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Abstract 
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Seoul National University 

   Due to the growing awareness regarding the seriousness of droughts, every year 

since 2017, a South Korean national drought policy has been established jointly by 

related ministries. Although the risk of droughts is an important concept widely 

considered in drought policies around the world, it is not included at the domestic 

policy of South Korea. In addition, the framework of drought risk assessment has 

developed into a conceptual model, the verification part of which remains insufficient. 

Therefore, research must be conducted to explain and verify the risk. 

In this proposed framework, risk is composed of hazard, exposure, and capacity 

indicators, and the drought risk index (DRI) is calculated using these three indicators. 

The hazard indicator refers to the cause of droughts, such as a lack of precipitation. 

The exposure indicator includes factors that are most significantly influenced by 
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droughts, such as water demand. The capacity indicator, used as socio-economic data, 

is divided into the coping capacity for reducing and the adaptive capacity for 

addressing the damage. The DRI is calculated via data preprocessing processes and 

weighted with random values of 0.1 units. For verification, the Pearson correlation 

coefficient between the DRI and drought damage estimation is utilized to select 

weighting coefficient sets. Finally, the future DRI in the 21st century is projected and 

analyzed under RCP 4.5 and RCP 8.5. The national average DRI is highest in the 

early 21st century. The highest DRI was calculated to be in the Seomjin River region, 

and the increase in the number of sub-basins was the largest in the Han River region. 
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Chapter 1. Introduction 

1.1  Background of Research 

Drought is a natural disaster that causes severe human damage in developing 

countries, starting with problems of drinking water and food shortage, famine, and 

starvation. It also causes economic damage and social problems resulting from water 

shortages in the commercial sector in developed countries. 

In South Korea, there was a severe drought in 2015, which led to a 127-day 

limited water supply in Chungcheongnam-do. Moreover, in 2017, the lowest water 

storage rate ever was recorded after the completion of the Boryeong Dam. In addition, 

the frequency of droughts was 0.36 times/year between 1904 and 2000, but it 

increased to 0.72 times/year from 2001 through 2018 (MOIS, 2019). Because of 

climate change, the increase of rainfall in seasonal and regional imbalances makes it 

more challenging to manage and plan existing water resources, and the damage from 

future droughts is expected to become more serious (Smith and Katz, 2013; IPCC, 

2014). 

Most drought-related studies have focused on developing a drought index that 

quantifies the drought hazard. However, the research on determining the damage 

cause by natural disasters to society remains insufficient. Moreover, droughts occur 

periodically, and after a drought ends, the research interest decreases significantly 
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compared with the time when the drought is active (Sung, 2018). After a drought ends, 

drought management plans are perceived as unimportant in terms of disaster 

prevention, and they remain focused on short-term postdrought measures, such as 

compensation and recovery. However, because droughts is natural disasters that can 

cause human casualties as well as social problems, it is imperative to develop a 

preemptive and comprehensive plan to manage droughts, starting with mitigation of 

economic damage. The paradigm of the international drought management has 

traditionally been postcrisis management. Recently, however, the prerisk 

management approach has been recognized as essential (Wilhite, 2019). 

Risk management is classified into three policy strategies: risk identification, risk 

reduction, and disaster management. Risk identification refers to the risk perception, 

social expression, and estimation before a policy is presented, and risk reduction and 

disaster management include prevention–mitigation and response–recovery policies, 

respectively (Cardona et al., 2003). Through this classification, risk management 

should be based on understanding how society perceives and expresses risks and how 

to estimate and quantify them. Risk is a complicated concept in which disaster-related 

and socio-economic characteristics have a relationship that is complex. Accordingly, 

many international organizations, such as the United Nations Office for Disaster Risk 

Reduction (UNISDR), Organization for Economic Cooperation and Development 

(OECD), and Intergovernmental Panel on Climate Change (IPCC), are evaluating 

risks by developing conceptual frameworks for their own purposes. The first step in 

the conceptual framework is to define the concept of risk; however, in reality, a wide 
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variety of definitions exist and are mixed. Therefore, the first step in the risk 

assessment procedure is to define the concept of risk uniquely by setting its purpose 

correctly, and that is the first focus of this thesis. 

Another feature of the risk assessment framework presented by the above 

international organizations is that most of them are intercountry comparisons. In other 

words, most international organizations have focused on factors for different levels 

of development between countries by defining and evaluating risks for the purpose 

of comparison by country. If the conceptual framework is applied without considering 

the spatial scale, regional characteristics and differences will not clearly appear. 

Furthermore, drought damage can cause regional social conflicts in allocating limited 

water resources in a country, occurring in various ways, including water shortages, 

the environment, and the economy (Wilhite et al., 2014); hence, socio-economic 

factors between regions should be reflected to measure risk. For example, drought 

risk studies on a regional scale have been conducted that do not consider socio-

economic factors related to local water supply facilities or focus on covering specific 

fields, such as agriculture and hydroelectric power (Shahid and Behrawan, 2008; Park 

et al., 2012; Nam et al., 2014; Kim et al., 2015; Choi, 2018). Because the purpose of 

this thesis is to evaluate drought risk between regions in South Korea, the focus is on 

developing a suitable conceptual framework and selecting components. 

Finally, it must be pointed out that prior studies on risk assessment have neglected 

to verify the results. The first reason is that the combination of various components 

required too many weighted coefficients, and most of the studies used equivalent 
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coefficients because estimation was very difficult. Second, as mentioned above, the 

appropriate way to compare the results of the risk evaluated by indexing from a 

conceptual framework is unclear. In this study, drought risk assessment was improved 

by considering the verification issues included in these two reasons.  

 

1.2  Objectives 

The purpose of this research was ultimately to develop a drought risk conceptual 

framework that can be compared by region and to calculate the future drought risk 

index (DRI). For this purpose, first, the conceptual framework of risk is suitable for 

comparing regions complying with the standard concepts of the international 

community. Because risk has various definitions by users, this thesis focuses on the 

field of climate change adaptation and disaster reduction and conforms to the 

international agreements on all definitions. Second, the accuracy of drought risk is 

improved by verifying and weighting through damage estimation. Finally, the future 

drought risk is forecast as an index by applying climate change scenarios, and the 

results can be used as basic data for drought management on the Korean Peninsula.  

 

1.3  Thesis Organization 

The theoretical background in Chapter 2 is concentrated on the definition and 

conceptual framework of risk among the international community. In Chapter 3, a 

conceptual framework of risk on a regional scale is proposed, and the subconcepts 
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are discussed in detail. In addition, the method to calculate the index is described. As 

discussed in Chapter 4, in the proposed framework of risk, the DRI results were 

calculated for 113 basins in the Korean Peninsula, and the future DRI under the 

climate change scenario is projected. Finally, conclusions and future studies are 

summarized in Chapter 5.  
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Chapter 2. Theoretical Background 

2.1  Definition of Risk 

Risk is a concept applied in various areas. Mathematically, it is defined as the 

probability of a negative outcome (Hann, 2002). With comprehensive access to the 

social domain, risk refers to “(exposure to) the possibility of loss, injury, or other 

adverse or unwelcome circumstance; a chance or situation involving such a 

possibility” (“Risk,” 2020). Because the definitions of risk vary depending on the 

issues applied by the field, risk is defined for the purpose of this study by referring to 

international communities in the fields of climate change adaptation and disaster 

reduction. 

The definitions of international organizations are summarized in Table 1, and the 

meanings contained in risk terms were divided into three categories of meanings. First, 

the words “adverse,” “harmful,” “threat,” and “loss” explain the negative meaning. 

Second, the words “consequence” and “effect” include the results of the situation. 

Finally, the words “potential,” “possibility,” “probability,” and “uncertainty” contain 

the meaning of the possibility of the results. Combining these meanings, in this study, 

the risks of climate change adaptation and disaster areas were defined as the 

possibility of the damage consequences of disasters caused by climate change. 
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Table 1 Definitions of the risk by international organizations 

Name Year Definition 

IPCC1 2012 

The possibility of adverse effects in the future. It derives 

from the interaction of social and environmental 

processes, from the combination of physical hazards and 

the vulnerabilities of exposed elements. 

WMO2 2013 

A threat or uncertainty associated with an event that may 

have a negative effect on the achievement of the results 

defined in the Strategic Plans of the Organization. 

IPCC 2014 

The potential for consequences where something of 

value is at stake and where the outcome is uncertain, 

recognizing the diversity of values. Risk is often 

represented as probability of occurrence of hazardous 

events or trends multiplied by the impacts if these events 

or trends occur. Risk reults from the interation of 

vulnerability, exposure, and hazard. 

UNFCCC3 2015 

The effect of uncertainty on objectives or an uncertain, 

generally adverse consequence of an event or activity 

with respect to something that humans value. 

IRGC4 2017 

The uncertainty about and the severity of the 

consequences of an activity or event with respect to 

something that humans value. 

UNISDR5 2017 

The potential loss of life, injury, or destroyed or damaged 

assets which could occur to a system, society, or 

community in a specific period of time, determined 

probabilistically as a function of hazard, exposure, 

vulnerability and capacity. 

ISO6 2018 The effect of uncertainty on objectives. 

 

                                                      
1 Intergovernmental Panel on Climate Change (IPCC) 
2 World Meteorological Organization (WMO) 
3 United Nations Framework Convention on Climate Change (UNFCCC) 
4 International Risk Governance Center (IRGC) 
5 United Nations Office for Disaster Risk Reduction (UNISDR) 

6 International Organization for Standardization (ISO) 
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2.2  Conceptual Framework of Risk 

Before reviewing the previous research on risk, vulnerability is explained because 

of its similarity to risk. In the field of climate change adaptation, “vulnerability” has 

traditionally been used as a framework for understanding and assessing the 

phenomenon, and “risk” has been considered in the health, disaster, and infrastructure 

fields (Wolf, 2012). However, the study of climate change has gradually expanded to 

fields such as health and disasters, and the need for integrated terms has emerged. 

Among these two terminologies, “vulnerability” is a negatively interpreted word that 

can lead to a passive attitude and result in the importance of social resilience being 

overlooked when used in the policy application. In contrast, a risk-based framework 

promotes the participation of various stakeholders in transdisciplinary subjects 

(Meadow et al., 2015) and is more appropriate for prioritization and communication 

on comprehensive concepts (Weaver et al., 2017).  

For the measurement and management of drought damage, in this study, a 

conceptual framework based on risk, not on passive vulnerability, which could be 

caused by confusion and reduce the authority of the result, was used. Thus, the 

conceptual framework of risk presented by international organizations in climate 

change adaptation and disaster reduction is discussed and organized in the following 

sections. 
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2.2.1 United Nations Office for Disaster Risk Reduction  

The United Nations Office for Disaster Risk Reduction (UNISDR, formerly 

UNISDR) explains that the understanding of disaster risk should be the basis for 

policies implemented for disaster risk management and assessment. The UNISDR 

defines risk as the probability of harmful consequences, or expected loss (deaths, 

injuries, property, livelihoods, disruption of economic activity, or environmental 

damage) resulting from interactions between natural or human-induced hazards and 

vulnerable conditions. The UNISDR formulates risk with two elements: hazard and 

vulnerability (UNISDR, 2004).  

Risk = Hazard × Vulnerability 

From here, hazard is a potential damaging physical event, phenomenon or human 

activity, and vulnerability is the conditions determined by physical, social, economic, 

and environmental factor or processes, which increases the susceptibility of an 

individual, a community, assets, or systems to the impact of hazards. 

In the risk framework of the UNISDR, which focuses on various natural disasters, 

the hazard is categorized by natural disaster characteristics, and various phenomena 

are grouped as shown in Table 2. Vulnerability is demonstrated in aspects of the 

physical, economic, social, and environmental spheres, as in Table 3. 
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Table 2 Hazard classification in terms of risk by the UNISDR (UNIDSR, 2004) 

Classification Examples 

Hydro-meteorological hazards Floods, drought, tropical cyclones, etc. 

Geological hazards Earthquakes, surface collapse 

Biological hazards Outbreaks of epidemic diseases 

Technological hazards Industrial pollution, nuclear release 

Environmental hazards Loss of biodiversity, air pollution 

 

 

 

Table 3 Aspects of vulnerability in terms of risk according to the UNISDR 

(UNIDSR, 2004) 

Aspects Examples 

Physical 

Population density levels, remoteness of a settlement, the site, 

design and materials used for critical infrastructure and for 

housing 

Social 

Levels of literacy and education, systems of good governance, 

basic infrastructure, institutional organizations and governance 

structures 

Economic 

Levels of individual, community, and national economic 

reserves, levels of debt and the degree of access to credit, loans, 

and insurance 

Environmental 
Extent of natural resource depletion and the state of resource 

degradation 
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2.2.2 United Nations University Institute for Environment and Human 

Security 

The World Risk Report (WRR), published in 2011 by United Nations University 

Institute for Environment and Human Security (UNU-EHS), described disaster risks 

in terms of the World Risk Index (WRI). In the WRI, risk is defined as the product of 

the interaction between a natural hazard event (earthquake, flood, storm, drought, sea 

level risk) and the vulnerability of exposed elements or society (UNU-EHS, 2011). 

The WRI is measured for two sphere and four indicators: the natural hazard sphere 

(exposure) and vulnerability in the societal sphere (susceptibility, coping capacities, 

and adaptive capacities). 

WRI = f(Exposure, Susceptibility, Coping capacity, Adaptive capacity) 

Although the WRI has adopted risk as a comprehensive definition used by the 

international community, this conceptual framework divides vulnerabilities into three 

categories, underscoring social, economic, and governance factors, compared with 

other frameworks. These three main indicators are explained by Birkmann and Welle 

(2015) as follows. 

1. Susceptibility, which means that societies or communities have 

deficiencies and limited capacities to deal with adverse events 

2. Coping capacity, which is the capacity to deal with the direct impact and 

consequences of an extreme event 

3. Adaptive capacities, which encompass elements that help to build the 

capacity to deal with extreme events and slower changes in the medium 
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and longer terms 

In particular, the WRI classifies short-term responses and long-term strategies of 

national and other social groups, respectively, by the coping and adaptive capacity 

described in index calculations. 

The four indicators in the WRI are summarized in Figure 1 with detailed 

subcategories. Initially, exposure is defined as “entities exposed and prone to be 

affected by a hazard event” and is included in the natural hazard sphere because it is 

described as a hazard-related subconcept. The data at the exposure indicator are the 

historical average number of entities (persons, resources, infrastructure, etc.) to 

natural disasters with a base in the past period (Birkmann et al., 2011). Susceptibility 

refers to “the structural characteristics of a society and the conditions in the social 

actors” and is described to the likelihood to suffer harm and damage. This indicator 

is categorized as five sectors: 1) nutrition, 2) housing conditions, 3) public 

infrastructure, 4) poverty and dependencies, and 5) economic capacity and income. 

Coping capacity, the third indicator of WRI, explains “the capacities of societies to 

minimize damages of natural hazards through direct and short term actions.” The five 

categories are 1) government and authorities, 2) disaster preparedness and early 

warning, 3) medical services, 4) social networks (neighborhood, family, and self-

help), and 5) material coverage. Here, “susceptibility” and “coping capacity” are 

closely connected; therefore, it is difficult to distinguish between the two concepts in 

practice (Birkmann et al., 2011). Finally, adaptive capacity mentions “capacities, 

measures, and strategies that can change the communities to deal with the negative 
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impact of natural hazards in the long term.” The subcategories of this indicator are 1) 

education and research, 2) gender equity, 3) environmental status and ecosystem 

protection, 4) adaptation strategies, and 5) investment. 
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Figure 1 Structure of the concept for the WRI (Birkmann and Welle, 2015) 
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Johnson et al. (2016) and Wannewitz et al. (2016) applied the framework of the 

WRI to calculate a complex disaster risk index that considers heat waves, typhoons, 

and landslides in Hong Kong and the Philippines. The WRR, which developed the 

WRI, noted that there is an ambiguity between the susceptibility and the coding 

capacity. Thus, it is necessary to beware in selecting the suitable categories for 

division and purpose, such as spatial scale. 

 

2.2.3 Intergovernmental Panel on Climate Change  

The Intergovernmental Panel on Climate Change (IPCC), an organization that 

publishes regular climate change impact assessment reports, adopted the risk 

assessment in climate change assessment paradigm in 2012 when it published the 

Special Report Management of Extreme Events and Disasters to Advance Climate 

Change Adaptation (SREX). To integrate with other fields, such as disaster reduction 

and health, the IPCC assessed the negative impacts of human or social systems by 

risk. Although a conceptual framework focused on risk is examined in this research, 

the major differences between the vulnerability assessment of Annual Report 4 (AR4) 

in 2007 and the risk assessment of Annual Report 5 (AR5) in 2014 are summarized 

in Table 4 and explained in the comparison. 
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Table 4 Comparison of the assessments in AR4 and AR5 

Classification AR4 AR5 

Consequence 

(adverse effects and harm to the system) 
Vulnerability (V) Risk (R) 

External factor 

(stressors or the degree of physical event) 
Exposure (E) Hazard (H) 

Internal factor 

(state and ability of the system) 

Sensitivity (S) 

Adaptive Capacity (AC) 

Exposure (E) 

Vulnerability (V) 

Function of assessment V = f(E, S, AC) R = f(H, E, V) 
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The main transformations in the new paradigm of AR5 lie in the concepts of 

exposure, hazard, and vulnerability (Sharma and Ravindranath, 2019; Das et al., 

2020). First, the IPCC defined that exposure is “nature and degree to which a system 

is exposed to significant climate variations” in the third assessment report (TAR) and 

explained the external factor of the climate-related stress in AR4. However, AR5 

defined exposure as “the presence (location) of people, livelihoods, environmental 

services and resources, infrastructure, or economic, social, or cultural assets in places 

that could be adversely affected by physical events and which, thereby, are subject to 

potential future harm, loss, or damage.” Hence, exposure implied “driver perspective” 

in the AR4, and it was shifted to a “spatial concept” in the AR5. 

Second, SREX contained a new main concept, hazard, defined as “the potential 

occurrence of a natural or human-induced physical event that may cause loss of life, 

injury, or other health impacts, as well as damage and loss to property, infrastructure, 

livelihoods, service provision, and environmental resources.” Thus, hazard in AR5 

plays the role of exposure in AR4 to explain external stress.  

Last, vulnerability, according to AR4, is the consequence of the interaction 

between exposure, sensitivity, and adaptive capacity and defined as “the degree to 

which geophysical, biological and socio-economic systems are susceptible to, and 

unable to cope with, adverse impacts of climate change, including climate variability 

and extremes” (IPCC, 2007). Moving to a new paradigm of AR5, vulnerability 

becomes one of the subconcepts of risk and refers to “the propensity or predisposition 

to be adversely affected” (IPCC, 2014). In addition, it is considered independent of 
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physical events, such as exposure in AR4 and hazard in AR5. In brief, the concept of 

vulnerability included cause, condition, and effect in the previous IPCC, yet, after the 

SREX report in 2012, the meaning of the term was reduced to a term describing the 

lack of socio-economic capacity, excluding physical causes. 

The risks of AR5 addressed in this study are caused by the impact of climate and 

socio-economic processes and are organized in Figure 2 as an interaction of hazard, 

exposure, and vulnerability by climate change. Hazard in this framework is “the 

potential occurrence of a natural or human-induced physical event or trend or physical 

impact that may cause loss of life, injury, or other health impacts, as well as damage 

and loss to property, infrastructure, livelihoods, service provision, ecosystems, and 

environmental resources.” Exposure is defined as “the presence of people, livelihoods, 

species or ecosystems, environmental functions, services, and resources, 

infrastructure, or economic, social, or cultural assets in places and settings that could 

be adversely affected.” Vulnerability is interpreted as “the propensity or 

predisposition to be adversely affected. Vulnerability encompasses a variety of 

concepts and elements including sensitivity or susceptibility to harm and lack of 

capacity to cope and adapt.” 
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Figure 2 Conceptual framework of risk by IPCC (IPCC, 2014) 
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Although the components that constitute the subconcepts vary among scholars, 

these conceptual frameworks with three dimensions are suitable for dividing the state 

of a system or society and the ability of governments to respond to disaster damage 

for preparing countermeasures. World Bank (2019) and Carrao et al. (2016), who 

employed the risk framework of the IPCC, mapped drought risk by country, and Vogt 

et al. (2018) conducted a drought risk assessment for major areas of agriculture and 

hydropower. 

 

2.3  Composite Indicator 

A composite indicator (or index) is used to quantify a multidimensional concept, such 

as well-being, development, and social equity, on the basis of an underlying model. 

It is formed when individual indicators are combined into a single index (OECD, 

2008; Mazziotta and Pareto, 2017). It is mainly utilized for relative evaluation based 

on complex concepts in rank or quantity and is useful for prioritizing policies and 

attracting the interest of the public (Saltelli et al., 2006). There is some debate about 

using an index because it can cause analytical problems in simplifying various 

indicators. However, composite indexes have been developed in many fields because 

they support understanding of and communication with ordinary citizens, summarize 

complex problems into a single one, and facilitate the selection of priority regions for 

drought management. An analysis performed in December 2020 on composite 

indicators (or composite indices) in SCOPUS shows that more than 600 research 

reports had been published until 2020, as shown in Figure 3. 
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Figure 3 Results of searching with the terms “composite indicators” or 

“composite index” on SCOPUS from 1981 to 2020 

 

 

 

 

 



 

22 

In the field of drought research, the drought index has been developed for the 

purpose of determining whether the drought phenomenon has started and will 

continue. The representative indices are the Palmer drought severity index, which 

uses precipitation and evapotranspiration, and the standardized precipitation index 

(SPI), which defines drought only with precipitation. Depending on the factors for 

consideration, dozens of other drought indices have been suggested. The drought 

index for physical phenomena plays an important role in measuring the severity of 

the drought compared with the past. The drought index is different from the risk that 

explains the degree of damage to society and considers socioeconomic aspects. The 

DRI includes social factors that can be reflected in drought management plans or 

policies and used as information to compare different plans or policies (Hall and Leng, 

2019). 

In general, the index calculation process involves four steps: 1) theoretical 

framework development, 2) data collection for each indicator, 3) normalization, and 

4) weighting and aggregation (Anand and Sen, 2000; Jeong et al., 2004; OECD, 2008). 

It was conducted based on the preceding studies discussed in Section 2.2 about the 

first step of defining a phenomenon and selecting a subgroup and the second step of 

selecting an appropriate proxy variable. Therefore, in this section, the processes of 

Steps 3 and 4 are described. 
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2.3.1 Normalization 

Among the various normalization methods, the ranking, standardization (or z-scores), 

and min-max (or rescaling) methods are mainly used. The ranking method is the 

simplest normalization method using the ranking of the data, although the ratio scale 

is transferred to the equidistant of the hierarchy scale, resulting in a distortion of 

values. The standardization method is the most commonly used method to normalize 

the mean with zero and the standard deviation with one. The min-max method can be 

calculated between 0 and 1 based on the range using the difference between the 

maximum and minimum values. It can be applied inversely on the opposite scale. The 

equations of the three methods are shown in Table 5. 
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Table 5 Methods of normalization 

Method Equation 

Ranking 𝑥𝑛𝑜𝑟 = Rank(x) 

Standardization (or z-scores) 𝑥𝑛𝑜𝑟 =
x − x̅

𝜎𝑥
 

Min-max (or rescaling) 

𝑥𝑛𝑜𝑟 =  
𝑥 − min(𝑥)

max(𝑥) − min(𝑥)
 

or 

𝑥𝑛𝑜𝑟 =  1 − (
𝑥 − min (𝑥)

max(𝑥) − min (𝑥)
) 
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2.3.2 Aggregation 

Among the procedures of calculating the index, aggregation is the step in which 

information is reduced and simplified. It is important to choose the appropriate 

method at this stage, but the criteria for choice do not exist (Kang, 2002; Korea 

Environment Institute (KEI), 2008; Blancas et al., 2013). Therefore, the formula is 

chosen according to the purpose of the researcher.  

The simple additive weighted (SAW) formula and the weighted product (WP) 

formula are mainly used, and there are other methods of selecting maximum and 

minimum values. The SAW formula computes the index with the weighted sum of 

individual indicators, as in Equation (2.1). 

Index (or composite indicator) = ∑ 𝑤𝑖 ∙ 𝑥𝑖
𝑚
𝑖=1           (2.1) 

where 𝑥𝑖 is the individual indicator, 𝑤𝑖 is the weighting factor of 𝑥𝑖, and m is the 

number of individual indicators. Next, the WP formula determines the index by 

computing through geometric aggregation using Equation (2.2): 

Index (or composite indicator) =   ∏ 𝑥𝑖
𝑤𝑖𝑚

𝑖=1          (2.2) 

The subscript is the same as in Equation (2.1). The predominant difference between 

the methods is that, if any of the individual indicators has zero, the index always 

becomes zero in the WP formula. 
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2.4  Drought Damage Estimation 

Drought damage can occur throughout society, including homes, environments, 

and industries. Spatially, compared with other natural disasters, drought has more 

indirect effects than the direct effects (Logan and van den Bergh, 2013). In addition, 

the drought damage determined by institutions tends to be underestimated or limited 

to specific fields, such as agriculture (So et al., 2015). Therefore, it is challenging but 

essential to identify and evaluate drought damage. 

Studies on estimating drought damage are mainly conducted in the economic field, 

and the cost classification according to droughts is classified into four categories: 1) 

direct cost, 2) indirect cost and associated economy-wide impacts, 3) intangible (or 

nonmarket) costs, and 4) risk mitigation costs (Freire-Gonzales et al., 2017). As 

explained the damage area in Figure 4, the first category is the water scarcity for 

industry and households. According the first category, the market economy may 

change in second category, and social problems (such as unemployment) and 

environmental problems (such as health and pollution) may occur with costs in third 

category. Finally, the fourth category is associated with the government efforts 

implemented to control society.  
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Figure 4 Economic impact of drought (Freire-Gonzales et al., 2017) 
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The major methods for cost estimation include market valuation techniques, 

computable general equilibrium analysis (CGE), input/output (I/O) analysis, and 

coupled hydrological–economic modeling. Market valuation techniques are 

commonly used to evaluate the direct cost of droughts, such as traded products or 

services, in a manner that incorporates a market price method, production function, 

avoided-cost approach, and replacement- or repair-cost approach (Logan and van den 

Bergh, 2012). In case studies, this technique is generally used to estimate the profit 

or loss associated with the drought adaptation rather than quantify the damage caused 

by the drought. The CGE model is a highly sophisticated economic models used to 

investigate the impact of a drought on the overall economy, such as policies, 

technologies, and exports. It requires a large amount of data and is used to estimate 

indirect costs (Freire-Gonzales et al., 2017). I/O analysis considers the 

interdependence of changes of one economic sector (price, demand, labor costs, etc.) 

on another (Miller and Blair, 2009). Furthermore, it is a method for explaining the 

relationship between economic sectors and is generally used to investigate the effects 

of water prices and consumption on water policies between economic sectors. Like 

the CGE model, it is useful for indirect costs. Finally, coupled hydrological–economic 

modeling is used to analyze the effects of water allocation and water use by sector 

and includes hydrological, economic, and institutional factors. This model assists 

stakeholders as a decision-support tool in the government and industrial sectors. 

Furthermore, among the aforementioned models, it is the only one applicable to all 

direct, indirect, and nonmarket costs (Logan and van den Bergh, 2012). 
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To estimate drought damages, Naumann et al. (2015) used the damage function 

according to power-law dependence to correlate the SPI and the reduction of cereal 

crop production and hydropower generation. In addition, So et al. (2015) defined the 

duration and depth of drought using the bivariate joint drought index and established 

a linear regression equation among different types of damage data for agricultural 

land. These studies used the drought index only to express drought damage, 

regardless of socio-economic characteristics. There is also a limitation that it can be 

applied only to a specific field of creating economic profit, such as agricultural and 

industrial fields.
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Chapter 3. Methodology 

In this chapter, the conceptual framework of risk is modified appropriately from 

a global scale by international organizations to a regional scale, and calculation of the 

DRI is proposed for cross-regional comparisons. 

The research method is explained in the following: 1) the conceptual framework 

of risk for a regional scale, 2–4) definition of drought hazard, exposure, and capacity, 

5) method for calculating the DRI, and 6) drought damage estimation for DRI 

verification. 

 

3.1 Overview of Conceptual Framework of Risk for Regional 

Scale 

The purpose of the conceptual framework of drought risk is to assess the degree 

of risk arising from future droughts. The proposed framework, which is suitable for 

a regional scale, is composed of indicators that categorize risk into three subconcepts: 

hazard, exposure, and capacity. 

Risk = f(Hazard, Exposure, Capcity) 

First, the conceptual framework of this study is mainly based on the risk framework 

of AR5 by the IPCC. Risk is a function of hazard, exposure, and vulnerability. As 
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mentioned in Section 2.2.3, vulnerability is one of the subconcepts of risk and 

encompasses elements including sensitivity or susceptibility to harm and the lack of 

capacity to cope and adapt (IPCC, 2014), i.e., vulnerability is not a concept of 

consequences unlike in AR4. This definition can eventually be seen as the same 

concept as vulnerability in the WRI, which is divided into susceptibility, coping 

capacity (CC), and adaptive capacity (AC). From the WRI, CC is closely related to 

the susceptibility in the WRI, whereas it is clearly distinguished from AC. To clarify 

the separation between terms, this research selected coping capacity and adaptive 

capacity and organized them in terms of capacity. 

Moreover, vulnerability has connotations with a wide range and complex meaning 

and can cause confusion in communication (Birkmann, 2013). However, capacity is 

easy to understand compared with vulnerability. In addition, it has a positive meaning, 

so it is appropriate to explain the active ability of the social system, such as local 

governments, in regional comparisons. Thus, it is considered suitable to be used as a 

subconcept of the risk framework. 

Therefore, in this study, drought risk is defined as potential damage from drought 

caused by future climate change, and it is classified into three subconcepts (hazard, 

exposure, and capacity), as shown in Figure 4. Each concept is described in detail in 

Sections 3.2 through 3.4. 
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Figure 5 Conceptual framework of risk for regional scale 
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3.2 Drought Hazard 

Drought hazard is a concept to indicate the cause of drought. In the risk 

framework, the hazard indicator reflects the disaster characteristics of drought. 

“Drought as a hazard” and “drought as a disaster” are often mingled in research. 

Drought as a hazard is a natural phenomenon of drought, and drought as a disaster 

means an event in which adverse effects on society and the environment have 

occurred. The DRI, the ultimate result of this study, is used to assess the damage of 

drought as a disaster; otherwise, the drought hazard indicator involves the physical 

characteristics of drought as a hazard, applied by a variety of drought indices. 

Drought as a disaster occurs because of an imbalance between the supply and 

demand of water resources required by nature or human society, and the cause is a 

lack of precipitation that has deviated extremely from the normal climate. 

In general, the types of drought are classified into meteorological drought, 

hydrological drought, agricultural drought, and socioeconomic drought. When the 

meteorological drought is prolonged, different droughts gradually occur in 

combination. Hence, the meteorological drought is the starting point of the drought 

(Wilhite et al., 2014). This study is based on the fact that the fundamental cause of 

drought begins with insufficient precipitation. The SPI is calculated using only 

precipitation data and easily reflects regional characteristics among the various 

drought indices. In addition, WMO and Globar Water Partnership (2016) 
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recommends the SPI as a drought index representing meteorological drought. 

Therefore, the drought hazard indicator is determined from SPI. 

The SPI was developed by McKee et al. (1993) based on the fact that droughts 

occur because of a lack of precipitation. The SPI is used to calculate the cumulative 

probability by taking the cumulative precipitation on a monthly time scale and 

calculating the probability distribution, traditionally using the gamma probability 

distribution proposed by Edwards (1997). Because, in this study, drought risk is 

calculated for the purpose of preparing drought management, it is calculated as 

drought hazard indicators by selecting lower SPI values within the same period using 

3-month and 12-month time scales to represent short- and long-term drought. 

The cumulative gamma probability distribution 𝐺(𝑥) used for SPI calculations 

is Equation (3.2). 

𝐺(𝑥) =
∫ 𝑥𝛼−1exp (−𝑥/𝛽)

𝑥

0
𝑑𝑥

𝛽𝛼Γ(α)
               (3.2) 

Here, 𝑥 is precipitation, α is scale parameter, 𝛽 is shape parameter, and Γ(∙) 

is the gamma function. The maximum-likelihood solutions are used to estimate α 

and 𝛽 using Equation (3.3) and (3.4) (Thom, 1966). In Equation (3.5), A is a statistic 

for the gamma distribution, and 𝑛 is the number of observed precipitation data. 

α =
𝑋̅

𝛽
                         (3.3) 
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β =
1 + √1 +

4𝐴
3

4𝐴
                     (3.4) 

A = ln(𝑥̅) −
∑ ln(𝑥)

𝑛
                    (3.5) 

In cumulative gamma probability distribution  𝐺(𝑥) , the gamma function is not 

defined when 𝑥 has a value of 0, so the cumulative probability H(x) is expressed in 

Equation (3.6). 

𝐻(𝑥) = 𝑞 + (1 − 𝑞)𝐺(𝑥)                   (3.6) 

Here, 𝑞 is the probability that 𝑥 is zero. Finally, switching the calculated 𝐻(𝑥) 

to the standard normal distribution yields the SPI. The calculated SPIs are classified 

as shown in Table 6. 
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Table 6 Drought category by SPI (Mekee et al., 1993) 

Drought Category SPI Values (unitless) 

Mild Drought 0 to −0.99 

Moderate Drought −1.00 to −1.49 

Severe Drought −1.50 to −1.99 

Extreme Drought ≤ −2.00 
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To apply the SPI as a drought hazard indicator, the process of reprocessing in the 

range from 0 to 1 is required. With consideration of the SPI category shown in Table 

3, the hazard indicator is calculated to be dimensionless using Equation (3.7). If the 

SPI is 0, which is the standard of mild drought, the hazard indicator becomes the 

mean of the range from 0 to 1, and the SPI is smaller than −2; in extreme drought, it 

is 1, the highest value in the indicator. 

0

2

4

SPI
h





                        (3.7) 

Additionally, the hazard indicator should have a range from 0 to 1. Values less 

than 0 and more than 1 are reprocessed using Equation (3.8). Finally, the higher the 

SPI value, the lower the drought risk indicator; the lower the SPI value, the higher 

the drought risk indicator. 

0

0 0

0

0 ( 0)

(0 1)

1 ( 1)

h

Drought hazard indicator h h

h




  
 

      (3.8) 
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3.3 Drought Exposure 

Drought exposure refers to objects that can be damaged by drought. In assessing 

the risk, rather than the risk divided into two indicators: the external stimulus and the 

internal condition, an approach that includes the object being lost is more appropriate 

to explain the damage suffered by region, reflecting the size or state of the object. 

When the cause and the target are separated, such characteristics as the frequency and 

intensity of the harm can be demonstrated individually from the exposed object on 

the damage. Furthermore, when the quantity and quality of the object are 

distinguished, the indicators that constitute the risk are reflected in more detail and 

the risk can be evaluated closely. 

The targets of drought damage include the population, crops, and products 

requiring water resources. Because the water resource demand based on use is 

estimated in Ministry of Land, Transport and Maritime Affairs (MLTMA, 2011), the 

drought exposure index developed in this study is based on the water demand. 

 

3.4 Drought Capacity 

Drought capacity refers to the internal ability of society to cope with and adapt to 

drought. In this study, the term “capacity” not “vulnerability,” was used as a 

subconcept of risk. Only the coping and adaptive capacity was used, excluding 
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sensitivity (or susceptibility) among the related vulnerability elements addressed by 

the IPCC and UNU-EHS. 

First, the reason for excluding sensitivity is that, in the IPCC and UNU-EHS, 

drought, unlike other natural disasters, does not exacerbate the damage depending on 

the condition of the objects. For example, sea-level rise is an especially catastrophic 

disaster in coastal regions, and flooding is devastating to the number of underground 

households and rivers. However, drought is related to water and causes the same 

degree of damage to all objects. Thus, the classification of housing conditions used 

for WRI sensitivity is not related to drought. Next, because this study focused on the 

risk on a regional scale, there is no need for an index to compare the degree of national 

development. Among the subcategories of susceptibility in the WRI, public 

infrastructure is computed by a share of the population without assessing to improved 

sanitation and clean water. Moreover, nutrition, poverty, and dependencies show the 

development gap between countries on a global scale on the premise that developing 

countries suffer more than developed countries. However, this is not required for 

regional comparisons within countries where development has progressed to some 

extent. Moreover, considering that coping capacity is a concept that is closely related 

to sensitivity (Birkmann et al., 2011), coping capacity can sufficiently account for the 

capability related to drought risk, even if the sensitivity indicator is excluded. 

Therefore, in this study, the concept of capacity was used to reflect the ability of a 

social system or local governments to reduce and address drought damage. Drought 

capacity is divided into coping capacity and adaptive capacity. In this research, coping 
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capacity refers to direct actions and resources to minimize negative effects, and 

adaptive capacity refers to long-term measures or strategies against negative effects 

(Birkmann et al., 2011). 

 

3.5 Drought Risk Index 

In this section, the process of calculating the DRI for a regional scale applied to 

the conceptual framework is described. To determine the terms before arranging the 

index calculation process, the index is the most complex (comprehensive) level. An 

indicator is the level of subconcepts of the index, and the smallest level is the 

component calculated using data. In this section, the index calculation process is 

explained by dividing it into data preprocessing, aggregation, and the weighting 

coefficient. 

3.5.1 Data Preprocessing 

The data used in the DRI calculation were preprocessed through outlier detection, 

normalization, and reprocessing steps using beta CDF. The first step, outlier detection, 

is to identify and remove outliers among the data collected for each sub-basins. There 

are various outlier detection methods depending on time series data or the number of 

variables. Because the drought risk in this study is used for spatial comparison, outlier 

detection with univariate data was applied to individual components. For univariate 

data, using standardized scores, statistical hypothesis tests (chi-square test, Grubbs T-

test, etc.) and quartile ranges are popular to search for outliers; however, these 
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methods assume that the data follow a normal distribution. This study handles 

multiple types of socio-economic data that are skewed according to regional 

characteristics. To detect outliers in skewed data, there are a semi-interquartile range 

method and an adjusted boxplot outlier detection method. The latter method, 

developed by Hubert and Vandervieren (2008), can be applied regardless of whether 

the data distribution is symmetric. This adjusted boxplot outlier detection utilizes 

skewness and modifies the interquartile range with medcouple (MC), a robust statistic 

for skewness suggested by Brys et al. (2003).  

The detection of outliers using the modified interquartile range is a method using 

MC to modify the existing interquartile range. Equation (3.9) for MC is as follows:  

MC = median {ℎ(𝑥(𝑖), 𝑥(𝑗))}, 𝑥(𝑖) ≤ 𝑚𝑒𝑑(𝑥) ≤ 𝑥(𝑗)        (3.9) 

Here, 𝑥(𝑖) is less than the median of 𝑥, and 𝑥(𝑗) is greater than the median of 𝑥. 

Moreover, ℎ(𝑥(𝑖), 𝑥(𝑗)) is computed by Equation (3.10), and every combination of 

(𝑥(𝑖), 𝑥(𝑗)) is applied.  

ℎ(𝑥(𝑖), 𝑥(𝑗)) =
[𝑥(𝑗) − 𝑚𝑒𝑑(𝑥)] − [𝑚𝑒𝑑(𝑥) − 𝑥(𝑖)]

𝑥(𝑗) − 𝑥(𝑖)
       (3.10) 

Equation (3.11) is the definition of outliers using the existing interquartile range. 

If the coefficient, c, in front of the interquartile range (IQR) is calculated using MC 

from Equation (3.9), Equation (3.11) is modified to Equation (3.12), the adjusted 

boxplot outlier. 
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[𝑄1 − 𝑐 × 𝐼𝑄𝑅, 𝑄3 + 𝑐 × 𝐼𝑄𝑅]              (3.11) 

{
[𝑄1 − 1.5𝑒−4𝑀𝐶 × 𝐼𝑄𝑅, 𝑄3 + 1.5𝑒3𝑀𝐶 × 𝐼𝑄𝑅], 𝑤ℎ𝑒𝑟𝑒 𝑀𝐶 ≥ 0

[𝑄1 − 1.5𝑒−3𝑀𝐶 × 𝐼𝑄𝑅, 𝑄3 + 1.5𝑒4𝑀𝐶 × 𝐼𝑄𝑅], 𝑤ℎ𝑒𝑟𝑒 𝑀𝐶 < 0
   (3.12) 

Here, 𝑄1, 𝑄3 are the first and third quartiles, respectively, and IQR is calculated as 

𝑄3 − 𝑄1 . The detected outliers with the adjusted boxplot outlier detection were 

treated by replacing a value close to the maximum value among the remaining values 

excluding outliers. 

After the outlier detection, the normalization was applied to handle the data unit 

dimensionless to facilitate the computation of the index. Among various 

normalization methods, the min-max method, which can be easily used even when 

the relationship between the data and the index is inverse, was used to calculate the 

range from 0 to 1 as well as to describe the distance between data. In this study, 

Equation (3.13) was used because all data of the minimum value are zero. 

𝑥𝑖 =
𝑥𝑟

𝑖

𝑚𝑎𝑥(𝑥𝑟
𝑖)

                      (3.13) 

Here, 𝑥𝑖 is the ith arbitrary component, and superscript 𝑟 represents the raw data. 

Finally, although the outlier detection process was finished, some of the variables 

for reflecting the socio-economic impact in this study, such as research and 

development and gross regional product, have absolutely larger values in urban areas 

compared with rural areas. Compared with municipal administrative districts, the 

average of the upper two regions is more than 10 times the average of the other lower 

regions. If these variables are normalized and expressed in a range from 0 to 1, most 
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of the values are less than 0.1. This tends to underestimate the indicators and indices, 

and spatial comparison between subregions becomes difficult. Accordingly, in this 

study, the scale of data located at small values was adjusted using the cumulative 

probability distribution. The beta distribution was chosen as the scale adjustment 

function of this study because it can flexibly explain various types of data, as shown 

in Figure 6 using two shape parameters, α and β. 
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(a) PDF (b) CDF 

Figure 6 Beta distribution 
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The beta distribution probability density function is shown in Equation (3.14). 

𝑓(𝑥) =
𝑥𝛼−1(1 − 𝑥)𝛽−1

𝐵(𝛼, 𝛽)
                  (3.14) 

Here, α and β are shape parameters and both are greater than 0, and 𝑥 has a value 

between 0 and 1. In addition, 𝐵(𝛼, 𝛽) refers to the beta function for 𝑡, which is an 

arbitrary variable given by Equation (3.15). 

𝐵(𝛼, 𝛽) = ∫ 𝑢𝛼−1(1 − 𝑢)𝛽−1
1

0

𝑑𝑢             (3.15) 

The scale adjustment method uses standardized data to obtain the CDF of the beta 

distribution and uses the corresponding cumulative probability value. For example, 

Figure 7(a) is a graph that plots the ranking of the regions sorted in ascending order, 

and the values of the corresponding regions and values of the first to thirteenth 

ranking are distributed below 0.2. However, Figure 7(b) shows the CDF of the beta 

distribution obtained from same data, and the probability values from second to 

thirteenth ranking are evenly distributed from 0.5 to 0.8 except for the minimum value. 

Thus, the corresponding method enables rescaling data to remain in a similar range 

to that of the raw data. 
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      (a) Raw data      (b) Beta distribution CDF 

Figure 7 Rescaling with beta CDF 
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3.5.2 Aggregation of Components and Indicators 

There are three aggregation steps in the DRI calculation process. First, the first 

aggregation step is needed in the process of calculating the capacity indicator using 

components. In this process, each component has the effect of reinforcing the 

indicator. Equation (3.16) was used employing the SAW formula in Section 2.3.2. 

10

, j , j

1

( ) s s

j

Capacity indicator C w c


              (3.16) 

The subscript  𝑠  represents the three water sectors—municipal, agricultural, and 

industrial water—and 𝑗 denotes the number of the components in each sector. In 

addition, 𝑤𝑠,𝑗  is the weighting coefficient. 

Second, the WP formula was used to integrate three indicators — the hazard (H), 

exposure (E), and capacity (C) indicators — into the DRI. Risk arises when all three 

subconcepts exist. According to the definition in this study, there is no damage from 

drought in areas where there is no water demand. When a single indicator becomes 0, 

the value of the integrated index must be 0, so the WP formula reflecting this 

relational expression was applied. Equation (3.17) is shown with three indicators of 

the DRI. The weighting coefficient can be assigned differently depending on the 

relationship between each individual indicator with risk; however, in this study, the 

same weight was applied and calculated as a geometric mean. 

DRI =  ∏ 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑖
𝑤𝑖

3

𝑖=1

                (3.17) 
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Here, 𝑤𝑖  is the weighting coefficient assigned to each indicator, and 

𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑖 refers to the hazard, exposure, and capacity indicator of the DRI. Because 

H and E have a positive relationship with the DRI, each indicator can be multiplied 

by the values of these parameters. However, C has a negative relationship, so the 

higher the value of C, the lower the DRI. The smaller the DRI, the higher the DRI 

that should be reflected in Equation (3.17). 

There are two methods for a negative relationship between index and indicator. 

The first is a method of subtracting the value from 1, the maximum value of the 

indicator, and second is taking the reciprocal of values. Regarding the DRI, Figure 8 

compares the DRIs obtained using the two aforementioned methods. Figure 8(a) 

shows the former method using (1 − C), and Figure 8(b) is the latter one with (1/C). 
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(a) DRI = [H × E × (1 − C)]1/3 (b) DRI = [H × E × (1/C)]1/3 

  

Figure 8 DRI depending on the formula of capacity indicator 
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In Figure 8(a), as the C indicator increases, the rate of change of the DRI increases. 

In Figure 8(b), the rate of change of the DRI decreases as the value of the C indicator 

increases. Because the impact of the C indicator on the risk varies according to the 

nature of the disaster, an appropriate formula should be selected. To explain the 

detailed process of selecting the formula for the DRI, the black line in Figure 8 shows 

that the H and E indicators are 0.9. In Figure 8(a), the DRI gradually decreases as the 

C indicator changes from 0 to 1. However, in Figure 8(b), when the C indicator has a 

value from 0 to 0.8, the DRI exceeds the upper limit of the DRI, 1. Thus, the C 

indicator can affect the narrow range of the DRI from 0.8 to 1. Because this study 

should reflect the change in the DRI according to the capacity as much as possible to 

emphasize the role of local governments, the DRI formula is suggested using 

Equation (3.18). 

1/3 1/3 1/3( , ,C) HDRI f H E E C              (3.18) 

Finally, the integrated DRI for every sub-basin of three sectors is calculated using 

Equation (3.19). 

3

M A IDRI DRI DRI
DRI

 
               (3.19) 

 

3.5.3 Weighting Coefficient of Capacity Components 

To calculate individual indicators as an index, the three indicators were assigned 

the same weighting coefficients, as described in Section 3.5.2. However, in the 
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process of integrating capacity components into indicators, different weighting 

coefficients were set because a certain component can be relatively effective in 

drought mitigation. It is assumed that the weighting coefficients of each component 

are different for every sub-basin, whereas they are the same in one sub-basin 

regardless of the temporal change. Every weighting coefficient is generated by 

decreasing in 0.1 increments from 1 to 0. Among the weighting coefficient 

combinations, the combination with the highest correlation coefficient between the 

DRI and drought damage estimation is selected — that is, if a capacity indicator needs 

m components, combinations with a sum of 1 among (11)𝑚 combinations are used 

for sets of weighting coefficients. After calculating the DRI with each set of weighting 

coefficients, the set with the highest correlation coefficient is selected for the 

weighting coefficients of each sub-basin. 

 

3.6 Drought Damage Estimation for Weighting Coefficient 

The perspective of the hydrologic–economic modeling method was adopted to 

verify the DRI. Using a hydrological model based on the hydrologic–economic 

modeling method, Booker et al. (2005) and Ward et al. (2006) calculated the water 

supply in accordance with the water resource policy for management and allocation 

using. The output was used as input data for economic models in the water-resource-

based sector to calculate the cost of damage caused by droughts. The aforementioned 

studies determined whether the economic damage caused by drought can be reduced 
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by changing existing water policies. Thus, they aimed at changing water resource 

allocation but focused on selecting areas where drought management is a priority.  

Research focused on spatial priorities was conducted by KEI (2012) in the 

economic damage analysis of drought considering future climate change effects. 

Based on the RESCON model developed by the World Bank, the economic impact 

was analyzed by calculating the demand and runoff of the four major rivers in the 

Korean Peninsula. The study by KEI (2012) presented and compared the damage cost 

of water systems by future period. Because the target of the drought in the DRI is the 

amount of water demand, it can be estimated that the areas with less use compared 

with past demand have suffered from drought significantly. Therefore, the water 

deficit ratio (WDR) calculated using Equation (3.20) can be used as the verification 

data for the DRI. The WDR is the ratio of the water consumption to the water demand 

by region.  

WDR =
𝑊𝑎𝑡𝑒𝑟 𝐷𝑒𝑚𝑎𝑛𝑑 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 − 𝑊𝑎𝑡𝑒𝑟 𝑈𝑠𝑒 

𝑊𝑎𝑡𝑒𝑟 𝐷𝑒𝑚𝑎𝑛𝑑 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛
    (3.20) 
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Chapter 4. Application 

4.1 Study Area 

In this chapter, the conceptual framework of risk proposed in Chapter 3 was 

applied to calculate drought risk by sub-basin in the Korean Peninsula. Because 

drought is a natural disaster managed under the National Water Resources Plan, it is 

necessary to analyze spatially at the basin level. The watershed unit for water resource 

planning has undergone three changes, and the most recent revisions are summarized 

in Table 7. This water resources unit map, including the five largest basins, coastal 

areas, and Jeju Island, is classified into 21 basins, 117 sub-basins, and 850 standard 

basins for the development, planning, and management of water resources at the 

national level (Han River Flood Control Office (HRFCO), 2013). First, the five 

largest basins (Han River, Nakdong River, Geum River, Seomjin River, and Yeongsan 

River) are divided into 21 basins based on independent rivers originating from 

mountain ranges, environmental and climatic characteristics, and coastal topographic 

characteristics. These basins are classified into 117 sub-basins to utilize domestic 

water-related data, and the sub-basins are separated to 850 standard basins in 

consideration of the confluence of national and local rivers, major dams, and water 

stage stations (HRFCO, 2013). 
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Table 7 Basin information of Korean Peninsula 

Basin name 
Basin 

code 

Number of  

Sub-basins 

Number of  

standard basins 

Hangang 10 24 237 

Anseongcheon 11 1 18 

Han River West Sea 12 2 14 

Han River East Sea 13 3 21 

Nakdonggang 20 22 195 

Hyeongsangang 21 1 9 

Taehwagang 22 1 6 

Nighttime, swimming 23 2 9 

Nakdonggangdonghae 24 3 25 

Nakdonggangnamhae 25 4 28 

Geumgang 30 14 78 

Sapgyocheon 31 1 16 

Geumgang West Sea 32 3 19 

Mangyeong, Dongjin 33 3 24 

Seomjingang 40 9 46 

Seomjin Gangnam Sea 41 6 27 

Youngsangang 50 8 34 

Tamjingang 51 1 4 

Yeongsan Gangnam Sea 52 2 10 

Yeongsan River West Sea 53 3 14 

Jeju 60 4 16 

Total 21 117 850 
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In this study, to evaluate the drought risk by region, the sub-basin, which is the 

most widely used division criterion, was set as a spatial unit. In the relative 

comparison of space units, Jeju Island, which has strong regional characteristics, was 

excluded from the study area. Therefore, in this study, the DRI was calculated for 113 

sub-basins in 20 basins, excluding Jeju Island. Figure 6 shows the sub-basins covered 

in this study as a map, provided by the National Water Resources Management 

Comprehensive Information System (WAMIS). In addition, when calculating the DRI, 

data that existed in administrative units were converted into sub-basins using the area 

ratio of administrative districts for each sub-basin. 
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Figure 9 Water resources unit map of Korean Peninsula 
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4.2 DRI Components Selection 

For DRI calculation, components that can represent each indicator were selected 

based on previous studies (Birkmann et al., 2011; Kim and Chung, 2013; Carrao et 

al., 2016; Freire-Gonazalez et al., 2017; Choi, 2018; Vogt et al., 2018).  

Subjective opinions depending on the researcher are involved in the selection of 

components. To minimize this, components used in previous studies were referenced, 

and whether the components were consistent with the definition of each indicator and 

whether it was suitable for the regional scale were reviewed. Next, because the quality 

of the data is important to the index research, the components in which data with 

accurate sources provided by public institutions exist were selected. The 23 data used 

in the DRI calculation are classified by sector, and the names and sources of the data 

are summarized in Table 8. Except the hazard indicator component, all the data were 

preprocessed as described in Section 3.5. 

In the hazard indicator component, the cause of the drought was explained by 

selecting the SPI index on a 3- and 12-month time scale. In the process of calculating 

the SPI index, one step is estimating the parameters of the gamma distribution, as 

shown in Equations (3.3) and (3.4), and historical observation data from 1973 to 2017 

and precipitation data from future climate scenarios until 2100 are used.  

In the components for exposure indicator, the drought objects by sector were 

described using the amount of water demand. MLTMA (2011) estimated demand for 

municipal, agricultural, and industrial water in 2011, 2016, and 2020. Furthermore, 
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because of uncertainties in the future projection, such as population and economic 

growth rate, water demand estimation was divided into high-demand, standard-

demand, and low-demand scenarios 

To estimate municipal water demand, data such as the future population, planned 

water supply rate, target water flow rate, daily water supply per person, amount of 

demand for water supply areas (excluding industrial use), demand for water supply 

areas, and other groundwater use were used, and the integrated demand was obtained 

by adding the demand and usage data. Next, agricultural water demand was estimated 

using data such as cultivated area, number of livestock heads, and demand 

management savings, as well as demand for agricultural water, field water, and 

livestock water. Finally, after estimating the demand for the existing industrial 

complex and individual location companies and the demand for the planned industrial 

complex and individual location companies using data such as the status of the 

industrial park and industrial water reuse rate, the demand for industrial water was 

obtained by adding the two aforementioned types of demand. The aforementioned 

report also estimated the demand for river maintenance water. However, in the present 

study, only three types of water demand were considered. In addition, the demand for 

the standard scenario was used, and the year was selectively considered according to 

the required result.  

Next, capacity indicators were classified into municipal, agricultural, industrial, 

and common sectors that are subject to drought risk and were classified into coping 

capacities (CCs) and adaptive capacities (ACs) for each sub-basin. 



 

59 

CCs aim to maintain the system and its functions in the face of adverse conditions 

and mainly focus on short-term action (IPCC, 2012). In the event of a drought, the 

ability to prepare water resources for water shortages was considered as a short-term 

ability of society to reduce adverse effects. For instance, CCs explained how many 

facilities were secured to supply water using a multiregional water supply system, a 

local water supply system, and dam storage in common for municipal and industrial 

water. In the field of municipal water, energy water supply facilities were added to 

CC as an immediate capacity to use in case of drought, and groundwater use was 

added to the field of industrial water as an individual CC. CCs for agricultural water 

were selected as facilities that explain the functions of agricultural water with river 

improvement rate, agricultural reservoir, pumping station, weir, infiltration gallery, 

and well. 

In contrast, ACs involve changes and require reorganization processes for long-

term strategies. In the case of ACs, this means the ability to take measures or 

strategies for social change in the long term in preparation for the occurrence of 

drought, and it expresses potential capacities, such as education, research, 

environmental statue, adaptation strategies, and investment. Components that explain 

directly or indirectly were selected. First, for common ACs, the research and 

development cost was used to represent the amount of research and development 

investment for each region. Next, using the financial self-reliance ratio and gross 

regional domestic product, when there is economic margin, investment is made in 

long-term countermeasures, and it was selected as a component to explain ACs 
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indirectly. In addition, an attempt is made to explain the degree of government 

capability through the number of public employees. Per capita personal income is 

added as component of municipal water, and number of companies and wages are 

added as components of industrial water to represent the degree of interest in long-

term change as an economic factor. The basic life recipient is used to explain the state 

of the government through negative correlation in municipal water. Finally, the 

insurance coverage rate explains the attitude toward long-term action rather than 

immediate change in agricultural water. 
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Table 8 Components of DRI 

Indicator Component Source 

Hazard Metrology Standard Precipitation Index h KMA7 

Exposure 

Municipal Municipal water demand e1 MOLIT8 

Agricultural Agricultural water demand e2 MOLIT 

Industrial Industrial water demand e3 MOLIT 

Capacity 

Municipal 

Adaptive 

capacity 

Basic life recipient c5 KOSTAT9 

Per capita personal income c6 KOSTAT 

Coping 

capacity 

Emergency water supply facilities c10 KOSTAT 

Multiregional water supply system c11 KOSTAT 

Local water supply system c12 KOSTAT 

Dam storage c13 ME10 

Agricultural 

Adaptive 

capacity 
Agricultural insurance ratio c7 data.go.kr 

Coping 

capacity 

River improvement rate c14 WAMIS11 

Agriculture reservoir c15 WAMIS 

Pumping station c16 WAMIS 

Agriculture weir c17 WAMIS 

Agriculture well c18 WAMIS 

Industrial 

Adaptive 

capacity 

Number of companies c8 KOSTAT 

Wage c9 KOSTAT 

Coping 

capacity 

Multiregional water supply system c11 KOSTAT 

Local water supply system c12 KOSTAT 

Dam storage c13 ME 

Groundwater c19 WAMIS 

Common 
Adaptive 

capacity 

Financial self-reliance ratio c1 KOSTAT 

Number of government officials c2 KOSTAT 

Research and development costs c3 KOSTAT 

Gross regional domestic product c4 KOSTAT 

 

 

 

                                                      
7 Korea Meteorological Administration 
8 Ministry of Land, Infrastructure and Transport 
9 Statistics Korea 
10 Ministry of Environment 
11 Water Resources Management Information System 
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The socioeconomic data used in the calculation of the capacity indicator were 

processed through outlier detection, normalization, and rescaling with the beta CDF. 

Table 9 summarizes the number of outliers and the beta distribution parameter 

corresponding to the results of preprocessing data from c1 to c19. All values 

corresponding to outliers in the data were adjusted to the maximum value among the 

values that were not detected as outliers. For example, c1 has two outliers, so two 

outlier values were adjusted by setting the upper third value as the upper limit. Next, 

Figure 7 shows the data distribution after rescaling with the beta CDF. Certain 

components, such as c6, c8, and c11, are evenly spread after applying beta distribution 

rescaling, as shown in Figure 7(b). 
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Table 9 Data preprocessing of components 

Component 
Number of 

outliers 

Beta distribution 

parameter 

shape1 shape2 

Financial self-reliance ratio c1 2 0.28 1.74 

Number of government 

officials 
c2 2 0.43 1.98 

Research and development 

costs 
c3 14 0.83 0.76 

Gross regional domestic 

product 
c4 6 0.94 2.63 

Basic life recipient c5 8 1.95 3.01 

Per capita personal income c6 3 2.75 0.42 

Agricultural insurance ratio c7 0 0.75 0.72 

Number of companies c8 0 0.62 3.91 

Wage c9 0 2.10 0.27 

Emergency water supply 

facilities 
c10 14 1.02 0.08 

Multiregional water supply 

system 
c11 0 2.34 0.32 

Local water supply system c12 0 2.83 0.47 

Dam storage c13 0 0.96 1.57 

River improvement rate c14 0 5.10 2.17 

Agriculture reservoir c15 0 0.44 1.95 

Pumping station c16 0 0.70 2.33 

Agriculture weir c17 0 0.27 2.40 

Agriculture well c18 0 0.54 2.69 

Groundwater c19 1 0.28 1.99 
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   (a) Removing outliers without the beta CDF 

 

   (b) Rescaling with the beta CDF 

Figure 10 Boxplots of capacity components 

 

 

4.3 Estimation of Weighting Coefficient 

c1  c2  c3  c4  c5  c6  c7  c8  c9  c10  c11  c12  c13  c14  c15  c16  c17  c18  c19 

c1  c2  c3  c4  c5  c6  c7  c8  c9  c10  c11  c12  c13  c14  c15  c16  c17  c18  c19 
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The following procedure was employed to estimate the weighting coefficient used 

for each component of the capacity indicator in the DRI. After calculating the DRI 

values for all possible combinations of weighting coefficient in increments of 0.1 

from 0 to 1, the combination that computed the highest correlation coefficients 

between the DRI and WDR was finally selected. These estimations of the weighting 

coefficient were consistently used to calculate the DRI of the reference and future 

periods. As an exception, when there was a sub-basin where the WDR value was 0 

because the amount of use and demand of water did not exist, the same value of the 

weighting coefficient was applied for every component. 

Among the data for the DRI, there were many cases in which the period for which 

the data were constructed was relatively short or existed as a constant value for a 

specific year rather than in the form of time series. Taking this into account, the data 

period for the weighting coefficient was based on the period from 2010 to 2017. Table 

10 shows the data period used for the weighting coefficient. As explained in the 

remarks column, between 2010 and 2017, the weighting coefficient was selected 

differently depending on the situation of the data. 

The DRI and WDR correlation coefficient values are summarized in Table 11 for 

each of the 21 basins, and the national average was 0.489. As data accumulate in the 

future, the weighting factor should be updated continuously. 
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Table 10 Data period for the weighting estimation 

Category Available data year 

Data year used  

for weighting 

coefficient 

Remark 

Hazard 1973–2017 2010–2017 

Estimation of the gamma distribution parameter of the SPI 

calculation uses precipitation data from 1973 to 2017, and 

calculation for weighting coefficient uses data from 2010 to 

2017. 

Exposure 2011, 2016, 2020 2011, 2016 

(Constant) The input data for 2010–2015 are the values for 

2011, and the input data for 2016–2017 are the values for 

2016. 

Capacity By data 
2010–2017, 

2016 

Different by, for example, the data of financial independence 

and the number of public officials use the type of time series, 

and the data of water resource facilities use the type of 

constants. 

WDR 

Water usage: by data  

Water demand: 2011, 

2016, 2020 

2010–2017, 

2011, 2016 

Use the type of time series for water usage and the type of 

constants for water demand (the same way as exposure). 
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Table 11 Correlation coefficients by basin on average 

Basin name Basin code Correlation coefficient 

Hangang 10 0.320 

Anseongcheon 11 0.523 

Han River West Sea 12 0.423 

Han River East Sea 13 0.453 

Nakdonggang 20 0.645 

Hyeongsangang 21 0.307 

Taehwagang 22 0.313 

Nighttime, swimming 23 0.626 

Nakdonggangdonghae 24 0.637 

Nakdonggangnamhae 25 0.479 

Geumgang 30 0.499 

Sapgyocheon 31 0.477 

Geumgang West Sea 32 0.535 

Mangyeong, Dongjin 33 0.449 

Seomjingang 40 0.490 

Seomjin Gangnam Sea 41 0.573 

Youngsangang 50 0.543 

Tamjingang 51 0.470 

Yeongsan Gangnam Sea 52 0.489 

Yeongsan River West Sea 53 0.537 

Total  0.489 
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4.4 Results 

In this study, the DRI was calculated for reference and future periods. Here, the 

reference DRI refers to the DRI period obtained by inputting data for the past 30 years 

(1988–2017) into the hazard indicator while maintaining the weighting coefficient 

selected in Section 4.3. By comparing this with the DRI of the future period, the 

relative change by sub-basin is projected. 

The reference DRI was set to an average of 30 years, and the future DRI was set 

to 30 years, including the 10 years before and after the 2030s, 2060s, and 2090s. For 

the exposure and capacity indicators, data from the year shown in Table 12 were used 

to predict how much drought risk due to future climate change will change if the 

socio-economic status remains the same as at that time. 
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Table 12 Data period for the reference DRI and future DRI 

Category Reference Future Remark 

Hazard 

1988–2017 

(Observation 

data) 

2019–2099 

(Climate Change 

Scenario) 

SPI parameters are estimated 

using precipitation data for 

the entire period from the 

past to the future. 

Exposure 2016 2020 - 

Capacity 2016 2016 - 
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4.4.1 Reference DRI 

With the reference data in Table 12, the hazard, exposure, and capacity indicators are 

calculated, as shown in Figures 11(a)–(c). The deviation hazard indicator of the three 

indicators was the lowest, and the exposure indicator was the largest. 

The drought hazard indicator was high in the Nakdong River and low in the 

Seomjin River basins. In terms of drought exposure indicators, Gyeongancheon, 

Paldang Dam, and Sihwa Lake recorded the highest values in the Han River basin 

near the Seoul metropolitan area. The lowest values were also recorded in the Han 

River basin, specifically, in the Geumgangsan Dam and Peace Dam. Finally, the 

drought capability index was high in the Han River area, where infrastructure is 

located in the vicinity of the Seoul metropolitan area and the Nakdong River area in 

Gyeongsangbuk-Do.  

The DRI, given in Figure 7(d), was calculated for three indicators. As a result, the 

highest DRIs were in Yeongdeokosib-cheon and Sinan-gun, where the hazard 

indicator is relatively high, while the capacity indicator is low. The metropolitan area 

had a particularly large exposure indicator, and a high DRI value was calculated in 

the region where the capacity indicator was low. Nevertheless, Hangangseoul had a 

low DRI value because of a high capacity indicator. 
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 Figure 11 Spatial distribution in drought hazard, exposure, capacity, and DRI for the reference period 

  
  

    

(a) Drought hazard (b) Drought exposure (c) Drought capacity (d) DRI 
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Table 13 Sub-basin with highest and lowest DRIs for the reference period 

Category 
Rank 

(out of 113) 
DRI 

Sub-basin 

[sub-basin code] 

Highest 

1 0.666 
Seomjingokseong 

[4006] 

2 0.634 
Watancheon 

[5302] 

3 0.619 
Gumibo 

[2009] 

Lowest 

113 0.000 
Gomitancheon 

[1020] 

112 0.070 
Geumgangsan Dam 

[1008] 

111 0.117 
Suyeong-gang 

[2302] 
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4.4.2 Future DRI 

Among the future data in Table 12, rainfall data from future climate scenarios 

were used to calculate the hazard indicator. To determine the future drought risk, the 

HadGEM3-RA model, a regional climate model produced at the national level by the 

National Institute of Meteorology, was employed in this study. As for the emission 

scenarios used, the RC4.5 and RCP8.5 emission scenarios, which are the most widely 

used among Representative Concentration Pathways (RCP) suggested in AR5, were 

selected. RCP4.5 is a future scenario in which greenhouse reduction policies are 

effectively reflected, and RCP8.5 is a future scenario in which greenhouse gases are 

emitted without reduction, as per the current trend. 

The results of the future DRI using the HadGEM3-RA model are shown in Figure 

12 as spatial distributions under RCP4.5 and RCP8.5. Future DRI averages had the 

highest values in the 2030s of 0.427 and 0.418, respectively, from RCP4.5 and 

RCP8.5. After the 2030s, RCP4.5 had the lowest DRI, 0.402, in the 2060s, and 

RCP8.5 showed the lowest DRI, 0.396, in the 2090s (Figure 13). In Table 8, the 

maximum values are projected to be higher than the present in the 2030s and 2090s 

under RCP 4.5, and the minimum values are higher except in the 2090s under RCP8.5. 

In contrast to the IPCC's expectation that the drought risk by future era will gradually 

increase over the 21st century, this study predicts that the future DRI in 2030s will be 

the highest in the average, maximum, and minimum values. 
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Figure 12 Future DRI with HadGEM3-RA 
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Figure 13 DRI over the future 30-year periods with HadGEM3-RA 

 

 

Table 14 Statistics of the future DRI with HadGEM3-RA 

Scenario Statistics 
Reference 

period 
2030s 2060s 2090s 

RCP4.5 

Mean 0.409 0.427 0.402 0.417 

Max 0.467 0.484 0.445 0.474 

Min 0.330 0.361 0.338 0.346 

RCP8.5 

Mean 0.409 0.418 0.409 0.396 

Max 0.467 0.465 0.463 0.453 

Min 0.330 0.376 0.357 0.294 
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For the entire future period, the Han river has the largest number of the sub-

basins, where the future DRI increased compared with the reference DRI during 

the future period, 94 and 67, respectively, under RCP4.5 and RCP8.5 in the 2030s 

(Table 15). The rate of change of the future DRI compared with the reference 

period is analyzed to identify the sub-basin where the risk increases the most 

compared with the present. Geumgangsan Dam showed the highest rate at +11.83% 

and +7.54%, respectively, under RCP4.5 and RCP8.5. Next, the sub-basin with 

the largest increase in the DRI ranking under RCP4.5 was Nonsancheon; this 

region was 45th in the reference period but rose 12 places to 33rd in the 2030s. 

In RCP8.5, Nonsancheon and Yeosu rose from 20th to 13th and 23rd to 12th, 

respectively. The sub-basin that exhibited the greatest descrease in ranking was 

Bunambangjojae, which was ranked 14th in the reference period but fell to 27th 

in the 2060s for RCP4.5. 
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Table 15 Number of sub-basins where the future DRI increased over the 

reference DRI with HadGEM3-RA 

Basin 

(number of sub-basins) 

Scenarios & Periods 

RCP4.5 RCP8.5 

2030s 2060s 2090s 2030s 2060s 2090s 

Han River (30) 26 0 15 24 4 1 

Nakdong River (33) 21 2 19 14 3 0 

Geum River (21) 20 2 13 16 4 1 

Seomjin River (15) 15 0 10 10 7 0 

Yeongsan River (14) 12 1 7 3 2 0 

All (113) 94 5 64 67 20 2 
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As shown in Figure 14, the precipitation and DRI in the future period showed 

the same trend. The time series of annual precipitation and SPI (3 and 12 months) 

is shown in Figure 15. Years below zero classified as drought based on SPI3 and 

SPI12 were the most common in the 2030s, with 12 and 15 occurrences in RCP4.5 

and 13 and 12 occurrences in RCP8.5, respectively. In particular, in RCP4.5, it 

was confirmed that moderate drought, with SPI12 of less than −1, occurring three 

years consecutively. 
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(a) RCP4.5                        (b)RCP8.5 

Figure 14 Annual precipitation and DRI with HadGEM3-RA: national 

average 
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Figure 15 Time series of annual precipitation, SPI3, and SPI12 with HadGEM3-RA 

(a) RCP4.5 

 

 

 

 

(a) RCP4.5 

 

 

 

 

(b) RCP8.5 
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4.4.3 Sensitivity Analysis of Capacity Indicator 

Finally, to maintain the future drought risk at the same level as that in the 

reference period, the extent to which the capacity indicator should increase or 

decrease was examined. Figure 16 illustrates the rate of change in the capacity 

indicator in the five largest basins. Figure 13(a) is a graph corresponding to RCP 4.5. 

In the 2030s, all five largest basins must increase their capacity indicators to maintain 

the same drought risk as the reference period in the future. In particular, the capacity 

of the Geum River basin must be strengthened most strongly. However, in the 2060s, 

drought risk decreased even if all basins had a lower response capacity than that at 

present, and drought risk was also confirmed to decrease in the 2090s except for the 

Seomjin River. As shown in Figure 13(b), in RCP 8.5, the drought risk would remain 

the same as the present risk because of an increase in capacity in the four largest 

basins excluding Youngsan River in 2030s. However, in the 2060s and 2090s, the 

current level of drought risk can be maintained even if the capacity is not strengthened.  
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(a) RCP4.5 

 

 

 

 

(b) RCP8.5 

Figure 16 Rate of change in capacity indicator to maintain the 

reference DRI 
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4.4.4 Uncertainty Analysis with Additional GCMs 

To account for future drought hazard on the Korean Peninsula, the precipitation 

data from global circulation models (GCMs) are used to describe the climate change. 

Seo and Kim (2018) and Seo et al. (2019) selected five representative models that 

best reproduce the uncertainty of all 27 models for low flow among the Coupled 

Model Intercomparison Project Phase 5 (CMIP5), as shown in Table 16. Therefore, 

because the variability of future climate change was efficiently reflected, uncertainty 

was expressed using the corresponding GCMs in this study. 
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Table 16 GCMs used for uncertainty analysis (Seo and Kim, 2018; Seo at el., 

2019) 

GCMs Institution 

BCC-CMS1-1 
Beijing Climate Center, 

China Meteorological Administration 

CMCC-CMS Centro Euro-Mediterraneo per I Cambiamenti Climatici 

HadGEM2-ES Met Office Hadley Centre 

IPSL-CM5A-MR Institut Pierre-Simon Laplace 

MPI-ESM-LR Max Planck Institute for Meteorology (MPI-M) 
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The future DRI results calculated with five representative GCMs are shown in 

Figure 13. The ensemble average of future DRI using representative GCMs was 

higher than the present in the 2030s under RCP4.5 and in the 2030s and 2060s under 

RCP8.5. The lowest value was calculated for the 2090s. The uncertainty expressed as 

a range was the largest, at 0.041, in the 2060s for RCP4.5, and it was the smallest, at 

0.005, in the 2030s for RCP8.5. The difference in the future DRI between the 

ensemble average and HadGEM3-RA was 0.0138 in the 2090s and 0.0079 the 2030s 

for RCP4.5 and RCP8.5, respectively, resulting in a higher drought risk predicted by 

the HadGEM3-RA model than the ensemble average. The ensemble average 

calculated, including the HadGEM3-RA, increased 36.6% (0.013 to 0.018) in the 

2090s for RCP4.5 and 92.8% (0.005 to 0.01) in the 2030s for RCP8.5 compared with 

the existing uncertainty range. 

Table 17 summarizes the rankings of representative GCMs and future DRIs of 

HadGEM3-RA in descending order. HadGEM3-RA was the model with the most 

variability among the six models, and MPI-ESM-LR was the model with the least 

variability. This shows that when a single GCM model is used, the characteristics of 

the corresponding GCM can influence the future projection results excessively. 
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(a) RCP4.5 

 

 

 

 

(b) RCP8.5 

Figure 17 DRI over the future 30-year periods with HadGEM3-RA and 

representative GCM ensemble average: national average 
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Table 17 GCM rank of future DRI 

GCMs 

Scenarios & Periods 

RCP4.5 RCP8.5 

2030s 2060s 2090s 2030s 2060s 2090s 

HadGEM3-RA 2 5 1 1 3 4 

BCC-CMS1-1 6 3 5 2 2 1 

CMCC-CMS 1 1 4 5 1 3 

HadGEM2-ES 4 2 3 3 5 5 

IPSL-CM5A-MR 3 4 2 4 4 2 

MPI-ESM-LR 5 6 6 6 6 6 
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Chapter 5. Conclusions 

5.1 Summary and Conclusions 

The purpose of this study was to evaluate the degree of risk arising from future 

droughts through a newly proposed drought risk conceptual framework to raise public 

awareness of drought and to provide information that is easily prepared and to make 

decisions about preparedness policies of state and local governments.  

The existing drought risk conceptual framework is mainly based on studies by 

international organizations, but the study focus was on a global scale, which was 

reduced to a regional scale and needed to be modified. Moreover, during this process, 

components that reflect regional characteristics had to be arranged properly. In 

addition, in many cases, the verification step was omitted, so there was regret. 

Accordingly, the existing risk conceptual framework was improved to fit the regional 

scale, and a DRI that was easy to compare by region was developed to predict the 

future drought risk on the Korean Peninsula. 

In this study, the conceptual framework was developed to be easy for users to 

understand the concept, improved the sub-concepts to be suitable for regional 

comparison, and selected components for each indicator  to explain nationwide 

differences in the Korean Peninsula. Drought risk refers to the possibility of potential 

damage resulting from a disaster caused by drought. The drought risk conceptual 
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framework is composed of hazard, exposure, and capacity. For the proxy explaining 

the drought hazard indicator, SPI3 and SPI12 were used for the drought index. For 

the drought exposure indicator, the amount of demand by water was selected. For the 

drought capacity indicator, among proxy variables (i.e., economic status of society, 

water infrastructure, etc.), short-term capacity was selected as a coping capacity, and 

long-term capacity was classified as adaptive capacity.  

The data used in the components were detected for outliers, standardized to a 

range from 0 to 1, and rescaled using beta CDF to distribute the data evenly. In this 

study, a combination of the weighting coefficient for the capacity indicator from 0 to 

1 in 0.1 units was generated. The drought risk was calculated for each combination, 

and the combination with the highest correlation coefficient with the drought damage 

was selected. After the DRI was calculated for all combinations, the weighting 

coefficient for each sub-basin was selected as the combination with the highest 

correlation coefficient between the DRI and the drought damage estimate. In the 

verification period from 2010 to 2017, the correlation coefficient was 0.489, 

confirming that the two variables had an appropriate positive relationship; therefore, 

the DRI properly explains drought damage. 

The DRI was calculated over the past 30 years (1988–2017) to be used as the 

reference DRI and for future periods (2020–2100) to be used as the future DRIs. As 

a result, the Seomjin River and Yeongsan River have the highest reference DRI with 

high values of hazard and exposure indicators, while the Han River has the lowest 

reference DRI because of the high value of its capacity indicator. In the Yeongsan 
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River and Seomjin River, precipitation is insufficient, while the amount of water 

demand is high due to agriculture and tourism industries. However, compared with 

other basins, water infrastructure and socio-economic factors are insufficient. As a 

result, the DRI was measured higher. Since the Youngsan River and Seomjin River 

basins continue to maintain high DRI in the future, it is necessary to suggest solutions 

through structural measures. As drought management, water resource facilities 

expansion is essential to reduce drought risk in the two basins. In particular, these 

basins are difficult to intake and supply water sources due to their characteristics as 

islands. Therefore, a plan to supply water by establishing separate water intake 

stations, such as the desalination, rather than multi-reservoir operation or dam conduit 

construction project, can be proposed. 

 Next, the future DRI was applied with HadGEM3-RA under RCP4.5 and 

RCP8.5, and precipitation data were used to calculate the hazard indicator. The 2030s 

was the period with the highest future DRI and with the largest number of sub-basins 

where the DRI had increased compared with that in the reference period. Contrary to 

the report of the IPCC (2014) finding that drought risks on the Korean Peninsula and 

in the East Asian region will gradually increase during the 21st century, the highest 

drought risks occurred in the 2030s and the lowest in the 2090s according to the future 

projection of the DRI. It was confirmed that the trend of the HadGEM3-RA projecting 

low precipitation in the early 21st century was due to the DRI results. Based on the 

DRI results, the rate of change in the capacity indicator was calculated to determine 

the extent to which the predicted future DRI is maintained at the same level as the 
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reference DRI. In particular, the Geum River basin should be prepared the most for 

droughts in the 2030s for RCP 4.5 and RCP8.5, and the response capacity of the 

Seomjin River basin should be strengthened in the 2030s and 2090s for RCP 4.5. 

In addition, the uncertainty in the future DRI was analyzed using five 

representative GCMs. HadGEM3-RA is a representative climate change scenario 

provided by the Korean government; however, the range of the uncertainty is greatly 

increased in the future DRI. Therefore, various scenarios should be considered in the 

future projection of climate change because the single scenario is not sufficient to 

explain uncertainty and can yield biased results.  

 

5.2 Future Study 

In this study, the weighting coefficient for each subbasin was calculated in the 

eight-year period from 2010 to 2017, in which the data used were sufficient. However, 

it is expected that the research results will be superior to the present ones if reliable 

data continue to accumulate and the weighting coefficients are updated. Furthermore, 

the results will be elaborately calculated if the weighting coefficient is generated at a 

smaller decimal point than 0.1. 

The most important part of this research is the relationship between the DRI and 

indicator. In previous studies, if the relationship between risk and indicator is positive, 

the calculated index value is used as it is; if negative, the value is subtracted from the 

maximum value of the indicator, or the reciprocal is used. In this study, as mentioned 
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in Section 3.5.2, the capacity indicator is applied as (1 − C) in the DRI equation owing 

to the negative relation to drought risk, and the final result, DRI, is computed as 

geometric average of three indicators. However, the impact of the indicator on the 

risk may vary depending on the disaster. For example, an earthquake or tsunami is a 

disaster in which the initial response capacity is extremely significant, and, when the 

risk is small, the impact of capacity is large; however, when the risk is large, the 

impact of capacity may be small. If the relationship between drought risk and capacity 

is analyzed in depth and applied to the risk equation, it is thought that the credibility 

of the DRI can be further improved. 

Finally, the purpose of this study was to project the future drought risk resulting 

from climate change when the current socio-economic status is maintained. Thus, the 

capacity indicator of the future DRI was calculated with the same data as the reference 

DRI. However, if the capacity indicator is calculated considering future social 

changes or various policies, the results can be used as one of the evaluation methods 

for policy-specific decision making. 
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