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Abstract 

Background: Considering the limited accessibility of amyloid position emission tomography (PET) in patients with 
dementia, we proposed a deep learning (DL)-based amyloid PET positivity classification model from PET images with 
2-deoxy-2-[fluorine-18]fluoro-D-glucose (2-[18F]FDG).

Methods: We used 2-[18F]FDG PET datasets from the Alzheimer’s Disease Neuroimaging Initiative and Korean Brain 
Aging Study for the Early diagnosis and prediction of Alzheimer’s disease for model development. Moreover, we 
used an independent dataset from another hospital. A 2.5-D deep learning architecture was constructed using 291 
submodules and three axes images as the input. We conducted the voxel-wise analysis to assess the regions with 
substantial differences in glucose metabolism between the amyloid PET-positive and PET-negative participants. This 
facilitated an understanding of the deep model classification. In addition, we compared these regions with the clas-
sification probability from the submodules.

Results: There were 686 out of 1433 (47.9%) and 50 out of 100 (50%) amyloid PET-positive participants in the training 
and internal validation datasets and the external validation datasets, respectively. With 50 times iterations of model 
training and validation, the model achieved an AUC of 0.811 (95% confidence interval (CI) of 0.803–0.819) and 0.798 
(95% CI, 0.789–0.807) on the internal and external validation datasets, respectively. The area under the curve (AUC) 
was 0.860 when tested with the model with the highest value (0.864) on the external validation dataset. Moreover, it 
had 75.0% accuracy, 76.0% sensitivity, 74.0% specificity, and 75.0% F1-score. We found an overlap between the regions 
within the default mode network, thus generating high classification values.

Conclusion: The proposed model based on the 2-[18F]FDG PET imaging data and a DL framework might successfully 
classify amyloid PET positivity in clinical practice, without performing amyloid PET, which have limited accessibility.
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Background
Alzheimer’s disease (AD) is characterized by the accu-
mulation of β-amyloid (Aβ) and tau proteins. Aβ can 
be measured in humans with specific position emission 
tomography (PET) tracers or an examination of the cer-
ebrospinal fluid (CSF) [1–3]. Patients clinically diagnosed 
with mild cognitive impairment (MCI) or AD have been 
found Aβ-negative [4, 5], thus leading to a pathophysi-
ology-based unbiased and descriptive amyloid, tau, and 
neurodegeneration classification [6, 7]. The aforemen-
tioned criterion considers the Alzheimer’s continuum 
only when the Aβ marker is positive. However, high cost 
and low availability make it difficult to conduct amyloid 
PET. Furthermore, the limitations of CSF examination 
can be attributed to its invasiveness, thus necessitating 
alternative ways to classification amyloid status.

2-deoxy-2-[fluorine-18]fluoro-D-glucose (2-[18F]FDG) 
is the most widely used PET tracer for measuring brain 
metabolism, which is related to neuronal activity [8]. 
Studies using 2-[18F]FDG PET images reported on lesser 
hypometabolism in the bilateral temporoparietal regions 
and hippocampus in Aβ-negative participants with MCI 
and AD, compared to their positive counterparts [4]. 
There had been several attempts to develop an amyloid 
status classification model using magnetic resonance 
imaging (MRI), neuropsychological, or laboratory tests 
[9–11]. However, the performance was unsatisfactory. No 
attempts have been made using 2-[18F]FDG PET images.

Deep learning (DL) is the state-of-the-art mathematical 
algorithms that enable computers to automatically find 
patterns in large datasets. DL is studied in the medical 
imaging field for classification (diagnosis) [12, 13], pre-
dict prognosis [14, 15], detection [16, 17], and segmenta-
tion [18, 19]. A convolutional neural network (CNN), a 
subset of DL [20], is a DL model mimicking visual rec-
ognition concept which can extract features that reflect 
spatial relationships by applying non-linear convolutional 
filters. These spatial features pass through artificial neu-
rons whose weights in the layers are properly set during 
training. Through this process, the model automatically 
learns hidden representative features from images and 
labels. 2-D-based deep learning architectures for 3-D 
medical images had been proposed: grid method (single 
montage image made by 16 images [21]), surface projec-
tion method (volumetric information projected onto a 
surface [22, 23]), and 2.5-D model (three axes (axial, cor-
onal, and sagittal) images of brain volume [24]).

We aimed to construct a model that classifies amyloid 
PET positivity using 2-[18F]FDG PET that reflects brain 

metabolism and CNN architecture. In addition, we 
intended to validate the model using an independent 
external dataset with various diseases and classification 
probability analysis of submodules.

Methods
Study participants and data collection
The following three datasets were used for model train-
ing, internal validation, and external validation: (i) Alz-
heimer’s Disease Neuroimaging Initiative (ADNI; adni.
loni.usc.edu)-1, ADNI-GO (Grand Opportunities), 
ADNI-2, and ADNI-3 dataset [25], (ii) Korean Brain 
Aging Study for the Early diagnosis and prediction of 
Alzheimer’s disease (KBASE; kbase.kr) dataset [26], and 
(iii) dataset from the Severance Hospital. The inclu-
sion criterion comprised individuals who underwent 
T1-weighted MRI, 2-[18F]FDG PET, and amyloid PET 
imaging. MRI and PET assessments were performed 
within 6 months. We excluded 11 and three participants 
from the ADNI and KBASE datasets, respectively, due 
to poor image quality. We eventually selected 963 and 
470 participants from the ADNI and KBASE datasets, 
respectively (Fig.  1a). All data used in this study were 
from the baseline assessments. An additional 100 partici-
pants were recruited at the memory disorder clinic in the 
Department of Neurology at the Severance Hospital in 
Seoul, South Korea, between December 2017 and April 
2019. The same criterion had been applied to ensure con-
sistency (Fig. 1b). Table 1 summarizes the patient demo-
graphics and other information.

While 80% of the ADNI and KBASE datasets was used 
for model training, the remaining 20% was used for inter-
nal validation. The Severance Hospital dataset was used 
for externally validating the classification model.

Standard protocol approvals, registrations, and patient 
consent
The ADNI study protocol was approved by the institu-
tional review board of each participating ADNI site (adni.
loni.usc.edu/wpcontent/uploads/how_to_apply/ADNI_
Acknowledgement_List.pdf ). All participants provided 
written informed consent at the time of their enrollment 
in our study.

The use of the others datasets was approved by the 
Institutional Review Boards of the Seoul National Uni-
versity Hospital and the Severance Hospital. All partici-
pants provided their written informed consent.

Keywords: Alzheimer’s disease, Amyloid, Dementia, 2-[18F]FDG PET, Deep learning, Classification model
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Fig. 1 Flowchart of participants through the study for the a training and interval validation datasets, as well as b the external validation dataset. 
Abbreviation: FDG = fluorodeoxyglucose; Aβ = β-amyloid; PET = positron emission tomography

Table 1 Dataset demographics and clinical information

Aβ = β-amyloid; CU = Cognitive unimpaired; MCI = Mild Cognitive Impairment; MMSE = Mini-Mental State Examination

Category CU (n = 271) MCI (n = 550) Dementia (n = 142)

Aβ – Aβ + Aβ – Aβ + Aβ – Aβ + 

ADNI (n = 963)
Number of participants 179 92 238 312 17 125

Age, mean years (SD) 75.1 (7.0) 77.7 (5.7) 71.5 (8.4) 74.1 (7.2) 77.0 (8.2) 74.3 (8.2)

Gender: female, n (%) 83 (46.4) 54 (58.7) 104 (43.7) 134 (42.9) 2 (11.8) 57 (45.6)

Education: mean years (SD) 16.8 (2.6) 16.0 (2.7) 16.3 (2.5) 15.9 (2.9) 16.7 (2.4) 15.6 (2.7)

MMSE mean (SD) 29.1 (1.2) 28.5 (1.8) 28.2 (2.2) 26.9 (3.2) 23.2 (2.0) 23.0 (2.2)

Category CU (n = 263) MCI (n = 133) Dementia (n = 74)

Aβ – Aβ + Aβ – Aβ + Aβ – Aβ + 

KBASE (n = 470)
Number of participants 244 39 71 62 16 58

Age, mean years (SD) 68.3 (8.1) 74.2 (6.4) 73.5 (7.4) 72.9 (6.7) 75.4 (7.8) 72.4 (7.8)

Gender: female, n (%) 115 (51.3) 16 (41.1) 46 (64.8) 41 (66.1) 13 (81.2) 37 (54.4)

Education: mean years (SD) 11.7 (4.8) 12.2 (4.6) 9.5(4.6) 10.5 (4.5) 6.7 (5.2) 9.9 (5.2)

MMSE mean (SD) 26.9 (2.6) 27.2 (2.2) 23.2 (2.8) 21.5 (3.2) 16.5 (4.0) 16.9 (4.1)

Category CU (n = 1) MCI (n = 75) Dementia (n = 24)

Aβ – Aβ + Aβ – Aβ + Aβ – Aβ + 

University Hospital Dataset (n = 100)
Number of participants 1 38 37 11 13

Age, mean years (SD) 62 (0) 73.1 (6.1) 72.7 (6.8) 72.0 (4.6) 74.6 (5.7)

Gender: female, n (%) 1 (100) 19 (50.0) 21 (56.8) 6 (54.5) 10 (76.9)

Education: mean years (SD) N/A N/A N/A N/A N/A N/A

MMSE mean (SD) 28 (0.0) 24.7 (4.0) 23.8 (4.0) 21.7 (4.8) 18.2 (3.8)
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Imaging acquisition and preprocessing
The detailed 2-[18F]FDG /18F-florbetapir PET imag-
ing protocol for the ADNI dataset is described at adni.
loni.usc.edu/method/documents/. All participants 
underwent simultaneous PET and MRI scans using a 
3T Biograph mMR (PET-MR) scanner (Siemens, Wash-
ington DC, USA) for the KBASE dataset. The proce-
dure was performed based on the guidelines approved 
by the manufacturer. 3-D T1-weighted images with 3-D 
T1-weighted magnetization-prepared rapid acquisition 
with gradient echo (MPRAGE) sequence were acquired 
in the sagittal orientation with the following acquisition 
parameters: repetition time (TR) = 1670  ms, echo time 
(TE) = 1.89  ms, field of view (FOV) = 250  mm, and a 
256 × 256 matrix with a 1.0 mm slice thickness. For the 
 [11C] Pittsburgh compound-B (PiB) PET, we obtained a 
30-min emission, 40-min after the intravenous adminis-
tration of 555  MBq 11C-PiB. In contrast, for the 2-[18F]
FDG PET scans, we requested the participant to fast for 
at least 6  h, prior to receiving the intravenous adminis-
tration of 3.7  MBq/kg 2-[18F]FDG. Following the intra-
venous injections, the participants rested for 40 min in a 
dimly lit waiting room, prior to scanning. We processed 
the images for routine corrections and reconstructed 
them into a 256 × 256 image matrix using iterative meth-
ods (six iterations with 21 subsets) [26].

The dataset of the Severance Hospital included all par-
ticipants who underwent MRI scans using a 3T Achieva 
scanner (Philips Medical System, Best, The Nether-
lands). We acquired a 3-D T1-weighted MRI sequence 
with a 3-D T1-turbo field echo sequence in the axial 
orientation with the following acquisition parameters: 
TR = 73,421  ms, TE = 5.09  ms, FOV = 215  mm, and a 
1024 × 1024 matrix with a 1.0  mm slice thickness. We 
used a Discovery 600 scanner (GEHealthcare, Mil-
waukee, WI, USA) for the 18F-florbetaben PET scan. 
Moreover, we obtained a 20-min emission scan after the 
intravenous administration of 300 MBq 18F-florbetaben. 
The images were processed for routine corrections and 
reconstructed into a 256 × 256 image matrix using itera-
tive methods (four iterations with 32 subsets).

Data preprocessing
We conducted the preprocessing steps using SPM12 
(Wellcome Trust Centre for Neuroimaging, University 
College London) and MATLAB R2019a (MathWork, 
Natick, MA). The amyloid and 2-[18F]FDG images were 
coregistered onto T1-weighted images and normalized 
into the Montreal Neurological Institute (MNI) template 
(McGill University, Montreal, Canada). Furthermore, 
we normalized each voxel of the 2-[18F]FDG PET image 
according to the mean intensity of the pons [27]. The 

pons were used as reference sites and extracted using an 
Automated Anatomical Labeling (AAL) template.

Decision of Aβ PET status
We downloaded the UC Berkeley 18F-florbetapir analy-
sis data from the ADNI dataset. Moreover, we classified 
each participant as Aβ-positive PET scan on observing 
a global standardized uptake value ratio (SUVR) > 1.11 
[28].

We extracted the mean regional 11C-PiB uptake val-
ues from the frontal, posterior cingulate-precuneus, and 
lateral temporal and lateral parietal cortices using the 
individual AAL atlas from T1-coregistered 11C-PiB PET 
images for the KBASE dataset [29, 30]. In addition, we 
calculated the SUVRs for each region of interest (ROI) by 
dividing the mean value for all voxels within each ROI by 
the mean cerebellar uptake value. This can be attributed 
to its relatively low Aβ deposition [31]. We classified each 
participant as Aβ-positive PET scan if the SUVR was 
> 1.4 in at least one of the four ROIs [32].

We eventually analyzed the Severance Hospital dataset 
using a method similar to the aforementioned ones. We 
extracted the mean regional 18F-florbetaben uptake val-
ues from the frontal, anterior/posterior cingulate, lateral 
parietal, and lateral temporal cortices using the individ-
ual AAL atlas from T1-coregistered 18F-florbetaben PET 
images. Moreover, we calculated the SUVRs for each ROI 
by dividing the mean value for all voxels within each ROI 
by the mean cerebellar uptake value. We classified each 
participant as Aβ-positive PET scan if the SUVR was 
> 1.478 in at least one of the four ROIs [33].

Deep learning architecture
Initially, we tried to create a 3-D model for considering the 
axial, sagittal, and coronal spatial relationships. This can 
be attributed to the importance of spatial relationships in 
imaging. We have constructed two versions of 3-D CNN 
model (Additional file 1: Fig. 1). Nonetheless, the datasets 
were not large enough for model training. Furthermore, 
the 3-D models could not be trained even after augment-
ing the small datasets and needed a high computing power. 
Thus, we eventually built a 2.5- model that used the axial, 
coronal, and sagittal images as inputs to incorporate the 
3-D spatial relationships. We entered a total of 291 images 
(91 images each along the z-axis and x-axis and 109 images 
along the y-axis) as inputs from each participant to the 
DL architecture (Fig.  2). The 2-D CNN submodule con-
sists of four convolutional layers. The number of filters 
used in each convolutional layer was 32, 64, 128, and 128, 
respectively. Each convolutional layer had a kernel size of 
3 × 3 and a stride of 1. Following the convolutional layers, 
we added a batch normalization layer and a rectified linear 
unit (ReLU). While we used the ReLU for the nonlinear 
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activation function, the batch normalization layer improved 
the training convergence speed. We then added a 2 × 2 max 
pooling layer with a stride of 2 for down-sampling of the 
feature maps. After the four convolutional layers, we used 
a completely connected layer to determine the Aβ PET sta-
tus in each image with sigmoid activation. DL architecture 
consists of 291 submodules, and each submodule had been 
assigned a different weight value. We concatenated 291 
prediction values as inputs to the aforementioned layer. In 
addition, we used sigmoid activation as a function for the 
final prediction. When the final prediction value was larger 
than 0.5, the model classified this participant Aβ-positive 
PET scan. We initialized the 2-D convolutional filters and 
the completely connected layers using the He-weight ini-
tialization [34] and the Xavier initialization, respectively. 
Our architecture was trained using a mini-batch size of 
four and an Adam optimizer with a 0.0001 learning rate 
for a maximum of 30 epochs. We monitored the internal 
validation loss after every epoch. Moreover, we saved the 

model weights upon encountering the lowest internal vali-
dation loss. We used the DL model with the lowest internal 
validation loss to classify the amyloid PET positivity on the 
external validation dataset. All model was made in open-
source package PyTorch on NVIDIA GTX 2080Ti.

Performance evaluation
First, our model was trained on the ADNI and KBASE 
datasets. These datasets were randomly divided into two 
groups for training and internal validation. Moreover, our 
model was externally validated on the Severance Hospital 
dataset. This process was repeated 50 times.

We computed the receiver operating characteristic 
(ROC) curve, the area under curve (AUC) values, accu-
racy, sensitivity, and specificity of model classifications 
on all datasets to evaluate the performance of our model. 
In addition, we computed the F1-score, the harmonized 
mean of the positive predictive value and sensitivity.

The F1-score is defined as follows:

F1 - score =
2× True Positive Value

2× True Positive Value + False Positive Value + False Negative Value

Fig. 2 Convolutional neural network architecture in 2.5 dimensions (2.5-D). A total of 291 2-D images were used as inputs for the model. 291 
number of prediction values obtained from 291 submodules pass through the fully connected layer for the final prediction. Abbreviation: 
Conv = convolution layer; MaxPool = Max pooling layer; FC = fully connected layer
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In addition, performance of our model was evaluated 
within each subgroup, such as CU, MCI, and demented 
participants.

Second, to evaluate the model performance between 
two distinct datasets with different diagnoses, composi-
tion, and ethnicity, our model was trained and internally 
validated on the ADNI dataset, and externally validated 
on the KBASE dataset.

Voxel‑wise analysis
We conducted a two-sample t test to find substantial dif-
ferences in glucose metabolism between the Aβ-positive 
and Aβ-negative PET scan participants. In addition, we 
conducted the vowel-wise analysis using SPM12 [35]. 
The threshold for statistical mapping was at FWE-cor-
rected p < 0.05 or uncorrected p < 0.001. We applied the 
spatial clustering of regions with statistically relevant 
voxels using a clustering threshold of k > 50 voxels for 
eliminated voxel clusters with smaller sizes.

Classification basis for understanding model decision
We commonly used a class activation map (CAM) to con-
firm the classification basis. Nonetheless, we could not apply 
it as our model was built using a 2.5-D CNN [36]. Thus, we 
suggested a method to approximately understand the deci-
sion basis of our model. Figure 3 illustrates the way of analy-
sis of classification probability from the submodules. This 
facilitates the verification of the ROIs that contribute to our 
classification. First, we extracted the prediction values from 
the submodules. Second, we performed a two-sample t test 
based on the final classification between the Aβ-positive and 
Aβ-negative PET scan participants (p value below 0.05, two-
tailed) and obtained a substantial slice number. Third, we 
considered the (x, y, z) point as statistically significant when 
the ‘x’th, ‘y’th, and ‘z’th planes of the sagittal, the coronal, 
and axial axis showed substantial differences. We eventu-
ally plotted the aforementioned points in the MNI space. If 
×0, ×1 in the sagittal; y0, y1 in the coronal; and z0, z1 in the 
axial planes were significant slices, a total of 8 points could 
be plotted in the MNI space. Assuming that (× 0, y0, z0) and 
(× 1, y1, z1) are significant points among the plotted points, 
the unrelated six points ((× 0,y0,z1), (× 0,y1,z0), (× 0,y1,z1), 
(× 1,y0,z0), (× 1,y0,z1), (× 1,y1,z0)) may also be included in 
the MNI space. Therefore, to exclude these unrelated points, 
we finally extracted clusters with more than 50 points (same 
threshold as voxel-wise analysis) from the AAL atlas. More-
over, we compared the aforementioned regions with the 
results of our classification-based voxel-wise analysis.

Results
Participant demographics
Table  1 shows the demographic data of the partici-
pants in the three datasets. There were 686 out of 1433 

(47.9%) and 50 out of 100 (50%) Aβ-positive PET scan 
participants in the ADNI/KABSE and Severance Hospi-
tal datasets, respectively.

Performance of deep learning model
The internal validation dataset included 129 and 138 
Aβ-negative and Aβ-positive PET scan participants 
(20% of ADNI/KBASE datasets), respectively. In con-
trast, the external validation dataset included 50 par-
ticipants each in the abovementioned categories. The 
model achieved an AUC of 0.811 (95% confidence 
interval (CI) of 0.803–0.819) and 0.798 (95% CI, 0.789–
0.807) on the internal and external validation datasets, 
respectively. Table 2 summarizes the accuracy, sensitiv-
ity, specificity, and F1 score. When we performed exter-
nal validation with the model shown best AUC value 
(0.864) on the internal validation dataset, the AUC, 
accuracy, sensitivity, specificity, and F1 score of 0.860, 
0.770, 0.800, 0.740, and 0.780, respectively. Figure  4 
shows the ROC curves and confusion matrix of the 
aforementioned model for classifying Aβ PET positivity 
in the internal and external validation datasets.

Internal validation model performance by the sub-
groups (CU, MCI, and demented (AD)) were shown 
in the Additional file  1: Fig.  2. The model achieved an 
AUC of 0.717 (95% CI, 0.705–0.729), 0.757 (95% CI, 
0.746–0.768) and 0.816 (95% CI, 0.789–0.843) on CU 
(n = 105), MCI (n = 141) and AD (n = 41) participants, 
respectively. When AUC value was 0.864 on inter-
nal validation dataset, the AUC were 0.738, 0.839 and 
0.887 on CU, MCI, and AD, respectively. Moreover, 
external validation model performance by the sub-
groups were shown in the Additional file 1: Fig. 3. The 
model achieved an AUC of 0.798 (95% CI, 0.789–0.807) 
and 0.787 (95% CI, 0.774–0.800) on MCI (n = 75) and 
demented (n = 24) participants. When we performed 
external validation with the model that showed best 
AUC value (0.864) on the internal validation dataset, 
the AUC were 0.865 and 0.832 on MCI and demented 
participants, respectively. Table 2 summarizes the accu-
racy, sensitivity, specificity, and F1 scores.

Additional file 1: Table 1 shows model performance by 
all datasets and subgroups in the internal validation (part 
of the ADNI dataset) and external validation (KBASE 
dataset). The model achieved an AUC of 0.769 (95% CI, 
0.762–0.776) and 0.806 (95% CI, 0.803–0.809) on the 
internal and external validation datasets, respectively. 
When we performed external validation with the model, 
it indicated a good AUC value (0.800) on the internal vali-
dation, the AUC previously was 0.822. The accuracy, sen-
sitivity, specificity, and F1 score and values on subgroups 
are summarized in the Additional file 1: Table 1.
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Voxel‑wise analysis
In the ADNI and KBASE datasets, Aβ-negative PET 
scan participants showed higher glucose metabo-
lism than Aβ-positive PET scan participants at bilat-
eral angular, supramarginal, precuneus, middle and 

posterior cingulate, inferior and middle temporal, par-
ahippocampal, and fusiform gyri (Fig. 5a). In contrast, 
Aβ-positive PET scan participants showed higher glu-
cose metabolism in the bilateral paracentral lobules, 
pre- and postcentral gyri (Fig. 5b).

Fig. 3 Analysis of prediction values from submodules to understand the model’s decision. a Acquiring prediction values from submodules 
along the 3 axes. b The Aβ-positive and Aβ-negative PET scan participants are divided based on the final classification, and a two-sample t test is 
performed to determine substantial slice numbers. c) Points are plotted for each slice number in the MNI space and correlated labels are extracted 
from the AAL atlas. In the example, if a significant slice number is x = 46, 51, y = 34, 64, 66, and z = 37, 45, a total of 12 points are plotted in the MNI 
space. However, actual significant points are (46,34,37), (51,54,45), and (51,66,45). d) To exclude unrelated points, ROIs in the AAL atlas with more 
than 50 points are used for comparison with the result of the voxel-wise analysis. Abbreviation: Aβ = β-amyloid; MNI = Montreal Neurological 
Institute; AAL = Automated Anatomical Labeling; ROI = region of interest
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Classification basis for understanding model decision
Analyzing of the prediction values from the submod-
ules derived the following nine ROIs from the external 
validation dataset: bilateral postcentral gyri, superior 
parietal gyri and precuneus, left superior frontal gyrus, 
middle frontal gyrus, and calcarine gyrus (Fig. 6b). The 
voxel-wise analysis of 2-[18F]FDG PET showed differ-
ences in the left inferior temporal, left middle tempo-
ral gyrus, right angular, right inferior parietal, right 
superior parietal, right middle occipital gyri, and right 
cuneus (Fig. 6a).

Discussion
A sound understanding of amyloid pathology is critical 
for the accurate diagnosis and prognosis prediction in 
the Alzheimer’s disease continuum or in patients with 
dementia. The following two methods are currently avail-
able to examine amyloid pathology: amyloid PET and 
CSF analysis through lumbar puncture. However, amy-
loid PET is expensive and not universally available. More-
over, lumbar puncture is relatively invasive and poses 
potential side effects. Thus, the classification of amyloid 
pathology using long-established and widely distributed 

Fig. 4 ROC curve and confusion matrix of the best performing model for classifying Aβ PET positivity in the internal validation dataset (a, b) and 
the external validation dataset (c, d). Abbreviation: ROC = receiver operating characteristic; AUC = area under curve
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imaging techniques, such as MRI or 2-[18F]FDG PET, 
appears promising. Several studies have attempted to 
classify amyloid pathology by analyzing the cortical thick-
ness from structural MRI (sMRI) [9, 10]. Nonetheless, 
sMRI has its limitations in early classification. This can 
be attributed to the occurrence of cortical thinning pri-
marily at the late stage of the disease. Moreover, it does 
not provide any functional information. Glucose metabo-
lism changes before a change in the cortical thickness in 
AD [37]. Hence, we assumed that 2-[18F]FDG PET would 
better classify amyloid pathology. However, the use of 
2-[18F]FDG PET images for amyloid classification is rare. 

Thus, we developed a DL model that determines amyloid 
pathology from 2-[18F]FDG PET imaging data.

We found a lower glucose metabolism in the Aβ-PET-
positive participants in the bilateral angular, supramar-
ginal, precuneus, middle and posterior cingulate, inferior 
and middle temporal, parahippocampal, and fusiform 
gyri, consistent with previous reports (Fig. 4a) [4]. How-
ever, we recorded a higher glucose metabolism in the 
bilateral paracentral lobules and pre- and postcentral gyri 
in the Aβ-positive participants. According to Braak stag-
ing, the aforementioned regions are reportedly preserved 
during the progress of Aβ pathology [38]. These findings 

Fig. 5 Result of voxel-wise 2-[18F]FDG PET analysis performed in the ADNI and KBASE datasets. a) Areas of higher glucose metabolism in 
Aβ-negative PET scan participants compared to Aβ-positive PET scan participants. b) Areas of higher glucose metabolism in Aβ-positive PET scan 
participants compared to Aβ-positive PET scan participants. All results are presented with a threshold of p < 0.05, FWE-corrected, and 50 voxels. 
Abbreviation: ADNI = Alzheimer’s Disease Neuroimaging Initiative; KBASE = Korean Brain Aging Study for the Early diagnosis and prediction of 
Alzheimer’s disease; FDG = fluorodeoxyglucose; PET = positron emission tomography; Aβ = β-amyloid

Fig. 6 Result of voxel-wise analysis and analyzing prediction values from submodules in the external validation dataset. a Areas of higher glucose 
metabolism in Aβ-negative PET scan participants compared to Aβ-positive PET scan participants. The results are presented with a threshold of 
p < 0.001, uncorrected, and 50 voxels. b Analysis result of prediction values from submodules. Abbreviation: AAL = Automated Anatomical Labeling; 
Aβ = β-amyloid
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support the possibility of its classification power and 
form the basis of model interpretation.

Despite these possibilities, the datasets were extremely 
small for building a 3-D DL model. However, the model 
could extract more spatial relationships while considering 
the coronal and sagittal images, in addition to the axial 
images. Therefore, we designed a 2.5-D DL model for 
completely considering the 3-D spatial relationships. The 
CNN DL model can be usually explained using CAM for 
visualization. However, the last layer of each submodule 
gets replaced with a global average pooling layer during 
CAM. Moreover, the values from the submodules passed 
the fully connected layer for the final classification. This 
in turn leads to the disappearance of the location. Thus, 
the analysis would provide limited spatial information 
in 2.5-D. Therefore, we developed a 2.5-D method that 
analyzed the prediction values from the submodules to 
understand the basis of this decision.

We trained and internally validated the combined 
internal datasets. The internal validation results were 
impressive, with AUC values, accuracy, sensitivity, spec-
ificity, and F1 score of 0.811, 0.733, 0.678, 0.785, and 
0.709, respectively. We encounter several diseases char-
acterized by memory impairment in clinical practice. In 
contrast, the ANDI and KBASE datasets only contained 
the cognitive unimpaired and Alzheimer’s disease contin-
uum. Thus, we externally validated our proposed model 
using a dataset, including various neurological diseases 
that cause memory impairment. The external validation 
dataset included clinically diagnosed AD, Lewy body 
dementia, epileptic cognitive disorder, normal pressure 
hydrocephalus, frontotemporal dementia, and vascular 
dementia. In addition, it included various clinical stages, 
such as one, 75, and 24 patients with cognitive unim-
paired, MCI, and dementia, similar to the clinical situ-
ation. Moreover, the application of the proposed model 
to the external validation dataset also resulted in a high 
AUC value, accuracy, sensitivity, specificity, and F1 score 
of 0.798, 0.690, 0.768, 0.612, and 0.712, respectively. Fur-
thermore, when we performed external validation with 
the model shown the best AUC value (0.864) on the inter-
nal validation dataset, the AUC value, accuracy, sensitiv-
ity, specificity, and F1 score was 0.860, 0.770, 0.800, 0.740, 
and 0.780, respectively. The performance of our model 
is comparable to that of the model based on longitudi-
nal sMRI (AUC value was 0.86) [9]. However, it is better 
than that of the model which used patient demograph-
ics and sMRI (AUC value was 0.79) [10]. This enhanced 
performance could be attributed to the changes in glu-
cose metabolism before cortical atrophy. Thus, our model 
that only used one-time 2-[18F]FDG PET images could be 
effectively used for classifying amyloid PET positivity in 
memory disorder clinics.

The performances by subgroups in the internal valida-
tion resulted in a high AUC of 0.717, 0.757, and 0.816 
in the CU, MCI, and AD participants, respectively. Our 
model outperformed conventional models by producing 
comparatively better AUC in AD subgroup that indicated 
many significant differences within the group on voxel-
wise analysis. Additionally, it resulted in a good AUC in 
CU subgroup that indicated a few significant differences 
within the group on voxel-wise analysis. Moreover, the 
application of the proposed model to the external vali-
dation dataset also resulted in a high AUC of 0.798 and 
0.787 in the MCI and demented participants, respec-
tively. These results were achieved because the external 
validation dataset contained many MCI and demented 
participants data. Additionally, the result of the internal 
validation in the Alzheimer’s Continuum was impressive, 
but the results for when this model was applied on the 
external validation dataset with various clinical diagnosis 
were impressive as well. This reflects the applicability in 
clinical practice.

When our model was trained and internally vali-
dated in the ADNI dataset and externally validated in 
the KBASE dataset, the model achieved the AUC val-
ues, accuracy, sensitivity, specificity, and F1 score were 
0.769, 0.698, 0.702, 0.694, and 0.719, respectively. These 
results suggested that the performance was compara-
tively decent than when we used the ADNI and KBASE 
dataset for training and internal validation (Additional 
file 1: Fig. 4 and Additional file 1: Table 1). The reasons of 
the differences were suggested as follows: First, the ADNI 
and KBASE had different patients’ composition. Within 
the ADNI dataset, MCI participants were the most com-
mon, and 55% of the participants had amyloid PET-posi-
tive scan, while, within the KBASE, CU participants were 
the most common, and 34% of the participants had amy-
loid PET-positive scan. Second, the two datasets were 
obtained under different ethnicities, different amyloid 
tracers, and various PET manufacturers. Although we did 
spatial normalization with ethnicity specific template in 
the preprocessing pipeline, there may be remained dif-
ferences. However, from the other perspective, the above 
results were also affirmative. The model with the best 
AUC value (0.800) in the internal validation showed good 
AUC values of 0.745 and 0.984 in MCI and AD, respec-
tively, which also showed good AUC values of 0.837 and 
0.721 in MCI and AD in the external validation, respec-
tively. These results were encouraging since one could 
classify amyloid PET positivity status from the dataset 
obtained regardless of the ethnicities, tracers, and MRI 
manufacturers.

On internal and external validation, 10–15% of false 
negative and false positive cases were found. According 
to Alzheimer’s disease biomarker curve [39], amyloid 
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deposition preceded the hypometabolism, which could 
explain the false negative cases. There are two specula-
tion for comprehend false positive cases. First, approxi-
mately 10% of false negative cases are due to sensitivity of 
amyloid PET [40, 41]. Second, other cause of dementia, 
including Lewy body dementia, could be shown similar 
hypometabolism pattern [42].

The common region between the analysis of predic-
tion value from the submodules and voxel-wise analysis 
included the right superior parietal gyrus in the external 
validation dataset (Fig.  6). However, we observed addi-
tional regions with different metabolism in the train-
ing and internal validation datasets that only included 
AD (Fig.  5). The above-mentioned difference could be 
attributed to the characteristics of the patient popula-
tion, including only AD or other diseases. Therefore, our 
model might have extracted these hidden features and 
used them for the classification.

Our study had some limitations. First, we used several 
datasets that used different protocols and amyloid trac-
ers for data collection. Moreover, these datasets included 
patients of various ethnicities. However, their charac-
teristics suggest the general applicability of our model 
regardless of the aforementioned variabilities. Second, 
amyloid pathology could be detected by CSF Aβ42 or 
amyloid PET studies; most cases show concordant results 
in the Alzheimer’s disease continuum, whereas 6–21% 
show discordant results [43]. Both results should be con-
sidered for more accurate amyloid pathology; however, 
CSF Aβ42 was not available in all datasets. Especially in 
the ADNI dataset, only 66 participants underwent sMRI, 
2-[18F]FDG PET, amyloid PET, and CSF Aβ42. We chose 
amyloid PET only because deep learning requires a large 
amount of data. Third, the DL framework had a black box 
limitation. Thus, the model visualization method, such as 
CAM, can further explain our classification model. We 
could not apply CAM because of the limitation of avail-
able datasets. In contrast, we used three axes images (2.5-
D) as the inputs to improve the classification accuracy. 
The development of a 3-D DL model from larger datasets 
would facilitate the interpretation through CAM. Fourth, 
we suggested a novel method for the brief understanding 
of our model’s decision. After the t test between the amy-
loid PET-positive and PET-negative participants on SPSS, 
we obtained 20 slices in the sagittal plane, 27 slices in the 
coronal plane, and 24 slices in the coronal plane. We con-
sidered the (x, y, z) point as statistically significant when 
the ‘x’th, ‘y’th, and ‘z’th planes of the sagittal, coronal, and 
axial axes, respectively, showed substantial differences; 
a total of 12,960 (20×27×24) points were plotted in the 
MNI space. However, our method suffers from a limita-
tion due to the following assumption. If the (x,y,z) point 

is significant, the ‘x’ th plane in the sagittal, ‘y’th plane in 
the coronal, and ‘z’th plane in the axial could be signifi-
cant; however, the opposite was not assumed. Therefore, 
many unrelated points were plotted in the MNI space; 
ROIs clustered with more than 50 points were extracted 
to remove these unrelated points. Further investigation is 
required to accurately understand the model’s decision. 
Fifth, we did not include other biomarkers or neuropsy-
chological test results. An incorporation of these features 
might have improved the performance. However, we 
tried to build a classification model by only using images, 
which can be applied more generally.

In conclusion, we proposed a DL model that can clas-
sify the amyloid PET positivity from 2-[18F]FDG PET 
imaging and demonstrated its high performance across 
an external test dataset. A large-scale external validation 
of multi-institutional data, model calibration, and opti-
mization of sensitivity needs to be incorporated into the 
clinical workflow. The aforementioned model can serve 
as an important decision supporting tool to aid clinicians 
while classifying amyloid PET positivity.

Conclusion
The proposed model based on the 2-[18F]FDG PET imag-
ing data and a DL framework might successfully classify 
amyloid PET positivity in clinical practice, without per-
forming amyloid PET, which have limited accessibility.
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istic; AUC = area under curve, CU = cognitively unimpaired, MCI = mild 
cognitive impairment, AD = Alzheimer’s dementia. Supplementary 
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