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Percolation theory can explain the formation of a giant cluster in a system.

About a decade ago, various types of local suppression rules were proposed

to alter the transition types into explosive percolation (EP) transitions and

these rules suppress the growth of larger clusters but support those of smaller

ones. When the growth of the large cluster is locally suppressed in static

networks whose total number of nodes in the system is fixed, explosive per-

colating behavior of the order parameter, which is the giant cluster size,

can be observed but it remains continuous not discontinuous. However, the

types of percolation transitions in static networks become hybrid when the

growth of the large cluster is globally suppressed. In the real world, the sys-

tem grows and we thus consider the growing network where the total num-

ber of nodes in the system increases with time. To investigate the properties

of EP transitions in these types of systems, we first derive the rate equation
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of the size distribution for various models. Our findings confirm that the

order parameter exhibits the second-order phase transition under the local

suppression rule, but the first-order phase transition under the global sup-

pression rule. More realistically, considering that multi-body interactions in

the real world can be explained by simplexes and degree distribution is scale

free, we extend the growing networks to the growing scale-free simplicial

complexes (GSFSC). In GSFSC under the suppression rules, the transition

types are similar to those of the case of networks. Finally, we investigate the

features of the percolation variables using supervised and unsupervised ma-

chine learning approach. Especially we confirm that features of parent node

number and occupation number configurations are the giant cluster sizes and

occupation probabilities, respectively, in the two-dimensional bond (site)

percolation. Based on these results, we learned successfully classification

and regression machines in networks by using supervised learning analysis.

This work helps to understand the properties in general growing system and

revealed that the machine learning approach is applicable to networks as

well as lattices.

Keywords : Percolation transition, Explosive percolation transition, Dis-

continuous percolation transition, Rate equation, Generating function, Fi-

nite size scaling theory, Scale-free, Simplicial complex, Machine learning
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Chapter 1

Introduction

1.1 Percolation

Percolation is a simple yet basic model for understanding the emer-

gence of a giant component as links are occupied with a certain proba-

bility between each pair of nodes in a system [1, 2]. This simple model

has been applied to a variety of real-world phenomena such as the sol-

gel transition [3–6], spreading of epidemic diseases [7–10], and the metal-

insulator transition [11]. Conventionally, a percolation transition is second-

order [1, 2]; however, interest in other types of percolation transitions such

as first-order [12], infinite-order [13, 14] or mixed-order [15] phase transi-

tions has increased recently. This trend has been triggered by the explosive

percolation (EP) model [16] and an cascading failure model in interdepen-

dent networks [17, 18].

An EP model was introduced aiming to generate a discontinuous per-

colation transition, in which two potential edges are chosen randomly, and

then an actual connection is made by the edge that produces the smaller

component. After extensive researches were performed, it turned out that

the EP model undergoes a second-order transition in the thermodynamic

limit [19, 20]. However, the EP transition can be discontinuous under suffi-

cient global information [21]. The critical exponent β of the order parameter
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for the original EP model is extremely small [19], implying that the order

parameter increases drastically at a transition point. Moreover, transition

properties of the EP models are unconventional [22]. Extensive researches

were performed mainly in static networks, in which the number of nodes are

always fixed from the beginning. However, real-world phenomena related to

such a drastic increase of the order parameter can be observed in growing

social networks [23]. Nevertheless, the EP transition in growing networks

has not been investigated in detail [24, 25]. Thus, we aims to investigate an

EP transition in growing networks, based on our previous researches in [26–

28]. In this thesis, we investigate the percolation transitions in growing net-

works and simplicial complexes, and we finally expect that our studies help

the development of researches in complex networks.

1.2 Two models: the growing and the static net-
work models

There are many percolation models in lattice, networks, etcetera but in this

paper we focused on the percolation in networks. Networks consists of

lines(edges) and nodes(vertices). In this section we introduce Erdős-Rényi

(ER) an Callaway networks model which are classical percolation models

in networks.

1.2.1 Callaway network model

Callaway networks model, which is the growing random networks

(GRN), is introduced in 2001 [14] where the giant cluster size exhibit the
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infinite-order phase transitions. This model starts at the N0 isolated nodes

and a new node is added to the system every time step t. Sequentially, two

nodes are randomly selected and they are linked with probability p.

In this system, the order parameter, i.e., the relative giant cluster size,

G(p) is zero for p < pc and increases continuously for p > pc in the essen-

tially singular form

G(p)∼ exp(−a/
√

p− pc), (1.1)

where a is a positive constant and the transition point pc is pc = 1/8. Thus,

the PT is infinite-order. In this case, the cluster size distribution ns(p) fol-

lows a power law ns ∼ s−τ without any exponential cutoff in the entire re-

gion of p < pc [13, 14, 26, 29]. Thus, the region p < pc is often referred

to as the critical region. The exponent τ decreases with increasing p and

approaches τ = 3 as p → pc from below [13, 29]. Thus, the mean cluster

size, ⟨s⟩ ≡
∑

s s2ns, is finite for p ≤ pc. Moreover, for p > pc, ns(p) of finite

clusters decays exponentially. Thus, ⟨s⟩ is finite. These properties of a PT

of growing networks are different from those of a second-order PT of static

networks [2, 14, 24–26, 30]. This model can be extended to the growing

scale-free networks introduced by Dorogovtsev in Refs. [29, 31, 32], as real

networks are scale-free networks [33–35]

1.2.2 Erdős-Rényi (ER) network model

ER networks model is introduced in 1959 [36] is one of the percolation

models which undergoes continuous phase transition. This ER model is the
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growth network model with randomly selecting two nodes to be linked at

each time t and the total number of nodes N is fixed. And there is no giant

cluster if the average degree ⟨k⟩ is less than 1 in the limit N → ∞ [37].

However, the giant cluster emerges at ⟨k⟩ = 1 and its size monotonically

increases as ⟨k⟩ increases with the order parameter (the relative size of the

giant cluster) critical exponent β = 1. The giant cluster size G follow G ∼

(t − tc)β at the transition point tc = 1/2. Moreover, the susceptibility, which

is the average cluster size, diverges at t = tc and the corresponding exponents

γ = 1. The exponents τ and σ for the cluster size distributions are 2.5 and

0.5, respectively.

1.3 Suppression effects

We consider the local and global suppression effects. Under the local sup-

pression rules, the candidate nodes are selected with the limited information.

The examples of local suppression rules are minimal [26] and da Costa [19,

38–40] rules. On the other hand, the global suppression rule needs the in-

formation of all nodes in the system to select candidate nodes. we con-

sider the global suppression rule following the half-restricted process [41]

in static [42] and growing [27, 28] networks.

1.4 Growing simplicial complexes

There are more than two-body interactions in the real world, and these multi-

body interactions [43–45] can be explained by simplexes in simplicial com-

plexes [46, 47]. In this framework, considering that networks consist of 0-
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(d) (c) (b) (a) 

Fig. 1.1: (Color online) Illustrations of d-simplexes for d = (a) 1, (b) 2, (c) 3, and
(d) 4. In each figure, 0-simplex is represented by a open circle.

simplexes for nodes and 1-simplexes for edges, we extend the growing net-

works to the growing simplicial complexes where a 0-simplex is added to the

system and a d-simplex is added with probability p every time step. When

d+1 number of 0-simplexes are selected to compose a new d-simplex, each

0-simplex has a attractiveness of their facet degree with a initial attractive-

ness a, leading to the scale-free structure. Illustrations of d-simplexes are

presented in Fig. 1.1
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Chapter 2

Local suppression effects in growing
networks

2.1 Minimal rule

2.1.1 Model

We consider two types of network models, growing and static. In a grow-

ing network, the number of nodes increases one by one at each time step,

whereas in a static model, the number of nodes remains fixed from the begin-

ning. Links are added one by one at each time step in both models according

the following rules:

(i) A growing networks begins with isolated nodes in a system. At each

time step, a node is added in the system and then m candidate nodes are

selected randomly. At time t, when the number of nodes N(t) = 1+ t is

less than m, all of the nodes are selected as candidates. When N(t) ≥ m, m

clusters to which the respective m nodes belong are identified. Some of those

clusters may be identical when they contain more than one selected nodes.

The two smallest clusters among those m clusters are selected, and the two

corresponding nodes are identified and are connected with probability p if

they are not already connected. When m = 2, this growing network model

reduces to the exponentially growing network model, which was proposed
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by Callaway et al. [14].

(ii) For the static network model, N nodes are present from the begin-

ning and remain fixed. At each time step, m candidate nodes are selected

uniformly at random, and the sizes of the respective clusters where they be-

long are identified. The two nodes corresponding to the two smallest clusters

are connected with probability one. When m = 2, this static network model

reduces to the Erdős-Rényi (ER) random network model [36].

2.1.2 Rate equation approach for the cluster size dis-
tribution

Growing network model with m = 3

Let ns(p, t) be the number of clusters of size s divided by N(t), where p

denotes the probability that a links is connected between two selected nodes.

The rate equation of ns(p, t) is given by

d(N(t)ns)

dt
= p

[ ∑
i+ j=s;i< j

3ini
(

jn j
)2

+
∑

i+ j=s;i< j

6ini jn jc j+1 +

(
s
2

n s
2

)3

+3
(

s
2

n s
2

)2(
c s

2+1
)
−2

(
sns

)3 −6
(
sns

)2cs+1 −3
(
sns

)2(1− cs
)

−3sns
(
cs+1

)2 −6sns
(
1− cs

)
cs+1

]
+δ1s, (2.1)

where ni denotes ni(p, t) and cs(p, t) = 1 −
∑

i<s ini(p, t) to simplify the

notation. The first term, 3ini( jn j)
2, of the right hand side of Eq. (2.1) comes

from the merging of two clusters of size i and j with i < j, which produces

a cluster of size s = i + j. One node is selected from a cluster of size i
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and the other two nodes are selected from either i) one cluster or ii) two

distinct clusters of the size j. However, the probability to occur the case i)

is jni( j/N), which is much smaller than ( jn j)
2 for the case ii), and thus

the first case was ignored. The factor 3 comes from the combinatorics of

the three possible clusters. For simplicity, this process is denoted as (i, j >

i, j > i)i+ j=s. The second term comes from the process (i, j > i,k > j)i+ j=s.

This means that the three nodes are chosen from the clusters of different

sizes i, j and k with the constraint i < j < k, and the two smallest clusters of

sizes i and j are merged. Since the size k can be arbitrary as long as k > j,

we used c j+1 ≡
∑

k> j knk instead of knk. The factor 6 again comes from

the combinatorics. The third term comes from the process ( s
2 ,

s
2 ,

s
2), which

represents that three nodes are chosen from three distinct clusters of size s/2.

Similarly, the fourth term comes from the process ( s
2 ,

s
2 , i >

s
2) which means

that two nodes are chosen from two distinct clusters of size s/2 and the other

node are chosen from a cluster of size k larger than s/2. Note that if two

nodes are chosen from the same cluster of size s/2, then there is no cluster

merging and the probability to occur this case becomes ( s
2 ns/2)(s/2)(1/N),

which is smaller than ( s
2 ns/2)

2. Thus, this case was ignored. The factor 3

again comes from the combinatorics. The third and fourth terms appear only

when s is even. Up to here all terms are for cluster creations.

The terms from the fifth to the ninth are for the annihilation of clusters

of size s. The fifth and the sixth terms come from the processes (s,s,s) and

(s,s, i > s), respectively. These two terms correspond to the third and the

fourth terms before. But the prefactors are two times bigger because two

clusters of size s merge and annihilate simultaneously. The seventh term
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comes from the process (s,s, i < s) which represents that two nodes are cho-

sen from two distinct clusters of size s and the other one node is chosen

from a cluster of size i smaller than s. Again we remark that we ignore the

case that two or more nodes are selected from the same cluster, because that

case occurs with smaller probability than that of two or more nodes are se-

lected from individually distinct clusters in the limit N(t)→ ∞. The factor 3

again comes from the combinatorics. The eighth term comes from the pro-

cess (s, i> s, i> s), which represents the case that one node is chosen from a

cluster of size s and the other two nodes are chosen from the clusters of size

i larger than s. The factor 3 again comes from the combinatorics. The ninth

term comes from the process (s, i < s, j > s) which means that three nodes

are chosen from three different clusters of size s, smaller than s and big-

ger than s, respectively. The factor 6 comes from the combinatorics. Overall

factor p is the probability that the determined two nodes are connected. The

last term δ1s arises when a node is added every time step.

Based on this rate equation, we calculate ns(p) in the steady state up to

a certain size s∗, for instance, s∗ = 106. Note that ns(p) decays in a power-

law way as ns(pc) ∼ s−τ at a transition point pc, and exhibits crossover

behavior ns(p) ∼ s−τ exp(−s/sc) for p ̸= pc with sc ∼ |p− pc|−1/σ [1, 2].

When p > pc, an infinite cluster exists separately from the finite clusters.

The percolation threshold is calculated as pc = 0.413842(1) using the crite-

rion that ns(pc) follows power law at pc as shown in Fig. 2.2. Moreover, the

exponent τ is determined to be τ ≈ 2.5. We also check the crossover behav-

iors for p< pc and p> pc in Fig. 2.2. The exponent σ is obtained by scaling

the plots of ns(p)sτ versus s|p− pc|1/σ for different p values. Fig. 2.3 can
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Fig. 2.2: (Color online) For growing networks with m = 3, plot of ns(p) vs s at
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based on numerical values obtained from the rate equation. The transition point pc
is pc = 0.413842(1), and the exponent τ is approximately 2.5. The black dashed
line is a guide line with slope −2.5.

be shown that the data are well collapsed on a single curve when σ ≈ 0.72.

Next, the order parameter is obtained using the relation, G(p) ≈ 1−
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Fig. 2.3: (Color online) For growing networks with m = 3, plot of ns(p)sτ versus
s|p− pc|1/σ for different values of p when (a) p < pc and (b) p > pc. Data for
different p values are well collapsed onto a single curve by choosing σ = 0.720(2)
and τ = 2.500(1).
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Fig. 2.4: (Color online) For growing networks with m = 3, plot of G(p) vs p. The
data points are obtained from the rate equation. Inset: The dashed line is a guide
line with slope 0.694(2).

∑s∗
s=1 sns(p) [1, 2], where s∗ takes on several values to observe the effect

of the artificially established cutoff values. The order parameter follows

the power-law form, G(p) ∼ (p− pc)
β , where β = 0.694(2). The inset of

Fig. 2.4 is a double logarithmic plot of the order parameter as a function

of (p− pc), which exhibits power-law behavior as expected. The obtained

value of β satisfies the hyperscaling relation β = (τ −2)/σ [1, 2].

The mean cluster size ⟨s⟩ is obtained from the cluster size distribution

as ⟨s⟩ =
∑s∗

s=1 s2ns(p), which behaves like the susceptibility, ⟨s⟩ ∼ (p −

pc)
−γ for p> pc and (pc− p)−γ ′ for p< pc. We also determine that γ = γ ′ ≈

0.696. The numerical values obtained from the rate equation are shown in

Fig. 2.5. In the insets, ⟨s⟩ is plotted in double logarithmic axes as a function

of p− pc for p > pc, and pc − p for p < pc. The exponent γ satisfies the

well-known scaling relation γ = (3− τ)/σ [1, 2].
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Fig. 2.5: (Color online) For growing model with m = 3, plot of the susceptibility,
that is mean cluster size, as a function of p. The data points are obtained from the
rate equation. Insets : Double logarithmic plots of ⟨s⟩ versus |p− pc| for p < pc
(left) and p > pc (right). The dashed lines are guide lines with slope −0.696(3).

Growing model with general m

We extend the rate equation in Eq. (2.1) for m = 3 to arbitrary m as follows:

d(N(t)ns)

dt
= p

[ m−1∑
r=1

m
(

m−1
r−1

) ∑
i+ j=s;i< j

ini
(

jn j
)m−r(c j+1

)r−1

+
m−1∑
r=1

(
m

r−1

)(
s
2

n s
2

)m−(r−1)(
c s

2+1
)r−1

−2
m∑

r=2

(
m
r

)(
sns

)r(cs+1
)m−r −m

(
sns

)(
cs+1

)m−1

−
m−1∑
r=1

m
(

m−1
r

)(
1− cs

)(
sns

)r(cs+1
)m−1−r

]
+δ1s. (2.2)

Again, the second term on the right hand side is valid only when s is even.

Repeating the steps taken in the case m = 3, we obtain the critical exponents

τ , σ , β , γ , and the percolation threshold pc up to m = 10, which are listed
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Fig. 2.6: (Color online) For growing model with general m, (a) empirical plot of
1− pc versus m. Data points of 1− pc for different values of m behave like the
formula 1.81/m. (b) Empirical plot of β vs m. Data points of β for different values
of m behave like the formula β = 1/(m−1.56). Note that the error bars are smaller
than the symbol sizes.

in Table 2.1.

Following the conventional formalism for the second-order percolation

transition, we examine the scaling relation between the critical exponents

and their tendencies for m candidates. Note that the critical point pc and

critical exponent β behave like 1− pc ≈ 1.81/m and β ≈ 1/(m− 1.56) as

shown in Fig. 2.6. However, a rigorous derivation of these formulas is still

necessary. Next, we determine the exponents τ and σ for m = 4 · · · ,10 by

following similar steps used for m = 3. We find that the values are approx-

imately by the formulae τ = 2+ 1/(m− 1) and 1/σ = (m− 1)β as shown

in Fig. 2.24. Furthermore, we determine that γ = (m−2)β .
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Table. 2.1: Numerical estimates of the percolation threshold pc, exponent of the
cluster size distribution τ , exponent of the characteristic cluster size σ , exponent of
the order parameter β , and exponent of the susceptibility γ of the growing network
model for m = 3, · · · ,10. τ∗ and β ∗ were obtained from τ∗ = 2+ 1/(m− 1) and
β ∗ ≈ 1/(m−1.56), respectively.

m pc τ∗ τ σ β ∗ β γ

3 0.413842(1) 5
2 2.500(1) 0.720(2) 0.694 0.694(2) 0.696(3)

4 0.555873(1) 7
3 2.333(1) 0.812(2) 0.410 0.410(2) 0.813(3)

5 0.642748(1) 9
4 2.250(1) 0.858(2) 0.291 0.291(1) 0.874(6)

6 0.701282(1) 11
5 2.200(1) 0.885(2) 0.225 0.226(1) 0.904(2)

7 0.743370(1) 13
6 2.167(1) 0.905(2) 0.184 0.184(1) 0.922(2)

8 0.775078(1) 15
7 2.143(1) 0.918(2) 0.155 0.156(1) 0.934(2)

9 0.799820(1) 17
8 2.125(1) 0.928(2) 0.134 0.135(1) 0.944(3)

10 0.819663(1) 19
9 2.111(1) 0.936(2) 0.119 0.119(1) 0.950(3)

P

(a) (b) (c)

Fig. 2.7: (Color online) For growing networks with general m, formula testing for
the exponents of (a) the cluster size distribution τ , (b) the characteristic cluster size
σ , and (c) the mean cluster size γ , where the numerical data are obtained from the
rate equation. Data are fit reasonably to the straight line predicted by the formula,
and the error bars are smaller than the symbol sizes.

Static model with m = 3

We consider the evolution of static networks under the rule described at the

first in Sec. 2.1. In this case, the number of nodes is fixed all the way as N.
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The rate equation is written as

N
dns

dt
=

∑
i+ j=s;i< j

3ini
(

jn j
)2

+
∑

i+ j=s;i< j

6ini jn jc j+1 +

(
s
2

n s
2

)3

+3
(

s
2

n s
2

)2(
s s

2+1
)
−2

(
sns

)3 −6
(
sns

)2cs+1 −3
(
sns

)2(1− cs
)

−3sns
(
cs+1

)2 −6sns
(
1− cs

)
cs+1, (2.3)

where ni denotes ni(t) and cs(t) = 1−
∑

i<s ini(t). The terms on the second

line of Eq. (2.3) related with s
2 are valid only when s is even. In contrast to

the growing network, there is no steady state in the size distribution, and ns

depends on t. Accordingly it takes longer time to evaluate ns(t) explicitly

compared with that of the growing network model. We obtain ns(t) up to a

certain cluster size s∗ = 5×105.

We determine the percolation threshold tc as shown in Fig. 2.8 by the

criterion that the cluster size distribution follows power law at tc. It is ob-

tained that tc = 0.849130(1) and ns(tc) ∼ s−τ with τ ≈ 2.105. For t < tc

and t > tc, the cluster size distribution exhibits a crossover behavior as

ns(t) ∼ s−τ exp(−s|t − tc|1/σ ). Using the data-collapse method, we obtain

σ ≈ 0.79 as shown in Fig. 2.9.

Next, we consider the behavior of the order parameter G(t) at time step

t. The order parameter is calculated using the relation G(t)= 1−
∑s∗

s=1 sns(t).

We expect that G(t) ∼ (t − tc)β , and obtain β = 0.133(1) in Fig. 2.10.

We also obtain the mean cluster size or the susceptibility defined as ⟨s⟩ =∑s∗
s=1 s2ns(t). Following the convention, it behaves as ⟨s⟩ ∼ |t − tc|−γ . We

estimate that γ = 1.131(6) in Fig. 2.11. The obtained exponent values β =
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Fig. 2.8: (Color online) For static networks with m = 3, plot of ns(t) vs s at t =
tc(blue solid line), t > tc(red dashed curves) and t < tc(black solid curves) based
on the numerical values obtained from the rate equation. The transition point tc is
determined as tc = 0.849130(1) and the exponent τ is determined as τ = 2.105(5).
Black dashed line is a guideline with slope −2.105.

0.133 and γ = 1.133 satisfy the scaling relation β = (τ − 2)/σ and γ =

(3− τ)/σ , respectively.
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Fig. 2.9: (Color online) For static networks with m = 3, scaling plot of ns(t)sτ

versus s|t − tc|1/σ for different t that are (a) less and (b) greater than tc. Taking
τ = 2.105(5) and σ = 0.790(1), the data for different t values look collapsed onto
a single curve.

16



0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8 1.0
t

 0.1

 1

10
-4

10
-2

G
(t
)

t -t
c

G
(t
)

Fig. 2.10: (Color online) For static networks with m= 3, plot of the order parameter
G(t) as a function of t. Inset : The dashed line is a guide line with slope 0.133(1).

1

2x10
4

4x10
4

6x10
4

0.846 0.848 0.850 0.852

t
c

s

t

10
0

10
2

10
4

10
-4

10
-2

10
0

s

t
c
-t

10
0

10
2

10
4

10
-4

10
-2

10
0

t-t
c

s

Fig. 2.11: (Color online) For static networks with m = 3, plot of ⟨s⟩ as a function of
t. Inset : Plot of the susceptibility, the mean cluster size as a function of t for t > tc
(right) and t < tc (left). The dashed lines are guide lines with slope −1.131(6).

17



Table. 2.2: Numerical estimates of the percolation threshold tc, exponent of the
cluster size distribution τ , exponent of the characteristic cluster size σ , exponent
of the order parameter β , and exponent of the susceptibility γ of the static network
model for m = 2, . . . ,5. Subsequently, τ∗ and β ∗ were obtained from τ∗ = 2 +
β/[1+(m−1)β ] and β ∗ ≈ 0.465exp(−0.70m), respectively.

m tc τ∗ τ σ β ∗ β γ

2 0.5 2.5 2.5 0.5 0.115 1 1
3 0.849130(1) 2.105 2.105(1) 0.790(1) 0.057 0.133(1) 1.131(6)
4 0.939678(1) 2.037 2.037(1) 0.890(1) 0.028 0.042(1) 1.082(6)
5 0.972672(1) 2.016 2.015(2) 0.940(1) 0.014 0.017(1) 1.050(4)

Static network model with general m

We extend the rate equation for m = 3 to an arbitrary value of m as follows:

N
dns

dt
=

m−1∑
r=1

m
(

m−1
r−1

) ∑
i+ j=s;i< j

ini
(

jn j
)m−r(c j+1

)r−1

+
m−1∑
r=1

(
m

r−1

)(
s
2

n s
2

)m−(r−1)(
c s

2+1
)r−1

−2
m∑

r=2

(
m
r

)(
sns

)r(cs+1
)m−r −m

(
sns

)(
cs+1

)m−1

−
m−1∑
r=1

m
(

m−1
r

)(
1− cs

)(
sns

)r(cs+1
)m−1−r

, (2.4)

where the second term of the right hand side is valid only when s is an even

number.

Taking similar steps used for m = 3, we determine the transition points

and critical exponent β for general m up to m = 15. We determine empir-

ically that these values behave asymptotically like 1− pc ≈ exp(−0.59m)

and β ≈ exp(−0.70m), respectively. This conjecture was alluded to in [38,

39]. A numerical test is shown in Fig. 2.12.
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Fig. 2.12: (Color online) For static networks, (a) plot of 1− tc versus m on a semi-
logarithmic scale. (b) Plot of the estimated values of the exponent β for general m
versus m on a semi-logarithmic scale. Asymptotically, the data points likely lie on
a straight line. The error bars are smaller than the symbol sizes.

Furthermore, we determine the exponent values τ and σ for m = 4

and m = 5 because of the instability of the cluster size distribution when

the exponents τ and σ are calculated in the vicinity of τ = 2. The obtained

values are listed in Table 2.2. Notice that that the values approximate the

formulas τ = 2+β/[1+(m−1)β ] and 1/σ = 1+(m− 1)β , as shown in

Fig. 2.13. This conclusion is based on a previous analytic solution to the

model in [38, 39]. Due to a slight difference in the dynamic rule, the value

(a) (b) (c)

Fig. 2.13: (Color online) For static networks, formula testing for the exponents of
(a) the cluster size distribution τ , (b) the characteristic cluster size σ , and (c) the
mean cluster size γ , where the numerical data is obtained from the rate equation.
Note that the data fit reasonably to the straight line predicted by the formula.
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of m in our model corresponds to 2m in [38, 39]; thus, the analytic solution

in [38, 39] is valid for our model by replacing 2m with m. This allows us to

obtain γ = 1+(m−2)β .

2.1.3 Monte Carlo simulations

Growing network model with m = 3

To determine the exponents τ and σ for the cluster size distribution, we nu-

merically perform Monte Carlo simulations of the growing network models

for different system sizes N/104 = 23 −210; the ensemble average is taken

over 104 configurations.

We first examine the cluster size distribution for several values of p

around the transition point pc in Fig. 2.14. The cluster size distribution fol-

lows power law at pc and exhibits crossover behavior of ns(p)∼ s−τ exp(−s

|p − pc|1/σ ). We determine pc = 0.4138(2) using the criteria that at pc,
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Fig. 2.14: (Color online) To obtain τ and σ by Monte Carlo simulations for growing
networks, scaling plot of ns(p)sτ versus s|p− pc|1/σ . Data are collapsed onto a
single curve by choosing τ = 2.5 and σ = 0.72 for (a) p < pc and (b) p > pc.
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23 − 210. Data are collapsed onto a single curve with the values of 1/ν̄ = 0.35(3)
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ns(pc) decays in a power-law way and the relative size of the largest cluster,

GN(p), follows a power law, G ∼ N−β/ν̄ . Using the data-collapse method,
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Fig. 2.16: (Color online) To obtain the exponent γ using Monte Carlo simulations
for growing networks, data collapse plot of ⟨s⟩N−γ/ν̄ versus (p− pc)N1/ν̄ for the
system sizes N/104 = 26 −210 in growing networks. The exponent values are γ =
0.696 and 1/ν̄ = 0.35.
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we determine the exponent values of τ and σ to be τ ≈ 2.5 and σ ≈ 0.72,

respectively, which are in good agreement with the values obtained by the

rate equation approach.

By measuring the exponent of the power-law behavior of GN(p) and

using a finite-size scaling formula GN(p) = N−β/ν̄ f ((p− pc)N1/ν̄), we de-

termine the ratios β/ν̄ = 0.24(3) and 1/ν̄ ≈ 0.35(3), as shown in Fig 2.15.

We determine an exponent value of β ≈ 0.69. These values are consistent

with those obtained from the rate equations.

The susceptibility is also examined by plotting it in scaling form, i.e.,

⟨s⟩N−γ/ν̄ versus (p− pc)N1/ν̄ with γ = 0.696 and 1/ν̄ = 0.35 in Fig. 2.16

for different sizes N/104 = 26−210; the ensemble average is taken over 104

configurations. Notice that the data are well collapsed. This means that the

hyperscaling relation ν̄ = 2β + γ does not hold.

Static network model with m = 3

To determine the exponents τ and σ for the cluster size distribution, we

numerically perform Monte Carlo simulations of the static network models

for different system sizes N/104 = 20 −210. The ensemble average is taken

over 105 for each data point. The cluster size distributions ns(t) for differ-

ent times are plotted in scaling form, i.e., ns(t) ∼ s−τ exp(−s|t − tc|1/σ ), as

shown in Fig. 2.17. Using the previously obtained values tc = 0.84913(1)

and τ ≈ 2.1, we determine that the data for different t are well collapsed

onto a single curve with σ ≈ 0.79.

Next, we consider the order parameter G(t) as a function of the time

step t for different sizes N/104 = 20 −210. The critical point tc and critical
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Fig. 2.17: (Color online) To obtain the exponents τ and σ using Monte Carlo sim-
ulations for static networks, data collapse plots of the rescaled cluster size distribu-
tion ns(t)sτ versus s|t − tc|1/σ for different time steps when (a) t < tc and (b) t > tc,
where τ = 2.105 and σ = 0.79.

exponent β are determined using the scaling ansatz GN(t) = N−β/ν̄ f ((t −

tc)N1/ν̄). Using the criterion that GN(t) ∼ N−β/ν̄ at t = tc, we determine

tc = 0.84913(1) and β/ν̄ ≈ 0.06 in Fig. 2.18. Moreover, all of the data for

different system sizes are systematically collapsed onto a single curve when

1/ν̄ ≈ 0.45, as shown in Fig. 2.18. This suggests that β ≈ 0.133. The value

of β is consistent with the results obtained by the rate equation approach.

Finally, we study the susceptibility behavior as a function of the time

step. The susceptibility is also examined by plotting it in scaling form, i.e.,

⟨s⟩N−γ/ν̄ versus (t − tc)N1/ν̄ with γ = 1.133 and 1/ν̄ = 0.45 in Fig. 2.19.

Notice that the data are well collapsed. This means that the hyperscaling

relation ν̄ = 2β + γ doe not hold.
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Fig. 2.18: (Color online) To obtain β using Monte Carlo simulations for static net-
works, data collapse plot of GNβ/ν̄ versus (t − tc)N1/ν̄ for system sizes N/104 =
20 −210. Data for different values of N are systematically collapsed near the tran-
sition point by taking 1/ν̄ = 0.45 and β/ν̄ = 0.06.
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Fig. 2.19: (Color online) To obtain γ using Monte Carlo simulations for static
networks, data collapse plot of ⟨s⟩N−γ/ν̄ versus (p − pc)N1/ν̄ for system sizes
N/104 = 27 −210, where the exponent values γ = 1.133 and 1/ν̄ = 0.45 are used.
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2.1.4 Comparison of ns(p) for growing network mod-
els

It is interesting to note that the percolation occurring in growing network

models when m ≥ 3 is a second-order phase transition, whereas it is of in-

finite order when m = 2. We investigate the cluster size distribution ns(p)

for m = 2. As shown in Fig. 2.20, ns(p) decays in a power-law way when

p ≤ pc, while it exhibits crossover behavior when p > pc. The power-law

behavior of ns(p) when p ≤ pc implies that the region p ≤ pc is the critical

phase, which is noticeable in the infinite-order transition. Intuitively, when

p ≤ pc, in the growing network, the fraction of nodes that belong to small-

size clusters is relatively low compared to the fraction for the second-order

phase transition model; for example, when m≥ 3 in Fig. 2.2. However, when
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Fig. 2.20: (Color online) For growing network with m = 2, plot of ns(p) versus s
at p = pc (blue solid line), p > pc (red dashed line), and p < pc (black solid line)
based on the numerical values obtained from the rate equation. The transition point
is pc = 0.125. For p ≤ pc, ns(p) decays in a power-law manner, indicating that the
transition is infinite-order.
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m≥ 3, the density of large-size clusters is suppressed by the Achlioptas rule,

which leads to crossover behavior even for p < pc. Thus, the percolation

transition in growing networks for m ≥ 3 is second order.

2.1.5 Analysis

In our minimal model that incorporates both growing and static Achliop-

tas processes, the results obtained from the rate equations and Monte-Carlo

simulations for the cluster size distribution are consistent. When m = 2,

the growing and static models correspond to the Callaway random grow-

ing model [14] and Erdős-Rényi model [36], respectively.

In the growing network model, as m increases from 2 to 3, the tran-

sitional nature of percolation changes from infinite-order to second-order

due to the Achlioptas process [16]. On the other hand, in the static model,

the order of the phase transition is the same as that of the second-order ER

model, but the order parameter exponent β decreases exponentially as m

increases and the transition becomes more explosive. The Achlioptas pro-

cess rule leads to the suppression effect against the growth of large clusters,

which causes the cluster size distribution in large-cluster regions to decay

exponentially; thus, the transition is second-order.

Moreover, in this paper, we showed that the critical exponent β de-

creases algebraically with m in growing networks; however, it decays ex-

ponentially in static networks. This fact reflects that the suppression ef-

fect in growing networks is weaker than that in static networks. Further-

more, we obtained the critical exponents and their tendencies in both grow-

ing and static models for arbitrary values of m. We also found that the m-
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dependent exponents always satisfy the scaling relations β = (2 − τ)/σ

and γ = (3− τ)/σ [1, 2]. However, the hyperscaling relation ν̄ = 2β + γ

does not hold in both growing and static networks. We expected ν̄ ≈ 2.08

from the relation 2β + γ for the growing networks of m = 3, but obtained

ν̄ ≈ 2.86 (1/ν̄ = 0.35) from Monte Carlo simulations. For the static net-

work with m = 3, we expected ν̄ ≈ 1.4 (1/ν̄ = 0.71), but obtained ν̄ = 2.22

(1/ν̄ = 0.45). The origin of these inconsistencies are still not clear. We re-

mark that the failure of the hyperscaling relation ν̄ = 2β + γ was also ob-

served in the previous research of Achlioptas process [22].

2.2 da Costa rule

2.2.1 Model and rate equation

We consider a growing network model under a rule that suppresses the

growth of large clusters locally with limited information. It consists initially

of an isolated node, and a new node is added to the system at each time step;

consequently, the total number of nodes at time t is N(t) = t +1. Then, two

sets of m candidate nodes are selected randomly. The node that belongs to

the smallest cluster in each set is selected, and these two nodes are connected

with the wiring probability p, as depicted schematically in Fig. 2.21. When

m = 1, this growing network model reduces to the GRN model proposed by

Callaway et al. [14]. This type of suppression rule in static network models

was first considered by da Costa et al. [19]. When m= 1, this da Costa model

also becomes the ER random network model [36]. The similar, but simpler,

minimal rule is considered for the growing and static network models [26]
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p 

Fig. 2.21: (Color online) Schematic illustration of our model for m = 3. Nodes are
represented by solid circles. After a new node (red dotted open circle) is added to
the system, two sets of m nodes (solid open circles) are randomly selected from
distinct clusters. For each set represented by a shaded ellipse, the node belonging
to the smallest cluster (represented by ⊕) is chosen. The two nodes ⊕ are connected
with probability p by a link (dashed line).

by applying the local suppression rule, where two nodes belonging to the

two smallest clusters among m randomly selected nodes are connected with

probability p. In the unified framework, we derive the analytic solutions of

all these models for growing and static networks.

Adopting the notation of the da Costa model [19, 39], we define Pm(s, p, t)

as the probability that a selected node belongs to the cluster of size s at time

t for a given control parameter m representing the strength of suppression,

where p denotes the probability that a link is added between the two selected

nodes. Then the rate equation of Pm(s, p, t) is written as

d
dt

(
N(t)Pm(s, p, t)

)
= sp

[ ∑
u+v=s

Qm(u, p, t)Qm(v, p, t)−2Qm(s, p, t)
]
+δ1s,

(2.5)
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where

Qm(s, p, t) =
m∑

k=1

(
m
k

)
Pm(s, p, t)k

[
1−

s∑
u=1

Pm(u, p, t)
]m−k

. (2.6)

Qm(s, p, t) is the probability that the smallest cluster among the m clus-

ters to which the m randomly chosen nodes belong at time t is of size s for

a given p. The last term, δ1s, in Eq. (2.5) indicates that a new node of size

one is added to the system at each time step. For static networks, the last

term disappears, and the total number of nodes N(t) is fixed at constant N.

Moreover, the linking probability p is unity because a link is always added

at each time step in the static network model. The above rate equation of

Pm(s, p, t) is equivalent to that in Refs. [19, 39] with the time normalized by

the system size N.

2.2.2 Scaling relations of critical exponents

Here, we try to determine the scaling relations using the scaling forms of

Pm(s, p, t) and Qm(s, p, t) in growing networks. In the steady state limit, i.e.,

N ≫ 1 and t ≫ 1, assuming that Pm(s, p, t) and Qm(s, p, t) are independent

of time t, they thus can be written as Pm(s, p) and Qm(s, p). Then Eq. (2.5)

becomes

Pm(s, p) = sp
( ∑

u+v=s

Qm(u, p)Qm(v, p)−2Qm(s, p)
)
+δ1s. (2.7)

As p is increased, cluster formation becomes more likely. Numerical

simulations [26] show that, above the percolation threshold pc, a percolat-
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ing cluster of size G emerges as G ∼ (p− pc)
β for m ≥ 2. The two distri-

butions, Pm(s, p) and Qm(s, p), satisfy the sum rules
∑

s Pm(s, p) = 1−G

and
∑

s Qm(s, p) = 1−Gm, where an infinite cluster is excluded from the

sums. The n-th moments of the cluster sizes for each distribution are ex-

pressed as ⟨sn⟩P =
∑

s snPm(s, p) and ⟨sn⟩Q =
∑

s snQm(s, p). Eq. (2.7) for

finite components leads to the following equations:

G = 2pGm⟨s⟩Q, (2.8)

⟨s⟩P = 2p⟨s⟩2
Q −2pGm⟨s2⟩Q +1. (2.9)

Next, Pm(s, p) is assumed to follow scaling behavior near pc as

Pm(s, p) = s1−τ f (s/sc), (2.10)

where sc is a characteristic cluster size and behaves as sc ∼ |p− pc|−1/σ . In

addition, f (x) is a scaling function that by definition is constant for x ≪ 1

and decays exponentially for x ≫ 1. From this, we obtain that β = (τ −

2)/σ .

Replacing the summation in Eq. (2.6) with an integral, we find

Qm(s, p)∼= m
(∫ ∞

s
duPm(u, p)

)m−1
Pm(s, p) (2.11)

for large s in the steady state limit. Then the scaling form of Qm(s, p) is
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obtained as follows:

Qm(s, p) = s(2m−1)−mτg(s/sc), (2.12)

where g(x) is a scaling function of Qm(s, p), corresponding to f (x) for

Pm(s, p).

Because the first moments of the cluster sizes diverge at the critical

point as ⟨s⟩P ∼ (p− pc)
−γP and ⟨s⟩Q ∼ (p− pc)

−γQ , Eqs. (2.10) and (2.12)

produce the following two scaling relations:

γP = (3− τ)/σ , (2.13)

γQ = (2m+1−mτ)/σ . (2.14)

Moreover, plugging ⟨s⟩P and ⟨s⟩Q into Eqs. (2.8) and (2.9), we obtain that

γP = 2γQ = 2(m−1)β . (2.15)

By using Eqs. (2.13)–(2.15), the explicit forms of the critical exponents γP,

γQ, 1/σ , and τ are obtained in terms of β and m as follows:

γP = 2(m−1)β , (2.16)

γQ = (m−1)β , (2.17)

1
σ

= (2m−1)β , (2.18)

τ = 2+
1

2m−1
. (2.19)
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We remark that these formulas differ from the corresponding formulas

for static network [39]. The two exponent formulas for the static and grow-

ing cases are compared in Table 2.5. We also note that the four formulas

above are consistent with those obtained in the previous study [26] of the

minimal rule, but m is replaced by 2m, because the minimal rule chose m

nodes randomly, and not 2m nodes as in this model. Finally, we remark that

the exponent τ is independent of β for the growing model but depends on β

for the static model.

In the supercritical regime, p > pc, where the giant cluster emerges,

Eq. (2.11) can be simply approximated as Qm(s, p) ∼= mGm−1Pm(s, p). The

generating functions of Pm(s, p) and Qm(s, p) are introduced as

Pm(z, p)≡
∞∑

s=1

Pm(s, p)zs

and

Qm(z, p) =
∞∑

s=1

Qm(s, p)zs,

respectively. The relation between the two generating functions can be writ-

ten as

1−Gm −Qm(z, p) =
∑

s

Qm(s, p)
[
1− zs

]
(2.20)

∼=
∑

s

mGm−1Pm(s, p)
[
1− zs]

= mGm−1[1−G−Pm(z, p)
]
.
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Therefore,

1−Qm(z, p) = mGm−1
[
1−Pm(z, p)− m−1

m
G
]
, (2.21)

where the sum rules
∑

s Qm(s, p) = 1−Gm and
∑

s Pm(s, p) = 1−G are

applied. Then, Eq. (2.7) becomes

Pm(z, p) = 2m2G2(m−1)p×
[
Pm(z, p)−1+

m−1
m

G
]

∂Pm(z, p)
∂ lnz

+ z.

(2.22)

When z = 1, the Eq. is

Pm(1, p)−1 = 2m2G2(m−1)p×
[
Pm(1, p)−1+

m−1
m

G
]
⟨s⟩P. (2.23)

Using the relations G(p) ∼ (p− pc)
β and ⟨s⟩P ∼ (p− pc)

−γP , one obtains

γP = 2(m−1)β again, which is consistent with Eq. (2.16).

2.2.3 Analytic solution of the transition point

To determine the transition point pc, we derive the scaling functions of

f (x) and g(x) with respect to x. First, by substituting Qm(u, p) = Qm(s, p)+

[Qm(u, p)−Qm(s, p)] into Eq. (2.7), one obtains

Pm(s, p) = p
[
−s(s−1)Q2(s)+2sQm(s)

(
1−

∞∑
u=s

Qm(u)
)

+ s
s−1∑
u=1

(
Qm(u)−Qm(s)

)(
Qm(s−u)−Qm(s)

)
−2sQm(s)

]
+δ1s.

(2.24)
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In the integral form for large s, this equation becomes

Pm(s, p)∼= p
[
−s2Q2(s)−2sQm(s)

∫
∞

s
Qm(u)du

+ s
∫ s

0

(
Qm(u)−Qm(s)

)(
Qm(s−u)−Qm(s)

)
du

]
. (2.25)

The scaling form of Pm(s, p) for large s in the critical region is Pm(s, p)=

s1−τ f (sδ 1/σ ) = δ (τ−1)/σ f̃ (sδ 1/σ ), where δ = |p − pc| ≪ 1. The scaling

form of Qm(s, p) is Qm(s, p)= s(2m−1)−mτg(sδ 1/σ )= δ [mτ−(2m−1)]/σ g̃(sδ 1/σ ).

We obtain the following equation for the scaling functions.

f̃ (x) = pc

[
−x2g̃2(x)−2xg̃(x)

∫
∞

x
dyg̃(y)

+ x
∫ x

0
dy[g̃(y)− g̃(x)][g̃(x− y)− g̃(x)]

]
, (2.26)

where x ≡ sδ 1/σ , and (2m− 1)(τ − 2) = 1. This relation is also consistent

with Eq. (2.19). Using Eqs. (2.10) and (2.12), we can obtain the following

equation:

g̃(x) = m
[∫ ∞

x
dy f̃ (y)

]m−1
f̃ (x), (2.27)

where g(x) = xmτ−(2m−1)g̃(x), and f (x) = xτ−1 f̃ (x). These relations are

all valid for the normal phase, p < pc. For the percolating phase, p > pc,

Eqs. (2.26) and (2.27) are valid after the signs of each term that contains

f̃ (x) are reversed.

Now, we assume that f (x) and g(x) are expandable for small x around
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0 as follows:

f (x) = f (0)+a1xσ +a2x2σ + · · · , (2.28)

g(x) = g(0)+b1xσ +b2x2σ + · · · . (2.29)

When Eqs. (2.28) and (2.29) are substituted into Eqs. (2.26) and (2.27),

the relation between f (0) and g(0) becomes

f (0)+O(xσ ) = pc
(g2(0)Γ[−m(τ −2)]2

Γ[−2m(τ −2)]
+O′(xσ )

)
, (2.30)

g(0) =
m

(τ −2)m−1 f m(0), (2.31)

where O(xσ ) and O′(xσ ) represent the higher-order terms of xσ . Unlike the

Eq. for static networks, Eq. (2.7) contains the factor p explicitly. Thus, the

transition point pc can be determined by comparing the zeroth-order term of

Eq. (2.30) together with Eq. (2.31) as follows:

pc =
f (0)1−2mΓ[−2m(τ −2)]

m2(τ −2)2−2mΓ[−m(τ −2)]2
, (2.32)

where Γ(z) is a gamma function defined as Γ(z)≡ (z−1)!. When Eq. (2.19)

is substituted into Eq. (2.32), the dependence of the critical exponent τ dis-

appears and pc is obtained as follows:

pc =
f (0)1−2mΓ[−2m/(2m−1)]

m2(2m−1)2m−2Γ[−m/(2m−1)]2

=
f (0)1−2m

2m(2m−1)2m−2 B−1
[ m−1

2m−1
,

m−1
2m−1

]
, (2.33)
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where B−1(x,y) is the inverse of the beta function and follows the relation-

ship B−1(x,y) =Γ(x+y)/[Γ(x)Γ(y)]. The transition point thus depends only

on f (0) and m. As shown in Ref. [38], the value of f (0) can be estimated.

Assuming that Pm(s, pc) follows a power-law function such as Pm(s, pc) ∼

f (0)s1−τ for all cluster sizes s larger than another characteristic size s0, we

can write the normalization by Pm(s, p) as follows.

∞∑
s=1

Pm(s, pc) =
∑
s<s0

Pm(s, pc)+ f (0)
∞∑

s≥s0

s1−τ = 1. (2.34)

To solve Eq. (2.34) for m = 2, we plot f (0) versus 1/s0 in Fig. 2.22

and estimate f (0) to be ≈ 0.217(1); pc
∗ = 0.515(1). For various m values

between 2 and 10, p∗c is obtained using Eq. (2.32); the results are listed with
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Fig. 2.22: (Color online) Plot of f (0) versus 1/s0 for m = 2 with s0 for truncated
cluster sizes s∗/103 = 211, 212, 213, 214, and 215 (red dashed curves from bottom to
top), and 216 (red solid curve). Inset: The corresponding plot of f (0)− f ∗(0) versus
s∗ at p = 0.51515 around the transition point pc, where f ∗(0) is the minimum value
of f (0) for a given s∗. Data points are for trial values of f ∗(0) = 0.213 ( ), 0.217
(■), and 0.223 (▲). The black dashed line is a guide line and f (0) is estimated as
0.217(1) for m = 2.
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the corresponding f (0) values in Table 2.3. They are consistent with those

obtained from the rate equations within the error bars. Moreover, we find

that f (0) decays asymptotically as 1/(2m+0.15).

Now, to investigate the asymptotic behavior of the percolation transi-

tion point pc, we consider the Taylor expansion of Eq. (2.33) around 1/m =

0. For m ≫ 1, we can use the approximations B−1
[

m−1
2m−1 ,

m−1
2m−1

]
≈ 1/π −

(γ +ψ(1
2))/2πm and (2m+ 0.15)2m−1/[2m(2m− 1)2m−2] ≈ (3.14− 2.62

m ),

where γ is the Euler-Mascheroni constant, and ψ(z) is the zeroth-order

polygamma function following the relation ψ(z) = Γ′(z)/Γ(z). Substitut-

ing these approximations into Eq. (2.33), we derive the asymptotic behavior

of 1− pc ∼ 1/m, which decreases algebraically as m is increased.

2.2.4 Numerical solutions of the rate equation

Here, we check numerically the analytic result for the transition point pc

and the scaling relations, and obtain various critical exponent values. To

this end, we first obtain Pm(s, p) from the rate equation in Eq. (2.7) up to

the order of s∗ explicitly [48]. Here, s∗ is taken as large as possible for

numerical accuracy, but it should be less than sc. Then, we determine the

value of pc as that at which Pm(s, pc) exhibits power-law decay with respect

to s [1, 2, 26, 40]. This criterion is valid for a second-order percolation

transition. Second, we determine the exponent τ by measuring the slope

of lnPm(s, pc) with respect to lns, because the slope is 1 − τ . Third, we

determine the exponent 1/σ by plotting Pm(s, pc)sτ−1 versus s|p− pc|1/σ

for different p values. With an appropriate choice of σ , plots for different p

values can be collapsed onto a single curve. Next, to determine the exponent
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Fig. 2.23: (Color online) (a) Plot of 1− pc versus m. Data points obtained from
the rate equation seem to be fitted by the formula 1− pc = 1.04/m. (b) Plot of
β versus m. Data points obtained from the rate equation are fitted by the formula
β = 1/(2m−1.87). The critical exponent β decreases algebraically with increasing
m.

β , we plot G(p) using 1 −
∑s∗

s=1 Pm(s, p) versus p − pc (p > pc) on the

double logarithmic scale. We then measure the slope as β . Similarly, we

obtain the values of the exponents γP and γQ.

The estimated transition points and critical exponents for m= 2, · · · ,10

are presented in Table 2.3. We find that the transition point pc and exponents

β seem to behave as 1− pc = 1.04/m and β = 1/(2m−1.87), respectively,

as shown in Fig. 2.23. Moreover, the estimated values of the critical expo-

nents τ , 1/σ , γP, and γQ seem to satisfy the scaling relations in Eqs. (2.16)–

(2.19), as shown in Fig. 2.24.

We also check the critical exponents and transition point pc by direct

simulations. We grow the networks to N(t) = 210 × 104 and repeat this

growth more than 104 times for m = 2, as shown in Fig. 2.25. Using the

finite-size scaling approach, GN(p) = N−β/ν̄ f
(
(p− pc)N1/ν̄

)
[1, 2, 26], we
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Fig. 2.24: (Color online) Test of the formulas for the exponents (a) τ = 2+1/(2m−
1), (b) 1/σ = (2m−1)β , (c) γP = 2(m−1)β , and (d) γQ = (m−1)β using numer-
ical data obtained from the rate equation. The error bars are presented in (a), (b),
and (d). Data are fitted to the straight solid line, y = x, following Eqs. (2.16)–(2.19)
in our growing network model.

find β/ν̄ = 0.175±0.010, and 1/ν̄ = 0.383±0.010; thus β = 0.458±0.038

for m = 2. Using ν = 1/2 in the mean-field limit, the hyperscaling relation

becomes du −2 = 4β ∗ for a given m [19, 39], where du represents the upper

critical dimension and β ∗ is the critical exponent of the so-called observable

order parameter. In our model, the observable order parameter is Gm in the

thermodynamic limit as t → ∞, because the probability that a node chosen

under an aggregation rule belongs to a giant cluster acts as an observable or-

Table. 2.3: Numerical estimates of the percolation threshold pc, the exponent of
the order parameter β , the exponent of the cluster size distribution τ , the exponent
of the characteristic cluster size σ , and the exponents of the susceptibility γP, γQ
of growing network models for m = 2 to 10. The transition point pc obtained from
the rate equations is compared with pc

∗, which was analytically solved using the
scaling functions. f (0) is the coefficient of the leading term of Pm(s, p)≈ f (0)s−τ

for large s. We confirm that pc and pc
∗ are consistent with each other within errors.

m f (0) pc
∗ pc β τ σ γP γQ

2 0.217(1) 0.515(1) 0.515(1) 0.457(1) 2.333(1) 0.730(2) 0.914(2) 0.458(1)
3 0.157(1) 0.666(1) 0.667(1) 0.242(1) 2.200(1) 0.827(2) 0.969(3) 0.484(1)
4 0.120(1) 0.745(1) 0.747(1) 0.164(1) 2.143(1) 0.872(2) 0.984(3) 0.492(1)
5 0.097(1) 0.795(1) 0.796(1) 0.124(1) 2.111(1) 0.898(2) 0.990(2) 0.495(1)
6 0.082(1) 0.830(1) 0.830(1) 0.099(1) 2.091(1) 0.916(2) 0.993(3) 0.497(1)
7 0.070(1) 0.854(1) 0.853(1) 0.083(1) 2.077(1) 0.928(2) 0.995(3) 0.498(1)
8 0.062(1) 0.868(2) 0.871(1) 0.071(1) 2.067(1) 0.937(2) 0.996(2) 0.498(1)
9 0.055(1) 0.881(3) 0.885(1) 0.062(1) 2.059(1) 0.944(2) 0.997(2) 0.499(1)
10 0.050(1) 0.900(2) 0.897(1) 0.055(1) 2.053(1) 0.950(2) 0.998(2) 0.499(1)
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Fig. 2.25: (Color online) Finite-size scaling of GNβ/ν̄ versus (p− pc)N1/ν̄ from
Monte Carlo simulations with more than 104 realizations for system sizes N/104 =
23, · · · ,210 for m = 2. Data collapse onto a single curve with pc = 0.515(1), 1/ν̄ =
0.383(10), and β/ν̄ = 0.175(10). One then get β = 0.458(38).

der parameter. Our rule selects the node that belongs to the smallest of the m

candidate clusters; the probability that this node is in the giant cluster is Gm.

Thus, the observable order parameter exponent is β ∗ =mβ in our model and

the hyperscaling relation ultimately becomes du −2 = 4mβ for general val-

ues of m. For m = 2, we obtain du = 5.66±0.30 and the correlation volume

exponent duν = 2.83± 0.15, which are consistent with the value obtained

Table. 2.4: Values of the upper critical dimension du obtained from the hyperscal-
ing relation in growing networks for m = 2− 5. The correlation volume exponent
duν for the mean-field theory values ν = 1/2 and numerically estimated ν̄ from
the finite-size scaling approach is consistent with simulation data within errors.
The network is grown to N = 210 × 104, and the ensemble average is taken over
more than 104 samples for each m.

m du duν ν̄ β 1/ν̄

2 5.66(30) 2.83(15) 2.61(7) 0.458(38) 0.383(10)
3 4.91(36) 2.46(18) 2.42(6) 0.243(30) 0.413(10)
4 4.63(42) 2.32(21) 2.28(5) 0.165(27) 0.439(10)
5 4.49(50) 2.24(25) 2.21(5) 0.124(25) 0.452(10)
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by simulations and the finite-size scaling approach, duν = ν̄ = 2.61±0.07,

within errors. Therefore, the hyperscaling relation holds, and the upper crit-

ical dimensions in the growing network depend on m, but their numerical

values differ from those of the static network model. Similarly, the hyper-

scaling relations are tested for different m between 2 and 5, and the cor-

responding values of du are presented in Table 2.4. Finally, the analytical

formula of du is summarized in Table 2.5.

2.2.5 Analysis

With regard to growing networks, we confirmed that the local suppres-

sion effect changed the type of percolation transition from infinite order

to second order. Subsequently, we analytically derived the critical expo-

nents τ and 1/σ for the probability of selecting a node in a cluster of

size s, Pm(s, p) ∼ s1−τ f (s/s∗), where s∗ ∼ (p− pc)
−1/σ in terms of a con-

trol parameter m, representing the suppressing strength. Furthermore, tran-

sition point pc and other critical exponents were obtained in terms of m.

They are summarized in Table 2.5 and compared with those in static net-

works [19, 26, 39]. Our findings were confirmed by numerically solving the

rate equations.

Interestingly, we discovered that as m → ∞, the transition point and

critical exponents behaved as pc → 1, τ → 2, σ → 1, β → 0, γ → 1, and the

upper critical dimension du → 4. The fact that β = 0 as m→∞ indicated that

the percolation transition was discontinuous because the suppression effect

became global [20, 21]. We remark that, for growing networks, pc and the

critical exponents algebraically approached their respective asymptotes as
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Fig. 2.26: (Color online) Schematic plots of the order parameter G and the inverse
first moment of Pm(s, p), 1/⟨s⟩P, for the (a) GRN, (b) d-GRN/m-GRN, (c) ER, and
(d) d-ER/m-ER models. Schematic plots for the m-GRN and m-ER models are very
similar to those for the d-GRN and d-ER models. The only difference between the
two suppression rules is that twice as many nodes are selected under the da Costa
rule as under the minimal rule. Thus, m= 2 under the minimal rule and m= 1 under
the da Costa rule are reduced to the GRN model in growing networks and the ER
model in static networks, respectively.

m → ∞, whereas for static networks, they exponentially approached them as

m→∞ and du → 2. Accordingly, for a specified finite m, the order parameter

G increases slowly in growing networks, whereas it increases drastically in

static networks, as shown in Fig. 2.26.

The results we obtained in this study have led us to reinterpret the orig-

inal results [16] regarding explosive percolation transitions from a new per-

spective. In the original paper, the AP was applied to static random networks

under the product rule, where an edge minimizing the product of the sizes

of merged components is selected between two selected random edges. The

order parameter increased drastically even when only two candidate edges

were used, which may correspond to m = 2 in our AP rules. Hence, the

explosive percolation transition type was regarded as a discontinuous tran-
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sition in the early stages. In retrospect, this hasty conclusion might have

been made because the critical exponent β of the order parameter decayed

exponentially to zero with increasing m for static networks, even though β

was still finite for a finite m. If the explosive percolation model had been

considered with random growing networks, then such a conclusion would

not have been made.
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Chapter 3

Global suppression effects in growing
networks

3.1 Model: r-GRN model

The r-GRN model starts with a single node. At each time step, a new node

is added to the system. Thus, the total number of nodes at time step t be-

comes N(t) = t + 1. As time goes on, clusters of connected nodes form.

At each time step, we classify clusters into two sets, set R and its comple-

ment set Rc, according to their sizes. Set R contains ⌈gN(t)⌉ nodes belong-

ing to the smallest clusters, whereas set Rc contains the nodes belonging

to the rest large clusters. g ∈ [0,1] is a parameter that controls the size of

R. Let ci denote the i-th cluster in ascending order of cluster size. Sup-

pose that the (k−1)-th cluster satisfies the condition
∑k−1

i=1 s(ci)< ⌈gN⌉ ≤∑k
i=1 s(ci), where s(ci) denotes the size of the cluster with index ci. Then,

set R(t) contains all the nodes belonging to the k− 1 smallest clusters and

⌈gN⌉−
∑k−1

i=1 s(ci) nodes randomly selected from the k-th smallest cluster.

The complement set Rc contains the remaining (largest) clusters. Next, one

node is selected randomly from set R(t) and another is selected from among

all the nodes. A node in the set of smaller clusters has twice chance of being

linked, while a node in the set of larger clusters has one chance. Then, a link
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Fig. 3.27: Schematic illustration of the r-GRN model with g = 0.4. Nodes are rep-
resented by circles. R(t) is represented by light gray region and Rc(t) is done by
dark grey region. Solid line between two nodes represents a link. In (a), the system
starts at five clusters with sizes (1,1,2,2,4), respectively, and the total number of
nodes N(t) = 10 with SR = 2 and ⌈gN⌉ = 4 at t = 9. After one time step, a new
node (red open circle) is added, and N(t) becomes 11 with SR = 2 and ⌈gN⌉ = 5
at t = 10. Two isolated nodes (filled light grey) in R and are merged. (b) Next, a
new node is added, and so N(t) = 12, SR = 2, and ⌈gN⌉= 5 at t = 11. In this case,
one node of the cluster of size two in set R moves to set Rc. The newly added node
is merged with the cluster of size two in R. This cluster moves to set Rc and the
cluster of size two on the boundary moves to R. (c) Next, a new node is added
with N(t) = 13, SR = 2, and ⌈gN⌉= 6 at t = 12. Selected nodes are not connected
with probability 1− p. (d) Next, a new node is added with N(t) = 14, SR = 2, and
⌈gN⌉= 6 at t = 13. And just one node of the cluster of size two in set R moves to
set Rc. A cluster of size two in R and the cluster of size three in Rc are merged,
belonging to Rc. The cluster of size four in Rc lies on the boundary and the cluster
of size two on the boundary moves to R.

is added between the two selected nodes with link occupation probability

p. The selection rule becomes global in the process of sorting out the por-

tion of the smallest clusters among all clusters. Moreover, it suppresses the

growth of large clusters by allowing less chance to be linked. In Fig. 3.27,
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this link connection process is visualized for the restricted fraction g = 0.4

as an example. This restriction rule is initially introduced in Ref. [41] and

modified in Refs. [42, 49].

We define the size of the largest cluster in set R as SR(p, t) for a given

p at time t, which determines the size of the boundary cluster(s) between

the two sets. It depends on the fraction g [42]. Thus, when g = 1, which

means that SR is equal to the size of the giant cluster, denoted as GN(t), this

model reduces to the original GRN model [14]. It has been found previously

that the GRN model exhibits a continuous infinite-order phase transition at

pc = 1/8 [14]. However, when g → 0, SR = 1, and an isolated node in R is

merged with a node in Rc with link occupation probability p.

3.2 Cluster size distribution ns(p)

Let us define the cluster number density ns(p, t) for a given p at time step t as

the number of clusters of size s divided by the current number of nodes N(t)

at t. In our previous studies [27], we derived the rate equations according

to the cluster size s comparing to SR for the cluster size distribution N(t)ns.

For convenient readability, those rate equations are rewritten in the A.1.

Here we solve the rate equation of ns(p) for a given g. First, when

s = 1, the rate equation becomes n1 =−p(1+ 1
g)n1 +1 for SR > 1 and n1 =

−p(n1 +1)+1 for SR = 1. Thus, n1(p) becomes

n1 =


1

1+p(1+ 1
g )

SR(p)> 1 (p > p1),

1−p
1+p SR(p) = 1 (p < p1).

(3.1)
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The two solutions become the same at p = (1− g)/(1+ g), as shown in

Fig. 3.28(e). This p is denoted as p1. For g = 0.4, p1 = 0.4285714 . . . .

Next, when s = 2, the rate equations are as follows: n2 = p[(n1n1/g)−

2n2(1+ 1/g)] for SR > 2; n2 = p[(n1n1/g)− 2n2 − (1− n1/g)] for SR = 2;

n2 = p(n1 −2n2) for SR = 1. We obtain n2 as follows:

n2 =



p n1
2

g

1+2p(1+ 1
g )

SR > 2 (p > p2),

p[ n1
2

g −(1− n1
g )]

1+2p SR = 2 (p1 < p < p2),

pn1
1+2p SR = 1 (p < p1).

(3.2)

Two kinks (crossovers) exist in n2(p), as shown in Fig. 3.28(f). The position

p of the first kink is just p1, and that of the second kink is determined by

setting n2 for SR > 2 equal to that for SR = 2. This position is denoted as p2.

For g = 0.4, p2 = 0.5653082 . . . .

In general, when s > 1, the cluster size distribution ns(p) can be ob-

tained from the rate equations in the steady state as follows:

ns(p) =



p
∑

∞

i, j=1
ini jn j

g δi+ j,s+δ1s

1+sp(1+ 1
g )

s < SR,

p

[∑
∞

i, j=1
ini jn j

g δi+ j,s−
(

1−
∑SR−1

k=1
knk

g

)]
1+sp s = SR,

p

[∑
∞

j=1
∑SR−1

i=1
ini jn j

g δi+ j,s+
∑

∞

j=1 δSR+ j,s jn j

(
1−

∑SR−1
k=1

knk
g

)]
1+sp s > SR.

(3.3)

There exist s kinks on the curve ns at p1, · · · , ps in ascending order of p.

The position of the last kink ps is determined by setting ns for SR > s equal
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Fig. 3.28: Cluster size distribution ns(p) as a function of s and p for given g: In this
case, g = 0.4 are taken. (a) 3D plot of ns(p) as a function of s and p. Plots (b)-(d)
are obtained with several fixed p for ns(p). (b) For p < pb, ns(p) follows ∼ s−τ

with τ > 3. The slope of the dotted guide line is −3. Solid lines are obtained for
p = 0.472576 ≈ pb, 0.4, 0.3, 0.2, and 0.1 from right to left. (c) For pb ≤ p < pc, in
the small-cluster-size region, ns(p) decays exponentially up to SR and then exhibits
power-law decay behavior with 2 < τ ≤ 3. Solid, dashed, and dashed-dotted lines
represent for pSR with SR = 2,10 and 25, respectively. Dotted line is a guide line
with slope of −2. (d) For p ≥ pc, ns(p) exponentially decay. Solid curves represent
ns(p) for p = 0.6596, 0.7, 0.8, 0.9, and 1.0 from right to left. Dotted curve is an
exponentially decaying guide curve. Plots (e)-(h) are obtained with several values
of s for ns(p). (e) Plot of n1(p) versus p. A crossover exists at p1. (f) Plot of n2(p)
versus p. Two crossover behaviors occur at p1 and p2, where p1 < p2. (g) and
(h) Plots of n3(p) and n4(p) versus p, respectively. Symbols represent simulation
results, and solid lines are analytical results. Dotted vertical lines represent pSR for
SR = 1,2,3, and 4 at pSR=1 = 0.428571, pSR=2 = 0.565302, pSR=3 = 0.612016, and
pSR=4 = 0.632728.

to ns for SR = s. For convenience, we use the index as SR to avoid confusion

with the index of cluster size s. The positions pSR as a function SR are listed
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in Table 3.6. As shown in Figs. 3.28(e)−3.28(h), the interval between two

successive crossover points becomes narrower with increasing SR. The po-

sition pSR seems to converge to a certain value, p∞, in a power-law form of

p∞ − pSR as a function of SR asymptotically as shown in Fig. 3.29. Here p∞

is estimated to be 0.65948(1). Figs. 3.28(b)−3.28(d) show the distributions

ns versus s for a given fixed p, which corresponds to the (logns, logs) plane

of the three-dimensional plot of ns(p) in Fig. 3.28(a).

Table. 3.6: Values of pSR as a function of SR for g = 0.4.

SR pSR

1 0.4285714285(1)
2 0.5653082407(1)
3 0.6120164684(1)
4 0.6327279058(1)
5 0.6433362667(1)
6 0.6492814220(1)
7 0.6528226406(1)
8 0.6550262003(1)
9 0.6564429142(1)

10 0.6573769871(1)
11 0.6580052394(1)
12 0.6584346536(1)
13 0.6587320681(1)
14 0.6589403439(1)
15 0.6590875632(1)
16 0.6591924579(1)
17 0.6592677124(1)
18 0.6593220275(1)
19 0.6593614370(1)
20 0.6593901656(1)
∞ 0.65948(1)
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Fig. 3.29: Plot of p∞− pSR versus SR for g = 0.4. When p∞ = 0.65948(1), a power-
law decay appears.

3.3 Two transition points, pb and pc

From the cluster size distribution ns(p) for given p, we find that there exist

two transition points, say pb and pc, which characterize the following three

distinct intervals on the line of p: i) For p < pb, ns(p) follows the power law

ns(p) ∼ s−τ for s > SR with exponent τ > 3, whereas it decays exponen-

tially as a function of s for s < SR. ii) For pb ≤ p < pc, ns(p) also follows a

power law with exponent τ for s> SR. Particularly, the exponent τ decreases

continuously from τ = 3 to 2 as p is increased from pb to pc. For s < SR,

ns(p) decays exponentially as a function of s. iii) For p > pc, a giant clus-

ter is generated and the distribution of the remaining finite clusters decays

exponentially as a function of s.

The power-law behavior of ns(p) with τ > 3 in the region i) is inherited

from the infinite-order transition of the GRN model [14]. Thus the region

i) is regarded as an infinite-order-type critical region. Meanwhile, in the re-
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Table. 3.7: Numerical estimates of the transition points pb and pc. The critical
exponents τ are calculated at p = pb and pc for g = 0.1− 0.9. We note that the
exponent τ at pc becomes difficult to obtain as g approaches one.

g pb pc ∆G τ(pb) τ(pc)
0.1 1/2 0.905(1) 0.900(1) 3.00(1) 2.00(1)
0.2 1/2 0.817(1) 0.800(1) 3.00(1) 2.00(1)
0.3 1/2 0.736(1) 0.700(1) 3.00(1) 2.00(1)
1/3 1/2 0.710(1) 0.666(1) 3.00(1) 2.00(1)
0.4 0.473(1) 0.660(1) 0.600(1) 3.00(1) 2.00(1)
0.5 0.440(1) 0.587(1) 0.500(1) 3.00(1) 2.00(1)
0.6 0.405(1) 0.516(1) 0.400(1) 3.00(1) 2.00(1)
0.7 0.367(1) 0.447(1) 0.300(1) 3.00(1) 1.99(1)
0.8 0.323(1) 0.376(1) 0.200(1) 3.00(1) 1.99(1)
0.9 0.268(1) 0.297(1) 0.100(1) 3.00(1) 1.8(2)
1.0 1/8 1/8 0 3 -

gion ii), because 2 < τ < 3, the mean cluster size diverges. Thus the region

ii) is regarded as a second-order-type critical region. It is noteworthy that

while the critical behavior occurs at a critical point in a prototypical second-

order transition, here it occurs in the entire region ii). At p−c , τ = 2. This

means that clusters are extremely heterogeneous and further suppression of

the largest cluster leads to a discontinuous transition. Indeed, a discontinu-

ous transition occurs at pc. Both transition points for different g values are

listed in Table 3.7.

To determine pb and pc, here we introduce the generating function f (x)

of the probability sns that a randomly chosen node belongs to the cluster of

size s, defined as

f (x)≡
∞∑

s=1

snsxs, (3.4)

where x is the fugacity in the interval 0 < x < 1. The giant cluster size G is
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obtained as G = 1−
∑

∞

s=1 sns = 1− f (1). The mean cluster size is obtained

as ⟨s⟩ =
∑

∞

s=1 s2ns = f ′(1), where the prime represents the derivative with

respect to x. To determine pb (pc), we consider the case of SR being finite

(infinite).

3.3.1 For finite SR

When SR is finite, we derive the recurrence relation for ns. First, when SR =

1, the rate equations in the steady state are simply reduced as follows:

n1 =−p(n1 +1)+1, (3.5)

ns = p
[
(s−1)ns−1 − sns

]
for s > 1. (3.6)

Then, one can obtain the generating function f (x) as

f (x) =−xp f ′(x)− px+ x+ px2 f ′(x)+ px f (x). (3.7)

The giant cluster size G is G = 1−
∑

∞

s=1 sns = 1− f (1) = 0. The mean

cluster size is obtained as ⟨s⟩ =
∑

∞

s=1 s2ns = f ′(1) = 1/(1− 2p). So the

mean cluster size diverges at pb = 1/2. If this value is larger than p1 for a

given g, then we move to SR = 2. When SR = 2, G = 0 and ⟨s⟩ = f ′(1) =

1/[1−4p+(2pn1/g)].
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Fig. 3.30: Semi-log plot of p∗− pSR versus SR. p∗− pSR decays exponentially as
SR increases but it’s always larger than zero for finite SR values. So p∗ is larger than
pSR for any finite SR.

Generally, for finite SR, we obtain the relation

f (x)+ xp f ′(x) = x+ p
[SR−1∑

s=1

sxs(−1
g

sns
)
−SRxSR

(
1− 1

g

SR−1∑
s=1

sns
)

+

SR−1∑
s=1

sns

g
xs(x f ′(x)+ s f (x)

)
+ xSR(x f ′(x)+SR f (x))

(
1− 1

g

SR−1∑
s=1

sns
)]
. (3.8)

When x = 1, Eq. (3.8) may be written as f (1)J(p) = J(p) for the range

pSR−1 ≤ p < pSR , where J(p) ≡ 1 − p
[∑SR−1

s=1
s2ns

g + SR
(
1 −

∑SR−1
s=1

sns
g

)]
.

Now, let us denote p satisfying J(p) = 0 as p∗. We can calculate these values

p∗ as SR increases using Eq. (3.3) in the steady state. But p∗ is always larger

than pSR so J(p) cannot be zero as shown in Fig. 3.30 for the case g = 0.4.

Then we can obtain that f (1) = 1 for finite SR and the relative giant cluster

G = 1− f (1) = 0.
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At x = 1, plugging f (1) = 1 into the derivative of Eq. (3.8) with respect

to x, we obtain that

f ′(1) =
[
1+2p

(SR−1∑
s=1

(SR − s)sns

g
−SR

)]−1
= ⟨s⟩. (3.9)

To obtain pb, once we set SR = 1 and check whether there exists a

certain value of p less than pSR , say p∗, such that ⟨s⟩−1 = 0. If the solution

exists, p∗ is a critical point pb and SR is the size of the largest cluster in set

R. Otherwise, we increase SR by one, and try to find a solution satisfying

⟨s⟩−1 = 0. We repeat these steps until the solution is found. The obtained

values pb for different g are listed in Table 3.7. The existence of pb below

pc implies that even though the order parameter G(p) is zero for p < pc, the

mean cluster size ⟨s⟩ can diverge at pb before pc.

3.3.2 For infinite SR

We consider the limit SR(p) = ∞, which corresponds to the case p > p∞. In

this case, Eq. (A.4) is valid for all cluster sizes s. Eqs. (A.4)−(A.6) reduce

to the following two equations:

n1 =
1

1+(1+ 1
g)p

, (3.10)

ns =
p

1+(1+ 1
g)sp

s−1∑
j=1

j(s− j)n jns− j

g
, (3.11)
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where s is limited to finite clusters. The generating function associated with

sns satisfies the following relation:

f (x) =−x(1+
1
g
)p f ′(x)+

2
g

px f (x) f ′(x)+ x, (3.12)

and in another form,

f ′(x) =
1− f (x)

x

(1+ 1
g)−

2
g f (x)

1
p
. (3.13)

Performing numerical integration, we obtain f (1) and f ′(1), which

correspond to the order parameter G(p) and ⟨s⟩ for given p and g in the

region p ≥ p∞.

At p∞, this order parameter value G(p∞) is not zero but finite, indicat-

ing that the transition at p∞ is first-order. Moreover, G(p∞) represents the

jump size of the order parameter ∆G of the discontinuous transition. We ob-

tain the cluster size distribution using the Eq. (3.3), which follows a power

law with τ ≃ 2. Therefore, we think that p∞ = pc. The results for G and

1/⟨s⟩ in the entire region p are shown in Fig. 3.31 for g = 0.2, 0.4, and 0.6.

Numerical data of pb, pc, ∆G, τ(pb), and τ(pc) for different g are listed in

Table 3.7. Indeed, the order parameters are discontinuous at pc for different

g < 1. We draw a phase diagram shown in Fig. 3.32 in the plane of (p, g).
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Fig. 3.31: Plot of G and 1/⟨s⟩ as a function of p. For g = 0.2 in (a) and (d), g =
0.4 in (b) and (e), and g = 0.6 in (c) and (f), respectively. Symbols represent the
simulation results for N = 104 (⃝), 105 (△), 106 (□), and 107 (♢). Each data point
was averaged over 103 times. The solid (red) lines are calculated from f (1) and
f ′(1) for G and ⟨s⟩, respectively. The two vertical dotted lines represent pb and pc
(pb < pc).
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Fig. 3.32: (a) and (b) show the phase diagrams of the r-GRN model and r-PIN
model with δ = 0.7, respectively. Symbols △ and ⃝ represent pb and pc. ns(p)
decays following a power law with τ > 3 in the infinite-order-type critical region
and 2 < τ < 3 in the second-order-type critical region. Thus, the mean cluster size
is finite and diverges, respectively. As g approaches one, two phase boundaries con-
verge to the conventional transition point pc = 1/8 of the GRN model, represented
by ■, and pc = 0.12(1) in the PIN model with δ = 0.7, represented by ♦

.
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3.4 τ(p) in the critical region and total number
of clusters

When p < pc, the cluster size distribution exhibits a critical behavior: it

decays in a power law manner with exponent τ . This exponent τ depends

on the link occupation probability p. This property is reminiscent of the

feature of the Berezinskii-Kosterlitz-Thouless (BKT) transition in thermal

systems. However, the origin of the BKT transition in growing networks

differs from that in thermal systems. To illustrate the origin of the critical

behavior in growing networks, we consider a limit case with g → 0 and

SR = 1. In this case, cluster merging dynamics occurs only between isolated

nodes and another cluster of any size. From Eq. (3.3), one can obtain the

explicit form of ns(p) as follows:

ns(p) =
(s−1)!ps−1n1(p)

(1+ sp)(1+(s−1)p) · · ·(1+2p)
, (3.14)

where n1(p) is (1− p)/(1+ p), and SR = 1. Using the Stirling formula, the

gamma function Γ(z) = (z−1)! is rewritten as

Γ(z)∼ zz− 1
2 e−z

√
2π

(
1+

1
12z

+
1

288z2 −
139

51840z3 −
571

2488320z4

)
as |z| → ∞,

one can obtain the asymptotic behavior of Eq. (3.14) as ns(p) =
Γ(s)Γ( 1

p+2)

Γ(s+ 1
p+1)

n1(p)∼ s−(1+ 1
p ), where the critical exponent τ = 1+ 1

p . Fig. 3.33

shows τ as a function of p. Because the merging dynamics starts from SR =
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Fig. 3.33: Plot of τ versus p for different g. τ becomes two as p approaches pc
for any g. The black dashed curve is a guide curve representing 1+ 1/p, which is
obtained from the limiting case SR = 1, i.e., g → 0.

1, τ = 1+1/p appears in the envelope of τ(p). Thus, addition of a new node

into the system at each time step is a key factor that generates the critical

region below the transition point pc.
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Fig. 3.34: Plot of the total number of clusters ncl versus p for g = 0.4. The red solid
line is obtained from the rate equation integrating the cluster size distribution. The
open circles represent the numerical simulation data for N = 106, averaged over
104 configurations. The black vertical dotted line represents pc for g = 0.4.

59



The total number of clusters per site, ncl(p)≡
∑

∞

s=1 ns(p), can be cal-

culated from the rate equations by summing up ns(p) over all finite clusters

in Eq. (3.3). Fig. 3.34 shows ns(p) for g = 0.4. The circle symbols repre-

sent ns(p) obtained from numerical simulations. They are in agreement with

theoretical results (solid line) for g = 0.4 in the entire p region.

3.5 Universal behavior

Protein interaction network (PIN) models are growing networks and also ex-

hibit the BKT transitions [13]. Nodes in this network represent proteins and

links connect functionally related proteins. Connected proteins form a pro-

teome or protein complexes. The proteome network is a usually sparse graph

with a small mean degree. Inspired from the biological process, several min-

imal models for the evolution of PIN were introduced [50]. Here we recall

the PIN model proposed in Refs. [13, 51]. The model includes three impor-

tant features; i) duplication, ii) mutation, and iii) divergence. i) At each time

step, a node is newly introduced, which duplicates a randomly chosen nodes

(called replicated node) among pre-existing nodes. ii) The node connects to

each of the neighbors of the replicated node with probability 1−δ . iii) The

new node also can link to all pre-existing node with probability β/N, where

N is the current total number of nodes. Thus cluster merging occurs.

In order to apply the global suppression effect of the r-GRN model to

the PIN model, we slightly modify the process iii) of the PIN models as

follows. Each new node links only to the nodes belonging to set R with the

smallest clusters, which is similarly defined in the r-GRN model. The value
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Fig. 3.35: Plots of the cluster size distribution ns(p) of the r-PIN model as a
function of s in different p regions. We binned simulation data logarithmically
for N = 214 × 104 averaged over 103 configurations. g = 0.4 and δ = 0.7 are
taken. Three cases of ns(p) are distinguished: (a) For p < pb, ns(p) asymptoti-
cally follows the power law ∼ s−τ with τ > 3. The slope of the dotted guide line
is −3. Solid lines are obtained for p = 0.29 ≈ pb, 0.25, 0.20, 0.15, 0.10, and 0.05
from right to left. (b) For pb ≤ p < pc, in the small-cluster-size region, ns(p) de-
cays exponentially and then exhibits power-law decay behavior with 2 < τ ≤ 3.
Solid (black), dashed (red), and dashed-dotted (blue) lines represent pSR , where
SR = 2 (p = 0.29),3 (p = 0.35), and 17 (p = 0.423), respectively. Two dotted lines
are guidelines with slopes of −2 and −3. (c) For p ≥ pc, ns(p) for finite clusters
shows exponentially decaying distributions. Solid curves represent p = 0.43, 0.50,
0.60, 0.75, and 0.90 from right to left. Dotted curve is an exponentially decaying
guide curve.

β in the probability β/gN, where gN is the current total number of nodes

belonging to set R, corresponds to p in the r-GRN model. Accordingly, the

growth of large clusters is suppressed. From the numerical simulations up

to N = 108 with 1000 ensemble averages, we also observe the abnormal

transition behaviors as shown in Fig. 3.35, where the previous BKT transi-

tion of the PIN model breaks down but the features of infinite-, second-, and

first-order type transitions all occur similarly to the r-GRN model.

For δ = 0.7, we numerically simulate for g= 0.4 and g= 0.6. Fig. 3.36

shows the two transition points pb = 0.29(1) and pc = 0.43(1) in panels (a)

and (c) for g = 0.4, and pb = 0.26(1) and pc = 0.35(1) in panels (b) and (d)

for g= 0.6. The two transition points obtained from the analytical results are
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Fig. 3.36: Plot of G and 1/⟨s⟩ for the r-PIN model as a function of p for g = 0.4 in
(a) and (c), and for g= 0.6 in (b) and (d), respectively. Symbols represent numerical
simulation data for N = 22×104 (⃝), 28×104 ((△), and 214×104 ((□). Each data
point was averaged over 102 configurations. The two vertical dotted lines represent
pb and pc > pb.

consistent with numerical results. This result is also close to that obtained

in the r-GRN model. Thus, we argue that our main results are universal

independent of detailed model dynamic rules.

3.6 Analysis

When the link occupation probability p is below pc, most clusters are small

and the suppression is not effective. Hence the infinite-order critical behav-

ior of ns(p)∼ s−τ(p) appears as the one in the BKT transition. The exponent

τ(p) decreases as p is increased. In the BKT transition, τ decreases down
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to three as p is increased to pc; however, in this restricted growing ran-

dom network (r-GRN) model, the exponent τ(p) can decrease more down

to two, because the transition point is delayed by the suppression effect. On

the other hand, if the cluster size distribution follows a power law without

any exponential cutoff, the largest cluster size scales with the system size

N(t) in the steady state as smax ∼ N1/(τ−1). When τ decreases down to two,

the largest cluster grows to the extent of the system size in the steady state.

Therefore a discontinuous transition occurs.

As τ decreases below three, the mean cluster size, i.e., the susceptibility

is no longer finite. We divide the region p < pc into two subregions, p < pb

and pb < p < pc, such that for p < pb, τ > 3, whereas for pb < p < pc,

2< τ < 3. Thus, the mean cluster size is finite and diverges in the former and

latter regions, respectively. Therefore, another type of percolation transition

(PT) occurs at pb. It is interesting to note that the mean cluster size diverges

even though the giant cluster does not form yet in the interval pb < p <

pc. That is because the cluster size distribution exhibits a critical behavior

without an exponential cutoff. Large clusters still remain in the subextensive

size, and they induce heavy fluctuations. We regard the region p < pb as an

infinite-order-type critical region, because it is inherited from the infinite-

order transition. The region pb < p < pc, in which feature of the second-

order transition appears, is regarded as the second-order-type critical region.

At pc, a first-order PT occurs. For p > pc, the size distribution of finite

clusters does not follow a power law. The region p ≥ pc is regarded as a

supercritical region. Therefore, when the infinite-order BKT transition is

broken by the suppression effect, a first-order PT occurs; a second-order
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critical phase appears; and an infinite-order critical phase still remains. We

remark that to the best of our knowledge, this is the first observation of the

first-order PT in random growing networks.

The r-GRN model was built based on the restricted Erdős-Rényi (r-

ER) model recently introduced in Refs. [42, 49]. This r-ER model is a

static network model, containing N nodes all the times. The two-node se-

lection rule for a link connection is the same as that of the r-GRN model but

once the two nodes are selected at time step t, they are connected definitely.

This model contains a global suppression dynamics. In this r-ER model, a

power-law behavior of ns(tc) without any exponential cutoff appears only at

the point t+c just after the order parameter jumps. The exponent τ is in the

range 2 < τ ≤ 5/2 depending on the parameter g. Thus, the model exhibits

not only a discontinuous transition but also a critical behavior. The criti-

cal behavior appears in the region where the order parameter is finite [42].

Contrary to the transition behavior of this r-ER static network model, the

critical behavior in the r-GRN model appears below the transition point pc,

so that the order parameter still remains zero. These behaviors are depicted

schematically in Fig. 3.37.

For the r-GRN model, the power-law decay of ns(p) appears in a steady

state over all cluster sizes without forming any bump or exponential cutoff

even for all p < pc. This reason is as follows: At each time step, a new

node is added and remains as an isolated with the probability 1−O(1/N),

which is close to unity as N becomes large. Thus, single-size nodes are

accumulated in the system and they are more likely to merge finite-size

clusters, reducing the frequency of merging two large clusters. When dy-
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Fig. 3.37: Schematic plots of the order parameter G and the inverse mean cluster
size 1/⟨s⟩ for the (a) ER, (b) r-ER, (c) GRN, and (d) r-GRN models.

namics reaches a steady state, the cluster merging dynamics self-organizes

and forms a power-law behavior of ns(p). We considered an extreme case

that a new node is merged with an existing cluster at each time step with

probability p. In this case, ns(p) is obtained as ∼ s−(1+1/p). More gener-

ally, as p is increased, more links are added, and the largest cluster becomes

larger, and thus the exponent τ(p) is continuously decreasing. Because the

transition point is delayed by the suppression effect, τ can decrease down to

two. This eventually leads to a discontinuous PT, because the largest cluster

size scales as N(t)1/(τ−1), where N(t) denotes the system size at a certain

time t in steady state, and it reaches up to the extensive size to the system

size when τ = 2 regardless t in the steady state.

This tricritical-like behavior at τ = 2 can be seen in the classical poly-

mer aggregation model [52–56]. The cluster aggregation phenomena in a
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static system were described via the rate equation,

dns(t)
dt

=
∑

i+ j=s

wini

c(t)
w jn j

c(t)
−2

wsns

c(t)

∑
i=1

wini

c(t)
, (3.15)

where c(t) =
∑

s wsns(t). The first term on the R.H.S. represents the aggre-

gation of two clusters of sizes i and j with i+ j = s, and the second term

is for a cluster of size s merging with another cluster of any size. The rate

equation reduces to the ER network model when c(t) = 1, which occurs

when wi = i. A general case, wi = iω , was studied [52–56] long ago. In this

case, as ω is smaller, the growth of large clusters is more suppressed. When

1/2<ω < 1, a continuous transition occurs at tc; a giant cluster is generated

for t > tc. At t = tc, the cluster size distribution follows a power law with

exponent τ = ω +(3/2). When 0 < ω ≤ 1/2, a discontinuous transition oc-

curs, and the exponent τ = 1+ 2ω . The case ω = 1/2, for which τ = 2,

is marginal between a second-order and a first-order transition. We remark

that another model recent introduced also generates either a continuous or

a discontinuous PT by controlling the suppression strength similar to the

above case [57]. These two cases are all for static networks. Even though

the system type and the underlying mechanism of static and growing net-

works are different, on the basis of the above result, we could confirm that

the discontinuous transition at pc is induced by the increase of the cluster

size heterogeneity across the point with τ = 2.

The BKT transition was found originally in the two-dimensional XY

model in thermal systems [58–62]. The origin of the BKT transition in ther-

mal systems is different from that of the percolation model, but there ex-
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ist some similarities or dissimilarity in the transition behavior: In the XY

model, the singular part of the free energy behaves as f (t)∼ exp(−bt−1/2)

with a positive constant b for the reduced temperature t = (T −Tc)/Tc > 0,

similar to the order parameter G(p) for p > pc in Eq. (1.1). The correla-

tion function decays in a power-law manner as Γ(r) ∼ r−η(T ) for t < 0,

where η(T ) ∼ T is continuously varying depending on T . This is often

called the quasi-long-range order. On the other hand, in a second-order tran-

sition Γ(r) ∼ r−η exp(−r/ξ ) for t < 0. In this regard, the pure power-law

behavior of Γ(r) in the infinite-order transition implies ξ = ∞ for t < 0. In-

deed, ξ = ∞ for t < 0 in the XY model. The continuous varying exponent

η(T ) in the XY model corresponds to the exponent τ(p) of the cluster size

distribution ns(p) ∼ s−τ(p). In a second-order PT, ns ∼ s−τ exp(−s/s∗) for

p < pc, where s∗ is a characteristic cluster size in the region p < pc. Again,

the pure power-law behavior of the infinite-order PT implies that s∗ = ∞

for p < pc. The susceptibility is obtained using the thermodynamic relation,

χ ∼
∫

d2rΓ(r). One can find that χ diverges for η < 2, while it is finite for

η > 2. Because η increases with temperature, χ diverges for t < 0 and finite

for t > 0, where the critical temperature is determined by η = 2. In perco-

lation, the susceptibility χ =
∑

s s2ns diverges for τ < 3, while it is finite

for τ > 3. For the GRN model, τ > 3 for p < pc. Thus, the susceptibility is

finite for p < pc. For p > pc, ns of finite clusters decays exponentially. Thus

the susceptibilities on both sides of a transition point are finite. Even though

the order parameter behaves as an infinite-order transition, the susceptibility

behavior differently from that of the XY model. On the other hand, for the r-

GRN model, the susceptibility diverges in one side and is finite in the other
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Table. 3.8: Comparison of the BKT transitions between in thermal systems and in
percolations of the growing networks.

Thermal systems Percolation

f (t)∼ exp(−bt−1/2), t = (T −Tc)/Tc G(p)∼ exp(−a(p− pc)
−1/2)

χ ∼
∫

d2rΓ(r)∼
∫

drrΓ(r) χ =
∑

s2ns ≈
∫

dssp(s)
Γ(r)∼ r−η(T ) for t < 0 p(s) = sns ∼ s1−τ for p < pc

η(T )∼ T < 2 for χ = ∞ τ = τ(p)< 3 for χ = ∞

ξ = ∞ for t < 0 s∗(p) = ∞ for p < pc
τ(p)> 3 for p < pc in the original growing percolation
τ(p)> 2 for p < pc in the restricted growing percolation

side, similar to those of the XY model. These are summarized in Table 3.8.

The BKT transition can occur even in static networks. For instance, the

percolation model in one-dimension with 1/r2 long-range connections [63]

and on hierarchical networks with short-range and long-range connections

[64] exhibit BKT infinite-order PTs. As future works, it would be interesting

to check whether the diverse phases and phase transitions we obtained occur

or not in those static network models when the suppression rule is applied.

Moreover, in our study, the suppression rule is applied to large clusters, be-

cause the giant cluster size per node is the order parameter in percolation

problem. As an extension of our work to thermal systems, it would be inter-

esting to find an essential quantity of thermal BKT systems, for instance, the

formation of spin waves or vortices, and see if we can control the BKT tran-

sition by the suppression effect. The pattern formation by topological de-

fects in active liquid crystals recently draws considerable attention [65, 66].

Various patterns generated in that system are governed basically by the BKT

theory. It would be interesting to note how those patterns are changed when

the system is applied by a certain suppression effect.
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Chapter 4

Growing scale-free simplicial
complexes

4.1 Models and rate equations

This model starts at N0 isolated nodes and a new node is added every time

step t where the total number of nodes is N(t) = N0+ t. Subsequently, d+1

nodes are randomly selected and then they are fully connected with proba-

bility p at each time step t. We consider this new formation as a d-simplex.

Now, assuming all finite clusters are trees in the arbitrary phase, the

total number of facet degree of nodes belonging to the cluster of size s is

written as ((d+1)/d)(s−1). Then the probability each node, which belongs

to cluster of size si, is selected to be linked is proportional to Π
d+1
i=1

(
((d +

1)/d)(si −1)+asi

)
where a is the initial attractiveness of nodes. Thus the

rate equation of Ns(p, t), defined as the number of cluster of size s, becomes
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d(Ns(p, t))
dt

= p
[ ∞∑

i1,...,id+1=1

(
Π

d+1
α=1Jiα Niα

)
δ∑d+1

α=1 iα ,s

+

d−1∑
r=1

∞∑
i1,ir+2,...,id+1=1

(
d +1
r+1

)
Ji1Ni1

( i1
N

)r(
Π

d+1
α=r+2Jiα Niα

)

×δi1+
∑d+1

α=r+2 iα ,s
− (d +1)JsNs −

d−1∑
r=1

(
d +1

r

)
JsNs

( s
N

)r]
+δ1s,

(4.1)

where Js(t) ≡ (s((d +1)/d +a)− (d +1)/d)((d +1)pt +aN(t))−1. In the

steady state as time t goes to infinity, Eq. (4.1) is reduced to

ns(p) = p
[ ∞∑

i1,...,id+1=1

(
Π

d+1
α=1J̄iα niα

)
δ∑d+1

α=1 iα ,s
− (d +1)J̄sns

]
+δ1s, (4.2)

where J̄s ≡ (s((d +1)/d +a)− (d +1)/d)((d +1)p+a)−1. The form of J̄s

becomes

J̄s =
s((d +1)/d +a)− (d +1)/d

(d +1)p+a
=

(d +1)/d +a
(d +1)p+a

(
s− (d +1)/d

(d +1)/d +a

)
.

(4.3)

Thus Eq. (4.2) become

ns(p) = p
[((d +1)/d +a

(d +1)p+a

)d+1 ∞∑
i1,...,id+1=1

(
Π

d+1
α=1

(
iα − (d +1)/d

(d +1)/d +a

)
niα

)
×δ∑d+1

α=1 iα ,s
− (d +1)

((d +1)/d +a
(d +1)p+a

)(
s− (d +1)/d

(d +1)/d +a

)
ns

]
+δ1s,

(4.4)
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Now, let us introduce two generating functions f (x)≡
∑

∞

s=1 snsxs and

n(x)≡
∑

∞

s=1 nsxs. Then, one can get

f (x)− x+(d +1)p
(d +1)/d +a
(d +1)p+a

(
x f ′(x)− (d +1)/d

(d +1)/d +a
f (x)

)
×
{

1−
((d +1)/d +a
(d +1)p+a

)d[
f (x)− (d +1)/d

(d +1)/d +a
n(x)

]d}
= 0. (4.5)

For convenience, one can define

h(x)≡ (d +1)/d +a
(d +1)p+a

(
f (x)− (d +1)/d

(d +1)/d +a
n(x)

)
. (4.6)

The forms of f (x) and n(x) are thus written as

f (x) = x− (d +1)px
dh(x)

dx
+ px

dhd+1(x)
dx

= x+(d +1)pxh′(x)(hd(x)−1),

(4.7)

n(x) =
∫ x

0
dx′

f (x′)
x′

= x− (d +1)ph(x)+ phd+1(x), (4.8)

where f (0) and n(0) are f (0) = 0 and n(0) = 0 leading to h(0) = 0. The

form of f (x) and f ′(x) can be expressed in terms of x, h(x), and h′(x) as

follow.

f (x) =
(d +1)p+a
(d +1)/d +a

h(x)+
(d +1)/d

(d +1)/d +a
(x− (d +1)ph(x)+ phd+1(x)),

(4.9)

f ′(x) =
(d +1)p+a
(d +1)/d +a

h′(x)+
(d +1)/d

(d +1)/d +a
(1− (d +1)ph′(x)

+(d +1)ph′(x)hd(x)). (4.10)
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The giant cluster size G and the second order moment ⟨s⟩, defined as G =

1− f (1) and ⟨s⟩= f ′(1), respectively, become thus

G = 1− (d +1)p+a
(d +1)/d +a

h(1)− (d +1)/d
(d +1)/d +a

(1− (d +1)ph(1)

+ phd+1(1)), (4.11)

⟨s⟩= (d +1)p+a
(d +1)/d +a

h′(1)+
(d +1)/d

(d +1)/d +a
(1− (d +1)ph′(1)

+(d +1)ph′(1)hd(1)). (4.12)

Furthermore, substituting Eqs. (4.7) and (4.8) into (4.6), one can get

h(x) =
(d +1)/d +a
(d +1)p+a

(
x+(d +1)pxh′(x)(hd(x)−1)− (d +1)/d

(d +1)/d +a

× (x− (d +1)ph(x)+ phd+1(x))
)
. (4.13)

Rearranging for h′(z), Eq. (4.13) is rewritten as

h′(x) =
(d+1)p+a
(d+1)/d+a h(x)− x+ (d+1)/d

(d+1)/d+a(x− (d +1)ph(x)+ phd+1(x))

(d +1)px(hd(x)−1)

=
(a− ((d +1)/d)p)h(x)−ax+((d +1)/d)phd+1(x)

(d +1)p((d +1)/d +a)x(hd(x)−1)
. (4.14)

When x = 1, we classify Eq. (4.14) into those in the normal and percolation

phase. In the normal phase, i.e., f (1) = 1, assuming all clusters are almost

trees, the value of
∑

s=1

[
s((d +1)/d +a)− (d +1)/d

]
Ns(t) = (d+1)pt+

aN(t) becomes ((d + 1)/d + a) f (1)− ((d + 1)/d)n(1) = (d + 1)p+ a for

large t with leading to h(1) = 1. Applying L’Hopital’s rule when x = 1, one
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then get

h′(1) =
(a− ((d +1)/d)p)h′(1)−a+((d +1)2/d)ph′(1)

(d +1)p(d +1+ad)h′(1)
. (4.15)

Thus,

(d +1)p(d +1+ad)h′2(1)− ((d +1)p+a)h′(1)+a = 0. (4.16)

The solutions of Eq. (4.15) are

h′(1) =
a+(d +1)p±

√
(a+(d +1)p)2 −4a(d +1)p(d +1+ad)
2(d +1)p(d +1+ad)

.

(4.17)

The only single solution with minus sign in Eq. (4.17) is valid because h′(1)

must be zero when p = 0. Moreover, this one is valid for 0 ≤ p ≤ pc, where

the discriminant D(d,a, p) of Eq. (4.17), defined as D(d,a, p) ≡ (a+(d +

1)p)2 − 4a(d + 1)p(d + 1+ ad), is non-negative value. Subsequently, the

critical point pc, satisfying D(d,a, pc) = 0, is written as

pc(d,a) =
A(d,a)±

√
−4a2/(d +1)2 +A2(d,a)

2
, (4.18)

where A(d,a) is, for convenience, defined as

A(d,a)≡−2a
( 1

d +1
−2

)
−4a2

( 1
d +1

−1
)
. (4.19)

Single solution with the minus sign in Eq. (4.18) is only valid owing to the
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condition of lima→∞ pc(d,a) = 1/(4d(d + 1)) in the limit of growing ran-

dom simplicial complexes. Moreover, it is easily confirmed that the asymp-

totic value of pc(d,a) goes to 0 for a → 0. In this phase, the giant cluster

size G and the second order moment ⟨s⟩ can be obtained from Eqs. (4.11)

and (4.12) with the above h(1) and h′(1) for 0 ≤ p ≤ pc.

In the percolation phase with the giant cluster where the value of f (1)

is nonzero, The value of h(1) becomes h(1) =
∫ x=1

x=0 h′(x)dx and then h′(1)

is obtained from h(1) using Eq. (4.14). These values determine the giant

cluster size G = 1− f (x) and ⟨s⟩= f ′(1) from Eqs. (4.11) and (4.12).

Finally, the general forms of G and ⟨s⟩ are written as

G =


0 for p < pc,

1− (d+1)p+a
(d+1)/d+a h(1)− (d+1)/d

(d+1)/d+a(1− (d +1)ph(1)+ phd+1(1))

for p ≥ pc,

(4.20)

⟨s⟩=



(d+1)p+a
(d+1)/d+a

(
a+(d+1)p−

√
(a+(d+1)p)2−4a(d+1)p(d+1+ad)
2(d+1)p(d+1+ad) + (d+1)/d

(d+1)p+a

)
for p < pc,

(d+1)p+a
(d+1)/d+a h′(1)+ (d+1)/d

(d+1)/d+a(1− (d +1)ph′(1)+(d +1)ph′(1)hd(1))

for p ≥ pc,

(4.21)

where h(1) and h′(1) are h(1)=
∫ 1

0
((d+1)p+a−(d+1)2 p/d)h(x)−ax+((d+1)/d)phd+1(x)

(d+1)p((d+1)/d+a)x(hd(x)−1)
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Fig. 4.38: (Color online) Phase diagram of growing scale-free simplicial complexes
for (a) d = 1 (link), (b) 2 (triangle), (c) 3 (tetrahedron), and (d) 4 (5-cell) in (p,a)
plane, where p and a are the probability, which represents the facet density, and
the initial attractiveness, respectively. Each solid line represents the critical line
satisfying p = pc(d,a). The giant cluster exists in the region above each critical
line for p > pc(d,a), while it is absent in the region bellow each critical line for
p < pc(d,a).

dx and h′(1) = ((d+1)p+a−(d+1)2 p/d)h(1)−a+((d+1)/d)phd+1(1)
(d+1)p((d+1)/d+a)(hd(1)−1) , respectively, for

p ≥ pc.

The left-sided limit of ⟨s⟩ is (a+(d+1)pc)
(d+1)/d+a

(
a+(d+1)pc

2(d+1)pc(d+1+ad) +
(d+1)/d

(d+1)pc+a

)
and the right-sided limit of ⟨s⟩ is (a+(d+1)pc)

(d+1)/d+a

(
a+(d+1)pc

(d+1)pc(d+1+ad) +
(d+1)/d

(d+1)pc+a

)
since f (1) = 1 at p = pc. The difference is always a nonzero value of

a+(d+1)pc
2(d+1)pc(d+1+ad) for given a > 0 and d ≥ 2. It shows clearly there is dis-

continuity in Eq. (4.21) at p = pc, resembling the properties of the infinite-

order percolation transitions. The phase diagrams are presented in Fig. 4.38

for d = 1 (link), 2 (triangle), 3 (tetrahedron), and 4-simplexes (5-cell). When

d = 2, especially, our results are consistent with those in Ref. [67] for simple

model of coauthorship networks [68–71].

4.2 Degree and facet degree distributions

Now, we derive the degree and facet degree distributions in growing scale-

free simplicial complexes for the case of d-simplex. The probability, that a
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node added at time T is selected to be connected by a new link, is propor-

tional to kT (t)+a, where kT (t) is the facet degree of the target node at time

t and a is the initial attractiveness. The rate equation of q(k, p,T, t), defined

as the probability that the node added at time T have the facet degree of k at

time t with probability p, is written as

q(k, p,T, t +1)

= p
[d+1∑

l=1

l
(

d +1
l

)( k−1+a
(d +1)pt +aN(t)

)l(
1− k−1+a

(d +1)pt +aN(t)

)d+1−l

×q(k−1, p,T, t)+
(

1− k+a
(d +1)pt +aN(t)

)d+1
q(k, p,T, t)

]
+(1− p)q(k, p,T, t), (4.22)

where the total number of node is N(t) = N(0)+ t. Summing up Eq. (4.22)

over k from 1 to t, one can get

N(t +1)Pf (k, p, t +1)−q(k, p, t +1, t +1)

= p
[( k−1+a

pt/N(t)+a/(d +1)

)
Pf (k−1, p, t)+

(
N(t)− k+a

pt/N(t)+a/(d +1)

)
×Pf (k, p, t)

]
+(1− p)N(t)Pf (k, p, t)+O

( Pf

N(t)

)
, (4.23)

where Pf (k, p, t) ≡
∑t

T=0 N0
δ0T q(k, p,T, t)/N(t). The initial condition of

distribution q(k, p, t, t) is q(k, p, t, t) = δ0k because facet degree of a new
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node is zero. For large t limit, Eq. (4.24) is rewritten as

d(N(t)Pf (k, p, t))
dt

=
( k−1+a

1+a/((d +1)p)

)
Pf (k−1, p, t)

−
( k+a

1+a/((d +1)p)

)
Pf (k, p, t)+δ0k. (4.24)

Assuming Pf (k, p, t) become time-independent Pf (k, p) in the steady state

limit as time goes to infinity, one can easily get

(
1+

a
(d +1)p

)
Pf (k, p)+(k+a)Pf (k, p)− (k−1+a)Pf (k−1, p)

=
(

1+
a

(d +1)p

)
δ0k. (4.25)

Now, using the generating function Φ(z, p) of the facet degree distribution

Pf (k, p) satisfying Φ(z, p) =
∑

∞

k=0 Pf (k, p)zk, one can get

z(1− z)Φ′+a(1− z)Φ+
(

1+
a

(d +1)p

)
Φ =

(
1+

a
(d +1)p

)
. (4.26)

The solution of (4.26) around z= 0 is written in terms of the hypergeometric

function 2F1 as follow.

Φ(z, p) =
1+a/((d +1)p)

1+a+a/((d +1)p)2F1[1,a;2+a+
a

(d +1)p
;z]. (4.27)
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From the relation 2F1[a,b;c;z] =
∑

∞

k=0
1
k!

Γ[k+a]Γ[k+b]Γ[c]
Γ[a]Γ[b]Γ[k+c] zk, the facet degree

distribution is finally written as

Pf (k, p)

=
(

1+
a

(d +1)p

)
Γ[1+a+a/((d +1)p)]

Γ[a]
Γ[k+a]

Γ[2+ k+a+a/((d +1)p)]
.

(4.28)

For k ≫ 1, by using the Stirling approximation, Eq. (4.28) becomes

Pf (k, p)≃
(

1+
a

(d +1)p

)
Γ[1+a+a/((d +1)p)]

Γ[a]
(k+a)−(2+ a

(d+1)p ),

(4.29)

leading to the scaling exponent of γ = 2+a/((d +1)p).

Next, for graph degree distributions, we start at the following rate equa-

tion:

q(k, p,T, t +1)

= p
[d+1∑

l=1

l
(

d +1
l

)( (k−d)/d +a
(d +1)pt +aN(t)

)l(
1− k/d −1+a

(d +1)pt +aN(t)

)d+1−l

×q(k−d, p,T, t)+
(

1− k/d +a
(d +1)pt +aN(t)

)d+1
q(k, p,T, t)

]
+(1− p)q(k, p,T, t), (4.30)

For degree with respect to the link in graph, the degree distribution Pg(k, p)

is written as follow because d links are added to a each node when a d-
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simplex is added.

Pg(k, p)

=
(

1+
a

(d +1)p

)
Γ[1+a+a/((d +1)p)]

Γ[a]
Γ[k/d +a]

Γ[2+ k/d +a+a/((d +1)p)]
,

(4.31)

leading to the scaling exponent of γ = 2+ a/((d + 1)p) for large k, which

is consistent with the one of facet degree distribution.

In the limit as a goes to infinity without the preferential attachment,

two degree distributions of Eqs. (4.28) and (4.31) are reduced to those in

growing random simplex complex for the d-simplex.

4.3 Poisson distribution

Rate equation

Now, we consider the d-simplex, whose dimension d follow the Poisson

distribution with mean λ ≡ d − 1, is added to the system every time step.

Assuming all finite clusters consist of λ + 1 on average and they are all

trees, the total number of facet degree of nodes belonging to the cluster of

size s is written as ((λ +2)/(λ +1))(s−1). Then the probability each node,

which belongs to cluster of size si, is selected to be linked is proportional to

Π
d+1
i=1

(
((λ +2)/(λ +1))(si −1)+asi

)
where a is the initial attractiveness

of nodes. Thus the rate equation of Ns(p, t), defined as the number of cluster
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of size s, becomes

d(Ns(p, t))
dt

= p
∞∑

δ=0

P(δ ;λ )
[ ∞∑

i1,...,id+1=1

(
Π

d+1
α=1Jiα Niα

)
δ∑d+1

α=1 iα ,s

+

d−1∑
r=1

∞∑
i1,ir+2,...,id+1=1

(
d +1
r+1

)
Ji1Ni1

( i1
N

)r(
Π

d+1
α=r+2Jiα Niα

)

×δi1+
∑d+1

α=r+2 iα ,s
− (d +1)JsNs −

d−1∑
r=1

(
d +1

r

)
JsNs

( s
N

)r]
+δ1s,

(4.32)

where Js(t)≡ (s((λ +2)/(λ +1)+a)−(λ +2)/(λ +1))((λ +2)pt+aN(t))−1

and P(δ ;λ )≡ λ δ e−λ/δ ! with setting d = δ +1. In the steady state as time

t goes to infinity, Eq. (4.32) is reduced to

ns(p)

= p
∞∑

δ=0

P(δ ;λ )
[ ∞∑

i1,...,id+1=1

(
Π

d+1
α=1J̄iα niα

)
δ∑d+1

α=1 iα ,s
− (d +1)J̄sns

]
+δ1s,

(4.33)

where J̄s ≡ (s((λ + 2)/(λ + 1)+ a)− (λ + 2)/(λ + 1))((λ + 2)p+ a)−1.

The form of J̄s becomes

J̄s =
s((λ +2)/(λ +1)+a)− (λ +2)/(λ +1)

(λ +2)p+a

=
(λ +2)/(λ +1)+a

(λ +2)p+a

(
s− (λ +2)/(λ +1)

(λ +2)/(λ +1)+a

)
. (4.34)
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Facet and graph degree distributions

Now, we derive the degree and facet degree distributions in growing scale-

free simplicial complexes for the case of d-simplex, whose dimension d

follow the Poisson distribution with mean λ ≡ d−1. The probability, that a

node added at time T is selected to be connected by a new link, is propor-

tional to kT (t)+a, where kT (t) is the facet degree of the target node at time

t and a is the initial attractiveness. The rate equation of q(k, p,T, t), defined

as the probability that the node added at time T have the facet degree of k at

time t with probability p, is written as

q(k, p,T, t +1) = p
∞∑

δ=0

P(δ ;λ )
[d+1∑

l=1

l
(

d +1
l

)( k−1+a
(λ +2)pt +aN(t)

)l

×
(

1− k−1+a
(λ +2)pt +aN(t)

)d+1−l
q(k−1, p,T, t)

+
(

1− k+a
(λ +2)pt +aN(t)

)d+1
q(k, p,T, t)

]
+(1− p)q(k, p,T, t), (4.35)

where the total number of node is N(t) = N(0)+ t and P(δ ;λ )≡ λ δ e−λ/δ !

with setting d = δ +1. By using the Taylor expansion, one can get

q(k, p,T, t +1) = p
∞∑

δ=0

P(δ ;λ )
[( (d +1)(k−1+a)

(λ +2)pt +aN(t)

)
q(k−1, p,T, t)

+
(

1− (d +1)(k+a)
(λ +2)pt +aN(t)

)
q(k, p,T, t)

]
+(1− p)q(k, p,T, t), (4.36)

81



Summing up Eq. (4.36) over k from 1 to t, one can get

N(t +1)Pf (k, p, t +1)−q(k, p, t +1, t +1)

= p
∞∑

δ=0

P(δ ;λ )
[( (d +1)(k−1+a)

(λ +2)pt/N(t)+a

)
Pf (k−1, p, t)

+
(

N(t)− (d +1)(k+a)
(λ +2)pt/N(t)+a

)
Pf (k, p, t)

]
+(1− p)N(t)Pf (k, p, t)+O

( Pf

N(t)

)
, (4.37)

where Pf (k, p, t) ≡
∑t

T=0 N0
δ0T q(k, p,T, t)/N(t). The initial condition of

distribution q(k, p, t, t) is q(k, p, t, t) = δ0k because facet degree of a new

node is zero. For large t limit, Eq. (4.38) is rewritten as

d(N(t)Pf (k, p, t))
dt

=
∞∑

δ=0

P(δ ;λ )
[((d +1)(k−1+a)

λ +2+a/p

)
Pf (k−1, p, t)

−
((d +1)(k+a)

λ +2+a/p

)
Pf (k, p, t)

]
+δ0k. (4.38)

with leading to

d(N(t)Pf (k, p, t))
dt

=
[( k−1+a

1+a/((λ +2)p)

)
Pf (k−1, p, t)

−
( k+a

1+a/((λ +2)p)

)
Pf (k, p, t)

]
+δ0k. (4.39)

Assuming Pf (k, p, t) become time-independent Pf (k, p) in the steady state
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limit as time goes to infinity, one can easily get

(
1+

a
(λ +2)p

)
Pf (k, p)+(k+a)Pf (k, p)− (k−1+a)Pf (k−1, p)

=
(

1+
a

(λ +2)p

)
δ0k. (4.40)

In the same way as obtaining the Eq. (4.41),

Pf (k, p,λ )

=
(

1+
a

(λ +2)p

)
Γ[1+a+a/((λ +2)p)]

Γ[a]
Γ[k+a]

Γ[2+ k+a+a/((λ +2)p)]
.

(4.41)

For k ≫ 1, by using the Stirling approximation, Eq. (4.41) becomes

Pf (k, p)≃
(

1+
a

(λ +2)p

)
Γ[1+a+a/((λ +2)p)]

Γ[a]
(k+a)−(2+ a

(λ+2)p ),

(4.42)

leading to the scaling exponent of γ = 2+ a/((de f f + 1)p), where de f f ≡

λ +1.

Next, for graph degree distributions, we start at the following rate equa-
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tion:

q(k, p,T, t +1) = p
∞∑

δ=0

P(δ ;λ )
[d+1∑

l=1

l
(

d +1
l

)( (k−d)/d +a
(λ +2)pt +aN(t)

)l

×
(

1− (k−d)/d +a
(λ +2)pt +aN(t)

)d+1−l
q(k−d, p,T, t)

+
(

1− k/d +a
(λ +2)pt +aN(t)

)d+1
q(k, p,T, t)

]
+(1− p)q(k, p,T, t), (4.43)

4.4 Giant cluster size

In this section, we derive the explicit form of G in terms of p near the critical

point. First we redefine h(x) as 1−h(x). Then, around x = 1 and p = pc, Eq.

(4.13) become

ϕ
′(y)ϕ(y)−ϕ(y)≃ a/((d +1)p)

(1+a/((d +1)p))2 (y
1−(d+1+ad)− y), (4.44)

where y ≡ x−1/(d+1+ad) and ϕ(y)/y ≡ h(x)/(1 + a/((d + 1)p)). This ap-

proximation is valid only around x = 1 and p = pc for small G. When we

set y = 1, one can get ϕ(1) = 0 for the normal phase, while ϕ(1) ̸= 1 and

ϕ ′(1) = 0 for the percolation phase. Moreover, f (x) in (4.7)

f (x) = x+(d +1)px
dh(x)

dx
(1− (1−h(x))d)

≃ x+d(d +1)pxh′(x)h(x), (4.45)

84



around x = 1 and p = pc. In this regime, the giant cluster size G, defined as

G = 1− f (1), is written as

G = 1− f (1) =
d(d +1)p
d +1+ad

(
1+

a
(d +1)p

)2
(1−ϕ(1))ϕ(1) (4.46)

Now, let us solve the Eq. (4.44) to find ϕ(1). Near y = 1 and p = pc,

this equation is reduced to

ϕ
′(y)ϕ(y)−ϕ(y)≃−(

1
4
+α)(y−1), (4.47)

where α is defined as α ≡ (a/((d+1)p))(d+1+ad)/(1+a/((d+1)p))2−

1/4. The critical point pc(d,a) lies on the (d,a)-plane satisfying the condi-

tion of α = 0. Substituting (y−1)ψ for ϕ , Eq. (4.47) become

(y−1)ψ
dψ

dy
=−

[(
ψ − 1

2

)2
+α

]
, (4.48)

and the solution is written as

ln(C(y−1)) =−
∫

ψdψ

(ψ −1/2)2 +α
, (4.49)

where C is a integration constant. For α > 0, the solution of Eq. (4.49)

becomes

ln(C(y−1))

=−1
2

ln
((

ϕ

y−1
− 1

2

)2
+α

)
− 1

2
√

α

[
π

2
+ arctan

( 1√
α

(
ϕ

y−1
− 1

2

))]
,

(4.50)
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thus,

C(y−1)

=
((

ϕ

y−1
− 1

2

)2
+α

)−1/2
exp

[
− 1

2
√

α

[
π

2
+ arctan

( 1√
α

(
ϕ

y−1
− 1

2

))]]
.

(4.51)

As y → 1 and α → 0, satisfying 1 ≫ y − 1 ≫ exp [−π/(2
√

α)], the Eq.

(4.51) is reduced to

ϕ(1) =
1
C

exp
(
− π

2
√

α

)
. (4.52)

Substituting this into Eq. (4.46), one finally arrives at

G ≃ d(d +1)p
d +1+ad

(
1+

a
(d +1)p

)2 1
C

exp
(
− π

2
√

α

)
,

=
4ad
C

exp
(
− π

2
√

α

)
,

=
4ad
C

exp
[
−π

2

[a(d +1+ad)
(d +1)p

(
1+

a
(d +1)p

)−2
− 1

4

]−1/2]
, (4.53)

for p > pc around p = pc in the percolation phase.

For α = 0, the solution of Eq. (4.49) satisfies

4
[
ln
(

2+
4ϕ

1− y

)
+

2

2+ 4ϕ

1−y

]
=C−4ln(y−1), (4.54)

where C is a integral constant. In other form, this equation becomes

ln
( 1

2+ 4ϕ

1−y

)
− 2

2+ 4ϕ

1−y

= ln [C′(y−1)], (4.55)
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where C′ is a new constant. Thus, one can get

ϕ(y) =
y−1

2

(
1+

1
W [−C′′(y−1)]

)
, (4.56)

where C′′ is a new constant and W (z) is the Lambert function satisfying

W (z)exp [W (z)] = z. Using the asymptotic form W (−z) ≃ lnz for |z| ≪ 1,

this solution around y = 1 is reduced to

ϕ(y)≃ y−1
2

(
1+

1
ln [C′′(y−1)]

)
. (4.57)

Thus, when y = 1, one get ϕ(1) = 0 and the giant cluster size G becomes

zero at the critical point p= pc. This is consistent with the fact that the value

of Eq. (4.53) for p > pc becomes zero as p goes to pc.

For α < 0, the solution of Eq. (4.49) becomes

ln(C(y−1))

=
( 1

4
√
−α

− 1
2

)
ln
∣∣∣ψ − 1

2
+
√
−α

∣∣∣+( −1
4
√
−α

− 1
2

)
ln
∣∣∣ψ − 1

2
−
√
−α

∣∣∣,
(4.58)

where C is a constant. By considering the case of the normal phase for p <

pc, The value of ϕ(1) should be zero at y= 1, because giant cluster is absent.

In this case, a valid solution is written as

C(y−1) =
(1

2
−
√
−α − ϕ

y−1

) 1
4
√
−α

− 1
2(1

2
+
√
−α − ϕ

y−1

) −1
4
√
−α

− 1
2
,

(4.59)
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for ϕ/(y−1)< 1/2−
√
−α . This equation can be rewritten as

C′(y−1)
4
√
−α

1−2
√
−α =

(1
2
−
√
−α − ϕ

y−1

)(
1− 2

2
√
−α +1

ϕ

y−1

)−1−2
√
−α

1−2
√
−α

≃ 1
2
−
√
−α − 2ϕ2

(y−1)2(1−2
√
−α)

, (4.60)

where C′ is a new constant. Around y = 1, one can get

ϕ2

(y−1)2 =
(1

2
−
√
−α

)(1
2
−
√
−α −C′(y−1)

4
√
−α

1−2
√
−α

)
. (4.61)

Thus,

ϕ(y) =±(y−1)

√(1
2
−
√
−α

)(1
2
−
√
−α −C′(y−1)

4
√
−α

1−2
√
−α

)
. (4.62)

The only plus sign of Eq. (4.62) is valid because the value of ϕ should be

always positive. Finally one get,

ϕ(y)≃ (y−1)
(1

2
−
√
−α +C′′(y−1)

4
√
−α

1−2
√
−α

)
, (4.63)

where C′′ is a new constant. It confirm that ϕ(1) = 0 when y = 1, and then

the corresponding value of the giant cluster size G becomes zero in the nor-

mal phase for p < pc.

In summary, the explicit form of the giant cluster size G, around p= pc,
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is written as

G =


0 for p < pc,

4ad
C exp

[
−π

2

[
a(d+1+ad)
(d+1)p

(
1+ a

(d+1)p

)−2
− 1

4

]−1/2]
for p ≥ pc,

(4.64)

where pc is the critical point satisfying α = 0.

4.5 Size distribution

The size distribution is derived by using the inverse Z transform of f (z) =∑
∞

s=1 snsxs as follow.

sns =

∮
c

dz
2πi

f (z)z−k−1, (4.65)

where the contour c is a unit circle and counterclockwise closed path en-

circling the point z = 0. Substituting Eq. (4.45) into Eq. (4.65), Eq. (4.65)

becomes then

ns = δ1s +
d(d +1)p

2

∮
c

dz
2πi

h2(z)z−k−1. (4.66)

Thus we obtain

ns = δ1s −
d(d +1)p

2
(d +1+ad)

(
1+

a
(d +1)p

)2
∫

c′

dy
2πi

ϕ
2ys(d+1+ad)−3,

(4.67)
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where c′ is the new integration contour and y ≡ z−/(d+1+ad) and ϕ(y)/y ≡

h(z)/(1+a/((d +1)p)). Because there is a singularity at y = 1, we change

the integration variable y into 1+ u for small u. For large s, Eq. (4.67) be-

comes

ns =
d(d +1)p

2
(d +1+ad)

(
1+

a
(d +1)p

)2
∫

c′′

du
2πi

ϕ
2(1+u)es(d+1+ad))u,

(4.68)

where c′′ is the new integral contour.

When p = pc, by using Eq. (4.57), one get the size distribution

ns ≃
d2(d +1)p(1+a/((d +1)p))2

4(d +1+ad)2
1

s3 ln2 s

∼ 1
s3 ln2 s

, (4.69)

for large s at p = pc. The coefficient changes depending on the values of

d and a, however, the corresponding critical exponent τ is always 3 at the

critical point.

In the same way, when p < pc, by using Eq. (4.63), one get

ns ∼ s−3−4
√
−α/(1−2

√
−α), (4.70)

where α is defined as α ≡ (a/((d+1)p))(d+1+ad)/(1+a/((d+1)p))2−

1/4. Thus, the critical exponent τ is τ = 3+4
√
−α/(1−2

√
−α) for p< pc.

This is consistent with the direct measures by solving numerically Eq. (4.4)

as shown in Fig. 4.39.
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Fig. 4.39: (Color online) Plots of τ versus p in growing scale-free simplicial com-
plexes for (a) d = 1 (link), (b) 2 (triangle), (c) 3 (tetrahedron), and (d) 4 (5-cell).
Red (a = 0.5), green (a = 1.0), and blue (a = 2.0) symbols represent the results ob-
tained from measures by solving numerically the rate equation of size distribution.
Each solid line is the analytic solution τ = 3+4

√
−α/(1−2

√
−α). For each plot,

dotted lines from the left represent the critical points for a = 0.5, 1.0, and 2.0.

4.6 The case of (d +1)-sided polygon

When we consider the case of (d + 1)-sided polygon with d + 1 nodes, all

properties are the same with those of d-simplex but for the degree distri-

bution about graph. The degree distribution become as follow because only

two links are added to a each node when a polygon is added.

Pg(k, p)

=
(

1+
a

(d +1)p

)
Γ[1+a+a/((d +1)p)]

Γ[a]
Γ[k/2+a]

Γ[2+ k/2+a+a/((d +1)p)]
.

(4.71)

4.7 Analysis

We investigated the percolation phase transition in the growing scale-free

simplicial complexes. In our models, 0-simplex is added to the system and

a d-simplex is added with probability p. When we select d +1 number of 0

simplexes for d-simplex, we consider that each 0-simplex has a attractive-
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ness of their facet degree with initial attractiveness a. In this systems, the

degree and facet degree distributions follow the power-law behavior with

the same scaling exponent of γ = 2+ a/((d + 1)p) at p for given d and a.

Furthermore, based on the rigorous analytical derivation, we presented that

our model exhibits the infinite order phase transition for any d and a. Our

findings confirmed that, around the critical point p= pc, giant cluster cluster

size increase very smoothly and the second order moment has clear discon-

tinuity. Moreover, our models are reduced to the growing random simplicial

complexes when a → ∞ and the growing scale-free networks when d = 1,

respectively. Moreover, when a → ∞, we confirmed degree and facet degree

turn to be exponential.
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Chapter 5

Machine learning approaches

5.1 Motivation

In appendix, using a unsupervised machine learning (ML) method of prin-

ciple component analysis (PCA), we investigated the features of percolation

variables including the parent node number, occupation number, degree,

Adjacency and Laplacian matrix configurations for the percolation model

in two-dimensional lattices. As a results we confirmed that the giant clus-

ter sizes are extracted from the parent node number configurations and the

occupation probabilities are extracted from the other configurations. More-

over, recently, ML methods have also been successfully used to investigate

the percolation properties in two-dimensional lattices [72–74] from occupa-

tion number configurations sampled by Monte Carlo (MC) simulations.

However, owing to the difficulty and diversity of network embedding

manners, there are no researches about the ML approach to percolation

properties in networks. Here, we propose a simple method of network em-

bedding to learn the feature of percolation phase transitions in networks and

apply ML techniques to investigating percolation phenomena in networks.

We consider typically Erdős-Rényi (ER) and restricted-ER (r-ER) networks.

Conventionally, percolation transition type is second order [1, 2, 36, 75] in

ER network, whereas the hybrid transition[42] occurs in r-ER network.
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5.2 Model and method

Our algorithm comprised three main steps including network embedding,

feature learning, and classification (regression) as shown in Fig. 5.40. We

first consider ER and r-ER network models. Each networks start at N iso-

lated nodes. All node have number from i = 1 to i = N and their parents are

themselves at the beginning. When two clusters are merged as the network

grows, parents of all nodes in cluster with smaller number of parents node

are changed into parents of all node in other cluster before the merger. Af-

ter the network is grown up, the parent node number of each node in the

network is embedded into each site of the one dimensional lattice.

Next, in the feature learning step, the feature of the embedded network

information is learned through CNN. Our CNN starts with successive con-

volutional and pooling layers twice with 8 filters. Kernel size of convolu-

tional layer is 4 and pool size of pooling layer is 4. The values of sites in the

last pooling layer are flattened and goes through a fully connected network

(FCN). The number of output node of the last layer in this FCN is two for

classification of normal and percolation phases by using one-hot encoding,

and one for regression of the giant cluster size. For the classification ma-

chine, the activation functions of output layer and the other layers in FCN

are softmax [76] and the scaled exponential linear units (SELUs) [77] func-

tions, respectively. For the regression machines, the activation functions of

all layers in FCN are SELU functions. Loss function is mean squared error

and optimizer is Adam [78] for training our machines. The corresponding

neural networks in this step are implemented with TensorFlow [79].
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Fig. 5.40: (Color online) Schematic illustration of the machine learning (ML) pro-
cess in our convolutional neural networks. We first introduce the ER and r-ER net-
works starting at N = 20 isolated nodes and the parents of all nodes are themselves
at the beginning. When two clusters are merged as the network grows, parents of
all nodes in cluster with smaller number of parents node are changed into parents
of all node in other cluster before the merger. For given time t, the parents node
numbers of all nodes are embedded into sites on the one dimensional lattice of
length size 20. The feature of this embedded information is learned through suc-
cessive convolutional and pooling layers twice with several filters. kernel size of
convolutional layer is 4 and pool size of pooling layer is 4. The values of sites in
the last pooling layer are flattened and goes through a fully connected network to
classify or regress the information in the network. For the classification machine,
the activation functions of output layer and the other layer in FCN are softmax and
the scaled exponential linear units (SELUs) functions, respectively. For the regres-
sion machines, the activation function of all layer in FCN are SELU functions. Loss
function is mean squared error and optimizer is Adam for training our machines.
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We perform MC simulations of ER and r-ER networks to collect 1000

configurations of parent node numbers every time resolution of 0.01 in the

link density range of t ∈ [0,1.2] for the system size N/102 = 22,23, . . . ,27.

We then remove the information in the range of [tc −∆t, tc +∆t] around the

critical, such as (0.3,0.7) for ER and (0.55,0.85) for r-ER when g = 0.8

case. We also consider two machines of classification and regression and

use the parent node number configurations as the input data for training.

First, for the classification machine, we set two values (y1,y2) of nodes in

output layer as (0,1) for the normal phase in the subcritical region and (1,0)

for the percolation phase in the supercritical region. On the other hand, for

the regression machine, we use the corresponding giant cluster size config-

urations as the target values in output layer for training. We finally collect

other 1000 additional configurations of parent node numbers every time res-

olution of 0.01 in the link density range of t ∈ [0,1.2], and 20% of them is for

validation and the rest is for test. Our findings from ML are compared to the

corresponding MC simulation results by using finite size scaling analysis.

Moreover, as test metrics for the regression machines, we use the Pearson

correlation coefficient R [80], root mean square error (RMSE), and bias be-

tween the giant cluster sizes from our trained machine and MC simulation,

where bias is defined as the average of values for ML minus values for MC.

5.3 Results

In this section, we first show the parent node number is the reasonable input

data to classify the phases and derive the giant cluster size. Sequentially,

96



to confirm our classification and regression machines for ER and r-ER net-

works, we compare the results from ML approach to those from the MC

simulation analysis.

5.3.1 Relation between parent node number and giant
cluster size

Before using the our parent node number configurations as the training data,

we check the relationship between the parent node number and the giant

cluster size in ER and r-ER (g = 0.8) networks. We consider the total num-

ber of nodes N is 12800 with 1000 realizations by using MC simulations for

the link density from 0 upto 1.2. Each network starts from N isolated nodes

at t = 0 where the parents of all nodes are themselves with their initial node

numbers. When two clusters are merged following the NZ algorithm, par-

ents of all nodes in cluster, whose parent node number is smaller than other

one between two clusters, are changed into parent of other cluster whose

parent node number is larger.

Thus the larger the cluster size, the higher the probability that the num-

ber of parent nodes is. Moreover, the probability that the number of parent

node in the giant cluster is largest among all parents node numbers because

it becomes larger and larger as G grows with time t. Fig. 5.41 confirms that

the node numbers of parent nodes become larger as the giant cluster sizes

G increase with the Spearman correlations coefficients [81] larger than 0.89

for ER and 0.90 for r-ER. We hence expect that the parent node numbers can

characterize percolation configurations into normal and percolation phases
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Fig. 5.41: (Color online) For data from Monte Carlo (MC) simulations, plots of
the averaged parent node numbers of nodes in the giant cluster versus the giant
cluster size for the system size N/102 = 27 with 1000 realizations for (a) ER and
(b) r-ER networks. The color of data point represents the link density. The closer
link density t to 0 the more blue it becomes, meanwhile the closer its value to 1.2
the more red it becomes. When t = tc, the color is light gray. Spearman correlation
coefficients, between the parent node numbers of nodes in the giant cluster and the
giant cluster sizes, are 0.89 for ER and 0.90 for r-ER networks. Hence, our results
confirm that the probability, that parent node number of the node in the giant cluster
is the largest, increases with time t.

clearly, and even directly derive the giant cluster size.

5.3.2 ER network

First, we explored the percolation properties of ER networks where the

giant cluster sizes increase continuously at the critical point tc, exhibit-

ing the second-order phase transition. The critical point tc and other crit-

ical exponents are well known conventionally. We now perform the MC

simulation to obtain the giant cluster size G versus t for the system size

N/104 = 20 − 210 over 105 realizations. Assuming that the order parame-

ter follow the finite size scaling form of G(t) = N−β/ν̄ f ((t − tc)N1/ν̄), we

reconfirmed tc = 0.50(1), β = 1.0(1), and ν̄ = 3.0(1). The value of ν̄ is con-

sistent with those obtained from the formula tc(N)− tc(∞)∼ N−1/ν̄∗
, where
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Fig. 5.42: (Color online) For the classification machines of ER networks, plots of
(a) output values (y1,y2) versus the link density t. Training regions are shaded in
orange. (b) Plot of tc − tc′(N) versus N, where the asymptotic behavior of tc′(N)

follow tc− tc′(N)∼ N−1/ν̄ ′
with tc = 0.50(1) ν̄ ′ = 3.0(1). (c) Plot of (y1,y2) versus

(tc − t)N1/ν̄ ′
and all data are collapsed to a single curve with the estimated tc and

ν̄ ′.

tc(N) is defined as the point when the dG/dt is the maximum, leading to

ν̄∗ = 3.0(1).

Next, in test results of the classification machines, the intersection points

tc′(N) of output values (y1,y2) are estimated for the system size N/102 =

22 − 27 in Fig 5.42a. Assuming that the asymptotic behavior of tc′(N) fol-

lows tc − tc′(N) ∼ N−1/ν̄ ′
, we obtained tc = 0.50(1) and ν̄ ′ = 3.0(2) as

shown in Fig. 5.42b. Using these ν̄ ′, each data point for given system size is

well collapsed onto a single curve in Fig. 5.42c. Moreover, the estimated ν̄ ′

are consistent with ν̄ and ν̄∗ from MC simulation analysis as shown in Ta-

ble 5.9. It confirm that our classification machines can classify normal and

percolation phases in ER networks.

Furthermore, our regression machines are trained to retrieve directly

the giant cluster size using configurations of the parent node number. In

test results of regression machines, we estimate the Pearson correlation R

and root mean square error (RMSE), and bias between the giant cluster

sizes from the regression machines and the MC simulations for the sys-
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Fig. 5.43: (Color online) Plots of the retrieved values GML from regression ma-
chines versus the giant cluster sizes GMC from Monte Carlo (MC) simulations for
(a) training and (b) test results in ER networks for the system size N/102 = 27.
In (a), the pixel of (0,0) has been enlarged to make it more visible. (c) The corre-
sponding plot of the giant cluster size (black solid line) from MC simulation versus
t, compared to the retrieved value (red open circles) from the regression machine
versus t.

tem size N/102 = 22 − 27. In Fig. 5.43 and Table 5.10, we confirm that

our machine can derive the giant cluster size with R of almost unity and

very small RMSE and bias for all system sizes. In the same way as MC

simulation, we estimate tc(N) defined as the point where dG(t)/dt is the

maximum. Assuming that the asymptotic behavior of tc(N) follows the for-
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Fig. 5.44: (Color online) (a) Plot of tc(N)− tc versus N for N/102 = 22 − 27. The
value of tc(N) is defined as the link density where dG(t)/dt is the maximum.
Assuming that tc(N) follow tc(N)− tc ∼ N−1/ν̄∗

, one can get tc = 0.50(1) and
ν̄∗ = 3.0(1). From the finite size scaling formula G(t) = N−β/ν̄ f ((t − tc)N1/ν̄),
data points for all system sizes are collapsed to a single curve with tc = 0.5(1)
and ν̄ = 3.0(1) in (b) plot of GNβ/ν̄ versus (t − tc)N1/ν̄ . All data points above are
obtained from our trained regression machines for ER network.

100



mula tc(N)− tc(∞) ∼ N−1/ν̄∗
, on can get tc = 0.725(2) and ν̄∗ = 3.0(1)

as shown in Fig. 5.44a. Moreover, by using the finite size scaling form of

G(t) = N−β/ν̄ f ((t − tc)N1/ν̄), all data points are collapsed to a single curve

with tc = 0.50(1), β = 1.0(1) and ν̄ = 3.0(1) in Fig. 5.44b. Our results from

ML approaches are consistent with those from MC simulation analysis and

summarized in Table 5.9.

5.3.3 r-ER network

In r ER networks, the order parameter jumps discontinuously and then ex-

hibits the second order phase transition, called hybrid PT [42], where the

giant cluster sizes G(t) behave as

G(t) =


0 for t < tc,

G0 +(t − tc)β for t ≥ tc.
(5.1)

In reference [42], the jump size G0 and the other critical exponents β were

presented for g = 0.1− 0.9, continuously varying according to g. Consid-

ering g = 0.8 case without loss of generality, we use the results of tc =

0.725(1), β = 0.32(3) and G0 = 0.29(3).

We additionally perform the MC simulation for the system size N/104 =

20 − 210 over 105 realizations. The jump size G0 is estimated at G0(∞) =

0.29(3), satisfying that G0(∞)−G0(N) follow power-law behavior with re-

spect to N. Assuming that the order parameter follow the finite size scaling

form of G(t)−G0 = N−β/ν̄ f ((t − tc)N1/ν̄), we reconfirmed tc = 0.725(1),

G0 = 0.29(3) β = 0,32(3), and ν̄ = 1.8(1). In explosive percolation, we
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can assume the formula tc(∞)− tc(N)∼ N−1/ν̄∗
holds [82, 83], where tc(N)

is defined as t intercept of the tangent of G(t) at the point where dG(t)/dt

is the maximum. From these relations, we get ν̄∗ = 1.8(1) which is consis-

tent with ν̄ = 1.8(1). These results from MC simulations are going to be

compared to those from the classification and regression machines.

Now, in test results of the classification machines, the intersection points

tc′(N) of output values (y1,y2) are estimated for the system size N/102 =

22 − 27 in Fig. 5.45a. Assuming that the asymptotic behavior of tc′(N) fol-

lows tc − tc′(N) ∼ N−1/ν̄ ′
, we obtained tc = 0.725(2) and ν̄ ′ = 1.8(1) as

shown in Fig. 5.45b. Using these ν̄ ′, each data point is well collapsed onto

a single curve in Fig. 5.45c. Moreover, the estimated ν̄ ′ are consistent with

ν̄ = 1.8(1) and ν̄∗ = 1.8(1) from MC simulation analysis as shown in Ta-

ble 5.9. It confirm that our classification machines can classify normal and

percolation phases in r-ER networks.

For our regression machines trained to retrieve directly the giant cluster

size using configurations of the parent node number, R is almost unity and
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Fig. 5.45: (Color online) For the classification machines of r−ER networks, plots
of (a) output values (y1,y2) versus the link density t. Training regions are shaded
in orange. (b) Plot of tc − tc′(N) versus N, where the asymptotic behavior of tc′(N)

follow tc−tc′(N)∼N−1/ν̄ ′
with tc = 0.725(2) ν̄ ′ = 1.8(1). (c) plot of (y1,y2) versus

(tc − t)N1/ν̄ ′
and all data are collapsed to a single curve with the estimated tc and

ν̄ ′.
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Fig. 5.46: (Color online) Plots of the retrieved value GML from regression machines
versus the giant cluster sizes GMC from MC simulation for (a) training and (b)
test results in r-ER networks for the system size N/102 = 27. In (a), the pixel of
(0,0) has been enlarged to make it more visible. (c) The corresponding plot of the
giant cluster size (black solid line) from MC simulation versus t, compared to the
retrieved value (red open circles) from the regression machine versus t.

RMSE is smaller than 10−3 with very small bias between the giant cluster

sizes from the regression machines and the MC simulations for the system

size N/102 = 22−27 as shown in Fig. 5.46 and Table 5.10. In the same way

as MC simulation, Fig.5.47 confirms that the jump size G0 is estimated at

G0(∞) = 0.29(3), satisfying that G0(∞)−G0(N) follow power-law behav-
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Fig. 5.47: (Color online) (a)Plot of G0 −G0(N) versus N for g = 0.8 for N/102 =
25−27, including additional sizes of N/102 = 23, 45, and 90. When G0 = 0.29(3),
a power-law decay appears. (b) Plot of tc − tc(N) versus N for N/102 = 22 − 27.
The value of tc(N) is defined as t intercept of the tangent of G(t) at the point where
dG(t)/dt is the maximum. Assuming that tc(N) follow tc−tc(N)∼N−1/ν̄∗

, one can
get tc = 0.725(2) and ν̄∗ = 1.8(1). From the finite size scaling formula G(t)−G0 =
N−β/ν̄ f ((t − tc)N1/ν̄), data points for all system sizes are collapsed to a single
curve with tc = 0.725(2), G0 = 0.29(3), β = 0.32(3) and ν̄ = 1.8(1) in (c) plot
of (G−G0)Nβ/ν̄ versus (t − tc)N1/ν̄ . All data above are obtained from our trained
regression machines for r-ER.
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Table. 5.9: Comparison of the values of the critical point tc, critical exponent β ,
jump size G0, correlation exponents ν̄ and ν̄∗ obtained from MC simulation and
ML approach in Erdős-Rényi (ER) and restricted-ER (r-ER) networks. All values
are consistent with each other. The critical exponents ν̄ is defined in the finite size
scaling formula for the giant cluster size G in results of MC simulations and regres-
sion machines in ER and r-ER. The other exponent ν̄∗ is defined in the formula
|tc − tc(N)| ∼ N−ν̄∗

. We remark that tc(N) is defined as the point where dG/dt is
the maximum in ER whereas it is defined as t intercept of the tangent of G(t) at
the point where dG(t)/dt is the maximum in r-ER. Additionally, we define ν̄ ′ in
tc− tc′(N)∼ N−ν̄ ′

, where tc′(N) is defined as the intersection point of output values
(y1,y2) in classification machines in both ER and r-ER networks. The results from
ML approaches are consistent with those from MC analysis.

tc β G0 ν̄ ν̄∗ ν̄ ′

ER network
MC 0.50(1) 1.0(1) - 3.0(1) 3.0(1) -
ML 0.50(1) 1.0(1) - 3.0(1) 3.0(1) 3.0(1)

r-ER network (g = 0.8)
MC 0.725(1) 0.32(3) 0.29(3) 1.8(1) 1.8(1) -
ML 0.725(2) 0.32(3) 0.29(3) 1.8(1) 1.8(1) 1.8(1)

Table. 5.10: In test data for regression machines, the Pearson correlation coefficient
R and root mean square error (RMSE), bias between the giant cluster sizes from
regression machines and MC simulations for the system size N/102 = 22 − 27 in
each ER and r-ER (g = 0.8) networks. ḠML and ḠMC represent the averaged giant
cluster size for regression and MC simulation results, respectively.

N 400 800 1600 3200 6400 12800
ER network

R 0.994 0.995 0.997 0.998 0.998 0.999
RMSE (10−4) 363.0 350.7 281.9 236.5 193.1 150.7
Bias (10−4) 8.500 -10.61 -22.76 -24.04 -17.40 -7.274

ḠML 0.373 0.366 0.367 0.360 0.360 0.361
ḠMC 0.372 0.367 0.365 0.362 0.362 0.361

r-ER network (g = 0.8)
R 0.992 0.993 0.995 0.995 0.996 0.997

RMSE (10−4) 456.5 460.6 395.4 374.2 331.1 282.2
Bias (10−4) 10.55 3.346 10.63 5.952 -8.291 0.832

ḠML 0.333 0.324 0.321 0.316 0.313 0.313
ḠMC 0.332 0.324 0.320 0.316 0.314 0.313

104



ior with respect to N. Moreover, from the formula tc(∞)− tc(N) ∼ N−1/ν̄∗
,

where tc(N) is defined as t intercept of the tangent of G(t) at the point where

dG(t)/dt is the maximum, one can get tc = 0.725(2) and ν̄∗ = 1.8(1). Ad-

ditionally, by using the finite size scaling form of G(t)−G0 = N−β/ν̄ f ((t −

tc)N1/ν̄), we confirm that all data points are collapsed to a single curve with

tc = 0.725(1), G0 = 0.29(3), β = 0.32(3), and ν̄ = 1.8(1). Our results from

ML approaches are consistent with those from MC simulation analysis and

summarized in Table 5.9.

5.4 Analysis

We have implemented the supervised learning of continuous and hybrid per-

colation PT of ER and r-ER networks, respectively. We first proposed net-

work embedding method to use the information in networks as the input data

of ML. We embed the parent node number of all nodes to the correspond-

ing site in one-dimensional lattice. Next, by using these embedded data, we

trained two types of the classification and regression machines and derive

the feature of ER and r-ER networks.

Our trained classification machine classified the normal and percola-

tion phases, and gave us the reasonable values of the critical points tc and

the correlation exponents for both ER and r-ER. Furthermore, our trained

regression machines could retrieve directly the giant cluster sizes G which is

consistent with those of MC simulation results. We thus performed the finite

size scaling for the giant cluster size derived from the machines with leading

to the critical points tc, critical exponents β and the correlation exponents ν̄
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for ER and r-ER including the jump size G0 at t = tc. All percolation prop-

erties obtained from our ML techniques are consistent with those from MC

approach and summarized in Table 5.9.

Those findings show finally ML techniques can be great methods to

investigate the percolation properties even in network exhibiting not only

continuous PT but also hybrid PT including the discontinuity of the order

parameter’s emergence.
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Chapter 6

Conclusion

We first showed that the critical exponent β decreases algebraically with

m in growing networks; however, it decays exponentially in static networks

under the local suppression rules. This fact reflects that the suppression ef-

fect in growing networks is weaker than that in static networks. Furthermore,

we obtained the critical exponents and their tendencies in both growing and

static models for arbitrary values of m. The critical exponent β is finite for

given m and the order parameter exhibits the second order phase transitions

in growing networks under the local suppression effects.

Moreover, we investigated how a BKT PT of growing networks is

changed in type when the growth of large clusters in the system is sup-

pressed globally. We introduced the r-GRN model, modified from the GRN

model by including the suppression rule. In the r-GRN model, we found

that there exist two transition points, pb and pc, and three phases. i) In the

region p < pb, the order parameter is zero, and the cluster size distribution

decays according to a power law without any exponential cutoff and with

exponent τ(p) larger than three. Thus, the mean cluster size is finite. The

exponent τ(p) continuously decreases as p is increased. Accordingly, the

region p < pb is regarded as an infinite-order type critical region. ii) For

the region pb < p < pc, we found that the order parameter is zero, and the

cluster size distribution follows a power law without any exponential cut-
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off, where the exponent τ(p) ranges between two and three. Thus, the mean

cluster size diverges. This behavior is reminiscent of the critical behavior

occurring at the critical point of a second-order transition. Thus, region ii)

is regarded as a second-order type critical region. The fact that the mean

cluster size diverges, even though the largest cluster has not grown to the

extensive size yet, implies that the fluctuations of subextensive-finite clus-

ters diverge preceding to the emergence of the giant cluster of extensive size.

Similar behavior occurs in a hierarchical model [12]. iii) At pc, a discontin-

uous transition occurs. iv) The region p > pc is regarded as a noncritical

region because the order parameter is finite, and the cluster size distribu-

tion decay exponentially. Thus, our model contains the three regimes of the

infinite-order, second-order, and first-order transitions. We obtained various

properties of the transition behaviors analytically and numerically. We also

found that PIN models exhibit the BKT transitions and obtain a similar pat-

tern of PT to those in the r-GRN model. Thus our main results are universal

independent of detailed dynamic rules.

Furthermore, we extended the growing networks with edges to the

growing scale-free simplicial complexes with d-simplexes. For construct-

ing the growing scale-free simplicial complexes, we consider that each 0-

simplex has a attractiveness of their facet degree with a initial attractiveness

a. Based on the generating function approach [14, 27–29], we analytically

obtained the explicit forms of the giant cluster sizes and size distributions,

and confirmed that our models exhibit the infinite-order phase transitions.

Next, we confirm that ML method is successful in exploring the perco-

lation properties in not only lattices but also networks. First we found that
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the features of the parent node number configurations are the giant clus-

ter size in two-dimensional percolation system. Based on these results, we

performed the supervised learning analysis for ER and r-ER networks. we

embedded the parent node number of each node to each corresponding site

in one-dimensional lattice. By using these parent node number configura-

tions as the input data of the convolutional neural network (CNN) [84], we

developed the classification and regression machines to investigate not only

the continuous PT in ER network but also hybrid PT including discontin-

uous and continuous percolation properties in r-ER network. Finally, we

confirmed that our trained classification machines classify the two types of

phases with reasonable critical points and the trained regression machines

directly retrieve the giant cluster from the parent node number configura-

tions for both ER and r-ER networks, even though the machines was trained

with no information around the critical points.

In conclusion, we have solved generally the percolation problems in

growing scale-free simplicial complexes covering properties of growing net-

works, and it can help to understand the properties of growing system. Fur-

thermore, our findings revealed that the machine learning approach are ap-

plicable to the percolation issues in networks as well as lattices.
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Appendix A

r-GRN model

A.1 Rate equations of the r-GRN model

Here we recall the rate equations previous derived in Ref. [27]. The cluster

number density ns(p, t) is defined as the number of clusters of size s divided

by N(t) at time step t, where p denotes the probability that a link is con-

nected between two selected nodes. We denote the size of the largest cluster

in set R as SR(p, t). Then the rate equations of ns(p, t) are as follows:

d(N(t)ns)

dt
= p

[ ∞∑
i, j=1

ini jn j

g
δi+ j,s − sns −

sns

g

]
+δ1s for s < SR, (A.1)

d(N(t)ns)

dt
= p

[ ∞∑
i, j=1

ini jn j

g
δi+ j,s − sns −

(
1−

SR−1∑
k=1

knk

g

)]
+δ1s

for s = SR, (A.2)

d(N(t)ns)

dt
= p

[ ∞∑
j=1

SR−1∑
i=1

ini jn j

g
δi+ j,s +

∞∑
j=1

δSR+ j,s jn j

(
1−

SR−1∑
k=1

knk

g

)
− sns

]
for s > SR. (A.3)

On the R.H.S. of equation (A.1) for s < SR, the first term
∑

∞

i, j=1
ini jn j

g δi+ j,s

means the probability that one node is randomly selected in set R and the

other is randomly selected from the entire system, and they are merged and
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then generate a cluster of size s. The second and third terms (1+ 1/g)sns

means the probability that one node is randomly selected from a cluster of

size s in set R regardless of the other node selected from all other nodes in

the entire system and vice versa. The last term, δ1s represents the contribu-

tion by an incoming isolated node at each time step. In equation (A.2) for

s = SR, the first, second, and the last terms are obtained in the same way as

in equation (A.1). The third term 1−
∑SR−1

k=1
knk
g means the probability that

one node is randomly selected from the largest cluster of size SR in set R

regardless of the other node selected from all nodes in the entire system.

In equation (A.3) for s > SR, the first term
∑

∞

j=1 δi+ j,s jn j
∑SR−1

i=1
ini
g means

the probability that one node is randomly selected from the nodes which do

not belong to the cluster of size SR in set R and the other node randomly

selected in all nodes that generates a cluster of size s > SR. The second

term
∑

∞

j=1 δSR+ j,s jn j

(
1−

∑SR−1
i=1

ini
g

)
means the probability that one node

is randomly selected from the cluster of size SR in set R and the other node

randomly selected from all nodes in the entire system. The third loss term

sns is obtained in the same way as in equation (A.1) and (A.2). p means the

probability that two selected nodes are linked.

In the steady state t → ∞, SR(p, t) and ns(p, t) become independent of

t, and they are written as SR(p) and ns(p), respectively. Then the L.H.S. of

equation (A.1-A.3) become ns(p) and the R.H.S. of equation (A.1-A.3) are

rewritten as follows:
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ns = p
[ ∞∑

i, j=1

ini jn j

g
δi+ j,s −

(
1+

1
g

)
sns

]
+δ1s for s < SR, (A.4)

ns = p
[ ∞∑

i, j=1

ini jn j

g
δi+ j,s − sns −

(
1−

SR−1∑
k=1

knk

g

)]
+δ1s

for s = SR, (A.5)

ns = p
[ ∞∑

j=1

SR−1∑
i=1

ini jn j

g
δi+ j,s +

∞∑
j=1

δSR+ j,s jn j

(
1−

SR−1∑
k=1

knk

g

)
− sns

]
for s > SR. (A.6)
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Appendix B

Unsupervised learning of percolation
transitions in two-dimensional lattices

B.1 Feature extraction

To collect datasets, we perform MC simulations for two-dimensional bond

percolation (2DBP) in L by L of two-dimensional lattices with L2 nodes. At

time t = 0, all nodes are isolated with node number from i = 1 to i = N0,

and their parents are themselves at the beginning. Moreover, a bond can

be occupied at one of 2(L−1)L positions with closed boundary conditions

every time step t because of the coordination number z is 4. As time t in-

creases, a bond is randomly added to the system at each time with bond oc-

cupation probability p defined as p ≡ t/(2(L−1)L). When two clusters are

merged. parents of all nodes in cluster with smaller number of parents node

are changed into parents of all node in other cluster before the merger. We

grow the system until p = 1.0, and collect 2000 configurations of degrees

and parent node numbers every resolution of 0.01 in the link density range of

p ∈ [0,1.0] for the system size L/10 = 2, 4, 8, 10, 16, and 20. Half of config-

urations are used to train the machines with 20% of them for validation, and

the rest of them are used for test. We collect additional 2000 configuration

of adjacency and Laplacian matrix of size L2 by L2 every resolution of 0.01
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Table. B.11: The features, extracted by unsupervised learning methods, of percola-
tion variables including site (bond) occupation number, degree, adjacency matrix,
Laplacian matrix and parent node number for two-dimensional site (bond) percola-
tion.

Bond Site
Bond (site) occupation number Bond occupation prob. Site occupation prob.

Degree Bond occupation prob. Activated bond density
Adjacency matrix Bond occupation prob. Activated bond density
Laplacian matrix Bond occupation prob. Activated bond density

Parent node number Giant cluster size Giant cluster size

in the link density range of p ∈ [0,1.0] for the system size L/10 = 10. Simi-

larly, we collect datasets of two-dimensional site percolation (2DSP) for site

occupation number and parent node number configurations by performing

MC simulations. The foregoing two dimensional variables of configurations

are used in both input and output layers in PCA.

After performing PCA, linearity appear between the first principal com-

ponent y1 and the giant cluster sizes when the input datasets are the par-

ent node number configurations, whereas, linearity appear between the first

principal components y1 and the bond occupation probabilities when the

input datasets are the others.

In the same way as the case of 2DBP, as a result of PCA for 2DSP,

linearity appear between the first principal component y1 and the giant clus-

ter sizes when the input datasets are the parent node number configurations,

whereas, linearity appear between the first principal components y1 and the

site occupation probabilities when the input datasets are the site occupation

number configurations.
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[36] P. Erdos and A. Rényi, Publications of the Mathematical Institute of

the Hungarian Academy of Sciences 5, 17 (1960).

[37] B. Bollobás, Random Graphs (Academic Press, New York, 1985).

[38] R. A. da Costa, S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes,

Physical Review E 89, 042148 (2014).

[39] R. A. da Costa, S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes,

Physical Review E 90, 022145 (2014).

[40] S. M. Oh, S.-W. Son, and B. Kahng, arXiv:2012.10749 [physics]

(2020).

118

http://dx.doi.org/10.1103/PhysRevE.98.060301
http://dx.doi.org/10.1103/PhysRevE.98.060301
http://dx.doi.org/10.1088/1742-5468/ab3110
http://dx.doi.org/10.1088/1742-5468/ab3110
http://dx.doi.org/10.1103/PhysRevE.64.066110
http://dx.doi.org/10.1103/PhysRevE.64.066110
http://dx.doi.org/10.1103/PhysRevLett.85.4626
http://dx.doi.org/10.1103/PhysRevLett.85.4626
http://dx.doi.org/10.1103/PhysRevLett.85.4633
http://dx.doi.org/10.1103/PhysRevLett.85.4633
http://dx.doi.org/10.1103/PhysRevE.63.056125
http://dx.doi.org/10.1103/PhysRevE.63.056125
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1038/43601
http://dx.doi.org/10.1126/science.286.5439.509
http://arxiv.org/abs/2012.10749
http://arxiv.org/abs/2012.10749
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초록

여과 이론은 주어진 계에서 대형 클러스터의 형성을 설명한다. 모든 클

러스터들이 무작위로 연결되며 성장할 경우 계의 구조에 관계없이 임계

점에서연속적으로대형클러스터가나타난다.이러한무작위성만으로는

폭발적여과상전이의특성을설명할수없기때문에,지난십여년간여과

상전이의 종류를 폭발적 여과 상전이로 바꾸기 위하여 작은 클러스터의

성장을 촉진하고 큰 클러스터의 성장은 방해하는 다양한 국소적 억제 규

칙이제시되어왔다.전체노드의개수가일정한정적네트워크에서큰클

러스터의성장이국소적으로억제되면,대형클러스터가매우폭발적으로

나타나지만 그 과정이 불연속적이지 않고 연속적이다. 이때 모든 노드들

의정보를전역적으로이용하여큰클러스터의성장을억제하면,대형클

러스터가 임계점에서 완전히 불연속적으로 나타나게 된다. 하지만 실제

세상에서는 시스템이 성장하는 경우가 많으므로 본 연구에서는 시간에

따라 노드가 증가하는 성장 네트워크에 억제 규칙이 적용되는 경우를 고

려하였다.다양한종류의모델에대하여클러스터크기분포에대한비율

방정식을 세우고 이로부터 해석적으로 상전이의 종류를 조사해본 결과,

국소적억제조건하에서는 2차상전이의특징이나타나고전역적억제조

건하에서는 1차상전이의특징이나타났다.이때성장네트워크에국소적

억제 규칙이 적용되었을 경우 기존에 존재하던 노드들이 링크로 연결될

후보군으로선택될확률이높기때문에정적네트워크에서보다대형클러

스터가좀더부드럽게나타남을확인하였다.또한전역적인억제규칙이

적용되었을 경우에는 무한차 상전이에서의 특징과 유사하게 대형 클러

스터가 생기기 전 클러스터 크기 분포가 지수함수를 따르는 임계 영역이
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존재함을확인할수있었다.다음으로,더나아가실제세계의도수분포가

척도가 없고 두 개체 이상이 서로 상호작용한다는 특징에 기반하여 성장

네트워크를 척도 없는 성장 단체 복합체로 확장하였다. 척도 없는 성장

단체복합체가억제규칙하에서성장할때나타나는상전이의종류는네

트워크에서의 경우와 동일함을 확인하였다. 마지막으로, 지도 및 비지도

기계학습 방법을 이용하여 여과 상전이를 기술하는 물리 변수들의 특성

을 조사하였다. 그 결과 부모 노드 숫자와 점유 숫자 구성 집합들의 대표

특성이각각대형클러스터의크기와점유확률임을알수있었고,이러한

성질을이용해서네트워크에서의여과상전이또한성공적으로지도학습

하였다. 결과적으로, 본 연구는 일반적인 성장하는 시스템을 해석적으로

이해하는데도움을줄수있으며,기계학습방법이격자뿐만아니라네트

워크에도성공적으로적용될수있음을보여준다.

주요어 : 여과상전이,폭발적여과상전이,불연속여과상전이,비율방

정식, 생성 함수, 유한 크기 축적 이론, 척도 없는 네트워크, 단체 복합체,

기계학습

학번 : 2016-30097
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