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Toxicometabolomics of lindane in adult 
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Abstract 

Lindane is a broad‑spectrum persistent organochlorine pesticide that has been used to control pests for many years. 
In this study, its toxic mechanisms in adult zebrafish were investigated using targeted metabolomics with GC‑MS/MS 
and non‑targeted metabolomics with LC‑Orbitrap‑MS/MS. Zebrafish was exposed to lindane in water for 48 h in three 
groups: control, low exposure (1/10  LC50) and high exposure  (LC50). In the zebrafish exposed to low concentration 
of lindane, 2.24–3.98 mg/kg of lindane were determined, while 35.67–56.46 mg/kg were observed in the zebrafish 
exposed to high concentration. A total of 118 metabolites were identified from 394 metabolites on GC‑MS/MS and 
45 metabolites were selected as biomarkers. A total of 62 metabolites were identified on LC‑Orbitrap‑MS/MS and 
7 metabolites were selected as biomarkers. Three groups were well separated on partial least squares‑discriminant 
analysis (PLS‑DA), and a total of 52 metabolites in both the targeted and non‑targeted metabolites were selected as 
biomarkers through VIP and ANOVA tests to construct a heatmap. Five metabolic pathways such as the pentose phos‑
phate pathway (PPP), histidine metabolism, phenylalanine metabolism, alanine/aspartate/glutamate metabolism, 
and phenylalanine/tyrosine/tryptophan biosynthesis, were observed to show toxicologically significant alterations. 
Oxidative stress was also confirmed through MDA and ROS assays. Such perturbations of the metabolic pathways of 
zebrafish caused by the exposure to lindane resulted in significant toxicological effects.
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Introduction
Chemicals called persistent organic pollutants (POPs) 
can cause environmental problems because they are 
predominant toxic contaminants with long half-lives 
to remain in the environment [1]. In particular, organo-
chlorine pesticides POPs have carbon-chlorine bonds, 
which are very stable to hydrolysis and the many chlo-
rine substituents and/or functional groups make them 
more resistance to biological degradation and photoly-
sis [2]. It was noted that during the 1950s–1970s that 

organochlorine pesticides such as lindane and Dichloro-
Diphenyl-Trichloroethane (DDT) accounted for approxi-
mately 80% of total pesticides produced [3]. For this 
reason, organochlorine pesticides continue to cause envi-
ronmental problems in many countries [4–6].

Lindane is a POP that is a broad-spectrum persistent 
organochlorine pesticide and has been used to con-
trol pests for many years [7]. It has inhibitory effects on 
gamma amino butyric acid (GABA) receptors in insects 
and vertebrates [8, 9]. The chloride channel blocking 
mechanism of lindane may involve non-competitive 
binding to channel-associated allosteric sites on the 
receptor. Toxic symptoms caused by lindane include 
spontaneous increases in nerve activity and convulsive 
seizures in insects and vertebrates [10]. Lindane pro-
duced various metabolites in bio-environmental systems 
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such as hexachorocyclohexene, pentachlorocyclohexene, 
tetrachlorobenzenes, trichlorobenzenes, dichloroben-
zene, tetrachlorophenol, trichlorophenols, dichlorophe-
nol and dichlorophenylglutathiones and etc. [11]. The US 
Environmental Protection Agency banned lindane use in 
August 2006, but the environmental problems associated 
with lindane remains [12]. In the environment, lindane 
is more soluble in water than most other organochlo-
rine compounds therefore it has a greater possibility of 
remaining in the water column [13, 14]. Because of its 
strong hydrophobic property and long persistency, lin-
dane can bioaccumulate in fish, microorganisms, and 
mammals [15, 16]. Therefore, it is necessary to conduct 
research on lindane exposure in aquatic ecosystems. 
Zebrafish are known as model organisms for studies of 
physiology, vertebrate biology, and human disease [17]. 
In a human drug conversion study, about 86% of the 1318 
human drug targets have been identified in zebrafish 
[18]. Many previous metabolomics studies have been 
conducted with zebrafish because of their special feature 
like the genetic homology with mammals, prolificacy, 
portable size, and economics [19–23].

From the 1990s, metabolomics was defined as post 
genomics area and is the closest to the phenotype in the 
“omics cascade” to be the end point of that cascade. It 
aimed to identify the changes of biochemical pathways of 
animals, plants and microbes in response to physiologi-
cal stimuli or genetic disturbances. Therefore, measur-
ing metabolites present in cells, tissues or organisms is 
a key task in metabolomics research, however, there is 
currently no single technological platform to analyze all 
metabolites [24, 25]. In metabolomics analytical tech-
niques, the most commonly used analytical methods 
are those using GC-MS, LC-MS, and NMR [26]. Each 
of these technologies has its own unique advantages 
and disadvantages. Many previous studies have been 
conducted to confirm the biological responses to envi-
ronmental stress using NMR [21, 27, 28]. The main dis-
advantage of NMR is that it is a relatively low-sensitivity 
technique that has a high detection limit of about 1–5 μM 
and requires a relatively large sample amount (~ 500 
μL) [29]. Compared with NMR, MS can separate many 
metabolites with high resolution and sensitivity [30]. 
GC-MS-based metabolomics can cover a certain polar-
ity range [31]. In addition, GC-MS is an ideal analytical 
equipment for the analysis of both volatile and non-vol-
atile compounds through derivatization of non-volatile 
polar compounds. The latest capillary GC is an excel-
lent tool for the analysis of complex metabolic mixtures, 
providing the chromatographic separations with high 
resolution and reproducibility [30]. Moreover, compared 
to LC-MS based analysis, GC-MS has the advantage of 
much greater resolution, and has a large spectral library, 

and can separate small compounds that tend to be eluted 
to the solvent front early in conventional reverse-phase 
LC-MS analysis into good retention [32]. Therefore, in 
targeted metabolomics study, GC-MS has the advantage 
of being able to accurately and quantitatively detect more 
diverse metabolites than LC-MS. However, LC-Orbitrap-
MS-based metabolomics provides positive and negative 
ionization, which increases the variety of metabolites that 
can be detected [31, 33]. These key properties have led to 
an increase in the use of Ultra-high performance liquid 
chromatography tandem mass spectrometry (UHPLC-
MS/MS) related procedures in recent years [34, 35]. The 
strategies used for metabolomics experiments include 
‘targeted’ and ‘non-targeted’ metabolomics [36]. Targeted 
metabolomics uses multiple analyses of defined metabo-
lites that are characterized chemically and annotated 
biochemically [24]. On the other hand, non-targeted 
metabolomics uses a comprehensive method to analyze 
unknown metabolites [37].

In this study, both GC-MS/MS-based targeted metab-
olomics and LC-Orbitrap-MS/MS-based non-targeted 
metabolomics were performed after zebrafish exposure 
to lindane. A total of 394 metabolomes were analyzed by 
GC-MS/MS with multiple reaction monitoring (MRM) 
mode in targeted metabolomics, and LC-Orbitrap-MS/
MS with scan mode was used in non-targeted metabo-
lomics to identify metabolites in zebrafish. Statistical 
analyses were performed by  SIMCA+ and MetaboAna-
lyst 5.0 to identify biomarker metabolomes and obtain 
a heatmap. The metabolic pathways were identified by 
MetaboAnalyst 5.0 to investigate the toxicological and 
biochemical effects of lindane in zebrafish.

Materials and methods
Chemicals and reagents
Analytical-standard lindane (98.5%) was purchased 
from Dr. Ehrenstorfer GmbH (Augsburg, Germany), 
and ribitol, as an internal standard, was purchased from 
Wako. TMCS-MSTFA reagent (1%) was purchased from 
Thermo Fisher Scientific Company. Methoxyamine 
hydrochloride, N,N-dimethylformamide (DMF), and 
pyridine were purchased from Sigma-Aldrich. Acetoni-
trile and water were of LC-MS grade and were purchased 
from Fisher Scientific. Acetone and methanol were pur-
chased from Merck (Darmstadt, Germany) and were of 
LC-MS grade. Reagents with the highest available grades 
were used. The methoxyamination reagent was prepared 
by dissolving 20  mg of methoxyamine hydrochloride in 
1 mL of pyridine.

Experimental animals and chemical exposure
Chemical exposure were carried out as previously 
described [38] with slight modification. Adult zebrafish 



Page 3 of 14Yuan et al. Appl Biol Chem           (2021) 64:52  

with the body weight of 400–500  mg and the length of 
3–4 cm were used, and gender was not considered. Adult 
zebrafish were acclimated at 23 ± 1  °C in a glass water 
tank for 1  week. The photoperiod was maintained as 
a 16:8  h light:dark cycle. During this period, zebrafish 
were fed commercial fish feed, and were not fed on the 
day before lindane exposure. The  LC50 value of lindane 
for zebrafish is 110  μg/L for 48  h [39]. Based on this 
value, the exposure concentrations were set to 110 μg/L 
(1100 μg/mL in acetone, 0.5 mL) and 11 μg/L (110 μg/mL 
in acetone, 0.5 mL) for the high-exposure and low-expo-
sure groups, respectively.

In 10 L beakers, 20 zebrafish per group were kept for 
48 h before exposure to 110 μg/L (high exposure;  LC50) 
and 11 μg/L (low exposure; 1/10  LC50) of lindane, includ-
ing a control group without lindane. After exposure, 6 
zebrafish in each group were sampled for metabolome 
and oxidative stress analyses. During the experiment, 
the exposure solution was changed daily to maintain the 
desired lindane concentration.

Metabolomic sample preparation, profiling 
and metabolome identification by GC‑MS/MS
Sample preparation procedure was performed as previ-
ously described [38]. Fish samples were frozen in liq-
uid  N2 in 5 mL Eppendorf tubes with 3 of 3 mm and 2 
of 7  mm Retsch stainless steel were ground by shaking 
vigorously using a MiniG (SPEX Sample Prep, USA). 
One mL of 50% MeOH solution containing 0.1  μg/
mL of ribitol (internal standard) was added to a 50  mg 
of ground sample in a 2  mL tube, and the sample was 
then vortexed at 4  °C for 10 min. After centrifuging the 
extracts for 10 min at 13,000 rpm, 100 μL of supernatants 
of the extracts were evaporated by a speed vacuum con-
centrator (Hanil Modulspin 40). The dried residues were 
reacted with 50 μL of methoxyamination reagent for 
90 min at 37  °C with shaking and were then derivatized 
with 50 μL of MSTFA reagent (MSTFA + 1% TMCS) for 
30 min at 37 °C.

For metabolite analysis, a Shimadzu GCMS-TQ8040 
equipped with a BPX-5 column (30  m × 0.25  mm i.d., 
0.25  μm film thickness, TRAJAN) was used in MRM 
mode and a total of 394 metabolites (332 metabolites 
from the Smart Metabolites Database, and 62 metabolites 
from an in-house library) were analyzed. The injection 
volume was 1.0 μL (split mode; 30:1), and the tempera-
tures for the injector, transfer lines and ion source (70 eV) 
were 250 °C, 280 °C and 200 °C, respectively. The initial 
oven temperature was 60  °C [2  min], and the tempera-
ture was ramped to 320  °C at a rate of 10  °C/min and 
then maintained for 15  min. Helium was used as the 
carrier gas with a flow rate of 1 mL/min and argon was 

used as the collision gas. Data processing was performed 
with manual reconfirmation of the peak detections using 
GCMS Solution software (version 4.3, Shimadzu).

Non‑targeted metabolite profiling and identification 
by LC‑Orbitrap‑MS/MS
Non-targeted metabolite profiling and identification were 
conducted as previously described [40] with slight modi-
fication. Fish extract (5 μL) before derivatization from the 
targeted metabolomics method was used for non-tar-
geted metabolite analysis, which employed a Q-Exactive 
Orbitrap mass spectrometer (Thermo Fisher Scientific 
Inc., Waltham, MA) that was coupled with a UHPLC 
(DGU-20A) system. The separations were performed at 
50℃ with an HSS T3 C18 column (2.1 × 100 mm, 1.8 μm, 
Advanced Materials Technology, Wilmington, DE). The 
flows were constant at 0.3 mL/min with 0.1% formic acid 
in water (A) and 0.1% formic acid in methanol (B) as the 
mobile phases. The following gradient was used: 10% B 
for 0–0.2  min, 10% to 55% for 0.2–15  min, 55% to 98% 
for 15–20 min, 98% B for 20–35 min, 98% to 10% B for 
35–35.1 min and 10% B for 35.1–40 min.

Mass spectra were obtained with an HESI (heated elec-
trospray ionization) source that was operated in posi-
tive and negative modes. The parameters for the HESI 
source were set as follows: the sheath gas flow rate was 
35 (arbitrary units), auxiliary gas flow rate was 10 (arbi-
trary units), spray voltage was 4 kV, and heater tempera-
ture was 350℃. The MS was set to full scan with  ddMS2 
from m/z 100 to 1500. In the data interpretation process, 
the mass error range was set to 5  ppm or less, and the 
metabolites were identified to have a mzCloud matching 
score of 80% or more.

Determination of lindane concentration in zebrafish using 
GC‑MS/MS
Lindane was extracted from 200 μL of fish extract before 
derivatization with 200 μL of hexane. One μL of hexane 
layer was analyzed with GC-MS/MS. Calibration curve 
solutions (10, 20, 50, 100 and 200  μg/L) were prepared 
with control fish extract to compensate matrix effect, and 
they were also extracted with hexane before GC-MS/MS 
analysis. Analytical condition of GC-MS/MS was iden-
tical with metabolites analysis as described above with 
specific MRM mode for lindane (quantification: m/z 
181.0  m→/z 145.0, and qualification: m/z 219.0  m→/z 
183.0). Samples exposed to high concentration of lindane 
were diluted by 10–20-fold with hexane for quantitation.
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Statistical analysis of metabolomes and metabolic 
pathway analysis
Multivariate data analyses were performed using 
SIMCA-P + software (version 12.0.1, Umetrics, Swe-
den). The supervised multidimensional statistical model, 
which is a partial least squares-discriminant analysis 
(PLS-DA), was conducted to differentiate between each 
treatment group. By confirming the VIP (variable impor-
tance in the projection) scores in PLS-DA, metabolites 
with VIP scores > 1 and standard errors < 1 were selected. 
The p-value of selected metabolites were calculated using 
one-way ANOVA, and metabolites with p < 0.05 were 
selected as biomarker metabolites affected significantly 
by lindane exposure. A heatmap of selected biomarker 
metabolites was generated using MetaboAnalyst 5.0 
(www. metab oanal yst. ca). MetaboAnalyst 5.0 also pro-
duced the metabolic pathway analysis plots based on the 
Danio rerio KEGG library.

Measurement of ROS and MDA contents
ROS and MDA contents were measured according to 
manuals with commercially available kits, respectively. 
The contents of reactive oxygen species (ROS) were 
measured by DCFH-DiOxyQ (OxiSelect™ In vitro ROS/
RNS assay kit, Cell Biolabs, Inc., CA, USA). After adding 
500 μL of phosphate buffered saline (PBS) to a 20 mg of 
powder sample, it was homogenized and centrifuged at 
10,000  g for 5  min. Fifty microliters of the supernatant 
was mixed with 50 μL of catalyst and incubated at room 
temperature for 5  min. DCFH solution (100 μL) was 
added to the incubated mixture before further incubation 
for 40 min at room temperature. Fluorescence intensities 
of incubated samples were measured using a spectropho-
tometer (SpectraMax i3, Molecular Devices) at 480  nm 
excitation/530 nm emission.

The contents of malondialdehyde (MDA) were deter-
mined using a thiobarbituric acid (TBA) assay (OxiSe-
lect™ TBARS assay kit, Cell Biolabs, Inc., CA, USA). Into 
30 mg of sample powder, 500 μL of 1X butylated hydroxy-
toluene (BHT) solution was added and it was centrifuged 
at 10,000 g for 5 min after homogenization. One hundred 
microliters of the supernatant was mixed with 100 μL of 
SDS lysis solution and incubated at room temperature for 
5 min. A 250 μL of TBA reagent was added to the incu-
bated mixture and further incubated for 60 min at 95 °C. 
After the incubation was completed, the samples were 
cooled to room temperature and were centrifuged at 
3000 rpm for 15 min. To prevent interference with hemo-
globin and its derivatives, 300 μL of the supernatant was 
extracted with 300 μL of butanol. The fluorescence inten-
sities of the samples in the butanol layer were measured 
using a spectrophotometer (SpectraMax i3, Molecular 
Devices) at 540 nm excitation/590 nm emission.

Results and discussion
Determination of lindane concentrations in zebrafish using 
GC‑MS/MS
Lindane was extracted from fish extract with hexane [41] 
and analyzed with GC-MS/MS. Retention time of lindane 
was 16.8 min. Linearity of calibration curve (r2) was > 0.99, 
indicating good correlation. In the zebrafish exposed with 
low concentration of lindane, 2.24–3.98 mg/kg of lindane 
were determined, while 35.67–56.46 mg/kg were observed 
in the zebrafish exposed with high concentration (Table 1).

Metabolome profiling using GC‑MS/MS 
and LC‑Orbitrap‑MS/MS
Metabolomics analysis was performed using the ‘targeted’ 
and ‘non-targeted’ methods on GC-MS/MS and LC-
Orbitrap-MS/MS. Recently, many metabolomics studies 
have been conducted using GC-MS and LC-MS, which 
are complementary mass spectrometry techniques. These 
techniques can identify an extensive range of metabolites 
with good sensitivity and selectivity and can provide com-
plementary data to save experimental time with a single 
sample preparation process [42–44]. In targeted metabo-
lomics, 394 metabolites (332 metabolites were from the 
Smart Metabolites Database and 62 metabolites were from 
our own laboratory library) were analyzed using GC-MS/
MS with MRM mode. These metabolites included 78 car-
bohydrates, 41 fatty acids, 18 alcohols, 75 amino acids, 9 
nucleosides, 102 organic acids, 10 amines, 7 pyridines, 4 
indoles, 11 purines, 2 nucleotides, 10 amides, 2 tocophe-
rols, 6 steroids, 9 phenols, 4 pyrimidines, 3 esters, 1 inor-
ganic compound, 2 isoprenoids, 1 glyceride, and 1 azole. 
After the GC-MS/MS analyses, manual identification of 
peaks was performed by confirming the corresponding 
metabolite MRM ions, peak retention times and areas. In 
these analyses, 118 confirmed metabolites were detected in 
whole zebrafish bodies (Fig. 1).

In non-targeted metabolomics, a total of 62 metabolites 
were detected and identified after LC-Orbitrap-MS/MS 
analysis and data processing with Compound Discoverer 
3.1 (CD3.1). These metabolites included the following: 7 
amines, 14 amino acids, 7 carbohydrates, 9 fatty acids, 2 
fatty acyls, 3 steroids, 3 purines, 7 organic acids, 2 glycer-
ides, 1 alcohol, 1 indole, 1 polyethylene glycol, 1 pterin, 1 
pyridine, 1 stilbene, 1 aniline, and 1 organosulfonic acid 
(Fig. 2).

Table 1 The concentration of lindane in zebrafish

Sample 1 2 3 Average

Low exposure 2.24 mg/kg 3.98 mg/kg 3.79 mg/kg 3.34 mg/kg

High exposure 35.67 mg/kg 42.32 mg/kg 56.46 mg/kg 44.81 mg/kg

http://www.metaboanalyst.ca
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Metabolomic alteration induced by lindane exposure
According to the PLS-DA plot of the targeted metabo-
lomics data, the control group and 2 treated groups showed 
significant differences in their metabolic profiles (Fig.  3). 
VIP analyses of the PLS-DA model and p-value analyses of 
the ANOVA model were conducted to obtain 45 metabo-
lites as biomarkers that contributed significantly to differ-
entiating the metabolic profiles between the control and 
the two exposed groups (Table 2). From the same statisti-
cal analysis using non-targeted metabolomics data, 7 addi-
tional biomarker metabolites were identified. Table 3 shows 
the list of biomarker metabolites that were finally identified 
from the non-targeted method, including their molecu-
lar formulas, adducts, molecular weights, retention times, 

mzCloud matching scores and HMDB numbers. There-
fore, a total of 52 biomarkers were found as a result of the 
statistical analyses of targeted and non-targeted metabo-
lome data. The heatmap of these biomarkers clearly shows 
the pattern of metabolite changes (Fig.  4). The colors in 
the heatmap represent the metabolite levels from highest 
(red) to lowest (blue), which demonstrate a clear difference 
between the control and treatment groups.

Metabolic pathway and function analysis
Metabolic pathway analysis was carried out using Meta-
boAnalyst 5.0 with the Kyoto Encyclopedia of Gene and 
Genomes (KEGG). Five main perturbed pathways were 
identified, including the pentose phosphate pathway 

Fig. 1 A Targeted total ion chromatogram (TIC) of GC–MS/MS analysis for high exposure (110 μg/L) to lindane and B individual chromatograms of 
representative metabolites
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Fig. 2 A Non‑targeted total ion chromatogram of LC‑Orbitrap‑MS analysis for high exposure (110 μg/L) to lindane and B individual chromatograms 
of representative metabolites
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(PPP), histidine metabolism, phenylalanine metabolism, 
alanine/aspartate/glutamate metabolism, and phenylala-
nine/tyrosine/tryptophan biosynthesis (Fig. 5). The meta-
bolic pathways that were disturbed by lindane exposure 
and the trends of the related metabolites are summarized 
in Fig. 6.

In the PPP, the levels of ribose, ribose 5-phosphate, 
gluconic acid, gluconic acid lactone, 6-phophoglu-
conic acid, glyceric acid, and sedoheptulose 7-phos-
phate were downregulated in zebrafish after lindane 
exposure. The decreases in these metabolites are prob-
ably caused by downregulation of glucose-6-phosphate 
dehydrogenase (G6PD) gene expression after lindane 
exposure [45]. G6PD plays a role in the oxidative step 
of the PPP and catalyzes the rate-limiting step to pro-
duce NADPH; therefore, the expression and activity of 
the G6PD-related gene tightly regulates PPP [46]. In 
addition, in the non-oxidation step of PPP, erythros-
4-phosphate, which can contribute to the formation of 
aromatic amino acids such as phenylalanine, trypto-
phan, histidine and tyrosine, is produced, so the distur-
bance of PPP will affect the formation of amino acids 
[47].

With respect to phenylalanine/tyrosine/tryptophan 
biosynthesis and phenylalanine metabolism, phenyla-
lanine and tyrosine decreased. The downregulation of 
these metabolites may lead to a negative impact on the 
synthesis of important neurotransmitters and hormones 
such as dopamine, epinephrine and norepinephrine 
[48]. Interruption of phenylalanine/tyrosine/tryptophan 
biosynthesis has an effect on the nervous system [19]. 
Moreover, an unstable phenylalanine metabolic state 

negatively affects the body’s normal growth, develop-
ment and physiological functions [49]. In a metabo-
lomics study of zebrafish embryos that were exposed to 
fluoxetine, phenylalanine and tyrosine were downregu-
lated in embryos [19].

In the present study, the relative amounts of the cor-
responding metabolites associated with alanine/aspartate 
and glutamate metabolism (alanine, glutamate and aspar-
tate), were all downregulated. A study of metabolomics 
in medaka reported that alanine and tyrosine were down-
regulated after medaka embryos were exposed to dinoseb 
[50]. The downregulation of alanine and tyrosine resulted 
from energy expenditure [19, 50]. In addition, alanine is 
an essential nitrogenous product that is produced by the 
intestinal catabolism of glutamine, glutamate, and aspar-
tate [51]. Downregulation of glutamate and aspartate 
may negatively affect the role of alanine in transporting 
some dietary amino acids to intestinal tissues [52].

In histidine metabolism, the concentrations of his-
tidine, glutamate, and aspartate were downregulated. 
A study that evaluated the antitumor effects on A549 
cells reported that histidine plays a role in inhibiting 
cell proliferation and migration in lung cancer cells 
and has antitumor effects [53]. In addition, a metabo-
lomics study of bovine colostrum and mature milk 
reported that brain and nervous system development 
was encouraged by histidine in newborns [54]. There-
fore, a decrease in histidine may increase the risk of 
cancer and have devastating effects on the brain and 
nervous system. Moreover, glutamate, a precursor of 

Fig. 3 PLS‑DA plots of metabolites from zebrafish exposed to lindane. (Control group; 0 μg/L, Low group; 11 μg/L and High group; 110 μg/L)
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GABA, which is involved in both alanine/aspartate 
and glutamate metabolism and histidine metabolism 
was decreased in the lindane exposer groups. Lindane, 
a neurotoxin, is known as an inhibitor of GABA-gated 
chloride channel inducing partial repolarization of 
neurons, resulting in involuntary muscle contraction 
and seizures [10]. Therefore, decreasing glutamate 

demonstrated that neurotransmitter-mediated nervous 
system was unable to be regulated.

Fig. 4 Heatmap analysis of 52 metabolite biomarkers in the control (Con), low‑exposure (Low) and high‑exposure groups (High)
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Oxidative stress induced by lindane
To confirm the oxidative stress from exposure to lin-
dane, ROS and MDA assay tests were conducted 
with zebrafish. The amounts of ROS were detected by 
DCFH-DA assays. Excessive oxidative stress can lead 
to the accumulation of ROS, which will damage major 
cell components [55]. Higher ROS production levels 
may affect the oxidation of proteins and lipids, distur-
bance of gene expression, and disruption of cellular 

redox states [56]. In addition, the accumulation of ROS 
lead to cell apoptosis [57]. In the study of apoptosis in 
thyroid cancer cell, inhibition of the PPP cause ROS-
induced apoptosis in thyroid cancer cells [58]. In this 
study, PPP was downregulated in the pathway analysis 
and ROS content increased, therefore, apoptosis could 
have been induced. MDA, one of the major products 
of lipid peroxidation in cell membranes, is used as an 
index of lipid oxidation [59]. As a result, ROS and MDA 

Fig. 5 Summary of pathway analyses determined by MetaboAnalyst 5.0, as visualized by bubble plots. Bubble sizes are proportional to the impact 
of each pathway, and bubble colors denote the degrees of significance, from highest (red) to lowest (white)
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in the exposure group under high lindane concentra-
tions were significantly increased (p < 0.05) (Fig.  7), 
which suggested oxidative damage to the cells.
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Fig. 6 Perturbed pathways and fluctuating metabolites induced by lindane exposure in the whole bodies of zebrafish. The graphs represent the 
average relative areas of each metabolite, and significantly different changes of p < 0.05 and p < 0.005 in relative areas are labelled by “*” and “**”, 
respectively

Fig. 7 Levels of ROS (A) and MDA (B) in the control and high‑exposure groups (*p < 0.05, **p < 0.005)
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