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Abstract

Background: The Clock Drawing Test (CDT) and Rey–Osterrieth Complex Figure Test (RCFT) are widely used as a
part of neuropsychological test batteries to assess cognitive function. Our objective was to confirm the prediction
accuracies of the RCFT-copy and CDT for cognitive impairment (CI) using convolutional neural network algorithms
as a screening tool.

Methods: The CDT and RCFT-copy data were obtained from patients aged 60–80 years who had more than 6 years
of education. In total, 747 CDT and 980 RCFT-copy figures were utilized. Convolutional neural network algorithms
using TensorFlow (ver. 2.3.0) on the Colab cloud platform (www.colab.research.google.com) were used for
preprocessing and modeling. We measured the prediction accuracy of each drawing test 10 times using this
dataset with the following classes: normal cognition (NC) vs. mildly impaired cognition (MI), NC vs. severely
impaired cognition (SI), and NC vs. CI (MI + SI).

Results: The accuracy of the CDT was better for differentiating MI (CDT, 78.04 ± 2.75; RCFT-copy, not being trained)
and SI from NC (CDT, 91.45 ± 0.83; RCFT-copy, 90.27 ± 1.52); however, the RCFT-copy was better at predicting CI
(CDT, 77.37 ± 1.77; RCFT, 83.52 ± 1.41). The accuracy for a 3-way classification (NC vs. MI vs. SI) was approximately
71% for both tests; no significant difference was found between them.
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Conclusions: The two drawing tests showed good performance for predicting severe impairment of cognition;
however, a drawing test alone is not enough to predict overall CI. There are some limitations to our study: the
sample size was small, all the participants did not perform both the CDT and RCFT-copy, and only the copy
condition of the RCFT was used. Algorithms involving memory performance and longitudinal changes are worth
future exploration. These results may contribute to improved home-based healthcare delivery.

Keywords: Clock Drawing Test, Cognitive impairment, Convolutional neural network, Machine learning, Rey–
Osterrieth Complex Figure Test, TensorFlow

Background
There is a growing interest in the use of artificial
intelligence in clinical practice [1–3]. Efforts are under-
way for the prediction and diagnosis of prodromal or
early-stage dementia [4–7] at home and in clinical set-
tings [8, 9].
Performing a cognitive assessment is essential for es-

tablishing an objective diagnosis in patients with cogni-
tive complaints [10]. Most of the currently used
screening tools have been constructed based on neuro-
psychological tests. The Rey–Osterrieth Complex Figure
Test (RCFT) is widely used by neuropsychologists to as-
sess cognitive function. The test was first developed by
Rey in 1941 [11] and has proved to be a useful tool for
analyzing visuospatial construction, perceptual
organization, and visual memory in clinical evaluations
and research studies [12]. Patients with parieto-occipital
lesions, especially on the right side, have difficulties in
spatial organization while drawing, probably because of
visual disorientation [13]. Patients with frontal lobe
damage show impairment in programming abilities with
respect to figure reproduction [14, 15]. Patients with
early-stage Alzheimer’s disease (AD) perform poorly on
this test [16]. Seo et al. showed that that the copy condi-
tion of the test was associated with spatial organization
and planning, and it significantly predicted the conver-
sion to pre-MCI or MCI [17]. The salience of visuo-
spatial and organizational skills as evaluated by the copy
condition of the RCFT differs according to the level of
intelligence [18]. To obtain a more quantitative value for
the accuracy of a participant’s drawing, many researchers
use the RCFT based on the Osterrieth scoring criteria to
diagnose cognitive impairment (CI) [19].
The Clock Drawing Test (CDT) is also widely used as

a screening test for patients with dementia because it is
easy to use and reflects a variety of cognitive functions,
including visuospatial function, frontal lobe execution,
and memory (of clock-related concepts). The CDT re-
quires a participant to draw the hour and minute hands
of the clock to show the time “11:10”. In patients with
frontal lobe dysfunction, abstract thinking is compro-
mised, which makes them prone to stimulus-bound er-
rors wherein they process information at a more

perceptual level than at a semantic level. Thus, they have
difficulty recording “10” as “2”, and since “10” is adjacent
to “11”, their attention is pulled toward the “10”, and
they set the minute hand to “10” instead of “2” [20, 21].
Studies related to dementia have reported that the CDT
is useful in the screening of cognitive impairment [22,
23] and that it can be used for screening MCI [11]. The
CDT has a variety of scoring systems [24]. Among them,
the Consortium to Establish a Registry for Alzheimer’s
Disease CDT [25] is known to be the simplest method
with a high diagnostic efficiency [26].
Detecting the severity of dementia is important for

clinical and research purposes, and the Clinical Demen-
tia Rating Scale (CDR) is one of the most commonly
used tools for this assessment. The CDR comprises the
global and sum of boxes (SOB) scores. The CDR-SOB
score is considered a more detailed quantitative index
than the global score and provides more information re-
garding patients with mild dementia. Previous studies
have shown that the CDR-SOB scores may have the po-
tential for discriminating between patients with MCI
and those with very early stage AD dementia who are
assigned a global CDR score of 0.5. Patients with MCI
were assigned a CDR-SOB score of 1.8 ± 0.8, and those
with very mild AD were assigned a CDR-SOB score of
3.0 ± 0.8 [27]. O’Bryant et al. classified the severity of de-
mentia (normal to severe) based on SOB scores (0–18).
In their system, a CDR-SOB score of 0 indicated normal
cognition, 0.5–2.5 indicated suspicious damage, and 3.0–
4.0, indicated very mild dementia [28]. Our database did
not contain clinical information such as that regarding
MCI or dementia, which is why the participants in this
study were classified as having normal, mild, and severe
CI based on the CDR-SOB score. However, unlike
O’Bryant et al., we arbitrarily classified the degree of
cognitive impairment: normal cognition (NC), 0–1.5;
mild impairment of cognition (MI), 2.0–3.5; and severe
impairment of cognition (SI), 4-.
Several studies have demonstrated that a digital CDT

of a limited number of participants was able to differen-
tiate patients with AD and other dementia syndromes
from healthy controls using machine learning [29, 30].
However, digital CDT requires special equipment, and
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in deep learning, a greater amount of data with a good
quality yields better result. Therefore, we predicted CI
with deep learning based on a greater amount of draw-
ing test data than that analyzed in previous studies. We
investigated whether the CDT and RCFT can be used as
screening tests to predict CI using convolutional neural
network (CNN) algorithms. We also investigated
whether the CDT, which measures various cognitive
functions, was better than the RCFT in predicting CI.
Our objective was to evaluate the prediction accuracies
of these two tests for CI and compare them.

Methods
Dataset
Anonymous neuropsychological data from Jan. 2018 to
Sep. 2020 at the Memory Clinics at Seoul National Uni-
versity Bundang Hospital and Chung-Ang University
Hospital were retrospectively collected. The RCFT-copy
and CDT figures that were drawn by patients aged 60–
80 years with more than 6 years of education were se-
lected. There were a total of 747 CDT and 980 RCFT-
copy figures.
The original RCFT [11] and CDT were conducted by

trained psychologists in the neurology outpatient testing
room. The participants were given an A4 size paper and
a pencil and instructed to copy the “Rey complex figure”
and/or draw a “clock” indicating the time “11:10.” Dur-
ing the CDT, the following instructions were given: “You
have to draw a clock. Draw a circle first and write all the
numbers in it.” After the patients wrote the numbers,
they were instructed as follows: “Now draw hands on
the clock to indicate the time 11:10.” Test participants
were clinically classified by dementia-specialized clini-
cians based on the CDR-SOB score into the following
groups: normal cognition (NC), 0–1.5; mild impairment
of cognition (MI), 2.0–3.5; and severe impairment of
cognition (SI), 4- [28].

Model training and statistical analyses
The datasets of the CDT and RCFT-copy figures were
organized into four classes: NC vs. MI, NC vs. SI, NC vs.
CI (MI+SI), and NC vs. MI vs. SI. The datasets were pre-
pared for three 2-way evaluations and one 3-way evalu-
ation with respect to each CDT and RCFT-copy figure.
The 2-way classifications for differentiating MI, SI, or CI
from NC were performed in the CDT and RCFT data-
sets. The 3-way classification differentiated NC, MI, and
SI in both the datasets.
All the algorithms were performed on the Colab cloud

platform (www.colab.research.google.com). To model
each algorithm, the dataset was subjected to the follow-
ing preprocessing steps. As the dataset was relatively
small number for machine learning, we augmented the
image data. We made a replica image with a 10% height

reduction and another one with a 10% width reduction,
compared to each original drawing. All the images in-
cluding the original drawing and two replicas were
placed in a 600-dpi template.
TensorFlow (ver. 2.3.0) on Colab, which is a com-

monly used open-source, Python-based software library
for machine learning developed by Google was used for
preprocessing and modeling [31]. As an example, the
code that predicted CI in the RCFT-copy dataset is given
in the Supplementary Table. We imported the data in
the “.png” format and used the “validation_split” func-
tion from “tf.keras.preprocessing.image_dataset_from_
directory” to randomly split the data into training and
test datasets. The training data size was 70%, which indi-
cated the percentage of the data to be withheld for train-
ing; the validation dataset was thus composed of the
remaining 30% of the data. The features were normal-
ized with “tensorflow.keras.layers.experimental.prepro-
cession.Rescaling(1./255).” We implemented data
augmentation with “RandomZoom” and “RandomRota-
tion” using “experimental Keras Preprocessing Layers.”
This artificial neural network consists of five convolu-
tional and maxpooling layers, and a dropout layer was
inserted before connecting it to a fully connected neural
network. The dropout rate was 0.2–0.3; therefore, 2–3
out of 10 weights were connected to the next layer to
prevent overfitting. The cost was calculated using
“Sparse_Categorical_Crossentropy” and minimized by
means of the “adam” optimizer method. Model training
was performed with a batch size of 20 and 40–72
epochs, depending on the dataset. During model train-
ing, optimal dropout rates and epochs were found and
adjusted. After the dropout rate and epochs were de-
fined, we obtained the average prediction accuracy based
on 10 trials.

Results
Demographic and clinical characteristics including age,
education level, and Mini-Mental Status Examination
scores of the CDT and RCFT-copy datasets are given in
Table 1. No differences in age and education levels were
found among the NC, MI, and SI groups in the CDT
and RCFT-copy datasets (p > 0.05).
The CDT was more accurate in differentiating MI

(CDT, 78.04 ± 2.75%; RCFT, not being trained) and SI
from NC (CDT, 91.45 ± 0.83%; RCFT, 90.27 ± 1.52%)
(Table 2); however, the RCFT-copy was better at pre-
dicting CI (CDT, 77.37 ± 1.77%; RCFT, 83.52 ± 1.41%).
The accuracy of the 3-way classification (NC vs. MI vs.
SI) was approximately 71% (Fig. 1).

Discussion
The algorithm for predicting CI was more accurate in
the RCFT-copy dataset than in the CDT dataset, but the
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algorithm for predicting MI in the RCFT-copy dataset
had not being trained. However, at other levels of cogni-
tive impairment, namely the prediction of SI in a 2-way
classification and MI and SI in a 3-way classification, the
two tests were nearly equal in their predictive accuracy
in both the CDT and RCFT-copy datasets. We had ex-
pected the CDT to be superior to the RCFT-copy in pre-
dicting CI; this is because the RCFT-copy simply
evaluates visual constructional function based on the
copying of the figure, whereas the CDT not only evalu-
ates visual constructional function and clock semantics
but also the inhibitory function [20]. The CDT was
thought to be more advantageous for evaluating various
aspects of cognitive function. However, there was no dif-
ference between the two tests in distinguishing MI and
SI from NC in the 3-way classification. Rather, the RCFT
was better at distinguishing CI (including MI and SI)
from NC in the 2-way classification. A voxel-based mor-
phometric study that evaluated the relationship between
the RCFT and brain volume showed that the RCFT
score and the right caudate nucleus volume were posi-
tively correlated [32]. Therefore, in addition to

visuospatial function evaluation, the RCFT may be used
to evaluate frontal executive function. Another study
found that poor copy scores in the RCFT were associ-
ated with greater beta amyloid burden in the frontal area
on C-Pittsburgh B positron emission tomography/com-
puted tomography and F-FC119S positron emission
tomography/computed tomography [33]. These studies
have shown that the RCFT is associated with cognitive
functions other than the visual constructional function.
In our study, the prediction of SI in the validation

dataset had an accuracy greater than 90%; however, the
accuracy of differentiating between MI and NC was less
than 80%. A slight cognitive decline was difficult to de-
tect using the CDT. Moreover, the algorithm predicting
MI in the RCFT-copy dataset was not well-trained. For
differentiating MI from NC in a 2-way classification of
the RCFT-copy dataset, the algorithms’ accuracy was
only approximately ~ 55% and too variable; we did not
consider this to be meaningful training, because a prob-
ability of approximately 50% exists even at random.
However, it was better at predicting CI than the CDT al-
gorithm was. Since prediction with RCFT-copy using the

Table 1 Demographic and clinical characteristics according to cognition status based on the CDT and RCFT-copy

NC MI SI Total

CDT No. of participants 454 (60.8%) 179 (24.0%) 114 (15.3%) 747

Age (years ± SD) 69.1 ± 7.6 70.5 ± 7.7 72.8 ± 7.5

Education (years ± SD) 11.6 ± 3.2 11.2 ± 3.9 10.5 ± 4.2

MMSE 26.0 ± 3.1 24.4 ± 2.3 21.9 ± 2.9

RCFT-copy No. of participants 411 (41.9%) 367 (37.4%) 202 (20.6%) 980

Age (years ± SD) 70.2 ± 7.8 70.2 ± 7.2 72.7 ± 6.1

Education (years ± SD) 11.9 ± 3.5 11.2 ± 3.7 10.5 ± 3.4

MMSE 26.2 ± 3.2 24.5 ± 2.4 21.7 ± 2.8

CDT, clock drawing test; RCFT, Rey–Osterrieth Complex Figure Test; NC, normal cognition; MI, mild impairment of cognition; SI, severe impairment of cognition

Table 2 Mean accuracies of the CDT and RCFT-copy for the prediction of cognitive impairment

No. of images No. of images training: validation dataset Mean accuracy of validation dataset (%)

CDT NC vs CI
(1362:879)

1569:672 77.37 ± 1.77

NC vs MI (1362:537) 1330:569 78.04 ± 2.75

NC vs SI
(1362:342)

1193:511 91.45 ± 0.83

NC vs MI vs SI
(1362:537:342)

1569:672 71.06 ± 0.75

RCFT-copy NC vs CI
(1233:1707))

2058:882 83.52 ± 1.41

NC vs MI
(1233:1101)

1634:700 NT

NC vs SI
(1233:606)

1288:551 90.10 ± 1.33

NC vs MI vs SI
(1233:1101:606)

2058:882 71.50 ± 1.16

CDT, clock drawing test; RCFT, Rey–Osterrieth Complex Figure Test; NC, normal cognition; MI, mild impairment of cognition; SI, severe impairment of cognition; NT,
not being trained
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MI dataset did not show a good accuracy, it can be ex-
pected that the prediction of CI in a CI dataset that in-
cludes this MI dataset will not be accurate. Even if the
MI prediction did not have a good accuracy, the algo-
rithm using the CI dataset would produce different fea-
tures with different weights, leading to better results
than expected. However, we were unable to figure out
what features the machine extracts and how much
weight it gives to them.
There is a limitation in directly comparing the RCFT-

copy and CDT machine learning algorithms as not all
the participants performed both tests; only 91.7% (685/
747) of the participants in the CDT dataset and 94.2%
(923/980) of those in the RFCT-copy dataset had per-
formed both tests. Overall, the two algorithms that pre-
dict CI seemed to have worked well. However, as the
RCFT-copy algorithm could not be trained to select a
patient with MI, the CDT algorithm seemed relatively
advantageous.
Age and education have a strong effect on the per-

formance in these tests [34, 35]. Most of the available
norms provide either percentile scores/means and stand-
ard deviations for age-defined classes. However, in this
study, age and educational levels were not included in
the algorithm. We selected participants according to age
and education levels; their age ranged from 60 to 80
years, as changes in cognitive function are expected in
this age range, and they had more than 6 years of formal
education (to minimize the impact of a low level of edu-
cation on the performance in the drawing tests). If more

substantial data could have been obtained, it would have
been possible to predict CI based on the variables of age
and education level.
We found that the machine learning algorithms

based on the RCFT-copy and CDT datasets worked
well in terms of predicting CI. Although the two
drawing tests alone cannot sufficiently predict CI
cross-sectionally, detecting changes in cognition using
a longitudinal dataset is worth future exploration. It
should be noted that the drawing test alone does not
substitute for formal neuropsychological tests to pre-
dict overall CI. This study suggests the potential for
home-based care services using drawing test algo-
rithms to monitor or screen for CIs.

Limitations
There are several limitations to our study. The small
sample size may limit the generalizability of our findings.
All the participants did not perform both the CDT and
RCFT-copy, which can limit the direct comparison of
the two tests. In this study, only the copy condition of
the RCFT was used. The RCFT consists of the copy and
visual memory recall (immediate and delayed recall)
conditions; memory performance is important for the
screening of CI. Therefore, including the delayed recall
condition of the RCFT in future studies may help in bet-
ter prediction of CI. The memory recall condition of the
RCFT is thought to require a more complex machine
learning model; this approach will be attempted in our
future research.

Fig. 1 Accuracies of algorithms for the prediction of cognitive impairment in the validation datasets of CDT and RCFT-copy figures. CDT, clock
drawing test; RCFT-copy, Rey–Osterrieth Complex Figure Test-copy
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Conclusions
The CDT and RCFT-copy showed good performance for
predicting SI; however, drawing tests alone are not
enough to predict overall CI. Results from drawing tests
and CNN algorithms can help improve home-based
healthcare delivery. Algorithms involving memory per-
formance and longitudinal changes are worth exploring
in future studies.
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