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Abstract

Background: Myogenic transdifferentiation can be accomplished through ectopic MYODT expression, which is
facilitated by various signaling pathways associated with myogenesis. In this study, we attempted to
transdifferentiate pig embryonic fibroblasts (PEFs) myogenically into skeletal muscle through overexpression of the
pig MYOD1 gene and modulation of the FGF, TGF-f, WNT, and cAMP signaling pathways.

Results: The MYODT overexpression vector was constructed based on comparative sequence analysis,
demonstrating that pig MYOD1 has evolutionarily conserved domains across various species. Although forced
MYODT expression through these vectors triggered the expression of endogenous muscle markers,
transdifferentiated muscle cells from fibroblasts were not observed. Therefore, various signaling molecules, including
FGF2, SB431542, CHIR99021, and forskolin, along with MYOD1 overexpression were applied to enhance the
myogenic reprogramming. The modified conditions led to the derivation of myotubes and activation of muscle
markers in PEFs, as determined by qPCR and immunostaining. Notably, a sarcomere-like structure was observed,
indicating that terminally differentiated skeletal muscle could be obtained from transdifferentiated cells.

Conclusions: In summary, we established a protocol for reprogramming MYOD1-overexpressing PEFs into the
mature skeletal muscle using signaling molecules. Our myogenic reprogramming can be used as a cell source for
muscle disease models in regenerative medicine and the production of cultured meat in cellular agriculture.
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Background

To date, numerous studies have defined various strat-
egies for the differentiation of PSCs (pluripotent stem
cells) into specific cell types of ecto-, meso-, and endo-
dermal lineages, which have advantages as infinite cell
sources [1-3]. Whereas these directed differentiation
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approaches recapitulate in vivo developmental processes
through modulation of signaling pathways, they report-
edly have defects in terms of time consumption and low
efficiency because the small molecules used are also in-
volved in differentiation into other cell types [4, 5]. For
example, the derivation of striated myofibers, a form of
mature skeletal muscle, from mouse ESCs (embryonic
stem cells) and human iPSCs (induced pluripotent stem
cells) reportedly takes 3—4 weeks, albeit with the use of
an advanced protocol with a short experimental period
[6, 7]. Therefore, direct reprogramming using the activa-
tion of the transcriptional program has been applied to
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facilitate the differentiation of PSCs into the desired cell
type [5]. However, problems derived from the use of
PSCs still remain, including the potential risk of tera-
toma formation [8] and the requirement of a time-
consuming and fine-tuning process for the derivation
and maintenance of the pluripotent state. To overcome
the above problems, a transdifferentiation approach is
required, in which fully differentiated somatic cells, in-
stead of PSCs, are induced to differentiate directly into
target cell types via ectopic expression of transcription
factors. Transdifferentiation toward the muscle lineage
has been widely studied for a long time since the identi-
fication of a master transcription factor in myogenesis,
Myod1 [9].

Forced Mpyodl expression converts cell fates into
muscle, which is responsible for Myod1 functioning as a
transcriptional and epigenetic regulator, leading to the
activation of muscle-specific genes in a feed-forward
manner [10, 11]. Small molecules can be supplemented
in culture conditions for Myod1/MYODI-overexpressing
somatic cells to improve the efficacy of transdifferentia-
tion. The surface of myocytes and the basement mem-
brane of myotubes secrete the FGF2 (fibroblast growth
factor 2), which play roles in the activation of muscle
stem cells and the expansion of myoblasts, inhibiting ter-
minal differentiation of muscle [12, 13]. Because the
TGE-B signaling negatively functions in myogenesis by
decreasing Myog activity, inhibitor of TGF type I-p re-
ceptors, such as SB431542, reportedly enhances the
elongation of myotubes through myoblast fusion [13]. In
fact, the expression of follistatin, which inhibits the
TGE-pB signaling, is detected in the paraxial mesoderm
in vivo [14]. During in vivo myogenesis, the WNT acti-
vator secreted from the notochord, neural tube, and sur-
rounding tissue is involved in a series of specifications
along with the presomitic mesoderm, somite, dermo-
myotome, and myotome, as determined by in vitro di-
rected differentiation in human and mouse PSCs [3, 6,
7]. It demonstrates that the WNT signaling induces the
commitment of myogenic precursors and has been sub-
stantiated by previous research showing that the WNT
activator CHIR99021 with SB431542 and FGF2 induces
myogenic specification from human iPSCs [14]. In a pre-
vious report, the adenylyl cyclase activator forskolin was
identified as a myoblast proliferation-promoting factor
through CREB-mediated WNT, leading to upregulation
of the Pax3, Myf5, and Myodl genes [15]. The combin-
ation of FGF2, a WNT activator, and forskolin stimu-
lated skeletal muscle differentiation in human iPSCs and
especially forskolin improved satellite cell expansion in
mice [16].

In pigs, myogenic reprogramming could be used as a
cell source for the muscle disease modeling and the pro-
duction of cultured meat. Although, in pig iPSCs,
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skeletal myotubes were reportedly observed through the
activation of WNT signaling and ectopically expressed
MYODI1 by overexpression vector and 5-azacytidine
(5-aza) [17], the aforementioned limitations derived from
iPSCs remain. Moreover, it has been demonstrated that
muscle stem cells lose the potential for proliferation and
differentiation in long-term culture in vitro [18]. As an
alternative, fibroblasts can be obtained in high yield be-
cause of their large proportion in the body and are
known to be the most effective cell type to accept the
expression of MyodI because they are derived from the
mesoderm, which is identical in origin to the muscle
[19]. Therefore, in this study, we attempted to transdif-
ferentiate pig fibroblasts into skeletal muscle through
overexpression of the pig MYODI gene and modulation
of the FGF, TGF-B, WNT, and cAMP signaling
pathways.

Methods

Amino acid sequence analysis

The MYODI1 amino acid sequences of pig (NP_
001002824.1), mouse (NP_034996.2), human (NP_
002469.2), horse (NP_001304182.1), cow (NP_
001035568.2), and sheep (NP_001009390.1) were ob-
tained from the NCBI database (https://www.ncbi.nlm.
nih.gov/). Comparative analysis of the amino acid se-
quences was performed using the multiple sequence
alignment program MUSCLE (MUltipleby https://www.
ebi.ac.uk/Tools/msa/muscle/), and the similarity of pro-
teins from pigs and the other species was analyzed using
Protein BLAST (https://blast.ncbi.nlm.nih.gov/).

Construction of inducible pMYOD1-overexpression vector
Total RNA was extracted from satellite cells from the bi-
ceps femoris of 3-day-old LYD pigs based on our previ-
ous study [20], and cDNA was subsequently synthesized.
Nested PCR was performed using an outer primer con-
taining 20-bp sequences upstream and downstream of
the MYODI gene and an inner primer containing the
EcoR1 sequence. The following primer set was used:
Outer-MYOD1-F, 5'-ATAGAGCAGGGTGGTGGACA-
3’,  Outer-MYODI-R, 5'-CTCAAACTTCTGGGCG
CGAG-3/, Inner-MYOD1I-F, 5'-GAATTCTGGG
ATATGGAGCTGCTGTCGC-3’, Inner-MYODI-R, 5'-
GAATTCTCAGAGCACCTGGTAGATAGGGGTTGG-
3’. The PCR product was purified using electrophoresis
and inserted into a T easy vector (Promega, Madison,
WI, USA). DNA was extracted from the selected vectors
through TA cloning and was sequenced using the fol-
lowing M-13 primer: F, 5'-GTAAAACGACGGCCAG-
3, R, 5'-CAGGAAACAGCTATGAC-3". Subsequently,
a doxycycline (DOX)-inducible FUW-tetO-pMYODI
vector was constructed using treatment with the
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restriction enzyme EcoR1 and the FUW-tetO-MCS vec-
tor (plasmid #84008; Addgene, Watertown, MA, USA).

Lentiviral vector production

Lentiviral vectors were produced as previously described
[21]. Briefly, HEK 293 LTV cells (Cell Biolabs, San
Diego, CA, USA) were used as the packaging cell line,
and five plasmids were used for the production of lenti-
viral vectors: FUW-tetO-pMYOD1 and FUW-M2rtTA
(the transfer plasmid); pLP1 and pLP2 (the packaging
plasmids; Invitrogen, Waltham, MA, USA); and pLP/
VSVG (the envelope plasmid; Invitrogen). These plas-
mids were transfected into HEK 293 LTV cells using the
calcium phosphate precipitation method. Subsequently,
the LTV culture supernatants were filtered and concen-
trated. The derived virus pellets were stored at —76°C
until use.

Myogenic transdifferentiation of pig fibroblasts

The pig embryonic fibroblasts (PEFs) isolated in previ-
ous study were used [22]. The cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM; Welgene,
Gyeongsan, Korea) supplemented with 10% fetal bovine
serum (FBS; collected and processed in the United
States; Genedepot, Katy, TX, USA), 1x GlutaMAX
(Gibco, Gaithersburg, MD, USA), 0.1 mmol/L j-
mercaptoethanol (Gibco), and 1x antibiotic/antimycotic
(Gibco). The exogenous gene was transduced with a
lentivirus carrying the FUW-tetO-pMYODI1 or FUW-
M2rtTA plasmid. The cells were incubated with lenti-
virus using 8 mg/mL polybrene (Sigma-Aldrich, St
Louis, MO, USA) for 48 h.

Table 1 Primer sets used for PCR and gPCR
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The virus-infected cells were cultured under various
conditions, which consisted of basal medium and signal-
ing molecules. The basal medium was composed of
DMEM, 10% FBS, 10% knockout serum replacement
(KSR; Gibco), 10% 1x GlutaMAX, 0.1 mmol/L f-
mercaptoethanol, and 1x antibiotic/antimycotic. The
tested signaling molecules were 20ng/mL fibroblast
growth factor 2 (FGF2; R&D Systems, Minneapolis, MN,
USA), 4umol/L TGF-B receptor inhibitor SB431542
(Cayman chemical, Ann Arbor, MI, USA), 3 umol/L
GSK3B inhibitor CHIR99021 (Cayman chemical), and
10 pmol/L cAMP activator forskolin (Cayman chemical).
4 ng/mL DOX was added to activate the inducible vec-
tor. In the ‘differentiation step’, each medium was re-
placed with a serum-free basal medium containing 2%
horse serum. The media were changed every day, and all
cells were cultured under humidified conditions with 5%
CO, at 37°C.

Genomic DNA (gDNA) extraction and polymerase chain
reaction (PCR)

Genomic DNA was extracted using the G-spin™ Total
DNA Extraction Kit (iNtRON, Seongnam, Korea). Am-
plifications were performed using the transgene-specific
primers listed in Table 1 and 2xPCR Master mix solu-
tion (iNtRON) containing 5 pmol of each primer set and
50ng gDNA in a 10-uL reaction volume. PCRs were
performed in a thermocycler under the following condi-
tions: 94 °C for 5 min, followed by 35 cycles of denatur-
ation at 95°C for 30s, annealing for 30s (annealing
temperatures depended on each primer set), and exten-
sion at 72 °C for 30s, with a final extension at 72 °C for

Gene Primer sequence (5'—3')

Annealing temperature, °C Product size, bp

FUW-TetO-pMYOD1 (ExoMYOD1) F CCAGGTGCTCTGAGAATTCGATA 60 114
R CCACATAGCGTAAAAGGAGCA

EndoMYOD1 F AGGGACAGGATAGAGCAGGG 60 199
R TCAAATCTACGTCGCGGAGC

PAX7 F GTGCCCTCAGTGAGTTCGAT 58 152
R TCCAGACGGTTCCCTTTGTC

MYF5 F AGTTCGGGGACGAGTTTGAG 60 232
R TCAAACGCCTGGTTGACCTT

MYOG F GAGCTGTATGAGACATCCCCC 60 75
R GTGGACGGGCAGGTAGTTTT

MHC F ACAGTGAAGACGGAAGCAGG 60 153
R TGCGTAACGCTCTTTGAGGT

pACTB F CCGGGACCTGACCGACTACC 60 126
R TCGAAGTCCAGGGCGACGTA

GAPDH F TGCTCCTCCCCGTTCGAC 60 100
R ATGCGGCCAAATCCGTTC
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Pig Acidic H/C  Basic HLH Helix 3
Horse R ——
Sheep 3 56 63 99 102 167 246 259 319
Acidic H/C Basic HLH Helix 3
Human - H
3 56 63 99 102 167 246 259 320
Acidic H/C Basic HLH Helix 3
Mouse H W7/
3 56 63 99 102 167 245 258 318
Acidic H/C  Basic HLH Helix 3
cow 1 H R —— Y ——
3 56 63 99 102 167 246 259 318
| |
B 0 10 20 a.a
Pig LSPPLRDVDLTGPDGSLCNFATADDFYDDPCFDSPDLRFFEDLDPRLVHVGALL.KPE
Mouse LSPPLRDIDLTGPDGSLCSFETADDFYDDPCFDSPDLRFFEDLDPRLVHMGALEKPE
Human LSPPLRDVDLTAPDGSLCSFATTDDFYDDPCFDSPDLRFFEDLDPRLMHVGALLKPE
Horse LSPPLRDVDLSGPDGSLCNFATADDFYDDPCFDSPDLRFFEDLDPRLVHVGALL.KPE
Cow LSPPLRDVDLTGPDGSLCNFATADDFYDDPCFDSPDLRFFEDLDPRLVHVGALEL.KPE
Sheep LSPPLRDVDLTGPDGSLCNFATADDFYDDPCFDSPDLRFFEDLDPRLVHVGALL.KPE
w **!\'*****:**: - WW KRR .* *: R TCRR W TR R WW W RN W WR W WW W R : *: L 2] 2223
Pig EHSHFPAAAHPAPGAREDEHVRAPSGHHQAGRCLLWACKACKRKTTNADRRRKAATMRERR
Mouse EHAHFPTAVHPGPGAREDEHVRAPSGHHQAGRCLLWACKACKRKTTNADRRKAATMRERR
Human EHSHF PAAVHPAPGAREDEHVRAPSGHEQAGRCLLWACKACKRKTTNADRRKAATMRERR
Horse EHAHFPATVHPAPGGREDEHVRAPSGHHQAGRCLLWACKACKRKTTNADRRKAATMRERR
Cow EHSHFPAAAHPAPGAREDEHVRAPSGHHQAGRCLLWACKACKRKTTNADRRKAATMRERR
Sheep EHSHFPAAAHPAPGAREDEHVRAPSGHHQAGRCLLWACKACKRKTTNADRRKAATMRERR
wR H Hwk e . & R X VR deR Ve v W e e e e e e e Rk e Ok e e R R ok e R R R R R ROR R ROR R R R
Pig RLSKVNEAFETLKRCTSSNPNQRLPKVEILRNATIRY IEGLOALLRDQDAAPDGARAAFYA
Mouse RLSKVNEAFETLKRCTSSNPNORLPKVEILRNAIRYIEGLQALLRDQDAAPPG-AAAFYA
Human RLSKVNEAFETLKRCTSSNPNQRLPKVEILRNATIRYIEGLQATLLRDQDAAPPGAAAAFYA
Horse RLSKVNEAFETLRKRCTSSNPNORLPKVEILRNAIRYIEGLOALLRDODAAPPGAAAAFYA
Cow RLSKVNEAFETLRRCTSSNPNORLPKVEILRNAIRYIEGLQALLRDQDAAPPGARAAFYA
Sheep RLSKVNEAFETLKRCTSSNPNORLPKVEILRNATIRYIEGLOATLLRDQDAAPPGAAAAFYA
e Ve W R T W R W R W TR T e TR T WO TR T T R R R TR R R T RO R RO R R R R R W W W
Pig PGPLPPGRGGEHYSGDSDASSPRSNCSDGMMDY SGPPSGARRRNCYDGTY Y SEAPSEPRP
Mouse PGPLPPGRGSEHYSGDSDASSPRSNCSDGMMDYSGPPSGPRRONGYDTAYYSEAARESRP
Human PGPLPPGRGGEHYSGDSDASS PRSNCSDGMMDY SGPPSGARRRNCYEGAY YNEAPSEPRP
Horse PGPLPPGRGGEHYSGDSDASSPRSNCSDGMMDY SGPPSGARRRNCYDGTY Y SEAHSEPRP
Cow PGPLPPGRSGEHYSGDSDASSPRSNCSDGMMDYSGPPSGARRRNCYDRTYYSEAPNEPRP
Sheep PGPLPPGRSGEHYSGDSDASSPRSNCSDGMMDYSGPPSGARRRNCYDRAYYSEAPNEPRP
W TR W R . _***‘\'************************* .** .‘\' *: :** _** > - L
Pig GRKNAAVSSLDCLSSIVESISTESPAAPALLLADTPRESSPGPQEAAAGSEVE-RGTPTPS
Mouse GKSAAVSSLDCLSSIVERISTDSPAAPALLLADAPPESPPGPPEGASLSDTE-QGTQTPS
Human GKSAHVSSLDCLSSIVERISTESPAAPALLLADVPSESPPRRQEARAPSEGESSGDPTQS
Horse GKSAHVSSLDCLSSIVERISTESPAAPALLLADAPPESSPGPQETAT PSEGE-RGAPTPS
Cow GKSAAVSSLDCLSSIVERISTESPAAPALLLADAPPESSPGPQE-AAGSEVE-RGTPAPS
Sheep GKSAAVSSLDCLSSIVERISTESPAAPALLLADAPPESSPGPQEARAGSEVE-CGTPAPS
**.*\I************ *:***********.* **.* * *: *: ® W : w
Pig PDAAPQCPASANPNPIYQVL
Mouse PDAAPQCPAGSNPNAIYQVL
Human PDAAPQCPAGANPNPIYQVL
Horse PDAAAT.CPAGANPNPIYQVL
Cow PDTAPQGLAGANPNPIYQVL
Sheep PDTAPQGLAGANPNPIYQVL

Fig. 1 (See legend on next page.)
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Fig. 1 MYOD1 amino acid sequence analysis. The MYOD1 amino acid sequences of the pig (NP_001002824.1), mouse (NP_034996.2), human
(NP_002469.2), horse (NP_001304182.1), cow (NP_001035568.2), and sheep (NP_001009390.1) were acquired from the NCBI database. a Schematic
representation of the MYOD!1 protein. The whole protein (black line) and its acidic and H/C domains (light gray boxes), basic domain (dark gray
box), helix motifs (slashed boxes), and loop motif (black box) are indicated. The diagram is scaled. b Alignment and comparison of the MYOD1
amino acid sequence via the multiple sequence alignment program MUSCLE. The acidic domain (black line), H/C domain (light gray line), basic
domain (gray box), helix1 (red box) -loop (blue box) -helix2 (green box), and helix3 motif (dark gray line) are indicated in the amino acid
alignment. Arg""" and Ala""“-Thr'™® are marked in red. The consensus sequence of amino acids among the species is described with an asterisk at

the bottom line

7 min. The amplified PCR products were visualized
using electrophoresis on a 1% agarose gel stained with
ethidium bromide.

Immunocytochemistry (ICC) analysis

Before staining, all cell samples were preincubated for
5min at 4°C and fixed with 4% paraformaldehyde for
15 min. After washing twice with Dulbecco’s phosphate-
buffered saline (DPBS; Welgene), the samples were
treated for 1 h with 10% goat serum in DPBS to prevent
nonspecific binding. Serum-treated cells were incubated
overnight at 4 °C with primary antibodies. The primary
antibodies used were as follows: rabbit anti-MYODI1
(1:100, Thermo Fisher, Waltham, MA, USA; PA5-23078)
and mouse anti-MHC (1:50, Sigma-Aldrich; 05-716).
When antibodies against MYOD1 were applied, fixed
cells were treated for 15min with 0.2% Triton-X100
(Sigma-Aldrich) before serum blocking. After incubation
with the primary antibody, the cells were treated for 2 h
at room temperature with an Alexa Fluor-conjugated
secondary antibody. Nuclei were stained with Hoechst
33342 (Molecular Probes, Eugene, OR, USA). Images of
stained cells were captured using a TE2000-U inverted
microscope (Nikon, Tokyo, Japan).

Quantitative real-time polymerase chain reaction (qPCR)

Total RNA was extracted from the cells using TRIzol®
Reagent (Invitrogen) according to the manufacturer’s in-
structions. cDNA was synthesized using the High Cap-
acity RNA-to-cDNA Kit (Applied Biosystems, Waltham,

Table 2 Similarity analysis of the pig MYOD1 amino acid
sequence compared to other species

Similarity between pig and the other species, %

Mouse Human Horse Cow Sheep
MYOD1 protein 89.03 93.12 94.36 95.92 95.61
Acidic 92.59 92.59 98.15 10000 100.00
H/C 89.19 97.30 89.19 100.00 100.00
bHLH 100.00 100.00 100.00 100.00 100.00
Helix3 92.86 92.86 92.86 92.36 92.86

Similarity comparison between pig and the other species was confirmed on
the score via the Protein BLAST program

MA, USA), producing a final volume of 20 uL. The de-
rived cDNA samples were amplified with PowerSYBR®
Green PCR Master Mix (Applied Biosystems) containing
0.5 pmol of each primer set listed in Table 1 in a 10-pL
reaction volume. Amplification and detection were con-
ducted using the ABI 7300 Real-Time PCR system (Ap-
plied Biosystems) under the following conditions: one
cycle of 50°C for 2 min and 95°C for 10 min, followed
by 40 or 45 cycles of denaturation at 95°C for 15s and
annealing/extension for 1 min (annealing/extension tem-
peratures depended on each primer set). The relative ex-
pression level was calculated by normalizing the
threshold cycle (Ct) values of each gene to that of GAPDH
via the A—Ct method [23].

Statistical analysis

The data from the qPCR analyses are presented as the
mean * standard error of the mean (SEM) and were ana-
lyzed using Prism 6 software (GraphPad Software; San
Diego, CA, USA). The significance of differences was de-
termined by one-way analyses of variance followed by
Fisher’s least significant difference test. Differences were
considered significant at P < 0.05.

Results

Pig MYOD1 overexpression vector construction
Myod1/MYOD1 is reportedly identified as a master
transcription factor in myogenesis, thereby inducing
myogenic transdifferentiation in non-muscle cells [9,
24-27]. Thus, a comparative MYOD1 sequence analysis
was performed among various species to assess whether
pig MYOD1 contains functionally conserved sequences
for myogenesis, as in the other species, before vector
construction for ectopic pig MYODI (pMYODI) expres-
sion. The pig MYOD1 whole protein has a similar size
to MYOD1 protein in other species (Fig. 1A). To all the
analyzed species, including pig, the MYOD1 protein
contains acidic domains, histidine and cysteine-rich (H/
C) domains, basic-helix1-loop-helix2 (bHLH) domains,
and helix3 domains [28, 29]. Subsequently, the MYOD1
sequences from those species were aligned, and the simi-
larity score was assessed at the amino acid level (Fig. 1b
and Table 2). In the bHLH domain, Ala**-Thr''® and
Arg'"' reportedly endow the MYODI protein with
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Fig. 2 Vector construction and validation using transfection into
PEFs. Construction of an inducible vector (FUW-tetO-pMYODT)
carrying the MYODT gene isolated from satellite cells in 3-day-old
LYD biceps femoris. Cells were cultured in a serum-free basal
medium containing 2% horse serum and 4 ng/mL doxycycline
(DOX). a PCR results using genomic DNA (gDNA) from PEFs
transfected with FUW-tetO-pMYOD1 to confirm the integration of
the exogenous pMYOD1 gene. Cells were sampled on days 3, 6, and
9 of DOX treatment. The FUW-tetO-pMYOD] plasmid was a positive
control, and PEFs without transfection were the negative control.
The arrows indicate the FUW-tetO-pMYODT plasmid vector and
loading control pACTB (porcine beta-actin; internal protein). b
Immunofluorescence images for pMYODT in PEFs transfected with
FUW-tetO-pMYOD]. Scale bar =100 um. ¢ gPCR results of PEFs
transfected with the FUW-tetO-pMYODT vector to confirm the
expression patterns of muscle-associated genes (Exo-MYOD]I, Endo-
MYODI, PAX7, MYF5, and MYOG). Cells on day 0 were used as a
negative control. Relative gene expression is represented as a trend
line, describing 1 as the value of day 0 in Endo-MYOD1, MYF5, and

MYOG and the value of day 3 in Exo-MYOD1 and PAX7

myogenic activity [30, 31]. In fact, these residues
(marked in red; Fig. 1b) were confirmed to be conserved
in the basic region of all the analyzed species. It is note-
worthy that the bHLH domain showed a 100.00% simi-
larity between pig and all other species. Altogether,
porcine MYOD]1, especially the bHLH domain, was
identified as an evolutionarily conserved protein, which
seems that its role is also conserved in myogenesis
across species.

Based on the above analyses, doxycycline (DOX)-indu-
cible pMYODI overexpression vectors were generated
including the MYODI gene isolated from satellite cells
in 3-day-old LYD biceps femoris. To verify the function
of these constructed vectors, they were introduced into
pig embryonic fibroblasts (PEFs) through lentiviral infec-
tion for stable transgene expression [4, 27]. First, the in-
tegration of the exogenous pMYODI gene was
confirmed by PCR targeting the FUW-tetO-pMYODI
sequence in gDNA of PEFs infected with a lentivirus car-
rying the vectors (pMYODI-PEFs) (Fig. 2a). At day 9,
the gene of interest had been inserted stably into the
genome of PEFs. Then, MYOD1 expression was con-
firmed at the protein level using immunostaining in
pMYODI-PEFs (Fig. 2b). The vectors were activated by
the addition of DOX, leading to ectopic MYODI expres-
sion. Finally, the expression pattern of muscle-associated
genes (Exo-MYODI, Endo-MYODI1, PAX7, MYF5, and
MYOG) was analyzed in pMYODI-PEFs using qPCR
(Fig. 2c). These genes have been characterized as myo-
genic lineage-specific markers, such as skeletal muscle
progenitor/myoblasts (PAX7, MYF5, and MYODI) and
myocytes (MYODI and MYOG) [3]. Exo-MYODI over-
expression by vector activation increased the expression
of endogenous muscle-associated genes. During ex-
tended cell culture, the expression of these genes was
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Fig. 3 Induction of the myogenic program without entering the differentiation process. a Experimental scheme. Three groups (Cont. medium,
FGF medium, and FSCHF medium) of pMYOD1-PEFs were induced toward the myogenic lineage according to the respective culture conditions
for 14 days. Cont.: Control, FSCHF: FGF2, SB431542, CHIR99021, and forskolin. b Cell images showing the morphological changes under the

Endo-MYOD1, PAX7, MYF5, and MYOG) in pMYODI-PEFs. The amount of gene expression in the Cont. group is described as 1 compared to the
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distinguished by the composition of signaling molecules (Cont,, FGF,

stably maintained. In conclusion, we constructed a
DOX-inducible pMYODI overexpression vector that
triggered the expression of muscle markers in long-term
culture, indicating its stable function.

Myogenic transdifferentiation of PEFs through
overexpression of MYOD1 and cell signaling modulation
The expression of endogenous muscle markers, includ-
ing Endo-MYODI, was enhanced via ectopic MYODI
expression, as shown in Fig. 2c. However, because of the
mild changes in each gene, transdifferentiated muscle
cells from fibroblasts were not observed. It has been
shown that complete transdifferentiation is achieved by
genetic modulation along with suitable culture condi-
tions for specific cell types [32], suggesting that
optimization of culture conditions is required. According
to previous studies, a 2-step transdifferentiation protocol
was employed with some modification to derive myo-
genic cells through MYODI overexpression [8, 17, 33].
In the ‘induction’ step, the myogenic program was acti-
vated with the stimulation of transcription factors asso-
ciated with myogenesis, thereby leading to the
commitment into a myogenic lineage. Briefly, pMYODI-
PEFs were treated with various signaling molecules, such
as FGF2, SB431542, CHIR99021, and forskolin, which

are involved in the regulation of myogenesis [8, 14].
Then, transdifferentiation was promoted through serum
starvation in the ‘differentiation’ step.

To ensure efficient myogenic conversion, we investi-
gated the transition point where exogenous MYODI
leads to the peak expression of endogenous skeletal
muscle-specific genes. In addition, pMYODI-PEFs were
cultured in mitogen-rich media in which myogenic in-
duction was sustained without entering the differenti-
ation process (Fig. 3a). While the FSCHF group had a
long cylindrical shape due to elongation of the cyto-
plasm, a typical fibroblastic and round shape was
observed in the control and FGF groups, respectively
(Fig. 3b). The alteration in the FSCHF group was main-
tained by the end of the culture period, resulting in a
similar morphology to myoblasts, as previously reported
[17, 34]. The myogenic genes were upregulated by
forced MYODI expression (Fig. 3c). Compared to other
groups, the relative gene expression of the FSCHF group
was higher across all the genes and culture periods.
These results suggested that the Exo-MYODI effect was
enhanced by the combination of four signaling mole-
cules rather than DOX-induced exogenous MYODI per
se or additional FGF2. While the gene expression of the
FGF group was gradually changed, that of the FSCHF
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Fig. 4 Transdifferentiation of pMYOD1-PEFs into myotubes using signaling molecules. a Experimental design for the transdifferentiation of
pMYODI-PEFs into myocytes. The pMYODI1-PEFs were induced toward the myogenic program in the ‘induction’ step, and the induced cells were
promoted for myogenic reprogramming in the ‘differentiation’ step. In the differentiation stage, one group was treated with DOX, and the other
was not. HS: horse serum, Cont.: Control, FSCHF: FGF2, SB431542, CHIR99021, and forskolin. b Cell images under culture conditions with or
without DOX. Scale bar =200 um. ¢ gPCR results to confirm the expression patterns of muscle-associated genes (Exo-MYOD1, Endo-MYOD]1, MYF5,
MYOG, and MHC) in pMYOD1-PEFs. The Cont. group contained pMYODI-PEFs cultured in basal media. The amount of gene expression in the

Cont. group is described as 1 compared to the other groups. Significant differences are represented by different letters, n=3. d
Immunofluorescence images for MHC of pMYODI-PEFs. The arrows marked a sarcomere-like structure. Scale bar =100 um

group was significantly increased on day 6 and then de-
creased. The aforementioned expression patterns were
observed in all the markers except PAX7, which was up-
regulated up to day 9 in both groups. Taken together,
pMYODI-PEFs treated with a cocktail of FGF2,
SB431542, CHIR99021, and forskolin for 6 days were
used for further experiments.

Based on the above observations, we established a
myogenic transdifferentiation protocol in which the
FSCHF medium for induction into a myogenic lineage
was replaced with a low-serum medium for the initiation
of differentiation on day 6 (Fig. 4a). The replaced culture
condition was classified into two groups distinguished by
the addition of DOX (+DOX and -DOX) to assess
whether consistent activation of the myogenic pro-
gram could enhance transdifferentiation. Notably,
multinucleated myotubes via fusion of myoblasts were
observed on day 8 in both groups (Fig. 4b). Accord-
ing to the qPCR analyses performed with a sample
from day 9, transcripts of the Exo-MYODI, MYFS,
MYOG, and Myosin heavy chain (MHC) genes were
upregulated in the +/- DOX groups (Fig. 4c). Unlike

that of the other genes, gene expression of Endo-
MYODI1 was significantly decreased in the +/- DOX
group. Across all of the genes, especially MYF5 and
MHC, the +DOX group showed significantly higher
expression levels than the -DOX group, demonstrat-
ing that continuous MYODI1 overexpression during
the differentiation step facilitates myogenic transdif-
ferentiation. The expression of MHC, a marker of late
differentiation in myogenesis, was detected in the day
9 sample by immunofluorescence analysis (Fig. 4d).
Interestingly, a sarcomere-like structure with a stri-
ated pattern was observed, as previously reported
[35], indicating that the mature myotube could be as-
sembled. Unless the MYODI was ectopically
expressed, the FSCHF cocktail was insufficient to trig-
ger the activation of myogenesis-related genes in
PEFs, indicating that the MYODI plays a crucial role
in determining the myogenic cell fate during transdif-
ferentiation of the pig fibroblasts (Fig. 5). Therefore,
the established protocol using ectopic MYODI expres-
sion and signaling molecules associated with myogen-
esis, such as FGF2, a TGF-B inhibitor, a WNT
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activator, and a cAMP activator, enabled fibroblasts
to be reprogrammed into skeletal muscle.

Discussion

Pig MYOD1 has an evolutionarily conserved bHLH
domain that regulates myogenesis

Previously, numerous attempts have been made to re-
program non-muscle cells into skeletal muscle by modu-
lating the expression of the transcription factor Myod1,
which plays an important role in myogenesis [10, 11].
5-azacytidine (5-aza), a DNA methyltransferase inhibitor,
induces demethylation of the MyodI locus in differenti-
ated somatic cells and increases MyodI transcripts, lead-
ing to transdifferentiation into the myogenic lineage [9,

36]. However, 5-aza does not target site-specific demeth-
ylation; it induces genome-wide demethylation because
5-aza is incorporated into genomic DNA as a competi-
tive analog of cytosine and then disintegrates DNA
methyltransferase by trapping [37]. In fact, when fibro-
blasts were treated with 5-aza, adipocytes and chondro-
cytes were also observed [38]. Additionally, it has been
substantiated that 5-aza exhibits cytotoxicity by causing
DNA double-strand breaks and apoptosis [39]. Thus,
myogenic transdifferentiation using 5-aza is inappropri-
ate in terms of safety and efficiency. As an alternative
strategy, forced Myodl/MYODI expression without in-
duction by 5-aza has been used to activate the myogenic
program in human and mouse fibroblasts [27, 34, 40]. In
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pig, myotubes were differentiated from induced pluripo-
tent stem cells (iPSCs) via a combination of a 5-aza treat-
ment and ectopically expressed MYODI [17]. Although
contractile porcine myotubes with sarcomeres were ob-
tained from iPSCs within 11 days, the entire process
would be more time-consuming because of the iPSC der-
ivation period. Here, we established a direct transdifferen-
tiation protocol with pig fibroblasts for the generation of
skeletal muscle using porcine MYODI overexpression and
myogenesis-associated signaling molecules, bypassing the
induction of the pluripotent state.

Comparative analysis of the MYOD1 amino acid se-
quence showed that the bHLH domain in MYOD1 was
thoroughly conserved across various species. A previous
study suggested that conserved sites are less permissive
to evolutionary mutation due to their functional or
structural importance [41]. This finding indicates that
the bHLH domain is an essential part of the MYOD1
protein, the function of which is associated with myo-
genesis, as in other species [34, 42]. The basic region in
the bHLH domain of Myodl recognizes and binds the
E-box, which is a conserved DNA sequence that is fre-
quently distributed throughout the genome rather than
specifically located in the regulatory region of myogenic
genes [42]. The myogenic specificity of Myod1 is derived
from Ala'*- Thr''® in the basic region [29, 43]. In fact,
it has been verified that Myod1 binds to both canonical
and noncanonical E-boxes [10]. These myogenic codes
direct Myod1 to bind to noncanonical E-boxes of Myog,
one of the Myod1 target loci, and to interact with Pbx/
Meis cofactors associated with myogenic genes [30]. In
particular, Ala''* leads to an appropriate conformational
change allowing myogenic activity by mediating the con-
tact of Arg''! and guanine in DNA [31]. In addition to
the basic region, the HLH motif of Myodl is also re-
quired for myogenesis because the HLH motif dimerizes
with other bHLH proteins, whose basic domains are in-
volved in E-box binding [42]. The other domains are
also highly conserved and have been known to be func-
tional Myodl domains [11, 44]. For example, the acidic
domain acts as a transcriptional activation domain
(TAD) through additional DNA binding near E boxes,
and both the H/C and helix3 domains are involved in
chromatin remodeling to allow active transcription of se-
quential myogenic genes. Accordingly, pig MYODI1 is
capable of muscle-specific gene expression through con-
served domains, especially the bHLH motif, preventing
differentiation into non-muscle cell fate.

Myogenic transdifferentiation is enhanced by activation
of the FGF, WNT, and cAMP signaling pathways and
inhibition of the TGF-f signaling pathway

Doxycycline (DOX)-inducible pMYODI1 overexpression
vectors were produced with the conserved pig MYOD1
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sequence, as described above. Because differentiation is
blocked when proliferation is enhanced by mitogen in
serum, a low concentration of horse serum has been
widely employed for myogenic differentiation in humans
and mice [45-47]. However, transdifferentiated muscle
cells were not observed when the aforementioned con-
ventional culture conditions were applied. This result
was consistent with the qPCR data that showed mild up-
regulation of endogenous muscle genes (Fig. 2c). It was
surmised that myogenic reprogramming in pigs requires
more supportive culture conditions than in mice and
humans. For these reasons, a mixture of small molecules,
such as FGF2, a TGF-P inhibitor (SB431542), a WNT
activator (CHIR99021), and a cAMP activator (forsko-
lin), was selected to facilitate the conversion of cell fate
into the myogenic lineage, as applied in previous re-
search [8]. While activation of the FGF, WNT, and
cAMP signaling pathways is required for specification
into the myogenic lineage and proliferation of commit-
ted myoblasts, inhibition of the TGF-f signaling pathway
is involved in myotube formation [3, 13, 15]. These sig-
naling molecules, except forskolin, are secreted during
myogenesis in vivo, thus recapitulating the endogenous
signaling pathway for muscle formation and regener-
ation. Forskolin has been reported to be involved in skel-
etal muscle differentiation from human iPSCs and to
improve satellite cell expansion in mice [16]. Supporting
the function of forskolin, our preliminary study showed
that the removal of forskolin failed myogenic transdiffer-
entiation (data not shown).

With the treatment of these four signaling molecules,
endogenous myogenic genes were highly triggered by ex-
ogenous MYODI1 (Exo-MYODI) (Fig. 3c). Consistent
with these observations, it has been demonstrated that
ectopically expressed MYODI upregulates endogenous
MYODI1 (Endo-MYODI), PAX7, MYF5, and MYOG,
which reinforces the notion that MYODI is a key regula-
tor in myogenesis. Exo-MYODI increased Endo-MYODI
via an autoregulatory loop, as previously reported [26].
The temporal expression of myogenic genes has a hier-
archy with stage-specific markers: PAX7 in myogenic
progenitor cells and MYF5 and MYODI in committed
myogenic cells, followed by MYOG in the differentiation
phase [3, 48]. In the present study, after day 9 from the
Dox treatment, the expression of Endo-MYODI and
MYFS5 was increased while that of PAX7 was undetected,
which indicates the PAX7 was involved in the early
myogenic-transdifferentiation followed by the activation
of the MYODI and MYFS5 in the subsequent phase as
like in vivo myogenesis. Chromatin immunoprecipitation
reportedly showed that mesoderm or myoblast markers,
including Pax7/PAX7 and Myog/MYOG, were directly
activated by Exo-Myod1, leading to an increase in Myf5
[27, 49]. Because MYFS5 is upstream of MYODI, it was
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reported that MYF5 was not expressed in MYODI-over-
expressing human iPSCs [33]. However, when treated
with signaling molecules, forced Myod1 expression con-
verted mouse fibroblasts into Pax7- and Myf5-positive
myogenic progenitor cells [8]. Taken together, various
cell types that belong to the myogenic lineage can be de-
rived in mitogen-rich media. In the C2C12 myoblast cell
line, mitogen-rich culture conditions stimulated myo-
blast growth without differentiation, whereas skeletal
muscle was differentiated with the expression of
differentiation-specific genes under low-mitogen culture
conditions [50]. For the enrichment of terminally differ-
entiated myotubes, the culture conditions were switched,
and a medium containing 2% horse serum without sig-
naling molecules on day 6 was used, in which endogen-
ous muscle genes peaked by Exo-MYODI.

As shown in the applied protocol presented in Fig. 4a,
multinucleated and elongated myotubes were observed.
These myotubes were formed through the fusion of
mononucleated myoblasts exiting from the cell cycle,
followed by a reorganization of the cytoskeleton [3].
Based on the higher expression of muscle genes in the
+DOX group, continuous MYODI overexpression seems
to enhance myogenic conversion in a feed-forward
mechanism [42]. Myotubes and myofiber express myosin
heavy chain (MHC) [6], which is a downstream gene of
Myod1 [26]. MHC provides contractility to eukaryotic
cells through filament assembly in the form of striated
sarcomeres, such as skeletal and cardiac muscle [51]. In
fact, the expression of MHC was increased at the RNA
level and a sarcomere-like structure was detected by im-
munostaining for MHC proteins in accordance with pre-
vious research [35]. Altogether, our protocol enables the
transdifferentiated muscle to undergo terminal differen-
tiation and maturation into skeletal muscle.

Conclusions

In summary, fully differentiated somatic cells of pigs can
be reprogrammed into mature skeletal muscle by the pig
MYODI1 gene. Modulation of the FGF, TGF-B, WNT,
and cAMP signaling pathways is required for the cell
fate conversion into the myogenic lineage. The transdif-
ferentiated muscle expressed skeletal muscle markers
and had the structure of a striated sarcomere, implying
that these matured myotubes possess a contractile cap-
acity. Given the role of pig as significant livestock for
supplying meat, the myogenic reprogramming of pig
cells can be applied to increase agricultural yield and
produce cultured meat. Additionally, pigs provide bio-
medical applications in preclinical studies for human
disease because of their anatomical and physiological
similarities with humans [52, 53]. For example, transdif-
ferentiated pig muscle cells can offer a cell source for
skeletal muscle disease modeling and drug screening in
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regenerative medicine. Finally, this study provides funda-
mental knowledge for the developmental biology in re-
vealing the genetic network and signaling pathways
underlying myogenesis.
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