. The

results confirm that TDH+EAI is the most efficient as it achieves the best qualities in

terms of both Accuracy and GenAccuracy.

Varying ⇡p. We plotted the average Accuracy of all algorithms with varying the proba-

bility of correct answer ⇡p of simulated workers for BirthPlaces and Heritages datasets

in Figure 7.7(a) and Figure 7.7(b), respectively. As we can easily expect, the accura-
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(a) BirthPlaces (b) Heritages

Figure 7.7: Varying ⇡p

cies increase with growing ⇡p for most of the algorithms. For both datasets, TDH+EAI

achieves the best accuracy with all values of ⇡p. In Heritages dataset, a source provided

less than 10 claims on average and it makes difficult for truth discovery algorithms to

estimate the reliabilities of sources. Therefore, the baseline VOTE+ME shows good

performance on Heritages dataset. Meanwhile, the performance of the state-of-the-art

DOCS is significantly degraded on the Heritages dataset.

Execution times. We plotted the average execution times of the tested algorithms

over every round in Figure 7.8. VOTE, CRH+ME, DOCS+MB and TDH+EAI run in

less than 2.0 seconds per round on average for both datasets. Other algorithms except

for ACCU+ME, POPACCU+ME and LFC+ME also take less than 5 seconds, which is

acceptable for crowdsourcing. Since LFC builds the confusion matrix whose size is the

square of the number of candidate values, LFC is the slowest with BirthPlaces data.

On the other hand, for Heritages dataset which is collected from much more sources

than BirthPlaces dataset, ACCU and POPACCU take longer time for truth inference

to calculate the dependencies between sources.

Effects of the filtering for task assignments. To test the scalability of our algo-

rithm, we increase the size of both datasets by duplicating the data by upto 15 times.

In Figure 7.9, with increasing data size, we plotted the execution times of our task
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(a) BirthPlaces

(b) Heritages

Figure 7.8: Execution time per round

assignment algorithm EAI with and without exploiting the upper bound proposed in

Section 7.2.3. The filtering technique saved 78% and 94% of the computation time for

the task assignment at the scale factor 15. The graphs show that the proposed upper
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(a) BirthPlaces (b) Heritages

Figure 7.9: Execution time for task assignment per round

(a) BirthPlaces (b) Heritages

Figure 7.10: Accuracy with human annotations

bound enables us to scale for large data effectively. For the total execution time, in-

cluding the truth inference, the filtering reduced 21% and 6% of the execution time on

BirthPlaces and Heritages respectively at the scale factor 15.

7.3.4 Crowdsourcing with Human Annotators

We evaluated the performance of the truth discovery algorithm by crowdsourcing

real human annotations in the interactive setting. For this experiment, we selected

DOCS+QASCA, DOCS+MB and LCA+ME for comparison with the proposed algo-
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(a) BirthPlaces (b) Heritages

Figure 7.11: GenAccuracy with human annotations

(a) BirthPlaces (b) Heritages

Figure 7.12: AvgDistance with human annotations

rithm TDH+EAI. This is because they are the best existing algorithms for each task

assignment algorithm. We conducted this experiment with 10 human annotators for

20 rounds on our own crowdsourcing system. For each worker, we assigned 5 tasks in

each round. Figure 7.10,7.11 and 7.12 show the performances of the algorithms against

the rounds. For both of the datasets, the results confirm that the proposed TDH+EAI

algorithm outperforms the compared algorithms as in the previous simulations. With-

out crowdsourcing, the other algorithms show a higher GenAccuracy than TDH for

Heritages dataset, because these algorithms tend to estimate the truths with more gen-

eralized form than TDH does. However, TDH+EAI shows the highest GenAccuracy
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after the 3rd round because it correctly estimates the reliabilities and the generaliza-

tion levels of the sources by using the hierarchy. For BirthPlaces dataset, Accuracies

of the algorithms increase a little bit faster than those in the experiment with simulated

crowdsourcing. However, for Heritages dataset, Accuracies of the algorithms increase

much slower than in the experiment with simulated crowdsourcing. It seems that find-

ing the locations of a world heritages is a quite harder task than finding the birthplaces

of celebrities because the birthplaces are often big cities (such as LA), which are fa-

miliar to workers, but World Cultural Heritages and World Natural Heritages are often

located in unfamiliar regions.

7.3.5 Crowdsourcing on AMT

To validate the results in previous experiments, we also evaluate the performances of

TDH+EAI, DOCS+QASCA, DOCS+MB and LCA+ME based on the answers col-

lected from Amazon Mechanical Turk (AMT). We collected answers for all objects

in Heritages dataset from 20 workers in AMT. In addition, we made the collected

answers available at http://kdd.snu.ac.kr/home/datasets/tdh.php to

improve the reproducibility. To evaluate the algorithms based on the collected answers,

we assign 5 tasks for each worker in a round. We plotted the performance of the al-

gorithms in Figure 7.13. Since we use more workers than we did in Section 7.3.4, the

performances improve a little bit faster, but the trends are very similar to those with 10

human annotators in the previous section. We observe that our TDH+EAI outperforms

all compared algorithms even with a commercial crowdsourcing platform.
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Figure 7.13: Crowdsourced truth discovery in Heritages
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Chapter 8

Conclusion

Automated knowledge base construction has been studied extensively due to its impor-

tance in many downstream applications such as question answering and recommender

systems. In this dissertation, we proposed four important techniques to improve the

accuracy and coverage of the automated knowledge base construction.

First, we introduced a new problem named topic-aware relation extraction to ex-

tend the coverage of relation extraction. We proposed the T-REX which utilizes topic

entities to extract relations from text. We empirically showed that T-REX outperforms

existing models in extracting relations with topic entities. In addition, the experiment

confirmed that T-REX extract many triples which are not detected by the existing mod-

els.

Second, we proposed the dual supervision framework to utilize human annotation

and distant supervision based on the analysis of labeling bias in distant supervision.

We devised a new structure for the output layer of RE models that consists of 4 sub

networks. The new structure is robust to the noisy labeling of distant supervision since

the labels obtained by human annotation and distant supervision are predicted by sepa-

rate prediction networks HA-Net and DS-Net, respectively. In addition, we introduced

an additional loss term called disagreement penalty which enables HA-Net to learn

from distantly supervised labels. The parameter networks µ-Net and �-Net adaptively
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assess the labeling bias by considering contextual information. Moreover, we theoret-

ically analyzed the effect of the disagreement penalty. Our experiments showed that

the dual supervision framework significantly improves the performance of existing re-

lation extraction models.

Third, we studied the problem of truth discovery in the presence of hierarchies. To

utilize the hierarchical structures in claimed values, we proposed a probabilistic model

and an inference algorithm for the model. To the best of our knowledge, this is the first

truth discovery work which assess both reliabilities and generalization tendencies of

sources. The performance study with real-life datasets confirmed the effectiveness of

the proposed hierarchical truth discovery algorithm.

Finally, we examined the problem of task assignment to workers in crowdsourc-

ing platforms. To assign a task that will most improve the accuracy, we develop an

incremental EM algorithm to estimate the accuracy improvement for a task. We also

proposed an efficient pruning technique to assign tasks to workers with a short la-

tency. We conducted extensive experiments with simulated crowdsourcing, interactive

crowdsourcing with human annotators, and crowdsourcing on a commercial platform

AMT (amazon mechanical turk). The experimental results showed the effectiveness

and efficiency of the task assignment algorithm.

We next discuss potential directions for future work on automated knowledge base

construction and its downstream applications.

Rule mining in automatically constructed knowledge bases. Rule mining in knowl-

edge bases has been extensively studied in many works such as [66, 55, 59]. Automat-

ically constructed knowledge bases inevitably have much more errors compared to

manually constructed knowledge bases. Thus, the results of rule mining in automati-

cally constructed knowledge bases can be erroneous. Since truth discovery algorithms

estimate the confidence on each relational fact and reliability of each source, incorpo-

rating such information to rule mining would be an interesting research direction.

Distant supervision with noisy knowledge bases. Recall that distant supervision
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generates a lot of incorrect labels even when the knowledge base does not have an

error. The wrong labeling problem in distant supervision has been addressed in many

previous works [82, 47, 79, 3]. In addition, we also propose a method to alleviate the

effect of the noisy labels obtained from distant supervision in chapter 5. Compared

to distant supervision with manually constructed knowledge bases, distant supervision

with automatically constructed knowledge bases may generate much more false la-

bels since there can be many false relational facts in such knowledge bases. Thus, it

would be a more challenging problem to train relation extraction models on distantly

supervised data with noisy knowledge bases.

We believe that the techniques proposed in the dissertation enhance the down-

stream applications of knowledge bases such as question answering and recommender

systems.
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Chapter A

Appendix

A.1 Inflation in DocRED dataset

The inflation of 96 relation types of DocRED is shown in Table A.1. As discussed in

Section 5.3.3, we conducted Kolmogorov-Smirnov (K-S) test and observed that the

log-normal distribution is the best-fit distribution of the inflations.

Relation type # HA labels # DS labels # HA labels
# HA docs.

# DS labels
# DS docs.

Inflation

= # DS labels/# DS docs.
# HA labels/# HA docs.

P17 8,921 313,961 2.9220 3.0819 1.055

P131 4,193 143,006 1.3734 1.4038 1.022

P27 2,689 126,360 0.8808 1.2404 1.408

P150 2,004 62,646 0.6564 0.6149 0.937

P577 1,142 37,538 0.3741 0.3685 0.985

P175 1,052 27,945 0.3446 0.2743 0.796

P569 1,044 33,998 0.3420 0.3337 0.976

P570 805 28,314 0.2637 0.2779 1.054

P161 621 21,139 0.2034 0.2075 1.020

P264 583 14,804 0.1910 0.1453 0.761

P527 632 22,596 0.2070 0.2218 1.071

P361 596 28,245 0.1952 0.2773 1.420
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P495 539 36,029 0.1765 0.3537 2.003

P19 511 31,232 0.1674 0.3066 1.832

P571 475 26,699 0.1556 0.2621 1.684

P54 379 12,312 0.1241 0.1209 0.974

P102 406 11,582 0.1330 0.1137 0.855

P463 414 15,272 0.1356 0.1499 1.106

P3373 335 11,123 0.1097 0.1092 0.995

P40 360 11,831 0.1179 0.1161 0.985

P30 356 18,792 0.1166 0.1845 1.582

P50 320 8,856 0.1048 0.0869 0.829

P1441 299 6,763 0.0979 0.0664 0.678

P1001 298 9,945 0.0976 0.0976 1.000

P69 316 8,413 0.1035 0.0826 0.798

P26 303 9,723 0.0992 0.0954 0.962

P607 275 8,056 0.0901 0.0791 0.878

P57 246 9,865 0.0806 0.0968 1.202

P159 264 17,089 0.0865 0.1677 1.940

P22 273 9,065 0.0894 0.0890 0.995

P400 304 5,825 0.0996 0.0572 0.574

P1344 223 3,574 0.0730 0.0351 0.480

P206 194 6,585 0.0635 0.0646 1.017

P127 208 7,554 0.0681 0.0742 1.088

P170 231 6,036 0.0757 0.0593 0.783

P178 238 6,368 0.0780 0.0625 0.802

P20 203 24,937 0.0665 0.2448 3.681

P1412 155 6,313 0.0508 0.0620 1.221

P155 188 12,236 0.0616 0.1201 1.950

P118 185 6,024 0.0606 0.0591 0.976

P710 191 4,985 0.0626 0.0489 0.782

P6 210 6,859 0.0688 0.0673 0.979

P108 196 6,775 0.0642 0.0665 1.036

P276 172 6,654 0.0563 0.0653 1.159
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P156 192 11,576 0.0629 0.1136 1.807

P674 163 3,447 0.0534 0.0338 0.634

P166 173 6,322 0.0567 0.0621 1.095

P194 166 2,989 0.0544 0.0293 0.540

P123 172 4,444 0.0563 0.0436 0.774

P140 144 5,143 0.0472 0.0505 1.070

P800 150 5,275 0.0491 0.0518 1.054

P449 152 4,237 0.0498 0.0416 0.835

P58 156 7,952 0.0511 0.0781 1.528

P35 140 4,257 0.0459 0.0418 0.911

P179 144 3,800 0.0472 0.0373 0.791

P706 137 5,063 0.0449 0.0497 1.108

P162 119 6,739 0.0390 0.0662 1.697

P37 119 6,562 0.0390 0.0644 1.653

P241 108 2,633 0.0354 0.0258 0.731

P31 103 5,561 0.0337 0.0546 1.618

P403 95 2,475 0.0311 0.0243 0.781

P580 110 6,549 0.0360 0.0643 1.784

P137 95 3,011 0.0311 0.0296 0.950

P585 96 2,920 0.0314 0.0287 0.912

P112 100 7,700 0.0328 0.0756 2.308

P86 79 4,249 0.0259 0.0417 1.612

P176 83 2,737 0.0272 0.0269 0.988

P749 92 3,335 0.0301 0.0327 1.086

P937 104 7,470 0.0341 0.0733 2.153

P36 85 34,047 0.0278 0.3342 12.004

P576 79 7,057 0.0259 0.0693 2.677

P355 92 2,436 0.0301 0.0239 0.794

P136 111 1,948 0.0364 0.0191 0.526

P364 66 2,274 0.0216 0.0223 1.033

P272 82 2,151 0.0269 0.0211 0.786

P172 79 7,563 0.0259 0.0742 2.869
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P205 85 3,299 0.0278 0.0324 1.163

P279 77 2,736 0.0252 0.0269 1.065

P1376 76 29,816 0.0249 0.2927 11.757

P171 75 2,167 0.0246 0.0213 0.866

P25 74 2,826 0.0242 0.0277 1.144

P488 63 2,216 0.0206 0.0218 1.054

P582 51 6,144 0.0167 0.0603 3.610

P740 62 4,531 0.0203 0.0445 2.190

P840 48 2,573 0.0157 0.0253 1.606

P1366 36 2,771 0.0118 0.0272 2.307

P676 36 2,415 0.0118 0.0237 2.010

P1336 33 1,600 0.0108 0.0157 1.453

P1056 36 624 0.0118 0.0061 0.519

P551 35 3,197 0.0115 0.0314 2.737

P39 23 1,692 0.0075 0.0166 2.204

P1365 18 1,811 0.0059 0.0178 3.015

P737 9 2,071 0.0029 0.0203 6.895

P190 4 11,471 0.0013 0.1126 85.900

P807 2 2,210 0.0007 0.0217 33.082

P1198 2 1,622 0.0007 0.0159 24.280

Table A.1: Inflations of relation types in DocRED dataset

A.2 An Additional Experiment with T-REX: Effect of the

Number of Entity Mentions

An entity tends to be mentioned multiple times in a document and each mention of

an entity can be involved in a different relationship with the topic entity. To consider

the subtle meaning of each mention, our topic-aware relation extraction model first

predicts the relationship between the topic entity and each mention of other entities.
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Then it combines the results by using a smooth-maximum function. To validate the ef-

fectiveness of our approach, we present the F1 scores of the triples with a single entity

mention and multiple entity mentions, resepectively, in Figure A.1. Note that the per-

formance improvement of T-REX is greater when there are multiple entity mentions. It

confirms the effectiveness of our approach to consider the different meanings of entity

mentions.

(a) Supervised setting

(b) Weakly supervised setting

Figure A.1: F1 score by the number of entity mentions
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