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Abstract 

A bilateral gate‑controlled S/D symmetric and interchangeable bidirectional tunnel field effect transistor (B‑TFET) is 
proposed in this paper, which shows the advantage of bidirectional switching characteristics and compatibility with 
CMOS integrated circuits compared to the conventional asymmetrical TFET. The effects of the structural parameters, 
e.g., the doping concentrations of the  N+ region and  P+ region, length of the  N+ region and length of the intrinsic 
region, on the device performances, e.g., the transfer characteristics, Ion–Ioff ratio and subthreshold swing, and the 
internal mechanism are discussed and explained in detail.
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Introduction
Power consumption is one of the main problems of the 
integrated circuit industry. If a device works in the on 
state, its conduction current must reach a certain critical 
value; when the current reaches a critical value, the cor-
responding gate voltage is defined as the threshold volt-
age. When the device is in the off state, the corresponding 
gate voltage should be a different value from that in the 
critical on state, which is often called the off-state volt-
age. The concept of subthreshold swing (SS) is applica-
ble to the device that operates between the off state and 
the critical on state, which is equal to the change in gate 
voltage when the current increases by an order of mag-
nitude. When the device is well designed, the critical 
on-state current value, threshold voltage and off-state 

voltage of the device have been determined; then, a 
smaller SS corresponds to stronger current changes 
in the subthreshold area, a smaller static current of the 
device in the off state, and lower static power consump-
tion of the device. The SS of metal oxide semiconductor 
field effect transistors (MOSFETs), which are the basic 
unit cells widely used in integrated circuits, is limited by 
the physical mechanism of the current generated while 
the device is working and cannot be lower than the limit 
value of 60  mV/dec. To breakthrough this limitation, a 
tunnel field effect transistor (PIN or NIP TFETs) based 
on silicon-based technology has been proposed in recent 
years. A conventional TFET is formed by adding a layer 
of low doping intrinsic semiconductors between p- and 
n-type semiconductor materials. Compared with MOS-
FET, the TFET has the advantages of high sensitivity and 
low static power consumption [1]. TFET is switched by 
modulating quantum tunneling through a barrier instead 
of modulating the thermionic emission over a barrier as 
in the traditional MOSFET. Thus, TFET is not limited by 
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the thermal Maxwell–Boltzmann tail of carriers, which 
limits the SS of MOSFET to 60  mV/dec at room tem-
perature [2] (exactly 63  mV/dec at 300  K). The concept 
was proposed by Chang et al. while working at IBM [3]. 
For the first time, Joerg Appenzeller and his colleagues at 
IBM demonstrated that the SS of TFET could be lower 
than 60  mV/dec. TFET can be used as energy-efficient 
electronic switches [4], which breaks through the bot-
tleneck of MOSFETs and greatly reduces the IC power 
consumption. The production process is compatible with 
MOSFETs. It is likely to replace the MOSFET transistor 
as the basic unit of next-generation integrated circuits. 
Therefore, TFETs have become a hot topic in recent years 
[5, 6]. To improve the performance of TFETs in terms 
of SS, forward conducting current and reverse leakage, 
many studies on the structure design and optimization of 
TFET devices have been conducted, which mainly focus 
on improving the structure shape of the device channel 
and gate electrode [7–12] and the gate dielectric mate-
rials with different work functions. The characteristic 
analysis and structure optimization of the gate dielectric 
material [13–15] and gate dielectrics with different die-
lectric constants have been performed [15–20]. In device 
physics, the analytical modeling of TFETs with the dou-
ble-gate structure [21–27] and surrounding-gate struc-
ture [28–33] has also been extensively performed. One 
disadvantage of silicon-based TFETs compared to MOS-
FETs is the smaller forward current, and the magnitude 
of the forward current is determined by the efficiency 
of the tunneling current generation. The tunneling cur-
rent generation efficiency can be increased by reducing 
the band gap between valence band and conduction band 
in the region that is used to generate the band-to-band 
tunneling current or by reducing the thickness of the tun-
neling region. Therefore, in material engineering, TFET 
devices based on narrow-band gap semiconductor mate-
rials and heterojunction tunneling structures have been 
extensively developed [34–38]. Meanwhile, the introduc-
tion of two-dimensional materials into TFETs as tun-
neling layers with ultrathin thickness has been extensively 
studied [39–44]. In addition, some papers have reported 
the reliability of TFETs, such as the effect of source dop-
ing on tunneling band gap interleaving [45], the effect of 
trap-assisted tunneling on the subthreshold characteris-
tics of TFETs [46], and the effect of random doping on 
the device performance perturbation [47]. However, the 
current research results mainly aim at the basic work-
ing characteristics and working principles of single 
TFETs, and the most important fundamental purpose of 

the research and development of TFETs is to provide a 
basic structural unit with lower power consumption and 
replace the existing MOSFET structure. To achieve this 
fundamental goal, it must be set in a specific circuit to 
verify its compatibility with MOSFET technology. At 
present, research on the circuit design strategy based on 
TFET devices is gradually conducted, such as the analog 
and mixed signal circuit [48–50], digital logic circuit [50, 
51], power management circuit design [52]. There are 
also studies on the design of hybrid circuits based on 
MOSFETs and TFETs [53]. However, the doping types of 
the source region and drain region are opposite to each 
other, which creates an asymmetry of source region and 
drain region. This asymmetric structure makes it impos-
sible to completely replace MOSFET with the source/
drain symmetry.

Take the n-type TFET as an example. The side with 
p-type impurity is used as the source region, while the 
other side with n-type impurity is used as the drain 
region. When the device works, a positive potential dif-
ference must be applied from the drain region to the 
source region. If the source electrode and drain electrode 
are interchanged, i.e., the p-type impurity region is set at 
a higher potential relative to the n-type impurity region, 
then the PN junction formed by the p-type impurity 
region and n-type impurity region will always be in the 
positive bias state, which causes the failure of the control 
function of the gate electrode, the TFET will be almost 
always in the on state and cannot be turned off. In other 
words, it causes the failure of the TFET switch function. 
In other words, the circuit functional modules (such as 
transmission gates), which must use the bidirectional 
switching characteristics of transistors to work normally, 
are difficult to realize using conventional TFETs with an 
asymmetrical structure of source and drain, in order to 
solve these problems, we proposed a source drain sym-
metric and interchangeable bidirectional TFET (B-TFET) 
[54], which shows the advantage of bidirectional switch-
ing characteristics and compatibility with CMOS inte-
grated circuits compared to the traditional asymmetrical 
TFETs. In this paper, we proposed a modified bilateral 
gate-controlled B-TFET with a planar channel. The 
effects of key structural parameters, such as the doping 
concentrations of the  N+ region and  P+ region, length 
of the  N+ region and length of the intrinsic region, on 
the device performances, e.g., the transfer characteris-
tics, Ion–Ioff ratio and subthreshold swing, are explained 
in detail based on physical analysis. Thereafter, these key 
structural parameters are optimized.
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Methods
Figure  1a shows a schematic top view of the bilateral 
gate-controlled N-Type B-TFET with a planar channel. 
Figure  1b shows a cross-view of the bilateral gate-con-
trolled N-Type B-TFET. Unlike the conventional TFET, 
the proposed B-TFET is completely symmetric, the 
source/drain interchangeable  P+-doped regions lay on 
each side of the silicon body, and the gate electrode lays 
on both sides of the silicon body. The entire device struc-
ture is symmetric. The  N+-doped region is in the central 
part of the silicon body. L and W are the entire length and 
entire width of the proposed device, respectively. Li is the 
length of the intrinsic region; LN+ is the length of the  N+ 
region; LS/D and WS/D are the length and width of the  P+ 
source/drain interchangeable regions, respectively; T  is 
the silicon body thickness; tox is the thickness of the gate 
oxide; ti is the thickness of the intrinsic tunnel region 
between S/D region and gate oxide.

In this paper, all physical models such as the Fermi sta-
tistic model, CVT mobility model, Auger recombination 
model, band-gap-narrowing model and a standard band-
to-band tunneling model are turned on. All parameters 
of the device in this paper are listed in Table 1.

Results and Discussion
Figure  2a, b show the transfer characteristic, Ion−Ioff 
ratio and average SS with different ND ( 1018–1021 cm−3 ). 
In Fig. 2a, ND affects the intensity of the reversely biased 
drain-to-source leakage current. With the increase in 
doping concentration, the leakage current is signifi-
cantly suppressed, and the forward current does not sig-
nificantly change. In Fig. 2b, the SS and Ion−Ioff are also 
affected by ND . With the increase in doping concentra-
tion, because the reverse leakage current is significantly 
suppressed, the current at the static operating point 
decreases, so the average SS also decreases. Because the 
forward current is much less affected than the reverse 
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Fig. 1 a Schematic top view of the bilateral gate‑controlled N‑Type B‑TFET with planar channel. b Cross‑view of the bilateral gate‑controlled 
N‑Type B‑TFET
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leakage, the Ion−Ioff ratio increases with the increase in 
doping concentration. Figure  2c, d show the 2-dimen-
sional potential distributions of the proposed B-TFET 
with ND equal to  1019   cm−3 and  1021   cm−3, respectively. 
When the gate electrode is reversely biased, a strong 
electric field will be generated between the forward 
biased drain electrode and the reverse biased gate elec-
trode, which results in a strong band-to-band tunneling 
near the drain region. Among the resulting generated 
electron–hole pairs, the electrons can directly flow out 
of the drain electrode, while the valence band holes must 
flow through the  N+ region, subsequently to the intrin-
sic region in the source side and be discharged by the 
source electrode to form the continuous leakage current. 
To minimize the leakage current, the holes produced by 
band-to-band tunneling should be effectively blocked 
from flowing out of the N + region. Compared with the 
N + region with lower concentration, the N + region 
with higher concentration forms a larger potential differ-
ence between P + region and N + region, i.e., the poten-
tial value at the boundary between the intrinsic region 
and the N + region will increase with the increase in 
ND because the N + region with higher concentration 
can produce a larger electronic concentration difference 
between source and drain. Then, more electrons can be 
diffused from the N + region to the intrinsic regions on 
both sides of the N + region, which increases the amount 
of positive charge (mainly composed of donor) in the 
N + region after ionization and consequently increases 
the potential difference between the P + region and 
N + region. Precisely because the N + region with higher 

doping concentration has a higher potential than both 
the source and drain sides after ionization, the holes 
generated by the band-to-band tunneling near the drain 
region can be more effectively blocked, which more effec-
tively decreases the leakage current.

In addition to the doping concentration of the 
N + region, another key parameter of the N + region, 
which can significantly affect the reversely biased leak-
age current, is the length of the N + region. Figure 3a, b 
show the Ids−Vgs transfer characteristics of the proposed 
B-TFET with different LN+. The reversely biased leakage 
current largely decreases with increasing LN+. As Fig. 2b 
shows, the subthreshold swing and Ion−Ioff are also 
affected by LN+. With the increase in LN+, because the 
reverse leakage current is significantly suppressed, the 
current at the static operating point and average SS are 
also reduced. The forward current is far less affected than 
the reverse leakage, and the Ion−Ioff ratio increases with 
the increase in LN+. Figure 3c, d show the 2-dimensional 
hole concentration distribution of the proposed B-TFET 
with LN+ equal to 2 nm and 80 nm, respectively. When 
LN+ is equal to 2 nm, the minimal hole concentration in 
the N + region is larger than  1017  cm−3, while when LN+ 
is equal to 80 nm, the minimal hole concentration is less 
than  1014  cm−3. The increase in length of the N + region 
enhances its ability to prevent holes from passing through 
the N + region. As a non-equilibrium minority carrier in 
the N + region, when the N + region is longer, more holes 
will be recombined with electrons before passing through 
the N + region, so the increase in length of the N + region 
can also form a continuous reversely biased leakage 

Table 1 Adopted device parameters

Parameters Values

Body thickness (T) 100 nm

Gate oxide thickness ( tox) 1 nm

The thickness of the tunnel region ( ti) 0.5 nm

The entire width of the proposed B‑TFET (W) 13 nm

The length of the S/D interchangeable regions (LS/D) 8 nm

S/D region width (WS/D) 8 nm

N +‑doped region length (LN+) From 2 to 160 nm

The length of the intrinsic region between  N+‑doped region and  P+‑doped region ( Li) From 4 to 100 nm

The thickness of the buried oxide layer 50 nm

Doping concentration of  P+ region ( NA) From 5× 1018 to 1× 1021 cm−3

Doping concentration of  N+ region ( ND) From 5× 1018 to 1× 1021 cm−3

Drain to source voltage ( Vds) 0.5 V

Gate to source voltage ( Vgs) From − 0.4 to 1 V
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current. The average SS can be reduced to 40.2 mV/dec, 
and the Ion−Ioff ratio can exceed  1010.

Figure  4a, b show the Ids−Vgs transfer characteristics 
and changes in SS and Ion−Ioff ratio of the proposed 
B-TFET with different Li, respectively. The forward cur-
rent decreases with increasing Li because the resistance 
of the intrinsic region is proportional to the length of 
itself. Then, to maximize the forward current, the length 
of the intrinsic region should be minimized. However, the 
decrease in length of the intrinsic region enhances the 
electric field in the intrinsic region between the source 
P + region and the N + region, so the band bending near 
this region is larger than the intrinsic region near the 
drain electrode, which induces more reversely biased 
leakage current. Figure  4c, d show the 2-dimensional 
reversely biased potential distribution of the proposed 
B-TFET for Li equal to 4  nm and 100  nm, respectively. 
For the shortest Li (4  nm) case, the electric field in the 
intrinsic region between the source P + region and the 
N + region near the source electrode is much stronger 
than that in the intrinsic region between the drain 
P + region and the N + region near the drain electrode. 
Then, the leakage current almost remains constant, 
which is independent of the change in gate voltage. Fig-
ure 4b shows that the optimal value range of Li is approx-
imately 7–10 nm, where the SS decreases to a valley value 
of 41 mV/dec and the Ion−Ioff ratio increases to a maxi-
mum value of almost  108.

Figure  5a, b show the Ids−Vds transfer characteris-
tics and change in SS and Ion−Ioff ratio of the proposed 
B-TFET with different NA . Figure  5a shows that by 
increasing the concentration of the P + -doped region, 
we can obtain less SS and a larger forward current. The 
reversely biased leakage current is not obviously affected 
by the change in NA , but the forward current can be 
increased with the increase in NA . In Fig.  5b, both SS 
and Ion−Ioff ratio can be improved by increasing NA . Fig-
ure 5c, d show the 2-dimensional electric field distribu-
tion of the proposed B-TFET with NA equal to  1019  cm−3 
and  1021  cm−3, respectively. The increase in NA enhances 
the electric field in the intrinsic tunnel region; then, more 
electron- hole pairs can be generated through band-to-
band tunneling, which enhances the forward current of 
the proposed B-TFET.

According to the above discussion, both ND and NA 
should be set to the maximal possible value. The opti-
mal value range of Li is 7–10  nm. However, there is a 
tradeoff between the static power consumption and 
LN+. Figure 6 shows the Ids−Vds transfer characteristics 
of the optimized B-TFET with different LN+. LN+ can be 
selected according to different static power consumption 
design requirements. As a compromise, to ensure that 
the Ion−Ioff ratio is above  108,  LN+ is recommended to 
be above 20 nm. The on current is increased to approxi-
mately 6 ×  10–6 A, and the SS is reduced to 38 mV/dec.

Conclusions
In this paper, the effects of the structural parameters and 
internal mechanism of a bilateral gate-controlled S/D 
symmetric and interchangeable bidirectional tunneling 
field effect transistor are analyzed. The effects of the key 
parameters such as the concentration and length of the 
N + region, length of the intrinsic region between the 
P + and N + regions, and concentration of the P + region 
have been discussed in detail. Compared with the con-
ventional TFET, the B-TFET has the advantage of strong 
resistance to the reversely biased leakage current. There-
after, good performance such as a lower average SS and 
a higher Ion−Ioff ratio can be obtained. Moreover, due to 
the structural symmetry and source/drain interchange-
able and bidirectional switching characteristics, it is more 
compatible with the CMOS circuit.
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Abbreviations
L: Entire length of the proposed device; W: Entire width of the proposed 
device; Li: Length of the intrinsic region; LN+: Length of the  N+ region; LS/D: 
Length of the  P+ source/drain interchangeable regions; WS/D: Width of the  P+ 
source/drain interchangeable regions; T : Silicon body thickness; tox: Thick‑
ness of the gate oxide; ti: Thickness of the intrinsic tunnel region between 
S/D region and gate oxide; MOSFET: Metal oxide semiconductor field effect 
transistor; TFET: Tunnel field effect transistor.
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