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Abstract

Active Lane Change Decision and Control
using Data-driven Safety Boundary and
Collision Probability

CHAE Heungseok
Department of Mechanical and Aerospace Engineering
The Graduate School

Seoul National University

The traffic accidents caused by human error, such as distraction, drowsiness,
or mistakes, account for 94 percent of all traffic accidents over last decades.
Since safe driving is a goal of road-traffic-vehicle environments, major
automakers develop driver assistance and active safety system. Recently, the
majority of automotive makers have already commercialized active safety
systems. Numerous kinds of research have attempted to integrate individual
active safety systems for developing autonomous driving systems to enhance
the safety and achieve zero fatalities. Moreover, in recent years, an interest of
automotive industry is changed from the development of active safety to that
of automated driving system capable of sensing surrounding environments and
driving itself. Several projects have been conducted, and many others are still
underway to evaluate the effects of automated driving in environmental,
demographic, social, and economic aspects.

From a careful review of a considerable amount of literature, autonomous
driving systems have been proven to increase the safety of traffic users, reduce
traffic congestion, and improve driver convenience. Various methodologies
have been employed to develop the core technology of autonomous vehicles,
such as perception, motion planning, and control. However, the current state-
of-the-art autonomous driving algorithms focus on the development of each



technology separately. Consequently, designing automated driving systems
from an integrated perspective is not yet sufficiently considered.

This dissertation describes the design, implementation, and evaluation of an
active lane change control algorithm for autonomous vehicles with human
factor considerations. Lane changes need to be performed considering both
driver acceptance and safety with surrounding vehicles. Therefore, autonomous
driving systems need to be designed based on an analysis of human driving
behavior. Based on the acquired driving data, safety indices are defined using
rule based and learning based approaches. Also, collision probability has been
employed to consider various uncertainties. A stochastic risk assessment-based
lane change decision and control algorithm has been developed. The desired
driving mode is decided to cope with all lane changes. To obtain desired
reference and constraints, motion planning for lane changes has been designed
taking driving data based safety indices into account. A stochastic MPC with
constraints has been adopted to determine vehicle control inputs: the steering
angle and the longitudinal acceleration. The proposed algorithm has been
developed to implement the autonomous vehicle in consideration with diverse
uncertainties, light calculation and sensor limitation.

The effectiveness of the proposed automated driving algorithm has been
evaluated via test-data based simulations and vehicle tests. Diverse simulations
have been proceeded to show performance improvement compared to other
algorithms through monte-calro simulation. The proposed active lane change
algorithm has been successfully implemented on an autonomous vehicle and
evaluated via real-world driving tests. Safe and comfortable lane changes have
been demonstrated using our autonomous test vehicle in diverse road
environments.

Keywords: Autonomous driving vehicle, Human driving data, Stochastic
prediction, Risk Assessment, Intention inference, Recurrent neural network,
Decision-making, Lane change decision, Motion planning, Virtual vehicle,
Model predictive control, Active lane change.

Student Number: 2015-20754
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Chapter 1 Introduction

1.1. Background and Motivation

According to a report from Volvo Cars, nearly 90% of accidents occur due
to human error [Trucks,'13]. Particularly, many traffic accidents have occurred
with the increase of the traffic participants on the roads. Of all traffic accidents,
85.2% of traffic accidents have been caused by human factors [KOSIS,'18]. The
human factors that affect the traffic accidents are inattention, inexperience, old
age, drowsiness, overestimation of capabilities, speeding, or indecent driving
behavior. [Petridou,'00]. Especially, lane change maneuvers have resulted in
various vehicle accidents due to inaccurate perception of surrounding
environments, neglectful driving, or illegal maneuvers. Currently, automakers
consider autonomous driving as a mainstream entity, because it helps to
improve safety, comfort, and convenience [Eskandarian,'12]. The development
of autonomous driving has been spurred by improvements in sensors, actuators,
processors, communications, and other technologies for autonomous vehicles.

Recently, the interests of automotive researches have been expanding from
passive safety systems to active safety systems with advances in sensing and
processing technologies. Recently, the majority of automotive makers have
already commercialized active safety systems, such as Adaptive Cruise Control

(ACC), Lane Keeping Assist System (LKAS), Lane Change Assist (LCA),
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Forward Collision Mitigation (FCM), Automated Parking Assist (APA) and
Blind Spot Intervention (BSI). Numerous kinds of research have attempted to
integrate individual active safety systems for developing autonomous driving
systems to enhance the safety and achieve zero fatalities [Bishop,'00].

A number of projects have been and are ongoing to evaluate the effects of
autonomous driving in environmental, demographic, social, and economic
aspects. For example, the European project “AdaptIVe,” which comprises a
consortium of 29 partners, develops various automated driving functions and
defines specific evaluation methodologies. This project demonstrates
autonomous driving in a complex traffic environment which considers the full
range of automation levels from 0 to 4 [Etemad,'17]. In addition, “CityMobil2”
successfully integrates driverless intelligent vehicles in nine other
environments throughout Europe. However, this project used separate roads
that prohibit the entrance of other vehicles [Alessandrini,'14]. In Japan, the
“Automated Driving System Research Project” began on May 2014, which
focuses on the development and verification of autonomous driving systems
and next-generation urban transport ['Yamamoto,'15].

From a careful review of a considerable amount of extant literature,
autonomous driving systems have been proven to increase the safety of traffic
users, reduce traffic congestion, and improve driver convenience. Various
methodologies have been employed to develop the core technology of
autonomous driving, such as localization, perception, motion planning, and
control. However, the current state-of-the-art autonomous driving algorithms
focus on the development of each technology separately. Consequently,

2



designing autonomous driving systems from an integrated perspective is not yet
sufficiently considered.

Autonomous driving systems should be acceptable to drivers and passengers.
Therefore, these systems need to be similar to the normal driving operation of
human drivers [Okuda,'14, Van Waterschoot,'09, Lindgren,'06]. In lane change
driving, the ego vehicle characteristic has already been studied extensively. The
ego vehicle means the vehicle which the autonomous driving system is applied
to. Surrounding vehicles mean the every vehicles except the ego vehicle. Lane
change trajectory prediction models have been described using human
databases [Yao,'13, Nishiwaki,'08]. Acceleration and jerk used for lane changes
were presented in some literature [Wan,'11, Toledo,'03, Ahmed,'99]. Lane
change time was researched in some studies [Toledo,'07b, Finnegan,'90]. In
addition to the ego vehicle characteristic, the relationship with the surrounding
vehicles is so important in lane changes. This is because the lane change is the
interactive task with an ego vehicle and surrounding vehicles.

Therefore, we focus on developing autonomous driving systems from an
integrated perspective. Also, we focus on designing autonomous driving
systems to be acceptable to drivers and passengers based on human driving data.
The proposed motion planning and control algorithm is compatible with various
localization and perception modules, while considering the driver’s driving
characteristics. This methodology realizes autonomous driving in diverse road

environments.



1.2. Previous Researches

An autonomous vehicle is an integrated system consisting of five categories:
localization, perception, decision-making, motion planning, and control
[Suganuma,'12, Suganuma,'14]. Among these categories, this study focuses on
decision-making, motion planning, and control for active lane change
maneuver. In addition to the categories, prediction module is needed. As this
study aims to implement autonomous driving based on driver data, it is also
important to study driving data in a lane change situation. In conclusion,
previous studies have been investigated on the following items: lane change
driving data, prediction, decision-making, motion planning and control.

Several previous studies analyzed and utilized driver characteristics of the
relationship with surrounding vehicles for lane change driving. A lane change
assist system has been presented that selects three simple driving modes based
on driver data and grid maps [Do,'17]. A lane change model has been proposed
considering gaps between vehicles above a target lane for lane change
[Butakov,"15]. Learning-based models were used in both studies. Such models
could be accurate, flexible, and adjustable if properly trained with accurate data.
However, these models might lack intuitive meaning or physical meaning for
their parameters, Moreover, since models cannot be rebuilt without data, these
models are difficult to actually use in other studies.

Actual drivers usually drive in anticipation of the near future. Diverse

prediction methods have been utilized for autonomous driving applications. A



prediction model has been presented based on a fuzzy rule and finite-state
machines [Hulnhagen,'10]. Vehicle trajectory has been predicted by building
various situation models [Otto,'12]. Because deterministic prediction methods
have limits, probabilistic prediction methods have been developed to augment
robustness [Althoff,'09, Kim,'14]. Also, advanced probabilistic prediction
algorithms have been devised utilizing data-driven approaches. Inverse
reinforcement learning has been employed to predict interactive motions
considering discrete and continuous driving decisions [Sun,'18]. The multi-
modal probabilistic model could consider behavior intention based on deep
neural networks [Hu,'19]. Long short-term memory-based recurrent neural
networks have been utilized for interactive prediction in multi-lane turn
intersections [Jeong,'20a]. Data-driven probabilistic prediction models
considering interactive behavior are powerful in complex situations, such as
ramp-merging, roundabout, and multi-lane turn intersections.

A variety of research has attempted to solve the lane change decision-making
problem. For lane change decision problems, fuzzy logic has been utilized
[Naranjo,'08, Perez,'11, Basjaruddin,'l5]. Fuzzy logic has the merit of
considering various aspects of lane change maneuver. However, these studies
have only considered the ideal situation, where the surrounding vehicles are at
a constant speed. Also, these studies have solved the problem of lane change
only one vehicle. Reinforcement learning has been employed to plan lane
change maneuvers [Ngai,'11, Li,'15]. The algorithm has been trained on the lane

change problem through repeated simulation. The learned algorithm has shown



good lane change performance. However, it is only verified by simulation, and
the approach lacks verification of generality and safety.

For the active lane change model, the various behaviors of the ego vehicle
and surrounding vehicles should be considered. The motion planning
algorithms for the active lane change have been researched in previous studies.
Deterministic approaches have been utilized by formulating optimization
problems [Shiller,'98, Feng,'06, Ferguson,'08, McNaughton,'11]. The
approaches are simple and efficient, but could not consider diverse
uncertainties which occur in lane change situations. A Markov Decision
Process (MDP) and a Partially Observable Markov Decision Process (POMDP)
have been employed to plan an optimal lane change policy [Brechtel,'11,
Ulbrich,'13, Ulbrich,'15]. MDP and POMDP are able to cope with uncertain
system behaviors. However, these methods have problems in implementing the
vehicle due to heavy computation loads.

A model predictive control (MPC) framework constitutes an attractive
method and is extensively used for autonomous driving. The MPC method
employs a dynamic vehicle model to predict future states, and calculates an
optimal control input trajectory sequence for tracking state reference while
satisfying constraints [Mayne,'00, Anderson,'10]. MPC has been utilized for an
active steering controller [Falcone,'07]. For an autonomous vehicle control
algorithm, a robust MPC has been used which is more robust, but possesses the
weakness of being too conservative [Mayne,'05]. A lane change assistance
system has been presented utilizing a scenario MPC [Schildbach,'15]. Although
the scenario MPC complements shortcomings of robust MPC, all scenarios are
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difficult to consider. It necessitates vast amounts of data. A stochastic MPC
(SMPC) has been described based on the chance-constraints optimization
problem for autonomous driving [Gray,'13]. Previous studies have verified an
autonomous driving algorithm adopting SMPC in only simulation and simple
vehicle tests [Gray,'13, Suh,'18].

In most of these researches for motion planning of autonomous driving, the
current state-of-the-art autonomous driving algorithms focused on the
development of each function separately. In other words, the previous
researches developed the prediction, decision-making, motion planning, and
control, respectively, rather than the integrated perspective of considering the
interdependence between each function.

Therefore, in this research, we focus on developing a motion planning
algorithm for autonomous vehicle in diverse lane change environment based on
stochastic risk assessment with vehicle motion prediction, motion planner with

driving mode decision and model predictive control.



1.3. Thesis Objectives

From a careful review of a considerable amount of extant literature,
autonomous driving systems have been proven to increase the safety of traffic
users, reduce traffic congestion, and improve driver convenience. Therefore,
we focus on developing a motion planning algorithm for autonomous lane
change control, while considering the driver’s driving characteristics. In other
words, the proposed algorithm predicts the behavior of traffic participants,
assesses collision risk, plans and controls the motion like human drivers. This
approach improves safety by considering the driver acceptance based on human
driving data.

This study aims the lane change algorithm with driver acceptance. Driving
data in lane change situations were examined for driver acceptance. The driving
data-based risk assessment have been developed with kinematic analysis about
safety performance. Both rule based and learning based approaches were used
for risk assessment. By inferring lane change yield intention of surrounding
vehicles, a more human-like risk assessment has been conducted. To improve
safety within near future, stochastic predictions are employed with considering
sensor noise, model uncertainty and prediction uncertainty. In particular, the
lane change is greatly affected by the changing states between the vehicles. To
reflect this characteristic, the stochastic prediction-based risk assessment are
proposed by the stochastic predictions and the risk assessment. The risk

assessment is time-varying by states of vehicles. The decision and the motion



planning are conducted based on the stochastic prediction-based risk
assessment. These have the advantage of efficiency in calculation.

In this dissertation, we argue that it is crucial to pursue vehicle
implementation as well as lane change performance. For vehicle
implementation, it is important to consider efficient calculation and limitation
of the vehicle. We propose efficient decision-making and motion planning
based on stochastic prediction and risk assessment. To improve safety within
the near future, stochastic predictions are employed that consider sensor noise,
model uncertainty, and prediction uncertainty. An extended Kalman filter-
(EKF) based probabilistic model is adopted in this dissertation. Learning-based
probabilistic models show a powerful prediction performance. However, data-
driven prediction models require heavier computation than the EKF-based
model. Also, it is efficient to train on the data of the perception module that is
actually used. Additionally, learning-based prediction techniques generally
need historical information. This approach is vulnerable to effects such as
object emergence, object disappearance, and false alarm, which frequently
occur in perception modules of actual autonomous vehicles. A particle filter-
based generic vehicle tracking framework could solve this problem [Li,'18].
However, this framework adds additional computation and needs to be tuned
for the perception module to be used in this study. Since the target environment
in this study is a simpler overtaking situation than ramp-merging, roundabouts,
and intersections, the EKF-based prediction model was adopted in
consideration of the trade-off relationship between calculation load and

performance.



Because all vehicles cannot be equipped with vehicle to vehicle (V2V)
communications at present, autonomous vehicles should perceive the
surrounding environment based on local sensors. Social perception has been
devised to deal with local sensor limits [Afolabi,'18, Sun,'19]. The perceived
vehicle information could be used to infer the area beyond the blind spot or
sensor limit. This approach enables rational behavior planning by inferring
targets beyond perceived vehicles. It is powerful, especially in environments
such as intersections and crosswalks. However, a vehicle that suddenly emerges
outside the perception range is important in an overtaking situation. Also,
inference for each perceived vehicle increases the calculation load, and social
perception is affected by issues of the perception module. Therefore, a more
efficient and feasible approach is required for the overtaking problem. In this
dissertation, virtual targets are devised to cope with the limitation of cognitive
range. The concept of a “‘virtual target’’ has been used as a virtual preceding
vehicle for path following [Bibuli,'10, Rucco,'15]. This concept is adopted to
solve the lane change problem in this study. Virtual targets are very efficient
for vehicle implementation. Virtual targets do not burden the computation and
are not affected by perception module issues.

In this dissertation, we present the autonomous lane change algorithm
containing prediction, risk assessment, decision-making, motion planning, and
control modules. This study deals with issues for vehicle implementation such
as cognitive range and computation load than existing relevant works. The main
contribution of this study is to develop a simple, but performance guaranteed
and feasible lane change algorithm. In the decision-making part, driving mode
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and target space are determined for the lane change. The decision-making part
is divided into three stages: availability, demand, and possibility of lane change.
According to the driving mode, the appropriate motion is planned based on
perceived vehicles and virtual targets. The SMPC calculates control input for
tracking the desired motion. The proposed algorithm could achieve driver
acceptance, efficient calculations, overcoming of perception limit, and
consideration of diverse uncertainties. The performance of the proposed system
has been investigated repeatedly through real-world driving tests in diverse lane
change situations. The proposed algorithm is compared with the base algorithm
through simulation. And, the performance of the proposed system has been

investigated repeatedly through real-world driving tests.
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1.4. Thesis Outline

This dissertation is structured in the following manner. Overall architecture
of the proposed motion planning algorithm for urban autonomous driving is
described in Chapter 2. In Chapter 3, a stochastic motion prediction algorithm
is introduced. The vehicle motions for ego vehicle and surrounding vehicles are
predicted based on model predictive control framework and rule based
approach. The prediction is advantageous for vehicle implementation due to
calculation efficiency. Virtual vehicles are adopted to overcome perception
limitation. Safety performance has been improved by reflecting various
uncertainties. In Chapter 4, stochastic risk assessment is introduced based on
prediction. Safety distance and collision probability are derived to assess risk.
The safety distance is derived based on human driving data. The model-based
and learning-based approaches are employed to make safety distance for driver
acceptance. By inferring lane change yield intention of surrounding vehicles, a
more human-like safety distance has been devised. Collision probability has
been used to assess risk for diverse uncertainties. In Chapter 5, decision-making
is introduced. Driving mode decision has been proposed that the autonomous
vehicle can cope with the various lane change situations. In Chapter 6, motion
planning and control is introduced. Proper motions are planned for active lane
change and interactive lane change based on driving mode. Stochastic model
predictive controllers are tracking desired motion with vehicle model and

constraints. Chapter 7 shows performance evaluation which is composed of the
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simulation test and vehicle test. The performance and effectiveness of the
proposed algorithm has been showed through diverse simulation tests.
Comparisons with other algorithms show the performance improvement of the
proposed algorithm. Vehicle tests have been conducted in various environments.
Therefore, the vehicle implementation represents feasible, repetitive and stable
performance of the proposed algorithm. Then, the conclusion, which includes
the summary and contribution of the proposed algorithm, and future works, is

presented in Chapter 8.
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Chapter 2 Overview of Autonomous

Driving System

The autonomous driving is integrated system from multiple modules.
Multiple modules can be broadly classified into four modules: localization,
perception, planning, and control [Suganuma,'12, Suganuma,'14]. The overall
structure of the autonomous driving system is described in Figure 2.1, which
represents the description of each module. It is important to develop a module

that is compatible with other modules.

Ref) Futurama

Localization

“Where are we?”

Ref.) Autoware

Planning

N “How will we drive?”
Perception [ Control ]

“What are around us?” How can we achieve the plan?

Ref ) GTC Japan 2018 - NVIDIA — 7Y -7

Figure 2.1. The overall structure of the autonomous driving system.

Each module has the following features as described in Figure 2.2. First,
diverse sensor information comes in as input to the autonomous driving system.
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These information is first processed in localization and perception modules,
which are optimized for sensor configuration. Then, planning module, which
determines how to drive, is optimized for target driving environment. Finally,
control module, which determines final control inputs of the vehicle, is

optimized for vehicle configuration.

Diverse Sensors Optimized for . Op‘tI.mIZEd ff)r Target .OptImIZE‘d for )
Sensor Configuration Driving Environment Vehicle Configuration
Radar
—_ ] = .
Localization
Laser Scanner | “Where are we?”

Front Vision

il

Planning Control
“How will we drive?” “How can we achieve the plan?”

Digital Map

Vehicle Sensor [ Pe rceptiOn ]

|

?
LTE Network What are around us?

Figure 2.2. The overall structure of the autonomous driving system.

In this research, we focus on developing planning and control modules for
autonomous driving. This is the red box in Figure 2.2. The overall architecture
of the proposed algorithm is described in Figure 2.3, which has a 4-layers,
stochastic prediction, risk assessment, decision-making, and motion planning
& motion control. The proposed algorithm uses information from upper
modules: localization and perception. Upper modules uses information from

equipped various sensors. Localization module provides states of the ego
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vehicle including the current position on the map. Perception module provides
states of static and dynamic obstacles located in the vicinity of the ego vehicle.
The proposed algorithm is compatible with alteration of upper modules.

The first layer of the proposed algorithm is stochastic prediction, which
predicts future states of ego vehicle and surrounding vehicles. Static and
dynamic obstacles are classified as surrounding vehicles. And virtual vehicles
are created considering the perception limit in the local sensor. Then,
considering diverse uncertainties, the future behavior of the ego vehicle and
surrounding vehicles is predicted. Uncertainties are caused by diverse factors
such as model uncertainty, sensor noise, actuator delay, localization uncertainty
and perception uncertainty. The second layer of the proposed algorithm is risk
assessment, which evaluates the collision risk between ego vehicle and
surrounding vehicles using predicted states of vehicles. To consider driver
acceptance, lane change yield intention and safety distance based on human
driving data have been developed. In addition, collision probability has been
developed to reflect the potential risk posed by various uncertainties. The third
layer of the proposed algorithm is decision-making, which decides whether to
perform lane keeping or lane change. The driving mode is determined in
consideration of surrounding vehicles and the road environment. In addition,
space for lane change is also explored. This makes active lane change possible.
The last layer of the proposed algorithm is motion planning and motion control,
which plan the desired motion of the ego vehicle and determine the final control
input to track desired motion. It is divided into longitudinal and lateral motions.

The final control input for longitudinal motion is longitudinal acceleration. The
16



final control input for lateral motion is steering angle.
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Figure 2.3. System overview of the proposed algorithm for autonomous driving

system.

Since the proposed algorithm is compatible with the alternation of upper

modules, it has been implemented with several vehicles equipped with diverse

sensor configurations. In this dissertation, the proposed algorithm is applied to

three vehicles with different upper modules. The first implemented vehicles are

shown in Figure 2.4. In this vehicle, commercial differential GPS/INS platform

is used for localization module. 2D LiDAR and radar sensor fusion is employed

for perception module [Lee,"19]. The second implemented vehicles are shown

in Figure 2.5. In this vehicle, AVM and vision cameras form is used for

17



localization module [Kim,'16]. Commercial LiDAR processor is employed for
perception module. The third implemented vehicles are shown in Figure 2.6. In

this vehicle, commercial differential GPS/INS platform is used for localization

module. Geometric model-free approach is employed for perception module
Ll
[Lee,20].
Four-Layer LIDAR | T Motion Planning PC
Range: 90 m CPU: i7/ 3.2 Ghz
Accuracy: 10 cm RAM: 16 GB
FOV : +/- 42.5 deg Storage: 512 GB
One-Layer LiDAR Micro-Autobox |1
\’ Range: 50 m P CPU: IBM PPC/900 Mhz
k- Accuracy: 3 cm &y = Memory: 16 MB
~ FOV : +/- 135 deg CAN Interface
FrontCamera 2 SICK LiDAR - Gateway ECU
FOV: 40 deg y .Range Taam TE e Four Channel Support
Imager Type: CMOS = FOV:t 4/=135deg o PP
Focus: 40 cm ~ inf Mid-range Radar Long-range Radar
- Range : 1~50m - Range : 1~100m
Radar (Mid / Long) - FOV:+/-45deg .~ FOV :+/- 10deg _ CAN-USB Interface
@ One Channel Support
Range: 60 / 174m
FOV : +/- 45 / 10deg
Range Rate: -100 to
+25m/s MDPS scc
- DGPS/INS platform 4 \
Accuracy: Tcm CEP IBEO LiDAR
Sampling Time: 0.1 s - Range : ~90m ';’.\ g

- FOV : +/- 45deg

Figure 2.4. Configuration of sensors, controllers, and actuators for the first

autonomous vehicle.
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FOV : +/- 42.5 deg
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Figure 2.5. Configuration of sensors, controllers, and actuators for the second

autonomous vehicle.
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Figure 2.6. Configuration of sensors, controllers, and actuators for the third

autonomous vehicle.
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Chapter 3 Stochastic Motion Prediction

The prediction is commonly used in autonomous driving, because

autonomous vehicles operate in a reciprocal manner with the surrounding

environment. The prediction is especially important because the lane change is

greatly influenced by the changing states between the vehicles. In this chapter,

avehicle and a prediction model are introduced concerning both the ego vehicle

and the surrounding vehicle. Prior to prediction, it is necessary to classify

vehicles. Then, virtual vehicles are created to correspond to the sensor limit.

Figure 3.1 shows the overall architecture of stochastic motion prediction.

I Upper Modules |

» Ego Vehicle States
« Surrounding Vehicles States

+ HD MAP

Stochastic Prediction

Vehicle Classification

0 veica (I i}
DD smsarg viwlD

[0 (o) = {1 (o) m]

Stochastic Prediction

!

Virtual Vehicle Generation

Ego Vehicle Prediction
D~ o NOX)

Best predict of position at t,

Surrounding Vehicle Prediction

7=y |7§l
t, t, -
‘ * Future time
%
8
likelihood ellipse

I Risk Assessment / Decision-Making / Motion Panning

Figure 3.1. Overall architecture of stochastic motion prediction.



3.1. Vehicle Classification

Before prediction, classification of surrounding vehicles is necessary. There
are various traffic participant on road. On highways, there are usually vehicle
and obstacle. In urban roads, there are more various traffic participant such as
vehicle, cyclist, pedestrian, motorcycle and obstacle. Figure 3.2 shows various

traffic participant in urban roads.

Moving [
Ego Vehicle -—> Vehicle —— %

Pedestrian

3 /A Obstacle Cyclist

_) | | 'parked Vehicle

Figure 3.2. Moving object classification criteria in urban roads.

Basically, the perception modules essentially give the states of the
surrounding vehicles (relative position, speed, heading, etc.). However, various
perception modules have different reliability of each state according to the
sensor and the perception module. In addition, perception modules have
different classification level of various traffic participant. The results of the
other two perception modules are shown in Figure 3.3. Both perception
modules use only LiDAR sensors. The former distinguishes between static and
dynamic obstacles [Lee,’20]. While the latter classifies objects in detail.

However, since the latter uses only LiDAR, not vision, the ability to classify
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objects is limited [Gao,"18].
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Figure 3.3. The results of the other two perception modules using LiDAR.
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In this research, all obstacles are considered surrounding vehicles as shown
Figure 3.4. This approach makes the proposed algorithm compatible with
various perception modules. In addition, the overall structure of the algorithm
is simplified. It also reduces the computational burden. However, this approach
is problematic because it considers non-vehicle objects, as vehicles. In
particular, the prediction of cyclist, motorcycle and pedestrian is incorrect. The
main issue in this study is lane keeping and lane change so the problem was
excluded.

In this way, the proposed algorithm considers all traffic participants as
surrounding vehicles. The information required for the proposed algorithm is
the states of surrounding vehicle and the space it occupies. States are essential
for prediction of surrounding vehicles. The occupied space is employed to

define the safety envelope to prevent collision.

Figure 3.4. Moving object classification criteria in urban roads.

In order to perform lane keeping and lane change, the surrounding vehicles
could be divided into three categories: in-lane, left lane and right lane. The
proposed algorithm performs target selection using a high-definition map and

absolute position of ego vehicle. Relative position of surrounding vehicles are
23



transformed to absolute position by coordinate transformation on the basis of
the absolute position of the ego vehicle, which is provided by the localization
module. Based on the high-definition map, the surrounding vehicles are
classified into three categories as shown in Figure 3.5. We make predictions
with interest only for vehicles in three categories, which helps to reduce the
calculation time. In particular, it has a great effect on perception modules with

many false positive detections.

NN

urrounding Vehicles

Left lane Vehicle

Figure 3.5. Moving object classification criteria in urban roads.
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3.2. Virtual Vehicle Generation for Perception

Limit

Since the current road is a mixed environment of normal vehicles and
autonomous vehicles, all vehicles cannot be equipped with V2V. Therefore,
autonomous vehicles perceive the surrounding environment based on local
sensors. Inevitably, autonomous vehicles have a cognitive range limit. The
perception range is influenced by blind spots as well as the sensor limits.

Subject to perception limit analysis is the vehicle equipped with the best
perception module among the three vehicles presented in Chapter 2. The
cognitive range of limitations for two reasons is shown in Figure 3.6. An
autonomous vehicle recognized the surrounding environment. The autonomous
vehicle was equipped with six 2D-LiDARs and a LiDAR processor. The blue
vehicle is an autonomous vehicle. Red points represent point clouds measured
by LiDAR sensors. Red vehicles represent the surrounding vehicles recognized
by the LiDAR processor. Although the point clouds of a vehicle 60 m ahead
were detected, the perception module did not identify the vehicle in Figure 3.6.
(a). Therefore, the limit of the perception module to stably recognize vehicles
was 60 m. Figure 3.6.(b) shows a situation in which the perception module
cannot detect vehicles closer than 60 m. This is because of the blind spot caused

by congested traffic.
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Figure 3.6. Perception range limitation.

In lane change situations, interactions with side vehicles are important. When
the ego vehicle conducts lane change, side vehicles might suddenly appear from
outside of the perception range. In this study, the concept of virtual targets has
been developed to cope with the limitation of cognitive range. The concept of
virtual targets is shown in Figure 3.7. Since it is assumed that vehicles always
exist at the perception limit, the virtual target can conduct decision-making and

motion planning, considering the perception limit.

-l Py fartest-rear Dy artesi-from ____ =
(2] = ; - 3] [
P rear virmat ‘- P, fron—virtal
Xrear Jim | X from Jim
W : Ego Vehicle (I Surrounding Vehicle [T+ Virtual Vehicle : Perception Range

Figure 3.7. A concept of virtual vehicles for safe motion planning in a lane

change situation.
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In the case of the open space, virtual targets are located on the sensor limit.
In congested traffic, the virtual targets are located in front of and behind the
recognized vehicles at the farthest distance. The velocity of the ego vehicle is
used as a condition for distinguishing two cases. The threshold velocity is
designed assuming that the vehicles travel with the general time gap (z, ) in the

recognition range [Moon,'08]. The threshold velocity is as follows:

Vyirtn = Xetim + Xeim ) / T (3.1)

vir th

where subscript vir,th is the threshold for distinguishing the two cases; the
subscript rlim is the limit of rear sensor range (-60 m); and the subscript
flim is the limit of front sensor range (60 m).

The position of virtual targets is decided in two cases and is as follows:

_ XrIim if Ve >Vvir,th
M x otherwise (3.2)

rear

St Xiear = maX[XrIim' Xist ~ T 'Ve]

rear

“ Xaim 1 Ve > Vi,
fvir — :
Xioe ~ Otherwise (3.3)

S.t Xgomt = MaX[X iy s Xgr + 7 - Vel
where t represents the current time; subscript rvir and fvir mean rear
(resp. front) virtual target; subscript rst and fst mean the rearmost (resp.
the foremost) virtual target on the target lane.
Since it is risky to assume that a fast vehicle is in the rear and a slow vehicle

is in front, the velocity of virtual targets is set as follows:

Voir = Minfvg, v,] (3.4)

rvir

Viir =V (3.5)

e
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3.3. Vehicle Model

Since a vehicle is the controlled system plant for autonomous driving, the
controlled model needs to reflect the real vehicle dynamic properties. There is
a trade-off between simple and detailed models. The vehicle model for the ego
vehicle is derived for a predictive control approach. The predictive control
approach used in this study needs numerous optimization procedures. Therefore,
decoupled control architecture is adopted in this dissertation. The decoupled
control architecture has an advantage for computational efficiency. Table 1
represents the average calculation time of SMPC using a coupled model in
[Carvalho,'14] and SMPC using the decouple control architecture. Even if two
controllers using longitudinal and lateral models are operated sequentially, the
approach of decouple control architecture has more than twice the computation

time advantage over the coupled model based controller.

Table 1. Average calculation time of SMPC according to vehicle models

Vehicle Model Calculation Time [ms]
Coupled Model 0.66085
Decoupled Lateral Model 0.18519
Decoupled Longitudinal Model 0.08971

The architecture also could consider the coupling dynamics, which the lateral
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motions are affected by the longitudinal velocity. The longitudinal velocity is
involved in the state space model of the lateral dynamics. The longitudinal
velocity changes with time and prediction step. Therefore, the longitudinal and
the lateral vehicle dynamics models are used separately.

The longitudinal dynamics model is designed to decide the desired
longitudinal acceleration. Both the longitudinal dynamics and the actuator
delay model are considered. The actuator’s dynamics is adopted according to
the first order delay model [Rajamani,'11]. The state-space model of the

longitudinal dynamics could be written as:

YIon = A10nYIon + BIonulon

01 © 0 (3.6)
st.A,=|0 O 1 |, B,=| 0
0 0 -1/7, 1/z,

where X, =[p V a]T and u,, =a,, are state and input, respectively;
a is longitudinal acceleration input, which is determined in the prediction time
horizon by the control part; and 7z, represents the actuator delay of
longitudinal acceleration.

The lateral dynamics model is designed by combining the bicycle model and
error dynamics with a central path of the lane [Falcone,'07, Enache,'09]. Figure
3.8 presents the lateral dynamics model. The state-space model of the lateral

dynamics could be written as:
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Ylat = A1a1txla1t + Blatulat + Flatp

[ 2C, +2C, 2Cl, -2C.I,
-mv —-mv
2C,1, -2Cl.  2C,1?+2C|?
st A, = ) gy 01|,
1 00
v 0 v 0]
2C, |
mv, 0
2C, 1, 0
B = | v Fa = v,
0 0 (3.7)
L 0 .

where X, =[ﬁ 7 e, ey]T , Uy =0; and p denotes state, input,
and disturbance, respectively; S isthetire-slipangle; y isthe yaw rate; e,
denotes the orientation error of the vehicle with respect to the center-line of the
lane; €, denotes the lateral position error with respect to the center-line of the
lane; O, denotes the desired steering angle, which is determined in the
prediction time horizon by the control part; o is the road curvature, C; and
C, are stiffness coefficient of the front (resp. rear) tire, I, and | are
distances between the front (resp. rear) axle and the center of gravity, and m
is an inertia of the vehicle around its yaw angle.

The tire stiffness is not constant because the target maneuver requires high
speed lane changing. Since the driving range of this study is mild driving
(a, <0.29 ), a steady-state tire model is appropriate. Lateral tire force is in the

linear tire region. In this context, the lateral tire stiffness is almost unchanged,

so the effect on variable speed could be neglected.
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Center line of the lane

Figure 3.8. Diagram of the lateral dynamics model.
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3.4. Prediction Model

The appropriate prediction contributes to decision-making, motion planning,
and control of autonomous driving. To enhance safety, given the potential
behavior of surrounding vehicles, it is essential to predict the ego vehicle and
the surrounding vehicles. The prediction model used in this dissertation is

shown in Figure 3.9.
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Figure 3.9. Architecture of stochastic prediction.

In an actual environment, diverse disturbance always exists due to reasons
such as model uncertainties, sensor noises and actuator delays. Therefore, a
stochastic uncertainty is considered to reflect disturbance effects. By the
stochastic predictions of the ego vehicle and the surrounding vehicle, the
standard deviation of position states could be reflected. As the model error or
estimation error increases, the standard deviation increases. Also, prediction

step is propagated, the standard deviation increases. Figure 3.10 shows
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uncertainty propagation of both ego vehicle and surrounding vehicle. This

could enhance the safety, which is harmed by various uncertainties.
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Figure 3.10. Uncertainty propagation as prediction step progresses.
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3.4.1. Prediction of ego vehicle
For the prediction of the ego vehicle, the decoupled vehicle model is applied
to the control input trajectory calculated by SMPC. The predicted model of the

ego vehicle is discretized as:
XIon (n + l) = Aonxlon (n) + BIonulon (n)
X

o (3.8)
at (n +1) = Aat (n)XIat (n) + Blat (n)ulat (n) + Flatp
where n is the prediction step. The prediction horizon is 2 s, and the

prediction sampling time () is 0.1 s. This means that the prediction sample
is20 (n=0,...,19).

The model error analysis of the ego vehicle is needed to reflect uncertainties.
The additive stochastic disturbance of the linear dynamic model is defined
using experimental data. The one-step prediction of the model is compared with

the measured data and can be written as:
€un (1) = R (1+2) = Ay X (1) ~ Bl () 59)
€zt (N) =Xy (N+1) = Ay (MX (N) = By (M, (1) = F o
where e represents the error with the prediction and the measurement.
Error is calculated under various circumstances, such as acceleration,
deceleration, lane change, and lane keeping. The disturbance covariance is

derived and can be denoted as:
Z,.on = diag(0.05, 0.2, 0.05)

. (3.10)
%, = diag(0.01, 0.01, 0.02, 0.05)

where X represents the error with the prediction and the measurement.
e could be propagated based on X, which is derived from a disturbance
analysis with various situations [Suh,'18]. Since consideration of error using

only disturbance analysis cannot reflect the present status of the subject vehicle,
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real-time error needs to be addressed. Moreover, real-time error, which reflects
the present vehicle motion, cannot be obtained in the general n-th step, except
for the first step. This is because the vehicle sensors and exterior sensors have
only present information. Therefore, the dissertation adopts the uncertainties
concept using the closed-loop paradigm [Gray,'13] and adaptive uncertainty
propagation as shown in Figure 3.11 [Suh,'17, Suh,'18]. The final outputs from
the adaptive uncertainty propagation are uncertainties of the position states as:
the longitudinal position standard deviation (o, ) and the lateral position
standard deviation (oey ). Uncertainties of the position states are propagated as

prediction steps.
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Figure 3.11. Conceptual diagram of adaptive uncertainty propagation.



3.4.2. Prediction of surrounding vehicle

It is essential to predict future states of the surrounding environment, to
enhance safety given the potential behavior of surrounding vehicles. Other
stochastic prediction model is employed about the surrounding vehicles. A
probabilistic prediction model is adopted for the prediction of the surrounding
vehicles. The prediction uses the states which are estimated in the perception
module. The prediction model is based on the probabilistic movement
characteristics of the surrounding vehicles. In a vehicle state predictor, the
vehicle’s reasonable position and its error covariance are predicted by EKF
using the desired yaw rate generated by the path-following model as the virtual
measurement [Kim,'14]. Therefore, the error covariance is propagated
according to the prediction step by EKF. The initial covariance matrix used in
the prediction utilizes the covariance matrix of the estimation result. The final
outputs from the probabilistic prediction model are shown in Figure 3.9 and as
follows: the relative longitudinal position from ego vehicle (x), the relative
lateral position from ego vehicle (Y ), the yaw angle (6 ), the longitudinal
velocity (v ), the longitudinal acceleration (a ), the longitudinal position
standard deviation (o, ), and the lateral position standard deviation (o, ). Like
the prediction of the ego vehicle, the prediction horizon is 2 s and the prediction
sampling time is 0.1 s.

There are probabilistic prediction methods that could perform better than
EKF-based prediction [Sun,'18, Hu,'19, Jeong,20a, Jeong,'20b]. Figure 3.12
represents concepts of EKF-based prediction and RNN-based prediction. The

EFK-based approach conducts prediction of lateral motion based on the
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assumption of lane keeping. And, the EFK-based approach conducts prediction
of longitudinal motion based on the assumption of decayed acceleration. The
RNN-based approach predicts the motion of surrounding vehicle using the
learning model. And, the RNN-based approach conducts integrated prediction
of lateral and longitudinal motions based on observation history.

However, in this dissertation, the EKF-based probabilistic prediction model
is adopted in consideration of vehicle implementation. The computation power
is important for the algorithm implementation of the vehicle. Figure 3.13 shows
the calculation time of the EKF-based prediction model. The total data included
6574 steps. The relative value is important because the absolute value of the
computation time depends on the CPU performance. As the number of vehicles
to be predicted increases, the calculation time increases. The calculation time
of the EKF-based model is compared with other data-driven prediction models.
These predictors were learned from the data of the perception module used in
this study [Jeong,'20a, Jeong,'20b]. One is the RNN-based method, which
predicts behavior through the accumulated trajectory of the target vehicle
[Jeong,'20a]. The other is a predictor, which combines RNN and EKF methods
to reduce the computational load [Jeong,'20b]. The predictor determines the
target lane of the vehicle through the accumulated trajectory and predicts
behavior to the target lane-based EKF method. Figure 3.14 shows the relative
computational ratio of the two models over the EKF-based model. Both
techniques need about 480- and 60-times more computation than the EKF-
based model, respectively. Heavy computation makes implementation difficult

because overtaking requires predicting multiple vehicles.
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(b) RNN-based prediction model.

Figure 3.12. Concept of two prediction model.
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Chapter 4 Stochastic Risk Assessment

Appropriate risk assessment is important as securing safety from the
surrounding obstacles is the top priority of autonomous vehicles. Various
indices have been proposed to express risk with surrounding vehicles: clearance
(c), time gap (TG,) time to collision (TTC), warning index (x), and margin to
collision (MTC). These are indices that take into account physical collisions
related to time and brake [Lee,'15]. In addition, there are probabilistic risk
assessment that considers the potential behavior of vehicles such as collision
probability [Kim,'17]. Probabilistic approaches have focused their research on
development of new concept of risk index and elaboration of estimation and
prediction steps with consideration of uncertainties.

Previous risk assessment approaches are insufficient to reflect driver data
characteristics. In this dissertation, human driving data are analyzed to derive
characteristics of human drivers. We defined the safety distance and reflected
driver characteristics to the distance. Especially, studies on the safety index in
lane change situations are insufficient. Excessive safety consideration reduces
the possibility of lane changes. On the other hand, mild safety consideration
increases the collision risk. The dissertation proposes safety distances as safety
indices, which better express the lane change situation based on the driving data.
And the collision risk analysis for the proposed safety distance was conducted.

The lane change safety distance was derived in the highway and urban
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environments. And the lane change yield intention has been developed to
complement each other's characteristics in these two environments. This
intention is essential for interactive lane change at low speed, the most difficult
situation in lane change. The intention inference module has been developed by
learning approach based on data in congested traffic. Finally, proposed yield
intention is used to complement the lane change safety distance.

Reflecting uncertainties as well as driver characteristics is important for
proper risk assessment. In this study, uncertainties is reflected in the proposed
safety distance. This enables the safety distance, which is safer as uncertainties
grows. In addition, a new collision probability was proposed by modifying the
previously developed collision probability [Kim,'17]. Figure 4.1 shows the

overall architecture of stochastic risk assessment.
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Figure 4.1. Overall architecture of stochastic risk assessment.
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4.1. Safety Distance based on Human Driving Data

The safety with surrounding vehicles could be represented by safety
distances as shown in Figure 4.2. In lane keeping situations, the ego vehicle
drives to keep a certain distance away with a preceding vehicle. The certain
distance is defined as a safe distance in lane keeping situations ( SD,, ).
Meanwhile, vehicles located in the side lane are important in lane change
situation. These vehicles are called as the side vehicles. A lane change
maneuver is permitted when the distance with the ego vehicle and the side
vehicle is larger than a certain distance. The certain distance is defined as a safe

distance on lane change situations (SD, .. ).

SD, {d
Ego Vehicie Preceding Vehicle

(@) In the lane keeping situation.

. SD,;¢ SD;c
LC Possible Side Vehicle LC Impossible

Ego Vehicle Ego Vehicle

(b) In the lane change situation.

Figure 4.2. Concept of safety distances.
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4.1.1. Lane Keeping Safety Distance based on Driving Data
SD, is developed based on previous studies. In previous studies, the
steady-state distance maintained by the ego vehicle when following the
preceding vehicle has been investigated. Constant time-gap (CTG) policy and
constant clearance policy have received the most attention in spacing policies
for following a preceding vehicle [Moon,'08, Sayer,'97]. As a result of
analyzing actual driver data, SD,, could be well represented by a first-order
regression in respect of velocity [Moon,'08]. Therefore, SD,, is defined by
a linear coefficient of velocity and a zero-velocity clearance as:
SD\k =Vego *Tik +Cik 4.1)
where subscript €go means the ego vehicle, v is the longitudinal velocity;
7, Is the linear coefficient of lane keeping; and c  is the zero-speed
clearance of lane keeping.

Figure 4.3 shows all the steady-state data collected from 125 drivers and a
linear regression on a speed-clearance domain. The zero-speed clearance, c0,
and the linear coefficient, 1, were 1.98m and 1.36s, respectively. The
parameters of SD,, are determined by previous research based on driving

data [Moon,'08].
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Figure 4.3. Steady-state following data collected from 125 driver test data and

the linear regression.

Table 2. Parameters of the lane keeping safe distance based on human

driving data in preceding vehicle following situation

Symbol Value Symbol Value

Tk 1.36 [S] Cik 4 [m]
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4.1.2. Lane Change Safety Distance based on Highway Driving Data
Unlike lane keeping situations, the relative velocity between the ego vehicle
and the side vehicle is very important in lane change situations [Do,'17]. A
larger distance is required when the velocity of the rear vehicle is faster than
that of the front vehicle. In this case, the distance about the relative velocity has
to be added to the safety distance. In the opposite case, only a minimum
clearance needs to be considered. Therefore, SD,. is determined depending
on whether the ego vehicle is forward or behind the side vehicle. SD,. is the
sum of the relative velocity term and the minimum clearance term. The
minimum clearance varies by the velocity of rear vehicle. SD, . is defined as:
max[(vego ~Vye): O]-TLCV1 + max[vego “Tican ch], if X >0

SD,. =
max[(vSide Ve ) OJ Ty +MaX[ Vg, Ty, G |, Otherwise

(4.2)
where subscript side means the vehicle on the side lane; x is the
longitudinal relative position from the ego vehicle; 7., isthe time gap for the
relative velocity of lane change; 7., is the time gap for the minimum
clearance of lane change; and C,. is the minimum clearance of lane change.
In the lane change situation, there was no study that calculated the safety
distance based on the human driving data, so lane changing driving data was
collected and analyzed. Driving data has been collected using two test vehicle
described in Chapter 2. In highway, first platform is utilized for collection of
driving data. In urban, second platform is utilized for collection of driving data.
The test vehicles are used for both collecting data and implementing the

proposed algorithm. On the highway, lane change driving has been performed
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at a speed of 60 km/h to 120 km/h. On the urban roads, lane change driving has
been performed at a speed of 0 km/h to 60 km/h.

First, the description of the highway driving data is as follows. The total
driving distance is approximately 1500 km on highways for measuring data.
Driving data was collected on a total of 6 highways with 12 drivers. The
travelled roads are 3, 4 or 5 lanes. For data accuracy, data collection was
conducted in well-appointed roads on a clear day. Driving roads are shown in
Figure 4.4.

Figure 4.5 shows highway driving data in lane change situations where the
ego vehicle changes lane to the front or rear of the side vehicle. Because first
autonomous vehicle platform was used in urban driving, a sensor fusion
algorithm, which uses radars and LiDARSs, is adopted for detection and tracking
of surrounding vehicles. The position and the velocity are estimated by the
sensor fusion algorithm. One connected line represents one case of the lane
change. Both ends of the each line are labelled with circles and crosses, which
indicate start and end of lane change, respectively. Since the data is represented
by lines from the start to the end of the lane change, Figure 4.5 presents the
velocity changes of the ego vehicle and the side vehicles. This means
interactions in the case of a lane change. The interactions express the safety
control between the ego vehicle and the side vehicle during lane change

maneuvers.
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(@) lljik-Jonam-Anhyeon junction.
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(b) The second Seoul-Incheon linking highway.
Figure 4.4. Highway Driving Data Acquisition Route.
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Figure 4.5. Driving data in highway lane change situation.
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The above driving data is employed for deciding parameters of SD, . From
the driving data, €. could be setto 10 [m] in Figure 4.5 (a). 7., could be
set to 0.94 [s] by slope of the right half plane in Figure 4.5 (). 7., could be
setto 0.48 [s] in Figure 4.5 (b). The parameters should be set conservatively for
driver acceptance and collision avoidance. Therefore, the parameters are
decided with a little margin from the boundary of the driving data. Table 3

presents the determined parameters.

Table 3. Parameters of the lane change safe distance based human

driving data on highway driving

Symbol Value Symbol Value
Tica 1[s] Tice2 0.5 [s]
Cle 12 [m]
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4.1.3. Lane Change Safety Distance based on Urban Driving Data

Second, the description of the urban driving data is as follows. The total
driving distance is approximately 150 km on urban roads for measuring data.
Driving data was collected on diverse urban roads with 12 drivers. The travelled
roads are 2, 3 or 4 lanes. For data accuracy, data collection was conducted in

well-appointed roads on a clear day. Driving roads are shown in Figure 4.6.

Figure 4.6. Urban Driving Data Acquisition Route.

Figure 4.7 shows urban driving data in lane change situations where the ego
vehicle changes lane to the front or rear of the side vehicle. Because second
autonomous vehicle platform was used in urban driving, commercial LiDAR
processor is adopted for detection and tracking of surrounding vehicles. The
position and the velocity are estimated by the commercial LiDAR processor. In
urban roads, lane change under 60 km/h was carried out, and lane changes were

mainly performed in a congested traffic situation.
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Figure 4.7. Driving data in urban lane change situation.
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The above driving data is employed for deciding parameters of SD, . From
the driving data, C, . could be setto 1.4 [m] in Figure 4.7 (a). 7., could be
set to 1.65 [s] by slope of the right half plane in Figure 4.7 (). 7., could be
setto 0.38 [s] in Figure 4.7 (b). The parameters should be set conservatively for
driver acceptance and collision avoidance. Therefore, the parameters are
decided with a little margin from the boundary of the driving data. Table 4

presents the determined parameters.

Table 4. Parameters of the lane change safe distance based human

driving data on urban driving

Symbol Value Symbol Value
z-|_<:,1 165 [S] T|_c,2 04 [S]
Cic 1.4 [m]
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4.1.4. Kinematic Analysis of Lane Change Safety Distance and Stochastic

Prediction based Safety Distance

Since the proposed SD, .. is derived by the driving data, kinematic analysis
is need. In a lane change situation in which the rear vehicle is faster than the
front vehicle, the rear vehicle needs to decelerate for collision avoidance. As
7c, Is aterm about the relative velocity, the term is associated with collision
avoidance. On the other hand, 7., and C . are terms which represent the
marginal safety. Therefore, 7., isexamined for investigation about collision
avoidance. Since 7., based on highway driving data is smaller, we analyzed
the safety level based on highway driving data. The analysis situation is when
the slow ego vehicle changes lane and the fast side vehicle is approaching from
the rear. As the rear vehicle responds and decelerates, the remaining distance is

as follows:

DCA = (Vside _Vego) ' tCA - (Vside - Vego)2 / (ZaCA) (43)

where 1., is response delay of the rear vehicle; a., is deceleration of the
rear vehicle; and two values are set as 0.3 [s] and -4 [m/s"2], respectively
[Ising,'12].

In this situation, the safety distance about 7 ., is as follows:
SDicca = (Vego _Vside) "Tica (4.4)
If Egn. (3) equals Eqn. (4), the relative velocity is derived as follows:
Vsige _Vego = (TLC,l - tresp) : (2adecel) (45)
The relative speed means the maximum velocity difference at which the
collision could be avoided. The maximum velocity difference is 20.16 [km/h].
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Since this velocity difference is sufficiently large and the marginal safety
distance also exists, the proposed SD, . is appropriate about both the driver
acceptance and the safety.

Through these processes, we proposed the safety distances considering both
driver acceptance and collision safety. In addition to this, uncertainties must be
considered for more advanced autonomous driving. In fact, there are various
uncertainties for implementation of an autonomous vehicle. In Chapter 3.4
described above, the stochastic predictions are presented reflecting various
uncertainties. By the stochastic predictions of the ego vehicle and the
surrounding vehicle, the safety distances could reflect the standard deviation of
position states. As the model error or estimation error increases, the safety
distance increases. Also, prediction step is propagated, the safety distance
increases. The proposed prediction models involve uncertainty propagation of
both ego vehicle and surrounding vehicle. This could enhance the safety, which
is harmed by various uncertainties. The driving data based safety distances
(equations (4.1), (4.2)) can be rewritten as the stochastic prediction based safety

distances (equations. (4.6), (4.7)).

SDLK (n) = Vego (n) Tk tCk +0Px (n) + Oy, preceding (n) (46)
SD SDLC,l(n)! if Xside(n) >0
()= SD,.,(n),  otherwise

SDyc,(n) = maX[(vego (N) = Vgiee (M), 0] Tiq + MaX[Vogy () 7 5, Cic |
+0, (M) +0, 4 (N) 4.7)

SD¢ ,(n) = max|:(vside (N) = Vego (n))v O] Tiea t max[vside ()70 Cic ]

+to, (N) + 0 gige (N)
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4.2. Lane Change Yield Inference using LSTM-

based RNN

In this research, the safety distance for lane change was calculated based on
driver data. Driving data in highway and urban roads was analyzed. The high-
speed lane change is performed in highway driving data. The low-speed lane
change is performed in urban driving data. Basically, the safety distance based
on highway driving data is good to improve safety performance. This is because
it adopts a safer distance than the urban situation. However, when using only a
safe distance based on highway data, the following problems exist. As shown
in Figure 4.8, in a congested traffic situation, there is no space for a lane change
due to overlapping safety distances. In this case, it is necessary to make space
by transmitting the intention to change with the appropriate lane. There are two
ways to transmit the intention for lane change. The first is to activate the turn
signal. This is a basic method that is always performed when a lane change
demand is activated. The second is to convey the intention for lane change
through slight lateral behavior. To transmit the intention for lane change to the
side rear vehicle on target lane, the ego vehicle can drive a little closer to the
target lane. This lateral behavior is referred to as ‘traffic pressure’ in this

research.

55



Selected Space

1] —oE o @B D D o 1 (m)

1] (oI
]
Deceleration ! ) =
= @ o @B ) (=) e 10
——
Traffic Pressure Lane Change

Figure 4.8. The concept of the traffic pressure.

When the intention is transmitted to side rear vehicle, the side rear vehicle
with a yield intention secures space for the ego vehicle through deceleration.
At this time, if the safe distance based on highway data is used, it is too
conservative. It takes too long until the ego vehicle judges that there is space
for lane change as shown Figure 4.9 (a). This problem could be solved by using
the safety distance based on urban data, but the safety distance based on urban
data is inherently dangerous because it is not too conservative as shown Figure
4.9 (b). Another problem with the constant safe distance is follows. As shown
in Figure 4.9 (c), a side rear vehicle with the yield intention could maintain a
constant distance on the boundary of safety distance. In this case, the driving
mode decision for lane change may cause chattering phenomenon. In addition,
it could be judged that it is impossible to change the lane even if the side rear

vehicle have yield intention.
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Figure 4.9. Problems by constant parameters of lane change safety distance.

Therefore, this study introduces the concept of lane change yield intention in
order to supplement the safety distance. The yield intention in the lane change
situation has not been studied much, but several yield intentions have been
developed for the autonomous driving. Previously, the yield intention has been
researched on unsignalized intersection and merging sections. All of these
studies have treated the collision-based yield intention related to longitudinal
behavior. The lane change yield intention in this study is the collision-based
intention related to more complex longitudinal and lateral integration behavior.
Also, previous studies use the trend of acceleration or velocity change for the
yield intention inference. Figure 4.10 shows a situation where acceleration is

used for yield intention inference. It is impossible to infer intention solely from
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acceleration or velocity tendencies. In particular, it is not V2V communication
in an actual situation, but it estimates the state of surrounding vehicles using a
local sensor. In this situation, it is almost impossible to accurately estimate the
acceleration, so there is a problem in inferring the yield intention by methods
in previous researches.

In the study, lane change driving data on urban roads was used to make the
yield intention inference model. The driving data of the urban situation is a low
speed situation of 60 km/h or less. Most of the data is under congested traffic.
It is difficult to use rule-based method to make the yield intention inference
model. This is because lane change in congested traffic is a complex situation
related to longitudinal and lateral integration behavior. As a results, a learning-
based approach has been adopted rather than a rule-based approach to make the
yield intention inference model. And SD,. is supplemented based on the

inferred yield intention.
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Figure 4.10. The acceleration in vehicle where no tendency is found.
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4.2.1. Dataset Selection

We used the collected data for urban lane change distance. We collected the
data on surrounding vehicle tracks from second autonomous vehicle platform
which adopts commercial LiDAR processor for detection and tracking of
surrounding vehicles. The data collection environment is described in Chapter
4.1.3. The data was collected in a low speed situation of less than 60kph on the
urban roads, and most are data of congested traffic.

In Chapter 4.1.3, only data that successfully changed lanes are presented, but
data that failed to change lanes is also required for inferring yield intention. The
driver transmitted the intention of lane change to the side-rear vehicle through
the turn signals and appropriate traffic pressure. The case where the lane change
was successful means that the side-rear vehicle had yield intention. On the other
hand, the case where the lane change was failed means that the side-rear vehicle
did not have yield intention. Figure 4.11 represents the classification of yield &

non-yield cases.

Deceleration Acceleration
D oo ©D OB 0D

1 (o]
Fail Lane Change

{Yield Case ) { Non-Yield Case )

Success Lane Change

Figure 4.11. Classification of yield & non-yield cases.

In conclusion, yield intention data was collected for the side-rear vehicle.

The moment when there was a request to change lanes was labeled through the

60



turn signal information. Finally, the following data was collected and used for

learning. Dataset for training and validation is illustrated in Table 5.

Table 5. Dataset for Training and Validation

Y+N Yield Non-Yield
Total 9357 6830 2527
Training 8166 5986 2180
Validation 1000 740 260
Test 191 104 87
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4.2.2. Network Architecture

Yield intention is continuous based on the interaction of vehicles; in other
words, the intention of the vehicle depends on the sequential previous
interactions. Previous motion can be measured using the perception module on
ego vehicle, but it is difficult to infer surrounding vehicle’s driver intention
based on rules. Particularly on interactive lane change in congested traffic, it is
difficult to apply conventional maneuver-based approaches to infer driver
intention. Therefore, we propose a data-driven approach to inter lane change
intention based on previous interactions of the ego vehicle and the side rear
vehicle. The intention inference module based on LSTM-RNN architecture that
we propose in this work used only information collected from the perception
module on an ego vehicle.

An RNN is an artificial neural network that is appropriate for use with
sequential data such as speech or text recognition written in natural language.
In addition, RNNs can be used with time series data, where the pattern of the
data depends on the time flow. The recurrence in RNNSs allows for modeling
the correlations between consecutive data points in a sequence. This feature is
realized by having the same network for each time step and passing activations
to a successor [Goodfellow,'16].

The RNN can contain feedback loops, which allows activations to flow
interactively in the loop. This feature allows for processing the sequences of
inputs by persisting the activations over multiple steps. In other words, the
network can memorize the previous information and predict the future after

specific steps by applying the same network iteratively. Figure 4.12 (a) depicts
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the structure of the RNN used in this study for an observation horizon h. As the
figure shows, the activations in each step are passed to the same network of the
next time step and updated with new input data. This means that one set of
weights of the RNN is repeated over the prediction horizon by matching the

formats of the input sequences and output class.

The inference step using the proposed RNN is conceptually expressed in
Figure 4.12 (b) with LSTM used as a network cell. LSTM can avoid the
vanishing gradient problem by making the error flow backward through
unlimited numbers of virtual layers. This property prevents the error from
increasing or decaying over time, which would make the network train
inappropriately [Hochreiter,'97].

Before searching the optimal network configuration, inputs need to be
decided. Yield intentions can basically be inferred from the longitudinal
behavior of the side-rear vehicle [Dong,'17, Wei,'13]. However, it is possible to
consider the lateral behavior as the characteristic interaction appears in the
congested traffic lane change. Variables for inference are shown in Figure 4.13.
We defined input candidates containing meaning of variables for inference as

follows:
Py = Pyego ~ Pxotar
py = py,ego - py,tar
Vier = Vego — Viar

TGtar = pX /V

tar

(4.8)
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Figure 4.12. Diagram of the proposed LSTM-RNN for yield intention inference.
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Figure 4.13. Variables for yield intention inference of lane change.

A comparison has been made between inputs considering only the
longitudinal elements and inputs considering the longitudinal and lateral

and TG

tar

and TG

tar

elements. In the former, we defined p,, V as inputs for

rel

learning. In the latter, we defined p,, p,, Vv as inputs for

rel
learning. The comparison result is represented in Figure 4.14. For the same
LSTM-based RNN network architecture, 4 inputs considering longitudinal and
lateral motions show better performance than 3 inputs considering only
longitudinal motions. In the network with 4 inputs, both mean square error
(MSE) and calculation time are smaller. In conclusion, when inferring yield
intention, it is good to consider lateral motions as well.

We determined the optimal network configuration by comparing the several
network configurations. In general, when searching for an optimal network,
error is defined and the network with the smallest error is selected. However,
the network of this study cannot define error as the network is for yield intention
inference. Therefore, the optimal network has been determined by considering
the following factors: the purpose of yield intention inference, the MSE and

calculation time. Networks that are too data-biased do not match the intention

inference. Therefore, a network with a low MSE and well suited to the purpose
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of intention inference is selected. And since the network should be implemented
to the actual vehicle, it was also considered whether it has an appropriate
calculation time. Network candidates who have progressed several learning are
as shown in Figure 4.15. The finally selected network learning result is shown

in Figure 4.16.
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(a) Learning result of network with three inputs (p,, V., TG, ).
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Figure 4.14. Comparison of LSTM-RNN learning results for input set selection.
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Figure 4.15. Unselected network candidates who have progressed learning.

The proposed network architecture is represented in Figure 4.17. Sequential
four inputs are used for the network. Observation horizon is 2 seconds and
sampling time is 0.1 seconds. The network two LSTM layers with drop-out,
one fully connected layer and one softmax layer. Softmax layer makes the yield

intention a probability value between 0 and 1.
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Figure 4.16. The proposed network selection for yield intention inference.
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Figure 4.17. The proposed network architecture for yield intention inference.
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4.2.3. Yield Intention Inference based Safety Distance

Yield intention developed in this study is used to complement the lane
change safety distance. There is a limit to using yield intention alone. Since
yield intention is expressed as a probability, it is not meaningful to use it in
decision-making, motion planning and control for autonomous vehicles.
Therefore, this intention is used as the weight for the two parameters of the lane
change safety distance presented in this study.

In this study, the lane change safety distance is derived based on driver data.
Data collection was conducted in two environments. One is based on data
acquired from the highway as described in Chapter 4.1.2. The other is based on
data acquired from the urban roads as described in Chapter 4.1.3. In the former,
lane changes were made at 60~120 km/h, and the latter were a lane changes at
0~60 km/h. Therefore, the former is named the progressive lane change
distance and the latter is named the conservative lane change distance. Two
kinds of parameters are complemented with the yield intention as shown Figure
4.18. Two kinds of parameters are arranged in Table 6. The proposed lane

change safety distance based yield intention is as follows:

max[(vego - Vside)’ O:| : TLC,l + max[vego ' 2-LC,Z’ CLc:|’ If Xside > O

max[(vSide ~Vego )s 0} Tieqt max[vsi g Tic2r Cle ] otherwise

Lc =
St. 7¢,= Iyield “Ticap T (- Iyield ) Ticice

Tico = lyew " Ticap + (- I ieta ) Ticae
Cc= Iyield Ccpt - Iyield)'CLC,c
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Iyie1a ¢ Yield Inference

Ticie = 18

Trea

e

Tre2

7\

Trczp = 0.45

Iyie1q * Yield Inference

Ticzc = 0.58

Cre

N

Iyie1q : Yield Inference

Crep=1.4m

Crce=12m

- Conservative Parameter: 7,¢ .= 15, Tycz = 0.55,Cjc = 12m.

- Progressive Parameter : 7,¢ 1, = 1.655, Tyc2, = 0.45, Cicp = 1.4m.

Figure 4.18. The lane change safety distance based on the yield intention.

Table 6. Parameters of the lane change safe distance based human

driving data on highway and urban driving

Symbol Value Symbol Value
Ticie 1[s] Ticap 1.65 [s]
Ticac 0.5 [s] Ticap 0.4 [s]

Cucee 12 [m] Cicp 1.4 [m]
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4.3. Collision Probability based on Stochastic

Particle

The most important purpose of autonomous vehicles is collision avoidance.
The risk of collision will have to be assessed continuously. Therefore, it is
necessary to assess an appropriate collision by using the motion prediction
information of the ego vehicle and surrounding vehicle. When predicting
collisions of vehicles, the size of the vehicle must be considered. Figure 4.19
shows a situation of vehicle collision. As a result of considering the future
behavior of the ego vehicle, a collision does not occur for the A vehicle, but a
collision for the B vehicle. Therefore, it is sufficient to proceed with the control
to prevent collision only for the B vehicle. If the control for preventing collision
is also performed for the A vehicle, the unnecessary deceleration is too frequent.
However, it is not ideal as the above in an actual autonomous driving situation.
There are several uncertainties in predicting correct collision. Therefore, it is
necessary to assess collision risks considering various uncertainties. Since the
stochastic prediction is conducted considering various uncertainties in this

study, it is necessary to fully utilize this prediction information.

Ego Vehicle

Vehicle ‘A’ Vehicle ‘B’

Figure 4.19. Collision situation.
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4.3.1. Conventional Collision Probability

The collision probability has been developed to express the risk of collision
between vehicles [Kim,'17]. This probability reflects the stochastic motions of
vehicles generated by various uncertainties. In this previous study, the ego
vehicle is the host vehicle and surrounding vehicles are traffic participant. The
concepts of probabilistic collision risk are summarized and presented in Figure
4.20. As the beginning of the collision probability estimation, we randomly
generate a given number N state vectors based on the given initial probability
density function from the prediction algorithm. The parameter N could be
chosen by a designer as a trade-off between computational effort and collision
probability approximation accuracy. The state vectors are called particles and

denoted as:

o _ km[p] + ﬁ’hos‘t[p] Fo(i=1--- 410
2P] { M{ ﬁn[p]ﬂ (1=t (10

%, [p]

where the subscript p is the predictive time step; x.. is the predicted

position and orientation state vector of the host vehicle; x, is the predicted

pose state vector of n -th traffic participant; P denotes the appropriate size of
the covariance matrix of each predicted state; r is a white noise random
vector of the proper size.

For every possible pair of ego and one of traffic participants, we investigate
whether the vehicle bodies of the traffic participant can intersect the ego vehicle

at each predicted time step. To determine the body intersection, a body-shaped

diagram is introduced. Algorithm 1 shows a pseudo code of the algorithm.
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(a) Environment description: road, host vehicle, and multi-traffic-participant.
at time step = p

icipant 1
Host Vehicle particip
Reachable Set of participant 2
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Participant 2

(b) Prediction of multi-traffic pose and their covariance at predictive time

step, p. Reachable set of each participant as stochastic distribution.
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(c) A collision case example of the generated N particles and its two vehicle-

body-shaped-polygons. Intersection between two polygons.
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(d) A non-collision case example of the generated N particles and its two

vehicle-body-shaped-polygons.

Figure 4.20. Procedure and concept of conventional collision probability.
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Algorithm 1 : Conventional Collision Probability Calculation

1: Inputs: Predicted states and its covariance within a pre-defined
prediction horizon for the ego vehicle and all tracked surrounding
vehicles

2. for all tracked surrounding vehicles, n=1---,N

target

3: for every predictive time step, p=0,-,N,

4: Initialize collision count with participant n at predictive time
step p, C.Pcnt,=0

5: From the given predicted state and covariance, randomly
generate N particles, x.[p]

6: for every particle, i=1-N

7: Generate two vehicle-body-shaped-polygons

8: Check if the vehicle bodies can be possibly intersected

9: if intersection is detected, C.Pent!=C.Pent!+1

10: else, CPcnti=CPent!

11: Approximate collision probability with participant n at
predictive time step p

12: i

- C.P.cnt%

13: end

14: end

15: end
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4.3.2. Proposed Collision Probability to select target for safety control

The conventional collision probability is suitable for risk assessment, but
there is a problem in reflecting the probability in the actual autonomous driving
control. Since there is no physical meaning of this probability, it is ambiguous
to keep the autonomous vehicle within a certain probability value. Because of
the problem of the conventional collision probability, the safety distance based
on driving data is used directly in decision-making and motion planning of
autonomous driving in this study. Meanwhile, the collision probability is used
for checking whether the surrounding vehicle is targeted for safety control.
Therefore, the conventional collision probability was modified to develop a
proposed collision probability to meet this strategy.

The proposed collision probability does not generate particles for both the
ego vehicle and the surrounding vehicle. The future trajectory of the ego vehicle
is accurate because it is controllable. As the beginning of the proposed collision
probability estimation, a reachable set of ego vehicle is calculated passes

through the future trajectory of the ego vehicle.

If only the range of prediction horizon (t, = 2sec) is used, the reachable set
is rather short for collision checking. Therefore, reachable set is calculated by
dividing two horizons. The first horizon is the prediction horizon (0~t,). As
described in Chapter 3.4.1, the ego vehicle is predicted through MPC and
uncertainty is propagated. The second horizon is the collision check horizon
(t, ~tep ). Itis assumed that from the last position of the first horizon, the road
path is passed horizontally. The uncertainty of the second horizon is assumed

to be the last uncertainty of the first horizon. If the uncertainty continues to
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grow until too far into the future, uncertainty consideration will be excessive.
And since the second horizon assumes that only the road geometry is followed,
light calculation is possible. The reachable set of ego vehicle is shown in Figure

4.21.

Ol e
r 4 N
WFH (A= AT T
g (=S Ul ]

(a) Lane keeping situation to represent two horizon: the prediction horizon

and the collision check horizon.

] e s SO o n N e
(5[5 5 S | S0

(b) Lane change situation to represent road geometry following in the
collision check horizon.

Figure 4.21. Reachable set of ego vehicle.

About surrounding vehicles, we randomly generate a given number N state
vectors based on the given initial probability density function from the
prediction algorithm. The reachable set of surrounding vehicle is shown in
Figure 4.22. The one moment of reachable set is calculated. The state vectors
are called particles and denoted as.
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Xy, =R o +4/P, - F (i=1-+N) 4.11)

where the subscript p is the predictive time step; X is the predicted
position and orientation state vector of n-th surrounding vehicle; P denotes
the appropriate size of the covariance matrix of each predicted state; © is a

white noise random vector of the proper size.

Cut-in Vehicle
Lane Keeping Vehicle

Parked Vehicle@ m

(a) Diverse surrounding vehicles

Particle

(b) Particles generation of surrounding vehicle.

Figure 4.22. Reachable set of surrounding vehicles.

Finally, the proposed collision probability is estimated as the ratio of
overlapping particles among the whole particles. The conventional collision
probability generates particles of ego vehicle and surrounding vehicle, causing
heavy computation. On the other hand, since the proposed collision probability

generates particle only for surrounding vehicle, the calculation time is small.
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This gives the advantage of computational power considering that the collision
probability is estimated in every prediction step. The estimation examples of
the proposed collision probability is shown in Figure 4.23. Figure 4.24
represents the conceptual diagram for estimated collision probability at each

step in prediction horizon. Algorithm 2 shows a pseudo code of the algorithm.

1o o R il P2

{Collision case example in Lane Keeping> CP=100%

(a) Diverse surrounding vehicles

= T = T

{Collision case example in overtaking> {Non-collision case example in overtaking> CP=15%

(b) Particles generation of surrounding vehicle.

Figure 4.23. Estimation examples of the proposed collision probability.

- Prediction first step - Prediction last step

k=1 CP()=15% k=N, CP(N,) =100%

Prediction Horizon

Figure 4.24. Conceptual diagram for estimated collision probability at each step

in prediction horizon.
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Algorithm 2 : Proposed Collision Probability Calculation

1:

Y I N VS B ]

10:
11:
12:

13:

14:

15:
16:

Inputs: Predicted states and its covariance within a pre-defined

prediction horizon for the ego vehicle and all tracked surrounding

vehicles

Calculate reachable set of ego vehicle

for all tracked surrounding vehicles, n=1---,N

for every predictive time step, p=0,---,N

end

end

target

Initialize collision count with participant n at predictive time
step p, C.Pcnt,=0
From the given predicted state and covariance, randomly
generate N particles, x.[p]
for every particle, i=1-N
Generate one vehicle-body-shaped-polygons
Check if the vehicle bodies can be possibly intersected

with reachable set of ego vehicle

if intersection is detected, C.Pent!=C.Pent!+1

else, CPcnti=CPent!

Approximate collision probability with participant n at

predictive time step p

i C.P.Cnty
CP. = A

end
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Chapter 5 Decision-Making

When driving on the road, an appropriate lane change is necessary for various
reasons. The reasons for the lane change are summarized as two cases:
discretionary and mandatory [Toledo,'03, Toledo,'07a, Kesting,'07]. Firstly, the
ego vehicle performs a Discretionary Lane Change (DLC) when it is difficult
to maintain its original lane with a pre-set desired velocity. This may include
most situations, such as an overtaking situation in which a preceding vehicle is
too slow compared to an ego vehicle. Secondly, a Mandatory Lane Change
(MLC) is required due to a lane drop or yielding to traffic near a ramp. The lane
change is affected by road environments of a driving route. Reasons of lane

change as shown in Figure 5.1.

1) Discretionary Lane Change (DLC) 2) Mandatory Lane Change (MLC)

: Overtaking (speediness & safety) : Merge / Split (spatial & time constraints)

Figure 5.1. Reasons of lane change.
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When the lane change is demanded by MLC and DLC, the suitable lane
change behavior needs to be selected. A passive (wait) lane change model have
limitations in handling diverse lane change situations. Therefore, an active
(accelerate/decelerate) lane change model is required to cope with both lane
changes reasons (DLC/MLC). For this, an appropriate decision-making is

essential. Overall architecture of decision-making is shown in Figure 5.2.

I Upper Modules | | Stochastic Prediction | | Risk Assessment I

+ HD MAP « Predicted States « Safety Distance
« Collision Probability
e e T T T T

Decision-Making

Lane Change Availability Check & Lane Change Target Space Check

Desired Spagens DESired Spice Velociy

R e M= |} s AR s B

|
Jj=1 | =2 J=
[

1 |
1 I
1 I
1 I
|
: : S 7 ! = h
earim X ot
. § Space Ego Surrouding Virtual I
: SDye LC Possivte Space | congidares WD yppire WDy 0 yepicte I
1 |
1 1 I
Il Lane Change Demand Check Lane Change Possibility Check :
I
1 |
| - = Lane Change or Not ? I 8Dy EP: 8D, . . I
I 1[pm) LC Possible Side Vehicle LC Impossible | |
I [1(om] ] Ego Vehicle Ego Vehicle |
1 Slow Vehicle |
1 I
I

I Motion Planning & Motion Control

Figure 5.2. Overall architecture of decision-making.

Advanced overtaking requires active lane change, not passive lane change
[Do,'17]. For active lane-change maneuver, three driving modes are devised:

lane-keeping mode (LK); lane change mode (LC); and lane-keeping mode for
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lane change (LKC). A flow chart of the driving mode decision is shown in
Figure 5.3. During lane-keeping mode, the ego vehicle follows v, or a
preceding vehicle. A lane change is necessary as the reason of lane change
exists like MLC or DLC. For lane change decisions, three concepts about lane
change are developed: availability, demand, and possibility. After checking
three concepts, the driving mode is determined. And lane change target space
is decided in this dissertation. This plays a key role for demand checking and
motion planning of active lane change. All the processes in the flow chart are
based on relay concept. This is to prevent chattering of check activation and

mode switch.

-

vy v

Lane Keeping mode (LK) J

¥
Lane Change Availability Check &

Lane Change Target Space Decision
|

Lane Change Demand Check

Yes
I—<Lane Change Possibility Chec>|
Yes No
( Lane Change mode (L.C) } ( L;‘(:lrelljl t:leepicﬂhgal:gge (LKC)J

LC Finish!

Figure 5.3. Flow chart of driving mode decision for lane change.
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5.1. Lane Change Availability Check and Target

Space Decision

The first step in determining the driving mode for lane change is to determine
whether the lanes on both side can be essentially lane-changeable. This is
affected by the road environment. It is important how many lanes on road and
the lane where ego vehicle is located. To determine this, the proposed algorithm
uses localization information of the upper module. Using the high-definition
map information, the ego vehicle checks if both lanes are lane-changeable as
shown in Figure 5.4. In Figure 5.4, left lane is only available for lane change.
On only available lane, virtual vehicles are created as shown in Figure 5.5,

which helps to reduce unnecessary calculation.

=D
Ego Vehicle @

Figure 5.4. A Concept of lane change availability check.

CD 5D D, (@D
Virtual Vehicle Virtual Vehicle

Ego Vehicle

Figure 5.5. Virtual vehicle creation on only available lane.
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The second step in determining the driving mode for lane changes is to check
the condition of side vehicles on the available lane. A concept of 'target space'
has been developed in this dissertation. Target space means the space to enter
for lane change between the vehicles on the target lane. Before deciding the
target space, candidates of the target space are identified. As shown in Figure
5.6, space candidates for lane changes could be yielded by applying SD,. to
the virtual vehicles and detected vehicles in the target lane. One side vehicle
makes two space candidates. Each space candidate has a “ j’ index. The states
of each space, such as its position and velocity, depend on the states of the

vehicle that created it.

I =D [ I 1o I I D 1 I 1 [om] I
F1 2 3 o WD s 6 F7 8
: ) 5 Space Ego Surronding e Virtual
SD;c LC Possible Space | congidates WD yopice WD yippicre L=l venicte

Figure 5.6. Space candidate for lane change based on safety distance.

Since the ego vehicle could accelerate and decelerate for the active lane
change, the diverse behaviors of the ego vehicle need to be assumed to find the
optimal space for a lane change. It is assumed that the ego vehicle has several
acceleration candidates as shown in Figure 5.7. It is assumed that the
acceleration of the ego vehicle reaches several candidates with a certain jerk
(1m/s*). The minimum value of the acceleration candidates ( @y mn) 1S

constant (—2m/s®). The maximum value of the acceleration candidates is

varied depending on a preceding vehicle or road limit. The limit values of the
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acceleration candidates are expressed as follows:

mm(acand, free? acand, prc) If pprc < SDLK
acand,max = mm(acand, free? acand,road) elself proad < SDLK
Acang. free otherwise
s't' ace\nd, prc = kacand X (px prc - SDLK) (5 1)

Bcand, road = kacam X (px,road _SDLK)
where 8,4 e 1S the maximum value (2m/ SZ) when there is no need for
safety control for a preceding vehicle or road lomit. kamd is gain for safety
control for a preceding vehicle (0.3). Subscript prc means the preceding
vehicle. Subscript road means the road limit such as ramp. N,  is the

number of acceleration candidates.

Depending on a preceding vehicle or road limit
(if exists)

i=N

amm'—

acmrf._max

— > - q,
0 \ ,
\ i=2
., .

coned min 1= ]- -

Figure 5.7. Acceleration candidates of ego vehicle prediction for searching

the lane change space.

Several acceleration candidates are derived between the maximum and
minimum acceleration as shown in Figure 5.7. The assumed behavior of the

ego vehicle is predicted according to acceleration candidates. The assumed
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behavior is expressed as follows:
v,(n+1) =v,(n) +a (n) xtg, (5.2)
P (n+1) = p(n) +v; (n) xt,,,

where subscript 1 is the i-th acceleration candidate.

A target space shall be decided among space candidates. Two conditions are
used for determining the target space. These conditions are derived by the
decision rule of human drivers in the lane-change maneuver. Drivers do not
intend to enter a space that is too far or too narrow for a lane change. The first
condition is the time that the ego vehicle arrives at space. The second condition
is the clearance between consecutive space candidates. An optimization
problem is formulated to decide the target space. The space candidate, which

has the lowest cost, is selected as the target space. The selected space receives

a cost advantage for a chattering prevention. The optimization problem is as

follows:
n|1|Jn J; =T; /1C,
st Ty =p /v,
ND
P = nz::l( P; (n)- Y (n)+ SDLC,ij (n)/N P (53)

N

v =2, (- () /N,

>
iN

=2
£

Cj = (pj+1(n)_ pj(n))/ Np

1

=3
[

where J means the optimization cost; subscript | is the j-th space
candidate; T denotes the time for arriving at the space candidates; Np is
maximum prediction step and C denotes the clearance between the

consecutive space candidates.
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5.2. Lane Change Demand Check

The level of autonomous driving in this research is Level 3 or higher, so the
proposed algorithm must make lane change demand by itself. The lane change
is demanded differently according to the MLC or the DLC. The MLC is related
by road information. Using a map and localization information is needed to
determine if the MLC is necessary. For example, off-ramp and on-ramp are
MLC factors on the highway. In the on-ramp, the lane change needs to be
completed within the limited distance. Therefore, the lane change is demanded
as soon as the ego vehicle enters the on-ramp. Meanwhile, the ego vehicle must
move to the exit lane before reaching the off-ramp. Therefore, the lane change
is demanded until the ego vehicle reaches the exit lane.

Because it is too inefficient to do such route planning every time, this study
created the concept “main path” as shown in Figure 5.8. The blue line in Figure
5.8 represents main path. The autonomous vehicle makes driving on main path
the top priority. Then, when the ego vehicle deviates from main path, the
vehicle needs to perform lane change in the direction of main path. In Figure
5.8 (), it is possible to enter and exit the highway described above. In Figure
5.8 (b), the main path is defined to make a right turn and a left turn at the next
intersection, which leads to lane change naturally. Therefore, the proposed
algorithm can perform route planning for MLC simply by defining the main
path on the high-definition map. To determine the demand for the MLC, only

two factors are needed: 1) whether the ego vehicle is above main path or not,
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and 2) if not above main path, which is the direction for main path.
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(a) Main path on highway road.
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(b) Main path on urban road.

Figure 5.8. Concept of main path.

In a DLC situation, the condition of surrounding vehicles is important. The
DLC is a situation where the ego vehicle are driving on the main path and
overtaking by a slow vehicle ahead. Figure 5.9 represents an overtaking

situation where the ego vehicle employs the available left lane for overtaking.

==

(o) Overtaking Lane
SN = — q .
Ego Vehicle Slow Preceding Vehicle Main Path

Figure 5.9. Overtaking situation.

To determine whether overtaking proceeds, it is important to decide what
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information in the adjacent lane will be used. Previous studies have utilized
traffic flow for the overtaking decision. In previous research, traffic flow is
characterized by microscopic and macroscopic points of view [Li,'04]. Since
local sensors of the ego vehicle could only measure a limited area, the
microscopic point of view has been utilized in overtaking decisions [Suh,'18].
In an ideal situation, it is reasonable to use the traffic flow for overtaking
decisions. However, side vehicles drive with various velocity on a real road.
When drivers decide to overtake, they judge based on the velocity of the space
they are going to go, rather than the average velocity of the target lane.
Therefore, in this study, the target space defined above is used for overtaking
decisions. The decision algorithm utilizes the velocity of the vehicles in front
of the target space. The velocity of the vehicle in front of the target space is
named as a target space velocity ( Vyy ). The minimum velocity of all perceived
vehicles in front of the target space is named as a minimum target space velocity
(Vspace,min )- The perceived vehicles mentioned herein refer to vehicles on the
target lane. Lane change is demanded by comparing V.. min With the velocity
of the preceding vehicle (V. ).

When actual drivers overtake, the velocity difference between the target lane
and the current lane must go above a certain level. And this velocity difference
is related to the velocity of the ego vehicle. The lower the velocity of the ego
vehicle, the greater the velocity difference between the two lanes to attempt to
overtaking. In this study, ‘¢ ’ has been developed to reflect this velocity
difference characteristic. This prevents frequent lane change demand in

congested traffic. ¢ is determined by the velocity of ego vehicle and the set
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velocity as follows:
-17/30)xv. +v_ /3 ifv.<v_ /2
g: ( )X e e S(.%t (54)
v, /20 otherwise

set

set

When overtaking, it is necessary to change lane twice. Once when the ego
vehicle meets a slow preceding vehicle. In this case, lane change is demanded
to overtaking lanes. Another is when the ego vehicle returns from the
overtaking lane to the driving lane. In this case, lane change is demanded of
driving lanes. Therefore, different conditions are needed for two reasons. The
enter (to the overtaking lane) condition, which is defined as:

(Vprc < vset) A (Vprc +e< Vspace,min) A ( pprc < 28DLK) (55)

The return (to the lane of main path) condition is defined as follows:

(Vset < Vspace,min) Vv (Vprc +e< Vspace) (56)

To prevent chattering of demand check activation, the demand check process

is based on relay concept. For this, a demand probability (Pr,,...,) is defined

lemand
in this study. The demand probability varies with each condition. And it has a
value between 0 and 1. This probability is calculated as shown in Algorithm 3.
This calculation is applied for both lanes respectively. When this probability
has a value greater than 0.5, a lane change to the corresponding lane is finally
demanded.

If the lane change is demanded, the turn signal is activated to the target lane.
The turn signal is a basic method that is always performed when a lane change

demand is activated. The turn signal is a basic role for transmitting the intention

for lane change to side vehicles on target lane.
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Algorithm 3 : Lane Change Demand Check

1:  Inputs: demand conditions (availability of lane, overtaking condition,

return condition), demand probability

2 if the ego vehicle is on main path

3 if adjacent lane is available

4 if overtaking condition

5 Pliemand = MiNE, Max(0, Pryg g+ A1)
6 else

7 Prgemana = MINE, Max(0, Pryng— Ak )
8 else

9 Prgemang =MINE, Max(0, Pryg,ng — Ak )

10: else

11: if adjacent lane is available

12: if return condition

13: Pliemang = MiNE, Max(0, Pl + Aic2)
14: else

15: Prgemana = MINE, Max(0, Pryg g — A1)
16: else

17: Prgemang =MINE, Max(0, Pryg,ng — Ak )

19: endif

Table 7. Parameters for Lane Change Demand Check

Parameters Values Parameters Values
Ak 0.025
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5.3. Lane Change Possibility Check and Traffic

Pressure Mode for Interactive Lane Change

When a lane change is demanded, the driving mode changes from LK mode
to LKC mode or LC mode. To decide which mode to proceed between LKC
mode and LC mode, the ego vehicle needs to judge a possibility of the lane
change based on SD, . of side vehicles. If any side vehicle is situated closer
than SD, ., the lane change is impossible. Figure 5.10 shows a concept of the
lane change possibility. When relative positions of side vehicles are smaller
than the SD,. of each vehicle in the all prediction horizon, a lane change is

risky. The condition of the lane change risk is given by:

| pms| <|SDLC,ms (57)

where subscript ms means the ms-th side vehicles on target lane

(m=1...,N.);and N, meansthe number of side vehicles.

: 8D, 8D,
LC Possible Side Vehicle LC Impossible

Ego Vehicle Ego Vehicle

Figure 5.10. A concept of lane change possibility based on safety distance.

To prevent chattering of possibility check activation, the possibility check

process is based on relay concept. For this, a possibility probability ( Prpiiy )
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is defined in this study. The possibility probability varies with each condition.

And it has a value between 0 and 1. This probability is calculated as shown in

Algorithm 4. This calculation is applied for both lanes respectively. When this

probability has a value greater than 0.9, a lane change to the corresponding lane

is finally possible.

Algorithm 4 : Lane Change Possibility Check

AN L AW N~

Inputs: lane change risk condition, possibility probability

if lane change risk condition

Pl ossibiiey = MINEL, Max(0, Pro iy + ik )
else

P ossibitiy = MIN(EL, Max(0, Pr ity + Anon_risk )
end if

Table 8. Parameters for Lane Change Possibility Check

Parameters Values Parameters Values

/lrisk -1 ;Lnon—risk 0.3

The LC mode is started when a lane change is possible. Even during the lane
change mode, the lane change possibility is continuously checked. The
possibility has been checked until the ego vehicle crosses the lane. If lane
change is demanded but lane change is impossible, LKC mode is in progress.

Figure 5.11 represents mode decision based on lane change possibility.
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Lane Change Possibility Check
Yes No

‘ Lane Change mode (L.C) ] (La"e Keeping mode (LKC)J

for Lane Change

- Lane change starts to target lane - Go to target space in original lane

IT arget
Space
Side Velicle Side Vehicle
D —

Ego Vehicle Ego Vehicle

Figure 5.11. Driving mode decision based on lane change possibility.

In LKC mode, a special case exists to need ‘traffic pressure’ described in
Section 4.2. The safety distance-based lane change space may not exist because
vehicles on the target lane are close together in congested traffic. In this
research, in order to counteract this, we developed a lane change yield intention
inference. And the safety distance reflecting the yield intention helps to judge
the appropriate space for lane change. However, apart from yield intention
inference, it is important to transmitting the intention to change with the
appropriate lane through traffic pressure in congested traffic. When traffic
pressure mode is activated, desired lateral motion is planned to drive to the
target lane. This makes it possible to perform interactive lane change. The
condition that traffic pressure is triggered is when the space for lane change is
less than the length of the vehicle. This condition is given by:

Charget < Lueicte (5.8)
where C,,.. means the space between consecutive front and rear vehicles

of target space; L, mMeans the length of the ego vehicle.
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5.4. Limit Mode Decision by Road End

One of the most difficult situations in lane change is to change lanes within
the limit conditions in the MLC situation. In this study, the lane change is
demanded by main path before the road end is reached. However, if there are
many vehicles on the target lane and there is no space to change the lane, it may
be impossible to succeed the lane change within the limit conditions. Figure

5.12 shows situations where the lane change is impossible in the MLC sections.

#

D @©O 2 2@«

oo e
=% Road End

(a) Road end on highway road.

I Ego Vehﬁ

o
Road End

(b) Road end on urban road.

Figure 5.12. Situations where the lane change is impossible in the MLC sections.
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In this case, it is necessary to determine a driving mode decision and an
appropriate motion planning. In this research, the concept of ‘limit mode’ and
‘limit velocity’ have been developed. Limit mode is decided by the remained
distance for ego vehicle to reach road end. The remained distance is determined

from road end with a certain margin as follows:
dlim = droad—end - (Ve X \’(2 XW) / ay,evasive + dmargin) (58)

where d, ., .,q Means the distance between ego vehicle and road end; W
is road width; a, ... Means the lateral acceleration for evasive lane change
(15m/s’);and d,,, means the marginal distance (10m).

Normally limit mode is 0 and changes to 2 levels as ego vehicle approaches
the road end. First, limit mode changes to 1 as the ego vehicle approaches the
road end. When limit mode is 1, the lane change is demanded for the lane
toward main path. And before the ego vehicle reaches the road end, the limit
velocity is planned by the velocity at which the ego vehicle can perform the
lane change. Second, when the planned limit velocity changes below threshold
velocity, the limit mode changes to 2. In this case, stop or go motion is required.
The driving mode is unconditionally the LC mode. And, according to lane
change risk, the limit velocity is set to the stop velocity or the minimum limit
velocity. This process is expressed in Algorithm 5. A lane change time is

described in detail in the following Chapter 6.
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Algorithm 5 : Limit Mode and Limit Velocity Decision

1:

Inputs: set velocity (v

set

), remained distance of road end (d

), lane

lim

change time (t, ), minimum limit velocity (v, .. =5kph), lane change

risk condition.
mode,,,, =0, Vv, =V,

set
if (dy, <V xtc)

lim

mode;, =1, Vi, =iy /tic s Pligpag =1
if(Vlim < Vlim,min )

mode;,,=2, V,, =V, Pr

lim lim,min

if lane change risk condition
Vim =—1 kph
end if

possibility —

1
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Chapter 6 Motion Planning and Control

Desired motion is planned according to the driving mode decided above. In
motion planning, reference and bound of states are determined. For tracking
planned motion, a SMPC is utilized [Suh,'18]. Solver FORCES is used to solve
the problem of SMPC [Domahidi,'14]. The solver is operated in MATLAB.
Since the distributed vehicle model is used, motion planning and control are
also divided into longitudinal and lateral motions. Figure 6.1 shows the overall

architecture of motion planning and control.

IUpper Modulesl IS.Prediction | | Risk.A | I Decision-Making

« HD MAP » Predicted States « Safety Distance + Driving Mode
= Collision Probability

Motion Planning & Control

e . . R R R———.
Longitudinal Motion Planning Longitudinal Motion Control
Reference Velocit m
Target Space =rmrgme|;3mg, Stachastic Model Predictive Control
min) .y @ (-
Virtual Vehicte | 5 W | mm, ,'. Optimal Contral
ference J A Vehicl, actions Trajectory
Re! A”MMG W — utonomous Vehicle
—— ‘ Constraints | b Model 7 prediction
w.
- Dynamics Model
Lateral Motion Planning Lateral Motion Control

past_ ] future
Lane Change Motion

ﬂ: Safe Driving Envelope |IC

M

] ~ ]
\ o\ |

Time [se] k k1 k=2 kN

Prediction horizon, N

+ Desired Path
+ Desired Longitudinal Acceleration

| Vehicle |

Figure 6.1. Overall architecture of motion planning and control.
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6.1. Longitudinal Motion Planning and Control

In the longitudinal motion planning, references and bounds of the
longitudinal states are determined as shown in Figure 6.2. The longitudinal
states consist of position, velocity, and acceleration. For reference, velocity and

position are used as reference states and are as follows:
_ T
XIon,ref = [ pref Vref O:I (6 1)

where subscript ref denotes the reference of states.

For bounds, the position is only considered. A safe driving envelope is
defined for collision avoidance. The envelope is shown as green box in Figure
6.2. To guarantee safe driving, the envelope is decided as an area in which the
ego vehicle could drive without collision with surrounding vehicles. The

bounds can be expressed as:
pbound = [pmin pmax ]T (62)

where min and max mean the upper (resp. lower) bound of the safe

driving envelope.

l Target |
([@ED)v,,, Space D
- p Xx,max |

®R——o

i ()] Safe Driving Envelope |
Ego Vehicle pxmef afe Driving Enve opei

Figure 6.2. Reference and bound of longitudinal motion planning.
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The first priority goal of autonomous vehicles is to prevent collisions with
surrounding vehicles and maintain safety. Therefore, the planning and control
of longitudinal motion for this is the first priority. In any driving mode, this
always be taken into account. A vehicle subject to such safety control is
designated as ‘risky vehicle’. In general, the risky vehicle is the preceding
vehicle as shown in Figure 6.3. Primarily, the preceding vehicle refers to a
vehicle located directly in front of the same lane as an autonomous vehicle.

In this research, it is determined whether the autonomous vehicle and
surrounding vehicle collide through collision probability. Therefore, not only
preceding vehicle in the general situation, but all vehicles in which collision
probability exists are considered to be the risky vehicle. This concept is shown

in Figure 6.4.

Ego Vehicle Preceding Vehicle

Figure 6.3. Preceding vehicle in lane keeping driving.
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Reference Velocity

CP=100%

(a) Velocity matching for far preceding vehicle.

Reference Position %Ref erence Velocity
O CP=100%

(b) Safety with cut-in vehicle.

Reference Position ence Velocity
@)

oIl CP-15%

(c) Passing with biased side vehicle.

rence Velocity
CP=15%

(d) Overtaking with low collision risk vehicle.

Figure 6.4. Risky vehicles based on collision probability.

In any mode, the reference of states are determined by a risky vehicle which

has probability of collision with ego vehicle. The states of risky vehicle are
101
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expressed as risk by subscript. The reference velocity is decided as the set
velocity or the velocity of a risky vehicle. It is inefficient to follow the velocity
of the risky vehicle identically when the risky vehicle is too far away, as shown
in Figure 6.4 (a). Therefore, the distance to the risky vehicle affects the
reference velocity. The reference position is set to prevent a rear collision when
arisky vehicle is closer than SD,, . This could be the case when a side vehicle
cuts-in, as shown in Figure 6.4 (b). For risk vehicles, the reference states are

expressed as:
{Cprisk X Vrisk + (1_ CI:)risk) X Vset If prisk < SDLK
v _

ek CP, XV + (1-CP, )xV,,  otherwise
StV =0V +(1— ) -V (6.3)
.. —SD
a= prlsk S LK
prisk
pref,risk =CP x min[o’ Prisk — SDLK] (64)

where subscript risk means states of risky vehicles that have collision
probability; subscript ref, risk means reference states for safety control of
risky vehicles; « is variable for velocity matching with far risky vehicle.

In any mode, the bounds of risky vehicle can be expressed as:

Prin, sk =~ Psp (6.5)
Prax,risc = MIN[Pg,, P ]
where pg, denotes the open distance when the vehicle blocking the safety
envelope does not exits (100 m).
There is a special case for risky targets. It is a situation where the ego vehicle
is overtaking a stationary vehicle. In the overtaking situation, if the ego vehicle

considers the risky target as shown in Figure 6.5, the ego vehicle may not be
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able to overtake preceding vehicle and stop forever. Therefore, the overtaking

velocity has been developed in this dissertation.

Vi o » If LC mode
Vi g = ’
ref, risk Vref, e else
It,., if TTC_, <t
st Vref . — {\FIJSIat LC elsstaet LC (66)
set ’
TTCy = Poat Iv

where subscript stat means stationary vehicle; TTC_ . denotes time to

stat

collision of stationary vehicle; t . is lane change time; V. ., denotes

overtaking velocity.

Ego Vehicle

Figure 6.5. Overtaking is possible, but the ego vehicle is forever stopped.

For active lane change driving, longitudinal motion planning beyond
collision avoidance is necessary. If the lane change is demanded by driving
mode decision algorithm, the ego vehicle must perform the lane change
objective. For this purpose of lane change, it is required to drive to the target
space developed in this study. The behavior for this purpose is named ‘side’.
The states of side vehicle are expressed as side by subscript. The motion plan
for side vehicles is affected by the driving mode. Only in LKC mode or LC

mode when the lane change is demanded, the motion plan of side vehicles is
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proceeded. The side velocity is determined with V.. . The side position is also
determined as an internecine point by the SD,. of the consecutive vehicles in
the target space. Figure 6.6 represents reference position planning for the side
vehicles. For side vehicle of lane change objective, the reference states are

expressed as:

Viet  side = Vspace (6.7)
Pret sige = MIN[Pegrers Ptz ]
St Pegger = Ppre = SDik
- W, (Pyr = SDyc. g ) + W (Pgpr +SDic. ) (6.8)
W, + W,
W, =Py — SDLCYSpf
W, =Py +SDic g

where subscript Spf means the vehicle in front of target space; subscript
spr means the vehicle behind target space; and subscript ref, side means

reference states for going target space of side vehicles

Reference Velocity
=Target Space Velocity

. i
Virtual Vehicle | 1, iy |
Refarence PLﬂ'ﬁb ’;" I W, -,-lumnomous Vehicle
N |

Target Space

W,

Figure 6.6. Desired motion planning for side vehicles.
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For side vehicles, the upper and lower bound can be expressed as:

-p,,, if pg, >0
pmin,side :{ ’ ’

. else
P _ (6.9)
_ pspf ! If pspf > 0
pmax,side_ psp , else

Autonomous vehicles must comply with the regulated speed according to the

road environment. Therefore, Vv, is determined as V.., when the calculated

set !

Vs IS greater than v, . Also, whether or not the ego vehicle have crossed the

ot -
lane determines the longitudinal motion plan. When performing lane change in
LC mode and crossing the lane, there is no need to plan the motion for side
vehicles anymore. Therefore, at this time, even in LC mode, the motion plan is
proceeded only for risky vehicle as shown in Figure 6.7. Therefore, the final

motion plan considering this is as follows.

MIN[Ve, Vier riser Veer sice ] DEFOre crossing lane (6.10)

I MINVay, Vieg rige] ,  after crossing lane '
MIN[P. g Prer sie):  DEFOre crossing lane 6.11)

) Pret rise ,  after crossing lane '
MNP i sk Prinsice]:  DEFOre crossing lane 6.12)

™ ] P risk ,  after crossing lane '
MIN[P, o sk Prax sice]:  DEFOrE Crossing lane (6.13)

Prax = Prmex risk ,  after crossing lane ’
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m side-front vehicle

preceding vehicle

(a) Before lane crossing.

p X.safe v.\‘.ref
5 5 . - side-front vehicle
After lane crossing
E'H:IE] preceding vehicle

(b) After lane crossing.

Figure 6.7. Final motion planning based on driving mode and lane crossing.

In order to proceed with autonomous driving in all driving sections, a time
occurs when considering road end as specifically described in section 5.4.
Depending on limit, limit velocity needs to be reflected in the motion plan. In
the MLC situation, it is necessary to complete the lane change without going
beyond the road end. Therefore, as the ego vehicle gets closer to the road limit,
the ego vehicle must drive at a speed of limit velocity or lower. When limit
mode does not turn on, limit velocity is set velocity. The velocity plan reflecting
limit mode is as follows.

Ve =Min[V,, V] (6.14)

In prediction horizon, all references and constrains are calculated. Reference
velocity in prediction horizon is shown in Figure 6.8. All states are decided
based on prediction information. For the planned behavior, the control inputs
are calculated using model predictive control. Therefore, the control inputs are
determined taking into account future motions of ego vehicle and surrounding

vehicles.
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Figure 6.8. Reference velocity in prediction horizon.

The SMPC problem is presented to calculate the desired longitudinal
acceleration. The SMPC problem is formulated with the vehicle dynamics
model, reference, bound, and input constraint. Repeating at each time step, the

solving process of the optimization problem is formulated as follows:

Np—l
min E(
=0

n=

14D Ty (13, O,

s.t. XIon (n +1) = Aun (n)xlon (n) + BIon (n)ulon (n)
Pr(glzn (n +1)Xlon (n +1) < XIon,bound (n +1)) 21- Elon (n)

) (6.15)
1 00
glon - 100
l“Ilon,min < ulon (n) < uIon,max
(n=0,..N,-1)
107
_:lx; _'\-:.‘: ]



where Q,, and R, are the state and input weighting matrix of

lon
longitudinal states. X,,,(n) is the predicted longitudinal states of ego vehicle
at time t+n derived by applying the control sequence u,,, to the longitudinal
model Equation (3.6) with initial condition X, (0)=X,(t) . g,, and
Xion. boung  are related to a longitudinal safe driving envelope, which is defined
to guarantee collision avoidance. ¢, is the longitudinal risk parameter, which
is related to a chance constraint to be satisfied with a specified probability. By
this parameter, it becomes SMPC, not MPC. The details of SMPC is described

in[Suh,'18]. Uy, mn and U, ... denote longitudinal control input constraints.

Table 9 presents the parameters of the longitudinal SMPC problem.

Table 9. Parameters of the longitudinal SMPC problem

Parameter Value
Qiong diag (10, 40,0)
Riong 80
Uyon. max —3[m/s?]
Uion,min 1.5[m/ s?]
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6.2. Lateral Motion Planning and Control

In the lateral motion planning, references and bounds of the longitudinal
states are determined. The lateral states consist of sideslip angle, yaw rate,
lateral position, and yaw angle. Reference state of sideslip angle is always zero,
which improves stability. Yaw rate could be represented as a lateral position
[Rajamani,'11]. Desired state of yaw angle is determined by road curvature,
which improves road following. Therefore, the only lateral position is the target

of motion planning. Reference states of lateral motion are followed:

_ T
Xlat,ref = |::Bref 7/ref ey/, ref ey, ref :|
(6.16)

. T
€
y, ref
=10 V_ p-p ey,ref:|

X

For bounds, the position is only considered. Like longitudinal motion
planning, a safe driving envelope is defined for collision avoidance. The
envelope is shown as green box in Figure 6.8. To guarantee safe driving, the
envelope is decided as an area in which the ego vehicle could drive without

collision with surrounding vehicles. The bounds can be expressed as:

T

yIat,bound = |:ey, min ey, max] (6 17)

where min and max mean the lower (resp. upper) boundary of the safe
driving envelope.
Lateral motion planning is conducted based on driving mode shown in Figure

6.9. Basically, a desired motion is planned to keep within the designated lane
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according to the driving mode. The location of surrounding vehicles can act as
a more powerful upper or lower bound than the lane depending on the collision
probability of side vehicles. Figure 6.9 (a) shows this concepts of lateral motion

planning affected by side vehicles.

ey.max
e_v.min
(a) Lateral motion planning in LK or LKC mode.
ey.max
Safe Driving Envelope : .
1] 1(om)
ev.min

(b) Lateral motion planning in LC mode.

Figure 6.9. Lateral motion planning based on driving mode.

In LK mode or LKC mode, the desired lateral position is defined as zero,
which means that the vehicle tracks the centerline. In the LC mode, the desired
lateral position is defined as the hyperbolic ta8gent path. This desired position

reflects the lane change and has a low acceleration jerk [Suh,'18]. As shown in
110
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Figure 6.10, only lateral acceleration limit is the tuning parameter that

determines the lane change time. In LC mode, the desired lateral position could

be given by:
. C,-tanh(C,-k+C,)+C, +e,,, if LC mode
v o ,  otherwise
W, ., —e ta,
st. C, = —"2 = C,= —y*'g
404 (6.18)
W, ., —e
C,= —madz £ C,= _tL?Ccz
W, —-C,—e
tLC Zitanhl{ road 4 y,O}
C:2 Cl

where subscript a, ;, is the lateral acceleration limit; W, ., is the road

road

width; and t . is the lane change time.

Set road width

E
— /
3 0.5 / /
5 o . Define lane change
© process time
o 05
T
=
-10 8 6 4 2 0 2 4 6 8 10
Time [sec]

Double derivatives

—
0

g 1

5 N

=2 05

g J

Q 0 g

3 /_Set acceleration limit
g 05 A | |

& o

pad 1 r r 3

% -10 8 -6 -4 -2 0 2 4 6 8 10
| Time [sec]

Figure 6.10. Lane change motion planning of lane change maneuver.
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Special case of lane keeping is transmitting lane change intention to vehicles
on target lane. When traffic pressure mode turns on, the ego vehicle does not
follow the center of the path even though driving mode is LC mode. To transmit
lane change intention actively, reference of lateral position is slightly
movement from the current lane center to the direction of the lane that is target
of pressure. In traffic pressure mode, equations of lateral states reference can

be given by:

— iWroad :FerhicIe :F <

ey, ref 2 2 y

(6.19)

where ¢, is the degree to which traffic pressure is applied strongly.
The ego vehicle basically have to drive within a defined lane. The bounds of
lateral position are determined depending on what direction to perform the lane

change. The bound can be expressed as:

§Wroad —EWroad if left lane change

L2 2 ]

— T

[ Y Iseif right lane change  (6.20)
S Wioas W | elseif right lane change (6.

- T

1Wroad —lwmad otherwise

12 2 ]

In addition to the lane, the surrounding vehicles must be additionally
considered to prevent collision. The vehicle with collision probability among
the vehicles on the right lane influences the determination of lower bound of

lateral state, which can be expressed as:

ey,min = I'“a'x[ey,min’ py,risk + O-y,risk] (621)
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The vehicle with collision probability among the vehicles on the left lane
influences the determination of upper bound of lateral state, which can be
expressed as:

€ max = MIN[E, s Py ik + Oy i (6.22)

The SMPC problem is presented to calculate the desired steering angle. The
SMPC problem is formulated considering the vehicle dynamics model,
reference, constraints, and input limit. Repeating at each time step, the solving

process of the optimization problem is formulated as follows:

N,-1
min z E( YIat (n +l) - Ylat,ref (n +1)||2Q + "ulon (n)||2R| )
-0 lat at

S.t. Ylat (n +1) = Aal (n)ilat (n) + Blal (n)ulat (n) + Flal (n)p
Pr(gh (N+1)X (N +1) < Ky pouna (1+1)) 2 1= £, ()

lat,boun

000 17
— 6.23
%= o o 4 (6:23)

|ulat (n)| < uIat,lim

|ulat (n+1)-uy, (n)l Ui jim

where Q, and R, are the state and input weighting matrix of lateral
states. X, (n) is the predicted lateral states of ego vehicle at time t+n derived
by applying the control sequence Uu,,, to the longitudinal model Equation (3.7)
with initial condition X, (0)=X, (). 0, and X pug are related to a
longitudinal safe driving envelope, which is defined to guarantee collision
avoidance. ¢, isthe longitudinal risk parameter, which is related to a chance
constraint to be satisfied with a specified probability. By this parameter, it

becomes SMPC, not MPC. The details of SMPC is described in [Suh,'18].
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U im denotes the maximum magnitude of the lateral control input. U,
denotes the maximum magnitude of the rate of change of the lateral control

input. Table 10 presents the parameters of the lateral SMPC problem.

Table 10. Parameters of the lateral SMPC problem

Parameter Value
o {diag (200,160,10,10), if LC mode
tat diag (100,200,60,10), else
R 60
Ujat tim 180 [ded]
Uyat tim 80 [deg/ s]
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Chapter 7 Performance Evaluation

7.1. Simulation Test

We evaluated the proposed algorithm through simulation test. Simulation test
is essential before performing vehicle test. In this research, the performance of
the proposed algorithm was evaluated through various simulations before
vehicle test. Simulation can reproduce various situations repeatedly before the
actual vehicle test. Therefore, it is possible to validate the performance of the
algorithm in various situations. In addition, simulation test plays an important
role when comparing the performance of different algorithms. By evaluating
several algorithms for the same situation, it is possible to confirm the

improvement of the proposed algorithm.
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7.1.1. Simulation Environment

Simulation is a step of evaluating the algorithm before vehicle test, so it is
important to simulate the actual vehicle situation similarly. We constructed our
own simulation environment based on MATLAB. It is easy to change and
compatible with the proposed algorithm. The structure of the developed

simulation environment is shown in Figure 7.1.

Autonomous Vehicle
HD M Localization c | Eao Vehicl
ap Info ontrol go Vehicle
Sensor A”t°'_"°_r"°“5 Signal Vehicle States
Model |Perception Driving Model
— Info Algorithm
Surrounding Vehicles
Control Surrounding Vehicle
— | —
Driver Signal Vehicle States
Modet——t—> Model

All Vehicle States

Figure 7.1. Configuration of multi-vehicle simulation tool.

The following models are important for the simulation of autonomous
vehicles: road model, vehicle model, sensor model, control module model and
driver model. The high definition map built on the actual road was used as a
road model. The vehicle model was a kinematic model which is the simplest
vehicle model. Since autonomous driving does not drive to the extreme
performance of the vehicle, a kinematic model is adopted for simplicity of
tuning and efficiency of simulation [Lee,'16]. The vehicle model is applied to
all vehicles of the autonomous vehicle and surrounding vehicles. To describe
vehicle motions, the state vector and input vector are defined as follows:

116



X =x y 0 v al (7.1)

u=[a, &T (7.2)

X

The vehicle dynamics is shown as follows:

X =V, cos(y)
y =V, sin(y)
é = Vx tan(éf ) / Lvehicle

VX :aX

(7.3)

The sensor model only applies to the autonomous vehicle. In the sensor model,
the recognition range and the accuracy of state estimation of surrounding
vehicles are important. These are affected by the perception module of the
autonomous vehicle. In this study, a total of three perception modules were used
[Lee,'19, Lee,20]. We analyzed the performance of each perception module and
reflected it in the sensor model of the simulation.

The control module model is applied only to the autonomous vehicle. This is
a model that embodies how it is reflected in the vehicle when the final control
input of the autonomous vehicle is transmitted. In fact, if the control inputs are
transmitted to the vehicle, the vehicle cannot track control inputs perfectly
because of diverse delay and uncertainty. In this study, a total of three vehicles
are used. We analyzed the performance of each control module and reflected it
in the control module model of the simulation. Figure 7.2 represents the result

of the analysis of the response to the control input of a vehicle.
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Figure 7.2. Control response analysis.

Autonomous vehicle is driven by the proposed algorithm, but surrounding
vehicles must drive like real drivers. Therefore, the driver model is necessary
to simulate the actual driving environment. Since the proposed algorithm
proposed is for lane change maneuver, surrounding vehicles only perform lane
keeping maneuver. Therefore, the driver model of the surrounding vehicles only
needs to consider the clearance characteristics with preceding vehicle. To
develop the adaptive cruise control algorithm, the driving characteristics were
studied [Moon,'08]. These driving characteristics have been used for driver

model in simulation test.
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7.1.2. Overtaking simulation for decision-making evaluation

Overtaking is important situation in decision-making for lane change
behavior. In the overtaking, speediness is important as well as maintaining
safety with surrounding vehicles by changing the lane in the DLC situation. In
order to evaluate the performance of the proposed algorithm, it was compared
with the algorithms of other methods.

The first algorithm to be compared is to use the traffic flow [Suh,'16]. In DLC,
when the velocity of the preceding vehicle is much slower than the set velocity
of the ego vehicle, a lane change is demanded. However, the ego vehicle does
not need to change the lane in this situation if it involves taking a risk. Therefore,
the traffic flow speed of adjacent lanes should be considered. In previous
research, traffic flow is characterized by microscopic and macroscopic points
of view [Li,'04]. This dissertation focuses on the microscopic point of view
because local sensors of the ego vehicle can only measure a limited area. A
problem occurs if traffic flow is simply defined as the average speed of the side
lane vehicles in the recognition range. The traffic flow is set to the average
speed, considering the weight according to the distance, since the speed of the
vehicles is more meaningful as the distance of the recognized vehicle is closer.
Traffic flows on left and right lanes are defined using the recursive least square
method with forgetting factors. The cost function of recursive least square with

forgetting factors is as follows:

‘] (Vflow) = %iﬂ'tik ||\7(k|t) _VArow z (74)
=1

where 1 denotes the forgetting factor; t denotes the current time; v
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denotes the average speed weighted by the distance of the object vehicles
during a near future, which can be estimated from the object vehicle prediction;

denotes traffic flow. Vv is as follows:

1S (v, KD /(N +) /2, (1)
\7(k|t)= |_1L_o _ / }
> [118p,,(1)]

=1

and Vv

flow

(7.5)

where m denotes the number of target vehicles in the target lane; v,
denotes the velocity of the I-th target vehicle; and Ap,, denotes the relative
position of the I-th target vehicle.

A derivative of equation (7.4) equals zero, which means a minimum cost.

From this method, the traffic flow is derived as:
-1
Voo () = (il‘kj [tzw ><\7(k|t)] (7.6)
k=1 k=1

Substitute P(t) and simple mathematical techniques, traffic flow can be
rewritten as:
\7flow (t) flow (t 1)+P (V (k |t) flow t 1))

where P(t)= %[P(t ~1)-P(t-1)(41 +P(t-1)) " P(t —1)} 7.7

Based on the set velocity of the ego vehicle, the preceding vehicle velocity
and traffic flow of adjacent lanes, lane change is demanded. The condition is as
follows in a discretional lane change. If three conditions are satisfied, a lane
change is demanded.

[Vpreceding < (Vdes - 8)] /\[Vpreceding < Vflow] /\[ px,preceding < 2 X SDLK,preceding] (78)

The second algorithm to be compared is to use the supervised learning
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method [Chae,'19]. In DLC, when the velocity of the preceding vehicle is much
slower than the set velocity of the ego vehicle, a lane change is demanded. In
situation of Figure 7.3, it is good to make a lane change between side-front
vehicle and side-rear vehicle, but if conducting a lane change behind side-rear
vehicle, the autonomous vehicle might face a slower driving situation. It is
difficult to judge whether it is possible to enter in front of the side-rear. This is
because the autonomous vehicle should consider algorithm operation methods,
perception range, control characteristic and diverse uncertainty. The rule-based
method could not this complex problem. Also, the rule-based method also has
a disadvantage that the performance varies greatly depending on the tuning
parameter. To overcome the limitations of the rule-based method, supervised

learning method is adopted for overtaking decision.

Voo = 80km [ h Ve o = 100km | h
——— ——— Overtaking
?
H(om)m Side-rear : imil Side-front  Lane
— Driving
Ego E[[! )] Preceding —

Vg = 90km/ h

. vﬁ'am = 90](7?? / h
3 =100km / h

y
ego.des

Figure 7.3. Difficult situation to decide lane change demand.

Learning method is adopted to judge whether it would be good or bad to
conduct overtaking in various situations. Since it is not possible to implement
all situations as actual vehicle conditions, simulation is used for data generation.
Figure 7.4 shows the concept of supervised learning. Based on simulation-

based data, the training is carried out and overtaking decision machine is
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derived. Overtaking is determined based on the learned machine.

Training
+ Data Set s Lane Change
- Simulation based Data Generation C|abSSIfICta)tI;JI'; Learner E:> Requirement
- Auto Labeling y Labeled Data Machine

Using
« Observed states Lane Change *» Response : 1 state
- States of Ego Vehicle |::> Requirement 0: LC Demand Off
Machine 1: LC Demand ON

- States of Surrounding Vehicles

Figure 7.4. Concept of supervised learning for overtaking decision.

Various data sets are needed to develop the learning based the overtaking
decision algorithm. A data generation was carried out through simulation
studies. In simulation, the ego vehicle is equipped with the autonomous driving
algorithm. Lane change demand module is excluded from the autonomous
driving algorithm. Surrounding vehicles are tracking a pre-determined velocity
and maintaining safety with a preceding vehicle. In the simulation, various
situations are implemented by changing the initial condition of all the vehicles,
and one simulation means one episode. A number of simulations are conducted
for episode generation with changing to initial conditions as equation (7.9).
Overall episode number is 18,750. Since there is the two case that overtaking
is required or not, two simulations are carried out for each episode as shown in

Figure 7.5. Simulation time is 60 sec and sampling time is 0.1 sec.
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Vego =80:10:110 [Kph], Vg, 4 =110 [kph],

Vo =80:10:110 [kph], Ap,, =40:20:80 [m]

Ve rear = 80:10:120 [kph], APy, resr = —40:20:0 [m] (7.9)
Vgge_ tront = 80:10:120 [kph], APgye_ grone =0:20:80 [m]

Case 1 : No Lane Change Requirement (Only Lane Keeping)

LI e L
(a) Case 1: No lane change demand.
Case 2 : Left Lane Change Requirement
— Side-rear Side-front a8
Ego o o

(b) Case 2: Left lane change demand.

Figure 7.5. Two case about one episode.

For a supervised learning, it is necessary to determine whether lane keeping
is good or overtaking is good for each episode and to label it. In order to
consider speediness, the case that the travelled distance is greater is labeled. If
the travelled distance of the lane change is slightly bigger than that of the lane
keeping, then the lane keeping is better. Also, minimum clearance is considered
to reflect safety with surrounding vehicles. In the case of the lane change where
minimum clearance is smaller than safe clearance, it is labeled as lane keeping.

Input variables is shown in equation (7.10). Response variable is labeled as

0 or 1 which means the lane keeping is better or the lane change is better. About
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entire labelled data sets, the supervised learning is conducted using an ensemble
method. The type of the ensemble method is bootstrap aggregating. Learning
accuracy is 98.6%. Around 61% of the entire data sets predict that the lane

keeping is better, while 39% predicts that the overtaking need to be required.

X= [Vfront _Vego' Viront _Vego,de51 Apfront + Vside—rear _Vego )
(7.10)

Vside—rear — Vego,des ) Apside—rear 1 Vside— front — Vego )

Viside— front _Vego,des’ Apside—front]

Training

+ Data Set: 18750

« Predictor : 9 states

About 3 surrounding vehicles,

1) Relative velocity with current velocity Classification Learner Lane _Change
2) Relative velocity with desired velocity - Method: Ensemble Reqmrement
Machine

- Accuracy: 98.6%

3) Relative Pasition

* Response : 1 state

0 : Lane Keeping Better Case

1 : Lane Change Demand Better Case

Using

« Observed states : 9 states

About 3 surrounding vehicles, Lane Change
1) Relative velocity with current velocity Requlrement

Machine

* Response : 1 state
0 : LC Demand Off

. . . . . 1:LC Demand ON
2) Relative velocity with desired velocity

3) Relative Position

Figure 7.6. Schematic of supervised learning for overtaking decision.

A total of three algorithms have been validated in simulation study: 1) traffic
flow based overtaking decision, 2) supervised learning based overtaking
decision, 3) desired space velocity based overtaking decision (the proposed

algorithm). Figure 7.7 shows simulation environment where there are nine
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target vehicles. Initial velocity and desired velocity of target vehicles are less
than 110km/h which is the desired velocity of the ego vehicle. This environment

could make overtaking situations. Initial condition of all vehicles is shown in

Table 11.
E- 4 7ITarget 1 mTarget 3 nTarget 6 mTarget 8 Target 9 I n
= 2 &
> o E Ego nTarget 2 ETarget 4 ﬂTarget 5 nTarget - —
2= + t t t : t + t =
0 50 100 150 200 250 300 350 400

X [m]

Figure 7.7. Validation simulation initial vehicle disposition.

Table 11. Validation Simulation Initial Condition of Vehicles

Ini X Position Ini Y Position Ini Velocity Set Velocity Set Time Gap
[m] [m] (Lane) [km/h] [km/h] [sec]
Ego 0 0 110 110
Target 1 -11 35(1) 80 100 13
Target 2 42 0(2) 90 90 13
Target 3 46 35(1) 80 80 1.6
Target 4 114 0(2) 90 100 0.8
Target 5 187 0(2) 90 90 1.6
Target 6 254 35(1) 80 100 1.6
Target 7 262 90 90 1.6
Target 8 310 35(1) 80 100 1.3
Target 9 390 35(1) 80 80 1.6
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The base models uses the traffic flow based overtaking decision algorithm
and the supervised learning based overtaking decision algorithm. The proposed
model is the desired space velocity based overtaking decision algorithm.
During 150 seconds, the traffic flow based model conducts two lane changes,
while the supervised learning based model and proposed model conduct three
lane changes. Therefore, the two models traveled more distances without
significantly slowing down than the traffic flow based model. Also, the all
models keep a minimum clearance of in-lane vehicle above 20m. Average
calculation time of overtaking decision algorithms is shown in Table 12. The
supervised learning method has a large calculation time. Since traffic flow and
desired space methods are rule-based method, calculation time is small. As a
results, the proposed decision algorithm has the same excellent performance as
learning method and has much less computation time, even though the proposed

decision algorithm is rule-based method,

Table 12. Average calculation time of overtaking decision algorithms

Decision Algorithm Calculation Time [ms]
Traffic Flow 0.0016
Supervised Learning 1.78
Desired Space Velocity 0.0035
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Figure 7.8. Simulation results.
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7.1.3. Overtaking simulation to evaluate the effectiveness of virtual vehicle

To evaluate the effectiveness of virtual vehicle, the proposed overtaking
algorithm has been evaluated through simulation. The simulation environment
is a two-lane straight road. Figure 7.9 and Table 13 represent the initial
condition of ego vehicle and surrounding vehicles. Seven surrounding vehicles
were placed in arbitrary positions. Surrounding vehicles use the initial velocity
as the set velocity and proceeds to safety control if a preceding vehicle exists.
The time gap used for safety control is 1.36 s [Moon,'08]. The surrounding
vehicles do not change lanes. Vehicle model used in the simulation has input
constraints described in SMPC problems. To show the effectiveness of virtual
targets, an algorithm without a virtual target has been compared with the

proposed algorithm (with the virtual target).

Table 13. Validation Simulation Initial Condition of Vehicles

X Position [m] Y Position [m] Velocity [km/h]

Ego 0 0 100
Target 1 -70 35 110
Target 2 -30 35 100
Target 3 10 35 100
Target 4 68 35 90
Target 5 70 0 80
Target 6 110 0 80
Target 7 120 35 100
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Figure 7.9. The initial condition of the simulation.

Figure 7.10 shows the simulation results. At two seconds, both algorithms
demand the lane change to the overtaking lane because of the slower preceding
vehicle. Then no virtual algorithm tries to enter in front of target 3. However,
as target 4 is recognized in the perception range, it changes to enter the space
between targets 2 and 3. This could be seen through the fluctuating desired
position, desired velocity, and acceleration. On the other hand, the proposed
algorithm attempts to enter the space between targets 2 and 3 as soon as a lane
change is required. This is because the proposed algorithm always thinks virtual
targets are placed on the perception range limit. The proposed algorithm could
prepare for vehicles coming in outside the perception range. As a result, the
proposed algorithm enters the overtaking lane more quickly. Then, it overtakes
targets 5 and 6 and returns to the driving lane again. The proposed algorithm

travels a greater distance with a smoother acceleration than no virtual algorithm.
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Figure 7.10. Simulation results.
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7.1.4. Simulation about cut-in vehicle safety to evaluate the stochastic risk

assessment and the predictive control

The proposed autonomous driving algorithm employs appropriate stochastic
predictions. The algorithm guarantees safety and human-like driving based on
the stochastic risk assessment and the predictive control reflecting prediction.
To evaluate the effectiveness of the stochastic risk assessment and the
predictive control, the proposed algorithm has been evaluated through
simulation. The situation, in which the front vehicle cuts-in, occurs very
frequently on the road. At this time, if the cut-in vehicle is slower than ego
vehicle, there is a risk of collision, so proper safety control is required. If the
proactive control is reflected, a much safer and more human-like driving is
possible.

The simulation environment is a two-lane straight road. Figure 7.11
represents the initial condition of ego vehicle and cut-in vehicle. Simulations
are repeated in this environment that can be slightly modified for parameters.
Simulation parameters are modified randomly and all parameters are selected
to consider occurring in the actual road as shown in equation (7.11). The monte-

carlo simulation has been run 145 times.

Cut-in Vehicle
vaa—fn {

Ego Vehicle ) t

| cut—in
y, (S« »
ego Ap
x

Figure 7.11. The initial condition of the simulation.
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Vego =30kph
wiinimia =[10 15 20 25]kph
Vo =[10 15 20]kph (7.11)
tun =[5 55 6]sec
Ap,=30m

Vv

A total of three algorithms were compared to check the performance of the
algorithm. The base algorithm is an algorithm that does not use collision
probability and proactive control. Without considering collision probability,
safety control is performed when surrounding vehicle overlaps with the future
behavior of the ego vehicle. In MPC for safety control, the current information
is used instead of using predicted information. The second algorithm to be
compared is an algorithm that uses prediction information in MPC. If the future
behavior is assumed to collide, the planning for collision avoidance is reflected
in the MPC. Finally, the proposed algorithm not only employs prediction
information into the MPC, but also uses collision probability when assessing
risk of future collision.

As shown in Figure 7.12 (c) and (d), it can be seen that all algorithms satisfy
sufficient safety. However, it can be seen that the second and proposed
algorithms reflecting future behavior in MPC use much less deceleration. This
is because they predict the collision of the cut-in vehicle and decelerate in
advance. The amount of deceleration of the proposed algorithm is the least

because the deceleration is performed earlier.
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Figure 7.12.
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Results of repeated simulations have been expressed through histogram.
Insignificant data was excluded to draw histogram. Desired acceleration below
-0.1m/s?, clearance below 20m, and time gap below 4sec were considered for
histogram. Figure 7.13 shows comparison of base and proposed algorithm.
Both algorithms maintain the safety well, but the proposed algorithm shows
better performance. The base algorithm uses too much deceleration. This can
lead to poor ride quality, as well as a danger to the rear vehicle.

Figure 7.14 shows comparison of proactive and proposed algorithm. Both
algorithms implement the proactive motion well, but the proposed algorithm
shows better performance. The proposed algorithm shows better safety

performance while using less deceleration.
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Figure 7.13. Comparison of base and proposed algorithms in monte-carlo
simulation.
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Figure 7.14. Comparison of proactive and proposed algorithms in monte-carlo
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7.1.5. Merging simulation in on-ramp to evaluate MLC

Simulation environment is shown in Figure 7.15. In the target lane, nine
surround vehicles exist. These vehicles are platooning like real human driver’s
behavior. These vehicles’ velocity is based on general highway situation. In the
merge lane, the automated vehicle exist. This vehicle’s initial velocity is based
on general intersection situation. To show the effectiveness of the automated
driving algorithm, monte-calro simulations are repeated in this environment
that can be slightly modified for parameters. Simulation parameters are
modified randomly and all parameters are selected to consider occurring in the
actual road as shown in equation (7.12).

. a0 g T T cLidz = Velacit low - 80-90kpi

Surround |Surround
vehicle 2 vehicle 1

Automated gxas cl_initial
vehicle

Figure 7.15. Simulation environment.

Surround Surreun
vehicle 10 vehicle

&5
“ R

TG, =[08 1 1.2]

velocity,, =[80 81 82 83 84 85 86 87 88 89 90][km/h]
Initial clearance,, =[0 10 20 30 40][m]

cl, ; =rand(TG,) xrand(velocity ) / 3.6 + 4 [m]

(i=123,...8/ j=i+1)

Clys ; =rand (TG, ) x rand (velocity, ) / 3.6 + 4 [m]

vel, = rand (velocity,, ) [km/h]

vel,, ; = rand(velocity,, ) [km/h]

(i=1,2,3,....,9)

cl,... =rand(Initial clearancey,) [m]

(7.12)

set

initial
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The simulation results via computer simulation are presented. Not only one
simulation data but also repeated simulations data are analyzed. Analysis of one
simulation data is as follows. In Figure 7.16, the driving situation at each time
is presented. When time is 1second, all vehicles are placed depending on
simulation initial condition. When time is 5second, the subject vehicle has
decelerated to retain space in order to merge. When time is 9second, the subject
vehicle has accomplished lane change on proper space between surround
vehicles.

In Figure 7.17 (a), the ego vehicle has decelerated to place desired merge
position which is selected as the safe space. Figure 7.17 (b) demonstrates the
velocities of three vehicles that are the ego vehicle, a front vehicle and a rear
vehicle. The front and rear vehicles mean the vehicles that are located
adjacently to the merge space when the ego vehicle merges to the target lane.
This means that this merge does not significantly interfere with the flow of
traffic. In Figure 7.17 (c), the driving mode decision algorithm determines lane
change appropriately. Based determination of the driving mode, lateral control
input for autonomous driving vehicle is calculated. Figure 7.17 (d)

demonstrates that the performance of controller is satisfied to change lane.
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Figure 7.16. Driving situation of one case among monte-calro simulation.
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In this time, repeated simulations data is analyzed. Simulations are repeated
in 45 times varying parameters. Through repeated simulations, it can be
checked to ensure that whether the ego vehicle perform successful merging.
Figure 7.18 (a) demonstrates stacked velocities of three vehicles that are the
subject vehicle, a front vehicle and a rear vehicle. Adaptation of velocity flow
in the target lane appears in all simulation cases. In Figure 7.18 (b), the lateral
position of the subject vehicle is presented. The automated vehicle has varied a
lane change point depending on varied simulation. Figure 7.18 (c) demonstrates
domain of clearance and relative velocity with the front and rear vehicles. In all
simulation cases, the data of first safety factor have maintained in safe region.
This means that the automated vehicle maintains the safety with surround
vehicles when merging. In Figure 7.18 (d), longitudinal position of the subject
vehicle is presented when the subject vehicle is on the merge lane. This position
shows second safety factor. Because this position maintains a positive, the

automated vehicle is successful in merging.
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(a) Velocity of three vehicles.
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Figure 7.18. Accumulated results of monte-calro simulation.
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7.1.6. Interactive lane change simulation in congested traffic to evaluate

the yield intention inference

To evaluate the performance of lane change in congested traffic, the proposed
interactive lane change algorithm has been evaluated through simulation. The
simulation environment is a two-lane straight road. The simulation is a situation
in which the ego vehicle has to move to the next lane because of the accident
vehicle in front. The accident vehicle is 80 meters ahead. The next lane is
congested and nine vehicles are driving at low speed. Out of nine side vehicles,
the ego vehicle starts from the same longitudinal position as the fifth vehicle.
Based on the fifth vehicle, the remaining eight vehicles are positioned
according to their desired time gap. The velocity of the side vehicles and the
desired time gap of each side vehicle are randomly determined for each monte-

calro simulation.

Same starting point

Ego Vehicle 80m Accident Vehicle
AL ()} =
Side Vehicles e v =0kph
1 (o) i [om) B Ch eI CD 110 stop
vs:de,l vs!de,l Ap\—;45 Ap\ 67 v:m'e;S v:!'de,Q

Figure 7.19. Initial conditions of lane change simulation in congested traffic.

An important feature of this simulation is the lane change yield intention.
Real vehicles have different intentions to yield to lane changes depending on
the driver's disposition. As shown in A, the yield propensity depends on the
lateral position of the vehicle attempting to change lanes. To mimic this, three
yield intentions were made and randomly distributed to nine side vehicles. The

lateral position at which the yield starts was defined as ;4 . Therefore, some
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vehicles give way to traffic pressure of autonomous vehicles, while others do
not. It is important for autonomous vehicle to understand this well and to do

interactive lane change.

Yield or not

Figure 7.20. Lateral position related with yield intention of side vehicles.

Simulation parameters are selected to consider occurring in the actual road

as shown in equation (7.13). The monte carlo simulation has been run 150 times.

Vg, =30[km /]

Vage1 =Viige.2 =*** = Vsigeo =rand(5 10 15 20) [km/h]

TGy =rand(0.7 1 1.3 1.6) [sec]

Py =Fand(2.7 2.2 1.5) [m] (7.13)
(i=123,...9)

AP, iyiis) =T Ges,i X Viige,i +2 M

(i=123,...8)

A total of three algorithms were compared to check the performance of the
algorithm. The compared algorithms use constant parameters for lane change
safety distance. One is based on highway data and the other is based on urban

data. The former is called the conservative safety distance (CSD) and the latter
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is called the progressive safety distance (PSD). The proposed algorithm adopts
the lane change safety distance with yield intention, which is called yield
intention based safety distance (YISD).

Figure 7.21 shows the distribution of the time it takes to change lanes through
monte-calro simulation. Figure 7.22 shows the distribution of clearance
between the ego vehicle and the rear vehicle when changing lanes. This
represents the performance of safety. The comparison result of the three
algorithms is represented in Table 14. Here, the lane change completed time
means the time until the simulation starts and the lane change is completed. The
lane change success rate represents the ratio of the simulations that successfully
change lanes among all simulations. The CSD shows the highest degree of
safety. However, lane change completed time is too long and success rate is
significantly low because the CSD is too conservative. The PSD has good lane
change completed time and success rate, but its safety is low. The YISD shows
the best lane change completed time and success rate, while ensuring sufficient

safety performance.
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lane change in congested traffic.

Table 14. Interactive lane change performance in congested traffic

CsD PSD YISD

LC completed time [sec] 24.60 18.08 17.83

Clearance with rear vehicle [m] 19.97 13.05 13.36

LC success rate (between two vehicles) 0.36 0.84 0.86
Collision case 0 4 0
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7.2. Vehicle Test

We evaluated the proposed algorithm through vehicle test. The autonomous
driving algorithms must be verified by vehicle test after verification is
completed by simulation. The final goal of the proposed algorithm is to
implement it on autonomous vehicles, so vehicle test is the final stage of
verification. The proposed algorithm has been developed to cope with a
changeable autonomous vehicle rather than a specific autonomous vehicle. The
proposed algorithm is adaptive to the localization and perception modules, the
upper modules of autonomous driving. Therefore, vehicle tests are conducted
using various vehicles, not just one vehicle. Vehicle tests have been conducted
using the three autonomous vehicles introduced in Section 2. Each of the three
vehicles has different sensor sets, localization and perception modules.
Therefore, it can be seen that the proposed algorithm shows stable performance
for various uncertainties and changeability of vehicles. Lane change is an
essential driving function regardless of the road environment. Therefore,
vehicle tests have been conducted in both highway and urban environments. In
Korea, a policy exists for the real road test of autonomous vehicles. This policy
grants permission for autonomous driving through autonomous driving test, fail
safe test, and driver override test. Three test vehicles used in this dissertation

accepted this permission, so the vehicles are able to drive on actual roads.
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7.2.1. Self-directed Test using First Vehicle Platform

Before testing the vehicle with various external vehicles on the actual road,
the vehicle test has been carried out by itself [Chae,'18]. This can confirm the
basic algorithm operation in the actual vehicle that could not be confirmed in
the simulation. The proposed autonomous driving algorithm is validated
through self-directed vehicle test. As shown in Figure 7.23, there are two
normal vehicles on the first lane and an autonomous lane on the second lane.
At this time, the autonomous driving vehicle is required to make a lane change
to the left. The test scenarios are summarized in Table 15. There are four
scenarios in total and the initial speed and initial position of the three vehicles
are different. Especially, the scenario 4 assumes that virtual vehicles exits
closely in front of and behind both side vehicles in order to simulate a
congestion situation. The target speed of the autonomous vehicle is the same as

the initial speed.

Target Lane (J[_J] — ~CJ

Voiz €, — -

"
.= 2ini

Initial Lane

il

Figure 7.23. Three vehicles relation of test scenario.
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Table 15. Validation test initial condition of vehicles

No Vini 1 Vini‘z Vini 3 Cl,ini Cz,ini Cs,ini TGini
1 30kph 30kph 30kph 10m -10m -20m 1.2
2 30kph 30kph 30kph 10m -2m 12m 1.2
3 10kph 10kph 10kph 25m -4m 21m 9.3
4 10kph 10kph 10kph 18m -8m 10m 6.6

Figure 7.24 shows four snap shots of each test scenario. The blue vehicle is
the autonomous vehicle and the red vehicles are the surrounding vehicles. The
blue line is the target path of autonomous vehicle, and the blurred blue vehicles
are the predicted information after one and two seconds, respectively. Red
points are point cloud of LiDAR sensor. On the right side of the autonomous
vehicle, guardrails and trees are recognized by LiDAR. On the left side, the
corners of the surrounding vehicles are recognized by LiDAR and perceived as
vehicles by the perception algorithm. The long rectangular box around the red
vehicle indicates the safe distance used in the motion planning algorithm. The
green line indicates the lanes recognized by the camera sensor, and the black
dotted line is the centerline of the lanes processed by the lane filter.

The first snapshot in each scenario shows the initial condition. In all scenarios,
although a lane change is required, there is a lane change risk due to safety
distance of the side vehicles on the target lane. The second snapshots shows the
autonomous driving vehicle taking action to be able to change lanes. In scenario

1, the autonomous vehicle determines that it is best to move in front of the side-
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front vehicle, and accelerate. In scenario 2, the autonomous vehicle determines
that it is best to move behind the side-rear vehicle, and decelerates. In scenario
3, the autonomous vehicle judges that there is sufficient space between the side-
rear vehicle and the side-front vehicle and accelerates to enter that space. As
mentioned above, the scenario 4 assumes that virtual vehicles exits closely in
front of and behind both side vehicles in order to simulate a congestion situation.
Therefore, the autonomous vehicle does not judge that it is good to move at the
most forward or the rearmost point like scenario 1, 2. The autonomous vehicle
proceeds with traffic pressure to convey the lane change intention to the side-
rear vehicle. In other words, the autonomous vehicle goes into space between
two side vehicles and attaches slightly to the target lane. The third snapshots
shows the autonomous driving vehicle performing the lane change. Especially,
in scenario 4, the side-rear vehicle responded to traffic pressure, giving space
for lane change. The fourth snapshots shows that the lane change has been

successfully completed while keeping the safety with the surrounding vehicles.
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Figure 7.24. Four snap shots of each test scenarios.
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Figure 7.25 shows test results of scenario 3. Figure 7.25 (a) shows the
longitudinal acceleration. From 0 to 8 seconds, the autonomous vehicle
accelerates to a space where lane change is possible. The vehicle makes
longitudinal control considering the safety with the side-front vehicle from 8
seconds, when the lane change starts. Figure 7.25 (b) demonstrates, through
lateral position by measured camera sensor, that the lane change starts from 8
seconds and the autonomous vehicle arrives at the target lane about 11 seconds.
Figure 7.25 (c) shows the steering angle used to performing lane change,
demonstrating that the lane change is completely on the target lane at about 16
seconds. Figure 7.25 (d) demonstrates domain of clearance and relative velocity
with the side-front and side-rear vehicles. Black dots are before lane change.
Red circles are during and after lane change. Initially, the side-rear vehicle is so
close that the lane change cannot be performed. After the distance from the side-
rear vehicle is extended, the lane change begins. This shows that the

autonomous vehicle maintains the safety with surround vehicles when lane

changing.
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7.2.2. Highway DLC and MLC Test using First Vehicle Platform

The proposed lane change algorithm has been evaluated through a real
vehicle test. Figure 7.26 shows the test environment where the three highways
connect by three ramps as a circulation course. This environment makes the
DLC and the MLC consecutively. Information on each road section is given in

Table 16.

Figure 7.26. Vehicle test environment.
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Table 16. Information of each road section

Kind Feature Lane change reason
) Ramp Max curvature = 300 m -
@ On- ramp Limited distance = 200 m Mandatory
(D—>® Normal The number of lanes: 3 Discretionary
Off-ramp Go to exit lane from 1 km ahead Mandatory
® Ramp Max curvature = 350 m -
On- ramp Limited distance = 200 m Mandatory
-0 Normal The number of lanes: 4 Discretionary
Off-ramp Go to exit lane from 1 km ahead Mandatory
Ramp Max curvature = 200 m -
©) On- ramp Limited distance = 150 m Mandatory
-0 Normal The number of lanes: 4 Discretionary
o)) Off-ramp Go to exit lane from 1 km ahead Mandatory

The vehicle test proceeded on a total of five and a half laps around the circular

course. The total travelled distance is 103 km, and the number of lane changes

conducted is 92. Figure 7.27-Figure 7.32 show the selected three lane change

situations among the 92 lane changes. The three lane change situations are the

on-ramp, the off-ramp, and the general road. Snapshots of the three lane change

situations are shown in Figure 7.27, Figure 7.29, and Figure 7.31. In the

snapshots, the blue line is the target path of the ego vehicle, and the blue
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diamonds are the predicted positions of the ego vehicle after 1 and 2 s,
respectively. The small red circle is a current position reference of the ego
vehicle. The red points represent measured data of the LiDARs and radar
sensors. The red vehicles represent surrounding vehicles. The pink rectangular
box around the red vehicle indicates the safety distance. The green line indicates
the lanes recognized by the camera sensor, and the black dotted line is the
centerline of the lanes. In this dissertation, the driving mode is so important.
The concepts of the lane change demand and possibility are expressed by
arrows. The arrow indicates the driving mode and the direction of the lane
change. The colored arrows indicate the lane change demand. A red arrow
indicates that the action of the lane change is risk. Therefore, the lane change is
impossible. A blue arrow shows that the lane change mode proceeds because
the safety distances have been sufficiently guaranteed.

Figure 7.28, Figure 7.30, and Figure 7.32 represent test results of the three
lane change situations: driving mode, acceleration, safety domain with
surrounding vehicles, distance with side vehicles on target lane, steering angle
and lateral positon. These figures show that the ego vehicle succeeds in
changing the lane, while using appropriate acceleration and maintaining safety
with the surrounding vehicles. Figure 7.28 (a), Figure 7.30 (a) and Figure 7.32
(a) indicate the driving mode which is related with the lane change demand and
possibility concept for the active lane change. In Figure 7.28 (b), Figure 7.30
(b) and Figure 7.32 (b), the time-varying safety distances are shown. The
driving mode is decided by the safety distance and clearance with vehicles on
target lane. The acceleration in Figure 7.28 (c), Figure 7.30 (c¢) and Figure
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7.32 (c) is satisfactory for both smooth ride quality and clearance control. The
acceleration tracking controller has been tuned for smooth ride quality in
normal driving situations in which the desired acceleration is in the range of
+1m/s"2. The clearance control characteristics described in Figure 7.28 (d),
Figure 7.30 (d) and Figure 7.32 (d) illustrate that the vehicle behaviors of the
ego vehicle are in safe region with sufficient safety margin. It should be noted
that, in emergency braking situations, the designed acceleration is of large
values and the tacking performance should be much better and faster to avoid
collisions. In emergency braking situations, a different set of gains is used for
fast tracking performance. In Figure 7.28 (f), Figure 7.30 (f) and Figure 7.32
(f), it indicates the lane change moment that the lateral position has a sudden
change in a very short time.

Figure 7.27 presents four snapshots of on-ramp driving. In the Figure 7.27
(a), the ego vehicle is demanded to conduct a left lane change by road
environment. However, the side vehicles are located so close. Therefore, the
lane change is impossible. These Figure 7.27 (b) and Figure 7.27 (c) show that
the ego vehicle is performing a lane change in the desired space. In the Figure
7.27 (d), the ego vehicle completes the lane change and maintains safety with a
preceding vehicle. The Figure 7.27 (e) indicates the biased steering input due
to an on-ramp road with slight curvature. This shows that the lateral model with
consideration for road curvature has good performance about the lane keeping
and lane change.

Figure 7.29 shows four snapshots of off-ramp. The ego vehicle could know
that the vehicle is getting closer to off-ramp. A right lane change is demanded
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in order to go to the exit lane. This is shown in Figure 7.29 (a). Since the side-
rear vehicle is located so close, the ego vehicle decides to go forward in front
of the side-rear vehicle. This is shown in Figure 7.29 (b). The Figure 7.29 (c)
shows that the ego vehicle is changing the lanes. In addition, a signpost appear
in the Figure 7.29 (¢), the signpost means that current position of the ego vehicle
is close to off-ramp. In the Figure 7.29 (d), the vehicle completes the lane
change.

Figure 7.31 presents four snapshots of overtaking situation in the general road.
The Figure 7.31 (a) shows that the preceding vehicle is too slow and traffic flow
in the left lane is good. Therefore, the ego vehicle is needed to make a left lane
change. It is impossible to perform the lane change immediately due to the
vehicles in the side lane. However, the lane change is soon possible because a
side vehicle moves to the other lane. The Figure 7.31 (b) and the Figure 7.31
(c) indicate that the ego vehicle performs the lane change and maintains safety
with a preceding vehicle in the new lane. In the Figure 7.31 (d), the ego vehicle

finishes overtaking a slow truck and matching the traffic flow in the new lane.
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Figure 7.27. Snapshots in on-ramp (MLC).
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Figure 7.30. Test results in off-ramp (MLC).
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Figure 7.31. Snapshots in general road section (DLC: overtaking).
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Figure 7.33 shows cumulative test data which has been collected in five and
a half laps of the circular course. The total travelled distance is 103 km, and the
ego vehicle performs the lane change 92 times. As shown in Figure 7.33 (a) and
Figure 7.33 (b), the ego vehicle always maintains safety performance with a
preceding vehicle. The minimum clearance is 11.4203 m, and the minimum
time gap is 0.5528 s. This means that safety performance is maintained within
the defined safety distances. In Figure 7.33 (c), a safety domain of relative
velocity and clearance is shown. States with surrounding vehicles can be found
all located within the safe area which appears in Section 2. This means that all
lane changes have been carried out while keeping safety of the surrounding
vehicles. Lastly, Figure 7.33 (d) represents the longitudinal and lateral
acceleration of the ego vehicle during lane changes 92 times. Given that
previous studies [Wan,'11, Toledo,'03, Ahmed,'99] about lane changes, the
longitudinal and lateral acceleration are reasonable. This indicates that lane

changes are performed without compromising the ride quality of passengers.
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7.2.3. Highway Overtaking Test for DLC using Second Vehicle Platform

The proposed lane change algorithm has been evaluated through a real
vehicle test [Chae,20]. The test environment is the Gyeongbu Expressway in
Korea. The highway is four lanes one way and has a speed limit of 110 km/h.
The vehicle test has been conducted using the first and second lanes according
to the road regulations. The total driving distance was 200 km and 106 lane

changes were made for overtaking. Figure 7.34 represents the test environment.
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Figure 7.34. Vehicle test environment.
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Figure 7.35 shows the snapshots of the selected one overtaking situation
among the 106 lane-change maneuvers. The selected overtaking situation is a
situation in which the ego vehicle enters to the overtaking lane after seeing a
slow preceding vehicle. And because of slow vehicles in the driving lane, the
ego vehicle continues to drive in the overtaking lane. Then, the ego vehicle
returns to the proper space in the driving lane. As a result, the ego vehicle
overtakes four vehicles. In the snapshots, the blue vehicle is the ego vehicle.
The black vehicles are surrounding vehicles. Important vehicles among
surrounding vehicles are colored vehicles. The red vehicle is the preceding
vehicle. The orange vehicles are vehicles on side lanes. The boxes drawn
around important vehicles indicate safe distances. The red points represent
point clouds of the LiDAR sensors. The blue line means the desired path of the
ego vehicle. The green lines represent the lanes recognized by the camera sensor.
The azure line means the reference of a longitudinal position. It could be seen
that the reference changes according to the decided target space. In this
dissertation, the driving mode is very important. The concepts of lane change
demand, and possibility are expressed by arrows. The arrow represents the
driving mode and the direction of the lane change. The colored arrows indicate
the lane change demand. A red arrow represents that the lane change is
impossible. A blue arrow indicates that the lane change mode proceeds because
the safe distances have been sufficiently guaranteed. The texts at the top of the
snapshot represent the reference position, the reference velocity, and the desired

acceleration, respectively.
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Figure 7.35. Vehicle test snapshots: the selected one overtaking situation.

175




Figure 7.36 represents the test results of the selected overtaking situation:
driving mode, overtaking decision velocity, distance with surrounding vehicles,
safety domain with surrounding vehicles, acceleration, and lateral position.
These figures show that the ego vehicle proceeds to overtake, while using
appropriate acceleration and maintaining safety with the surrounding vehicles.
Figure 7.36 (a) indicates the driving mode that is related to the lane change
demand and possibility concept for the overtaking. The left lane change is for
entering to the overtaking lane, and the right lane change is for returning to the
driving lane. In Figure 7.36 (b), the overtaking decision velocities are shown.
The lane change demand is determined according to the decision velocities. In
Figure 7.36 (c), the distances with the surrounding vehicle are indicated as
clearance and safe distance. The gray area in Figure 7.36 (c) indicates the
situation where the lane change is demanded. In the grayed out area of Figure
7.36 (c), the states of the nearest vehicle on the target lane are displayed. In
other areas, the states of the preceding vehicle are displayed. When the
clearance is greater than the safe distance in the gray area, lane change mode
starts. This shows the concept of lane change possibility. In the case where lane
change is not demanded, the lane-keeping situation shows the clearance and the
safe distance from the preceding vehicle. It shows that the distance to the
preceding vehicle is above the safe distance. The clearance control
characteristics described in Figure 7.36 (d) show that the behaviors of the ego
vehicle are in a safe region with a sufficient safety margin. The acceleration in
Figure 7.36 (e) is satisfactory for both smooth ride quality and clearance control.
Figure 7.36 (f) indicates the lane change moment and shows that the lateral
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position has a sudden change within a very short time.
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Figure 7.36. Vehicle test results: the selected one overtaking situation.
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Figure 7.37 shows cumulative test data was about 106 lane changes. In Figure
7.37 (a), Figure 7.37 (b), and Figure 7.37 (c), the ego vehicle always
maintains safety performance with a preceding vehicle. The minimum
clearance is 14.1175 m, and the minimum time gap is 0.8355 s. This means that
safety performance is maintained within the defined safe distances. All lane
changes have been carried out while keeping the safety of the surrounding
vehicles. Lastly, Figure 7.37 (d) represents the longitudinal and lateral
acceleration of the ego vehicle during 106 lane changes. This indicates that
overtaking maneuvers have been performed without compromising the ride

quality of passengers.
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7.2.4. Urban DLC and MLC Test using Third Vehicle Platform

The proposed lane change algorithm has been evaluated through a real

vehicle test. The test environment is the Sangam-dong, Seoul in Korea. The
vehicle test has been conducted on circulation course that was designated as an
autonomous driving test bed. This is a course for an autonomous circular shuttle
bus. Figure 7.38 represents the test environment. Seoul City provides a high

definition map in the autonomous driving test bed. Figure 7.39 shows the high

definition map and the circulation course on the map.
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Figure 7.38. Vehicle test environment.
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Figure 7.39. High definition map of autonomous driving test bed in Seoul.

The environment is a complex urban road and has a speed limit of 50 km/h.
The circulation course consists of a total of 4 straight roads. All roads vary from
two lane to four lane roads as shown Figure 7.40. Figure 7.41 shows the all path
and main path of the high definition map on the circular course. From main
path, it can be seen that various lane changes are needed to proceed with the
circulation course in a complex urban environment. The ego vehicle performs
various lane change maneuvers while cycling in the environment. This study

presents the two results of MLC and DLC in the most difficult situation.
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Figure 7.41. All path and main path on the high definition map.

Figure 7.42 shows the snapshots of the MLC situations. The selected situation
is a situation in which the ego vehicle makes the MLC to follow main path after
turning right. At this time, there are also a parked vehicle in front, so the ego
vehicle needs to change lanes while maintaining safety with the parked vehicle.
In the snapshots, the blue vehicle is the ego vehicle. The green points represent

point clouds of the LIDAR sensors. The blue boxes are dynamic obstacles. The
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red points represent static obstacles. The pink line means the future trajectory
of the ego vehicle. In this dissertation, the driving mode is very important. The
concepts of lane change demand, and possibility are expressed by arrows. The
arrow represents the driving mode and the direction of the lane change. The
colored arrows indicate the lane change demand. A red arrow represents that
the lane change is impossible. A blue arrow indicates that the lane change mode
proceeds because the safe distances have been sufficiently guaranteed.

Figure 7.43 represents the test results of the selected MLC situation: driving
mode, lateral position, acceleration, velocity, distance with surrounding
vehicles, and trajectory. These figures show that the ego vehicle proceeds to
MLC, while using appropriate acceleration and maintaining safety with the
surrounding vehicles. Figure 7.43 (a) indicates the driving mode that is related
to the lane change demand and possibility concept for the MLC. Figure 7.43 (b)
indicates the lateral position which shows lane change motion based on driving
mode. The acceleration is shown in Figure 7.43 (c). The velocity is shown in
Figure 7.43 (d). The desired velocity is important in this scene. The set velocity
on the road after a right turn is 22.5 km/h. In this situation, it can be seen that
the lower desired velocity is set due to the front obstacle. And during lane
change, the desired velocity is restored by overtaking velocity planning. In
conclusion, the ego vehicle succeeds in changing lanes without stopping while
maintaining safety with the vehicle in front. Figure 7.43 (e) shows that
clearance with the parked vehicle remains above the safety distance. When the
clearance is lower than the safety distance, it is already avoiding and passing
sideways. Figure 7.43 (f) represents the path and trajectory of the ego vehicle.
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To follow main path, the ego vehicle proceeds to MLC and shows the trajectory
to complete it.

Figure 7.44 shows the snapshots of the DLC situations. The selected situation
is a situation in which the ego vehicle makes the DLC to overtake the bus that
has stopped in front. After the ego vehicle moves to the next lane to overtake
the bus, the bus picks up all the passengers and departs quickly, crossing several
lanes at once. Therefore, the bus proceeds to cut-in sharply in front of the ego
vehicle, and it is possible to check the safety maintenance for cut-in vehicle.

Figure 7.45 represents the test results of the selected DLC situation: driving
mode, lateral position, acceleration, velocity, distance with surrounding
vehicles, and trajectory. These figures show that the ego vehicle proceeds to
DLC, while using appropriate acceleration and maintaining safety with the
surrounding vehicles. Figure 7.45 (a) indicates the driving mode that is related
to the lane change demand and possibility concept for the DLC. Because the
bus is stuck at a stop and stopped, it is difficult for the ego vehicle to determine
the lane change mode from a distance. As the ego vehicle gets closer to the bus,
it judges that it is impossible to pass by lane keeping and decides to perform
lane change. Therefore, the ego vehicle inevitably stops behind the bus and then
proceeds to change lane. Figure 7.45 (b) indicates the lateral position which
shows lane change motion based on driving mode. The acceleration and
velocity are shown in Figure 7.45 (¢) and (d), respectively. Figure 7.45 (e)
shows clearance and safety distance with the overtaken bus. When the ego
vehicle changes lanes to overtake the bus, clearance with the bus remains above
the safety distance. When the clearance is lower than the safety distance, it is
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already avoiding and passing sideways. And after 150 seconds, the bus picks
up all the passengers and accelerates, making a sharp cut-in in front of the ego
vehicle. At this time, the clearance appears below the safety distance, but the
clearance gets closer to the safety distance through proper safety control. Figure
7.45 (f) represents the path and trajectory of the ego vehicle. To overtake the
temporary stopped bus, the ego vehicle proceeds to DLC despite deviating from

main path.
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Figure 7.42. Vehicle test snapshots: the MLC situation.
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Figure 7.43. Vehicle test results: the MLC situation.
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Figure 7.44. Vehicle test snapshots: the DLC situation.
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Figure 7.45. Vehicle test results: the DLC situation.
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7.2.5. Self-directed Interactive Lane Change Test using Second Vehicle

Platform
The proposed lane change algorithm has been evaluated through a real
vehicle test. The test environment is the test bed located at Siheung Campus,
Seoul National University in Korea. The test bed was established for the
purpose of developing and verifying autonomous vehicles. Figure 7.46 shows

the test bed.

Figure 7.46. Test bed for autonomous vehicles at Siheung Campus, Seoul

National University.

In this test bed, the interactive lane change test has been conducted. In this

test, one autonomous vehicle and two vehicles that are actually driven by

humans are used. The autonomous vehicle is second platform in the dissertation.

In this test, it is necessary to simulate the lane change of the congestion traffic.
It is practically impossible to use multiple vehicles for congested traffic
situation. Therefore, it is implemented that there are virtual vehicles of
congestion in front of and behind the two vehicles driven by humans. Figure

7.47 represents the test environments. The yield intention by surrounding
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vehicles to change lanes of autonomous vehicles is important. Accordingly, the

surrounding vehicles driven by humans take the behavior of yielding or not

yielding.
1 (o] 1 (o] ] 1 (o]
i(om) i
' ™~ I
U= : ego Vehicle A0 : surrounding vehicle

- Ego vehicle configuration (Second Platform)

- Real vehicle by human driver

- Yield or Not m

E[[ii]i : Virtual vehicle

- Vehicle to realize congestion traffic

Figure 7.47. Interactive lane change vehicle test environment.

Autonomous vehicle attempts to change lanes between surrounding vehicles.

The first situation is a situation in which the side-rear vehicle has yield intention.

Therefore, the autonomous vehicle can change lanes immediately. The second

situation is a situation in which the side-rear vehicle has no intention to yield.

Therefore, the autonomous vehicle fails to change lanes and goes in front of the

side-front wvehicle. Since the side-front vehicle has yield intention, the

autonomous vehicle changes lanes in front of the side-front vehicle. Figure 7.48

shows the two situations.
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Figure 7.48. Two situation of interactive lane change vehicle test.

The test snapshots of first situation are represented in Figure 7.49. The test
results of first situation are shown in Figure 7.50. The autonomous vehicle is
well aware of the yield intention of the side-rear vehicle and immediately
succeeds in changing lanes.

The test snapshots and results of second situation are represented in Figure
7.51 and Figure 7.52, respectively. The autonomous vehicle is well aware of
the non-yield intention of side-rear and abandon the lane change. Then, the
autonomous vehicle drives in front of the side-front vehicle. After moving to
the front of the side-front vehicle, the autonomous vehicle figures out the yield

intention of side-front vehicle and proceeds with the lane change.
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Figure 7.49. Vehicle test snapshots: the first situation.
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Figure 7.50. Vehicle test results: the first situation.
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Figure 7.51. Vehicle test snapshots: the second situation.
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Figure 7.52. Vehicle test results: the second situation.
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Chapter 8 Conclusion & Future Works

8.1. Conclusion

Human driver data based active lane change algorithm has been developed
in this dissertation. Since most autonomous vehicles recognize the environment
by the local sensor, there is a problem with the limitation of the cognitive range.
Virtual targets have been devised to cope with this problem. Since proper
prediction is helpful for autonomous driving, the stochastic prediction models
of both ego vehicle and surrounding vehicle are presented. In terms of reflecting
uncertainties, the stochastic prediction is conducted. Since autonomous driving
systems must be acceptable to both drivers and passengers, the human driving
data of lane change has been acquired to design the system to accurately
simulate drivers. Based on the acquired driving data, safety indices are defined
for the lane change situation. Rule based and learning based approaches are
adopted for safety indices. Safety indices are supplemented with intention
inference using LSTM based RNN, which can cope with various lane changes.
To validate about safety performance, these indices are analyzed kinematically.
Then, stochastic prediction-based safety distances are derived by safety indices
and prediction models. Also, collision probability has been employed to
consider various uncertainties. The active lane change algorithm has been

developed based on these risk assessment. Decision and motion planning are
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conducted based on the stochastic prediction-based safety distance, which is
able to achieve safety performance without heavy computational burden. The
algorithm has considered the decision rules that drivers adopt when performing
lane change. For this purpose, the concepts of availibility, target space, demand,
and possibility for lane change have been devised. The desired driving mode is
decided to handle both DLC and MLC. Intuitive and efficient motion planning
has determined desired states and constraints according to the desired driving
mode. Longitudinal and lateral motion planning proceed, respectively, in which
references and constraints are defined in each of the states. The references are
decided based on the stochastic prediction-based safety distances. The safe
driving envelope is adopted as constraints. The envelope is defined as an area
in which the ego vehicle can drive without collision with surrounding vehicles.
Finally, in order to track the desired motion, a decoupled control architecture
has been adopted solving the SMPC problem.

The effectiveness of the proposed automated driving algorithm has been
evaluated via test-data based simulations and vehicle tests. In order to show
various performances, a total of 5 types of simulations have been proceeded.
Simulation tests show performance improvement compared to other algorithms.
And they reveal repeated performance improvement through monte-calro
simulation. The performance of the proposed algorithm has been investigated
via a vehicle test on highways and urbans. The vehicle test results revealed that
safe and comfortable lane changes have been achieved using our autonomous
test vehicle. A number of test results have been compared with human driving
data and shown the similar behavior pattern.
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The main contributions of this work are as follows: 1) the virtual vehicle is
devised to overcome perception limitation by local sensors and blind spots; 2)
the safe distance with intention inference is defined for driver acceptance using
rule based and learning based approaches; 3) the diverse uncertainites for safety
improvement are considered using stochastic prediction based safety distance
and the collision probabiltiy; 4) the efficient and intuitive decision-making and
motion planning are achieved using driving mode and target space; 5) based on
stochastic prediction and SMPC, the smooth and safe driving performance are
accomplished with light computation for vehicle implementation; and 6) the
efficacy of safe and repetitive driving performance are confirmed by simulation

tests and actual vehicle tests.
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8.2. Future Works

Future works aim at advancing the proposed algorithm, which could perform
successful lane changes in congested traffic. Congestion occurs on both
highways and urbans. Lane changes in congested traffic are especially
important in urban driving. In congested situations, the only safety distances
may be insufficient to conduct lane change decision and planning. It is
important to infer yield intentions of surrounding vehicles. Intention inference
of surrounding vehicles is currently studied for autonomous driving in highway
on-ramp and urban intersection. In this dissertation, such intention inference
has been applied to surrounding vehicles in congested lane change situations.
Also, it is necessary to transmit the intent of the lane change. The intent could
be conveyed to surrounding vehicles through turn signal or lateral motion of
the ego vehicle. The proposed algorithm has been vailidated to carry out
interactive lane changes through simulation study. Future works aims to
validate advanced interactive lane change with real vehicle test on actual roads.

Future works also aim at advancing the proposed algorithm, which could
perform biased driving. Biased driving is requied with diverse situations on
both highways and urbans. Biased driving is needed to avoid side vehicles
running in the lane or parked on the shoulder. There is a need for motion
planning for vehicles that can be avoided without having to change lanes. In

particular, it is essential when avoiding shoulder vehicles on the first lane.
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