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ABSTRACT 

 

This study proposes general development frameworks for machine-

learning (ML)-based operational intelligence to assist existing bridge 

operational systems of long-span bridges. The frameworks address two wind-

induced problems currently occurring on bridges worldwide: 1) vortex-

induced vibration (VIV), and 2) accidents of vehicles overturning during 

typhoons.  

The first part of the study introduces a developmental framework for data-

driven automated VIV classification of long-span bridges. VIV is one of the 

most critical problems in the serviceability assessment of long-span bridges. 

This part proposes a structural health monitoring (SHM) data-driven 

framework for automated VIV classification by using a fully connected layer 

(FCL). VIV characteristics are analyzed using massive amounts of 

monitoring data of the investigated bridge, and then the appropriate features 

for developing the FCL are determined based on well-established wind 

engineering knowledge. A novel soft labeling method is suggested with pre-

defined accuracy criteria for comprehensive parametric studies to build a 

customized classification model for each bridge. 

The second part presents a developmental framework for data-driven short-

term forecasting of typhoon-induced strong winds. Wind-induced accidents 

have become a major issue related to potential safety problems for vehicles 
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during typhoons. The proposed monitoring data-driven framework for short-

term forecasting of typhoon-induced strong winds adopts an ML approach 

based on long short-term memory. The training and test data employed 17 

years of monitoring data collected from both an SHM system and the 

Regional Specialized Meteorological Center (RSMC) in Japan. A novel grid 

search-based training optimization process was adopted for building a 

customized prediction model for each bridge. The prediction models were 

developed to forecast strong winds six hours in advance, which is sufficient 

time to prepare for the arrival of an anticipated wind disaster.  

For a numerical application, the developed frameworks were applied to the 

Gwangan and Cheonsa Bridges, both located in South Korea, to assess their 

field applicabilities. The validation results provided valuable insight into how 

potential wind hazards could be effectively monitored using an ML-based 

approach to ensure the operational integrity of long-span bridges. 

 

Keywords: Operational intelligence, Long-span bridge, Deep learning, 

Structural health monitoring, 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Research background 

Long-span bridges have always held a fascination for structural engineers 

because of the benefits of increased horizontal navigation clearances and 

reduced risks of ship collisions with piers. Nine of the ten longest bridge spans 

in the world have been constructed in the last 20 years (Fairclough et al., 

2018). As the numbers of this type of bridge have increased, unexpected 

wind-induced problems have continued to occur for decades. This study 

investigated two major types of these problems: 1) vortex-induced vibrations 

(VIVs), and 2) strong wind-induced accidents of vehicles overturning. 

 

(a)    (b)  

Figure 1-1. Two major types of wind-induced problems of long-span bridges: (a) 

VIVs at the 2nd Jindo bridge (2018, NAVER), (b) Accident involving a vehicle 

overturning on the Gwangan Bridge (2012, NAVER). 
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First, VIV phenomena on bridges in operation have been regularly reported 

globally. This is the case despite the fact that evaluations of the aerodynamic 

characteristics of bridge girders have been conducted and corresponding 

countermeasures have been greatly improved. For example, as shown in 

Figure 1-1(a), the 2nd Jindo bridge in South Korea experienced VIVs in 2011 

due to a low damping ratio, a factor that accounted for only 70% of the design 

value (Seo et al., 2013). Additional wind tunnel experiments revealed that a 

complicated fluid-structure interaction induced by the unique configuration 

of the parallel bridge of this structure caused amplification of the VIV 

amplitude (Kim et al., 2017; Laima et al., 2013). Another example of 

abnormal VIV was reported by a bridge engineer who observed an abrupt 

VIV with significant vibration on the Yi Sun-Shin Bridge in South Korea 

(Hwang et al., 2020). This unusual vibration phenomenon was caused by the 

temporary cover over the guardrail, which changed the aerodynamic 

characteristics of the bridge for several hours. These phenomena indicate the 

difficulty of perfect VIV prediction based on wind tunnel tests alone and the 

possibility of abnormal vibration induced by various unexpected factors. 

Therefore, regular monitoring is required to achieve accurate condition 

assessment and sufficient serviceability during the lifetime of long-span 

bridges.  

Second, vehicles crossing long-span bridges tend to be exposed to strong 

side winds. A typhoon, which usually affects coastal areas through powerful 

winds, has been the main reason for vehicles overturning in South Korea, as 
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the western North Pacific is the area most frequently hit by typhoons, six of 

ten of which are annually classified as Category 4 or 5 (by the Saffir-Simpson 

hurricane scale) (Lin et al., 2005). For example, wind-induced vehicle-

overturning accidents have been regularly reported for the past decades 

(Baker & Reynolds, 1992; Kim & Kim, 2019; Zhu et al., 2012). Figure 1-1(b) 

shows two successive vehicle-overturning accidents on the Gwangan Bridge 

in South Korea in 2012 (Kim et al., 2020). In addition, another overturning 

accident occurred on a cable-stayed bridge in 2018 when a typhoon with a 

maximum instantaneous wind speed of over 45 m/s was passing through 

Japan (Al Jazeera English, 2018). 

Regarding these issues, a traffic-control approach has often been adopted 

for most bridge operating systems. For example, bridge operators have 

secured driver safety by limiting vehicle speeds or restricting traffic when 

measured wind speeds on bridges exceeded certain thresholds (also known as 

critical wind speeds) (Kim et al., 2016). However, a limitation for preemptive 

action still exists, as at least several hours are required to implement traffic 

control measures after strong winds are detected. To perform these procedures 

effectively, accurate forecasting of typhoon-induced strong winds is essential.  
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1.2 Literature review 

1.2.1 Vortex-induced vibration classification 

The characteristics of VIVs have been successively realized and predicted 

in wind tunnel tests by using scaled girder section models. These are used 

because vortex shedding frequency is generally dominated by the shape of 

the structure (Bearman, 1984; Sarpkaya, 2004; Williamson & Govardhan, 

2004). In addition, as the computational performance has constantly 

improved, computational fluid dynamics has become a practical tool to 

evaluate the aerodynamic characteristics of bridges (Gaarder, 2019). These 

methodologies are widely adopted in many design stages to develop less 

vulnerable girder shapes or VIV mitigation measures. Despite the 

effectiveness of wind tunnel tests, discrepancies between experimental results 

and the actual responses of a prototype bridge are inevitable. For example, a 

wind tunnel test is typically conducted using a two-dimensional sectional 

model subjected to stationary and uniform wind flows. However, 

experimental conditions are generally considerably more ideal than those of 

actual wind environments at bridge sites. Accordingly, strong turbulence and 

three-dimensional aerodynamic effects should be considered. In addition, 

unexpected structural defects in the design process can amplify 

experimentally obtained VIV responses. Kim et al. (2017) revealed that a 



 

5 

lower damping ratio than the design value could cause an excessive VIV 

response not observed in wind tunnel tests. 

In this regard, most cable-supported bridges operate a structural health 

monitoring (SHM) system that can monitor static and dynamic responses in 

real-time. Nevertheless, the VIVs that have occurred in South Korea were 

first reported through citizen reports rather than an SHM system. The main 

reason the SHM has failed to respond proactively is that it is a classical SHM 

that generally sound alarms concerning structural conditions, even when 

monitoring data exceeds a pre-defined threshold (Ko & Ni, 2005). In other 

words, this approach is suitable for a preemptive response to extreme 

conditions such as typhoons and earthquakes but is not feasible for 

determining the occurrence of VIVs. For example, even when the 

instantaneous wind velocity reaches the critical wind velocity range, when 

the duration of the corresponding wind speed is not sufficient, a VIV would 

not be fully developed (Williamson & Govardhan, 2004). In addition, the 

acceleration amplitude of VIV is more often below the level of normal vehicle 

vibration, unlike a buffeting or flutter response. 

Several studies have attempted to overcome these limitations of SHM 

systems by developing automated VIV classification algorithms from field 

monitoring data based on specific features of VIV. Huang et al. (2019) 

developed an automatic identification method of VIV using the random 

decrement technique (RDT). In their study, VIVs were classified according to 

a threshold for the coefficient of variation of peak values of processed data. 
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They assumed the ideal load conditions for buffeting and traffic loads 

involved a zero-mean Gaussian white-noise process. Li et al. (2017) proposed 

an unsupervised ML-based classification technique for VIV. The amplitude 

of vibration and the ratio between peaks of power spectral density (PSD) were 

used for feature extraction. This method was shown to be robust and 

practicable because it utilized the characteristics of VIVs, namely, single-

mode sinusoidal vibrations with a large amplitude. 

1.2.2 Short-term wind speed forecasting 

Several conventional methods have been proposed over the last decades for 

predicting wind speed, and these can be classified into three types. The first 

type includes physical-based methods that utilize dynamic atmospheric 

models based on hydrodynamic and thermodynamic equations with specific 

initial and boundary conditions (Al-Deen et al., 2006; Lei et al., 2009). The 

second type includes statistical-based methods, including autoregressive, 

moving average, autoregressive moving average, and autoregressive 

integrated moving average models (Filik, 2016; Guoyang et al., 2005). The 

third type includes spatial correlation-based methods that uses the spatial 

relationships between measurements from different sites (Alexiadis et al., 

1998; Damousis et al., 2004; Focken et al., 2002). All the aforementioned 

researchers have developed prediction models based on various analytical 

backgrounds.   
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Recently, with advances in information technology and computer science, 

studies on monitoring data-based forecasting models for the safe operations 

of civil infrastructures have been conducted (Bao et al., 2019). These models 

include: 1) traffic flow prediction (Lv, Duan et al., 2014), 2) building energy 

use prediction (Wang et al., 2018), and 3) wind power forecasting (Chang et 

al., 2015; Ding et al., 2015; Kong et al., 2017). In addition, research on short‐

term wind-speed prediction has utilized monitoring-data-based ML 

methodologies. Li and Shi (2010) conducted a comprehensive comparative 

study on different ML algorithms, including the adaptive linear element, 

backpropagation, and radial basis function, and determined that training data 

sources must be considered when developing prediction models. Zhang et al. 

(2013) and Abdalla et al. (2017) introduced hybrid artificial intelligence 

algorithms to improve forecasting accuracy. Wei et al. (2014, 2015, 2018) 

pioneered the use of ML frameworks for predicting typhoon-induced wind 

speeds. They showed that ML-based models could achieve more accurate 

results than the conventional regression and parametric wind representation 

methods such as the modified Rankine profile as well as the Holland and 

DeMaria wind profiles. For example, Wei (2014) combined an adaptive 

network-based fuzzy inference system with multilayer perceptron (MLP) 

neural networks (NNs) for use as a forecasting model and discussed the 

effects of typhoon tracks and intensity for a central mountain range 

topography. Wei (2015) introduced four kernel-based support vector 

machines for regression models that consisted of a radial basis function and 
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linear, polynomial, and Pearson VII universal kernels. Wei et al. (2018) 

developed a backpropagation NN model to predict highly complex nonlinear 

wind speeds and investigated the accuracy of wind-speed predictions at 

specific locations and various durations in western Taiwan. 

1.3 Research objective and scope 

This thesis proposes general developmental frameworks for ML-based 

operational intelligence of long-span bridges to improve bridge operational 

strategies. This research work is organized into five chapters. 

Chapter 1 presents the background of this study and reviews corresponding 

studies (presented in chronological order) that describe preliminary 

methodologies for handling the two types of wind-induced problems. 

Literature surveys of vortex-induced vibration classification and short-term 

wind-speed forecasting are included in this chapter, and meaningful lessons 

from the investigations are discussed. 

Chapters 2 and 3 describe the development of two ML-based models for 

automatic VIV classification and strong wind-speed prediction, respectively. 

These chapters examine three main areas: 1) knowledge-based feature 

selection, which considers the optimal combinations of influential features, 2) 

selection of artificial NN (ANN) models to reflect the complex relationship 

between environmental or vibrational characteristics and the two wind-
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induced problems, and 3) performance of parametric studies on training 

optimization to develop a customized model for each bridge. 

Chapter 4 describes the two individual developmental frameworks for 

dealing with the two wind-induced problems and how they are then applied 

to two long-span bridges to assess their field applicability. Based on the 

application results, the robustness and feasibility of the proposed frameworks 

are carefully assessed. 

The final Chapter 5 provides conclusions to this research. The importance 

and contribution of the research are described along with prospects for future 

research. 
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CHAPTER 2 

DATA-DRIVEN AUTOMATED VORTEX-
INDUCED VIBRATION CLASSIFICATION 

2.1 Knowledge-based feature selection 

2.1.1 Vibration and wind characteristics 

The Cheonsa Way Bridge is a long-span bridge linking two islands with the 

mainland of South Korea. It consists of one cable-stayed bridge, one 

suspension bridge, and multiple connection bridges. This study investigated 

a section of the cable-stayed bridge that includes the main span of 510 m and 

two side spans of 197 and 187 m, respectively. In this section of the bridge, 

the steel-box girder has four lanes of 18-m width supported by 108 stay cables. 

Two diamond-shaped concrete towers are of different heights of 195 and 135 

m, respectively. The layout, dimensions, and cross-sectional shapes are shown 

in Figure 2-1.   
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(a)  

(b)  

Figure 2-1. General layout (unit: m): (a) side view, (b) cross section. 

 

A long-term monitoring dataset, collected from January to September of 

2019, was used. The entire dataset was divided into 10-min segments to 

evaluate the vibrational and wind characteristics. Figure 2-2(a) displays the 

10-min averaged wind velocity and direction collected by two anemometers. 

As can be seen, two strong typhoons with mean wind velocities of 47 and 37 

m/s passed through the bridge in September 2019. Figure 2-2(b) shows the 

wind rose diagram of the 10-min averaged wind data collected by an 

ultrasonic anemometer, where the bold dashed line indicates the alignment of 

the bridge at the site. The main wind direction is shown to be mostly 

perpendicular to the bridge axis.   

 

AphaeAmtae

Accelerometer Anemometer GNSS Thermometer
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(a)  

(b)  

Figure 2-2. (a) 10-min averaged wind velocity, (b) wind rose diagram. 

 

The bridge opened to the public in April 2019, and an unexpected VIV 

occurring for 2 h was reported in July 2019. As Figure 2-3 shows, the wind 

velocity ranged from 6.43 to 9.95 𝑚𝑚/𝑠𝑠 , and the maximum acceleration 

exceeded the serviceability limitation of 0.5 𝑚𝑚/𝑠𝑠2 (displayed as a red dotted 

line) as suggested by the Korean design guidelines (KSCE, 2006). 

Accordingly, multiple tuned mass dampers (TMDs) were installed at the mid-

span in September 2019, in which four masses were elastically mounted on 

the vertical guide rail by six coil springs and four oil dampers. 
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(a)  

(b)  

Figure 2-3. Measured VIV: (a) vertical acceleration, (b) wind velocity. 

2.1.2 Feature selection 

Features related to VIV phenomena should be selected to train the NN 

model properly (Cai, J. et al., 2018). First, the wind speed and degree should 

be chosen as the representative wind features because these environmental 

conditions have been associated with VIVs. Second, as shown in Figure 2-4, 

VIV induces single-mode vibrations. Therefore, the ratio between the PSD 

amplitude of the target and adjunct modes, defined as the PSD ratio (PR), is 
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typically expected to increase considerably during VIV. As a result, the four 

features of wind speed, wind degree, PSD amplitude of the target mode, and 

PR of the target mode were set as input features for training. 

 

Figure 2-4. Definition of PSD ratio. 

2.2 Model development 

2.2.1 Literature survey: FCL 

The MLP has been applied in various research fields due to its powerful 

and stable learning capabilities for handling nonlinear statistical data. MLP is 

a fully connected feedforward NN consisting of three layers: input, hidden, 

and output. Here, a deep neural network (DNN) involves more than one 

hidden layer. Many studies have demonstrated that DNNs have achieved 

significant performance in extracting the complex relationships between 

inputs and outputs in massive data by updating the weights of each neuron 
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connection and bias using a backpropagation algorithm (Cai et al., 2018). This 

capability enables learning complex nonlinear representations between 

occurrences of VIVs and corresponding environmental conditions  

(a)  

(b)  

Figure 2-5. (a) MLP, (b) pathway signal flow calculation. 

 

Figure 2-5(a) shows one example of an MLP having two hidden layers 

with four input and three output nodes. When input data are given to this NN, 

each neuron computes the output using the specified activation function 

(depicted by a circle in Figure 2-5(b)). The basic formula is given by 

𝑣𝑣𝑗𝑗 = 𝐺𝐺𝑗𝑗 �𝑏𝑏 + �𝑥𝑥𝑖𝑖𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� (1) 
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where 𝑣𝑣𝑗𝑗  is the output of each neuron, 𝑤𝑤 and 𝑏𝑏 are the weight and 

bias to be trained, respectively (in which n is the number of inputs), and   

𝐺𝐺𝑗𝑗(∙) is the activation function of the j-th neurons in the current layer. The 

following three functions are commonly used for 𝐺𝐺𝑗𝑗: 1) rectified linear units 

(ReLUs), 2) tanh, and 3) sigmoid. After the final values are obtained through 

the hidden and output layers that process the input data and send it up to the 

next layer, the total error is calculated using the following equations.  

𝐸𝐸𝑘𝑘 =
1
𝑛𝑛𝑜𝑜
�|𝑣𝑣𝑖𝑖 − 𝑡𝑡𝑖𝑖|
𝑛𝑛𝑜𝑜

𝑖𝑖=1

(2) 

𝑬𝑬(𝒘𝒘,  𝒃𝒃) =
1
𝑁𝑁
�𝐸𝐸𝑘𝑘

𝑁𝑁

𝑘𝑘=1

(3) 

In (2), 𝑣𝑣𝑖𝑖 and 𝑡𝑡𝑖𝑖 are the calculated and actual values of the i-th neuron, 

respectively, where 𝑛𝑛𝑜𝑜 denotes the number of neurons in the output layer. In 

addition, 𝐸𝐸𝑘𝑘  is the error of the k-th data. The relationship between the 

averaged error 𝑬𝑬 and trainable variables (𝒘𝒘,𝒃𝒃) is described by (3). The 

main objective of the training was to minimize the total error, where the error 

gradient for each neuron in the hidden layer was iteratively computed while 

the weights and biases were updated. 
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2.2.2 Model design 

The FCL was selected as the basic structure of the developed NN model. 

The network uses wind and vibrational features as the input values and 

consists of several hidden layers. An ReLU was used as the activation 

function for all hidden layers. Sigmoid was applied at the end of the NN for 

binary classification purposes, where the output values represent the 

probability that a given sample will be classified into the VIV class. 

A binary cross-entropy was selected to estimate the loss function to 

update the network using gradient descent following each training epoch. To 

train the NN effectively and to prevent the overfitting problem and improve 

the robustness of the model, weight decay and L2 regularization (Krogh & 

Jertz, 1992) and Dropout (Srivastava et al., 2014) were previously adopted. 

The NN weights were initialized by Glorot normalization and then updated 

by an Adam optimizer (Kingma & Ba, 2014), where all processes were 

executed using Python and Google TensorFlow (Abadi et al., 2016). The 

detailed parameters are shown in Table 2-1 and Figure 2-6. 
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Table 2-1. Model design parameters 

Parameter Setting Value Remarks 

Dimension of input data 4 Four selected features 

NN structure FCL 
Dropout 

Each layer has 40 nodes  
Dropout ratio = 20% 

Activation function ReLU 
sigmoid (end node) 

L2 regularization 
weight decay = 0.001 

Ratio between train, val, 
and test 70:20:10 - 

Loss function Adam Learning rate = 0.001 

Training optimizer Binary cross-entropy Binary classification 

Training epochs 50 - 

Batch size 100 - 

 

 

Figure 2-6. NN model structure for VIV identification. 

 

When training begins, negative and positive datasets are randomly 

selected from each labeled dataset, where the proportion of the two groups is 

maintained at a value of 1. Then, the network parameters of the model are 

updated based on the error gradients derived from the loss function in each 

epoch. When the validation loss does not significantly decrease for five 

epochs, the training process is automatically terminated and optimal 

parameters of the NN are chosen again. 
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2.3 Training optimization 

2.3.1 Soft labeling method 

Data labeling is one of the essential processes in supervised learning 

applications. With respect to VIV, the distinction between VIV and non-VIV 

is ambiguous, which means that the classification performance could be 

poorer due to heuristic errors during the labeling process. For example, Figure 

2-7 shows the relationship between the 1-min peak factor and corresponding 

1-min averaged wind velocity. This graphically demonstrates the significance 

of the peak factor in the case with different sources of vibration. The peak 

factor of vertical acceleration was reduced by as much as 1.5 in the wind 

speed range of 5 to 12 m/s when VIV was observed, whereas it was much 

lower than that under normal operation or high wind velocity. Although VIVs 

with a peak factor close to 1.5 could be easily identified, clearly 

distinguishing between VIV and non-VIV cases in the higher range of peak 

factors such as 1.5 to 2.5 was not easy. Another problem was that the amount 

of monitored data was generally too large, thus inspecting inspect each raw 

data to label every VIV and non-VIV could be a time-consuming process. To 

handle these difficulties, this study introduced a soft labeling method, which 

is a simple data labeling approach that applies specific threshold values to 

divide monitored data into two classes. The peak factor was selected as the 
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threshold to label each sample to VIV and non-VIV cases, and this threshold 

is called a peak factor threshold (PFT). 

(a)  

(b)  

Figure 2-7. (a) Peak factor of vertical acceleration according to wind velocity, (b) 

zoomed. 

 

As Figure 2-7 shows, the peak factor of measured acceleration gradually 

decreased as the bridge was subjected to VIV. It then approximated 1.5 when 
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VIV was entirely governed. A PFT of 1.5 results in strict labeling regarding 

all weak VIV as non-VIV cases. However, a PFT of 2.5 can lead to imprecise 

labeling by including too many non-VIV as possible cases. Therefore, a 

certain degree of mixture of VIV and non-VIV in both labeled classes is 

inevitable, which means that setting the PFT value for the labeling process 

can be complicated. Therefore, a comprehensive parametric sensitivity 

analysis should be performed to find an optimal PFT range. 

2.3.2 Semi-VIV class 

Figure 2-8 gives the definition of CMA for four areas of binary 

classification results, namely, true positive (TP), true negative (TN), false 

positive (FP), and false negative (FN) predictions.  

 

Figure 2-8. Confusion matrix for binary classification. 

 

Of these, the samples in the FP class can be interpreted as follows: 

samples could be classified into the VIV class even though they were initially 

classified as non-VIV by the soft labeling method due to their higher peak 

TP (true positive) FP (false positive)

FN (false negative ) TN (true negative)
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1 (VIV) 0 (non-VIV)
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0 (non-VIV) • Type II error
• Predict VIV as non-VIV

• Correct Prediction
• Predict VIV as VIV
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• Correct rejection
• Predict non-VIV as 

non-VIV
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factor as compared with the PFT. In computer science, these FP classes are 

often undesirable because they lower the precision of the training model. The 

soft labeling approach was thus introduced to divide weakly the monitoring 

data based on the PFT and allow the NN model to classify test data precisely 

into VIV and non-VIV classes based on the trained wind and vibrational 

characteristics. Therefore, the FP samples can be re-interpreted as follows: 

weak VIV also having similar wind and vibrational characteristics as those of 

VIV with a peak factor higher than the PFT (referred to as a “semi-VIV” case), 

which includes the cases in the developing stage of VIV or along with other 

types of bridge excitation such as traffic loads. 

2.3.3 Parametric studies on PFT for model tuning 

A comprehensive parametric study on PFTs was conducted to find the 

optimal PFT range. Figure 2-9 shows histograms of the peak factors collected 

for the considered period. The distributions concentrated around a peak factor 

of 3.0. However, another local maximum also could be found in the peak 

factor range of 1.5 to 1.7, which was due to the VIVs. This implies that the 

peak factor distribution for VIVs is in the range of 1.5 to 1.7, which is 

different from that of the normal operation. In other words, if the peak factor 

of the classified VIV cases concentrated to 3.0 rather than 1.5–1.7, it means 

that the developed network has no VIV classification capabilities at all. When 

FP includes only semi-VIV cases, the distribution of peak factors of the FP 
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class would be skewed to the left side and apart from that of the total dataset. 

However, as FP contains misclassified non-VIV cases, the peak factor 

distribution of the FP should gradually resemble the overall distribution. In 

this study, the Bhattacharyya distance (BD), which measures the similarity of 

two probability distributions, was employed to quantify the similarity 

between these two types of distributions, that is, the peak factor of positively 

classified cases and the whole dataset. This enables us to evaluate how well 

the model can distinguish VIVs among mixed vibrations according to 

different PFT settings.  

 

Figure 2-9. Histogram of peak factor during the monitoring period. 

 

Table 2-2 shows comparisons of the positively labeled numbers. Figure 

2-10(a) and 11(a) show the total FP counts and corresponding peak factor 

distributions according to the different PFTs, respectively. The distributions 

of positively predicted samples, which were previously defined as TP and FP, 

and the total dataset are plotted in blue, red, and gray bars, respectively. 
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In general, the use of imbalanced datasets unavoidably requires 

sufficient positive cases to train the model on the selected features. If a small 

number of positive samples is employed, such as a peak factor below 1.7, the 

developed model would underfit the training data. The NN, subjected to 

underfitting, cannot detect positive cases specifically. This results in increased 

FP counts. However, despite the increased number of FPs, the positively 

classified distributions are skewed mainly toward the left in contrast to the 

histograms of the natural peak factor. In addition, the distributions of FP are 

found to be totally different from that of the total dataset when PFT is set to 

a low value. This is supported by Figure 2-10(b), which illustrates 

Bhattacharyya distance (BD), clearly showing the decline in the degree of 

discrepancy between the distribution of positively classified data sets and that 

of the total dataset as PFT increased. When the PFT was between 1.5 and 1.9, 

the BD was relatively high, which means that the peak factor distribution of 

FP had completely different properties from that of the total data. This result 

agreed with the hypothesis that the trained model with a soft labeling method 

could classify the semi-VIVs into FP classes. By contrast, as the PFT 

exceeded 2.0, the distribution of FP gradually began to resemble the 

distribution of the total data. The higher PFT included the non-VIV cases as 

positively labeled samples, which gradually diverged from the ideal VIV 

specific classification. Accordingly, the training process intrinsically involved 

a greater number of opportunities to learn unrelated features from the training 

datasets. This resulted in the FP counts dramatically increasing and the 
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positively predicted distribution to be similar to the histograms of the natural 

peak factor shown in Figure 2-9. 

 

Table 2-2. Positive labeled datasets 

PFT Num. of datasets Num. of positive 
datasets Percentage (%) 

1.5 

346999 

5309 1.5 

1.6 9858 2.8 

1.7 12847 3.7 

1.8 15076 4.3 

1.9 16763 4.8 

2.0 18249 5.3 

2.5 29709 7.7 

3.0 81952 14.9 

3.6 332730 46.9 

 

(a)  
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(b)  

Figure 2-10. (a) FP counts, (b) Bhattacharyya distance according to different PFTs. 

 

The trends of the velocity-acceleration (VA) curve shown in Figure 

2-11(b) agreed well with these trends of accuracy criteria. Here, red, blue, 

green, and black dots represent TP, FP, TN, and FN, respectively. When the 

PFT was 1.5, most semi-VIV samples could be classified as non-VIV because 

of excessively strict labeling conditions, and accordingly, the VA distribution 

of the FP class nearly overlapped with that of the TP. As the PFT increased 

gradually, the area of FP decreased. At 1.7, the TP, FP, and TN properly 

represented the areas of fully developed VIV, semi-VIV, and non-VIV, 

respectively. This trend continued until the PFT reached 2.0. However, 

afterward, most of the semi-VIV cases were classified into TP, and FN cases 

sharply increased. Therefore, considering these tendencies in the accuracy 

criteria, the optimal PFT range could be considered to be 1.5 to 2.0. 
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(a)  

(b)  

Figure 2-11. Classification results according to PFTs: (a) positively predicted 

distribution, (b) VA curve. 
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CHAPTER 3 

DATA-DRIVEN SHORT-TERM FORECASTING 
OF TYPHOON-INDUCED STRONG WINDS 

3.1 Knowledge-based feature selection 

3.1.1 Typhoon-induced strong wind characteristics 

The Gwangan Way Bridge (GWB), which is located in the southeastern 

part of South Korea, as shown in Figure 3-1(a), is an ocean-side double-deck 

suspension bridge. It consists of a cable-stayed bridge and two connection 

bridges. For all bridge sections, the total length of the bridge is 7.4 km, and 

the traffic lanes on the upper and lower decks are south- and northbound, 

respectively. The layout and dimensions are shown in Figure 3-1(b). The 

bridge opened to the public in January 2003, and two consecutive and entirely 

unexpected accidents involving vehicles overturning occurred on the bridge 

in 2012 during a typhoon. Kim et al. (2020) found that those accidents were 

mainly due to a large increment in wind-speed acceleration between the upper 

and lower decks. This is the so-called wind tunneling effect and means that 

vehicles traversing this type of bridge are more vulnerable to strong winds 

during a typhoon. Two types of monitoring data sources were used for this 

study: 1) structural health monitoring (SHM) data, and 2) data from the 

Regional Specialized Meteorological Center (RSMC). First, SHM systems 
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are typically operated at the beginning of a bridge’s construction to check 

current environmental conditions in real-time. For the GWB, wind 

anemometers (RM-Young 05106) were installed on the cable-stayed bridge 

at the top of the pylon for real-time monitoring purposes, as illustrated in 

Figure 3-1(b). The wind data, consisting of speed and direction, were 

collected at a sampling frequency of 100 Hz. 

 

(a)  

 (b)  

Figure 3-1. Gwangan Way Bridge: (a) location, (b) side view. 

 

Second, typhoon information obtained from the RSMC database was 

collected over a six-hour period by sensors onboard the orbiter, and consisted 

of the physical properties of a typhoon, including latitude, longitude, central 

pressure, maximum sustained wind speed (MSWS), and radius. Figure 3-2 
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shows typhoon routes from 2003 to 2019 in the western North Pacific and the 

South China Sea. More than 400 typhoon events occurred during this period. 

They generally developed on the side of the subtropical ridge closer to the 

equator, and then some of them moved poleward past the ridge axis before 

recurving north and northeast, affecting South Korea and Japan (Center, 2007; 

Landsea, 2014).  

 

Figure 3-2. Typhoon routes obtained from RSMC database. 

 

These two types of data sources were collected for 17 years from 2003 to 

2019. To transform the separated original data into a combined form, all 

collected data were preprocessed to be evenly spaced at one-hour intervals 

and then merged, as shown in Figure 3-3. 
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Figure 3-3. Combined monitoring data set. 

3.1.2 Feature selection 

Because a vehicle's vulnerability is greatly influenced by strong wind speed 

at a bridge, careful investigations on the influential parameters of this type of 

hazard during a typhoon can be critical for improving prediction performance. 

According to previous studies, the maximum sustained wind, which generally 

occurs at an inner radius of a typhoon's eyewall and where the air begins to 

ascend to the top of the troposphere and has the strongest near-surface winds, 

can be a good indicator of the intensity of a typhoon (Blanchard & Hu, 2005). 

Three past typhoon cases were examined to explore the relations between the 

physical properties of a typhoon and strong winds at a bridge. The physical 

properties included the distance between the bridge and typhoon center, 

pressure, and MSWS. Figure 3-4 illustrates the time histories of selected 

features with corresponding measured wind speed at the bridge, clearly 

demonstrating that strong wind speeds tend to occur after the distance and 
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pressure are at their lowest points, with the maximum share of wind power 

(MSWP) at its highest point. This study assumed that a sequence-based NN 

model could be trained on these specific trends of the selected features. 

(a)  (b) (c)  

Figure 3-4. Time histories of selected features and corresponding wind speeds at the 

bridge: (a) NARI (09/2007), (b) CHABA (09/2016), (c) CIMARON (09/2019). 

3.2 Model development 

3.2.1 Literature survey: Long Short-Term Memory  

A recurrent NN (RNN) is an ANN model used to solve sequence-based 

problems. A fundamental difference exists between MLP and RNN. Unlike 

the MLP, whose structure allows signals to travel one way from input to 

output, the RNN has other connections to form a directed graph along a 

temporal sequence, enabling those connections to exhibit temporal dynamic 
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behavior and use their internal state memory to process variable-length 

sequences. The RNN can be converted into multilayer feedforward networks, 

where a new layer is subsequently added at each time step. Due to its circular 

flow, computational results from the previous time step can be fed back into 

the model. These feedback networks are dynamic and their internal states 

change continuously during processing (Dupond, 2019). The basic formula is 

given as follows and shown in Figure 3-5.  

 

ℎ(𝑡𝑡) = 𝑓𝑓�ℎ(𝑡𝑡−1) , 𝑥𝑥(𝑡𝑡);  𝜃𝜃� (4) 

 

Figure 3-5. Folded and unfolded recurrent layers. 

 

where ℎ(𝑡𝑡) is the current hidden state of the model and a function 𝑓𝑓 of 

the previous hidden state h(t-1), current input data x(t), and parameters 𝜃𝜃. 

The long-short-term memory (LSTM) introduces new features called 

gated cells to the original RNN (Hochreiter & Schmidhuber, 1997). Three 

types of gates are used, namely, input, output, and forget, as shown in Figure 

3-6, and this additional control system enables LSTM to regulate the flow of 
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signals into and out of the model for storing critical information that has 

accumulated over time.  

 
Figure 3-6. LSTM model. 

3.2.2 Model design 

The LSTM layer is selected as the basic structure of the developed NN 

model. Based on the identified strong wind characteristics, the developed 

model uses wind speed at the top of the pylon, maximum sustained wind, 

pressure, speed, and distance between a typhoon and the bridge as training 

features. It consists of three LSTM layers. A mean absolute error (MAE) is 

selected to estimate a loss function to update the network using gradient 

descent after each training epoch. Then, the NNs are updated using an 

RMSprop optimizer 61, where all the processes are executed using Python 

and Google TensorFlow (Abadi et al., 2016). The detailed parameters are 

shown in Table 3-1 and Figure 3-7.  
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Table 3-1. Model design parameters 

Parameter Setting Value Remarks 

Time unit 1 h - 

Length of input data 10 h - 

Length of output data 1 h - 

Prediction interval 6 h - 

NN structure 3-layered LSTM 30 nodes 

Ratio between train and 
val sets 7:3 - 

Loss function MAE - 

Training optimizer RMSprop - 

Training epochs 50 - 

Batch size 100 - 

Number of generated 
model 30 For each training case 

 

 

Figure 3-7. NN model structure for strong-wind prediction. 

 

Wind speed
at the bridge

Distance

Pressure

Maximum 
sustained 

wind speed
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3.3 Training optimization 

3.3.1 Typhoon routes 

Considering the paths of typhoons that typically sweep across the Korean 

peninsula, two representative approach routes can be used based on the GWB 

location, namely, sea and inland routes, as graphically illustrated in Figure 

3-8. In this case, typhoon routes can be classified automatically using k-

means clustering with two pre-defined features and a reference angle. 

 

Figure 3-8. Selected features of the K-means clustering. 

 

K-means clustering is a useful algorithm that aims to divide n observations 

into k sub-clusters in which each observation belongs to the cluster with the 

closest mean value (MacQueen, 1967). The clustering mechanism proceeds 
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by selecting k initial cluster centers and then iteratively refining them. This 

process continues until no additional variation occurs in the assignment of 

data points to clusters in the previous step. The basic formula used is given 

by the following equations.  

𝑑𝑑(𝑥𝑥, 𝑦𝑦)2 =  �(𝑥𝑥𝑗𝑗 −  𝑦𝑦𝑗𝑗)2 =  ‖𝑥𝑥 − 𝑦𝑦‖22
𝑀𝑀

𝑗𝑗=1

(6) 

𝑆𝑆𝑆𝑆𝑆𝑆 = ��𝑤𝑤(𝑖𝑖,𝑗𝑗)�𝑥𝑥(𝑖𝑖) − 𝜇𝜇(𝑗𝑗)�
2
2

𝑘𝑘

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 (7) 

In (6), the index j denotes the j-th dimension of the variable x and y, and 

𝑑𝑑(𝑥𝑥,𝑦𝑦)2 is the square Euclidean distance between the two points. In (7), 𝜇𝜇(𝑗𝑗) 

is the representative points and 𝑤𝑤(𝑖𝑖,𝑗𝑗) is the binary variable. If the data point 

is assigned to cluster j, 𝑤𝑤(𝑖𝑖,𝑗𝑗) is 1, otherwise 0. The k-means algorithm itself 

is an optimization problem for identifying the optimal clustering centers by 

minimizing the sum of squared errors. The first feature is the minimum 

approach distance (MAD) between a typhoon and the bridge. The second is 

the approach angle (AA) between a typhoon and the bridge when a typhoon 

is in MAD. The AA measures an angle such that 0 degrees starts from the 

reference angle and increases in a clockwise direction. The reference angle 

value is chosen to ensure that all typhoons passing through the Korean 

peninsula are appropriately classified into two separate categories. Prior to 

clustering analysis, feature scaling was used to normalize the original data by 

the min-max method (Han. et al., 2011). Figure 3-9 shows scatter plots for 
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the original and normalized scales. Figure 3-10 illustrates the clustered results 

categorized into sea and inland routes as well-intended. 

(a)  (b)   

Figure 3-9. Scatter plots for the selected features: (a) original, (b) normalized. 

(a)  (b)  

Figure 3-10. Clustered typhoon routes (red dots): (a) sea route, (b) in-land route. 
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3.3.2 Influential typhoon 

Some of the typhoons that have swept across the Korean Peninsula did not 

increase the wind speed at the bridge to one deemed critical. The training 

process should be based on influential typhoon cases to build a strong wind-

specific prediction model. Therefore, the minimum wind speed requirement 

in this study was set by referring to previous studies when training datasets 

were selected. Baker & Reynolds (1992) suggested that traffic movement 

should be restricted when instantaneous wind speed is greater than 20 m/s for 

all vehicles, where the threshold is the expected maximum 3-s gust velocity 

that will occur during the hour of an accident. However, differences exist in 

terms of averaging periods and altitudes between wind speed as suggested by 

Baker & Reynolds (1992) and the one used in this study. Therefore, a direct 

comparison between the two values is not reasonable. Thus, altitude 

adjustment between the two types of wind speeds is required to utilize the 

conversion factor, as the guideline is based on an elevation of 10 m above sea 

level. It is assumed that the mean near-surface wind speed under strong wind 

conditions, which is typical of typhoons, can be estimated using an 

equilibrium form of the logarithmic boundary layer profile as described by 

the following equation (Lumley & Panofsky, 1964; Powell. et al., 2003).  

 

 𝑉𝑉(𝑧𝑧) =   
𝑢𝑢∗
𝑘𝑘

 ln (
𝑧𝑧
𝑧𝑧0

) (8) 
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where 𝑉𝑉(𝑧𝑧)  is the converted wind speed at height z, 𝑧𝑧0  is the 

representative surface roughness length (𝑧𝑧0 ), k is von Karman‘s constant 

(assumed to be 0.41), and 𝑢𝑢∗ is the friction velocity. 

Converting the instantaneous wind speed to a 1-h averaged value by using 

guidelines for converting between various wind averaging periods in typhoon 

conditions has been previously suggested (Harper. et al., 2010). Several 

different location categories and additional sub-categories were assigned 

based on the GWB location. Because the bridge is located close to the coastal 

area, the “off-sea” class was selected as the sub-category. Table 3-2 

summarizes the selected parameters for converting between wind speeds of 

different wind averaging periods. 

 

Table 3-2. Selected parameters for converting wind speeds 

 Terrain 
type 

Gust 
duration(s) 

Reference 
period (s) 

Surface roughness 
length(𝒛𝒛𝟎𝟎) 

Setting Off-Sea 3 3600 0.005 

  

Finally, the threshold wind speed at the top of the pylon was estimated to 

be 15 m/s, and the data sets satisfying the above condition were selected for 

the model training.  As a result, a total of 26 typhoon events were found, 

where 13 of them belong to East Sea Route, and the rest belongs to the Inland 

Route, as illustrated in Figure 3-11.  

 



 

41 

(a)  (b)  

Figure 3-11. Influential typhoon routes: (a) East Sea route, (b) inland route. 

3.3.3 Time-delay analysis for past typhoons 

Because of the different climatological effects on wind speeds at different 

bridge locations, the relation between the time histories of selected features 

and strong wind speeds should be carefully examined to build a customized 

prediction model. Figure 3-12(a) shows a 3D scatter plot for three-time delay 

criteria, where DD, PD, and MSWPD denote the distance delay, pressure 

delay, and maximum sustained wind speed delay, respectively. For example, 

as shown in Figure 3-4, the definition of DD is the time difference between 

the minimum point of distance and maximum point of wind speed at the 

bridge. The others are defined based on the same principle, except for the 

MSWPD case, which considers the maximum instead of the minimum point. 
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(a)  

(b)  

Figure 3-12. Time-delay analysis: (a) 3D scatter plot, (b) box-plot distribution. 

 

Interestingly, there are distribution discrepancies between each indicator. 

For example, Figure 3-12(b) illustrates a box-plot distribution showing that 

the maximum wind speed tends to occur at approximately a mean value of 7 

h after the minimum point of distance, whereas the pressure and MSWS are 

approximately 50 h on average. This gives us useful information about how 

to design a typhoon-induced strong-wind prediction model. To reflect 

carefully the natural time discrepancies of delay distributions, new parameters 

called second starting point (SSP) and history duration (HD) were 

additionally defined. These are necessary to perform manual corrections by 
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applying additional time delays to the pressure and MSWS features when 

generating training datasets, as shown in Figure 3-13 

 

Figure 3-13. Definitions of SSP and HD. 

3.3.4 Grid search-based model tuning 

Numerous combinations can be generated for the selection of values of HD 

and SSP. In this study, a grid search method was used that involved scanning 

the two parameters to identify automatically the optimal one resulting in the 

most accurate prediction. In the appendix, the influential typhoons are listed 

in Table A.1-1. Of those listed, the typhoon MITAG was selected for the 

model tuning process, and its detailed information is presented in Figure 3-14. 

If the proposed prediction model were well-tuned during this process, the 

occurrence time of strong wind speed of the tuning dataset could be predicted 

with accuracy. 
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Figure 3-14. Detailed information of tuning data: MITAG (09/2019). 

 

The performance of the NN model varies depending on the initialization of 

the weights and randomly split training and validation partitions. For this 

reason, an optimization objective function generally tends not to converge to 

a global minimum but instead to a local one because numerous methods can 

be employed to train it (Wu et al., 2013). To check the stability of the 

prediction results, each training process was repeated 30 times to calculate 

the mean and standard deviation of the MAE. 

Figure 3-15 shows grid search results, where the z-axis value on each grid 

is an average MAE value for 6 h before and after the actual maximum wind 

speed. This clearly demonstrates that low MAE values were found in a certain 

range of the selected parameters. 

 

WIKI
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(a)   

(b)  

Figure 3-15. Grid search for finding optimal parameters: (a) 2D, (b) 3D. 

 

Table 3-3 lists four models (labeled Models I, II, III, and IV) to compare 

the performances between models trained on different combinations of 

parameters. Figure 3-16 graphically shows the tuning results for each set of 

parameter settings. As this figure shows, the greater the number of parameters 

that were close to optimal areas, the higher was the prediction accuracy 

achieved by the tuned model with respect to not only MAE but also time delay 

between maximum points of actual and predicted wind speeds. 
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Table 3-3. Models and their design parameters 

No. Name 
Design parameters 

Category Color DH SSP 

1 Model I A1 
(Optimum) Green 15 25 

2 Model II A2 
(Optimum) Yellow 20 00 

3 Model III A3 Cyan 20 15 

4 Model IV A4 Blue 25 25 

 

  

 

Figure 3-16. Tuning results for each set of parameter settings.  
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CHAPTER 4 

DEVELOPMENTAL FRAMEWORK FOR 
OPERATIONAL INTELLIGENCE 

 

This chapter provides an overview of the developmental frameworks and 

conducted validation studies for two long-span bridges to assess the 

framework applicabilities. Based on these results, their accuracies and 

feasibilities are comprehensively discussed in the second section of this 

chapter. 

4.1 Developmental frameworks 

This section introduces the two individual developmental frameworks for 

dealing with the two wind-induced problems. Schematic overviews are 

provided in Figure 4-1. 

In the first framework, the primary part is a knowledge-based feature 

selection process, which is based on well-established wind engineering 

knowledge and observed vibration characteristics derived from SHM data. In 

the second part, an NN structure is designed with reference to the selected 

features. The third part is a training optimization process, consisting of soft 

labeling, supervised machine learning, and performance checks in terms of 
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the distributions of peak-factor and VA curves. In the final part, the 

performance of the trained model is applied to a long-span bridge. 

In the second framework, the primary part is a knowledge-based feature 

selection process based on strong wind properties identified from well-

established information about typhoons. In the second part, an NN structure 

is designed with reference to the selected features. The third part is the 

training optimization process that involves the selection of an influential 

typhoon, time-delay analysis, and a grid search-based tuning method. In the 

final part, the developed model is applied to a long-span bridge. 

 

(a)   

(b)  

Figure 4-1. Developmental frameworks: (a) automated VIV classification, (b) short-

term forecasting of typhoon-induced strong winds. 
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4.2 Assessment of field applicability 

4.2.1 Data-driven automated VIV classification 

This section presents a validation of the classification model trained on the 

optimal PFT-based datasets derived from the previous chapter. The PFT value 

was set to 1.7. The classification model was applied to long-term monitoring 

data collected from January to September 2019, the acceleration data for 

which included several types of vibrations such as fully or partially developed 

VIVs. Figure 4-2 verifies that the training process of the classification model 

was conducted appropriately. 

 

 

Figure 4-2. Loss value for each epoch. 
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The classification results were assessed using a VA curve and the 

corresponding confusion matrix, as shown in Figure 4-3. These results 

constituted 20% of the total available datasets. According to the basic 

assumption, a well-trained model should classify semi-VIVs as well as VIVs 

classified initially in the positive class. In our study, the number of FP cases 

was relatively high. However, the VA curve confirmed whether these FPs 

were actual false positive errors or should have been classified as semi-VIV. 

As expected, the FP and TP were located relatively close to each other, and 

most of their RMS acceleration values clearly showed the characteristics of 

VIV, indicating that the model extracted meaningful environmental 

conditions of VIV by reclassifying VIV cases (i.e., those not labeled initially 

as VIV) as VIV classes (FP). 

 

 

Figure 4-3. Classification results (PFT = 1.7). 

 

Figure 4-4 shows representative examples of the four types of classification. 

As expected, FP included the semi-VIV cases, which could be considered as 
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cases of clear harmonic motion. The soft labeling used in this study ignored 

these cases because of the peak factor being higher than 1.7. However, the 

trained model classified this vibration as VIV. In addition, FN was completely 

negligible as compared to the total number of validation data, confirming that 

the trained model did not cause this type of error from an engineering point 

of view. Therefore, it could be confirmed that the training process through 

ANN sufficiently overcame errors during the labeling process and achieved 

more comprehensive classification results. 

 

(a)  (b)  

(c)  (d)  

Figure 4-4. Time-history acceleration of the four areas: (a) TP, (b) FP, (c) TN, (d) 

FN. 
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4.2.2 Data-driven short-term forecasting of typhoon-induced strong 

winds 

This section presents a validation of the developed prediction model. With 

the optimal parameters, the developed framework was applied in 2020 to two 

test typhoon events. One test event induced 1-h averaged strong surface wind 

speeds of over 15 m/s, which could be dangerous to vehicles traversing the 

bridge. Therefore, if the developed prediction model with optimal parameter 

settings was well trained, the time of occurrence of strong wind speeds for 

test typhoons could be predicted with accuracy. Figure 4-5 shows the time 

histories of selected features, routes, and satellite images for each test typhoon. 

 

(a)  

  

WIKI
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(b)  

Figure 4-5. Test typhoons: (a) JANGMI (2020/08), (b) BAVI (2020/08). 

 

Prediction results obtained from the developed models with an optimal 

combination of parameters are graphically shown in Figure 4-6. The x and y 

axes indicate relative time and 1-h averaged winds in the locations observed, 

respectively. Threshold (i.e.,15 m/s) and predicted wind speeds by the two 

models are plotted in blue, red, green, and yellow, respectively. If the 

forecasted wind speed was greater than the threshold value based on the 

predictions of the two optimal Models I and II, an early warning signal is 

automatically sent to the bridge operators. 

First, with the green and yellow areas representing 95% CI analytical 

results, most of these areas show a narrow shape, which means that the 

prediction results were stable under intrinsic and extrinsic factors such as 

weight initialization or randomly partitioned datasets. 
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(a)   

(b)  

Figure 4-6. Prediction results: (a) JANGMI (2020/08), (b) BAVI (2020/08). 

 

Second, all maximum wind speeds were well detected 6 h in advance, 

which was sufficient time for bridge operators to prepare for typhoon-induced 

strong winds. The prediction model could detect rising and falling trends, 

which are vital information for developing efficient traffic control systems. 

For example, if the control measure conducted on traffic lasts longer than 

necessary, this could cause substantial economic losses in logistics industries. 

However, if less than necessary, this could induce a hazard to vehicles 

traversing the bridge. Because the primary purpose of this study was to 
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determine whether traffic movement should be controlled, conducting this 

measure in a timely fashion was key to improving the control system 

reliability. Third, the developed model did not issue a warning message when 

a non-influential typhoon passed through the bridge, showing that the models 

well identified influential from non-influential typhoons during the year. This 

is important because a prediction model that issues warning signals regardless 

of the risk levels of each typhoon with respect to overturning vehicles could 

decrease the traffic control system's overall reliability. Finally, the developed 

models performed well with a simple structure and a relatively small amount 

of training data. Even though most of the long-span bridges we studied had a 

series of sensors, this does not ensure vast amounts of SHM big data. 

Considering that influential typhoons are highly likely to represent only a 

small portion of the total number of datasets, limits exist on the extent to 

which typhoon datasets can be used for the training process. From the 

perspective of bridge operators, developing a robust model to satisfy 

operator’s intentions despite the aforementioned shortcomings is desirable. 

Given this context, the proposed framework proved that, with relatively few 

observational datasets for 17 years from 2003 to 2019, typhoon-induced wind 

hazards were effectively detected. Therefore, it can be concluded that the 

framework can effectively support existing operating systems. 
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CHAPTER 5 

CONCLUSION AND FURTHER STUDY 

This research proposed general development frameworks for ML-based 

operational intelligence of long-span bridges to assist existing long-span 

bridge operational systems. The overall development frameworks for 

operational intelligence are illustrated in Figure 5-1. 

 

 

Figure 5-1. Development frameworks for operational intelligence. 

 

First, two major wind-induced problems that occur on long-span bridges 

were defined, namely, VIVs and strong wind-induced accidents of 

overturning vehicles. Second, each model was developed with three main 
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wind-induced problems, and 3) parametric studies conducted for training 
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optimization to develop a customized model for each bridge. The developed 

frameworks were applied to the Gwangan and Cheonsa Bridges, both located 

in South Korea, to perform the validation process. Based on the results 

obtained from this study, the following conclusions can be drawn. 

5.1 Conclusion 

For VIV classification, the soft labeling method was demonstrated to be 

effective at detecting VIV within a certain PFT range. Numerical examples 

were given to demonstrate the feasibility of this approach by parametric 

sensitivity analysis. Even though the developed model underfitted the training 

data when PFT was set to less than 1.7, the positively classified distributions 

were skewed mainly toward the left, in contrast to the histograms of the 

natural peak factor. This result proved the robustness and feasibility of the 

proposed data-driven classification. By contrast, when PFT was set to greater 

than 2.0, the classification performance dramatically decreased because the 

training process intrinsically provided a greater number of opportunities to 

learn unrelated features from the training datasets. Therefore, the optimal PFT 

range could be considered to be in the range of 1.5 to 2.0. 

The study showed that the proposed method provides a general data-driven 

framework to develop a VIV classification model for long-span bridges in 

operation. The selected features were shown to be simple, and training 

datasets could be effectively labeled using the soft-labeling method. More 
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importantly, the study showed that the suggested framework does not require 

any human-based threshold values of the selected environmental and 

vibrational features, which could be advantageous for existing bridge 

operating systems. 

In terms of strong wind-speed forecasting, the four selected input features 

were: 1) distance between a typhoon and the bridge, 2) MSWS of a typhoon, 

3) pressure of a typhoon, and 4) wind speed measured at the bridge. These 

were found to represent an appropriate combination. In addition, the adequacy 

of the training datasets significantly affected the performance of the 

developed model. It is recommended that care be taken in generating training 

datasets. The suggested framework well met the current needs of bridge 

operators with relatively few observational datasets for 17 years from 2003 to 

2019 and proved that typhoon-induced wind hazards can be detected when 

using properly selected input features and suitable parameters. 
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5.2 Further study 

The proposed frameworks provide useful tools for automatic VIV 

classification and strong wind-speed prediction during a typhoon. However, 

other research aspects must be studied. First, this work investigated a specific 

combination of influential features for use in designing and training the 

models. Considering the flexible nature of an NN, which can incorporate 

multiple influential features, the performance should be comprehensively 

studied with more diverse combinations of features. Second, this research 

selected only one bridge as a test-bed to assess the field applicability of each 

framework. More cases are recommended for examination to assess the 

general applicabilities of the frameworks. Therefore, applying the 

frameworks to a greater number of bridges is recommended for future studies.   
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APPENDIX 

A. Influential typhoons 

Table A.0-1 Influential typhoon list 

No. Name Date Route Maximum  
wind-speed 

1 LINFA 2003/05 East-Sea 16.1 

2 SOUDELOR 2003/06 East-Sea 21.0 

3 MINDULLE 2004/06 Inland 18.0 

4 MEGI 2004/08 East-Sea 28.0 

5 NABI 2005/08 East-Sea 24.7 

6 SHANSHAN 2006/09 East-Sea 21.2 

7 MANYI 2007/07 East-Sea 16.0 

8 PABUK 2007/08 Inland 15.9 

9 NARI 2007/09 Inland 19.7 

10 MELOR 2009/09 East-Sea 15.1 

11 DIANMU 2010/08 Inland 23.0 

12 MERANTI 2010/09 Inland 16.4 

13 MEARI 2011/06 Inland 15.0 

14 MUIFA 2011/07 Inland 19.2 

15 SANBA 2012/09 Inland 24.3 

16 VONGFONG 2014/10 East-Sea 17.7 

17 GONI 2015/08 East-Sea 20.5 

18 CHABA 2016/09 East-Sea 28.5 

19 PRAPIROON 2018/06 East-Sea 18.3 

20 CIMARON 2018/08 East-Sea 20.9 

21 SOULIK 2018/08 Inland 20.9 

22 KONGREY 2018/09 Inland 31.5 

23 DANAS 2019/07 Inland 18.7 

24 RINGRING 2019/09 Inland 17.8 

25 TAPAH 2019/09 East-Sea 24.4 

26 MITAG 2019/09 Inland 19.3 
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본 연구는 장대교량에서 바람에 의해 발생할 수 있는 와류진동과 차량 

전복사고를 모니터링 할 수 있는 머신러닝기반 지능운영전략 구축을 

위한 프레임워크를 제시하였다. 이를 통해 현재 교량에서 발생하고 있는 

와류진동을 자동으로 분류하고, 태풍에 의한 강풍발생 시간범위를 

예측하여 신속하고 면밀한 제진 대책과 교통통제전략 수립에 기여하고자 

하였다. 본 연구에서 구축된 두개의 프레임 워크는 실제 국내에서 

운용되고 있는 장대교량에 적용하여 성능검토를 수행하였다. 

데이터 기반 와류진동 자동분류 프레임워크는 기존의 풍공학적 지식을 

토대로 와류진동 발생과 연관된 적절한 훈련특성들을 선정하고, 

완전연결신경망을 도입하여 교량 거더의 진동 및 외부 환경조건들과 

와류진동발현 사이의 다차원적인 관계의 효과적인 학습을 유도하였다. 

본 연구에서는 교량마다 개별화된 모델을 구축할 수 있도록 하기 위하여 

적절한 훈련데이터 생성을 위한 소프트라벨링 방법론을 제시하였다. 

제안된 모델은 국내 장대교량에 적용하여 성능검토를 진행하였으며, 

기계가 구조 건전성 모니터링 데이터를 기반으로 높은 정확도 수준에서 

와류진동을 자동으로 학습하고 선별할 수 있음을 검증할 수 있었다. 



 

69 

데이터 기반 태풍에 의한 강풍예측 프레임워크는 기존의 풍공학적 

지식을 토대로 강풍 발생과 연관된 적절한 훈련특성들을 선정하고, 

시계열 학습이 가능한 장단기 메모리 신경망 모델을 도입하여, 태풍과 

교량사이의 거리, 태풍의 압력, 중심최대풍속, 그리고 교량에서의 

측정된 풍속과 강풍 발생시점 사이의 다차원적인 관계의 효과적인 

학습을 유도하였다. 본 연구에서는 교량마다 개별화된 모델을 구축할 수 

있도록 하기 위하여 태풍선별 기법과 적절한 훈련데이터 생성을 위한 

그리드탐색 기반 파라메터 최적화기법을 제시하였다. 제안된 모델은 

2020 년 한반도를 통과한 태풍들에 대해 성능검토를 진행하였으며, 

유의미한 수준에서 강풍 발생시점을 예측할 수 있음을 검증할 수 있었다. 

상기 검토결과를 근거로 본 연구에서 제시한 데이터기반 

프레임워크들은 바람에 의해서 발생할 수 있는 두가지 문제들을 

모니터링하기 위해서 유용하게 활용가능한 근거자료를 제공할 수 있을 

것으로 기대되는 바이다. 
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