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Abstract 

 

Structural failures caused by a strong earthquake may induce a large number of 

casualties and huge economic losses. To enhance life safety and disaster-resilience 

of communities, the current approach aims to design a structure that can withstand a 

design level earthquake event. To achieve the critical design objective, it is necessary 

to estimate the nonlinear structural responses under strong earthquake ground 

motions. Although nonlinear time history analysis is the only possible way to 

precisely estimate the structural responses in many situations, high computational 

cost and modeling time may hamper the adoption of the approach in routine 

engineering practice. Thus, in modern seismic design codes, various simplified 

regression equations are introduced to replace the onerous and time-consuming 

nonlinear time history analysis, but the accuracy of the estimated responses is limited. 

Moreover, the existing methods cannot quantify the uncertain errors in the response 

estimation, mainly caused by the loss of information in representing input data by 

selected features, especially regarding ground motion characteristics. To effectively 

predict the seismic responses without performing dynamic analysis, this study 

introduces a deep neural network as a regression function and a structural system is 

considered as a single degree of freedom (SDOF) system. 

First, a deep neural network (DNN) model that can predict seismic responses 

of structural systems is developed using a neural network architecture is motivated 

by the earthquake excitation mechanism. In the DNN model, a convolutional neural 

network (CNN) is introduced to extract the important features of structural systems 

from hysteretic behaviors. To train the proposed DNN model, a seismic demand 

database for three different idealized hysteretic behaviors is constructed by 
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performing a large number of nonlinear time history analysis. Numerical 

investigation confirms that the proposed DNN model provides superior performance 

compared to the existing nonlinear static procedures which are developed based on 

limited dataset and parameters. 

Although the DNN model is a good replacement for an onerous and 

complicated nonlinear time history analysis, the response prediction is deterministic, 

which cannot quantify the variabilities stemming from the nonlinear behavior of the 

structural system, i.e., varying seismic demands given the same earthquake intensity 

measure values. In order to quantify such uncertainties and improve the prediction 

accuracy, a probabilistic deep neural network (P-DNN) model is proposed based on 

a Bayesian deep learning method. By introducing a loss function which is 

proportional to the negative log-likelihood of the Gaussian distribution function, the 

mean and variance of the structural responses can be obtained. This assessment is 

important especially for earthquake engineering applications because large 

randomness in the input ground motion details significantly impacts the structural 

responses. Thorough numerical examinations are carried out to demonstrate the 

performance of the proposed P-DNN model. 

The DNN and P-DNN models show a superior level of accuracy compared to 

the existing simple regression-based methods, but the models were trained based on 

the idealized hysteresis. Given that the hysteresis of realistic structural systems 

generally incorporates various hysteretic characteristics such as stiffness/strength 

degradations and pinching effects, the developed DNN and P-DNN models cannot 

guarantee the prediction accuracy for the structural systems having sophisticated 

hysteretic characteristics. To this end, a modified Bouc-Wen-Baber-Noori (m-

BWBN) model is first proposed and a parametric investigation is carried out to 
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define the feasible parameter domain to describe the structural hysteresis. A new 

seismic demand database is constructed, and a Bouc-Wen hysteresis-based deep 

neural network (BW-DNN) model is proposed and trained. It is found that the BW-

DNN model can predict the seismic responses of a wide class of structural systems 

that are not covered by the DNN and P-DNN models. 

Three different scales of earthquake engineering problems, i.e., seismic 

response prediction of structural elements, seismic fragility estimation of structural 

system, and seismic loss assessment of an urban community, are presented to 

demonstrate the effectiveness and applicability of the developed DNN models. In 

addition to the applications, a novel web-service (http://ERD2.snu.ac.kr) is 

developed to provide source codes, constructed databases, and interactive 

visualization of the proposed DNN predictions. The compelling results confirm the 

merits and potential of the outcomes of this study, which eventually enhance the 

current seismic design provisions and seismic risk assessment of structural systems. 

 

Keyword: Earthquake engineering; Deep learning; Convolutional neural network; 

Bayesian deep learning; Single degree of freedom system; Bouc-Wen model; 

Regional seismic loss assessment; Fragility analysis; Uncertainties; Nonlinear time 
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Chapter 1. Introduction 
 

 

1.1 Motivation 

 

In an earthquake event, a sudden rupture of a fault may induce a strong ground 

motion which propagates and eventually shakes structures and infrastructure in the 

area. The response of structures subjected to such a seismic excitation highly 

depends on the hysteretic force-displacement behavior of structural systems. Figure 

1.1 illustrates how seismic waves propagating from a rupture induce the vibration of 

a structural system. 

To accurately estimate the seismic responses of a structural system, which 

forms the basis for seismic design and performance assessment, a comprehensive 

understanding of both earthquake ground motion and structural systems is needed. 

Figure 1.2 summarizes inelastic seismic analysis procedures in terms of the level of 

incorporated details of structural model and characterization of ground motion. Note 

that although the relative uncertainties associated with each procedure is illustrated 

as shade in the figure, the actual uncertainties depend on the number of parameters 

considered in each analysis. Due to the significant nonlinearity and inelasticity of a 

structural system, a time history analysis using both refined numerical models and 

recorded ground motions is considered as the most accurate way to estimate the 

structural responses. This approach solves the dynamic equilibrium equation at every 

time step using a numerical integration scheme, then the corresponding responses of 

the structural system can be numerically estimated. It is, however, noted that the 

nonlinear time history analysis subjected to earthquake ground motions involves 

exceedingly high computational efforts, which makes the approach impractical in 
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most routine engineering processes. In addition, due to the lack of recorded ground 

motions that are relevant to the structure’s specific location, and the uncertainty in 

the hysteretic behavior of a structure, adopting a highly precise yet computationally 

inefficient method cannot be fully justified. 

To estimate seismic responses of nonlinear structural systems without 

performing nonlinear time history analysis, many research efforts have been made 

using single degree of freedom (SDOF) systems (ATC 40, 1997; FEMA 440, 2005; 

Nassar and Krawinkler, 1991). Note that although a three-dimensional structural 

model with detailed structural properties is desirable for a dynamic analysis, an 

idealized structural model, such as an equivalent SDOF system, is often employed, 

especially when the structure is in design phase (Ibarra et al., 2005; Ruiz-García and 

Miranda, 2003; Tothong and Cornell, 2006; Vamvatsikos and Cornell, 2006). 

Because the peak transient responses during the excitation are the most important 

features when designing and assessing structural system, most of such methods 

usually aim at predicting the peak transient value of structural responses (but for 

simplicity, the term peak response is used in this study). Note that the peak responses 

refer to maximum absolute values, i.e., without considering the sign or direction 

during the excitation. The existing prediction equations are developed based on 

regression analysis with a rather small number of earthquake events, which 

inevitably leads to a large variation in the prediction. Moreover, those are applicable 

to a limited number of structural systems with idealized hysteretic behaviors in order 

to employ the corresponding regression coefficients. 

Meanwhile, some researchers have investigated various machine learning 

algorithms as an alternative to time-consuming analysis procedures used in the field 

of earthquake engineering (Adeli, 2001; Adeli and Panakkat, 2009; De Lautour and 
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Omenzetter, 2009; Giovanis et al., 2015; Lagaros and Fragiadakis, 2007; 

Mitropoulou and Papadrakakis, 2011; Möller et al., 2009; Nakamura et al., 1998; Xie 

et al., 2020 among many others). Since most of such machine learning models are 

trained for a specific type of structural system and hysteretic behavior, the 

applicability of the trained models to other structural systems is limited. Furthermore, 

relatively small number of nonlinear functions in the machine learning-based 

prediction models cannot fully identify the intricate relationships between structural 

responses and the corresponding information of structural system and earthquake 

events. 

This study attempts to address the limitation of previous studies by improving 

the accuracy of response prediction and extending the applicability of the method to 

various types of structural system and ground motions. To this end, deep neural 

network (DNN), which is one of the machine learning algorithms, is employed as a 

tool to predict the structural responses. Since the DNN achieved unprecedented 

performance in terms of predicting the intricate relationship between input and 

output variables, it is possible to cover comprehensive information including both 

earthquake events and structural characteristics. Once the DNN model is developed, 

it is possible to accurately predict the seismic responses for various structural 

systems without performing time history analysis in various earthquake engineering 

problems. 

 

1.2 Background and related research efforts 

 

As previously discussed in Section 1.1, various methods have been developed as a 

replacement of onerous and complicated nonlinear time history analysis. This section 
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first introduces well-known nonlinear static procedures which are adopted in modern 

seismic design codes: (1) capacity spectrum method, (2) coefficient method, and (3) 

R-𝜇-T relationship. Then, the basic concepts of deep learning are introduced, which 

is followed by several instances of applying deep learning to earthquake engineering 

problems, especially for prediction of structural responses and assessment of seismic 

performance. 

 

1.2.1 Current practices of seismic response prediction 

1.2.1.1 Capacity spectrum method 

Capacity spectrum method was developed based on the assumption that the peak or 

absolute maximum inelastic deformation of a nonlinear SDOF system can be 

approximately estimated from the peak deformation of a linear elastic SDOF system 

having a period and a damping ratio that are larger than the initial values of those for 

the nonlinear system (ATC 40, 1997; FEMA 440, 2005). The process begins with the 

generation of a force-deformation relationship from nonlinear pushover analysis in 

acceleration-displacement response spectrum (ADRS) format. By superimposing the 

pushover curve on an ADRS demand spectra, i.e., response spectrum of ground 

motion, the estimated force-deformation relationship becomes a capacity spectrum. 

Using simple regression equations, effective period and viscous damping for demand 

curves are recursively calculated, and then the intersection point between the radial 

effective period and the response spectrum for the effective viscous damping are 

estimated. The iterative procedure is carried out until the difference between the 

intersection points for the consecutive iterations lies within acceptable tolerance. By 

determining the point, it is possible to estimate the peak displacement or damage of 

the structural system subjected to a given earthquake. The schematic diagram of the 
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capacity spectrum method is depicted in Figure 1.3. 

 

1.2.1.2 Coefficient method 

Coefficient method (ASCE 41-13, 2013) calculates the target peak displacement 

𝑢𝑝𝑒𝑎𝑘  of nonlinear structural system by modifying the peak displacement of a linear 

oscillator using several empirical coefficients as follows: 

𝑢𝑝𝑒𝑎𝑘 = 𝐶0 ∙ 𝐶1 ∙ 𝐶2 ∙
𝑆𝑎(𝑇)

𝜔2
∙ g (1.1) 

where 𝐶0, 𝐶1, and 𝐶2 are the modification factors that represent different aspects 

of the building when characterizing as the simplified SDOF system, 𝜔 denotes the 

circular natural frequency of the structural system, 𝑆𝑎(𝑇1)  is the spectral 

acceleration at the first mode period, and g stands for the acceleration of gravity (=

9.81 m/s2 ). The modification factors are estimated based on simple regression 

functions with predefined values which vary along with types structures and 

earthquake of interest. 

 

1.2.1.3 R-𝝁-T relationship 

Veletsos and Newmark (1960) found out that the peak displacements of elastic and 

inelastic structural systems having medium to large periods are identical to each other. 

Based on these empirical findings, the seismic responses of inelastic system can be 

readily estimated from the equivalent elastic system having the same period T. In 

other words, if the stiffness is independent of strength, the displacement ductility 𝜇 

can be estimated from strength reduction factor R. Such an approximate prediction 

is referred to as R-𝜇-T relationship and the corresponding graphical representation 
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is shown in Figure 1.4. Numerous studies of R-𝜇-T relationship have been proposed 

by improving this approximation and extending to various types of structural systems 

(Chopra and Chintanapakdee, 2004; Miranda and Bertero, 1994; Nassar and 

Krawinkler, 1991). 

 

1.2.2 Literature reviews: Deep learning in earthquake engineering 

1.2.2.1 Introduction to deep learning 

Machine learning is a field of study that provides systems or computers with the 

ability to automatically learn and improve from experiences without being explicitly 

programmed (Samuel, 1959). To properly figure out patterns of phenomenon, a large 

number of datasets is inevitably required. With the advent of high level of computing 

performance, machine learning has played a pivot role in many areas such as finance, 

medical, and engineering. 

Deep learning is a part of machine learning algorithms based on artificial neural 

network (ANN) which is designed to mimic a human brain’s structure and operation. 

The classic ANN typically consists of three layers: input, hidden and output layers 

whose configuration is depicted in Figure 1.5. Each node or unit represents a matrix 

operation including a nonlinear function whose parameters are adjusted through 

training by available input and output datasets. Deep neural network (DNN) is a 

variant of ANN which stacks multiple hidden layers widely and deeply, which yields 

a highly generalized regression equation (LeCun et al., 2015). Owing to the 

multiprocessing layers and nonlinear transformation, it is possible to identify critical 

features of input data and find hidden patterns of highly complex problems, thus to 

obtain superior predictions compared with other machine learning methods. 

The objective function of a neural network for regression analysis, often termed 
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“loss function” is defined as follows for given input data 𝑥𝑖 and its corresponding 

output 𝑦𝑖: 

𝐿 =
1

𝑁
∑‖𝑦𝑖 − 𝑓(𝑥𝑖)‖

2

𝑁

𝑖=1

 (1.2) 

where 𝑁 is the number of input-output data points, 𝑓 denotes the output estimated 

by the neural network model, and ‖∙‖  represents the metric that computes the 

distance between the real and the estimated values of the output, e.g., Euclidian 

distance. Note that different loss functions are assigned to classification problems. 

The optimal DNN parameters for a given dataset is obtained by minimizing the loss 

function using an optimization algorithm with back-propagation scheme. 

 

1.2.2.2 Deep learning methods for seismic response prediction 

Owing to huge benefits of machine learning algorithms their application to 

earthquake engineering keeps increasing. Although there exist numerous 

applications for each subfield of earthquake engineering, this section focuses on 

seismic response prediction or performance assessment of structural systems, 

especially using ANN or DNN. Throughout the literature reviews, benefits from the 

deep learning method to each research effort are highlighted. 

As discussed earlier, a large number of datasets are required to construct a DNN 

model to predict responses of structural system subjected to ground motions. Thus, 

datasets from numerical investigations are often employed instead of those from 

laboratory tests. In general, input of the model is the structural parameters and 

ground motions, while output is the structural responses. Starting from Conte et al. 

(1994) who used ANN as a surrogate model to predict linear elastic behavior of 
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multi-story buildings, ANN has been widely implemented to various buildings and 

infrastructures such as frame structure (Joghataie and Farrokh, 2008; Xu et al., 2004), 

concrete dam (Karimi et al., 2010), concrete bridge (Jeng and Mo, 2004), and steel 

moment frames (Akbas et al., 2011). Moreover, recently, using long short-term 

memory which is one of the DNN methods, Zhang et al. (2019) predicted the time 

series of seismic responses of a nonlinear hysteretic system. Once ANN or DNN 

models are developed, further dynamic analysis is not required to predict the 

responses of future earthquakes for the target structural system. 

Structural fragility defined as the conditional probability of failure at a given 

value of seismic intensity is another important feature to evaluate the seismic 

performance of structural systems, which provides information to evaluate casualties, 

total economic losses, and repair costs. However, in order to estimate the structural 

fragilities considering various uncertainties lying on both seismic demand and 

capacity, a huge number of dynamic analysis is required. To reduce the 

computational costs, many research efforts employed ANN and DNN as a surrogate 

of the dynamic analysis (Lagaros et al., 2009; Liu and Zhang, 2018; Mitropoulou 

and Papadrakakis, 2011; Wang et al., 2018). Thereby, it is possible to estimate 

structural fragility for given earthquake hazard scenarios with less computational 

costs. 

 

1.3 Objectives and scopes 

 

The research described in this dissertation has two main objectives: (1) developing 

DNN models that predict seismic responses of structural systems having different 

hysteretic characteristics, and (2) demonstrating applications of the developed DNN 
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models to various earthquake engineering problems including prediction of seismic 

losses of an urban community. 

The dissertation first focuses on developing a DNN model that can predict 

seismic responses of structural systems. The DNN model is developed using the 

seismic responses of three different idealized hysteresis. Next, to incorporate the 

latent uncertainties in the seismic features, a probabilistic deep neural network (P-

DNN) model is developed by introducing a new loss function. Finally, an extension 

is made to predict the seismic responses of generalized hysteresis having stiffness 

and strength degradations, and pinching effect using a deep neural network. The 

extended model is referred to as BW-DNN model, because Bouc-Wen hysteresis 

model is employed to construct the datasets for training the deep neural network 

model. Compared with the existing nonlinear static procedures, the proposed models 

have the following benefits: (a) accuracy of response prediction is significantly 

improved with less computational efforts; (b) the models can be applied to various 

structural systems subjected to different kinds of ground motions; (c) once the 

models are developed and trained, no further training is required to predict seismic 

responses of structural systems that are not used in training; (d) it is possible to 

predict various structural responses including peak displacement, velocity and 

acceleration; (e) the P-DNN model provides the mean and variance of structural 

responses so that large randomness in the input ground motion details and their 

significant impact on the structural responses are quantitatively examined; (f) since 

important features of structural systems are automatically extracted from the DNN 

models, there is no need to parameterize the hysteresis of a structural system using a 

mathematical model such as Bouc-Wen model; (g) to facilitate the use of the 

proposed method in practice and research field, a novel web-service providing an 
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interactive visualization of the proposed method is developed and serviced at 

http://ERD2.snu.ac.kr. The advantage of the developed methods will be thoroughly 

investigated and presented throughout the dissertation. 

Next, comprehensive applications of the developed models to three different 

scales of structural systems are presented. Since the seismic responses prediction of 

a structural system is the first step in many topics in earthquake engineering 

problems, the developed method can be implemented to various areas. Starting from 

the response prediction of structural elements, the method can be employed to 

evaluate the structural fragility and assess the seismic loss of an urban community in 

a probabilistic manner. 

The intellectual merits provided by this research will lead to meaningful 

discussions and initiation of future research efforts in both neural network 

communities and earthquake engineering fields. Moreover, although the dissertation 

is focused on prediction of structural system subjected to earthquake ground motions, 

it is possible to extend the proposed concept to a wide array of engineering problems 

such as various hysteretic systems subject to stochastic excitations, which enriches 

the convergence between different academic fields.  

 

1.4 Organization 

 

The dissertation is organized into 6 chapters. The first objective described in the 

previous section is addressed in Chapters 2, 3, and 4, in which three different DNN 

models are developed with the corresponding databases and training methodologies. 

On the other hand, the second objective is handled in Chapter 5, which provides three 

different scales of earthquake engineering problems. More details on the specific 

http://erd2.snu.ac.kr/
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subjects covered in each chapter are presented below. 

Chapter 2 describes the development of DNN model that can predict seismic 

responses of three idealized hysteresis which is widely used in civil engineering. To 

this end, a seismic demand database is developed using 54,090 different structural 

systems subjected to 1,499 ground motions. Inspired by the natural phenomenon of 

seismic excitations of structural systems mechanism, a new DNN architecture is 

proposed and trained using the database. Prediction accuracy of the DNN model that 

predicts the peak displacement is compared with the nonlinear static procedures 

presented in Section 1.2.1. This is followed by the development of DNN models that 

can predict other structural responses such as peak acceleration and velocity. 

Chapter 3 begins with a discussion on latent uncertainties in the input of the 

DNN model, especially for ground motion information. Since the stochastic 

excitation is characterized by several seismic intensities, loss of information 

inevitably occurs. Due to this characterization, the DNN model always produces the 

same responses for the same DNN input, even though ground motions and the 

corresponding structural responses are different. To address this limitation, the 

probabilistic deep neural network (P-DNN) model is proposed by employing a new 

loss function which is proportional to the negative log-likelihood of the Gaussian 

distribution assumption. The predicted mean and variance from the P-DNN model 

are comprehensively investigated with the developed DNN model in Chapter 2 and 

Bayesian linear regression method, respectively. 

Chapter 4 extends the DNN model in order to incorporate more complicated 

and sophisticated hysteretic behaviors. Since the DNN models in Chapters 2 and 3 

are trained based on idealized hysteresis, there is a limitation to the prediction of 

seismic responses of structural systems having stiffness and strength degradations, 
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or pinching effects which are commonly shown in most of structural materials, 

especially in reinforced concrete (RC) structures. To this end, Bouc-Wen-Baber-

Noori (BWBN) model which is versatile in describing various hysteresis is employed. 

However, since the current version of the BWBN model has a limitation to express 

the yield strength of structural systems, modified Bouc-Wen-Baber-Noori (m-

BWBN) model is suggested and employed in this research. Moreover, the lower and 

upper bounds of the parameters of the m-BWBN model are determined from 

sensitivity analysis to cover every practical range of civil structural systems. Using 

the developed database and the new DNN architecture, the BW-DNN model is 

trained and its performance is verified. 

Chapter 5 presents three different scales of earthquake engineering problems as 

an application of the developed DNN models. First, seismic responses of RC 

columns are predicted by using the BW-DNN and DNN models. Second, a new deep 

learning-based fragility estimation method is proposed using the predicted mean and 

variance from the P-DNN model. Third, probabilistic seismic loss assessment is 

carried out using the P-DNN model and the results are compared with the ones 

obtained by the DNN model and the coefficient method. 

Finally, Chapter 6 provides a summary of the main results and conclusions of 

the study. Recommendations for future studies are also presented. 
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Figure 1.1 Illustration of structural vibration induced by earthquake event  



 

14 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Inelastic seismic analysis procedure for various structural models and 

ground motion characterization along with the level of uncertainties  
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Figure 1.3 Schematic diagram of the capacity spectrum method  
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Figure 1.4 Schematic diagram of R-𝜇-T relationship  
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Figure 1.5 Illustration of ANN with 4 units/nodes in hidden layer  
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Chapter 2. Seismic Response Prediction of Idealized 

Hysteresis Using Deep Learning 
 

 

2.1 Introduction 

 

Deep neural network (DNN) has shown unprecedented performance in terms of 

predicting an intricate relationship between the input and output variables in diverse 

fields including business, medical, and engineering (LeCun et al., 2015; 

Schmidhuber, 2015). In particular, development of deep convolutional neural 

network (CNN) has achieved practical successes, especially in face recognition 

(Lawrence et al., 1997), image classification (Krizhevsky et al., 2012), and speech 

recognition (Sainath et al., 2015). Since the CNN shows a clear advantage in dealing 

with the data having a strong spatial correlation by using multiple overlapping filters, 

the CNN is employed to extract features of a nonlinear hysteretic system from its 

hysteresis loops. The features extracted from the hysteretic information are, then, 

merged with those representing stochastic excitation information to form a deep 

ANN that can predict the seismic responses of a structural system. Thereby, the 

trained DNN model can cover comprehensive information including both the 

stochastic excitations and characteristics of nonlinear hysteretic systems. 

This chapter first presents the overview of seismic response assessment of 

structural systems and summarizes the structural and earthquake information which 

are employed as the inputs for the DNN model proposed in this study. Next, an 

architecture of the DNN model that can predict seismic responses of a single degree 

of freedom (SDOF) system is proposed by merging the extracted structural and 

earthquake information. After training the proposed DNN model using seismic 
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responses obtained from a huge amount of time history analyses, its efficiency and 

applicability are demonstrated through comparison with existing methods (Kim et 

al., 2019). 

 

2.2 Seismic responses of structural systems and selected 

features 

 

This section describes the overall procedure of nonlinear time history analysis and 

provides reasoning on the critical features that are selected as inputs for the DNN 

model. The structural system is represented as a hysteretic loop, i.e., a relationship 

between imposed displacement and normalized restoring force, whereas the 

earthquake ground motion is represented by a set of widely used features. 

 

2.2.1 Characterizing single degree of freedom structural system 

An equivalent SDOF system is often used as a replacement of a detailed numerical 

model, especially when the structure is being analyzed in the design phase (Ibarra et 

al., 2005; Ruiz-García and Miranda, 2003; Tothong and Cornell, 2006; Vamvatsikos 

and Cornell, 2006). The governing differential equation of an SDOF system 

subjected to earthquake ground motion is given by 

𝑚(𝑢̈ + 𝑢̈𝑔) + 𝑐𝑢̇ + 𝑓𝑠 = 0 (2.1) 

where 𝑚  is the mass, 𝑐  is the damping coefficient, 𝑓𝑠   represents the restoring 

force function which may depend on the history of structural responses, 𝑢̈𝑔 denotes 

the ground acceleration, and 𝑢, 𝑢̇ and 𝑢̈ respectively stand for the displacement, 

velocity and acceleration of the mass relative to the ground. Eq. (2.1) can be 

rearranged after dividing both sides by the mass 𝑚: 
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𝑢̈ + 2𝜉𝜔𝑢̇ + 𝐹𝑠 = −𝑢̈𝑔 (2.2) 

where 𝜉 represents the damping ratio (typically 5% is used in practice), 𝜔 is the 

circular natural frequency of the structural system, and 𝐹𝑠 denotes the normalized 

restoring force, i.e., 𝑓𝑠/𝑚. Given that 𝜔 depends on the relationship between 𝑢 

and 𝐹𝑠, 𝐹𝑠 is the only term in the equation that affects the responses of a structure 

subjected to the specific ground acceleration history 𝑢̈𝑔. Figure 2.1 provides three 

different hysteretic models which are widely used in the field of civil engineering: 

linear elastic, bilinear kinematic hardening, and bilinear stiffness degrading systems. 

It should be noted that, in fact, the hysteretic behavior of a real structural system can 

be much more complicated, which will be later handled in Chapter 4. The three 

simplified hysteretic models in Figure 2.1 are used in this chapter to train the DNN 

model and demonstrate the effectiveness of the proposed method. The three idealized 

hysteretic models in Figures 2.1(a), (b) and (c) are, respectively, denoted as HM1, 

HM2, and HM3 in this study. 

In order to identify the hysteretic behavior of a structural system, a quasi-static 

cyclic analysis (i.e., push and pull the nonlinear hysteretic system) of an SDOF 

system is performed by numerical simulations using predefined displacement history. 

The process to estimate a hysteretic behavior for the input of the DNN model is 

illustrated in Figure 2.2. Most of the existing methods directly employ the parameters 

of simplified mathematical models of a nonlinear hysteretic system such as stiffness 

and yield strength to an input of ANN or DNN models. However, in the proposed 

method, hysteretic behaviors (i.e., the displacement and force vectors in Figure 2.2) 

are employed as the input parameter to a CNN layer which is often used to extract 

complicated natural data to lower-level features. Thereby, the CNN would 
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automatically extract useful information for estimating the responses of the nonlinear 

hysteretic system by training the neural network model. Note that the displacement 

history is predefined based on the normalized yield force and stiffness of the 

structures, and the corresponding restoring force history is estimated from the quasi-

static cyclic analysis. 

 

2.2.2 Characterizing earthquake ground motions 

Ground motion records include many features of an earthquake event including soil 

condition of the site, fault mechanism, earthquake magnitude, epicentral distance, 

and attenuation relationship. These features influence the duration of the motion, 

frequency content, and the number of cycles, which eventually affect the dynamic 

responses of nonlinear structural systems. Several investigators have characterized 

such features of earthquake ground motion with a simple intensity measure (Housner 

and Jennings, 1982; Kim et al., Accepted; Marafi et al., 2016; Riddell, 2007 among 

many others). However, considering the described characteristics of stochastic 

excitation, it is desirable to use multiple features together to properly describe the 

earthquake ground motion. Thus, three different types of ground motion information 

are selected as the input of the DNN model, which have been demonstrated to 

correlate well with the responses of a nonlinear structural system: (1) earthquake 

characteristics, (2) peak values of ground motion time histories, and (3) response 

spectrum. The various intensity measures are employed instead of ground motion 

acceleration time history because a seismic demand of a site of interest is defined as 

a design spectrum according to modern seismic design codes (Eurocode 8, 2003; 

KMOLIT, 2018). Moreover, it is found that the DNN model can be more efficiently 

trained when the various intensity measures that show high correlation with the target 
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structural responses are employed as the input than the ground acceleration is used. 

First, the features that are selected to represent earthquake characteristics are 

magnitude (𝑀), epicentral distance from the site of the structure (𝑅), and the soil 

class of the site. The soil class is important because it can affect the stability of 

structure by amplifying the ground motions based on its consolidation level (BSSC, 

2003). For example, BSSC (2003) uses five different soil classes. Although the fault 

type information should be incorporated as another feature of an earthquake event, 

such information is not included in the strong motion database (Power et al., 2006) 

which is adopted in this study to carry out dynamic analysis. Thereby, it is decided 

not to use it as an input parameter. Second, the features that represent peak values of 

ground motion time history are the absolute maximum value of each recorded 

acceleration (peak ground acceleration; PGA), velocity (peak ground velocity; PGV), 

and displacement (peak ground displacement; PGD). Lastly, the features that 

represent frequency contents of ground motion acceleration are 5%-damped spectral 

accelerations in the period range of 0.005 sec to 10 sec (total 110 steps; 𝑆𝑎(𝑇)) are 

used, i.e., response spectrum. Note that spectral acceleration 𝑆𝑎(𝑇) represents the 

peak acceleration of a linear elastic SDOF system with a specified natural period and 

given damping ratio subjected to the ground motion, usually given in a unit of gravity 

acceleration, g. Most of the previous studies described in Chapter 1 employ only a 

few spectral acceleration values of certain periods including the first mode of a target 

structural system as an input parameter of ANN models. By contrast, in this study, 

spectral acceleration of all possible periods of civil/architectural structural systems, 

i.e., response spectrum, is used as an input, so that the estimation of the target 

structure’s natural frequency is not required. In other words, the neural network 

automatically identifies and employs the dominant spectral acceleration values to 
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predict seismic responses. Moreover, the effect of spectral shape is taken into 

account, which is found as an important factor affecting dynamic responses (Baker 

and Cornell, 2006; Haselton et al., 2011). The effect becomes significant, especially 

when the effective structural period changes due to its nonlinear behavior. In 

summary, three categorized features of earthquake ground motions are proposed by 

using a total of seven parameters (magnitude, distance, soil class, PGA, PGV, PGD, 

and response spectrum). 

 

2.3 Architecture details 

 

A new framework of the DNN model is proposed to incorporate information about 

both structural systems and earthquake ground motions. Motivated by the earthquake 

excitation mechanism of structural systems depicted in Figure 1.1, a new deep neural 

network architecture is constructed as shown in Figure 2.3. Each feature group of 

earthquake ground motion is first processed by the ANN (green boxes in Figure 2.3), 

then merged with the hysteretic features extracted from the CNN (orange box in 

Figure 2.3). This is to reflect the fact that each earthquake ground motion information 

produces distinct responses for a given hysteretic behavior. The merged layer is again 

processed by the ANN to provide 32 units (blue boxes in Figure 2.3) for each. The 

32 units from each group of earthquake ground motion information are finally 

merged with the extracted hysteretic units again to form an ANN that can predict 

seismic responses. 

Another architecture of the DNN model was also tried such that the three 

different kinds of earthquake ground motion information are processed by individual 

ANNs, and then directly merged with the hysteretic information extracted from the 
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CNN. In other words, the part of blue-gray boxes in Figure 2.3 was removed. It was, 

however, found that the testing results of the train and test datasets show large 

discrepancy and the prediction accuracy is worse than that from the proposed 

network structure in Figure 2.3. 

A more detailed diagram of the proposed DNN architecture is provided in 

Figure 2.4. All convolutional and neural network layers are followed by a rectified 

linear operator (ReLU; Nair and Hinton, 2010) except for the first part of the 

convolutional layers for which tangent hyperbolic operator (Tanh) is used as the 

activation function. In addition, the batch normalization (Ioffe and Szegedy, 2015) 

is adopted for all layers after the ReLU operator is applied. Since the initial stiffness 

of the hysteresis shows large variability (the ratio of the largest to the smallest 

stiffness that covered in this study is about 40,000), the Tanh activation function is 

used for normalizing parameters describing the hysteretic behaviors. It was observed 

that, if the ReLU is adopted rather than the Tanh activation function at the first 

convolutional part, the hysteretic features extracted from the CNN was overfitted, 

especially for those having large initial stiffness. 

Four types of filter sizes (2, 4, 8, and 16) are employed to capture the features 

having different scales. This is helpful, particularly when extracting features from 

the hysteretic behaviors because the input hysteretic behavior can have different 

scales (e.g., number of cycles). Moreover, 2 × 1 max pooling is applied to reduce 

the spatial size of the representation, i.e., training parameters, in the convolutional 

phase. The first fully connected layer that concatenates the output of the four 

convolutional layers containing 64 units is followed by the second fully connected 

layer with 48-dimensional outputs. This architecture is motivated by autoencoder (Li 

et al., 2013; Socher et al., 2013) which forces the layer to engage features having 
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different scales by intentionally reducing the units. Finally, the output of the network 

is a single unit that is fed to a linear activation function to estimate a continuous 

variable, i.e., regression problem. To the best of the author’s knowledge, this study 

provides the first attempt to predict a variety of seismic responses using deep neural 

networks. 

 

2.4 Training methodology 

 

To train the proposed DNN model, a seismic demand database is first developed. To 

reduce the physical size of the database, a novel database architecture, i.e., schema, 

is proposed. Using the database, the DNN model is trained to predict the peak 

displacement of structural systems subject to ground motions. It was found that the 

performance of the DNN model varies along with the training methodologies even 

with the same network architecture and dataset. Thereby, optimal training 

methodology is also proposed based on a large number of numerical investigations. 

Since any type of structural response can be used as an output for the model, the 

trained results using other structural responses, such as the peak acceleration and 

velocity, will be also presented in the next section. Note that the work reported in 

this chapter was performed using TensorFlow (Abadi et al., 2016) and the Compute 

Canada’s CPU and GPU clusters. 

 

2.4.1 Database 

A seismic demand database is constructed by performing a large number of nonlinear 

time history analyses using OpenSees (Mazzoni et al., 2006). The database is 

constructed using SQLite 3 whose schema is shown in Figure 2.5. As shown in the 
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figure, the database consists of 9 different tables each of which contains different 

information of structural systems (orange boxes), earthquake ground motions (blue 

boxes) and the results of dynamic analysis (yellow box). Note that arrows in the 

figure represent how the different tables are interrelated with each other using a 

foreign key. Since 85% of the dynamic analysis cases behave in linear range during 

earthquake excitation, the proposed architecture can dramatically reduce the size of 

the database. In other words, the seismic responses of structural systems having the 

same period are identical to each other when their normalized yield forces are greater 

than the corresponding spectral acceleration value. Thus, it is possible to replace a 

set of structural responses by a single index which indicates the location of the 

corresponding responses in the seismic demand table (yellow box). 

The database contains responses of three different hysteretic models (HM1, 

HM2, and HM3 in Figure 2.1) subjected to 1,499 ground motions obtained from the 

NGA-West database (Power et al., 2006). To cover every practical range of structural 

characteristics, 90 steps of the structural period from 0.05 sec to 10 sec, 30 steps of 

the normalized yield strength from 0.05g to 1.5g, and 10 steps of the post-yield 

stiffness ratio from 0 to 0.5 are selected. The upper and lower limits of these values 

are determined based on the capacity curves in HAZUS-MH 2.1 (FEMA 2012) 

which can describe force-deformation relationships of a wide range of building 

structures and the intermediate values are uniformly distributed between the upper 

and lower limits. The total number of hysteretic behaviors is 54,090 (90 for HM1 

and 90 × 30 × 10 = 27,000  for each bilinear system). The seismic demand 

database is available at http://ERD2.snu.ac.kr. 

Data preprocessing and augmentation technique enable a deep neural network 

to achieve improved accuracy with a relatively small amount of training time and to 

http://erd2.snu.ac.kr/
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produce a reasonable predicting accuracy for data points that are not used in training. 

Since it is widely reported that some of the input and output datasets follow a 

lognormal distribution (Ellingwood, 2001), the natural logarithm is applied to 

several input parameters, i.e., response spectrum, PGA, PGV, and PGD, as well as 

the output to resolve the skewness. Moreover, in order to allow the network to better 

generalize the structural hysteretic behaviors, the data augmentation technique 

(Krizhevsky et al., 2012) is applied, especially for the information of the structural 

system, by shifting and flipping the hysteresis during training. 

 

2.4.2 Initialization 

It is widely known that the performance of a deep neural network is highly affected 

by the initialization of weights (Glorot and Bengio, 2010; He et al., 2015; LeCun et 

al., 1998). In this study, it was found that using randomly initialized weights, the 

convolutional part of the network cannot extract the features properly, which, in turn, 

made the performance of the network much worse than those of existing nonlinear 

static procedures. To address such an issue, pre-training is carried out with a small 

number of samples of the hysteretic behaviors. Only HM1 and HM2 with zero post-

yield stiffness ratio (i.e., elasto-perfectly plastic) are selected with randomly selected 

894 ground motions for pre-training (the number of data set is 2,790 × 894 =

2,494,260). Adam optimizer (Kingma and Ba, 2014; Reddi et al., 2018) is used as 

the optimization algorithm to reduce the mean squared error (MSE) between the 

predicted structural responses and the ground truth values with 512 batch sizes and 

54 epochs of training. 
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2.4.3 Training 

It was found that the features extracted from the CNN were overfitted when the 

structural model was randomly selected along with earthquake ground motion. To 

address this issue, the same set of structural models is applied to each ground motion 

when training the model. In this regard, to check the over-fitting of the DNN model 

by monitoring the loss on the test set, ground motions are split into a train set of size 

1,199 (80%) and a test set of size 300 (20%). However, note that even the entire set 

of ground motions used in this study is insufficient to generalize the ground motion 

information due to the nature of a random excitation based on the author’s experience. 

Although a total of 54,090 hysteretic behaviors need to be trained for the DNN 

model, a subset of hysteretic behaviors is selected to increase the efficiency of the 

training and overcome the memory constraints during training. This is based on the 

premise that DNN has an ability to estimate the intermediate variables of distinct 

input values through interpolation. Therefore, 15 steps of yield strength and 7 steps 

of post-yield stiffness ratio are considered rather than 30 and 10 steps of the original 

dataset, respectively (18,990 structural models are selected). When sparsely 

selecting the structural models, relatively smaller yield strengths are selected more 

often than bigger ones to incorporate enough number of cases in which the structural 

system behaves nonlinearly during earthquake excitation. That is, hysteretic 

behaviors used for training are prone to behave nonlinearly during earthquake 

excitation compared with those not used for training. This is because it was found 

that the nonlinear cases are more difficult to estimate (i.e., bigger MSE) than the 

linear cases. Moreover, 280 ground motions are selected among 1,199 ground 

motions for each epoch of training to overcome the limitation of the computational 

resources, i.e., 5,317,200 datasets for each epoch. Similar to the initialization, Adam 
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optimizer is adopted as the optimization algorithm to reduce the MSE of the output 

with 512 batch sizes and 300 epochs of training. 

 

2.5 Performance of deep neural network 

 

This section focuses on investigating the performance of the trained DNN model by 

comparing its accuracy with those by the three existing nonlinear static procedures. 

Moreover, to give an insight about the proposed network, the features extracted from 

the CNN are analyzed thoroughly by introducing the other hysteretic models which 

are not used in training. It is numerically demonstrated that the proposed method has 

superior performance in terms of its applicability and effectiveness. 

 

2.5.1 Training results 

To check whether the trained DNN model is overfitted or not, MSE (1/𝑁 ∙

∑ (𝑦𝑖 − 𝑓(𝑥𝑖))
2𝑁

𝑖=1  ) and mean absolute error (MAE, 1/𝑁 ∙ ∑ |𝑦𝑖 − 𝑓(𝑥𝑖)|
𝑁
𝑖=1  ) are 

calculated for both train and test datasets. Note that the MSE and MAE are calculated 

after the natural logarithm is applied to the structural responses. The results are 

shown in Table 2.1. 

The MSE and MAE of training results show that using the DNN model it is 

possible to predict the structural responses that are fairly close to those by nonlinear 

time history analysis. Although the MSE and MAE of the test dataset may be shown 

as significantly higher than those of the train datasets, the discrepancy between the 

train and test sets is not critical, in that the ratios of the predicted value to the correct 

value in the original scale (i.e., not applying the natural logarithm) are around 

𝑒0.05 ≈ 1.05 and 𝑒0.12 ≈ 1.13, respectively. This also indicates that 1,119 ground 
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motions may not be enough for properly training the proposed network in terms of 

random earthquake ground motion information. The author believes that if the more 

ground motions are used for training, the better results can be obtained for the test 

dataset. 

Since the hysteretic behavior is sparsely selected during the training process, 

the MSE is computed for both trained and non-trained hysteretic models in order to 

demonstrate the trained network’s ability to interpolate over hysteretic behaviors. 

200 ground motions are randomly selected from the entire set of ground motions to 

obtain the results shown in Table 2.2. In training the DNN model, the hysteretic 

models, which are prone to exhibit responses in nonlinear range, are more selected 

against the linear cases. Given that the DNN model predicts linear cases with less 

MSE than nonlinear cases, the MSE of nontrained cases in Table 2.2 is less than that 

of trained cases even though the hysteretic behaviors are not used for training. The 

results further confirm that the DNN model has an ability to interpolate regarding 

hysteretic behaviors. Therefore, it is expected that the trained DNN model will be 

able to predict the structural responses even if specific hysteretic behaviors were not 

used in training 

 

2.5.2 Comparison with existing methods 

To demonstrate the superior accuracy of the proposed method, the prediction results 

are compared with those by the three methods described in Chapter 1: (1) R-𝜇-T 

relationship developed by Nassar and Krawinkler (1991), (2) capacity spectrum 

method (FEMA 440, 2005), and (3) the coefficient method (ASCE 41-13, 2013). The 

elasto-perfectly plastic systems with randomly selected 200 ground motions are 

provided as inputs for the methods. Among 540,000 cases (= 2,700 × 200) of the 



 

31 

entire dataset, the cases showing nonlinearity during excitation (8.3% of the dataset, 

i.e., 44,842 cases) are investigated. The differences between estimation by nonlinear 

dynamic analyses and prediction by each method are shown in Figure 2.6 and the 

MSE are presented in Table 2.3. The results demonstrate that even though the 

structures handled in this example are a simple hysteresis, the existing methods 

cannot predict the peak displacement properly compared to the DNN model. In other 

words, the proposed method can predict the nonlinear responses with a smaller size 

of the uncertain error compared to the existing methods. 

 

2.5.3 Validation of features extracted from CNN 

Despite the great success of deep learning, there exist concerns and criticisms that 

the method provides black-box models (Alain and Bengio, 2016; Shwartz-Ziv and 

Tishby, 2017). In order to understand the input parameters passed through the CNN 

in the DNN model, features extracted from the CNN are plotted and investigated 

based on the knowledge of the structural dynamics. First of all, the output of the final 

FC which was obtained right after the application of the ReLU activation function, 

i.e., 64 vectors (orange box in Figure 2.3), is plotted in Figure 2.7 (i.e., 64 lines). 

Herein, hysteretic models of HM1 (90 hysteretic behaviors) are imposed as the input 

of the DNN model. The extracted values of the hysteretic behaviors are plotted such 

that natural frequency (period) is big (short) to small (long) as left to right. As shown 

in Figure 2.7, each element of the 64 units is activated along with the different natural 

frequency of a nonlinear hysteretic system (bell shape plot at specific structural 

systems), which resembles the modal analysis finding the various periods at which 

the system naturally resonates. 

To give further insight of the DNN model, the features extracted from the CNN 
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are compared over the hysteretic types. The experiment is based on the assumption 

that if different hysteretic models share some characteristics such as the same initial 

stiffness (𝜔2 in Figure 2.1 for HM1, HM2, and HM3), it is expected that some of 

the features extracted from the CNN of different hysteretic models may also be 

equivalent to each other and show meaningful trends. 

Figure 2.8 shows the features extracted from the CNN when all hysteretic 

models of HM1 (90 hysteretic behaviors) and zero post-yield stiffness (i.e., 𝛼 = 0) 

cases of HM2 (2,700 hysteretic behaviors) and HM3 (2,700 hysteretic behaviors) are 

used. The figure is plotted as follows: When one of the hysteretic behaviors of HM1 

is applied as an input of the CNN, 64 × 1 vectors can be obtained as an extracted 

feature vector. Then, each element of the vector is plotted in separate boxes. After 

the features extracted of every hysteretic behavior of HM1 are mapped out in Figure 

2.8(a), the 64 separate boxes are obtained whose number of indices along the x-axis 

is 90. Using the same procedure, Figure 2.8(b) and Figure 2.8(c) represent the output 

vector when HM2 and HM3 are imposed as an input of the CNN, respectively. In 

addition, the features extracted of the hysteretic behaviors are plotted as the 

following order from left to right for each box: From hysteretic behaviors whose 

period is short to long, and the yield strength of each period is small to large, 

especially for HM2 and HM3, sequentially. In order to reduce the repeated plots in 

Figure 2.8, 5 indices among 64 are illustrated whose values can represent distinct 

information. 

As shown in Figure 2.8, it is observed that overall shapes of the corresponding 

box of the first, second, and third rows of features extracted from the CNN are similar 

except for the relatively short period range (the 34th boxes) and smaller yield strength 

(the plots fluctuate along with yield strength) in which the structure is prone to 
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behave nonlinearly during vibration. Because bilinear models need additional 

information (i.e., nonlinearity of the hysteretic system) compared to a linear model, 

some of the indices in Figure 2.8 only activate for the input of HM2 and HM3 only. 

For instance, the 22nd index does not provide any information to differentiate 

hysteretic behaviors of different linear models (i.e., period), but it activates when the 

hysteretic behaviors of HM2 and HM3 are employed for the input of the CNN. Based 

on this investigation, it is concluded that the features extracted from the CNN may 

give some physical meanings of hysteresis even though it is hard to interpret the 

features as widely used mathematical parameters such as initial stiffness or 

normalized yield strength. 

 

2.5.4 Prediction of other structural responses 

In earthquake engineering, peak acceleration and velocity are also important 

structural responses to predict because they are closely related with the base shear 

capacity and the performance of non-structural components, respectively. The 

training is carried out in the same environments that are used for the peak 

displacement except for the replacement of the output datasets. To reduce the 

computational time for training, a transfer learning method (Pan and Yang, 2010; 

Yosinski et al., 2014) is employed to train each response using the DNN model that 

was trained to predict the peak displacement. Moreover, parameters of the DNN 

model are fixed except those located after the final merged layers, because the layers 

before the final merged layers extract the features from both earthquake information 

and structural information, which should not be different even if the different 

structural responses are predicted. After 30 epochs of training, the MSE and MAE 

are computed for the natural logarithms of the predicted peak acceleration (Table 2.4) 
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and velocity (Table 2.5). Moreover, Figure 2.9 and Table 2.6 show the MSE in the 

peak acceleration and velocity employing the input dataset used in Section 2.5.2. The 

errors are equivalent to those of the prediction of the peak displacement, which 

confirms that the proposed DNN model can provide highly accurate predictions 

regardless of the responses type. 

 

2.6 Conclusions 

 

To facilitate efficient prediction of the seismic responses of nonlinear structural 

systems without compromising accuracy, this study proposed a new deep learning-

based model for response prediction of SDOF systems subjected to various ground 

motions. To this end, the CNN was introduced to extract the structural information 

which is described in terms of a displacement and force relationship. The extracted 

information of hysteresis was, then, merged with ground motion information to 

predict structural responses. To train the proposed DNN model, the database of 

seismic responses of structural systems was constructed through a large number of 

nonlinear dynamic analyses. A small set of data was applied to initialize weights of 

the DNN model and a proper training scheme was used to overcome the limitation 

of computational resources. The performance of the proposed method was tested 

through various numerical investigations. The examinations demonstrated that the 

proposed method successfully decomposes hysteretic behaviors into the lower-level 

features and is not overfitted to a certain data set. Moreover, it was found that the 

accuracy of the proposed method is superior to that of the three existing simple 

methods that are widely used in practice. It is expected that a variety of applications 

in earthquake engineering field can be developed using the proposed method such as 
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efficient and accurate regional seismic loss estimation.  
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Table 2.1 Comparison of MSE and MAE between train and test datasets 

Ground motion set 
Mean squared error  

(MSE) 

Mean absolute error 

(MAE) 

Train (1,119) 0.0044 0.0485 

Test (300) 0.0253 0.1202 
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Table 2.2 Comparison of MSE between trained and non-trained hysteretic 

behaviors for randomly selected 200 ground motions 

Hysteretic behaviors 
Mean squared error  

(MSE) 

Trained 0.0090 

Non-trained 0.0077 
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Table 2.3 Comparison of MSE between the proposed and existing methods 

Methods 
Mean squared error  

(MSE) 

R-μ-T 0.9857 

Capacity spectrum method 0.3526 

Coefficient method 0.6110 

Deep neural network 0.0407 
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Table 2.4 MSE and MAE of peak acceleration for train and test datasets 

Ground motion set 
Mean squared error 

(MSE) 

Mean absolute error 

(MAE) 

Train (1,199) 0.0131 0.0903 

Test (300) 0.0267 0.1243 
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Table 2.5 MSE and MAE of peak velocity for train and test datasets 

Ground motion set 
Mean squared error 

(MSE) 

Mean absolute error 

(MAE) 

Train (1,199) 0.0278 0.1319 

Test (300) 0.0433 0.1624 
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Table 2.6 MSE of the dataset for the elasto-perfectly plastic system subjected to 

randomly selected 200 ground motions used in Section 2.5.2 

Structural responses 
Mean squared error 

(MSE) 

Peak acceleration 0.0101 

Peak velocity 0. 0273 

 

  



 

42 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Hysteretic behaviors of structural systems: (a) linear (HM1), (b) bilinear 

kinematic hardening (HM2), and (c) bilinear stiffness degrading system 

(HM3) 
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Figure 2.2 Procedure for generating a hysteretic behavior of structural systems 

 

 

  



 

44 

 

 

 

 

 

Figure 2.3 Schematic diagram of the DNN model 
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Figure 2.4 Detailed diagram of the proposed DNN architecture 
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Figure 2.5 Schema of seismic demand database 
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Figure 2.6 The difference between the natural logarithms of peak displacement by 

nonlinear time history analyses and those by (a) R-μ-T relationship by 

Nassar and Krawinkler (1991), (b) capacity spectrum method (FEMA 

440, 2005), (c) the coefficient method (ASCE 41-13, 2013), and (d) the 

DNN model 
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Figure 2.7 Features extracted from the CNN when HM1 is used as an input. x-axis 

represents each of hysteretic behavior and y-axis represents the values 

obtained from the CNN. To find the pattern clearly, the values of the 

same element in the 64 units are connected each other 
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Figure 2.8 Features extracted from the CNN, i.e., the output of the final FC layer 

when (a) linear elastic (HM1), (b) elasto-perfectly plastic (HM2 with 

𝛼 = 0), and (c) elasto-perfectly plastic with stiffness degradation (HM3 

with 𝛼 = 0) are used as the input. In words, Figure 2.7 is the 

combination of Figure 2.8(a) 
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Figure 2.9 MSE of the natural logarithms of the predicted responses: (a) peak 

acceleration, and (b) velocity when applying the dataset used in Section 

2.5.2 
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Chapter 3. Probabilistic Evaluation of Seismic 

Responses by Bayesian Deep Neural 

Network 
 

 

3.1 Introduction 

 

A proper estimation of structural responses under seismic excitation is one of the 

most essential tasks to establish an effective disaster risk management framework 

against seismic hazards. However, it is challenging to accurately assess the seismic 

response of a nonlinear structural system because of the variabilities, especially those 

in the ground motions lie in the ground motions (Behmanesh et al., 2017; Celik and 

Ellingwood, 2010; Kwon and Elnashai, 2006; Vamvatsikos and Fragiadakis, 2010; 

Yin and Li, 2010). Nonlinear time history analyses using a suite of ground motions 

is considered one of the most accurate ways to consider such variabilities, but the 

method entails large computational efforts. As an alternative of the time history 

analysis that can overcome such challenges, approximate nonlinear static procedures 

and the DNN model have been developed as respectively described in Chapters 1 

and 2. However, their predictions are deterministic, thus it is difficult to quantify 

uncertain errors in the response estimations. Such an uncertainty is usually caused 

by the loss of information in representing input data by selected input features. The 

uncertainty needs to be quantified because the responses of a nonlinear structural 

system could vary widely even if ground motions are considered similar in terms of 

the selected measures of seismic intensity (Cornell et al., 2002; Deniz et al., 2018; 

Riddell, 2007). 

To assess the variabilities of structural responses for given values of the selected 
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intensity measures, a new probabilistic deep neural network (P-DNN) model is 

proposed in this chapter. To this end, the deterministic DNN model from Chapter 2 

is further developed by introducing a new loss function based on the Bayesian deep 

learning approach (Gal 2016; Kendall and Gal, 2017). The new loss function 

captures the variabilities of the output given the input dataset based on the 

assumption that the corresponding output follows a Gaussian probability density 

function (PDF). Using the Bayesian concept, the mean and variance of the structural 

response can be predicted for given hysteretic models and a set of ground motion 

information. 

This chapter first provides a brief overview of Bayesian deep neural network 

along with an introduction of the new loss function. Next, a new architecture for the 

P-DNN model is proposed which is trained using the constructed database in Chapter 

2. Thorough numerical investigations of the P-DNN model are carried out to 

understand the relationship between inherent uncertainties in the input and the 

corresponding predicted mean and variance. The P-DNN model enables us to 

quantify the impact of each ground motion feature on the uncertainty of structural 

responses, i.e., uncertainty quantification (Kim et al., 2020). 

 

3.2 Bayesian neural network 

 

The Bayesian deep learning method (Kendall and Gal, 2017) was originally 

developed to account for two types of uncertainties: the uncertainties in the estimated 

parameters of the deep learning model (i.e., model uncertainties) and the randomness 

inherent in the input data. The former type of uncertainties can be addressed by so-

called Monte Carlo (MC) dropout assuming that the model parameters follow a 
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probabilistic distribution. The latter can be facilitated by using a new loss function 

which will be discussed in the following subsection. Unlike the latent uncertainties 

in the input data, the model uncertainties can be reduced by using enough amount of 

data in training. Thus, this study aims at quantifying the impact of the inherent 

uncertainties of the input data on the prediction of structural response using the new 

loss function. This uncertainty arises because several input features, e.g., M, R, soil 

type, PGA, PGV, PGD, and response spectrum, characterize a ground motion time 

history and used as the input of the DNN model. It is noted that this particular type 

of randomness of the outcome remains significant in the DNN model even if a good 

understanding about the input-output relationship and a sound initial condition for 

training a DNN model are accompanied. This section introduces background 

information of how such uncertainties can be captured through a neural network. 

Then, the influence of uncertainties in the input data, especially those in the ground 

motion, on the seismic response prediction is discussed in detail. 

 

3.2.1 Quantification of input uncertainties 

In the Bayesian deep learning method, the impact of latent uncertainties in the input 

data is quantified by obtaining the probability distribution of the output prediction 

from a deep neural network. In other words, the output of a deep neural network is 

presented as a Gaussian random variable, characterized by the conditional mean and 

variance for given input values. The conditional variance can be modeled following 

one of the two assumptions: homoscedasticity and heteroscedasticity (Gal and 

Ghahramani, 2015; Kendall and Gal, 2017). The former assumes that the conditional 

variance of the prediction is constant over the entire input data space. For example, 

the widely used probabilistic relationship between a seismic intensity measure (IM) 
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and a damage measure (DM), 𝐷𝑀 = 𝑎 ∙ 𝐼𝑀𝑏 ∙ 𝜀 (Cornell et al., 2002), adopts the 

homoscedasticity assumption because the conditional variance of the damage 

measure is assumed to be independent of 𝐼𝑀 in the equation. The latter, by contrast, 

assumes that the conditional variance varies over the input data space. 

In order to take into account the fact that the prediction uncertainty actually 

depends on the input value, the heteroscedasticity assumption is adopted. To this end, 

the following loss function (Kendall and Gal, 2017) is used instead of Eq. (1.2): 

𝐿 =
1

𝑁
∑(

1

2𝜎(𝑥𝑖)2
‖𝑦𝑖 − 𝑓(𝑥𝑖)‖

2 +
1

2
log 𝜎(𝑥𝑖)

2)

𝑁

𝑖=1

 (3.1) 

where 𝑓(𝑥𝑖) and 𝜎(𝑥𝑖)
2 respectively represent the conditional mean and variance 

of the output prediction given the particular input 𝑥𝑖. The loss function in Eq. (3.1) 

is proportional to the negative log-likelihood based on the Gaussian distribution 

assumption. Therefore, the training of a deep neural network with the loss function 

in Eq. (3.1), i.e., finding model parameters minimizing the loss function, is 

equivalent to using the maximum a posteriori probability (MAP) approach 

employing a non-informative prior (Murphy, 2012). 

When the discrepancy between the predicted mean value 𝑓(𝑥𝑖) and the train 

data 𝑦𝑖 is large at 𝑥𝑖, the optimization algorithm will rely on reducing the value of 

the first term in Eq. (3.1), which tends to make the corresponding conditional 

variance 𝜎(𝑥𝑖)
2 of the optimal solution relatively large. However, the existence of 

the second term in Eq. (3.1) prevents the conditional variance from growing too large, 

which, in turn, helps a DNN model learn the input-output relationship rather than 

providing a good match at 𝑥𝑖 in the particular train dataset only. In other words, the 

loss function of the P-DNN model helps figure out the structure of the input-output 
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relationship, whereas a DNN model training with Eq. (1.2) would require additional 

efforts, e.g., cross-validation to achieve the bias-variance tradeoff. 

 

3.2.2 Role of conditional variance for seismic response prediction 

Since the P-DNN model propagates the inherent randomness in the input to the 

output, the conditional variance of the structural responses, 𝜎(𝑥𝑖)
2 represents the 

uncertainties caused by feature-based description of both hysteresis loops and 

ground motions. However, in this study, the conditional variance mostly represents 

the uncertainties from the ground motion features. This is based on the fact that the 

hysteresis loop obtained from the quasi-static cyclic analysis in Section 2.2.1 

includes most of the information needed to distinguish one another, whereas the 

severity and characteristics of the ground motions cannot be perfectly characterized 

even using multiple seismic intensity measures. In other words, ground motions 

having the same values of the selected features may lead to a significantly different 

level of structural responses if nonlinear time history analyses are used. 

It should be also noted that the impact of the input randomness on the variance 

of structural responses is affected by the behaviors of the structural system during 

seismic excitations. With growing interest in properly describing the impact of a 

given earthquake shaking on structural response, the spectral acceleration at the first 

mode period is one of the most commonly used intensity measures in earthquake 

engineering because of its high correlation with the seismic responses of a linear 

structure. It is, however, widely known that there are no intensity measures that are 

fully correlated with the structural responses when the structure exhibits nonlinear 

behavior (Cornell et al., 2002; Deniz et al., 2018; Riddell, 2007). Thus, it is expected 

that the deep learning prediction for the linear structural behavior with a response 
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spectrum input shows smaller variance compared to the nonlinear structural behavior 

with the same input (or even with the additional features of intensity measure), which 

will be discussed later in Section 3.4.4. 

 

3.3 Development of probabilistic deep neural network model 

 

This section first presents the architecture of neural network model to predict two 

outputs, i.e., mean and variance of structural responses, by modifying the DNN 

model constructed in Chapter 2. The modified neural network architecture is 

followed by the training methodology that includes optimizer, number of epochs, 

and batch sizes. Note that, as similar to the DNN model, the P-DNN model was also 

constructed using TensorFlow (Abadi et al., 2016) and trained using the Compute 

Canada’s GPU cluster. 

 

3.3.1 Architecture details 

The architecture proposed in Chapter 2 is enhanced by revising the final merged 

layers which are depicted as parallelograms in Figure 2.3. The diagram in Figure 3.1 

shows details of the revised final layers developed through an extensive exploration 

of various types of network structures. Each yellow box denoted as “Batch norm.” 

in the figure represents the batch normalization (Ioffe and Szegedy, 2015), which is 

applied after a rectified linear operator (ReLU; Nair and Hinton, 2010). The orange 

box, which represents the information extracted from the hysteretic behavior, is 

merged with each group of earthquake ground motion information (blue boxes). 

Then, three hidden layers are implemented to convolute different types of 

information. The last layer with 256 units is diverged into two ways with four hidden 
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layers each to estimate the mean and variance of structural responses, respectively. 

The architecture of the P-DNN model is developed by replacing the final output of 

the DNN model as two outputs following the approach by Kendall and Gal (2017). 

While Kendall and Gal (2017) used no hidden layers after diverging into two ways, 

it is found that the prediction performance of the P-DNN model can be enhanced by 

increasing the number of the hidden layer, especially for data points for which the 

stiffness of the hysteretic behavior is relatively large. On the other hand, a large 

number of hidden layers, say more than 4, may hamper proper convergence of the 

loss function. 

 

3.3.2 Training 

Using the database constructed in Section 2.4.1, the P-DNN model is trained to 

predict peak displacement. To resolve the skewness of the distribution of response 

spectrum, PGA, PGV, PGD, and structural responses, the natural logarithm is applied. 

Thereby, the structural responses predicted by the P-DNN model always take 

positive value, and are assumed to follow the lognormal distribution. To check 

whether the P-DNN model properly trains the relationship between the input and the 

output, only 80% of ground motions (1,199 ground motions) are selected and used 

for training. Moreover, in order to overcome the limitation of the computational 

resources during training, 300 ground motions among 1,199 ground motions are 

randomly selected for each epoch of training. The trained parameters of the DNN 

model are utilized as the initial weights of the P-DNN model, and Adam optimizer 

(Kingma and Ba, 2014) is adopted as the optimization algorithm to minimize the loss 

function in Eq. (3.1) with 512 batch sizes and 70 epochs during the training. 

The MSEs of predicted responses randomly drawn from the estimated Gaussian 
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distributions are shown in Figure 3.2 as increasing the epochs. It is noted that 50 

ground motions among 300 ground motions of test dataset are randomly selected for 

each epoch of training to calculate the MSE. Since the transfer learning technique is 

introduced, the initial value of MSE is relatively small for both train and test datasets 

compared to the general loss curve whose value of the first epoch is relatively large. 

As shown in the trend of MSE drop, one can infer that the more epochs are preformed, 

the better prediction accuracy can be obtained for the test dataset. 

 

3.4 Performance of probabilistic deep neural network model 

 

Five different numerical investigations are carried out to demonstrate the efficiency 

and effectiveness of the trained P-DNN model. First, the prediction accuracy of the 

P-DNN model is compared with other methods including the DNN model developed 

in Chapter 2. Next, the conditional variance predicted by the P-DNN model is 

examined along with different datasets of input. One can observe the variation of the 

conditional variance along with the nonlinear behaviors of structural systems. Third, 

to verify the variance estimated by the P-DNN model, Bayesian linear regression is 

introduced. The prediction results by both methods using the same dataset are 

compared with each other. Forth, the impact of ground motion features on the 

predicted uncertainties are comprehensively analyzed using the Bayesian deep 

neural network. Finally, trainability of the P-DNN model for other structural such as 

peak acceleration and velocity responses is demonstrated. 

 

3.4.1 Prediction accuracy 

The error measures, i.e., MAE, MSE and mean of the estimated conditional variance 
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(MV), are computed for the train and test datasets, respectively as shown in Table 

3.1. Since the residual error and the conditional variance have a positive relationship 

with each other as explained in Section 3.2.1, it is expected that MV is also 

proportional to MSE and MAE (i.e., large MSE and MAE tend to result in large MV). 

Note that, in the same manner as in Section 2.5, all error measures are calculated in 

terms of the natural logarithms of the structural responses. 

The low values of MAE and MSE for both train and test datasets in Table 3.1 

confirm that the predictions by the P-DNN model are fairly close to those by the 

nonlinear dynamic analysis. However, it might seem that MAE of the test dataset is 

significantly larger than that of the train dataset, which could be considered as an 

evidence that the trained P-DNN model is overfitted. However, it is noted that, the 

average ratios of the simulated responses to the predictions from the P-DNN model 

in the original scale (i.e., before taking the natural logarithm) are estimated based on 

MAE values as 𝑒0.05 ≈ 1.05 and 𝑒0.13 ≈ 1.13, respectively, which are fairly close 

to one. In addition, MV of the test dataset is a little bit bigger than that of the train 

dataset, as expected. 

In order to test and demonstrate the performance of the proposed method, its 

prediction accuracy is compared with the aforementioned three simplified methods 

as well as the DNN model in Chapter 2. For this test, nonlinear cases of the elasto-

perfectly plastic systems (i.e., zero post-yield stiffness) subjected to randomly 

selected 200 ground motions are provided as inputs for the methods. This is 8.3% of 

the total dataset, i.e., 44,842 cases among 540,000 cases (=200×2,700). The MSE is 

calculated between the peak displacement obtained from dynamic analyses and that 

from each method, as shown in Table 3.2. The results confirm that the P-DNN model 

shows superior accuracy compared to three existing methods, but the MSE 
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calculated from the P-DNN model is slightly larger than that from the DNN model. 

Since several research efforts reported in the literature showed the performance of 

the Bayesian deep learning method exceeds that of the deterministic deep learning 

method with enough epochs of training (Gal and Ghahramani, 2015, Gal and 

Ghahramani, 2016), it is expected that better results could be obtained by additional 

training, especially by increasing the number of ground motions. The model was 

trained with 70 epochs to produce the results reported in this study while, based on 

rule of thumb, more than 103 epochs are needed. 

 

3.4.2 Investigation of predicted responses 

To confirm the performance of the P-DNN model in predicting the mean and 

variance of the peak displacement, the probabilistic predictions are plotted together 

with the structural responses obtained by the dynamic analysis. The predictions by 

the deterministic DNN model developed in Chapter 2 are plotted together to provide 

the comparison between the probabilistic and the deterministic DNN models. Since 

it is difficult to plot all data points in a single plot, the predictions for two different 

hysteretic models under 1,499 ground motions are shown in Figure 3.3. In each plot, 

the data points in the test results (i.e., structural responses from dynamic analysis 

and the DNN model) are rearranged in the increasing order of the mean values by 

the P-DNN model. The probabilistic predictions are represented by the mean curve 

(black solid line) and the orange shaded area showing mean ± 1 standard deviation 

interval, which covers approximately 70% of the probability distribution of the 

predicted structural response when the Gaussian distribution is assumed. The 

responses observed during the dynamic analysis and the predictions by the 

deterministic DNN model are shown by blue circles and red x-marks, respectively. 
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The horizontal dashed line in each figure represents the yield displacement of the 

corresponding structural system to distinguish cases showing linear and nonlinear 

behavior. To visualize the performance of the proposed network in detail, close-up 

images of two parts of the linear and nonlinear behaviors in each figure (dashed 

rectangles) are provided at the right-hand side of Figure 3.3. Note that the plots show 

the natural logarithms of the peak displacement in meter. 

The mean curves of the probabilistic model successfully capture the central 

tendencies of the structural responses under given ground motions, which implies 

that the developed probabilistic model achieves unbiased predictions without 

overfitting. It is also found that the majority of the structural responses from the time 

history analysis (blue circle) and those predicted by the deterministic DNN model 

(red x) fall within the mean ± 1  standard deviation intervals in both plots. The 

variation of the conditional variance over the input data is visualized by the varying 

width of the standard deviation interval presented by the orange shade. It is also 

noted that the standard deviation interval is relatively small and almost constant 

where the peak displacement is small, but starts increasing at a certain point. This is 

because a structural system behaves nonlinearly under a ground motion with a 

relatively large intensity, but the features selected to train the probabilistic neural 

network cannot fully describe the ground motion characteristics which influence the 

nonlinear behavior of the structural system. The increases of the widths of the 

standard deviation interval around the yield displacement lines indicate that the P-

DNN model can capture the uncertainties increased by the nonlinear behavior. 

Although not shown in this study, the standard deviation interval of the linear 

hysteretic model (HM1) is almost constant and small over all ground motions as seen 

in the linear behavior parts of Figure 3.3. 
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3.4.3 Verification of estimated variance 

In order to verify the predicted conditional variances, a simple numerical 

investigation is conducted by using the Bayesian linear regression (MacKay, 1992). 

Since the estimated mean of the specific structural system with various ground 

motions shows almost linear curve when the data representing the x-axis are 

rearranged in increasing order of the mean of the predicted value (see Figure 3.3), it 

is possible to check the estimated variance by comparing the results between the 

Bayesian regression and the P-DNN model. For this purpose, the cases 

corresponding to the datum index from 601 to 1,200 in Figure 3.3(b) are selected 

and plotted in Figure 3.4(a). Bayesian linear regression is performed to predict the 

observation data (blue circle) given the datum index as shown in Figure 3.4(b). The 

average values of the standard deviations for the P-DNN model and the linear 

regression are 0.135 and 0.145, respectively, which shows similar results. Since the 

P-DNN model has more flexibility in capturing the mean curve, its standard 

deviation is slightly smaller than the one from the linear regression. 

 

3.4.4 Impact of ground motion characteristics on uncertainties of 

responses 

To investigate how individual features of earthquake ground motion (e.g., earthquake 

characteristics, peak values of ground motion time histories, and the response 

spectrum) affect the variabilities of the response prediction, various P-DNN models 

are trained using different subsets of the input parameters instead of using the 

complete feature set as done in Section 3.3. Table 3.3 lists seven different cases made 
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in terms of the type and the amount of ground motion information used in the training 

process as an input of the P-DNN models. It is noted that the results in Table 3.1 

match Case 7 in Table 3.3. For example, if the earthquake characteristics are used as 

only ground motion information in training, i.e., Case 1 in Table 3.3, the layers 

related with peak values of ground motion time histories and the response spectrum 

are discarded while training and predicting the peak displacement. Table 3.3 also 

reports the error measures to compare the performance. 

The trends of MAE, MSE and MV in Table 3.3 are similar to those in Table 3.1 

(i.e., Case 7), except Case 1 in which the MSE is bigger than the MAE. This indicates 

that the neural network model in Case 1 cannot predict the structural responses, 

properly. As expected, the neural network models trained with the response spectrum 

show lower MAE and MSE values compared with other models. The smaller MSE 

value of Case 5 compared to Case 6 implies that the peak values of ground motions 

(PGA, PGV, and PGD) affect the structural response more than earthquake 

characteristics information (M, R, and soil class). It is also found that the MAE and 

MSE values for Cases 2-6 in Table 3.3 are bigger than those calculated from Case 7. 

Each group of information stands for different feature selections of the earthquake 

ground motion, and thus the results show that each feature tends to balance their 

limitations, i.e., insufficient information. 

In order to further investigate the relationship between the input data and the 

structural response, the lognormal PDFs of the peak displacement predicted from the 

P-DNN are plotted in Figure 3.5. Table 3.4 lists the corresponding distribution 

parameters. The PDFs from Case 1 are not shown due to their poor accuracy. For the 

purpose of illustration, the bilinear stiffness degrading system (HM3) with period of 

1 sec, normalized yield strength of 0.05g, and post yield stiffness ratio of 0.1 are 
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selected along with two ground motions for linear (1970 Lytle Creek earthquake) 

and nonlinear cases (1968 Borrego Mountain earthquake). 

Table 3.4 shows that the coefficient of variation (c.o.v) of the linear case is 

much smaller than that of the nonlinear case. For the linear case, neural network 

models trained using the response spectrum, i.e., Case 3, 5, 6 and 7 show a good 

agreement with the peak displacement obtained from the time history analysis 

(0.0035 m) and also have smaller coefficient of variations. On the other hand, for the 

nonlinear case, Case 7 provides the median value close to the actual observation, and 

smaller coefficient of variation than that of Case 3, 5 and 6. This result confirms that 

the features representing earthquake characteristics (M, R, and soil class) and the 

peak values (PGA, PGV, and PGD) are closely related with predicting the nonlinear 

behavior of the structural system. 

Following the procedure described above, one can quantify the contributions of 

a specific input data such as ground motion duration and fault mechanism to the 

uncertainties of responses, or find the best combination of the input data by checking 

the level of decrease in MSE and MV. However, it is worth noting that although a 

deep learning method has an ability to analyze the relationship between the input and 

output variables using raw datasets, a careful preprocessing of the input data is 

needed due to potential issues regarding convergence of loss functions. 

 

3.4.5 Prediction of other structural responses 

To demonstrate the trainability of the probabilistic deep neural network framework 

for other structural responses, peak acceleration or velocity is selected as the output 

of the neural network model. To utilize the knowledge gained during the 

aforementioned training, the parameters of the P-DNN model trained for the peak 
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displacement is used in developing P-DNN models for the peak velocity and 

acceleration. Since the proposed model first extracts the features from the input, and 

then merges those to predict the structural response, only final merged layers 

depicted in Figure 3.1 are newly trained. After 40 epochs of training, MAE, MSE, 

and MV are computed for the train and test datasets respectively, as shown in Table 

3.5 and 3.6. Since the results show similar trends to those for the peak displacement, 

it is concluded that the proposed deep learning method can accurately predict the 

peak velocity and acceleration as well. Moreover, prediction of the peak acceleration 

shows better performance in terms of accuracy, i.e., lower MAE and MSE values, 

compared to other responses. It is speculated that this is because the response 

spectrum whose values are the maximum acceleration of the entire period (0.05 sec 

to 10 sec), i.e., response spectrum, is employed as one of the inputs for training the 

model. 

To further investigate the performance of the P-DNN models, the estimated 

peak velocity and acceleration of the hysteretic models are plotted for 1,499 ground 

motions in Figure 3.6 and 3.7, respectively. The P-DNN models show a good 

performance while capturing larger uncertainties in these responses of the nonlinear 

systems, which is similar to the results for the peak displacement (Figure 3.3). In 

Figure 3.6 and 3.7, different markers are used to differentiate the linear and nonlinear 

cases for peak velocity and acceleration. This is because, in Figure 3.3, the 

nonlinearity of the system can be easily distinguished in terms of the pre-defined 

yield displacement, which is the linear elastic limit, but it is difficult to identify the 

nonlinear cases in terms of the other structural responses. There is no concrete 

discrimination point of the linear and nonlinear cases for the peak velocity because 

the structural system can be considered as a linear case even if the peak velocity is 
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bigger than the pseudo yield velocity, i.e., multiplying the yield displacement to the 

circular natural frequency. However, the red horizontal line in Figure 3.7 clearly 

distinguishes the linear and nonlinear cases just as the case of the peak displacement 

in Figure 3.3. This is because when the structural damping is relatively low, the peak 

acceleration can be directly estimated from the peak displacement based on the 

Duhamel’s integral. The numerical example demonstrates that the proposed method, 

developed for the displacement first, is effective in predicting other types of 

structural responses after retraining neural network models with velocity or 

acceleration data. 

 

3.5 Conclusions 

 

In this chapter, the P-DNN model was proposed to evaluate the seismic responses of 

structural systems while quantifying the prediction uncertainties. The method 

predicts two outputs, the conditional mean and variance of the structural responses 

which are the main components of the loss function developed based on the Gaussian 

assumption. By introducing the mean and variance as the output of the neural 

network, the developed P-DNN model can capture the effects of randomness 

inherent in the input data, especially for the loss of information in the process of 

representing the earthquake ground information by selected features. The 

performance of the proposed method is comprehensively tested through five 

numerical experiments which confirm that the P-DNN model can successfully 

predict the relationship between the input and the output of the datasets. In particular, 

it produces a relatively small variance to the structural system behaving in the linear 

elastic range, while a relatively large variance is obtained for the nonlinear cases. 
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The characteristics of the developed model and framework are expected to facilitate 

various applications in earthquake engineering such as fragility assessment and 

regional seismic loss assessment of urban area.  
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Table 3.1 Comparison of MAE, MSE and MV for peak displacement between the 

train and test datasets 

Ground motion set MAE MSE MV 

Train (1,199) 0.0531 0.0060 0.0028 

Test (300) 0.1334 0.0308 0.0032 
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Table 3.2 Comparison of MSE between the proposed and existing methods 

Methods 
Mean squared error  

(MSE) 

R-μ-T 0.9857 

Capacity spectrum method 0.3526 

Coefficient method 0.6110 

DNN model 0.0407 

P-DNN model 0.0518 
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Table 3.3 Comparison of MAE, MSE, and MV for the train and the test datasets 

when different combinations of ground motion features are used as the 

input of the P-DNN model during the training process 

Case Input 
Ground 

motion Set 
MAE MSE MV 

Case 1 

Earthquake 

characteristics 

(M, R, and  

soil class) 

Train 0.5695 0.6699 0.0404 

Test 0.7227 0.8970 0.0367 

Case 2 

Peak values  

(PGA, PGV, and 

PGD) 

Train 0.2162 0.0946 0.0580 

Test 0.2946 0.1454 0.0147 

Case 3 

Response 

spectrum 

(Sa) 

Train 0.0650 0.0096 0.0034 

Test 0.1551 0.0422 0.0037 

Case 4 

Earthquake 

characteristics &  

Peak values 

Train 0.1607 0.0555 0.0050 

Test 0.2773 0.1294 0.0052 

Case 5 

Peak values &  

Response 

spectrum 

Train 0.0597 0.0070 0.0027 

Test 0.1354 0.0317 0.0029 

Case 6 

Response 

spectrum &  

Earthquake 

characteristics 

Train 0.0592 0.0082 0.0028 

Test 0.1558 0.0442 0.0031 

Case 7 

Earthquake 

characteristics &  

Peak values & 

Response 

spectrum 

Train 0.0531 0.0060 0.0028 

Test 0.1334 0.0308 0.0032 
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Table 3.4 Median and the coefficient of variation (c.o.v) of the peak displacement 

from the P-DNN model for the linear and nonlinear cases. Note that the 

median and c.o.v are readily calculated by the estimated lognormal 

distribution 

Case 

Linear Nonlinear 

Median (m) c.o.v Median (m) c.o.v 

Case 2 0.0031 0.0706 0.0578 0.1983 

Case 3 0.0036 0.0387 0.1150 0.2781 

Case 4 0.0030 0.0451 0.0723 0.3476 

Case 5 0.0036 0.0428 0.0839 0.2211 

Case 6 0.0036 0.0292 0.0964 0.3318 

Case 7 0.0037 0.0352 0.0877 0.2350 
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Table 3.5 Comparison of MAE, MSE, and MV for the peak velocity between the 

train and test datasets 

Ground motion set MAE MSE MV 

Train (1,199) 0.0550 0.0066 0.0023 

Test (300) 0.1342 0.0315 0.0026 
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Table 3.6 Comparison of MAE, MSE, and MV for the peak acceleration between 

the train and test datasets 

Ground motion set MAE MSE MV 

Train (1,199) 0.0446 0.0039 0.0014 

Test (300) 0.1162 0.0237 0.0015 
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Figure 3.1 Detailed diagram of the final layers developed for P-DNN model 

 

 

  



 

75 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 MSE of probabilistic predictions by the P-DNN model for the train (blue 

solid line) and test (red dashed line) datasets as an increase of epochs 
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Figure 3.3 Performance of the P-DNN model trained to predict the peak 

displacement for (a) bilinear kinematic hardening (HM2) with period of 

0.3 sec, normalized yield strength of 0.2g, and post yield stiffness ratio 

of 0.02, and (b) bilinear stiffness degrading system (HM3) with period 

of 0.5 sec, normalized yield strength of 0.05g, and post yield stiffness 

ratio of 0.05 
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Figure 3.4 Comparison of the standard deviation estimated from (a) the P-DNN 

model and (b) the Bayesian linear regression 
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Figure 3.5 Lognormal PDF constructed using the conditional mean and variance 

from the P-DNN model for systems showing (a) the linear behavior, and 

(b) the nonlinear behavior during the earthquake excitement (i.e., peak 

displacement is bigger than the yield displacement 0.0124 m). The 

observed peak displacements by time history analysis for the linear and 

nonlinear are 0.0035 m and 0.092 m, respectively 
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Figure 3.6 Performance of the P-DNN model trained for the peak velocity using (a) 

the bilinear kinematic hardening (HM2) with period 0.6 sec, yield 

strength 0.1g, and post yield stiffness ratio 0, and (b) the bilinear 

stiffness degrading system (HM3) with period 0.4 sec, yield strength 

0.2g, and post yield stiffness ratio 0.1. The observed responses from the 

dynamic analysis for the linear and nonlinear cases are represented as 

the blue circle and the red plus mark, respectively. The red dotted 

horizontal line represents the pseudo yield velocity which is estimated 

by multiplying the yield displacement to the circular natural frequency 
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Figure 3.7 Performance of the P-DNN model trained for the peak acceleration 

using (a) the bilinear kinematic hardening (HM2) with period 0.05 sec, 

yield strength 0.05g, and post yield stiffness ratio 0, and (b) the bilinear 

stiffness degrading system (HM3) with period 0.08 sec, yield strength 

0.15g, and post yield stiffness ratio 0.5. The observed responses from the 

dynamic analysis for the linear and nonlinear cases are represented as the 

blue circle and the red plus mark, respectively. The red dotted horizontal 

line represents the pseudo yield acceleration which is estimated by 

multiplying the yield displacement to square of the circular natural 

frequency 
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Chapter 4. Deep Learning-based Seismic Response 

Prediction of Generalized Hysteresis 
 

 

4.1 Introduction 

 

The DNN and P-DNN models, which were presented in Chapter 2 and Chapter 3, 

respectively, show superior prediction accuracy compared to the existing simple 

regression-based methods used in practice. Furthermore, it was demonstrated that 

the P-DNN model can properly quantify the inherent uncertainties of the stochastic 

excitation. However, since the models were trained based on the seismic responses 

of idealized hysteretic behaviors defined by a small number of parameters (stiffness, 

yield force, and post-yield stiffness ratio), it is difficult to guarantee the prediction 

accuracy of seismic responses for hysteretic behaviors showing significant 

stiffness/strength degradations and pinching effects. Such behaviors are usually 

shown in structural systems having plastic hinges or those constructed by 

deterioration materials such as reinforced concrete or wood, whose properties govern 

the seismic performance when the behavior of the structural system is significantly 

nonlinear (Deniz et al., 2017). 

To construct a deep neural network model that can predict the seismic responses 

of realistic hysteresis, a new seismic demand database is required to incorporate 

more sophisticated hysteretic characteristics. In this regard, this study employs 

Bouc-Wen model extended by Baber and Noori (1985) which can describe the 

stiffness/strength degradations and pinching effects. However, since the model 

cannot cover every practical range of civil structural systems, a modified Bouc-Wen-

Baber-Noori (m-BWBN) model is newly proposed. Moreover, to properly describe 
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hysteretic loops of various structural systems, experimental hysteretic data of 

reinforced concrete (RC) columns compiled by the Pacific Earthquake Engineering 

Research (PEER) center (Berry et al., 2004) is used to determine the feasible domain 

of the model parameters. After developing the seismic demand database based on the 

m-BWBN model, a deep neural network model is constructed and trained to predict 

seismic responses of general hysteresis. Note that the trained deep neural network 

model in this chapter is referred to as the BW-DNN model to differentiate from the 

DNN and P-DNN models that were already developed in Chapters 2 and 3, 

respectively. 

This chapter first presents the mathematical formulation of the m-BWBN model 

and a procedure to identify the upper and lower limits of the model parameters. Next, 

an architecture of the BW-DNN model is proposed by increasing the number of 

network units, especially layers in the CNN part, and including additional seismic 

intensity measures that represent the cumulative characteristics of earthquake ground 

motions. To take into account the sophisticated hysteretic characteristics as an input 

of the BW-DNN model, a framework to estimate predefined displacement history 

for the quasi-static cyclic analysis of a structural system is also suggested. After 

training the BW-DNN model, its performance is investigated in terms of accuracy. 

 

4.2 Modified Bouc-Wen-Baber-Noori model 

 

Bouc-Wen model, which was originally proposed by Bouc (1967) and later 

generalized by Wen (1976), is one of the most widely used differential equations that 

can extensively describe the dynamic behavior of a structural system. Although a 

wide class of Bouc-Wen models has been developed to consider various hysteretic 
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characteristics (Baber and Wen, 1981; Baber and Noori, 1985; Foliente et al., 1996; 

Song and Der Kiureghian, 2006), this study adopts the Bouc-Wen-Baber-Noori 

model which can describe stiffness and strength degradations and pinching 

phenomena (Baber and Noori, 1985). However, because the model has a limitation 

in controlling the yield force of the hysteresis which is an important feature that 

characterizes the strength of a system, some modifications are made. The revised 

version of the hysteretic model is denoted as the modified Bouc-Wen-Baber-Noori 

(m-BWBN) model. 

Just as other Bouc-Wen class models, the m-BWBN model could produce 

hysteresis loops that may not satisfy the physical phenomenon of structural systems, 

especially when the constraints of the parameters are not explicitly defined. Thus, 

using the experimental hysteresis data of RC columns, the upper and lower limits of 

the m-BWBN model parameters need to be determined. Moreover, sensitivity 

analysis is performed to identify the parameters that are not significant in modeling 

the hysteretic characteristics in order to reduce the computational costs for 

constructing the database and training the BW-DNN model. Based on the results, 

several model parameters are fixed to their representative values, which, in turn, 

addresses the computational challenges. 

 

4.2.1 Mathematical formulation 

The m-BWBN model describes the restoring force 𝑓𝑠  in Eq. (2.1) as a combination 

of elastic and hysteretic components, i.e., 

𝑓𝑠 = 𝑓(𝑢, 𝑧) = 𝛼𝑘0𝑢 + (1 − 𝛼)𝐹𝑦𝑧 (4.1) 

where 𝛼 is the ratio of initial to post-yield stiffness, 𝑘0 is the initial stiffness, and 
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𝐹𝑦 is the yield force of a system. The auxiliary variable 𝑧 satisfies the following 

non-linear differential equation: 

𝑧̇ =
ℎ(𝑧, 𝜀)

𝜂(𝜀)
[𝑢̇ − {𝛽|𝑢̇|𝑧|𝑧|𝑛−1 + 𝛾𝑢̇|𝑧|𝑛}𝜈(𝜀)]

𝑘0
𝐹𝑦

 (4.2) 

where ℎ(𝑧, 𝜀)  controls the pinching of the hysteresis, 𝜂(𝜀)  and 𝜈(𝜀)  are the 

parameter affecting the stiffness and strength degradations, respectively, and 𝛽, 𝛾, 

and 𝑛 are the dimensionless quantities controlling the shape of hysteretic loops. The 

deterioration parameters can be expressed as 𝜂(𝜀) = 1 + 𝛿𝜂𝜀 and 𝜈(𝜀) = 1 + 𝛿𝜈𝜀, 

where 𝛿𝜂 and 𝛿𝜈 stand for stiffness and strength degradation rates, respectively, 

and 𝜀  is the normalized cumulative hysteretic energy which is defined by the 

following rate equation 

𝜀̇ = (1 − 𝛼)
𝑘0
𝐹𝑦
𝑧𝑢̇ (4.3) 

In addition, the pinching function is written as (Foliente et al., 1996, Hossain et al., 

2013, Pelliciari et al., 2018) 

ℎ(𝑧, 𝜀) = 1 − 𝜁1(𝜀) exp(−(𝑧 ∙ sgn(𝑢̇) − 𝑞𝑧𝑢)
2/𝜁2

2(𝜀) ) (4.4) 

where sgn is the signum function, 𝑞 is a constant value that controls the pinching 

level, and 𝑧𝑢 is the ultimate value of 𝑧(𝜀) given by 

𝑧𝑢 = (
1

𝜈(𝜀)(𝛽 + 𝛾)
)
1/𝑛

 (4.5) 

The parameters 𝜁1(𝜀) and 𝜁2(𝜀), which respectively controls the pinching severity 

and determines the pinching region to spread, are defined as follows: 

𝜁1(𝜀) = 𝜁0(1 − 𝑒𝑥𝑝(−𝑝𝜀)) (4.6) 
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𝜁2(𝜀) = (𝜓 + 𝛿𝜓𝜀)(𝜆 + 𝜁1(𝜀)) (4.7) 

where 𝜁0 is the total slip, 𝑝 controls the rate of the initial drop in the slope, 𝜓 

contributes to the amount of pinching behavior, 𝛿𝜓 measures the dispersion rate of 

the pinching phenomenon, and 𝜆 controls the variation of the parameter 𝜁1(𝜀) and 

𝜁2(𝜀). 

Compared to the original Bouc-Wen-Baber-Noori model that does not include 

the yield strength as a model parameter (Baber and Noori, 1985), the m-BWBN 

model can properly describe the strength of structural systems as well as other 

complicated hysteretic behaviors such as degradation and pinching effects. However, 

since the m-BWBN model includes the strength deterioration term in the formulation, 

the yield strength of a structural system estimated from pushover analysis or quasi-

static cyclic analysis can be smaller than the specified level of 𝐹𝑦 in Eq. (4.1). This 

phenomenon stands out especially when the system has positive deterioration values. 

Moreover, the level of deterioration is significantly affected by given displacement 

steps, which can be inferred from Eq. (4.3) and (4.5). An incremental algorithm that 

estimates the restoring forces given displacement steps is presented in Appendix A 

based on that of other Bouc-Wen class model (Haukaas and Der Kiureghian, 2003; 

Hossain et al., 2013; Ning et al., 2016). 

 

4.2.2 Parameter constraints and bounds 

Several research efforts reported in the literature have proved that the parameters of 

the Bouc-Wen model are functionally redundant, that is there are multiple sets of 

parameters which provide an identical response for a given excitation (Foliente, 1995; 
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Ma et al., 2004). Moreover, based on the combination of the parameter, the Bouc-

Wen model could produce unrealistic or non-physical hysteresis. Therefore, the 

constraints and bounds of the parameters need to be provided to properly describe 

the hysteresis of structural systems. To this end, experimental hysteresis datasets of 

RC columns are introduced (Berry et al., 2004). Using the genetic algorithm, the 

parameters of the m-BWBN model are identified so that the corresponding hysteresis 

matches each experimental dataset. By combining all sets of identified parameters, 

the feasible parameter domain can be determined. 

 

4.2.2.1 Genetic algorithm 

Genetic algorithm is one of the heuristic optimization algorithms which is widely 

employed for the purpose of parameter estimation. The algorithm mimics the fact 

that the population that is akin to an optimal design is more likely to survive for each 

generation. In general, the generation consists of the following four steps: (1) 

population, (2) selection, (3) crossover, and (4) mutation. The optimal generations 

which produce the minimum value of the objective function are identified by 

repeating the 4 steps multiple time. Details of the genetic algorithm can be found in 

Goldberg and Holland (1988). In this study, the standard genetic algorithm is 

employed, but a small modification has been made in the mutation step such that the 

level of randomness decreases as the generation proceeds. This is to apply the 

simulated annealing effects (Bertsimas and Tsitsiklis, 1993) on the genetic algorithm 

in order to explore broadly at an early stage, which eventually pursues to avoid 

premature convergence or the local optima. 
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4.2.2.2 Determination of bounds on model parameters 

Before performing the genetic algorithm to identify the feasible domain of the m-

BWBN model parameters, the bounds of several parameters are first determined 

from the structural engineering point of view. Similar to Section 2.4.1, the ranges of 

the stiffness 𝑘0, yield strength 𝐹𝑦, and post-yield stiffness ratio 𝛼 are determined 

according to HAZUS-MH 2.1 (FEMA, 2012). In addition, 𝛽  and 𝛾 , which are 

known to control the shape of hysteretic loops especially hardening and softening, 

are respectively set to 0.5 to meet the following condition: 𝛽 + 𝛾 = 1 . This is 

because, as shown in Eq. (4.5), the ultimate value of 𝑧 needs to be bounded over 

(−1, 1)  when 𝛿𝜈 = 0  in order to ensure the yield strength of the system is 

equivalent to the specified value (Constantinou and Adnane, 1987). In other words, 

if 𝛽 + 𝛾  is smaller than 1 , 𝑧  becomes bigger than 1 , which leads that the 

restoring force 𝐹(𝑡) is bigger than the yield force 𝐹𝑦 at the yield point. Moreover, 

it is possible to find various combination of 𝛽  and 𝛾  satisfying the condition 

However, it is found that 0.5 for each parameter gives the most reliable results. Lastly, 

due to the numerical convergence issues when estimating hysteretic parameter 𝑧 

from the differential equation, the upper and lower limits are introduced to some of 

the m-BWBN parameters as follows: 1 ≤ 𝑛 ≤ 5, 0 ≤ 𝜁0 ≤ 1, 𝑞 ≥ 0.01, 𝜓 ≥ 0.1, 

and 𝜆 ≥ 0.01. Note that these bounds are obtained from a large number of numerical 

investigations. 

The most optimal way to determine the parameter bounds of the m-BWBN 

model for civil/architectural structural systems is to examine various combinations 

of the model parameters based on the hysteresis of different kinds of structural 

systems which are obtained by either simulations or experiments. However, since it 
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is difficult to obtain such a large volume of hysteresis loops for various structural 

systems, the experimental data of the RC columns under quasi-static cyclic analysis 

are introduced as a replacement (Berry et al., 2004). The experimental dataset is 

comprised of displacement and restoring force vectors for two different shapes of 

cross-section, i.e., rectangular and circular, whose number of datasets is 163 and 251, 

respectively. Note that the lengths and step sizes of hysteresis vary along with each 

experiment. 

In performing the genetic algorithm, for each population, the restoring forces 

are obtained using the displacement vector from the dataset. By setting the mean 

squared error (MSE) between the experimental and the estimated restoring forces as 

the objective function, it is possible to identify the optimal parameters for each 

dataset. Several representations of the hysteresis from the m-BWBN model and the 

corresponding experimental datasets are shown in Figure 4.1. In the figure, the black 

solid line represents the experimental hysteresis, while the red dashed line stands for 

the hysteresis obtained by using the m-BWBN model with the parameters identified 

from the genetic algorithm. It is found that the m-BWBN has the capability to 

properly illustrate the hysteresis of RC columns. However, it should be noted that 

although the estimated hysteresis enables a proper illustration of the experimental 

hysteresis as shown in Figure 4.1, it is difficult to guarantee that the estimated 

parameters produce the equivalent restoring force when the history of the input 

displacement is changed. This is due to the inherent functional redundancy of the 

Bouc-Wen model as explained earlier. 

To identify the upper and lower limits of the parameters, normalized frequency 

diagrams of the estimated deterioration and pinching parameters are presented in 

Figure 4.2. The upper limit of the input parameters is defined as the 95th percentile 
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of each normalized frequency diagram. This is due to the following two reasons. 

First, in performing the genetic algorithm, some parameters are overfitted to a 

specific dataset, which provides an extreme value. However, such values are only 

applicable to special hysteresis that is not suitable for general civil structural systems. 

Second, it is found that the hysteretic loop does not significantly transform its shape 

when the value that exceeds the 95th percentile of the distribution is assigned as the 

m-BWBN parameter. In other words, minor details of the hysteresis are ignored in 

order to reduce the computational cost for generating the seismic demand database. 

 

4.2.3 Sensitivity analysis of model parameters 

Sensitivity analysis aims at evaluating the degree of impact on model output for each 

input parameter, i.e., the level of change in the output of the model by varying input 

parameters. Although various methods have been developed to this end (Kim and 

Song, 2018; Sobol, 2001), an entropy-based sensitivity analysis method (Liu et al., 

2006) is adopted in this study to consider probability distributions of each parameter. 

The method compares the Kullback-Leibler (KL) divergence of two probability 

density functions (PDFs), obtained before and after a random variable is fixed to a 

certain representative value. The mathematical expression of the KL divergence 

𝐷𝐾𝐿(𝑝1|𝑝0) is written by 

𝐷𝐾𝐿(𝑝1|𝑝0)

= ∫ 𝑝1(𝑦(𝑥1,… , 𝑥̅𝑖 , … , 𝑥𝑛)) log
𝑝1(𝑦(𝑥1,… , 𝑥̅𝑖 , … , 𝑥𝑛))

𝑝0(𝑦(𝑥1, … , 𝑥𝑖 , … , 𝑥𝑛))

∞

−∞

𝑑𝑦 
(4.8) 

where 𝑝0 stands for the PDF of 𝑦 given input random variables 𝑥1, … , 𝑥𝑛, and 

𝑝1  is the PDF of 𝑦  when 𝑥𝑖  is fixed to a certain value 𝑥̅𝑖 . In short, the KL 

divergence superficially represents the distance between two different PDFs. The 
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larger the distance between 𝑝0 and 𝑝1, the higher 𝐷𝐾𝐿(𝑝1|𝑝0) is calculated. If the 

variability of random variable 𝑥𝑖 does not significantly affect the variability of 𝑦, 

the corresponding 𝐷𝐾𝐿(𝑝1|𝑝0) would be small. However, it should be noted that the 

KL divergence does not exactly stand for the distance between two PDFs, in that 

𝐷𝐾𝐿(𝑝1|𝑝0) and 𝐷𝐾𝐿(𝑝0|𝑝1) are not equivalent. 

The sensitivity analysis is performed for 9 parameters: 𝑛, 𝛿𝜈, 𝛿𝜂, 𝜁0, 𝑝, 𝑞, 

𝜓 , 𝛿𝜓 , and 𝜆 . The procedure consists of the following 4 steps: (1) randomly 

generate a set of input parameters by assuming that each parameter follows uniform 

distribution whose upper and lower limits are defined in the previous subsection, (2) 

perform a quasi-static cyclic analysis for each set of generated input parameters 

using the predefined displacement history (i.e., restoring forces are obtained for the 

given displacement history), (3) repeat the first and second steps while fixing a 

certain input parameter to a representative value, and (4) estimate the KL divergence 

between the fixed and unfixed distributions of restoring forces for each displacement 

step and average them. The displacement history is defined as four cycles in each of 

which the peak displacement is gradually increased, and scaled by the yield 

displacement of a target structural system to properly investigate the nonlinear range, 

i.e., detailed pinching and deterioration phenomenon (FEMA P695, 2009; FEMA 

P795, 2011). In the sensitivity analysis, the uniform distribution is selected as the 

prior distribution which means that no particular information is provided to each 

parameter, i.e., uninformative. If the distributions of the model parameters are 

determined from structural systems having various characteristics, one can use the 

identified PDFs as the prior distribution in the sensitivity analysis and obtain results 

that are slightly different from those in this study. 
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As a target structural system, an SDOF system is considered: period 𝑇 is 0.5 

s, normalized yield force 𝐹𝑦 is 0.1g, and post-yield stiffness ratio 𝛼 is 0.01. A total 

of 500 samples are randomly generated with the Latin hypercube sampling to 

efficiently cover the domains of the input parameters. The lowest value of the 

parameter domain is selected as the represented value, except 𝑛  in which the 

median values are chosen. This is because, except 𝑛, the parameters of the lowest 

value do not take into account strength and stiffness degradations nor pinching 

effects in the system. In other words, it is possible to quantify the level of these 

hysteresis phenomena with respect to parameters when the lowest values are 

employed for a representative value. The results of the sensitivity analysis are 

enlisted in Table 4.1 with their descriptions and the feasible domain defined in the 

previous subsection. Note that the value inside the parenthesis in the ‘sensitivity rank’ 

column of the table indicates the calculated 𝐷𝐾𝐿   which is normalized by their 

maximum value. 

It is observed from Table 4.1 that 𝛿𝜂 is the most sensitive parameter which is 

followed by 𝛿𝜈 , 𝑝 , and 𝜁0 . On the other hand, 𝑞 , 𝜓 , and 𝛿𝜓  are the relatively 

insensitive parameters whose contributions are below 20% compared to the effect of 

𝛿𝜂. Moreover, although, in the table, 𝑛 which controls the level of sharpness from 

linear to nonlinear behavior has ranked as 5th from the quasi-static cyclic analysis, it 

is found that 𝑛  does not critically affect the seismic responses during dynamic 

analysis. Therefore, to address some computational challenges when developing the 

seismic demand database, three pinching related parameters and 𝑛 are fixed to their 

median value, i.e., 𝑛 = 3, 𝑞 = 0.027, 𝜓 = 0.117, and 𝛿𝜓 = 0.003. However, it 

should be noted that since no correlation between parameters is considered during 
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the sensitivity analysis, the results of the investigation may be changed along with 

the additional information. 

To check the level of compromising the details of hysteretic characteristics, the 

genetic algorithm is reperformed by fixing 4 parameters to their representative values 

and applying the identified parameter bounds, and then the mean squared errors 

(MSE) are compared with the one that does not consider any constraints. The MSE 

between estimated and experimental hysteretic behaviors with and without 

considering the constraint is 0.0012 and 0.0011, respectively, and the relative error 

between the two MSEs is calculated as 7.96%. Based on these findings, it is 

concluded that there exists a trade-off between about 8% of hysteretic details and the 

computational efforts. 

 

4.3 Training methodologies 

 

The database is first constructed for various structural systems represented by the m-

BWBN model with a large number of ground motions. Runge-Kutta integration 

method of order two and three is employed for the time history analysis. Next, a 

newly proposed deep neural network architecture is described by modifying the 

previously developed DNN model in Chapter 2 to properly investigate the onerous 

relationship between the input and output. Moreover, the data retrieval process from 

the databases is presented with details of hyperparameters for training. Note that, the 

database and the BW-DNN model were constructed using SQLite3 and TensorFlow 

(Abadi et al., 2016), respectively through the Compute Canada’s CPU and GPU 

clusters. 

 



 

93 

4.3.1 Database 

In order to construct the seismic demand database, parameters of the m-BWBN 

model are discretized based on the estimated feasible domain as shown in Table 4.1. 

First, the basic hysteretic parameters such as structural period, normalized yield force, 

and post-yield stiffness ratio are, respectively, discretized as 40, 10, and 4 steps, 

instead of 90, 30, and 10 steps in Section 2.4.1. This is due to the computational cost 

for a large amount of nonlinear time history analysis. Next, the two deterioration 

parameters are respectively discretized as 3 steps. Since the pinching effects are 

described by interwinding 6 different parameters, 9 possible combinations of 

pinching parameters are employed based on an extensive exploration of different 

hysteretic behaviors. The set of pinching parameters and their shapes are shown in 

Figure 4.3 as the red dashed line with the hysteresis of no pinching effects which is 

illustrated by the black solid line in each subplot. In words, the total number of 

structural systems considered in this database is 129,600 (= 40 × 10 × 4 × 3 ×

3 × 9). 

Among various methods available for solving the system of nonlinear equations 

of motion, Bogacki–Shampine method, which is often termed as the Runge-Kutta 

method of order two and three, is selected for this purpose (Bogacki and Shampine, 

1999). Since 1,499 ground motions from the NGA-West database (Power et al., 2006) 

is employed, a required number of time history analysis is 129,600 × 1,499 =

194,270,400. Although it is widely known that the accuracy of the dynamic analysis 

by the Runge–Kutta–Fehlberg method, i.e., Runge-Kutta method of order four and 

five is better than that of the Bogacki–Shampine method, this study adopts the 

relatively lower-order method to reduce the computational challenge (Bogacki and 

Shampine, 1989; Cheney and Kincaid, 1999). Moreover, it is found that the level of 
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accuracy of the two integration schemes is equivalent to each other in this problem. 

 

4.3.2 Characterization of generalized hysteresis 

Since a substantial amount of information is contained in the hysteresis of the m-

BWBN model than the idealized one in Chapters 2 and 3, refined displacement and 

force steps are required for the input of the BW-DNN model. The hysteresis loop 

obtained from the quasi-static cyclic analysis should satisfy the following two 

requirements: (1) all hysteretic characteristics are incorporated in the hysteresis loop 

to distinguish one another, and (2) hysteresis loops should produce a reasonable level 

of performance in terms of accuracy and applicability when they are used as the input 

of the BW-DNN model. Inspired by literature (FEMA 440, 2005; FEMA P695, 2009; 

FEMA P795, 2011), a guideline to estimate predefined displacement history for the 

quasi-static cyclic analysis is proposed as the following 3 steps. 

 

Step 1: A pushover analysis is performed by subjecting a structure to a monotonically 

increasing pattern of lateral forces. 

Step 2: By superimposing a linear line whose slope is equal to 90% of the initial 

stiffness of the pushover curve, an intersection point is obtained. The 

intersection point is considered as the reference point whose role is the yield 

point of the structure. 

Step 3: Multiply the yield displacement estimated from the reference point to the 

basic displacement history. The basic displacement history is defined by 241 

steps with 5 cycles whose peak displacement is gradually increased as the 

cycle proceeds. In particular, the step size of the basic displacement history 

is 0.25 and its amplitude of each cycle is 0.5, 1.0, 1.5, 2.0, and 2.5. The 
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graphical representation of the basic displacement history is presented in 

Figure 4.4. 

 

The predictions from a neural network are not reliable for regions of the variable 

space in which no train dataset is available, i.e., no extrapolation. When the 

normalized yield strength of a structural system exceeds 1.5g is employed in the 

developed framework, the yield displacement is estimated by dividing the stiffness 

to 1.5g instead of the actual yield strength of the structural system. Note that 1.5g is 

the maximum yield strength handled in this study. Moreover, the yield displacement 

and the corresponding displacement history for the linear structural systems are 

estimated in the same manner. 

Using the estimated displacement history, the restoring forces are obtained from 

the incremental response equation described in Appendix A. As shown in Figure 4.3, 

various hysteretic behaviors are readily distinguished from each other. Moreover, it 

was found from a large number of numerical examinations that good prediction 

accuracy of the BW-DNN model is observed when such hysteresis loops are used as 

the input compared to other hysteresis obtained from different displacement histories. 

 

4.3.3 Architecture details 

The architecture of the BW-DNN model is illustrated in Figure 4.5 by improving the 

network model developed in Section 2.3. Compared to the previous version 

illustrated in Figure 2.4, five modifications have been made to properly predict the 

seismic demands of generalized hysteresis which are indicated in bold and underline 

in Figure 4.5. First, compared with the DNN and P-DNN models, the number of 

units in the BW-DNN model is increased, especially the CNN part that extracts 
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important features of structural systems. Since more sophisticated hysteretic 

characteristics are contained in the m-BWBN hysteresis than the idealized one, a 

sufficient number of units are required. From the extensive exploration of various 

deep neural network architectures, it was found that the number of units shown in 

Figure 4.5 is optimal for predicting the seismic responses. In other words, a smaller 

number of units than the proposed one gives less accuracy, whereas, it may hamper 

the convergence of the BW-DNN model in the opposite case. Second, since the 

normalized cumulative hysteretic energy 𝜀 which controls the level of deterioration 

and pinching effects is highly related to the cumulative features of ground motions, 

three new seismic intensity measures are added as the input of the BW-DNN model: 

strong motion duration 𝑡𝑠𝑡𝑟𝑔 , zero-crossing of ground acceleration during strong 

motion duration 𝑓𝑠𝑡𝑟𝑔 , and time integral of squared ground motion acceleration 

during strong motion duration in the unit of g 𝐶𝑆𝐴𝑠𝑡𝑟𝑔 (Kim et al., 2021). Note that 

the strong motion duration is defined as the time interval between 5% and 95% of 

the time integral of squared ground motion acceleration. Third, the number of units 

in layers is decreased and L2 regularizers are introduced to address the overfitting 

issue, especially where the ground motion features are extracted. Due to insufficient 

numbers of ground motions, it was found that the deep neural network model tends 

to overfit the train dataset. Even though the regularization technique can mitigate the 

overfitting problem, an increase of the number of ground motions is the only and 

most efficient way to extract the inherent patterns between input and output. Fourth, 

the features of earthquake information are connected to those of ground motions and 

frequency contents after processing by several layers of neurons to represent a more 

realistic structural excitation mechanism subjected to an earthquake ground motion. 
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An extensive numerical investigation demonstrates that this adjustment does not 

critically affect the performance of the BW-DNN model, but it is expected that the 

accuracy might be improved, especially when the seismic demands that are highly 

related to the source information such as hysteretic energy are selected as the output. 

Finally, the rectified linear operator (ReLU; Nair and Hinton, 2010) is changed to a 

Leaky version of a Rectified Linear Unit (LeakyReLU), which is known to produce 

better performance than using the ReLU in the neural network. 

 

4.3.4 Training methodologies 

The BW-DNN model is trained using the seismic demand databases of idealized and 

generalized hysteresis to predict peak displacement during seismic excitation. After 

pretraining the BW-DNN model using only linear and bilinear perfectly plastic 

hysteresis, the model is trained for the entire structural systems. Since the number of 

datasets from both databases (idealized hysteresis models and m-BWBN model) is 

202,499,910 (= 8,229,510 + 194,270,400), it is difficult to use every dataset for 

training at once due to memory issues. To address this issue, 45 ground motions are 

randomly selected with the corresponding 129,600 m-BWBN hysteresis, 90 

hysteresis of HM1, and sparsely selected 7,560 hysteresis of HM2 and HM3 

respectively for every three epochs, i.e., a total of 144,810 (= 129,600 + 90 +

7,560 + 7,560) for each ground motion. When selecting ground motions for each 

epoch, they are selected in terms of probability density functions (PDF) of PGA to 

cover a broad range of ground motion intensity. To check whether the BW-DNN 

model is overfitted or not, 80% of ground motions are used for training and 20% are 

used for testing. Adam optimization algorithm is adopted to minimize the mean 

squared error (MSE) between predicted and ground truth seismic responses. 
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4.4 Performance of deep neural network 

 

To check the performance of the trained BW-DNN model, mean squared error (MSE) 

and mean absolute error (MAE) are estimated for train and test datasets as shown in 

Table 4.2 after 30 epochs of training. Because it was found that 30 epochs are not 

enough for a given dataset and network model, further investigation is required to 

obtain better performance of the BW-DNN model. Because the L2 regularization 

technique is employed and small amounts of noise are added to the ground motion 

information on purpose, the MSE and MAE of the train and test datasets are 

equivalent to each other compared to those of DNN and P-DNN models shown in 

Table 2.1 and Table 3.1, respectively. However, the level of error is slightly higher 

than the previous models because of an insufficient number of epochs as previously 

mentioned. Thus, it is expected that better performance would be achieved if more 

epochs of training are performed. Moreover, to examine the trainability and 

sensitivity of the BW-DNN model to other structural responses, training results of 

the BW-DNN model need to be provided by setting the output of the model as peak 

acceleration and velocity.  

 

4.5 Conclusions 

 

To properly predict the seismic responses of structural systems showing more 

sophisticated hysteretic behaviors, the BW-DNN model was developed. First, the 

modified Bouc-Wen-Baber-Noori (m-BWBN) model was proposed to describe the 

yield strength of structural systems as well as other sophisticated hysteretic behaviors 

such as degradation and pinching effects. A comprehensive numerical investigation 
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was performed using hysteresis loops of experimental data of RC column to estimate 

the feasible domains of the m-BWBN model parameters. The Runge-Kutta 

integration method was adopted to construct a seismic demand database of the m-

BWBN model. Using the database, the BW-DNN model was trained to predict the 

seismic response of structural systems having sophisticated hysteretic behaviors. The 

performance of the trained BW-DNN model was tested in terms of accuracy by 

comparing the mean squared error between the predicted peak displacement and the 

one from dynamic analysis. Because the BW-DNN model is versatile to predict 

various seismic responses of structural systems, future investigation is needed to 

develop DNN models that can predict peak velocity and acceleration. 

  



 

100 

 

 

Table 4.1 Summary and description of parameters for m-BWBN model 

No. Parameter Description Bounds 
Sensitivity 

rank 

1 𝛼 
Post-yield stiffness 

ratio 
0 ≤ 𝛼 ≤ 0.5 - 

2 𝑘0 Stiffness 0.05 s ≤ 𝑇 ≤ 10 s - 

3 𝐹𝑦 Yield force 0.05g ≤ 𝐹𝑦 ≤ 1.5g - 

4 𝛽 
Basic hysteretic 

shape control 
𝛽 = 0.5 - 

5 𝛾 
Basic hysteretic 

shape control 
𝛾 = 0.5 - 

6 𝑛 Sharpness of yield 1 ≤ 𝑛 ≤ 5 5 (0.1443) 

7 𝛿𝜈 
Strength 

degradation rate 
0 ≤ 𝛿𝜈 ≤ 0.36 2 (0.2552) 

8 𝛿𝜂 
Stiffness 

degradation rate 
0 ≤ 𝛿𝜂 ≤ 0.39 1 (1.0) 

9 𝜁0 
Measure of total 

slip 
0 ≤ 𝜁0 < 1 4 (0.2067) 

10 𝑝 Pinching slope 0 ≤ 𝑝 ≤ 1.38 3 (0.2374) 

11 𝑞 Pinching initiation 0.01 < 𝑞 ≤ 0.43 7 (0.0732) 

12 𝜓 Pinching magnitude 0.1 ≤ 𝜓 ≤ 0.85 8 (0.0595) 

13 𝛿𝜓 Pinching rate 0 ≤ 𝛿𝜓 ≤ 0.09 9 (0.0515) 

14 𝜆 Pinching severity 0.01 ≤ 𝜆 ≤ 0.8 6 (0.0741) 
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Table 4.2 Comparison of MSE between train and test datasets 

Ground motion set 
Mean squared error  

(MSE) 

Mean absolute error 

(MAE) 

Train 0.0489 0.1694 

Test 0.0586 0.1821 
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Figure 4.1 Comparison of the predicted hysteresis loop using genetic algorithm 

with experimental data of RC columns 
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Figure 4.2 Normalized frequency diagrams of m-BWBN model parameters and 

identified upper bounds 

 

 



 

104 

 

 

 

 

 

 

 

Figure 4.3 Nine different pinching effects considered in this study and their 

parameters for m-BWBN model 
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Figure 4.4 Illustration of basic displacement history for generating hysteretic loop 
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Figure 4.5 Detailed diagram of the BW-DNN model architecture 
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Chapter 5. Application of Trained Deep Neural 

Network Models 
 

 

5.1 Introduction 

 

In Chapters 2 – 4, the performance of three DNN models was comprehensively 

demonstrated through various numerical examples. To demonstrate the applicability 

of the developed methods, three application examples having different scales of 

target structural systems are provided in this chapter. First, seismic responses of 

structural elements, i.e., reinforced concrete (RC) columns are predicted using the 

DNN and BW-DNN models. In this regard, different periods of RC columns are 

introduced by changing their mass. Second, using the capabilities of the P-DNN 

model to predict the mean and variance of seismic responses, a new method that 

estimates a structural fragility is proposed. Owing to the merits of the P-DNN model, 

it is possible to estimate structural fragility without assuming the relationship 

between seismic demand and capacity. Third, risk assessment of an urban 

community subjected to seismic excitation is carried out using the DNN and P-DNN 

models. Given that an urban community is a complex system characterized by a large 

number of components and their correlation, the DNN and P-DNN models can 

efficiently predict the responses of a set of structures in the target region. Moreover, 

because the P-DNN model can quantify the uncertainties of the nonlinear responses 

of structural systems given the seismic intensity measure, such variabilities can be 

incorporated during the loss assessment process and the results are compared with 

the one using the DNN model. Apart from the applications, a user-friendly web-

service (Earthquake Responses using Deep learning and Database; ERD2) is 
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developed to provide an interactive visualization of the proposed DNN predictions. 

The merits and role of the web platform in the earthquake engineering community 

are comprehensively described. 

The chapter is organized as follows. The application of the trained BW-DNN 

model as a seismic response prediction tool for structural elements is first presented. 

Next, a deep learning-based fragility assessment framework is proposed and its 

application to reinforced concrete (RC) frame structure is illustrated. Third, a deep 

learning-based regional seismic loss assessment framework is developed and applied 

to an urban community which mimics the downtown Vancouver area. Finally, the 

ERD2 is introduced with a detailed explanation of how other researchers can employ 

the outcomes and findings of this study to their own problems. 

 

5.2 Application to structural element: Response prediction of 

RC columns 

 

The BW-DNN model can predict the seismic responses of general hysteresis. To 

demonstrate its effectiveness and applicability, seismic responses of RC columns are 

predicted using the BW-DNN model. To this end, a deep learning-based seismic 

prediction framework is introduced. Using the proposed procedure, three RC 

columns having different first mode periods are introduced with 135 ground motions 

retrieved from the NGA-West database based on the following criteria: M > 6, 15 < 

R < 35, and soil classes A, B, C, and D. Note that the soil class is defined by Building 

Seismic Safety Council (BSSC, 2003). 
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5.2.1 Deep learning-based seismic response prediction 

In order to use the BW-DNN model as a prediction tool for seismic responses of 

structural systems, two different types of information are required: (1) structural 

information, and (2) earthquake ground motion information. First, the structural 

information is represented by the hysteresis loop, i.e., force and displacement steps 

(241 × 2), which is extracted from the generalized hysteretic generation procedure 

proposed in Section 4.3.2. Since it was found that the prediction performance of the 

BW-DNN model is highly affected by the shape of hysteresis, the displacement 

history that is used to estimate the structural hysteresis is of importance. Regarding 

earthquake ground motion information, three different features are employed: 

Earthquake features (M, R, Soil class), ground motion features (PGA, PGV, PGD, 

𝑡𝑠𝑡𝑟𝑔 , 𝑓𝑠𝑡𝑟𝑔, 𝐶𝑆𝐴𝑠𝑡𝑟𝑔), and frequency features (spectral acceleration). It should be 

noted that the natural logarithm needs to be applied when the features are employed 

as the input of the BW-DNN model except the soil class which is represented as a 

categorical data formulation. When adopting the DNN model in seismic design 

framework, a design spectrum of the site of interest is employed for the frequency 

features instead of the spectral acceleration of ground motions, and other intensity 

measure values are approximately obtained from a ground motion prediction 

equation or estimated based on random vibration theories. Since the BW-DNN 

model predicts the natural logarithm of the peak responses, the exponential function 

is required to convert the predicted responses to the original scale. 

 

5.2.2 Application to RC columns 

Concrete and reinforcement are one of the widely used structural materials in civil 
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and architectural engineering. Due to the inherent material properties and their 

interaction, stiffness/strength degradations and pinching effects are usually observed 

in the hysteresis of RC elements. 

RC column is one of the most important structural elements in RC structural 

systems. A cross-sectional area of the RC column and its material properties used in 

this study are shown in Figure 5.1. By varying the mass of the structural element, 

three different first mode periods of RC column are obtained and their hysteresis are 

shown in Figure 5.2. Since the mass is the only parameter that is changed along with 

the structural elements, the yield strength and period are varied, whereas the shape 

of hysteresis is equivalent to each other. As shown in Figure 5.2, one can readily 

identify the stiffness/strength degradations and pinching effects in the hysteresis. 

Using 135 ground motions from the NGA-West database (Power et al., 2006), time 

history analyses are carried out. Figure 5.3 shows the results as a form of scatter plot 

between spectral acceleration and peak displacement. The spectral acceleration value 

at which the response variability occurs is equivalent to the normalized yield strength 

of structural elements obtained from the quasi-static cyclic analysis in Figure 5.2. 

To investigate the prediction performance of the BW-DNN model, the mean 

squared error (MSE) and relative error (RE) of the natural logarithm of the predicted 

responses and the ones from the time history analysis are estimated and presented in 

Table 5.1. The MSE and RE obtained using the DNN model and the coefficients 

method are also presented in the same table. Note that when predicting the structural 

responses using the DNN model, the equivalent HM3 model is introduced. As shown 

in the table, relative errors of predicted responses from the DNN model and the 

coefficient method increase as more pinching and strength/stiffness degradations 

effects are incorporated in the hysteresis, while the BW-DNN model shows steady 
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prediction error regardless of the hysteretic characteristics. This finding indicates 

that the DNN model and the coefficient method have a limitation in predicting 

seismic responses of generalized hysteresis, while the BW-DNN model can cover a 

broad range of structural systems having sophisticated hysteretic characteristics. 

However, it is found that the prediction error by using the BW-DNN model is 

relatively high even though the system behaves in a linear range, i.e., RC column 

whose period is 0.115 sec. This is because the m-BWBN hysteresis models are 

intentionally more selected than the idealized hysteresis that behaves in the linear 

range when training the BW-DNN model. To increase the prediction accuracy of the 

linear seismic responses of the BW-DNN model, a new training methodology is 

required to address the issues. 

 

5.3 Application to structural systems: Seismic fragility 

estimation 

 

In order to consider the record-to-record variability of ground motions and the 

uncertainties of structural behaviors under excitations, modern seismic design codes 

adopt the probabilistic assessment framework which interwinds the uncertainties in 

the ground motions and the corresponding structural responses by using the total 

probability theorem (Deierlein et al., 2003). Such a framework is often referred to as 

performance-based earthquake engineering (PBEE) framework. In PBEE, the 

seismic performance of a structural system is often described by the conditional 

failure probability given earthquake intensity measure, which is termed as structural 

fragility. Although various methods have been developed to estimate structural 

fragility (Cornell et al., 2002; Deniz et al., 2018; Jalayer et al., 2014; Kim et al., 

Accepted; Shome et al., 1998; Vamvatsikos and Cornell, 2002), a large 
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computational cost is usually required. However, when using the conditional mean 

and variance of the structural responses from the P-DNN model, structural fragility 

can be directly computed without any assumed relationship between seismic 

capacity and demand nor a large number of dynamic analysis. Thus, this section 

provides the procedure to estimate structural fragility using the P-DNN model which 

is followed by the validation of the procedure with a 3-story RC structural system. 

 

5.3.1 Deep learning-based structural fragility assessment 

Since the P-DNN model was developed based on the idealized hysteretic behaviors 

of an SDOF system, hysteresis loops of the equivalent idealized SDOF systems need 

to be employed as the input of the P-DNN model. To this end, the hysteresis of an 

MDOF system is transformed into an equivalent SDOF system. After obtaining the 

usable hysteresis, a deep learning-based fragility estimation framework is proposed 

as follows: 

 

Step 1: Identify the relationship between the base shear force and the rooftop 

displacement (i.e., hysteretic curve) through a pushover analysis (Fajfar, 

2000). 

Step 2: Determine the equivalent SDOF system using the hysteretic curve from Step 

1 (ASCE, 2000; FEMA 440, 2005). 

Step 3: Using the P-DNN model with inputs representing the hysteretic curve of the 

equivalent SDOF system and the features of the selected ground motions, 

estimate the conditional mean and variance of the displacement given each 

ground motion. 

Step 4: Using a modal participation factor Γ, transform the estimated response of 
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the equivalent SDOF system to the top displacement of the original MDOF 

system (Fajfar, 2000). 

Step 5: Calculate the failure probability, i.e., probability to exceed a displacement 

threshold representing the limit-state of interest for each ground motion, 

based on the assumption that the natural logarithm of the displacement 

follows a Gaussian distribution with the estimated mean and variance (i.e., 

the displacement in the original scale follows the lognormal distribution). As 

a result, the pair of intensity measure and the corresponding failure 

probability is obtained for each ground motion. 

Step 6: A cumulative distribution function (CDF) model, e.g., lognormal CDF is 

fitted to the pairs of intensity measure and corresponding failure probability 

obtained from Step 5 to construct a smooth fragility curve. 

 

5.3.2 Application to 3-story RC frame structure 

The proposed framework is demonstrated using a 3-story RC structural system 

whose configuration is shown in Figure 5.4. Kwon and Elnashai (2006) defined the 

limit states ‘Serviceability’, ‘Damage Control’, and ‘Collapse Prevention’ in terms 

of the maximum inter-story drift ratio – 0.57%, 1.2%, and 2.3% respectively. By 

assuming that the roof drift ratio is proportional to 70% of the inter-story drift ratio, 

the failure criteria are converted in terms of the drift as 0.043 m, 0.090 m, and 0.173 

m. This assumption is reasonable, in that the yield displacement estimated from the 

idealized SDOF system, 0.052 m (estimated by 0.042 m/1.24 as discussed below) 

lies between ‘Serviceability’ and ‘Damage Control’ limit-states. 

The quasi-static cyclic analysis of the structural system is performed with the 

1st mode force distribution. Figure 5.5 shows the relationship between the 
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normalized 1st mode base shear and equivalent 1st mode roof displacement of the 

RC model (black solid line) and that of the idealized SDOF system (red dashed line) 

estimated from the iterative procedure (FEMA 440, 2005). A bilinear model having 

a stiffness degradation mechanism is selected to describe the pinching effects and 

the strength degradation of the structure. Note that if the P-DNN model is trained 

with the database developed in Section 4, the hysteretic behaviors obtained from the 

quasi-static cyclic analysis can be directly used as the input of the deep learning 

model. The ground motions whose magnitude ranges from 6.5 to 8.0 and epicenter 

distance from 20 km to 30 km are selected for the fragility analysis (total 58 ground 

motions). Using the P-DNN model and the procedure introduced in the previous 

subsection, fragility curves are obtained for each limit-state as shown in Figure 5.6. 

Moreover, to compare the estimated fragility functions with those obtained from an 

existing method, the procedure proposed by Cornell et al. (2002) is employed, whose 

details are described in Appendix B. The fragilities are computed using the structural 

responses of the idealized SDOF system estimated from the nonlinear time history 

analysis, and depicted as the dotted lines in the same plot. 

As shown in Figure 5.6, the variability of both types of fragility curves, 

visualized by their flatness, increases as more severe failure criteria are considered. 

It is noted that the variability of the curves is also affected by the method used for 

fragility estimation. The fragility curves obtained from the P-DNN model are stiffer 

than the conventional method for serviceability limit-state, while less stiff for 

damage control and collapse prevention limit-states. Since the conventional method 

relies on a simple regression model with a constant standard deviation (i.e., 

homoscedasticity) for both the linear and nonlinear range of the structural system 

when identifying the relationship between the spectral acceleration and drift, the 
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conventional method shows significant variabilities in the linear elastic range. For 

the same reason, the variability in the nonlinear range is underestimated due to the 

influence of the data in the linear elastic range on the estimate of the constant 

variance. In reality, however, the fragility curve of the serviceability limit state 

should be a vertical line at the performance point 0.076g (= stiffness×performance 

limit/Γ = 2.183 × 0.043/1.2495) in Figure 5.6, which matches the fragility curve 

developed by the proposed method. 

This numerical example confirms that it is convenient and intuitive to develop 

a fragility function using the P-DNN model. Moreover, since the deep learning-based 

fragility does not use an assumption about the relationship between intensity measure 

and damage measure, its actual relationship can be properly incorporated into the 

fragility for each limit-state. This framework can be further extended to develop a 

ground motion selection algorithm for the purpose of assessing the structural system 

because one can readily identify the ground motions that significantly affect the 

variability of the fragility. For instance, Figure 5.6 implies that the ground motions 

with spectral acceleration values between 0.2g and 0.6g are needed to assess the 

structural system for collapse prevention limit-state. 
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5.4 Application to urban community: Regional seismic loss 

assessment 

 

Community-level seismic risk assessments are indispensable to assure resilient 

urban communities against earthquake hazards. To this end, a loss curve is usually 

employed which is defined as the exceedance probability of certain performance or 

monetary loss (Bommer et al., 2002; Goda and Hong, 2008; Shiraki et al., 2007). 

Note that the mathematical definition of the loss curve and details of its estimation 

are described in Appendix C. The loss curve is estimated based on the seismic 

responses, e.g., usually peak displacement, of a set of structural systems in the target 

urban area. In estimating the seismic responses, some researchers have adopted 

structural fragility models (Bai et al., 2009; Diaz Gomez et al., 2015; Miller and 

Baker, 2015), whereas others have employed a nonlinear static procedure (NSP) 

method (ASCE 41-13, 2013; FEMA 440, 2005; Nassar and Krawinkler, 1991) based 

on assumed probabilistic distributions of structural parameters (Goda and Hong, 

2008). Although both approaches can incorporate uncertainties in the structural 

behavior into predictions, some limitations still exist. The former method often 

demands a huge computational cost or effort for developing the fragility curve for 

each type of structural system under the seismic hazard at the site of interest. The 

latter approach is computationally efficient but may suffer from a large estimation 

error as confirmed in Chapters 2 and 3. This may result in significant under- or 

overestimation of the regional loss. 

In order to overcome this challenge, the DNN and P-DNN models are 

introduced for accurate and efficient prediction of seismic responses of individual 

structures. It was confirmed that the accuracy of the DNN and P-DNN models is 

superior to that of existing nonlinear static procedure methods. Furthermore, the 
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uncertainties of the structural responses given intensity measure which stem from its 

nonlinear behavior can be quantified by the P-DNN model. This evaluation is 

important, in that the uncertainty in the damage of the structural system is propagated 

to that of the regional monetary loss of the urban community. Thus, this section first 

proposes a regional seismic loss assessment framework using the P-DNN model. 

Next, the proposed frameworks are demonstrated with the V-city example to 

demonstrate its applicability and effectiveness (Kim et al., 2020). 

 

5.4.1 Deep learning-based regional loss assessment framework 

Inspired by the simulation-based seismic loss assessment by Choi (2017), the 

following regional seismic loss assessment procedure using the P-DNN model is 

proposed. The buildings distributed in a target region are represented as idealized 

SDOF systems, because the regional loss assessment usually focuses on a group of 

structures. Furthermore, detailed computational simulations would demand 

exceedingly large efforts with regard to structural modeling and computational 

simulations. Regarding the earthquake ground motion, it was assumed that the 

earthquake rupture plane is on the fault surface, and a rupture has a maximum area 

up to that of the active fault where it is located. It should be noted that the proposed 

framework is still applicable even when the rupture plane (or epicenter) is defined 

using different approaches. 

 

Step 1: Randomly choose an active fault according to the relative annual occurrence 

rates 𝜆𝑠/𝜆𝐸, 𝑠 = 1,… , 𝑆 in Eq. (C.4). 

Step 2: Generate earthquake magnitude 𝑀  based on its cumulative distribution 

function (CDF) given the fault selected in Step 1. 
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Step 3: Determine a rupture area based on the magnitude-scaling relationship derived 

by Shaw et al. (2009), which is a function of 𝑀 from Step 2. 

Step 4: Introduce two random variables following the uniform distribution which, 

respectively, represent the relative vertical and horizontal coordinates of the 

center of the rupture on the fault surface. Using the estimated area in Step 3 

and the location of the source, the active rupture is determined. 

Step 5: Calculate the distance between the earthquake rupture determined from Step 

4 and each property location in the urban area, i.e., 𝑅𝑖𝑗, in Eq. (C.1). 

Step 6: Using the GMPE in Eq. (C.1), simulate the intensity measures of each 

property location. The intra- and inter-event residuals are randomly 

generated. In particular, the intra-event residuals need to be generated based 

on the selected spatial correlation model and the distance between the 

property locations for each pair. 

Step 7: Predict the seismic response of each building using the P-DNN model given 

the generated magnitude 𝑀  (Step 3), the distance 𝑅𝑖𝑗  (Step 5), and the 

estimated intensity measures (Step 6). Since the seismic responses are 

predicted in a probabilistic manner, the responses of each building are 

randomly drawn from a Gaussian distribution with the estimated mean and 

standard deviation. It should be noted that the exponential function is applied 

to each sample because the P-DNN model estimates the natural logarithm of 

the peak structural response. 

Step 8: Evaluate the aggregated monetary loss, i.e., the net losses of the structural 

systems in the region, based on the estimated structural responses determined 

in Step 7. 

Step 9: Repeat Step 1 to Step 8 until reaching the target coefficient of variation (c.o.v) 



 

119 

to obtain the loss curve using Eq. (C.5). Note that the required number of 

samples 𝑁𝑀𝐶𝑆  in MCS is determined by 𝑁𝑀𝐶𝑆 = (1 − 𝑝)/(𝛿𝑡
2 ∙ 𝑝)  to 

achieve the target c.o.v 𝛿𝑡 for the probability level 𝑝. As Eq. (C.5) indicates, 

the total occurrence rate 𝜆𝐸  must be multiplied by the average of the 

indicator function values computed for the generated samples. 

 

Using the probabilistic predictions from the P-DNN model, the proposed 

method is expected to facilitate accurate pre-earthquake loss assessments based on 

proper quantifications of uncertainties and prediction in the structural responses 

given the intensity measures. 

 

5.4.2 Application to hypothetical urban areas 

To demonstrate the proposed deep learning-based regional seismic loss assessment, 

the hypothetical region termed as “V-city” is introduced with details of structural 

characteristics and regional information. Then, the applicability and effectiveness of 

the regional loss assessments are demonstrated. 

 

5.4.2.1 Damage and monetary loss 

In order to estimate the regional monetary loss due to a potential earthquake event, 

it is necessary to evaluate the damage of each structural system in the urban area. 

Such damage evaluation is usually performed based on the seismic capacity and 

demand of the structural systems. In this example, the capacity and demand are 

described in terms of peak displacement. In particular, the capacity is represented by 

the ultimate displacement of the structural system, whereas the demand is defined as 

the displacement of the structure caused by the scenario earthquake. To introduce 
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unit-less measures, both capacity and demand are normalized by the yield 

displacement of the structural system, Δ𝑦. These normalized capacity and demand, 

which are termed as ductility capacity and ductility demand, are denoted respectively 

by 𝜇𝑅  and 𝜇 . Based on the assumption that the seismic loss initiates as the 

displacement demand exceeds the yield displacement of the structural system, the 

damage factor 𝛿 is defined as (Goda and Hong 2008) 

𝛿 = max (min (
𝜇 − 1

𝜇𝑅 − 1
, 1) , 0) (5.1) 

If the seismic demand is less than yield displacement, 𝛿 becomes zero to indicate 

no damage. On the other hand, the total collapse, i.e., 𝛿 = 1, is assumed to occur 

when seismic demand exceeds the ultimate capacity. 

The seismic losses of buildings can be described using the damage factor 𝛿. 

For example, Goda and Hong (2008) categorized the monetary seismic losses into 

three types in terms of the damage factor, i.e., building-related loss 𝐿𝐵𝐿(𝛿) , 

contents-related loss 𝐿𝐶𝑂(𝛿) , and business-interruption related loss 𝐿𝐵𝐼(𝛿)  as 

follows: 

𝐿𝐵𝐿(𝛿) = 𝛿
𝛽𝐵𝐿𝐿𝐵𝐿(1),   𝐿𝐶𝑂(𝛿) = 𝛿

𝛽𝐶𝑂𝐿𝐶𝑂(1),   𝐿𝐵𝐼(𝛿) = 𝛿
𝛽𝐵𝐼𝐿𝐵𝐼(1) (5.2) 

where 𝐿𝐵𝐿(1) , 𝐿𝐶𝑂(1) , and 𝐿𝐵𝐼(1)  represent the three types of losses (in the 

Canadian dollar, CAD) at the complete damage state, and 𝛽𝐵𝐿, 𝛽𝐶𝑂, and 𝛽𝐵𝐼 are 

the loss-damage model parameters of the building of interest. By summing up the 

losses of all buildings in the urban area, the regional seismic loss can be described 

as 
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𝐿 = ∑(𝐿𝐵𝐿(𝛿𝑘) + 𝐿𝐶𝑂(𝛿𝑘) + 𝐿𝐵𝐼(𝛿𝑘))

𝑛𝑅

𝑘=1

 (5.3) 

where 𝑛𝑅 is the number of building in the area. 

 

5.4.2.2 Description of V-city 

To demonstrate the proposed regional seismic loss assessment framework, 18 

different building types in Goda and Hong (2008) are considered in this V-city 

example. These buildings are associated with the HAZUS-Earthquake classifications 

(FEMA and NIBS, 2003) and are idealized as bilinear SDOF systems. The adopted 

bilinear model is associated approximately with a seismic design code (NRCC, 2005) 

whose minimum required design base shear 𝑉𝑑 is given by 

𝑉𝑑 = 𝐶𝑠 ∙ 𝑊 (5.4) 

where 𝐶𝑠  is the design base shear coefficient defined for each structural type, and 

𝑊 denotes the total weight of the structural system. Note that the strength reduction 

factor, usually denoted as 𝑅 in “R-𝜇-T relationship” (Nassar and Krawinkler, 1991), 

is used to calculate 𝐶𝑠  (Goda and Hong, 2008). Then, the yield displacement of a 

building, Δ𝑦 is defined as 

Δ𝑦 = 𝑅𝑁𝑉𝑑/𝑘 = 𝑅𝑁𝐶𝑠𝑊/𝑘 (5.5) 

where 𝑅𝑁 indicates the ratio of the actual yield strength of a designed structure to 

the design base shear 𝑉𝑑 , which takes into account the fact that the actual yield 

strength is greater than its design base shear, and 𝑘  denotes the stiffness of the 

structural system. The values of these parameters used in the hypothetical example 

are summarized in Table 5.2. To consider the modeling uncertainty of the structural 
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system, in this example, 𝑅𝑁 and 𝜇𝑅 are assumed to follow lognormal distributions 

with the mean values provided in Table 5.2 and the coefficients of variation (c.o.v) 

of 0.3 and 0.15, respectively (Ellingwood et al., 1980; Ibarra, 2003). 

Using the 18 different types of buildings, a set of 200 hypothetical structural 

systems including 80 residential and 120 commercial buildings are introduced. The 

hypothetical region roughly mimics the existing building stock in the downtown 

Vancouver area which has 400 property lots with an area of 25 × 50 𝑚2 . The 

number of buildings from each building type is also shown in Table 5.2. To examine 

the effect of spatial distributions of buildings on regional losses, two different 

examples of building distributions shown in Figure 5.7 are investigated. In the first 

example (Figure 5.7(a)), 200 buildings are rather uniformly distributed over a square 

area of 2.5 km by 2.5 km whose center is located at 49.2°N and 123.2°W. On the 

other hand, the second example in Figure 5.7(b) is an asymmetrically distributed 

case in which more than three-quarters of the buildings are allocated in the western 

part, especially the southwestern area of the urban community. Figure 5.7(a) and 

Figure 5.7(b) are referred to as Case V1 and Case V2, respectively, in this study. It 

is noted that, based on the parameters in Table 5.2 and Eq. (5.3), the maximum 

possible seismic losses of both Case V1 and Case V2 are calculated as 

$ 1,678,939,376 (CAD). This is the direct loss caused by the complete damage of all 

structural systems, i.e., 𝛿𝑘 = 1 for all buildings. 

 

5.4.2.3 Regional seismic loss assessment of V-city using P-DNN model 

In order to represent the realistic seismic hazard environment, it is assumed that nine 

active faults are in the vicinity of V-city, as illustrated in Figure 5.8. The geometric 

and seismic properties of the active faults, i.e., the distribution of the magnitudes of 
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each rupture, are adopted from Field et al. (2013) and are modified to facilitate the 

numerical investigation. Table 5.3 provides a summary of the properties of the active 

faults. Note that the dip angle represents the angle between the fault and the 

horizontal ground surface while the upper and lower bounds are correspondingly the 

upper and lower distances of the rupture from the ground surface. 

Using the GMPE proposed by Campbell and Bozorgnia (2008) along with the 

correlation model developed by Loth and Baker (2011), the annual exceedance 

probability of the seismic loss of V-city is evaluated. Note that for simplicity, the soil 

properties in both cases are defined in terms of the shear velocity 𝑉𝑠30 = 760 𝑚/𝑠. 

After performing 100,000 instances of MCS, the loss curves for Cases V1 and V2 

are obtained using the P-DNN model which is depicted as the blue solid line in 

Figure 5.9. For comparison, the DNN model (red dashed line) and the coefficient 

method (ASCE 41-13, 2013; green dash-dot line) are also employed instead of the 

P-DNN model in Step 7 of Section 5.4.1. Moreover, to check the effect of the spatial 

correlation on the regional seismic loss estimation, the loss curve without 

considering spatial correlation is evaluated and illustrated as the yellow dash-dot-dot 

line in the same plot. 

Since 𝜆𝐸 in Eq. (C.5) for the nine active faults is calculated as 0.151 from the 

last column in Table 5.3, the value of the exceedance probability is 0.151 when no 

damage/loss occurs. It is found that, in both building-distribution cases, the DNN 

and the coefficient method overestimate the regional monetary loss compared to that 

from the P-DNN model under relatively mild earthquake scenarios, i.e., small 

exceedance probability. This result can be explained in terms of the relationship 

between the seismic responses and the monetary loss, in particular, the power 

function in Eq. (5.2) and its model parameters 𝛽, which are less than 1. The P-DNN 
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model predicts the mean and variance of the natural logarithm of the structural 

responses, whose mean value is equivalent to the estimate by the DNN model. 

However, after calculating monetary losses from the structural responses using Eq. 

(5.2), it is found that the mean value of the monetary loss by the P-DNN model is 

smaller than that by the DNN model. In other words, the distribution of the monetary 

loss is negatively skewed. For instance, if 𝛿0 follows a normal distribution with a 

mean of 0.5 and standard deviation of 0.1, then using 10,000 samples, the skewness 

and the mean of 𝐿0, which is defined as 𝛿0 to the power of 0.41, i.e., 𝐿0 = 𝛿0
0.41, 

are estimated as −0.40 and 0.749, respectively, while 0.50.41 = 0.753. Therefore, 

in order to assess the regional seismic loss accurately, it is important to consider the 

probabilistic distribution of the structural responses given the intensity measures. It 

should be noted that different results can be obtained according to the definition 

between the seismic response and the corresponding loss. 

Figure 5.9 also indicates that the DNN model shows a large overestimation of 

the regional loss for the entire exceedance probability per occurrence, while the 

overestimation by the coefficient method tends to decrease as the earthquake 

scenario becomes more severe. Due to the large prediction errors by the coefficient 

method, for an earthquake scenario causing most of the buildings in the region to 

collapse (i.e., 𝜇  exceeds 𝜇𝑅  in Eq. (5.3)), only the underestimated structural 

responses affect the bias of the monetary loss. Thus, one can find that, past a certain 

value of the exceedance probability, the loss curve obtained from the coefficient 

method is similar to or smaller than that by the P-DNN model. Since the capacity 

spectrum method shows a similar level of estimation error as compared to the 

coefficient method confirmed in Chapters 2 and 3, just as the coefficient method, a 

similar amount of error is expected in the regional loss assessment based on HAZUS 
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(FEMA, 2012), which adopted the capacity spectrum method for estimating 

structural responses given seismic intensities. 

Next, the effect of spatial correlation on the regional assessment is examined by 

comparing the blue solid and yellow dash-dot-dot line in Figure 5.9. These results 

confirm that the effect of the spatial correlation of the intra-event residuals greatly 

influences the loss estimation. In general, without considering this correlation, one 

may underestimate the probability of occurrence of the worst-case scenario and 

overestimate the frequent events. Finally, because the active ruptures are located at 

the southwestern part of the region, the estimated loss of Case V2 is larger than that 

of Case V1 for a given exceedance probability as shown in Figure 5.10. 

 

5.5 Earthquake responses using deep learning and database 

(ERD2) 

 

To disseminate the latest research achievement and extend the impacts on industrial 

and academic communities, a web-service (Earthquake Responses using Deep 

learning and Database; http://ERD2.snu.ac.kr) was developed in this study to 

provide an interactive visualization of the proposed DNN predictions. Based on the 

input information provided by users, the website can (1) estimate the mean and 

variance of the structural responses using the method proposed in this study, and (2) 

fetch seismic demand values from the database with similar hysteretic behavior and 

ground motion characteristics as shown in Figure 5.11. The constructed databases 

and relevant Python codes used to train the DNN models are also shared on the 

website. The novel website shows a good example for researchers on how 

sustainable academic environments can be developed. This is because, in most cases, 

research outcome is not shared nor opened to the public, thus it is difficult to 

http://erd2.snu.ac.kr/
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reproduce researchers’ contributions. However, the research outcomes (e.g., 

database, source codes, and user interface) already provided in the web service can 

reduce the computational costs for emulating the framework and give guidance for 

further study. 

The web-service was developed as a platform where state-of-the-art DNN 

models for structural engineering can be shared, such as DNN models for damage 

identification based on images after significant natural hazards, DNN models for 

regional loss prediction, and DNN models for site response prediction. The portal 

will be used by researchers and engineers (1) to study basic knowledge about deep 

learning and earthquake engineering, (2) download a large volume of datasets and 

relevant codes, (3) share the latest trained DNN models, and (4) discuss research 

outcomes with international researchers, which will eventually foster internationally 

sustainable academic environments. 

 

5.6. Conclusions 

 

In order to demonstrate the applicability of the proposed DNN models, three 

different scales of earthquake engineering problems were introduced. First, the 

merits and potential of the BW-DNN model were confirmed by predicting the 

seismic responses of reinforced concrete (RC) columns with varying periods. 

Although this study only presented the prediction results of structural elements under 

seismic excitation, it is possible to predict the seismic responses of multi degree of 

freedom (MDOF) systems whose first mode period governs the seismic behavior. 

Such an investigation is required on various types of structural systems. Second, the 

new deep learning-based fragility estimation method was developed using the P-
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DNN model. Owing to the heteroscedasticity assumption in training the P-DNN 

model, it was confirmed that the conditional failure probability of the structural 

system is properly estimated using the developed framework. Third, the application 

of the DNN and P-DNN models to assess the seismic loss of an urban community 

was presented. It was demonstrated that the importance of considering the 

variabilities of nonlinear behaviors in regional seismic loss assessment. In particular, 

such variabilities with large prediction errors of structural responses result in 

over/underestimation of regional seismic losses. Finally, the developed user-friendly 

website (ERD2) provides the supporting source codes and databases, which 

disseminates the finding and outcomes to other researchers and facilitate sustainable 

research environments.  
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Table 5.1 Comparison between the natural logarithm of seismic responses of RC 

columns from dynamic analysis and predicted ones by using the BW-

DNN model, the DNN model, and the coefficient method 

Methods 

RC column  

(𝑇 = 0.115) 

RC column  

(𝑇 = 0.162) 

RC column  

(𝑇 = 0.257) 

MSE RE (%) MSE RE (%) MSE RE (%) 

BW-DNN 

model 
0.3507 8.199 0.2023 7.327 0.0979 7.580 

DNN 

model 
0.0480 2.873 0.1089 5.744 0.1685 11.130 

Coefficient 

method 
0.0431 2.174 0.3505 9.681 1.3124 23.401 

MSE: Mean squared error (1/𝑁 ∙ ∑ (𝑦𝑖 − 𝑓(𝑥𝑖))
2𝑁

𝑖=1 ) 

RE: Relative error (1/𝑁 ∙ ∑ |𝑦𝑖 − 𝑓(𝑥𝑖)|/|𝑦𝑖|
𝑁
𝑖=1 ) 

 



 

129 

Table 5.2 Structural parameters and damage-loss information of hypothetical buildings (Goda and Hong, 2008) 

𝐼𝐵𝑇
a 

# of 

bldgs. 

# of 

stories 

Size 

(m) 

Structural & 

occupancy types 

𝐿𝐵𝐿(1), 𝐿𝐶𝑂(1), 

𝐿𝐵𝐼(1) (CAD/ft2) 
𝛽𝐵𝐿, 𝛽𝐶𝑂, 𝛽𝐵𝐼 𝑇𝑛(𝑠)

𝑏 
Mean 

𝑅𝑁 

Mean 

𝜇𝑅 

Target 

𝐶𝑠
c 

1 8 2 10×12 W1-RES1 87.6, 21.9, 19.9 0.75, 0.68, 0.57 0.4 2 6 0.12 

2 8 1 8×12 W1-RES1 87.6, 21.9, 19.9 0.75, 0.68, 0.57 0.4 2 6 0.12 

3 17 2 15×30 W2-RES3 111.4, 27.9, 26.3 0.81, 0.68, 0.62 0.4 2 6 0.12 

4 12 2 15×30 W1-COM1 47.8, 26.5, 23.9 0.81, 0.68, 0.43 0.4 2 6 0.12 

5 1 5 18×36 S4M-RES3 111.4, 27.9, 26.3 0.69, 0.58, 0.53 0.7 2.25 4 0.1 

6 2 5 18×36 S4M-COM4 103.5, 51.7, 163.9 0.70, 0.58, 0.57 0.7 2.25 4 0.1 

7 1 13 18×36 S4H-RES3 111.4, 27.9, 26.3 0.69, 0.59, 0.53 1.4 2.25 3 0.075 

8 1 13 18×36 S4H-COM4 103.5, 51.7, 163.9 0.70, 0.59, 0.57 1.4 2.25 3 0.075 

9 7 2 15×30 C2L-RES3 111.4, 27.9, 26.3 0.76, 0.64, 0.58 0.4 2.5 6 0.12 

10 10 2 15×30 C2L-COM1 47.8, 26.5, 23.9 0.75, 0.64, 0.41 0.4 2.5 6 0.12 

11 18 5 18×36 C2M-RES3 111.4, 27.9, 26.3 0.75, 0.64, 0.58 0.6 2.5 5 0.12 

12 27 5 18×36 C2M-COM4 103.5, 51.7, 163.9 0.77, 0.64, 0.62 0.6 2.5 5 0.12 

13 13 15 18×36 C2H-RES3 111.4, 27.9, 26.3 0.76, 0.64, 0.58 1.65 3 3 0.05 

14 25 15 18×36 C2H-COM4 103.5, 51.7, 163.9 0.77, 0.64, 0.62 1.65 3 3 0.05 

15 4 2 15×30 URMLR-RES3 111.4, 27.9, 26.3 0.81, 0.69, 0.62 0.35 2 5 0.08 
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16 34 2 15×30 URMLR-COM1 47.8, 27.9, 26.3 0.81, 0.69, 0.43 0.35 2 5 0.08 

17 4 3 20×40 URMMR-RES3 111.4, 27.9, 26.3 0.81, 0.69, 0.63 0.5 2 3.3 0.08 

18 8 3 20×40 URMMR-COM2 61.0, 33.4, 19.5 0.80, 0.69, 0.49 0.5 2 3.3 0.08 

 
a 𝐼𝐵𝑇 is the building type index which is related to the structural and occupancy types defined in the HAZUS-Earthquake classifications (FEMA 

and NIBS, 2003) 
b 𝑇𝑛 is the fundamental period of the building. 
c 𝐶𝑠 is used to represent the seismic design level for existing buildings (see Eq. (9)). 

Note that 5% post-yield stiffness ratio is assumed for structural systems. 
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Table 5.3 Properties of 9 active faults 

Index 
Average  

dip angle 

Upper bound 

(km) 

Lower bound 

(km) 

Active fault 

length (km) 

Annual 

occurrence rate 

1 50 0 13 47.2168 0.0316 

2 90 0 12.3 20.1137 0.0019 

3 67 0 15.9 21.1298 0.0056 

4 20 9 14 19.1865 0.0023 

5 25 0 6 19.3854 0.0019 

6 65 0 17.7 31.3851 0.0082 

7 76 0 18.2 106.011 0.0327 

8 90 0 11 170.693 0.0268 

9 90 0 15.9 42.8961 0.0398 
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Figure 5.1 Sectional and material properties of RC columns 
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Figure 5.2 Hysteresis of three RC columns with different first mode periods 
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Figure 5.3 Relationship between spectral acceleration and peak displacement under 135 ground motions for the three RC columns 
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Figure 5.4 Analytical model of the RC frame structure 
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Figure 5.5 Hysteretic behavior generated from the RC structure (black solid line) 

and that of the idealized SDOF system (red dashed line). The idealized 

SDOF system is bilinear stiffness degradation (HM3) with period 1.36 

sec, stiffness 2.183 g/m, yield strength 0.092g, and post yield stiffness 

ratio 0.177. The period of the idealized SDOF system is longer than the 

first mode period of RC building, because, when the structure is applied 

to lateral load, cracks are generated in the RC structure, which elongates 

its first mode period 
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Figure 5.6 Fragility functions of the frame structure for three limit states, obtained 

by the proposed DNN model (solid line) and an existing regression-
based method (dashed line)
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Figure 5.7 200 hypothetical buildings allocated on the 400 property lots (40 × 10): (a) Case V1: the set of buildings uniformly distributed in the 

region, and (b) Case V2: the set of the buildings asymmetrically distributed in the region 
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Figure 5.8 Illustration of V-city surrounded by 9 active faults 
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Figure 5.9 The aggregated losses of V-city surrounded by 9 active faults for (a) 

Case V1, and (b) Case V2, estimated by use of the P-DNN model (blue 

solid line), the DNN model (red dashed line), the coefficient method 

(green dash-dot line), and the P-DNN model without considering spatial 

correlation (yellow dash-dot-dot line) 
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Figure 5.10 Comparison of aggregated loss for Case V1 (blue dashed line) and 

Case V2 (brown solid line) when the V-city is surrounded by 9 active 

faults 
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Figure 5.11 Earthquake Responses using Deep learning and Database (ERD2) web-

service: (a) the main page of the website, (b) sign-in page, (c) user-

defined earthquake and structural information, (d) P-DNN model 

predictions, (e) retrieve seismic demands from the database, and (f) 

download source codes  
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Chapter 6. Summary, Conclusions, and Further 

Studies 
 

 

6.1. Major developments and findings 

 

This dissertation focuses on developing deep neural network (DNN) models that can 

predict seismic responses of a wide class of structural systems having various 

hysteretic behaviors. The two main objectives proposed in Chapter 1 were fulfilled: 

(1) three different DNN models that predict seismic responses of structural systems, 

i.e., DNN, P-DNN, and BW-DNN models, were developed. The DNN models deal 

with idealized hysteresis, latent uncertainties of ground motion information, and 

generalized hysteresis having stiffness/strength degradations and pinching effects. 

(2) applications of the developed DNN models were provided for three different 

scales of engineering examples, i.e., structural element, structural system, and urban 

community, which demonstrated that the developed methods are applicable to a 

broad range of earthquake engineering problems and used as a seismic risk 

mitigation strategy. The major developments and findings of this study are 

graphically presented in Figure 6.1 and summarized as follows: 

 

• Two seismic demand databases considering idealized and generalized hysteretic 

systems were developed. To this end, a large number of dynamic analyses were 

carried out. Seven structural responses including peak displacement, peak 

velocity, peak acceleration, hysteretic energy, elastic energy, peak base reaction 

force, and residual displacement, were stored. Note that one can download both 

databases from the developed ERD2 website (http://ERD2.snu.ac.kr). 

http://erd2.snu.ac.kr/
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• A deep neural network (DNN) model was developed to predict the seismic 

responses of idealized hysteretic systems. Three different hysteretic systems, i.e., 

linear (HM1), bilinear kinematic hardening (HM2), and bilinear stiffness 

degrading systems (HM3), were used as the structural information, while 1,499 

ground motions from the NGA-West database (Power et al., 2006) were 

introduced for earthquake information. The architecture of the DNN model was 

inspired by the natural phenomenon of seismic excitation to structural systems. 

It was demonstrated that the DNN model shows superior accuracy compared to 

other simple regression-based nonlinear static procedures such as the capacity 

spectrum method, coefficient method, and R-𝜇-T relationship. 

• In developing the DNN model, a convolutional neural network (CNN) which 

shows a clear advantage in dealing with the data having a strong spatial 

correlation was introduced to extract important features of hysteretic behaviors. 

Owing to this idea, the DNN model was able to predict the responses of a wide 

class of hysteretic systems, which can overcome the limitation of existing studies 

that have focused on the specific type of structural systems and hysteretic 

behaviors. 

• A probabilistic deep neural network (P-DNN) model was constructed to take into 

account the inherent uncertainties of random stochastic excitation into response 

prediction. Using a loss function that is proportional to the negative log-

likelihood based on the Gaussian distribution assumption, the P-DNN model was 

trained to predict the conditional mean and variance of the seismic responses. 

The performance of the proposed method was tested through various numerical 

experiments which confirmed that the P-DNN model can successfully quantify 

the prediction uncertainties. In particular, it produced a relatively small variance 
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to the structural system behaving in the linear elastic range, while a relatively 

large variance was obtained for the nonlinear case. 

• A modified Bouc-Wen-Baber-Noori (m-BWBN) model was developed to 

represent a wide class of hysteretic behavior having stiffness/strength 

degradations and pinching effects. Using the genetic algorithm with the 

compiled hysteretic loops of reinforced concrete (RC) column database (Berry 

et al., 2004), feasible domains of the m-BWBN model parameters are defined to 

properly illustrate the structural hysteresis. Moreover, a sensitivity analysis was 

performed to distinguish the parameters that do not significantly affect the shape 

of hysteresis, which results in reducing the computational costs in developing 

the seismic demand database. 

• Using the m-BWBN model and the corresponding seismic demand database, a 

Bouc-Wen hysteresis-based deep neural network (BW-DNN) model was trained 

which can predict seismic responses of structural systems having various 

hysteretic characteristics. In order to properly extract the structural information 

and improve the applicability of the trained BW-DNN model, a new framework 

of quasi-static cyclic analysis was proposed. The numerical investigation 

confirmed that the predictions by the proposed BW-DNN model have superior 

accuracy compared to existing methods that cannot properly consider the 

strength/stiffness degradations and pinching effects. 

• Three different scales of earthquake engineering problems, i.e., structural 

component, structural system, and regional levels, were presented. In particular, 

the application consisted of seismic response evaluation of structural elements 

using the DNN and BW-DNN model, seismic fragility estimation of a structural 

system using the P-DNN model, and seismic loss assessment of urban 
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community using the DNN and P-DNN models. The numerical investigations 

demonstrated the applicability and effectiveness of the developed DNN models 

for a wide class of earthquake engineering problems. 

• In the practice adopting the P-DNN model in structural fragility evaluation, the 

conditional probability given seismic intensity measure was directly estimated 

without any assumption between intensity measure and damage measure. The 

framework can be further extended to develop a ground motion selection 

algorithm for the purpose of assessing the structural system because it is possible 

to identify the ground motions that significantly affect the variability of 

structural fragility. 

• In regional seismic loss assessment, it was found that the uncertainties in the 

responses of the structural system given the seismic input features may have a 

significant impact on the loss assessment. This is because most of the critical 

damage of the structural system occurs when the system behaves in nonlinear 

ranges, which amplifies the level of uncertainties in the response. 

• According to the modern seismic design codes (Eurocode 8, 2003; KMOLIT, 

2018), the responses of structural systems subjected to a design spectrum are 

estimated by nonlinear static procedures or linear/nonlinear time history analysis. 

Note that the design spectrum is defined by soil class, importance of the 

structural system, and return period of earthquake events. The former estimates 

the responses by a simple regression function, while the latter performs time 

history analysis using ground motion records that are spectrum-matched or 

spectrum-compatible to the design spectrum of the site of interest. The trained 

DNN models can be a good replacement for both methods, in that the method 

can improve the prediction accuracy compared to the nonlinear static procedures, 



 

147 

and reduce the computational costs in the time history analysis. By adopting the 

DNN models in the routine engineering practice, it is possible to establish an 

effective disaster risk management framework against seismic hazards. 

• A website (Earthquake Responses using Deep learning and Database, ERD2) was 

developed to provide the interactive visualization of the proposed P-DNN 

predictions and share the latest research outcomes (URL: http://ERD2.snu.ac.kr). 

The trained model, constructed database, and source codes can be downloaded 

from the website and will be updated when a new deep learning-based method 

is proposed. In near future, after the trained DNN models are fully demonstrated 

and validated their performance by international researchers, they can be 

adopted in OpenSeesPy (Zhu et al., 2018) or as one of the options in numerous 

structural analysis programs similar to the complete quadratic combination 

(CQC) or the square root of the sum of the squares (SRSS) that predicts the 

seismic responses before performing a nonlinear time history analysis. 

 

6.2. Recommendations for further studies 

 

In order to propose a new deep learning-based seismic response prediction method 

that covers more realistic hysteretic behaviors and advance the frontiers of 

applications relevant to this study, the following topics are recommended for future 

research: 

 

• Although this study focuses on developing DNN models that predict responses 

of structural systems caused by earthquake excitations, the concept and 

framework can be applied to other engineering fields in which it is important to 

http://erd2.snu.ac.kr/
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address the hysteretic behavior of a structural system under stochastic excitations, 

e.g., high-rise buildings subject to wind load, or wire cable isolator subject to 

mechanical vibration. 

• Introduction of the CNN to extract important features from hysteretic behaviors 

is a new attempt in the deep learning fields, in that the traditional deep learning 

problems usually deal with images or voice records. Therefore, as an analogy of 

this study, investigation of datasets having significant spatial/temporal 

correlation using the CNN can be a promising future research topic in various 

engineering fields. 

• The P-DNN model only covers inherent uncertainties from the input dataset, i.e., 

loss of information in the process of representing earthquake ground information 

by the selected features. However, there exist uncertainties in the model 

parameters of the deep neural network, i.e., model uncertainties. By adopting 

Monte Carlo dropout with the loss function written in Eq. (3.1), two different 

uncertainties can be quantified simultaneously, and its impact on response 

prediction can be examined. 

• Due to the functional redundancy of the Bouc-Wen model, it is difficult to 

identify the optimal parameters that produce the equivalent hysteresis from finite 

element methods or experiments. In other words, parameters that produce similar 

hysteresis for a certain displacement history do not guarantee the hysteretic 

behaviors when different displacement histories are assigned, e.g., varying 

number of cycles, intensity, and displacement steps. Therefore, a general 

procedure is required to identify the optimal m-BWBN parameters that produce 

similar hysteresis regardless of the displacement history. 

• When the seismic behavior of a structural system is dominated by its first mode 
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period, it is possible to predict the responses by using the BW-DNN model with 

reasonable accuracy. Once this numerical investigation is properly carried out, 

the effectiveness and application of the BW-DNN model are further expanded. 

• It is demonstrated the merits and potential of probabilistic prediction of seismic 

responses of structural systems as shown in Chapter 3. Because the seismic 

prediction from the P-DNN model is confined to the idealized hysteresis, it is 

difficult to directly employ the hysteresis of general structural systems to the 

input of the P-DNN model. Note that equivalent idealized hysteresis is employed 

in the DNN and P-DNN models. To address the issue, the probabilistic deep 

neural network model for Bouc-Wen hysteresis (P-BW-DNN model) needs to be 

developed, which probabilistically predicts the seismic responses of realistic 

structural systems. Once the P-BW-DNN model is developed, the seismic 

responses of structural systems having various hysteretic characteristics can be 

predicted in a probabilistic manner. 

• The developed DNN models can predict the important structural responses that 

are represented by a scalar value, e.g., peak responses of the nonlinear hysteretic 

system. To this end, various features of earthquake ground motion that show a 

high correlation with the target structural responses are adopted for the input of 

the models. Because of such high correlation, it is possible to efficiently train 

the DNN models and predict the responses with relatively high accuracy rather 

than the classic nonlinear static procedures. However, since a deep neural 

network can extract hidden features or find unknown patterns, it is possible to 

increase the prediction accuracy by introducing a whole ground motion 

acceleration history as an input of the DNN model. Moreover, using a recurrent 

neural network (RNN), a full-time history of structural responses can be 
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predicted instead of a scalar response value of structural systems, e.g., peak 

displacement. 

• Although the proposed deep learning-based response prediction of nonlinear 

hysteretic system framework is able to predict peak displacement, velocity, and 

acceleration, it is difficult to predict the imbalanced responses such as residual 

displacement or hysteretic energy whose values are zero when the hysteretic 

system behaves in a linear range. Therefore, further study is desirable to develop 

a framework that predicts the imbalanced structural responses using a deep 

neural network. 

• In this study, four hysteretic models, i.e., linear, bilinear, bilinear stiffness 

degradation, and m-BWBN model, were introduced and a large number of 

dynamic analysis, i.e., simulation, were carried out with 1,499 ground motions 

from the NGA-West database. Although the trained DNN models are verified 

using the test dataset, their validation to experiment datasets is desirable to 

extend the applicability of the DNN models to real world engineering problems. 

In addition, a model refined framework needs to be proposed when the DNN 

models which are trained using the simulation dataset show poor prediction 

accuracy for the experimental dataset. 

• This study presented the application of the trained DNN models to precisely 

estimate the seismic loss of an urban community which can enhance the pre-

earthquake regional loss assessment. On the other hand, to facilitate near-real-

time post-earthquake loss assessment, a deep neural network can be used as a 

surrogate to estimate area-wide structural damage given the spatial distribution 

of the seismic intensity levels. Since the surrogate model can be extended by 

combining an infrastructural system such as a lifeline or transport network, 
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stakeholders can readily determine the evacuation route or recovery plan from 

the predicted results. 

• In this study, even though a large number of ground motions are introduced 

compared to other studies, most of them are low-intensity, which cannot make 

structural systems behave in nonlinear ranges. Moreover, since only 5% 

damping ratio is employed in dynamic analysis, it is difficult to investigate the 

effect of damping on structural systems. Therefore, the seismic demand database 

is needed to extend for various scaling factors for ground motions and different 

damping ratio values. When the database is extended, it is possible to develop 

an improved version of the DNN models that would be employed to various 

earthquake engineering problems, e.g., incremental dynamic analysis (IDA). 

• Since the DNN models were developed based on the seismic demand database 

of various single degree of freedom systems, its application to multi degree of 

freedom (MDOF) systems, which show higher mode effects during excitation, 

is limited. To fully employ the merits of the deep learning-based framework, an 

extension of the developed DNN models to the MDOF systems is required. 
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Figure 6.1 Diagram of the main contributions and findings of the dissertation 
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Appendix 
 

Appendix A. Incremental response equation 

 

To compute the stress for a given displacement, incremental response equations need 

to be first identified. According to Eq. (4.1), the restoring force at time 𝑡(𝑖+1) is 

obtained as 

𝑓(𝑢, 𝑧)(𝑖+1) = 𝛼𝑘0𝑢(𝑖+1) + (1 − 𝛼)𝐹𝑦𝑧(𝑖+1) (A.1) 

The rate equation for 𝑧 in Eq. (A.1) is discretized by a backward Euler solution 

scheme as follows: 

𝑧(𝑖+1) = 𝑧(𝑖) + Δ𝑡
ℎ(𝑖+1)

𝜂(𝑖+1)
× 

                 [1 − |𝑧(𝑖+1)|
𝑛
{𝛽 ∙ sgn(

(𝑢(𝑖+1) − 𝑢(𝑖))

Δ𝑡
𝑧(𝑖+1)) + 𝛾} 𝜈(𝑖+1)] 

                  ×
(𝑢(𝑖+1) − 𝑢(𝑖))

Δ𝑡

𝑘0
𝐹𝑦

 

(A.2) 

where 𝜀(𝑖+1) is estimated by discretization of the Eq. (4.3) using the backward Euler 

scheme again: 

𝜀(𝑖+1) = 𝜀(𝑖) + Δ𝑡(1 − 𝛼)
𝑘0
𝐹𝑦
𝑧
(𝑢(𝑖+1) − 𝑢(𝑖))

Δ𝑡
 (A.3) 

The incremental responses equations are estimated by Newton-Raphson algorithm 

for incremental displacement (𝑢(𝑖+1) − 𝑢(𝑖)) . The details of the procedure are 

summarized as follows: 
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Step 1. Evaluate function Γ(𝑧(𝑖+1)). 

Γ(𝑧(𝑖+1)) is given as 

Γ(𝑧(𝑖+1)) = 𝑧(𝑖+1) − 𝑧(𝑖) − ℎ(𝑖+1)𝑎2(𝑢(𝑖+1) − 𝑢(𝑖))
𝑘0
𝐹𝑦

 (A.4) 

in which 𝑎2 and ℎ(𝑖+1) are defined as 

𝑎2 =
1 − |𝑧(𝑖+1)|

𝑛
𝑎1𝜈(𝑖+1)

𝜂(𝑖+1)
 

𝑎1 = 𝛽 ∙ sgn(
(𝑢(𝑖+1) − 𝑢(𝑖))

Δ𝑡
𝑧(𝑖+1)) + 𝛾 

ℎ(𝑖+1) = 1 − 𝜁1,(𝑖+1) 

∙ exp (−(𝑧(𝑖+1) ∙ sgn(
(𝑢(𝑖+1) − 𝑢(𝑖))

Δ𝑡
) − 𝑞𝑧𝑢,(𝑖+1))

2

 /𝜁2,(𝑖+1)
2 ) 

(A.5) 

where, 

𝜈(𝑖+1) = 1 + 𝛿𝜈𝜀(𝑖+1) 

𝜂(𝑖+1) = 1 + 𝛿𝜂𝜀(𝑖+1) 

𝜁1,(𝑖+1) = 𝜁0(1 − exp(−𝑝𝜀(𝑖+1))) 

𝜁2,(𝑖+1) = (𝜓 + 𝛿𝜓𝜀(𝑖+1))(𝜆 + 𝜁1,(𝑖+1)) 

𝑧𝑢,(𝑖+1) = (𝜈(𝑖+1)(𝛽 + 𝛾))
−1/𝑛

 

(A.6) 

𝜀(𝑖+1) can be obtained by using Eq. (A.3). 
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Step 2. Estimate the derivative of Γ(𝑧(𝑖+1)) with respect to 𝑧(𝑖+1) 

The derivative of Γ(𝑧(𝑖+1)) with respect to 𝑧(𝑖+1) is written as 

Γ′(𝑧(𝑖+1)) = 1 − (ℎ(𝑖+1)
′ 𝑎2 + ℎ(𝑖+1)𝑎2

′ )(𝑢(𝑖+1) − 𝑢(𝑖))
𝑘0
𝐹𝑦

 (A.7) 

where 

ℎ(𝑖+1)
′ = 𝑎3(𝜁1,(𝑖+1)

′ − 𝑎4 + 𝜁2,(𝑖+1)
′ 𝑎5) 

𝑎2
′ =

1

𝜂(𝑖+1)
2 ∙ (−𝜂(𝑖+1)

′ (1 − |𝑧(𝑖+1)|
𝑛
𝑎1𝜈(𝑖+1))

− 𝜂(𝑖+1) (𝑛|𝑧(𝑖+1)|
𝑛−1
𝑎1𝜈(𝑖+1) ∙ 𝑠𝑔𝑛(𝑧(𝑖+1))

+ |𝑧(𝑖+1)|
𝑛
𝑎1𝜈(𝑖+1)

′ )) 

(A.8) 

in which 

𝑎3 = −𝑒𝑥𝑝

(

 
 
−

(𝑧(𝑖+1) ∙ 𝑠𝑔𝑛 (
(𝑢(𝑖+1) − 𝑢(𝑖))

𝛥𝑡
) − 𝑞𝑧𝑢,(𝑖+1))

2

𝜁2,(𝑖+1)
2

)

 
 

 

𝑎4 = 2𝜁1,(𝑖+1) (𝑧(𝑖+1) ∙ 𝑠𝑔𝑛 (
(𝑢(𝑖+1) − 𝑢(𝑖))

𝛥𝑡
) − 𝑞𝑧𝑢,(𝑖+1)) × 

                                (𝑠𝑔𝑛 (
(𝑢(𝑖+1) − 𝑢(𝑖))

𝛥𝑡
) − 𝑞𝑧𝑢,(𝑖+1)

′ )/𝜁2,(𝑖+1)
2  

𝑎5 = 2𝜁1,(𝑖+1) (𝑧(𝑖+1) ∙ 𝑠𝑔𝑛 (
(𝑢(𝑖+1) − 𝑢(𝑖))

𝛥𝑡
) − 𝑞𝑧𝑢,(𝑖+1))

2

/𝜁2,(𝑖+1)
3  

(A.9) 

and 
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𝑧𝑢,(𝑖+1)
′ = −

𝜈(𝑖+1)
′ (𝛽 + 𝛾)

𝑛
(𝜈(𝑖+1)(𝛽 + 𝛾))

−
𝑛+1
𝑛  

 

𝜈(𝑖+1)
′ = 𝛿𝜈𝜀(𝑖+1)

′ ;      𝜂(𝑖+1)
′ = 𝛿𝜂𝜀(𝑖+1)

′  

𝜁1,(𝑖+1)
′ = 𝜁0𝑝𝑒𝑥𝑝(−𝑝𝜀(𝑖+1)) 𝜀(𝑖+1)

′ ; 

𝜁2,(𝑖+1)
′ = 𝜓𝜁1,(𝑖+1)

′ + 𝜆𝛿𝜓𝜀(𝑖+1)
′ + 𝛿𝜓𝜀(𝑖+1)

′ 𝜁1,(𝑖+1) + 𝛿𝜓𝜀(𝑖+1)𝜁1,(𝑖+1)
′  

𝜀(𝑖+1)
′ = (1 − 𝛼)

𝑘0
𝐹𝑦
(𝑢(𝑖+1) − 𝑢(𝑖)) 

(A.10) 

 

Step 3. Update 𝑧(𝑖+1) 

The trial value in the Newton Raphson scheme is obtained as follows: 

𝑧(𝑖+1)
𝑛𝑒𝑤 = 𝑧(𝑖+1) −

Γ(𝑧(𝑖+1))

Γ′(𝑧(𝑖+1))
 (A.11) 

Then, update 𝑧(𝑖+1) and store the old value for the convergence check 

𝑧(𝑖+1)
𝑜𝑙𝑑 = 𝑧(𝑖+1) 

𝑧(𝑖+1) = 𝑧(𝑖+1)
𝑛𝑒𝑤  

(A.12) 

 

Step 4: Iterate 

Iterate from Step 1 to Step 4 until |𝑧(𝑖+1)
𝑜𝑙𝑑 − 𝑧(𝑖+1)

𝑛𝑒𝑤  | is smaller than the prescribed 

tolerance. 
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Appendix B. Regression-based fragility estimation 

 

Various methods have been developed to estimate structural fragilities. Strong 

earthquake ground motions are required to properly understand the behavior of 

structural system at the collapse level, but in general it is hard to obtain such records. 

To address this issue, some methods intentionally scale up relatively weak ground 

motions, while others relies on the relationship between intensity measure (IM), e.g., 

PGA, and engineering demand parameter (EDP) estimated by the dataset obtained 

using relatively weak ground motions. The latter approach often uses the following 

linear regression model of ln𝐸𝐷𝑃  on ln 𝐼𝑀  with homoscedasticity assumption 

(Cornell et al., 2002): 

ln𝐸𝐷𝑃 = 𝑎 ∙ ln 𝐼𝑀 + 𝑏 + 𝜎 ∙ 𝜀 (B.1) 

where 𝑎  and 𝑏  are the coefficients obtained from the regression analysis, 𝜎 

represents the conditional standard deviation, and ε  is the standard Gaussian 

random variable. Following the regression function, the conditional mean 𝜇ln 𝐸𝐷𝑃 

and variance 𝜎ln𝐸𝐷𝑃
2  of ln 𝐸𝐷𝑃 given 𝐼𝑀 are obtained as 𝑎 ∙ ln 𝐼𝑀 + 𝑏 and 𝜎2, 

respectively. As a result, the probability that structural demand exceeds the structural 

capacity 𝐶 at given IM value 𝑥 is given as: 

𝑃(𝐶 − ln𝐸𝐷𝑃 ≤ 0| ln 𝐼𝑀 = ln 𝑥)

= Φ

(

 −
𝜇𝑐 − 𝜇ln𝐸𝐷𝑃(𝑥)

√𝜎𝑐
2 + 𝜎ln𝐸𝐷𝑃

2 − 2𝜌𝜎𝑐𝜎ln𝐸𝐷𝑃)

  
(B.2) 

where 𝜇𝑐  and 𝜎𝑐  denotes the mean and standard deviation of the structural 

capacity, and 𝜌 denotes the correlation coefficient between 𝐶 and ln𝐸𝐷𝑃. When 

the uncertainty in the capacity is ignored, the fragility in Eq. (B.2) is simplified as 
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𝑃(𝑥) = Φ(−
𝜇𝑐 − 𝜇ln𝐸𝐷𝑃(𝑥)

𝜎ln𝐸𝐷𝑃
) (B.3) 
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Appendix C. Probabilistic regional loss assessment of urban 

community under earthquake hazard 

 

The natural logarithm of the intensity measure (IM) of the ground motion at site 𝑖 

caused by an earthquake event 𝑗 can be described as 

𝑙𝑛 𝑦𝑖𝑗 = 𝑓(𝑀𝑗 , 𝑅𝑖𝑗 , 𝜃𝑖) + 𝜎𝑖𝑗𝜀𝑖𝑗 + 𝜏𝑗𝜂𝑗 (C.1) 

where 𝑓(𝑀𝑗 , 𝑅𝑖𝑗 , 𝜃𝑖) denotes the attenuation law given as a function of magnitude 

𝑀𝑗 , seismological distance from the epicenter, 𝑅𝑖𝑗 and a set of other explanatory 

parameters 𝜃𝑖 . The variables, 𝜀𝑖𝑗  and 𝜂𝑗 , respectively represent the intra- and 

inter-event residuals, which are modelled as the Gaussian random variables with zero 

mean and standard deviation of one. The magnitudes of the uncertainties are 

represented by 𝜎𝑖𝑗  and 𝜏𝑗  for intra- and inter-event, respectively. For a given 

earthquake event 𝑗, 𝜂𝑗 is constant at all site, whereas 𝜀𝑖𝑗 varies from site to site 

while showing spatial correlation. Such dependency is often modeled as an auto- and 

cross-correlation models which are given as functions of the distance between sites. 

Eq. (C.1) is often termed as a ground motion prediction equation (GMPE). In this 

study, four random variables 𝑿 = {𝑀𝑗 , 𝑅𝑖𝑗 , 𝜀𝑖𝑗 , 𝜂𝑗} are introduced to represent the 

uncertainties in the spatial distribution of IM in the target region. 

The annual probability that the regional seismic loss 𝐿 exceeds the threshold 

𝑙 is calculated as the sum of the annual exceedance probabilities for seismic sources 

or faults 𝑠 = 1, … , 𝑆, i.e., 

𝑃(𝐿 ≥ 𝑙) =∑𝜆𝑠 ∙ 𝑃(𝐿 ≥ 𝑙|𝑠)

𝑆

𝑠=1

 (C.2) 

where 𝜆𝑠 denotes the annual occurrence rate of an earthquake event by source 𝑠, 
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and 𝑃(𝐿 ≥ 𝑙|𝑠) is the conditional probability of exceedance given the earthquake 

event by source 𝑠. Eq. (C.2) can be rewritten in terms of the four random variables 

𝑿 as: 

𝑃(𝐿 ≥ 𝑙) =∑[𝜆𝑠 ∫ 𝑓𝑿|𝑠(𝒙)

𝐿(𝒙)≥𝑙

𝑑𝒙]

𝑆

𝑠=1

 

=∑[𝜆𝑠 ∫ 𝑓𝑿|𝑠(𝑀, 𝑅, 𝜂, 𝜀)

𝐿(𝒙)≥𝑙

𝑑𝑀𝑑𝑅𝑑𝜂𝑑𝜀]

𝑆

𝑠=1

 

(C.3) 

where 𝑓𝑿|𝑠(∙) is the conditional probability density function (PDF) of the random 

variables 𝑿 = {𝑀𝑗 , 𝑅𝑖𝑗 , 𝜀𝑖𝑗 , 𝜂𝑗}  given source 𝑠 , and 𝐿(𝒙)  denotes the functional 

relationship between the regional seismic loss 𝐿 and the random variable 𝒙 (see 

Section 5.4 for details). Introducing the annual occurrence rate of an earthquake 

event, i.e., 𝜆𝐸 = ∑ 𝜆𝑠
𝑆
𝑠=1 , the exceedance probability can be described in terms of 

the conditional PDF given an earthquake event, 𝑓𝑿|𝐸(𝒙) = ∑ (
𝜆𝑠

𝜆𝐸
)𝑓𝑿|𝑠(𝒙)

𝑆
𝑠=1 , i.e., 

𝑃(𝐿 ≥ 𝑙) = 𝜆𝐸 ∫ [∑
𝜆𝑠
𝜆𝐸

𝑆

𝑠=1

𝑓𝑿|𝑠(𝒙)]

𝐿(𝒙)≥𝑙

𝑑𝒙 = 𝜆𝐸 ∫ 𝑓𝑿|𝐸(𝒙)

𝐿(𝒙)≥𝑙

𝑑𝒙 (C.4) 

Based on Eq. (C.4), one can estimate the annual probability of exceedance by a 

Monte Carlo simulation (MCS), i.e., 

𝑃(𝐿 ≥ 𝑙) = 𝜆𝐸 ∙ ∫ 𝐼(𝐿(𝒙) ≥ 𝑙) ⋅ 𝑓𝑿|𝐸(𝒙)𝑑𝒙

𝒙

 

= 𝜆𝐸 ∙ 𝐸𝑿|𝐸[𝐼(𝐿(𝒙) ≥ 𝑙)] 

≈ 𝜆𝐸 ∙
1

𝑁
∑ 𝐼(𝐿(𝒙𝑛) ≥ 𝑙)

𝑁

𝑛=1

 

(C.5) 

where 𝐼(𝐿(𝒙) ≥ 𝑙)  denotes an indicator function which gives “1” if the given 
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realization of random variables makes the loss exceed the threshold 𝑙, otherwise “0”, 

and 𝒙𝑛 is 𝑛𝑡ℎ sample generated from the conditional PDF 𝑓𝑿|𝐸(𝒙), 𝑛 = 1, … ,𝑁. 

Eq. (C.5) provides the loss curve, i.e., the complementary cumulative distribution 

function (CCDF) of the total loss of the urban community. 
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초  록 

 

김태용 

건설환경공학부 

서울대학교 대학원 

 

도시 인프라 시스템의 복잡성이 증가함에 따라 지진에 대한 사회 경제적 

취약도 역시 나날이 증가하고 있다. 따라서 향후 발생할 지진 재해에 

의한 피해를 경감하고 도시 인프라 시스템의 복원력을 증대하기 

위해서는 구조물 내진성능의 정확한 평가가 필수적이다. 이론적으로 

구조물의 붕괴 및 파괴 지지력(Structural Capacity against Collapse and 

Failures)의 평가를 위해서는 여러 지진동을 이용한 매우 정밀한 비선형 

구조물의 거동 이력을 필요로 한다. 그러나 비선형 시간이력 해석은 

높은 계산 비용과 모델링 시간을 필요로 하기에 현재의 

내진설계기준에서는 간단 회귀식 기반 방법론들이 이를 대체하여 주로 

사용된다. 회귀식 기반 방법론들은 상대적으로 적은 수의 변수와 지진 

응답 이력을 바탕으로 개발되었기에 응답 예측의 정확도가 높지 않다. 

더불어 기존 방법론들은 지진동이 다르더라도 선택한 

지진강도척도(Intensity Measures)의 값이 같다면 항상 같은 값을 추정하게 

되어, 구조물 지진 응답의 변동성 정량화에 한계를 보인다. 본 

학위논문에서는 비선형 시간이력을 수행하지 않고 효과적으로 구조물의 

지진 응답 값 및 그 불확실성을 추정하기 위해 심층 인공 신경망, 즉 

딥러닝(Deep Learning)을 도입하고자 한다. 

지진에 의해 구조물이 진동하는 자연현상을 바탕으로 지진 및 

구조물의 정보가 주어졌을 때 구조물의 지진 응답을 예측할 수 있는 

심층 인공 신경망 모델(Deep Neural Network; DNN model)의 구조를 

제안하였다. DNN model에는 Convolutional Neural Network (CNN)가 

사용되어 구조물의 이력곡선으로부터 응답 예측에 필요한 주요 변수들을 

추출하게 된다. 세 가지 이상화된 이력곡선과 미국 NGA-West 
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데이터베이스의 지진동을 활용해 비선형 동적해석을 수행하여 

데이터베이스를 구축하였고 이를 이용해 제안한 DNN model을 

학습시켰다. 수치 예제를 통해 학습된 DNN model은 기존 회귀모델기반 

방법론에 비해 구조물의 지진 응답 예측 시 매우 높은 수준의 정확도를 

보임을 확인하였다. 

앞서 개발된 DNN model은 매우 높은 정확도를 보임을 확인하였으나 

구조 시스템의 비선형 거동에 따른 예측 불확실성을 산정하지 못한다는 

한계를 가진다. 이를 해결하기 위하여 베이지안 딥러닝 기법을 기반으로 

구조물의 지진 응답을 확률론적으로 예측할 수 있는 확률론적 심층 인공 

신경망 모델(Probabilistic Deep Neural Network; P-DNN model)을 제안하였다. 

자연로그를 취한 가우스 분포 함수의 음의 값을 인공 신경망 모델의 

손실함수로 사용하여 앞서 구축한 데이터베이스를 바탕으로 P-DNN 

model을 학습시켰다. 새로운 손실함수를 도입함으로써 구조물의 지진 

응답에 대한 평균과 표준편차를 예측할 수 있으며, 입력변수의 불확실성 

정도에 따라 표준편차의 크기가 달라짐을 확인하였다. 여러 수치 예제를 

통해 개발된 모델이 응답의 불확실성을 효율적으로 정량화함을 

증명하였고, 구조물의 불확실성은 비선형 거동의 정도가 커질수록 그 

정도가 심해지기에 개발된 방법론은 구조물의 파괴나 붕괴를 다루는 

내진공학 측면에서 매우 중요한 역할을 할 것이다. 

DNN model과 P-DNN model은 기존 단순 회귀식 기반 모델에 비하여 

뛰어난 예측 정확도를 보였지만, 이상화된 이력곡선을 기반으로 

학습되었다. 다시 말해, 강도/강성 감소 및 핀칭 효과를 보이는 실제 

구조 시스템의 지진 응답을 학습된 심층 인공 신경망을 통해 정확히 

예측하기는 쉽지 않다. 이러한 문제를 해결하기 위하여, 먼저 구조물 

이력곡선에 강도/강성 감소 및 핀칭 효과를 표현할 수 있는 modified 

Bouc-Wen-Baber-Noori (m-BWBN) 모델을 제안하였다. m-BWBN 모델과 

미국 NGA-West 데이터베이스의 다양한 지진동을 사용하여 비선형 

동적해석을 수행을 통해 데이터베이스를 구축 하였으며, 상대적으로 

많은 정보를 담고 있는 이력곡선의 응답을 예측할 수 있는 BW-DNN 
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model을 제안 및 학습시켰다. 학습된 BW-DNN model은 기존 DNN 

model과 P-DNN모델에서 다루지 못한 광범위한 구조 시스템의 

지진재해에 대한 응답을 예측할 수 있음을 확인하였다. 

개발된 방법론의 효율성과 적용가능성을 입증하기 위해 구조 부재의 

지진 응답 예측, 구조 시스템의 지진 취약도 추정, 도시의 지진 손실 

평가 등 세 가지 서로 다른 규모의 지진 공학 문제를 도입하였다. 

더불어 파이썬(Python)으로 개발된 심층 인공 신경망 소스 코드, 학습된 

모델, 구축된 데이터베이스, 그리고 제안된 딥러닝 기반 예측 플랫폼을 

제공하는 새로운 웹 서비스(http://ERD2.snu.ac.kr)를 개발하여 사용자의 

편의성 및 방법론의 확장성을 확보하였다. 본 학위논문에서 개발된 

딥러닝 기반 비선형 응답 방법론은 향후 일어날 지진에 따른 관심 

구조물의 응답을 효율적으로 예측함으로써 지진 재해에 대한 피해 예측 

및 복구를 위한 합리적인 대비에 기여할 것이다. 

 

주요어: 지진 공학; 딥러닝; 합성곱 신경망; 베이지안 딥러닝; 단자유도 

시스템; 북웬 모델; 도시의 지진 손실 평가; 취약도 해석; 불확실성; 비선

형 시간 이력 해석. 
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