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Abstract 

 

Active Lane Change Decision and Control 

using Data-driven Safety Boundary and 

Collision Probability 
 

CHAE Heungseok 

Department of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 
 

The traffic accidents caused by human error, such as distraction, drowsiness, 

or mistakes, account for 94 percent of all traffic accidents over last decades. 

Since safe driving is a goal of road-traffic-vehicle environments, major 

automakers develop driver assistance and active safety system. Recently, the 

majority of automotive makers have already commercialized active safety 

systems. Numerous kinds of research have attempted to integrate individual 

active safety systems for developing autonomous driving systems to enhance 

the safety and achieve zero fatalities. Moreover, in recent years, an interest of 

automotive industry is changed from the development of active safety to that 

of automated driving system capable of sensing surrounding environments and 

driving itself. Several projects have been conducted, and many others are still 

underway to evaluate the effects of automated driving in environmental, 

demographic, social, and economic aspects. 

From a careful review of a considerable amount of literature, autonomous 

driving systems have been proven to increase the safety of traffic users, reduce 

traffic congestion, and improve driver convenience. Various methodologies 

have been employed to develop the core technology of autonomous vehicles, 

such as perception, motion planning, and control. However, the current state-

of-the-art autonomous driving algorithms focus on the development of each 
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technology separately. Consequently, designing automated driving systems 

from an integrated perspective is not yet sufficiently considered. 

This dissertation describes the design, implementation, and evaluation of an 

active lane change control algorithm for autonomous vehicles with human 

factor considerations. Lane changes need to be performed considering both 

driver acceptance and safety with surrounding vehicles. Therefore, autonomous 

driving systems need to be designed based on an analysis of human driving 

behavior. Based on the acquired driving data, safety indices are defined using 

rule based and learning based approaches. Also, collision probability has been 

employed to consider various uncertainties. A stochastic risk assessment-based 

lane change decision and control algorithm has been developed. The desired 

driving mode is decided to cope with all lane changes. To obtain desired 

reference and constraints, motion planning for lane changes has been designed 

taking driving data based safety indices into account. A stochastic MPC with 

constraints has been adopted to determine vehicle control inputs: the steering 

angle and the longitudinal acceleration. The proposed algorithm has been 

developed to implement the autonomous vehicle in consideration with diverse 

uncertainties, light calculation and sensor limitation. 

The effectiveness of the proposed automated driving algorithm has been 

evaluated via test-data based simulations and vehicle tests. Diverse simulations 

have been proceeded to show performance improvement compared to other 

algorithms through monte-calro simulation. The proposed active lane change 

algorithm has been successfully implemented on an autonomous vehicle and 

evaluated via real-world driving tests. Safe and comfortable lane changes have 

been demonstrated using our autonomous test vehicle in diverse road 

environments. 

 

Keywords: Autonomous driving vehicle, Human driving data, Stochastic 

prediction, Risk Assessment, Intention inference, Recurrent neural network, 

Decision-making, Lane change decision, Motion planning, Virtual vehicle, 

Model predictive control, Active lane change.    
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Chapter 1 Introduction 

 

1.1. Background and Motivation  

 

According to a report from Volvo Cars, nearly 90% of accidents occur due 

to human error [Trucks,'13]. Particularly, many traffic accidents have occurred 

with the increase of the traffic participants on the roads. Of all traffic accidents, 

85.2% of traffic accidents have been caused by human factors [KOSIS,'18]. The 

human factors that affect the traffic accidents are inattention, inexperience, old 

age, drowsiness, overestimation of capabilities, speeding, or indecent driving 

behavior. [Petridou,'00]. Especially, lane change maneuvers have resulted in 

various vehicle accidents due to inaccurate perception of surrounding 

environments, neglectful driving, or illegal maneuvers. Currently, automakers 

consider autonomous driving as a mainstream entity, because it helps to 

improve safety, comfort, and convenience [Eskandarian,'12]. The development 

of autonomous driving has been spurred by improvements in sensors, actuators, 

processors, communications, and other technologies for autonomous vehicles.  

Recently, the interests of automotive researches have been expanding from 

passive safety systems to active safety systems with advances in sensing and 

processing technologies. Recently, the majority of automotive makers have 

already commercialized active safety systems, such as Adaptive Cruise Control 

(ACC), Lane Keeping Assist System (LKAS), Lane Change Assist (LCA), 
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Forward Collision Mitigation (FCM), Automated Parking Assist (APA) and 

Blind Spot Intervention (BSI). Numerous kinds of research have attempted to 

integrate individual active safety systems for developing autonomous driving 

systems to enhance the safety and achieve zero fatalities [Bishop,'00]. 

A number of projects have been and are ongoing to evaluate the effects of 

autonomous driving in environmental, demographic, social, and economic 

aspects. For example, the European project “AdaptIVe,” which comprises a 

consortium of 29 partners, develops various automated driving functions and 

defines specific evaluation methodologies. This project demonstrates 

autonomous driving in a complex traffic environment which considers the full 

range of automation levels from 0 to 4 [Etemad,'17]. In addition, “CityMobil2” 

successfully integrates driverless intelligent vehicles in nine other 

environments throughout Europe. However, this project used separate roads 

that prohibit the entrance of other vehicles [Alessandrini,'14]. In Japan, the 

“Automated Driving System Research Project” began on May 2014, which 

focuses on the development and verification of autonomous driving systems 

and next-generation urban transport [Yamamoto,'15]. 

From a careful review of a considerable amount of extant literature, 

autonomous driving systems have been proven to increase the safety of traffic 

users, reduce traffic congestion, and improve driver convenience. Various 

methodologies have been employed to develop the core technology of 

autonomous driving, such as localization, perception, motion planning, and 

control. However, the current state-of-the-art autonomous driving algorithms 

focus on the development of each technology separately. Consequently, 
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designing autonomous driving systems from an integrated perspective is not yet 

sufficiently considered.  

Autonomous driving systems should be acceptable to drivers and passengers. 

Therefore, these systems need to be similar to the normal driving operation of 

human drivers [Okuda,'14, Van Waterschoot,'09, Lindgren,'06]. In lane change 

driving, the ego vehicle characteristic has already been studied extensively. The 

ego vehicle means the vehicle which the autonomous driving system is applied 

to. Surrounding vehicles mean the every vehicles except the ego vehicle. Lane 

change trajectory prediction models have been described using human 

databases [Yao,'13, Nishiwaki,'08]. Acceleration and jerk used for lane changes 

were presented in some literature [Wan,'11, Toledo,'03, Ahmed,'99]. Lane 

change time was researched in some studies [Toledo,'07b, Finnegan,'90]. In 

addition to the ego vehicle characteristic, the relationship with the surrounding 

vehicles is so important in lane changes. This is because the lane change is the 

interactive task with an ego vehicle and surrounding vehicles. 

Therefore, we focus on developing autonomous driving systems from an 

integrated perspective. Also, we focus on designing autonomous driving 

systems to be acceptable to drivers and passengers based on human driving data. 

The proposed motion planning and control algorithm is compatible with various 

localization and perception modules, while considering the driver’s driving 

characteristics. This methodology realizes autonomous driving in diverse road 

environments. 
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1.2. Previous Researches 

 

An autonomous vehicle is an integrated system consisting of five categories: 

localization, perception, decision-making, motion planning, and control 

[Suganuma,'12, Suganuma,'14]. Among these categories, this study focuses on 

decision-making, motion planning, and control for active lane change 

maneuver. In addition to the categories, prediction module is needed. As this 

study aims to implement autonomous driving based on driver data, it is also 

important to study driving data in a lane change situation. In conclusion, 

previous studies have been investigated on the following items: lane change 

driving data, prediction, decision-making, motion planning and control. 

Several previous studies analyzed and utilized driver characteristics of the 

relationship with surrounding vehicles for lane change driving. A lane change 

assist system has been presented that selects three simple driving modes based 

on driver data and grid maps [Do,'17]. A lane change model has been proposed 

considering gaps between vehicles above a target lane for lane change 

[Butakov,'15]. Learning-based models were used in both studies. Such models 

could be accurate, flexible, and adjustable if properly trained with accurate data. 

However, these models might lack intuitive meaning or physical meaning for 

their parameters, Moreover, since models cannot be rebuilt without data, these 

models are difficult to actually use in other studies.  

Actual drivers usually drive in anticipation of the near future. Diverse 

prediction methods have been utilized for autonomous driving applications. A 
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prediction model has been presented based on a fuzzy rule and finite-state 

machines [Hülnhagen,'10]. Vehicle trajectory has been predicted by building 

various situation models [Otto,'12]. Because deterministic prediction methods 

have limits, probabilistic prediction methods have been developed to augment 

robustness [Althoff,'09, Kim,'14]. Also, advanced probabilistic prediction 

algorithms have been devised utilizing data-driven approaches. Inverse 

reinforcement learning has been employed to predict interactive motions 

considering discrete and continuous driving decisions [Sun,'18]. The multi-

modal probabilistic model could consider behavior intention based on deep 

neural networks [Hu,'19]. Long short-term memory-based recurrent neural 

networks have been utilized for interactive prediction in multi-lane turn 

intersections [Jeong,'20a]. Data-driven probabilistic prediction models 

considering interactive behavior are powerful in complex situations, such as 

ramp-merging, roundabout, and multi-lane turn intersections. 

A variety of research has attempted to solve the lane change decision-making 

problem. For lane change decision problems, fuzzy logic has been utilized 

[Naranjo,'08, Perez,'11, Basjaruddin,'15]. Fuzzy logic has the merit of 

considering various aspects of lane change maneuver. However, these studies 

have only considered the ideal situation, where the surrounding vehicles are at 

a constant speed. Also, these studies have solved the problem of lane change 

only one vehicle. Reinforcement learning has been employed to plan lane 

change maneuvers [Ngai,'11, Li,'15]. The algorithm has been trained on the lane 

change problem through repeated simulation. The learned algorithm has shown 
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good lane change performance. However, it is only verified by simulation, and 

the approach lacks verification of generality and safety. 

For the active lane change model, the various behaviors of the ego vehicle 

and surrounding vehicles should be considered. The motion planning 

algorithms for the active lane change have been researched in previous studies. 

Deterministic approaches have been utilized by formulating optimization 

problems [Shiller,'98, Feng,'06, Ferguson,'08, McNaughton,'11]. The 

approaches are simple and efficient, but could not consider diverse 

uncertainties which occur in lane change situations. A Markov Decision 

Process (MDP) and a Partially Observable Markov Decision Process (POMDP) 

have been employed to plan an optimal lane change policy [Brechtel,'11, 

Ulbrich,'13, Ulbrich,'15]. MDP and POMDP are able to cope with uncertain 

system behaviors. However, these methods have problems in implementing the 

vehicle due to heavy computation loads. 

A model predictive control (MPC) framework constitutes an attractive 

method and is extensively used for autonomous driving. The MPC method 

employs a dynamic vehicle model to predict future states, and calculates an 

optimal control input trajectory sequence for tracking state reference while 

satisfying constraints [Mayne,'00, Anderson,'10]. MPC has been utilized for an 

active steering controller [Falcone,'07]. For an autonomous vehicle control 

algorithm, a robust MPC has been used which is more robust, but possesses the 

weakness of being too conservative [Mayne,'05]. A lane change assistance 

system has been presented utilizing a scenario MPC [Schildbach,'15]. Although 

the scenario MPC complements shortcomings of robust MPC, all scenarios are 
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difficult to consider. It necessitates vast amounts of data. A stochastic MPC 

(SMPC) has been described based on the chance-constraints optimization 

problem for autonomous driving [Gray,'13]. Previous studies have verified an 

autonomous driving algorithm adopting SMPC in only simulation and simple 

vehicle tests [Gray,'13, Suh,'18]. 

In most of these researches for motion planning of autonomous driving, the 

current state-of-the-art autonomous driving algorithms focused on the 

development of each function separately. In other words, the previous 

researches developed the prediction, decision-making, motion planning, and 

control, respectively, rather than the integrated perspective of considering the 

interdependence between each function. 

Therefore, in this research, we focus on developing a motion planning 

algorithm for autonomous vehicle in diverse lane change environment based on 

stochastic risk assessment with vehicle motion prediction, motion planner with 

driving mode decision and model predictive control. 
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1.3. Thesis Objectives 

 

From a careful review of a considerable amount of extant literature, 

autonomous driving systems have been proven to increase the safety of traffic 

users, reduce traffic congestion, and improve driver convenience. Therefore, 

we focus on developing a motion planning algorithm for autonomous lane 

change control, while considering the driver’s driving characteristics. In other 

words, the proposed algorithm predicts the behavior of traffic participants, 

assesses collision risk, plans and controls the motion like human drivers. This 

approach improves safety by considering the driver acceptance based on human 

driving data. 

This study aims the lane change algorithm with driver acceptance. Driving 

data in lane change situations were examined for driver acceptance. The driving 

data-based risk assessment have been developed with kinematic analysis about 

safety performance. Both rule based and learning based approaches were used 

for risk assessment. By inferring lane change yield intention of surrounding 

vehicles, a more human-like risk assessment has been conducted. To improve 

safety within near future, stochastic predictions are employed with considering 

sensor noise, model uncertainty and prediction uncertainty. In particular, the 

lane change is greatly affected by the changing states between the vehicles. To 

reflect this characteristic, the stochastic prediction-based risk assessment are 

proposed by the stochastic predictions and the risk assessment. The risk 

assessment is time-varying by states of vehicles. The decision and the motion 
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planning are conducted based on the stochastic prediction-based risk 

assessment. These have the advantage of efficiency in calculation. 

In this dissertation, we argue that it is crucial to pursue vehicle 

implementation as well as lane change performance. For vehicle 

implementation, it is important to consider efficient calculation and limitation 

of the vehicle. We propose efficient decision-making and motion planning 

based on stochastic prediction and risk assessment. To improve safety within 

the near future, stochastic predictions are employed that consider sensor noise, 

model uncertainty, and prediction uncertainty. An extended Kalman filter- 

(EKF) based probabilistic model is adopted in this dissertation. Learning-based 

probabilistic models show a powerful prediction performance. However, data-

driven prediction models require heavier computation than the EKF-based 

model. Also, it is efficient to train on the data of the perception module that is 

actually used. Additionally, learning-based prediction techniques generally 

need historical information. This approach is vulnerable to effects such as 

object emergence, object disappearance, and false alarm, which frequently 

occur in perception modules of actual autonomous vehicles. A particle filter-

based generic vehicle tracking framework could solve this problem [Li,'18]. 

However, this framework adds additional computation and needs to be tuned 

for the perception module to be used in this study. Since the target environment 

in this study is a simpler overtaking situation than ramp-merging, roundabouts, 

and intersections, the EKF-based prediction model was adopted in 

consideration of the trade-off relationship between calculation load and 

performance. 
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Because all vehicles cannot be equipped with vehicle to vehicle (V2V) 

communications at present, autonomous vehicles should perceive the 

surrounding environment based on local sensors. Social perception has been 

devised to deal with local sensor limits [Afolabi,'18, Sun,'19]. The perceived 

vehicle information could be used to infer the area beyond the blind spot or 

sensor limit. This approach enables rational behavior planning by inferring 

targets beyond perceived vehicles. It is powerful, especially in environments 

such as intersections and crosswalks. However, a vehicle that suddenly emerges 

outside the perception range is important in an overtaking situation. Also, 

inference for each perceived vehicle increases the calculation load, and social 

perception is affected by issues of the perception module. Therefore, a more 

efficient and feasible approach is required for the overtaking problem. In this 

dissertation, virtual targets are devised to cope with the limitation of cognitive 

range. The concept of a ‘‘virtual target’’ has been used as a virtual preceding 

vehicle for path following [Bibuli,'10, Rucco,'15]. This concept is adopted to 

solve the lane change problem in this study. Virtual targets are very efficient 

for vehicle implementation. Virtual targets do not burden the computation and 

are not affected by perception module issues.  

In this dissertation, we present the autonomous lane change algorithm 

containing prediction, risk assessment, decision-making, motion planning, and 

control modules. This study deals with issues for vehicle implementation such 

as cognitive range and computation load than existing relevant works. The main 

contribution of this study is to develop a simple, but performance guaranteed 

and feasible lane change algorithm. In the decision-making part, driving mode 
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and target space are determined for the lane change. The decision-making part 

is divided into three stages: availability, demand, and possibility of lane change. 

According to the driving mode, the appropriate motion is planned based on 

perceived vehicles and virtual targets. The SMPC calculates control input for 

tracking the desired motion. The proposed algorithm could achieve driver 

acceptance, efficient calculations, overcoming of perception limit, and 

consideration of diverse uncertainties. The performance of the proposed system 

has been investigated repeatedly through real-world driving tests in diverse lane 

change situations. The proposed algorithm is compared with the base algorithm 

through simulation. And, the performance of the proposed system has been 

investigated repeatedly through real-world driving tests. 
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1.4. Thesis Outline 

 

This dissertation is structured in the following manner. Overall architecture 

of the proposed motion planning algorithm for urban autonomous driving is 

described in Chapter 2. In Chapter 3, a stochastic motion prediction algorithm 

is introduced. The vehicle motions for ego vehicle and surrounding vehicles are 

predicted based on model predictive control framework and rule based 

approach. The prediction is advantageous for vehicle implementation due to 

calculation efficiency. Virtual vehicles are adopted to overcome perception 

limitation. Safety performance has been improved by reflecting various 

uncertainties. In Chapter 4, stochastic risk assessment is introduced based on 

prediction. Safety distance and collision probability are derived to assess risk. 

The safety distance is derived based on human driving data. The model-based 

and learning-based approaches are employed to make safety distance for driver 

acceptance. By inferring lane change yield intention of surrounding vehicles, a 

more human-like safety distance has been devised. Collision probability has 

been used to assess risk for diverse uncertainties. In Chapter 5, decision-making 

is introduced. Driving mode decision has been proposed that the autonomous 

vehicle can cope with the various lane change situations. In Chapter 6, motion 

planning and control is introduced. Proper motions are planned for active lane 

change and interactive lane change based on driving mode. Stochastic model 

predictive controllers are tracking desired motion with vehicle model and 

constraints. Chapter 7 shows performance evaluation which is composed of the 
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simulation test and vehicle test. The performance and effectiveness of the 

proposed algorithm has been showed through diverse simulation tests. 

Comparisons with other algorithms show the performance improvement of the 

proposed algorithm. Vehicle tests have been conducted in various environments. 

Therefore, the vehicle implementation represents feasible, repetitive and stable 

performance of the proposed algorithm. Then, the conclusion, which includes 

the summary and contribution of the proposed algorithm, and future works, is 

presented in Chapter 8. 
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Chapter 2 Overview of Autonomous 

Driving System 

 

The autonomous driving is integrated system from multiple modules. 

Multiple modules can be broadly classified into four modules: localization, 

perception, planning, and control [Suganuma,'12, Suganuma,'14]. The overall 

structure of the autonomous driving system is described in Figure 2.1, which 

represents the description of each module. It is important to develop a module 

that is compatible with other modules. 

 

 

Figure 2.1. The overall structure of the autonomous driving system.  

 

Each module has the following features as described in Figure 2.2. First, 

diverse sensor information comes in as input to the autonomous driving system. 
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These information is first processed in localization and perception modules, 

which are optimized for sensor configuration. Then, planning module, which 

determines how to drive, is optimized for target driving environment. Finally, 

control module, which determines final control inputs of the vehicle, is 

optimized for vehicle configuration. 

 

 

Figure 2.2. The overall structure of the autonomous driving system.  

 

In this research, we focus on developing planning and control modules for 

autonomous driving. This is the red box in Figure 2.2. The overall architecture 

of the proposed algorithm is described in Figure 2.3, which has a 4-layers, 

stochastic prediction, risk assessment, decision-making, and motion planning 

& motion control. The proposed algorithm uses information from upper 

modules: localization and perception. Upper modules uses information from 

equipped various sensors. Localization module provides states of the ego 
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vehicle including the current position on the map. Perception module provides 

states of static and dynamic obstacles located in the vicinity of the ego vehicle. 

The proposed algorithm is compatible with alteration of upper modules.  

The first layer of the proposed algorithm is stochastic prediction, which 

predicts future states of ego vehicle and surrounding vehicles. Static and 

dynamic obstacles are classified as surrounding vehicles. And virtual vehicles 

are created considering the perception limit in the local sensor. Then, 

considering diverse uncertainties, the future behavior of the ego vehicle and 

surrounding vehicles is predicted. Uncertainties are caused by diverse factors 

such as model uncertainty, sensor noise, actuator delay, localization uncertainty 

and perception uncertainty. The second layer of the proposed algorithm is risk 

assessment, which evaluates the collision risk between ego vehicle and 

surrounding vehicles using predicted states of vehicles. To consider driver 

acceptance, lane change yield intention and safety distance based on human 

driving data have been developed. In addition, collision probability has been 

developed to reflect the potential risk posed by various uncertainties. The third 

layer of the proposed algorithm is decision-making, which decides whether to 

perform lane keeping or lane change. The driving mode is determined in 

consideration of surrounding vehicles and the road environment. In addition, 

space for lane change is also explored. This makes active lane change possible. 

The last layer of the proposed algorithm is motion planning and motion control, 

which plan the desired motion of the ego vehicle and determine the final control 

input to track desired motion. It is divided into longitudinal and lateral motions. 

The final control input for longitudinal motion is longitudinal acceleration. The 
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final control input for lateral motion is steering angle. 

 

 

Figure 2.3. System overview of the proposed algorithm for autonomous driving 

system.  

 

Since the proposed algorithm is compatible with the alternation of upper 

modules, it has been implemented with several vehicles equipped with diverse 

sensor configurations. In this dissertation, the proposed algorithm is applied to 

three vehicles with different upper modules. The first implemented vehicles are 

shown in Figure 2.4. In this vehicle, commercial differential GPS/INS platform 

is used for localization module. 2D LiDAR and radar sensor fusion is employed 

for perception module [Lee,'19]. The second implemented vehicles are shown 

in Figure 2.5. In this vehicle, AVM and vision cameras form is used for 
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localization module [Kim,'16]. Commercial LiDAR processor is employed for 

perception module. The third implemented vehicles are shown in Figure 2.6. In 

this vehicle, commercial differential GPS/INS platform is used for localization 

module.  Geometric model-free approach is employed for perception module 

[Lee,'20]. 

 

 

Figure 2.4. Configuration of sensors, controllers, and actuators for the first 

autonomous vehicle.  
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Figure 2.5. Configuration of sensors, controllers, and actuators for the second 

autonomous vehicle.  

 

 

Figure 2.6. Configuration of sensors, controllers, and actuators for the third 

autonomous vehicle.
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Chapter 3 Stochastic Motion Prediction 

 

The prediction is commonly used in autonomous driving, because 

autonomous vehicles operate in a reciprocal manner with the surrounding 

environment. The prediction is especially important because the lane change is 

greatly influenced by the changing states between the vehicles. In this chapter, 

a vehicle and a prediction model are introduced concerning both the ego vehicle 

and the surrounding vehicle. Prior to prediction, it is necessary to classify 

vehicles. Then, virtual vehicles are created to correspond to the sensor limit. 

Figure 3.1 shows the overall architecture of stochastic motion prediction. 

 

 

Figure 3.1. Overall architecture of stochastic motion prediction.  
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3.1. Vehicle Classification  

 

Before prediction, classification of surrounding vehicles is necessary. There 

are various traffic participant on road. On highways, there are usually vehicle 

and obstacle. In urban roads, there are more various traffic participant such as 

vehicle, cyclist, pedestrian, motorcycle and obstacle. Figure 3.2 shows various 

traffic participant in urban roads. 

 

 

Figure 3.2. Moving object classification criteria in urban roads.  
 

Basically, the perception modules essentially give the states of the 

surrounding vehicles (relative position, speed, heading, etc.). However, various 

perception modules have different reliability of each state according to the 

sensor and the perception module. In addition, perception modules have 

different classification level of various traffic participant. The results of the 

other two perception modules are shown in Figure 3.3. Both perception 

modules use only LiDAR sensors. The former distinguishes between static and 

dynamic obstacles [Lee,'20]. While the latter classifies objects in detail. 

However, since the latter uses only LiDAR, not vision, the ability to classify 
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objects is limited [Gao,'18]. 

 

 

(a) Geometric model-free approach  

 

(b) Commercial LiDAR processor 

Figure 3.3. The results of the other two perception modules using LiDAR. 
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In this research, all obstacles are considered surrounding vehicles as shown 

Figure 3.4. This approach makes the proposed algorithm compatible with 

various perception modules. In addition, the overall structure of the algorithm 

is simplified. It also reduces the computational burden. However, this approach 

is problematic because it considers non-vehicle objects, as vehicles. In 

particular, the prediction of cyclist, motorcycle and pedestrian is incorrect. The 

main issue in this study is lane keeping and lane change so the problem was 

excluded.  

In this way, the proposed algorithm considers all traffic participants as 

surrounding vehicles. The information required for the proposed algorithm is 

the states of surrounding vehicle and the space it occupies. States are essential 

for prediction of surrounding vehicles. The occupied space is employed to 

define the safety envelope to prevent collision.  

 

 

Figure 3.4. Moving object classification criteria in urban roads.  
 

In order to perform lane keeping and lane change, the surrounding vehicles 

could be divided into three categories: in-lane, left lane and right lane. The 

proposed algorithm performs target selection using a high-definition map and 

absolute position of ego vehicle. Relative position of surrounding vehicles are 
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transformed to absolute position by coordinate transformation on the basis of 

the absolute position of the ego vehicle, which is provided by the localization 

module. Based on the high-definition map, the surrounding vehicles are 

classified into three categories as shown in Figure 3.5. We make predictions 

with interest only for vehicles in three categories, which helps to reduce the 

calculation time. In particular, it has a great effect on perception modules with 

many false positive detections.  

 

 

Figure 3.5. Moving object classification criteria in urban roads.  
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3.2. Virtual Vehicle Generation for Perception 

Limit  

 

Since the current road is a mixed environment of normal vehicles and 

autonomous vehicles, all vehicles cannot be equipped with V2V. Therefore, 

autonomous vehicles perceive the surrounding environment based on local 

sensors. Inevitably, autonomous vehicles have a cognitive range limit. The 

perception range is influenced by blind spots as well as the sensor limits. 

Subject to perception limit analysis is the vehicle equipped with the best 

perception module among the three vehicles presented in Chapter 2. The 

cognitive range of limitations for two reasons is shown in Figure 3.6. An 

autonomous vehicle recognized the surrounding environment. The autonomous 

vehicle was equipped with six 2D-LiDARs and a LiDAR processor. The blue 

vehicle is an autonomous vehicle. Red points represent point clouds measured 

by LiDAR sensors. Red vehicles represent the surrounding vehicles recognized 

by the LiDAR processor. Although the point clouds of a vehicle 60 m ahead 

were detected, the perception module did not identify the vehicle in Figure 3.6. 

(a). Therefore, the limit of the perception module to stably recognize vehicles 

was 60 m. Figure 3.6.(b) shows a situation in which the perception module 

cannot detect vehicles closer than 60 m. This is because of the blind spot caused 

by congested traffic. 
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(a) Reason 1: Sensor limit. 

 

(b) Reason 2: Blind spot in congested traffic. 

Figure 3.6. Perception range limitation. 

 

In lane change situations, interactions with side vehicles are important. When 

the ego vehicle conducts lane change, side vehicles might suddenly appear from 

outside of the perception range. In this study, the concept of virtual targets has 

been developed to cope with the limitation of cognitive range. The concept of 

virtual targets is shown in Figure 3.7. Since it is assumed that vehicles always 

exist at the perception limit, the virtual target can conduct decision-making and 

motion planning, considering the perception limit. 

 

 

Figure 3.7. A concept of virtual vehicles for safe motion planning in a lane 

change situation.  
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In the case of the open space, virtual targets are located on the sensor limit. 

In congested traffic, the virtual targets are located in front of and behind the 

recognized vehicles at the farthest distance. The velocity of the ego vehicle is 

used as a condition for distinguishing two cases. The threshold velocity is 

designed assuming that the vehicles travel with the general time gap ( k ) in the 

recognition range [Moon,'08]. The threshold velocity is as follows:  

 
, ( ) /vir th rlim flim kv x x     (3.1) 

where subscript ,vir th  is the threshold for distinguishing the two cases; the 

subscript rlim  is the limit of rear sensor range (-60 m); and the subscript 

flim  is the limit of front sensor range (60 m). 

The position of virtual targets is decided in two cases and is as follows: 
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where t  represents the current time; subscript rvir  and fvir  mean rear 

(resp. front) virtual target; subscript rst  and fst  mean the rearmost (resp. 

the foremost) virtual target on the target lane. 

Since it is risky to assume that a fast vehicle is in the rear and a slow vehicle 

is in front, the velocity of virtual targets is set as follows: 

 ,min[ ]rvir set ev v v   (3.4) 

 
fvir ev v   (3.5) 
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3.3. Vehicle Model 

 

Since a vehicle is the controlled system plant for autonomous driving, the 

controlled model needs to reflect the real vehicle dynamic properties. There is 

a trade-off between simple and detailed models. The vehicle model for the ego 

vehicle is derived for a predictive control approach. The predictive control 

approach used in this study needs numerous optimization procedures. Therefore, 

decoupled control architecture is adopted in this dissertation. The decoupled 

control architecture has an advantage for computational efficiency. Table 1 

represents the average calculation time of SMPC using a coupled model in 

[Carvalho,'14] and SMPC using the decouple control architecture. Even if two 

controllers using longitudinal and lateral models are operated sequentially, the 

approach of decouple control architecture has more than twice the computation 

time advantage over the coupled model based controller. 

 

 

 

The architecture also could consider the coupling dynamics, which the lateral 

Table 1. Average calculation time of SMPC according to vehicle models 

Vehicle Model Calculation Time [ms] 

Coupled Model 0.66085 

Decoupled Lateral Model 0.18519 

Decoupled Longitudinal Model 0.08971 
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motions are affected by the longitudinal velocity. The longitudinal velocity is 

involved in the state space model of the lateral dynamics. The longitudinal 

velocity changes with time and prediction step. Therefore, the longitudinal and 

the lateral vehicle dynamics models are used separately. 

The longitudinal dynamics model is designed to decide the desired 

longitudinal acceleration. Both the longitudinal dynamics and the actuator 

delay model are considered. The actuator’s dynamics is adopted according to 

the first order delay model [Rajamani,'11]. The state-space model of the 

longitudinal dynamics could be written as: 
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s.t. 0 0 1 , 0

0 0 1/ 1 /

lon lon lon lon lon
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  (3.6) 

where  
T

lonx p v a  and lon desu a  are state and input, respectively; 

a  is longitudinal acceleration input, which is determined in the prediction time 

horizon by the control part; and a  represents the actuator delay of 

longitudinal acceleration. 

The lateral dynamics model is designed by combining the bicycle model and 

error dynamics with a central path of the lane [Falcone,'07, Enache,'09]. Figure 

3.8 presents the lateral dynamics model. The state-space model of the lateral 

dynamics could be written as: 
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  (3.7) 

where 
T

lat yx e e     , lat fu   and   denotes state, input, 

and disturbance, respectively;   is the tire-slip angle;   is the yaw rate; e  

denotes the orientation error of the vehicle with respect to the center-line of the 

lane; ye  denotes the lateral position error with respect to the center-line of the 

lane; f  denotes the desired steering angle, which is determined in the 

prediction time horizon by the control part;   is the road curvature, fC  and 

rC  are stiffness coefficient of the front (resp. rear) tire, fl  and rl  are 

distances between the front (resp. rear) axle and the center of gravity, and m  

is an inertia of the vehicle around its yaw angle. 

The tire stiffness is not constant because the target maneuver requires high 

speed lane changing. Since the driving range of this study is mild driving 

( 0.2ya g ), a steady-state tire model is appropriate. Lateral tire force is in the 

linear tire region. In this context, the lateral tire stiffness is almost unchanged, 

so the effect on variable speed could be neglected. 
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Figure 3.8. Diagram of the lateral dynamics model.  
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3.4. Prediction Model 

 

The appropriate prediction contributes to decision-making, motion planning, 

and control of autonomous driving. To enhance safety, given the potential 

behavior of surrounding vehicles, it is essential to predict the ego vehicle and 

the surrounding vehicles. The prediction model used in this dissertation is 

shown in Figure 3.9.  

 

 

Figure 3.9. Architecture of stochastic prediction. 

 

In an actual environment, diverse disturbance always exists due to reasons 

such as model uncertainties, sensor noises and actuator delays. Therefore, a 

stochastic uncertainty is considered to reflect disturbance effects. By the 

stochastic predictions of the ego vehicle and the surrounding vehicle, the 

standard deviation of position states could be reflected. As the model error or 

estimation error increases, the standard deviation increases. Also, prediction 

step is propagated, the standard deviation increases. Figure 3.10 shows 
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uncertainty propagation of both ego vehicle and surrounding vehicle. This 

could enhance the safety, which is harmed by various uncertainties. 

 

Figure 3.10. Uncertainty propagation as prediction step progresses. 
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3.4.1. Prediction of ego vehicle 

For the prediction of the ego vehicle, the decoupled vehicle model is applied 

to the control input trajectory calculated by SMPC. The predicted model of the 

ego vehicle is discretized as: 
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where n  is the prediction step. The prediction horizon is 2 s, and the 

prediction sampling time ( samt ) is 0.1 s. This means that the prediction sample 

is 20 ( 0, ,19n  ). 

The model error analysis of the ego vehicle is needed to reflect uncertainties. 

The additive stochastic disturbance of the linear dynamic model is defined 

using experimental data. The one-step prediction of the model is compared with 

the measured data and can be written as: 
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where e  represents the error with the prediction and the measurement. 

Error is calculated under various circumstances, such as acceleration, 

deceleration, lane change, and lane keeping. The disturbance covariance is 

derived and can be denoted as: 
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where w  represents the error with the prediction and the measurement. 

e  could be propagated based on w , which is derived from a disturbance 

analysis with various situations [Suh,'18]. Since consideration of error using 

only disturbance analysis cannot reflect the present status of the subject vehicle, 
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real-time error needs to be addressed. Moreover, real-time error, which reflects 

the present vehicle motion, cannot be obtained in the general n-th step, except 

for the first step. This is because the vehicle sensors and exterior sensors have 

only present information. Therefore, the dissertation adopts the uncertainties 

concept using the closed-loop paradigm [Gray,'13] and adaptive uncertainty 

propagation as shown in Figure 3.11 [Suh,'17, Suh,'18]. The final outputs from 

the adaptive uncertainty propagation are uncertainties of the position states as: 

the longitudinal position standard deviation (
xp ) and the lateral position 

standard deviation (
ye ). Uncertainties of the position states are propagated as 

prediction steps. 

 

 

Figure 3.11. Conceptual diagram of adaptive uncertainty propagation. 
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3.4.2. Prediction of surrounding vehicle 

It is essential to predict future states of the surrounding environment, to 

enhance safety given the potential behavior of surrounding vehicles. Other 

stochastic prediction model is employed about the surrounding vehicles. A 

probabilistic prediction model is adopted for the prediction of the surrounding 

vehicles. The prediction uses the states which are estimated in the perception 

module. The prediction model is based on the probabilistic movement 

characteristics of the surrounding vehicles. In a vehicle state predictor, the 

vehicle’s reasonable position and its error covariance are predicted by EKF 

using the desired yaw rate generated by the path-following model as the virtual 

measurement [Kim,'14]. Therefore, the error covariance is propagated 

according to the prediction step by EKF. The initial covariance matrix used in 

the prediction utilizes the covariance matrix of the estimation result. The final 

outputs from the probabilistic prediction model are shown in Figure 3.9 and as 

follows: the relative longitudinal position from ego vehicle ( x ), the relative 

lateral position from ego vehicle ( y ), the yaw angle ( ), the longitudinal 

velocity ( v ), the longitudinal acceleration ( a ), the longitudinal position 

standard deviation ( x ), and the lateral position standard deviation ( y ). Like 

the prediction of the ego vehicle, the prediction horizon is 2 s and the prediction 

sampling time is 0.1 s. 

There are probabilistic prediction methods that could perform better than 

EKF-based prediction [Sun,'18, Hu,'19, Jeong,'20a, Jeong,'20b]. Figure 3.12 

represents concepts of EKF-based prediction and RNN-based prediction. The 

EFK-based approach conducts prediction of lateral motion based on the 
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assumption of lane keeping. And, the EFK-based approach conducts prediction 

of longitudinal motion based on the assumption of decayed acceleration. The 

RNN-based approach predicts the motion of surrounding vehicle using the 

learning model. And, the RNN-based approach conducts integrated prediction 

of lateral and longitudinal motions based on observation history. 

However, in this dissertation, the EKF-based probabilistic prediction model 

is adopted in consideration of vehicle implementation. The computation power 

is important for the algorithm implementation of the vehicle. Figure 3.13 shows 

the calculation time of the EKF-based prediction model. The total data included 

6574 steps. The relative value is important because the absolute value of the 

computation time depends on the CPU performance. As the number of vehicles 

to be predicted increases, the calculation time increases. The calculation time 

of the EKF-based model is compared with other data-driven prediction models. 

These predictors were learned from the data of the perception module used in 

this study [Jeong,'20a, Jeong,'20b]. One is the RNN-based method, which 

predicts behavior through the accumulated trajectory of the target vehicle 

[Jeong,'20a]. The other is a predictor, which combines RNN and EKF methods 

to reduce the computational load [Jeong,'20b]. The predictor determines the 

target lane of the vehicle through the accumulated trajectory and predicts 

behavior to the target lane-based EKF method. Figure 3.14 shows the relative 

computational ratio of the two models over the EKF-based model. Both 

techniques need about 480- and 60-times more computation than the EKF-

based model, respectively. Heavy computation makes implementation difficult 

because overtaking requires predicting multiple vehicles. 
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(a) EFK-based prediction model. 

 

(b) RNN-based prediction model. 

Figure 3.12. Concept of two prediction model. 
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Figure 3.13. Calculation time of EKF-based prediction model. 

 

 

 

Figure 3.14. Calculation time comparison of data-driven models and EKF-

based model. 
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Chapter 4 Stochastic Risk Assessment 

 

Appropriate risk assessment is important as securing safety from the 

surrounding obstacles is the top priority of autonomous vehicles. Various 

indices have been proposed to express risk with surrounding vehicles: clearance 

(c), time gap (TG,) time to collision (TTC), warning index (x), and margin to 

collision (MTC). These are indices that take into account physical collisions 

related to time and brake [Lee,'15]. In addition, there are probabilistic risk 

assessment that considers the potential behavior of vehicles such as collision 

probability [Kim,'17]. Probabilistic approaches have focused their research on 

development of new concept of risk index and elaboration of estimation and 

prediction steps with consideration of uncertainties. 

Previous risk assessment approaches are insufficient to reflect driver data 

characteristics. In this dissertation, human driving data are analyzed to derive 

characteristics of human drivers. We defined the safety distance and reflected 

driver characteristics to the distance. Especially, studies on the safety index in 

lane change situations are insufficient. Excessive safety consideration reduces 

the possibility of lane changes. On the other hand, mild safety consideration 

increases the collision risk. The dissertation proposes safety distances as safety 

indices, which better express the lane change situation based on the driving data. 

And the collision risk analysis for the proposed safety distance was conducted.  

The lane change safety distance was derived in the highway and urban 
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environments. And the lane change yield intention has been developed to 

complement each other's characteristics in these two environments. This 

intention is essential for interactive lane change at low speed, the most difficult 

situation in lane change. The intention inference module has been developed by 

learning approach based on data in congested traffic. Finally, proposed yield 

intention is used to complement the lane change safety distance. 

Reflecting uncertainties as well as driver characteristics is important for 

proper risk assessment. In this study, uncertainties is reflected in the proposed 

safety distance. This enables the safety distance, which is safer as uncertainties 

grows. In addition, a new collision probability was proposed by modifying the 

previously developed collision probability [Kim,'17]. Figure 4.1 shows the 

overall architecture of stochastic risk assessment. 

 

 

Figure 4.1. Overall architecture of stochastic risk assessment.  
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4.1. Safety Distance based on Human Driving Data  

 

The safety with surrounding vehicles could be represented by safety 

distances as shown in Figure 4.2. In lane keeping situations, the ego vehicle 

drives to keep a certain distance away with a preceding vehicle. The certain 

distance is defined as a safe distance in lane keeping situations ( LKSD ). 

Meanwhile, vehicles located in the side lane are important in lane change 

situation. These vehicles are called as the side vehicles. A lane change 

maneuver is permitted when the distance with the ego vehicle and the side 

vehicle is larger than a certain distance. The certain distance is defined as a safe 

distance on lane change situations ( LCSD ). 

 

 

(a) In the lane keeping situation. 

 

(b) In the lane change situation. 

Figure 4.2. Concept of safety distances. 
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4.1.1. Lane Keeping Safety Distance based on Driving Data 

LKSD  is developed based on previous studies. In previous studies, the 

steady-state distance maintained by the ego vehicle when following the 

preceding vehicle has been investigated. Constant time-gap (CTG) policy and 

constant clearance policy have received the most attention in spacing policies 

for following a preceding vehicle [Moon,'08, Sayer,'97]. As a result of 

analyzing actual driver data, LKSD  could be well represented by a first-order 

regression in respect of velocity [Moon,'08]. Therefore, LKSD  is defined by 

a linear coefficient of velocity and a zero-velocity clearance as: 

 
LK ego LK LKSD v c     (4.1) 

where subscript ego  means the ego vehicle, v  is the longitudinal velocity; 

LK  is the linear coefficient of lane keeping; and LKc  is the zero-speed 

clearance of lane keeping. 

Figure 4.3 shows all the steady-state data collected from 125 drivers and a 

linear regression on a speed-clearance domain. The zero-speed clearance, c0, 

and the linear coefficient, τ, were 1.98m and 1.36s, respectively. The 

parameters of LKSD  are determined by previous research based on driving 

data [Moon,'08]. 
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Figure 4.3. Steady-state following data collected from 125 driver test data and 

the linear regression. 

 

 

  

Table 2. Parameters of the lane keeping safe distance based on human 

driving data in preceding vehicle following situation 

Symbol Value Symbol Value 

LK  1.36 [s] LKc  4 [m] 
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4.1.2. Lane Change Safety Distance based on Highway Driving Data  

Unlike lane keeping situations, the relative velocity between the ego vehicle 

and the side vehicle is very important in lane change situations [Do,'17]. A 

larger distance is required when the velocity of the rear vehicle is faster than 

that of the front vehicle. In this case, the distance about the relative velocity has 

to be added to the safety distance. In the opposite case, only a minimum 

clearance needs to be considered. Therefore, LCSD  is determined depending 

on whether the ego vehicle is forward or behind the side vehicle. LCSD  is the 

sum of the relative velocity term and the minimum clearance term. The 

minimum clearance varies by the velocity of rear vehicle. LCSD  is defined as: 
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 

         

 (4.2) 

where subscript side  means the vehicle on the side lane; x  is the 

longitudinal relative position from the ego vehicle; ,1LC  is the time gap for the 

relative velocity of lane change; ,2LC  is the time gap for the minimum 

clearance of lane change; and LCc  is the minimum clearance of lane change. 

In the lane change situation, there was no study that calculated the safety 

distance based on the human driving data, so lane changing driving data was 

collected and analyzed. Driving data has been collected using two test vehicle 

described in Chapter 2. In highway, first platform is utilized for collection of 

driving data. In urban, second platform is utilized for collection of driving data. 

The test vehicles are used for both collecting data and implementing the 

proposed algorithm. On the highway, lane change driving has been performed 
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at a speed of 60 km/h to 120 km/h. On the urban roads, lane change driving has 

been performed at a speed of 0 km/h to 60 km/h. 

First, the description of the highway driving data is as follows. The total 

driving distance is approximately 1500 km on highways for measuring data. 

Driving data was collected on a total of 6 highways with 12 drivers. The 

travelled roads are 3, 4 or 5 lanes. For data accuracy, data collection was 

conducted in well-appointed roads on a clear day. Driving roads are shown in 

Figure 4.4. 

Figure 4.5 shows highway driving data in lane change situations where the 

ego vehicle changes lane to the front or rear of the side vehicle. Because first 

autonomous vehicle platform was used in urban driving, a sensor fusion 

algorithm, which uses radars and LiDARs, is adopted for detection and tracking 

of surrounding vehicles. The position and the velocity are estimated by the 

sensor fusion algorithm. One connected line represents one case of the lane 

change. Both ends of the each line are labelled with circles and crosses, which 

indicate start and end of lane change, respectively. Since the data is represented 

by lines from the start to the end of the lane change, Figure 4.5 presents the 

velocity changes of the ego vehicle and the side vehicles. This means 

interactions in the case of a lane change. The interactions express the safety 

control between the ego vehicle and the side vehicle during lane change 

maneuvers. 
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(a) Iljik-Jonam-Anhyeon junction. 

 

(b) The second Seoul-Incheon linking highway. 

Figure 4.4. Highway Driving Data Acquisition Route. 
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(a) Relative velocity to clearance. 

 

(b) Relative velocity to time gap. 

Figure 4.5. Driving data in highway lane change situation. 
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The above driving data is employed for deciding parameters of LCSD . From 

the driving data, LCc  could be set to 10 [m] in Figure 4.5 (a). ,1LC  could be 

set to 0.94 [s] by slope of the right half plane in Figure 4.5 (a). ,2LC  could be 

set to 0.48 [s] in Figure 4.5 (b). The parameters should be set conservatively for 

driver acceptance and collision avoidance. Therefore, the parameters are 

decided with a little margin from the boundary of the driving data. Table 3 

presents the determined parameters. 

 

 

  

Table 3. Parameters of the lane change safe distance based human 

driving data on highway driving 

Symbol Value Symbol Value 

,1LC  1 [s] ,2LC  0.5 [s] 

LCc  12 [m]   

 



 50 

4.1.3. Lane Change Safety Distance based on Urban Driving Data 

Second, the description of the urban driving data is as follows. The total 

driving distance is approximately 150 km on urban roads for measuring data. 

Driving data was collected on diverse urban roads with 12 drivers. The travelled 

roads are 2, 3 or 4 lanes. For data accuracy, data collection was conducted in 

well-appointed roads on a clear day. Driving roads are shown in Figure 4.6. 

 

 

Figure 4.6. Urban Driving Data Acquisition Route. 

Figure 4.7 shows urban driving data in lane change situations where the ego 

vehicle changes lane to the front or rear of the side vehicle. Because second 

autonomous vehicle platform was used in urban driving, commercial LiDAR 

processor is adopted for detection and tracking of surrounding vehicles. The 

position and the velocity are estimated by the commercial LiDAR processor. In 

urban roads, lane change under 60 km/h was carried out, and lane changes were 

mainly performed in a congested traffic situation. 
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(a) Relative velocity to clearance. 

 

(b) Relative velocity to time gap. 

Figure 4.7. Driving data in urban lane change situation. 
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The above driving data is employed for deciding parameters of LCSD . From 

the driving data, LCc  could be set to 1.4 [m] in Figure 4.7 (a). ,1LC  could be 

set to 1.65 [s] by slope of the right half plane in Figure 4.7 (a). ,2LC  could be 

set to 0.38 [s] in Figure 4.7 (b). The parameters should be set conservatively for 

driver acceptance and collision avoidance. Therefore, the parameters are 

decided with a little margin from the boundary of the driving data. Table 4 

presents the determined parameters. 

 

 

  

Table 4. Parameters of the lane change safe distance based human 

driving data on urban driving 

Symbol Value Symbol Value 

,1LC  1.65 [s] ,2LC  0.4 [s] 

LCc  1.4 [m]   
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4.1.4. Kinematic Analysis of Lane Change Safety Distance and Stochastic 

Prediction based Safety Distance 

Since the proposed LCSD  is derived by the driving data, kinematic analysis 

is need. In a lane change situation in which the rear vehicle is faster than the 

front vehicle, the rear vehicle needs to decelerate for collision avoidance. As 

,1LC  is a term about the relative velocity, the term is associated with collision 

avoidance. On the other hand, ,2LC  and LCc  are terms which represent the 

marginal safety. Therefore, ,1LC  is examined for investigation about collision 

avoidance. Since ,1LC  based on highway driving data is smaller, we analyzed 

the safety level based on highway driving data. The analysis situation is when 

the slow ego vehicle changes lane and the fast side vehicle is approaching from 

the rear. As the rear vehicle responds and decelerates, the remaining distance is 

as follows: 

 2( ) ( ) / (2 )CA side ego CA side ego CAD v v t v v a       (4.3) 

where CAt  is response delay of the rear vehicle; CAa  is deceleration of the 

rear vehicle; and two values are set as 0.3 [s] and -4 [m/s^2], respectively 

[Ising,'12].   

In this situation, the safety distance about ,1LC  is as follows: 

  , ,1LC CA ego side LCSD v v      (4.4) 

If Eqn. (3) equals Eqn. (4), the relative velocity is derived as follows: 

 
,1( ) (2 )side ego LC resp decelv v t a      (4.5) 

The relative speed means the maximum velocity difference at which the 

collision could be avoided. The maximum velocity difference is 20.16 [km/h]. 
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Since this velocity difference is sufficiently large and the marginal safety 

distance also exists, the proposed LCSD  is appropriate about both the driver 

acceptance and the safety. 

Through these processes, we proposed the safety distances considering both 

driver acceptance and collision safety. In addition to this, uncertainties must be 

considered for more advanced autonomous driving. In fact, there are various 

uncertainties for implementation of an autonomous vehicle. In Chapter 3.4 

described above, the stochastic predictions are presented reflecting various 

uncertainties. By the stochastic predictions of the ego vehicle and the 

surrounding vehicle, the safety distances could reflect the standard deviation of 

position states. As the model error or estimation error increases, the safety 

distance increases. Also, prediction step is propagated, the safety distance 

increases. The proposed prediction models involve uncertainty propagation of 

both ego vehicle and surrounding vehicle. This could enhance the safety, which 

is harmed by various uncertainties. The driving data based safety distances 

(equations (4.1), (4.2)) can be rewritten as the stochastic prediction based safety 

distances (equations. (4.6), (4.7)). 
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4.2. Lane Change Yield Inference using LSTM-

based RNN  

 

In this research, the safety distance for lane change was calculated based on 

driver data. Driving data in highway and urban roads was analyzed. The high-

speed lane change is performed in highway driving data. The low-speed lane 

change is performed in urban driving data. Basically, the safety distance based 

on highway driving data is good to improve safety performance. This is because 

it adopts a safer distance than the urban situation. However, when using only a 

safe distance based on highway data, the following problems exist. As shown 

in Figure 4.8, in a congested traffic situation, there is no space for a lane change 

due to overlapping safety distances. In this case, it is necessary to make space 

by transmitting the intention to change with the appropriate lane. There are two 

ways to transmit the intention for lane change. The first is to activate the turn 

signal. This is a basic method that is always performed when a lane change 

demand is activated. The second is to convey the intention for lane change 

through slight lateral behavior. To transmit the intention for lane change to the 

side rear vehicle on target lane, the ego vehicle can drive a little closer to the 

target lane. This lateral behavior is referred to as ‘traffic pressure’ in this 

research. 
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Figure 4.8. The concept of the traffic pressure. 

 

When the intention is transmitted to side rear vehicle, the side rear vehicle 

with a yield intention secures space for the ego vehicle through deceleration. 

At this time, if the safe distance based on highway data is used, it is too 

conservative. It takes too long until the ego vehicle judges that there is space 

for lane change as shown Figure 4.9 (a). This problem could be solved by using 

the safety distance based on urban data, but the safety distance based on urban 

data is inherently dangerous because it is not too conservative as shown Figure 

4.9 (b). Another problem with the constant safe distance is follows. As shown 

in Figure 4.9 (c), a side rear vehicle with the yield intention could maintain a 

constant distance on the boundary of safety distance. In this case, the driving 

mode decision for lane change may cause chattering phenomenon. In addition, 

it could be judged that it is impossible to change the lane even if the side rear 

vehicle have yield intention. 
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(a) Highway parameters: too conservative in congested traffic. 

 

(b) Urban parameters: too progressive in congested traffic. 

 

(c) Vehicle with the yield intention could maintain a constant distance. 

Figure 4.9. Problems by constant parameters of lane change safety distance. 

 

Therefore, this study introduces the concept of lane change yield intention in 

order to supplement the safety distance. The yield intention in the lane change 

situation has not been studied much, but several yield intentions have been 

developed for the autonomous driving. Previously, the yield intention has been 

researched on unsignalized intersection and merging sections. All of these 

studies have treated the collision-based yield intention related to longitudinal 

behavior. The lane change yield intention in this study is the collision-based 

intention related to more complex longitudinal and lateral integration behavior. 

Also, previous studies use the trend of acceleration or velocity change for the 

yield intention inference. Figure 4.10 shows a situation where acceleration is 

used for yield intention inference. It is impossible to infer intention solely from 
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acceleration or velocity tendencies. In particular, it is not V2V communication 

in an actual situation, but it estimates the state of surrounding vehicles using a 

local sensor. In this situation, it is almost impossible to accurately estimate the 

acceleration, so there is a problem in inferring the yield intention by methods 

in previous researches.  

In the study, lane change driving data on urban roads was used to make the 

yield intention inference model. The driving data of the urban situation is a low 

speed situation of 60 km/h or less. Most of the data is under congested traffic. 

It is difficult to use rule-based method to make the yield intention inference 

model. This is because lane change in congested traffic is a complex situation 

related to longitudinal and lateral integration behavior. As a results, a learning-

based approach has been adopted rather than a rule-based approach to make the 

yield intention inference model. And LCSD  is supplemented based on the 

inferred yield intention. 
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(a) Acceleration of yield vehicle. 

 

(b) Acceleration of non-yield vehicle. 

Figure 4.10. The acceleration in vehicle where no tendency is found. 
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4.2.1. Dataset Selection 

We used the collected data for urban lane change distance. We collected the 

data on surrounding vehicle tracks from second autonomous vehicle platform 

which adopts commercial LiDAR processor for detection and tracking of 

surrounding vehicles. The data collection environment is described in Chapter 

4.1.3. The data was collected in a low speed situation of less than 60kph on the 

urban roads, and most are data of congested traffic.  

In Chapter 4.1.3, only data that successfully changed lanes are presented, but 

data that failed to change lanes is also required for inferring yield intention. The 

driver transmitted the intention of lane change to the side-rear vehicle through 

the turn signals and appropriate traffic pressure. The case where the lane change 

was successful means that the side-rear vehicle had yield intention. On the other 

hand, the case where the lane change was failed means that the side-rear vehicle 

did not have yield intention. Figure 4.11 represents the classification of yield & 

non-yield cases. 

 

 

Figure 4.11. Classification of yield & non-yield cases. 

 

In conclusion, yield intention data was collected for the side-rear vehicle. 

The moment when there was a request to change lanes was labeled through the 
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turn signal information. Finally, the following data was collected and used for 

learning. Dataset for training and validation is illustrated in Table 5. 

 

 

 

 

 

  

Table 5. Dataset for Training and Validation 

 Y+N Yield Non-Yield 

Total 9357 6830 2527 

Training 8166 5986 2180 

Validation 1000 740 260 

Test 191 104 87 
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4.2.2. Network Architecture 

Yield intention is continuous based on the interaction of vehicles; in other 

words, the intention of the vehicle depends on the sequential previous 

interactions. Previous motion can be measured using the perception module on 

ego vehicle, but it is difficult to infer surrounding vehicle’s driver intention 

based on rules. Particularly on interactive lane change in congested traffic, it is 

difficult to apply conventional maneuver-based approaches to infer driver 

intention. Therefore, we propose a data-driven approach to inter lane change 

intention based on previous interactions of the ego vehicle and the side rear 

vehicle. The intention inference module based on LSTM-RNN architecture that 

we propose in this work used only information collected from the perception 

module on an ego vehicle. 

An RNN is an artificial neural network that is appropriate for use with 

sequential data such as speech or text recognition written in natural language. 

In addition, RNNs can be used with time series data, where the pattern of the 

data depends on the time flow. The recurrence in RNNs allows for modeling 

the correlations between consecutive data points in a sequence. This feature is 

realized by having the same network for each time step and passing activations 

to a successor [Goodfellow,'16]. 

The RNN can contain feedback loops, which allows activations to flow 

interactively in the loop. This feature allows for processing the sequences of 

inputs by persisting the activations over multiple steps. In other words, the 

network can memorize the previous information and predict the future after 

specific steps by applying the same network iteratively. Figure 4.12 (a) depicts 
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the structure of the RNN used in this study for an observation horizon h. As the 

figure shows, the activations in each step are passed to the same network of the 

next time step and updated with new input data. This means that one set of 

weights of the RNN is repeated over the prediction horizon by matching the 

formats of the input sequences and output class.  

The inference step using the proposed RNN is conceptually expressed in 

Figure 4.12 (b) with LSTM used as a network cell. LSTM can avoid the 

vanishing gradient problem by making the error flow backward through 

unlimited numbers of virtual layers. This property prevents the error from 

increasing or decaying over time, which would make the network train 

inappropriately [Hochreiter,'97]. 

Before searching the optimal network configuration, inputs need to be 

decided. Yield intentions can basically be inferred from the longitudinal 

behavior of the side-rear vehicle [Dong,'17, Wei,'13]. However, it is possible to 

consider the lateral behavior as the characteristic interaction appears in the 

congested traffic lane change. Variables for inference are shown in Figure 4.13. 

We defined input candidates containing meaning of variables for inference as 

follows: 
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(a) Diagram representing the proposed RNN of observation time h. 

 

(b) Conceptual diagram of the LSTM-RNN inference module. 

Figure 4.12. Diagram of the proposed LSTM-RNN for yield intention inference. 
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Figure 4.13. Variables for yield intention inference of lane change. 

 

A comparison has been made between inputs considering only the 

longitudinal elements and inputs considering the longitudinal and lateral 

elements. In the former, we defined xp , relv  and tarTG  as inputs for 

learning. In the latter, we defined xp , yp , relv  and tarTG  as inputs for 

learning. The comparison result is represented in Figure 4.14. For the same 

LSTM-based RNN network architecture, 4 inputs considering longitudinal and 

lateral motions show better performance than 3 inputs considering only 

longitudinal motions. In the network with 4 inputs, both mean square error 

(MSE) and calculation time are smaller. In conclusion, when inferring yield 

intention, it is good to consider lateral motions as well. 

We determined the optimal network configuration by comparing the several 

network configurations. In general, when searching for an optimal network, 

error is defined and the network with the smallest error is selected. However, 

the network of this study cannot define error as the network is for yield intention 

inference. Therefore, the optimal network has been determined by considering 

the following factors: the purpose of yield intention inference, the MSE and 

calculation time. Networks that are too data-biased do not match the intention 

inference. Therefore, a network with a low MSE and well suited to the purpose 
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of intention inference is selected. And since the network should be implemented 

to the actual vehicle, it was also considered whether it has an appropriate 

calculation time. Network candidates who have progressed several learning are 

as shown in Figure 4.15. The finally selected network learning result is shown 

in Figure 4.16. 

 

 

(a) Learning result of network with three inputs ( xp , relv , tarTG ). 

 

(b) Learning result of network with four inputs ( xp , yp , relv , tarTG ). 

Figure 4.14. Comparison of LSTM-RNN learning results for input set selection. 

 

 



 67 

 

(a) Unselected Candidate 1        (b) Unselected Candidate 2  

 

(c) Unselected Candidate 3        (d) Unselected Candidate 4  

 

(e) Unselected Candidate 5        (f) Unselected Candidate 6  

Figure 4.15. Unselected network candidates who have progressed learning. 

 

The proposed network architecture is represented in Figure 4.17. Sequential 

four inputs are used for the network. Observation horizon is 2 seconds and 

sampling time is 0.1 seconds. The network two LSTM layers with drop-out, 

one fully connected layer and one softmax layer. Softmax layer makes the yield 

intention a probability value between 0 and 1. 
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(a) Learning process of final selected network. 

 

(b) Learning result of final selected network. 

Figure 4.16. The proposed network selection for yield intention inference. 

 

 

Figure 4.17. The proposed network architecture for yield intention inference. 
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4.2.3. Yield Intention Inference based Safety Distance 

Yield intention developed in this study is used to complement the lane 

change safety distance. There is a limit to using yield intention alone. Since 

yield intention is expressed as a probability, it is not meaningful to use it in 

decision-making, motion planning and control for autonomous vehicles. 

Therefore, this intention is used as the weight for the two parameters of the lane 

change safety distance presented in this study.  

In this study, the lane change safety distance is derived based on driver data. 

Data collection was conducted in two environments. One is based on data 

acquired from the highway as described in Chapter 4.1.2. The other is based on 

data acquired from the urban roads as described in Chapter 4.1.3. In the former, 

lane changes were made at 60~120 km/h, and the latter were a lane changes at 

0~60 km/h. Therefore, the former is named the progressive lane change 

distance and the latter is named the conservative lane change distance. Two 

kinds of parameters are complemented with the yield intention as shown Figure 

4.18. Two kinds of parameters are arranged in Table 6. The proposed lane 

change safety distance based yield intention is as follows:  
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Figure 4.18. The lane change safety distance based on the yield intention. 

 

 

 

 

 

 

 

 

 

 

 

Table 6. Parameters of the lane change safe distance based human 

driving data on highway and urban driving 

Symbol Value Symbol Value 

,1,LC c  1 [s] ,1,LC p  1.65 [s] 

,2,LC c  0.5 [s] ,2,LC p  0.4 [s] 

,LC cc  12 [m] ,LC pc  1.4 [m] 

 



 71 

4.3. Collision Probability based on Stochastic 

Particle  

 

The most important purpose of autonomous vehicles is collision avoidance. 

The risk of collision will have to be assessed continuously. Therefore, it is 

necessary to assess an appropriate collision by using the motion prediction 

information of the ego vehicle and surrounding vehicle. When predicting 

collisions of vehicles, the size of the vehicle must be considered. Figure 4.19 

shows a situation of vehicle collision. As a result of considering the future 

behavior of the ego vehicle, a collision does not occur for the A vehicle, but a 

collision for the B vehicle. Therefore, it is sufficient to proceed with the control 

to prevent collision only for the B vehicle. If the control for preventing collision 

is also performed for the A vehicle, the unnecessary deceleration is too frequent. 

However, it is not ideal as the above in an actual autonomous driving situation. 

There are several uncertainties in predicting correct collision. Therefore, it is 

necessary to assess collision risks considering various uncertainties. Since the 

stochastic prediction is conducted considering various uncertainties in this 

study, it is necessary to fully utilize this prediction information. 

 

 

Figure 4.19. Collision situation. 
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4.3.1. Conventional Collision Probability 

The collision probability has been developed to express the risk of collision 

between vehicles [Kim,'17]. This probability reflects the stochastic motions of 

vehicles generated by various uncertainties. In this previous study, the ego 

vehicle is the host vehicle and surrounding vehicles are traffic participant. The 

concepts of probabilistic collision risk are summarized and presented in Figure 

4.20. As the beginning of the collision probability estimation, we randomly 

generate a given number N state vectors based on the given initial probability 

density function from the prediction algorithm. The parameter N could be 

chosen by a designer as a trade-off between computational effort and collision 

probability approximation accuracy. The state vectors are called particles and 

denoted as: 
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where the subscript p  is the predictive time step; ˆ
hostx  is the predicted 

position and orientation state vector of the host vehicle; ˆ
nx  is the predicted 

pose state vector of n -th traffic participant; P̂  denotes the appropriate size of 

the covariance matrix of each predicted state; r  is a white noise random 

vector of the proper size. 

For every possible pair of ego and one of traffic participants, we investigate 

whether the vehicle bodies of the traffic participant can intersect the ego vehicle 

at each predicted time step. To determine the body intersection, a body-shaped 

diagram is introduced. Algorithm 1 shows a pseudo code of the algorithm. 



 73 

 

(a) Environment description: road, host vehicle, and multi-traffic-participant. 

 

(b) Prediction of multi-traffic pose and their covariance at predictive time 

step, p. Reachable set of each participant as stochastic distribution. 

 

(c) A collision case example of the generated N particles and its two vehicle-

body-shaped-polygons. Intersection between two polygons. 

 

(d) A non-collision case example of the generated N particles and its two 

vehicle-body-shaped-polygons. 

Figure 4.20. Procedure and concept of conventional collision probability. 

Host Vehicle
Participant 1

Participant 2

Host Vehicle
Participant 1

Participant 2

at time step = p

Reachable Set of 

Host Vehicle

Reachable Set of 

Participant 2
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Algorithm 1 : Conventional Collision Probability Calculation 

1: Inputs: Predicted states and its covariance within a pre-defined 

prediction horizon for the ego vehicle and all tracked surrounding 

vehicles 

2: for all tracked surrounding vehicles, arg1, , t etn N  

3: for every predictive time step, 0, , pp N  

4: Initialize collision count with participant n at predictive time 

step p, . . 0i

nC P cnt   

5: From the given predicted state and covariance, randomly 

generate N particles,  i

n px  

6: for every particle, 1, ,i N  

7: Generate two vehicle-body-shaped-polygons 

8: Check if the vehicle bodies can be possibly intersected 

9: if intersection is detected, . . . . 1i i

n nC P cnt C P cnt   

10: else, . . . .i i

n nC P cnt C P cnt  

11: Approximate collision probability with participant n at 

predictive time step p 

12: 
. .

. .
i

i n
n

C P cnt
C P

N
  

13: end 

14: end 

15: end 
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4.3.2. Proposed Collision Probability to select target for safety control 

The conventional collision probability is suitable for risk assessment, but 

there is a problem in reflecting the probability in the actual autonomous driving 

control. Since there is no physical meaning of this probability, it is ambiguous 

to keep the autonomous vehicle within a certain probability value. Because of 

the problem of the conventional collision probability, the safety distance based 

on driving data is used directly in decision-making and motion planning of 

autonomous driving in this study. Meanwhile, the collision probability is used 

for checking whether the surrounding vehicle is targeted for safety control. 

Therefore, the conventional collision probability was modified to develop a 

proposed collision probability to meet this strategy. 

The proposed collision probability does not generate particles for both the 

ego vehicle and the surrounding vehicle. The future trajectory of the ego vehicle 

is accurate because it is controllable. As the beginning of the proposed collision 

probability estimation, a reachable set of ego vehicle is calculated passes 

through the future trajectory of the ego vehicle.  

If only the range of prediction horizon ( 2secpt  ) is used, the reachable set 

is rather short for collision checking. Therefore, reachable set is calculated by 

dividing two horizons. The first horizon is the prediction horizon ( 0 ~ pt ). As 

described in Chapter 3.4.1, the ego vehicle is predicted through MPC and 

uncertainty is propagated. The second horizon is the collision check horizon 

( ~p CPt t ). It is assumed that from the last position of the first horizon, the road 

path is passed horizontally. The uncertainty of the second horizon is assumed 

to be the last uncertainty of the first horizon. If the uncertainty continues to 
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grow until too far into the future, uncertainty consideration will be excessive. 

And since the second horizon assumes that only the road geometry is followed, 

light calculation is possible. The reachable set of ego vehicle is shown in Figure 

4.21. 

 

 

(a) Lane keeping situation to represent two horizon: the prediction horizon 

and the collision check horizon. 

 

(b) Lane change situation to represent road geometry following in the 

collision check horizon. 

Figure 4.21. Reachable set of ego vehicle. 

 

About surrounding vehicles, we randomly generate a given number N state 

vectors based on the given initial probability density function from the 

prediction algorithm. The reachable set of surrounding vehicle is shown in 

Figure 4.22. The one moment of reachable set is calculated. The state vectors 

are called particles and denoted as. 
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n p n p n px x P r i N      (4.11) 

where the subscript p  is the predictive time step; ˆ
nx  is the predicted 

position and orientation state vector of n -th surrounding vehicle; P̂  denotes 

the appropriate size of the covariance matrix of each predicted state; r  is a 

white noise random vector of the proper size. 

 

 

(a) Diverse surrounding vehicles 

 

(b) Particles generation of surrounding vehicle. 

Figure 4.22. Reachable set of surrounding vehicles. 

 

Finally, the proposed collision probability is estimated as the ratio of 

overlapping particles among the whole particles. The conventional collision 

probability generates particles of ego vehicle and surrounding vehicle, causing 

heavy computation. On the other hand, since the proposed collision probability 

generates particle only for surrounding vehicle, the calculation time is small. 
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This gives the advantage of computational power considering that the collision 

probability is estimated in every prediction step. The estimation examples of 

the proposed collision probability is shown in Figure 4.23. Figure 4.24 

represents the conceptual diagram for estimated collision probability at each 

step in prediction horizon. Algorithm 2 shows a pseudo code of the algorithm. 

 

 

(a) Diverse surrounding vehicles 

 

(b) Particles generation of surrounding vehicle. 

Figure 4.23. Estimation examples of the proposed collision probability. 

 

 

Figure 4.24. Conceptual diagram for estimated collision probability at each step 

in prediction horizon. 
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Algorithm 2 : Proposed Collision Probability Calculation 

1: Inputs: Predicted states and its covariance within a pre-defined 

prediction horizon for the ego vehicle and all tracked surrounding 

vehicles 

2: Calculate reachable set of ego vehicle 

3: for all tracked surrounding vehicles, arg1, , t etn N  

4: for every predictive time step, 0, , pp N  

5: Initialize collision count with participant n at predictive time 

step p, . . 0i

nC P cnt   

6: From the given predicted state and covariance, randomly 

generate N particles,  i

n px  

7: for every particle, 1, ,i N  

8: Generate one vehicle-body-shaped-polygons 

9: Check if the vehicle bodies can be possibly intersected 

with reachable set of ego vehicle 

10: if intersection is detected, . . . . 1i i

n nC P cnt C P cnt   

11: else, . . . .i i

n nC P cnt C P cnt  

12: Approximate collision probability with participant n at 

predictive time step p 

13: 
. .

. .
i

i n
n

C P cnt
C P

N
  

14: end 

15: end 

16: end 
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Chapter 5 Decision-Making 

 

When driving on the road, an appropriate lane change is necessary for various 

reasons. The reasons for the lane change are summarized as two cases: 

discretionary and mandatory [Toledo,'03, Toledo,'07a, Kesting,'07]. Firstly, the 

ego vehicle performs a Discretionary Lane Change (DLC) when it is difficult 

to maintain its original lane with a pre-set desired velocity. This may include 

most situations, such as an overtaking situation in which a preceding vehicle is 

too slow compared to an ego vehicle. Secondly, a Mandatory Lane Change 

(MLC) is required due to a lane drop or yielding to traffic near a ramp. The lane 

change is affected by road environments of a driving route. Reasons of lane 

change as shown in Figure 5.1.  

 

 

Figure 5.1. Reasons of lane change.  
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When the lane change is demanded by MLC and DLC, the suitable lane 

change behavior needs to be selected. A passive (wait) lane change model have 

limitations in handling diverse lane change situations. Therefore, an active 

(accelerate/decelerate) lane change model is required to cope with both lane 

changes reasons (DLC/MLC). For this, an appropriate decision-making is 

essential. Overall architecture of decision-making is shown in Figure 5.2.  

 

 

Figure 5.2. Overall architecture of decision-making.  

 

Advanced overtaking requires active lane change, not passive lane change 

[Do,'17]. For active lane-change maneuver, three driving modes are devised: 

lane-keeping mode (LK); lane change mode (LC); and lane-keeping mode for 
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lane change (LKC). A flow chart of the driving mode decision is shown in 

Figure 5.3. During lane-keeping mode, the ego vehicle follows setv  or a 

preceding vehicle. A lane change is necessary as the reason of lane change 

exists like MLC or DLC. For lane change decisions, three concepts about lane 

change are developed: availability, demand, and possibility. After checking 

three concepts, the driving mode is determined. And lane change target space 

is decided in this dissertation. This plays a key role for demand checking and 

motion planning of active lane change. All the processes in the flow chart are 

based on relay concept. This is to prevent chattering of check activation and 

mode switch. 

 

 

Figure 5.3. Flow chart of driving mode decision for lane change.  
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5.1. Lane Change Availability Check and Target 

Space Decision  

 

The first step in determining the driving mode for lane change is to determine 

whether the lanes on both side can be essentially lane-changeable. This is 

affected by the road environment. It is important how many lanes on road and 

the lane where ego vehicle is located. To determine this, the proposed algorithm 

uses localization information of the upper module. Using the high-definition 

map information, the ego vehicle checks if both lanes are lane-changeable as 

shown in Figure 5.4. In Figure 5.4, left lane is only available for lane change. 

On only available lane, virtual vehicles are created as shown in Figure 5.5, 

which helps to reduce unnecessary calculation. 

 

 

Figure 5.4. A Concept of lane change availability check.  

 

 

Figure 5.5. Virtual vehicle creation on only available lane.  
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The second step in determining the driving mode for lane changes is to check 

the condition of side vehicles on the available lane. A concept of 'target space' 

has been developed in this dissertation. Target space means the space to enter 

for lane change between the vehicles on the target lane. Before deciding the 

target space, candidates of the target space are identified. As shown in Figure 

5.6, space candidates for lane changes could be yielded by applying LCSD  to 

the virtual vehicles and detected vehicles in the target lane. One side vehicle 

makes two space candidates. Each space candidate has a ‘ j ’ index. The states 

of each space, such as its position and velocity, depend on the states of the 

vehicle that created it.  

 

Figure 5.6. Space candidate for lane change based on safety distance.  

 

Since the ego vehicle could accelerate and decelerate for the active lane 

change, the diverse behaviors of the ego vehicle need to be assumed to find the 

optimal space for a lane change. It is assumed that the ego vehicle has several 

acceleration candidates as shown in Figure 5.7. It is assumed that the 

acceleration of the ego vehicle reaches several candidates with a certain jerk 

( 31 /m s ). The minimum value of the acceleration candidates ( ,mincanda ) is 

constant (
22 /m s ). The maximum value of the acceleration candidates is 

varied depending on a preceding vehicle or road limit. The limit values of the 
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acceleration candidates are expressed as follows: 
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  (5.1) 

where ,cand freea  is the maximum value (
22 /m s ) when there is no need for 

safety control for a preceding vehicle or road lomit. 
candak  is gain for safety 

control for a preceding vehicle (0.3). Subscript prc  means the preceding 

vehicle. Subscript road  means the road limit such as ramp. 
candaN  is the 

number of acceleration candidates.  

 

Figure 5.7. Acceleration candidates of ego vehicle prediction for searching 

the lane change space.  

 

Several acceleration candidates are derived between the maximum and 

minimum acceleration as shown in Figure 5.7. The assumed behavior of the 

ego vehicle is predicted according to acceleration candidates. The assumed 
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behavior is expressed as follows: 
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  (5.2) 

where subscript i  is the i-th acceleration candidate. 

A target space shall be decided among space candidates. Two conditions are 

used for determining the target space. These conditions are derived by the 

decision rule of human drivers in the lane-change maneuver. Drivers do not 

intend to enter a space that is too far or too narrow for a lane change. The first 

condition is the time that the ego vehicle arrives at space. The second condition 

is the clearance between consecutive space candidates. An optimization 

problem is formulated to decide the target space. The space candidate, which 

has the lowest cost, is selected as the target space. The selected space receives 

a cost advantage for a chattering prevention. The optimization problem is as 

follows: 
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  (5.3) 

where J  means the optimization cost; subscript j  is the j-th space 

candidate; T  denotes the time for arriving at the space candidates; pN  is 

maximum prediction step and C  denotes the clearance between the 

consecutive space candidates. 
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5.2. Lane Change Demand Check  

 

The level of autonomous driving in this research is Level 3 or higher, so the 

proposed algorithm must make lane change demand by itself. The lane change 

is demanded differently according to the MLC or the DLC. The MLC is related 

by road information. Using a map and localization information is needed to 

determine if the MLC is necessary. For example, off-ramp and on-ramp are 

MLC factors on the highway. In the on-ramp, the lane change needs to be 

completed within the limited distance. Therefore, the lane change is demanded 

as soon as the ego vehicle enters the on-ramp. Meanwhile, the ego vehicle must 

move to the exit lane before reaching the off-ramp. Therefore, the lane change 

is demanded until the ego vehicle reaches the exit lane. 

Because it is too inefficient to do such route planning every time, this study 

created the concept “main path” as shown in Figure 5.8. The blue line in Figure 

5.8 represents main path. The autonomous vehicle makes driving on main path 

the top priority. Then, when the ego vehicle deviates from main path, the 

vehicle needs to perform lane change in the direction of main path. In Figure 

5.8 (a), it is possible to enter and exit the highway described above. In Figure 

5.8 (b), the main path is defined to make a right turn and a left turn at the next 

intersection, which leads to lane change naturally. Therefore, the proposed 

algorithm can perform route planning for MLC simply by defining the main 

path on the high-definition map. To determine the demand for the MLC, only 

two factors are needed: 1) whether the ego vehicle is above main path or not, 
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and 2) if not above main path, which is the direction for main path. 

 

(a) Main path on highway road. 

 

(b) Main path on urban road. 

Figure 5.8. Concept of main path. 

 

In a DLC situation, the condition of surrounding vehicles is important. The 

DLC is a situation where the ego vehicle are driving on the main path and 

overtaking by a slow vehicle ahead. Figure 5.9 represents an overtaking 

situation where the ego vehicle employs the available left lane for overtaking.  

 

Figure 5.9. Overtaking situation. 

 

To determine whether overtaking proceeds, it is important to decide what 
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information in the adjacent lane will be used. Previous studies have utilized 

traffic flow for the overtaking decision. In previous research, traffic flow is 

characterized by microscopic and macroscopic points of view [Li,'04]. Since 

local sensors of the ego vehicle could only measure a limited area, the 

microscopic point of view has been utilized in overtaking decisions [Suh,'18]. 

In an ideal situation, it is reasonable to use the traffic flow for overtaking 

decisions. However, side vehicles drive with various velocity on a real road. 

When drivers decide to overtake, they judge based on the velocity of the space 

they are going to go, rather than the average velocity of the target lane. 

Therefore, in this study, the target space defined above is used for overtaking 

decisions. The decision algorithm utilizes the velocity of the vehicles in front 

of the target space. The velocity of the vehicle in front of the target space is 

named as a target space velocity ( spacev ). The minimum velocity of all perceived 

vehicles in front of the target space is named as a minimum target space velocity 

( ,minspacev ). The perceived vehicles mentioned herein refer to vehicles on the 

target lane. Lane change is demanded by comparing ,minspacev  with the velocity 

of the preceding vehicle ( prcv ). 

When actual drivers overtake, the velocity difference between the target lane 

and the current lane must go above a certain level. And this velocity difference 

is related to the velocity of the ego vehicle. The lower the velocity of the ego 

vehicle, the greater the velocity difference between the two lanes to attempt to 

overtaking. In this study, ‘  ’ has been developed to reflect this velocity 

difference characteristic. This prevents frequent lane change demand in 

congested traffic.   is determined by the velocity of ego vehicle and the set 
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velocity as follows:  

 
( 17 / 30) / 3 if / 2

/ 20 otherwise

e set e set

set

v v v v

v


   
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

  (5.4) 

When overtaking, it is necessary to change lane twice. Once when the ego 

vehicle meets a slow preceding vehicle. In this case, lane change is demanded 

to overtaking lanes. Another is when the ego vehicle returns from the 

overtaking lane to the driving lane. In this case, lane change is demanded of 

driving lanes. Therefore, different conditions are needed for two reasons. The 

enter (to the overtaking lane) condition, which is defined as: 

 
,min( ) ( ) ( 2 )prc set prc space prc LKv v v v p SD        (5.5) 

The return (to the lane of main path) condition is defined as follows: 

 
,min( ) ( )set space prc spacev v v v      (5.6) 

To prevent chattering of demand check activation, the demand check process 

is based on relay concept. For this, a demand probability ( Prdemand ) is defined 

in this study. The demand probability varies with each condition. And it has a 

value between 0 and 1. This probability is calculated as shown in Algorithm 3. 

This calculation is applied for both lanes respectively. When this probability 

has a value greater than 0.5, a lane change to the corresponding lane is finally 

demanded.  

If the lane change is demanded, the turn signal is activated to the target lane. 

The turn signal is a basic method that is always performed when a lane change 

demand is activated. The turn signal is a basic role for transmitting the intention 

for lane change to side vehicles on target lane. 

 



 91 

Algorithm 3 : Lane Change Demand Check 

1: Inputs: demand conditions (availability of lane, overtaking condition, 

return condition), demand probability 

2: if the ego vehicle is on main path 

3: if adjacent lane is available 

4: if overtaking condition 

5: 1Pr min(1, max(0, Pr )demand demand LC   

6: else 

7: Pr min(1, max(0, Pr )demand demand LK   

8: else 

9: Pr min(1, max(0, Pr )demand demand LK   

10: else 

11: if adjacent lane is available 

12: if return condition 

13: 2Pr min(1, max(0, Pr )demand demand LC   

14: else 

15: Pr min(1, max(0, Pr )demand demand LK   

16: else 

17: Pr min(1, max(0, Pr )demand demand LK   

19: end if 

 

 

  

Table 7. Parameters for Lane Change Demand Check 

Parameters Values Parameters Values 

1LC  0.1 2LC  0.2 

LK  0.025   
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5.3. Lane Change Possibility Check and Traffic 

Pressure Mode for Interactive Lane Change 

 

When a lane change is demanded, the driving mode changes from LK mode 

to LKC mode or LC mode. To decide which mode to proceed between LKC 

mode and LC mode, the ego vehicle needs to judge a possibility of the lane 

change based on LCSD  of side vehicles. If any side vehicle is situated closer 

than LCSD , the lane change is impossible. Figure 5.10 shows a concept of the 

lane change possibility. When relative positions of side vehicles are smaller 

than the LCSD  of each vehicle in the all prediction horizon, a lane change is 

risky. The condition of the lane change risk is given by: 

 ,ms LC msp SD   (5.7) 

where subscript ms  means the ms-th side vehicles on target lane 

( 1, , msm N ); and msN  means the number of side vehicles. 

 

 

Figure 5.10. A concept of lane change possibility based on safety distance. 

 

To prevent chattering of possibility check activation, the possibility check 

process is based on relay concept. For this, a possibility probability ( Prpossibility ) 
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is defined in this study. The possibility probability varies with each condition. 

And it has a value between 0 and 1. This probability is calculated as shown in 

Algorithm 4. This calculation is applied for both lanes respectively. When this 

probability has a value greater than 0.9, a lane change to the corresponding lane 

is finally possible. 

 

Algorithm 4 : Lane Change Possibility Check 

1: Inputs: lane change risk condition, possibility probability 

2: if lane change risk condition 

3: Pr min(1, max(0, Pr )possibility possibility risk   

4: else 

5: Pr min(1, max(0, Pr )possibility possibility non risk    

6: end if 

 

 

 

The LC mode is started when a lane change is possible. Even during the lane 

change mode, the lane change possibility is continuously checked. The 

possibility has been checked until the ego vehicle crosses the lane. If lane 

change is demanded but lane change is impossible, LKC mode is in progress. 

Figure 5.11 represents mode decision based on lane change possibility. 

 

Table 8. Parameters for Lane Change Possibility Check 

Parameters Values Parameters Values 

risk  -1 non risk 
 0.3 
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Figure 5.11. Driving mode decision based on lane change possibility. 

 

In LKC mode, a special case exists to need ‘traffic pressure’ described in 

Section 4.2. The safety distance-based lane change space may not exist because 

vehicles on the target lane are close together in congested traffic. In this 

research, in order to counteract this, we developed a lane change yield intention 

inference. And the safety distance reflecting the yield intention helps to judge 

the appropriate space for lane change. However, apart from yield intention 

inference, it is important to transmitting the intention to change with the 

appropriate lane through traffic pressure in congested traffic. When traffic 

pressure mode is activated, desired lateral motion is planned to drive to the 

target lane. This makes it possible to perform interactive lane change. The 

condition that traffic pressure is triggered is when the space for lane change is 

less than the length of the vehicle. This condition is given by:  

 
target vehicleC L   (5.8) 

where targetC  means the space between consecutive front and rear vehicles 

of target space; vehicleL  means the length of the ego vehicle. 
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5.4. Limit Mode Decision by Road End  

 

One of the most difficult situations in lane change is to change lanes within 

the limit conditions in the MLC situation. In this study, the lane change is 

demanded by main path before the road end is reached. However, if there are 

many vehicles on the target lane and there is no space to change the lane, it may 

be impossible to succeed the lane change within the limit conditions. Figure 

5.12 shows situations where the lane change is impossible in the MLC sections. 

 

 

(a) Road end on highway road. 

 

(b) Road end on urban road. 

Figure 5.12. Situations where the lane change is impossible in the MLC sections. 
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In this case, it is necessary to determine a driving mode decision and an 

appropriate motion planning. In this research, the concept of ‘limit mode’ and 

‘limit velocity’ have been developed. Limit mode is decided by the remained 

distance for ego vehicle to reach road end. The remained distance is determined 

from road end with a certain margin as follows:  

 
lim ,( (2 ) / )road end e y evasive margind d v W a d       (5.8) 

where road endd   means the distance between ego vehicle and road end; W  

is road width; ,y evasivea  means the lateral acceleration for evasive lane change 

(
21.5 /m s ); and margind  means the marginal distance (10m ). 

Normally limit mode is 0 and changes to 2 levels as ego vehicle approaches 

the road end. First, limit mode changes to 1 as the ego vehicle approaches the 

road end. When limit mode is 1, the lane change is demanded for the lane 

toward main path. And before the ego vehicle reaches the road end, the limit 

velocity is planned by the velocity at which the ego vehicle can perform the 

lane change. Second, when the planned limit velocity changes below threshold 

velocity, the limit mode changes to 2. In this case, stop or go motion is required. 

The driving mode is unconditionally the LC mode. And, according to lane 

change risk, the limit velocity is set to the stop velocity or the minimum limit 

velocity. This process is expressed in Algorithm 5. A lane change time is 

described in detail in the following Chapter 6.  
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Algorithm 5 : Limit Mode and Limit Velocity Decision 

1: Inputs: set velocity (
setv ), remained distance of road end (

limd  ), lane 

change time (
LCt ), minimum limit velocity (

lim.min 5v kph ), lane change 

risk condition. 

2: limmode 0 , 
lim setv v  

3 if (
lim set LCd v t  ) 

4: limmode =1, 
lim lim / LCv d t , Pr 1demand   

5 if (
lim lim,minv v ) 

6 limmode =2 , 
lim lim,minv v , Pr 1possibility   

7 if lane change risk condition 

8 lim 1v kph   

9: end if 
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Chapter 6 Motion Planning and Control 

 

Desired motion is planned according to the driving mode decided above. In 

motion planning, reference and bound of states are determined. For tracking 

planned motion, a SMPC is utilized [Suh,'18]. Solver FORCES is used to solve 

the problem of SMPC [Domahidi,'14]. The solver is operated in MATLAB. 

Since the distributed vehicle model is used, motion planning and control are 

also divided into longitudinal and lateral motions. Figure 6.1 shows the overall 

architecture of motion planning and control. 

 

 

Figure 6.1. Overall architecture of motion planning and control.  
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6.1. Longitudinal Motion Planning and Control  

 

In the longitudinal motion planning, references and bounds of the 

longitudinal states are determined as shown in Figure 6.2. The longitudinal 

states consist of position, velocity, and acceleration. For reference, velocity and 

position are used as reference states and are as follows: 

 , 0
T

lon ref ref refx p v      (6.1) 

where subscript ref  denotes the reference of states. 

For bounds, the position is only considered. A safe driving envelope is 

defined for collision avoidance. The envelope is shown as green box in Figure 

6.2. To guarantee safe driving, the envelope is decided as an area in which the 

ego vehicle could drive without collision with surrounding vehicles. The 

bounds can be expressed as: 

  min max

T

boundp p p   (6.2) 

where min  and max  mean the upper (resp. lower) bound of the safe 

driving envelope. 

 

 

Figure 6.2. Reference and bound of longitudinal motion planning.  
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The first priority goal of autonomous vehicles is to prevent collisions with 

surrounding vehicles and maintain safety. Therefore, the planning and control 

of longitudinal motion for this is the first priority. In any driving mode, this 

always be taken into account. A vehicle subject to such safety control is 

designated as ‘risky vehicle’. In general, the risky vehicle is the preceding 

vehicle as shown in Figure 6.3. Primarily, the preceding vehicle refers to a 

vehicle located directly in front of the same lane as an autonomous vehicle.  

In this research, it is determined whether the autonomous vehicle and 

surrounding vehicle collide through collision probability. Therefore, not only 

preceding vehicle in the general situation, but all vehicles in which collision 

probability exists are considered to be the risky vehicle. This concept is shown 

in Figure 6.4.  

 

 

 

Figure 6.3. Preceding vehicle in lane keeping driving.  
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(a) Velocity matching for far preceding vehicle. 

 

(b) Safety with cut-in vehicle. 

 

(c) Passing with biased side vehicle. 

 

(d) Overtaking with low collision risk vehicle. 

Figure 6.4. Risky vehicles based on collision probability. 

 

In any mode, the reference of states are determined by a risky vehicle which 

has probability of collision with ego vehicle. The states of risky vehicle are 
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expressed as risk  by subscript. The reference velocity is decided as the set 

velocity or the velocity of a risky vehicle. It is inefficient to follow the velocity 

of the risky vehicle identically when the risky vehicle is too far away, as shown 

in Figure 6.4 (a). Therefore, the distance to the risky vehicle affects the 

reference velocity. The reference position is set to prevent a rear collision when 

a risky vehicle is closer than LKSD . This could be the case when a side vehicle 

cuts-in, as shown in Figure 6.4 (b). For risk vehicles, the reference states are 

expressed as: 

 

,

(1 )

(1 )

s.t. (1 )

risk risk risk set risk LK

ref risk

risk safe risk set

safe set risk

risk LK

risk

CP v CP v if p SD
v

CP v CP v otherwise

v v v

p SD

p

 



    
 

   

    




  (6.3) 

 
, min[0, ]ref risk risk LKp CP p SD     (6.4) 

where subscript risk  means states of risky vehicles that have collision 

probability; subscript ,ref risk  means reference states for safety control of 

risky vehicles;   is variable for velocity matching with far risky vehicle. 

In any mode, the bounds of risky vehicle can be expressed as: 

 
min,

max, min[ , ]

risk sp

risk sp risk

p p

p p p

 


  (6.5) 

where spp  denotes the open distance when the vehicle blocking the safety 

envelope does not exits (100 m). 

There is a special case for risky targets. It is a situation where the ego vehicle 

is overtaking a stationary vehicle. In the overtaking situation, if the ego vehicle 

considers the risky target as shown in Figure 6.5, the ego vehicle may not be 
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able to overtake preceding vehicle and stop forever. Therefore, the overtaking 

velocity has been developed in this dissertation. 

 

,

,

,

,
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/
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 



 

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  (6.6) 

where subscript stat  means stationary vehicle; statTTC  denotes time to 

collision of stationary vehicle; LCt  is lane change time; ,ref ovv  denotes 

overtaking velocity. 

 

 

Figure 6.5. Overtaking is possible, but the ego vehicle is forever stopped. 

 

For active lane change driving, longitudinal motion planning beyond 

collision avoidance is necessary. If the lane change is demanded by driving 

mode decision algorithm, the ego vehicle must perform the lane change 

objective. For this purpose of lane change, it is required to drive to the target 

space developed in this study. The behavior for this purpose is named ‘side’. 

The states of side vehicle are expressed as side  by subscript. The motion plan 

for side vehicles is affected by the driving mode. Only in LKC mode or LC 

mode when the lane change is demanded, the motion plan of side vehicles is 
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proceeded. The side velocity is determined with spacev . The side position is also 

determined as an internecine point by the LCSD  of the consecutive vehicles in 

the target space. Figure 6.6 represents reference position planning for the side 

vehicles. For side vehicle of lane change objective, the reference states are 

expressed as: 

 
,ref side spacev v   (6.7) 

 

, 1 2
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2
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  (6.8) 

where subscript spf  means the vehicle in front of target space; subscript 

spr  means the vehicle behind target space; and subscript ,ref side  means 

reference states for going target space of side vehicles 

 

 

Figure 6.6. Desired motion planning for side vehicles. 
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For side vehicles, the upper and lower bound can be expressed as: 

 

min,

max,

, if 0

, else

, if 0

, else

sp spr

side

spr

spf spf

side

sp

p p
p

p

p p
p

p

 
 



 


  (6.9) 

Autonomous vehicles must comply with the regulated speed according to the 

road environment. Therefore, refv  is determined as setv , when the calculated 

refv  is greater than setv . Also, whether or not the ego vehicle have crossed the 

lane determines the longitudinal motion plan. When performing lane change in 

LC mode and crossing the lane, there is no need to plan the motion for side 

vehicles anymore. Therefore, at this time, even in LC mode, the motion plan is 

proceeded only for risky vehicle as shown in Figure 6.7. Therefore, the final 

motion plan considering this is as follows. 

 
, ,

,
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min[ , ] , after crossing lane

set ref risk ref side

ref

set ref risk

v v v
v

v v
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  (6.10) 
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p p
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  (6.11) 

 
min, min,
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min,

min[ , ], before crossing lane
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risk side

risk

p p
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 
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  (6.12) 

 
max, max,

max
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min[ , ], before crossing lane

, after crossing lane

risk side

risk

p p
p

p


 
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  (6.13) 
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(a) Before lane crossing. 

 

(b) After lane crossing. 

Figure 6.7. Final motion planning based on driving mode and lane crossing. 

 

In order to proceed with autonomous driving in all driving sections, a time 

occurs when considering road end as specifically described in section 5.4. 

Depending on limit, limit velocity needs to be reflected in the motion plan. In 

the MLC situation, it is necessary to complete the lane change without going 

beyond the road end. Therefore, as the ego vehicle gets closer to the road limit, 

the ego vehicle must drive at a speed of limit velocity or lower. When limit 

mode does not turn on, limit velocity is set velocity. The velocity plan reflecting 

limit mode is as follows. 

 
limmin[ , ]ref refv v v   (6.14) 

In prediction horizon, all references and constrains are calculated. Reference 

velocity in prediction horizon is shown in Figure 6.8. All states are decided 

based on prediction information. For the planned behavior, the control inputs 

are calculated using model predictive control. Therefore, the control inputs are 

determined taking into account future motions of ego vehicle and surrounding 

vehicles. 



 107 

  

Figure 6.8. Reference velocity in prediction horizon. 

  

The SMPC problem is presented to calculate the desired longitudinal 

acceleration. The SMPC problem is formulated with the vehicle dynamics 

model, reference, bound, and input constraint. Repeating at each time step, the 

solving process of the optimization problem is formulated as follows: 
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where lonQ  and lonR  are the state and input weighting matrix of 

longitudinal states. ( )lonx n  is the predicted longitudinal states of ego vehicle 

at time t+n derived by applying the control sequence lonu  to the longitudinal 

model Equation (3.6) with initial condition (0) ( )lon lonx x t . long  and 

,lon boundx  are related to a longitudinal safe driving envelope, which is defined 

to guarantee collision avoidance. lon  is the longitudinal risk parameter, which 

is related to a chance constraint to be satisfied with a specified probability. By 

this parameter, it becomes SMPC, not MPC. The details of SMPC is described 

in [Suh,'18]. ,minlonu  and ,maxlonu  denote longitudinal control input constraints. 

Table 9 presents the parameters of the longitudinal SMPC problem. 

 

 

  

Table 9. Parameters of the longitudinal SMPC problem 

Parameter Value 

longQ  (10,40,0)diag  

longR  80  

,maxlonu  23 [ / ]m s  

,minlonu  21.5 [ / ]m s  
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6.2. Lateral Motion Planning and Control  

 

In the lateral motion planning, references and bounds of the longitudinal 

states are determined. The lateral states consist of sideslip angle, yaw rate, 

lateral position, and yaw angle. Reference state of sideslip angle is always zero, 

which improves stability. Yaw rate could be represented as a lateral position 

[Rajamani,'11]. Desired state of yaw angle is determined by road curvature, 

which improves road following. Therefore, the only lateral position is the target 

of motion planning. Reference states of lateral motion are followed: 

 

, , ,

,
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y ref

y ref
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x e e

e
p e
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 
  
 

  (6.16) 

For bounds, the position is only considered. Like longitudinal motion 

planning, a safe driving envelope is defined for collision avoidance. The 

envelope is shown as green box in Figure 6.8. To guarantee safe driving, the 

envelope is decided as an area in which the ego vehicle could drive without 

collision with surrounding vehicles. The bounds can be expressed as: 

 , , min , max

T

lat bound y yx e e      (6.17) 

where min  and max  mean the lower (resp. upper) boundary of the safe 

driving envelope. 

Lateral motion planning is conducted based on driving mode shown in Figure 

6.9. Basically, a desired motion is planned to keep within the designated lane 
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according to the driving mode. The location of surrounding vehicles can act as 

a more powerful upper or lower bound than the lane depending on the collision 

probability of side vehicles. Figure 6.9 (a) shows this concepts of lateral motion 

planning affected by side vehicles. 

 

 

(a) Lateral motion planning in LK or LKC mode. 

 

(b) Lateral motion planning in LC mode. 

Figure 6.9. Lateral motion planning based on driving mode. 

 

In LK mode or LKC mode, the desired lateral position is defined as zero, 

which means that the vehicle tracks the centerline. In the LC mode, the desired 

lateral position is defined as the hyperbolic ta8gent path. This desired position 

reflects the lane change and has a low acceleration jerk [Suh,'18]. As shown in 
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Figure 6.10, only lateral acceleration limit is the tuning parameter that 

determines the lane change time. In LC mode, the desired lateral position could 

be given by: 
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  (6.18) 

where subscript ,limya  is the lateral acceleration limit; roadW  is the road 

width; and LCt  is the lane change time. 

 

 

Figure 6.10. Lane change motion planning of lane change maneuver. 
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Special case of lane keeping is transmitting lane change intention to vehicles 

on target lane. When traffic pressure mode turns on, the ego vehicle does not 

follow the center of the path even though driving mode is LC mode. To transmit 

lane change intention actively, reference of lateral position is slightly 

movement from the current lane center to the direction of the lane that is target 

of pressure. In traffic pressure mode, equations of lateral states reference can 

be given by: 

 
,

2 2

road vehicle

y ref y

W W
e     (6.19) 

where y  is the degree to which traffic pressure is applied strongly. 

The ego vehicle basically have to drive within a defined lane. The bounds of 

lateral position are determined depending on what direction to perform the lane 

change. The bound can be expressed as: 
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  (6.20) 

In addition to the lane, the surrounding vehicles must be additionally 

considered to prevent collision. The vehicle with collision probability among 

the vehicles on the right lane influences the determination of lower bound of 

lateral state, which can be expressed as:   

 
,min ,min , ,max[ , ]y y y risk y riske e p     (6.21) 
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The vehicle with collision probability among the vehicles on the left lane 

influences the determination of upper bound of lateral state, which can be 

expressed as: 

 
,max ,max , ,min[ , ]y y y risk y riske e p     (6.22) 

The SMPC problem is presented to calculate the desired steering angle. The 

SMPC problem is formulated considering the vehicle dynamics model, 

reference, constraints, and input limit. Repeating at each time step, the solving 

process of the optimization problem is formulated as follows: 
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  (6.23) 

where latQ  and latR  are the state and input weighting matrix of lateral 

states. ( )latx n  is the predicted lateral states of ego vehicle at time t+n derived 

by applying the control sequence latu  to the longitudinal model Equation (3.7) 

with initial condition (0) ( )lat latx x t . latg  and ,lat boundx  are related to a 

longitudinal safe driving envelope, which is defined to guarantee collision 

avoidance. lat  is the longitudinal risk parameter, which is related to a chance 

constraint to be satisfied with a specified probability. By this parameter, it 

becomes SMPC, not MPC. The details of SMPC is described in [Suh,'18]. 
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,limlatu  denotes the maximum magnitude of the lateral control input. ,limlatu  

denotes the maximum magnitude of the rate of change of the lateral control 

input. Table 10 presents the parameters of the lateral SMPC problem. 

 

 

 

 

Table 10. Parameters of the lateral SMPC problem 

Parameter Value 

latQ  
(200,160,10,10), if LC mode

(100,200,60,10), else

diag

diag





 

latR  60  

,limlatu  180 [deg]  

,limlatu  80 [deg/ ]s  
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Chapter 7 Performance Evaluation 

 

7.1. Simulation Test  

 

We evaluated the proposed algorithm through simulation test. Simulation test 

is essential before performing vehicle test. In this research, the performance of 

the proposed algorithm was evaluated through various simulations before 

vehicle test. Simulation can reproduce various situations repeatedly before the 

actual vehicle test. Therefore, it is possible to validate the performance of the 

algorithm in various situations. In addition, simulation test plays an important 

role when comparing the performance of different algorithms. By evaluating 

several algorithms for the same situation, it is possible to confirm the 

improvement of the proposed algorithm. 
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7.1.1. Simulation Environment 

Simulation is a step of evaluating the algorithm before vehicle test, so it is 

important to simulate the actual vehicle situation similarly. We constructed our 

own simulation environment based on MATLAB. It is easy to change and 

compatible with the proposed algorithm. The structure of the developed 

simulation environment is shown in Figure 7.1. 

 

Figure 7.1. Configuration of multi-vehicle simulation tool.  
 

The following models are important for the simulation of autonomous 

vehicles: road model, vehicle model, sensor model, control module model and 

driver model. The high definition map built on the actual road was used as a 

road model. The vehicle model was a kinematic model which is the simplest 

vehicle model. Since autonomous driving does not drive to the extreme 

performance of the vehicle, a kinematic model is adopted for simplicity of 

tuning and efficiency of simulation [Lee,'16]. The vehicle model is applied to 

all vehicles of the autonomous vehicle and surrounding vehicles. To describe 

vehicle motions, the state vector and input vector are defined as follows: 
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 x [ ]T

n x xx y v a   (7.1) 

 [ ]T

x fu a    (7.2) 

The vehicle dynamics is shown as follows:  
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  (7.3) 

The sensor model only applies to the autonomous vehicle. In the sensor model, 

the recognition range and the accuracy of state estimation of surrounding 

vehicles are important. These are affected by the perception module of the 

autonomous vehicle. In this study, a total of three perception modules were used 

[Lee,'19, Lee,'20]. We analyzed the performance of each perception module and 

reflected it in the sensor model of the simulation. 

The control module model is applied only to the autonomous vehicle. This is 

a model that embodies how it is reflected in the vehicle when the final control 

input of the autonomous vehicle is transmitted. In fact, if the control inputs are 

transmitted to the vehicle, the vehicle cannot track control inputs perfectly 

because of diverse delay and uncertainty. In this study, a total of three vehicles 

are used. We analyzed the performance of each control module and reflected it 

in the control module model of the simulation. Figure 7.2 represents the result 

of the analysis of the response to the control input of a vehicle. 
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(a) Longitudinal acceleration. 

 

(b) Steering angle. 

Figure 7.2. Control response analysis. 

 

Autonomous vehicle is driven by the proposed algorithm, but surrounding 

vehicles must drive like real drivers. Therefore, the driver model is necessary 

to simulate the actual driving environment. Since the proposed algorithm 

proposed is for lane change maneuver, surrounding vehicles only perform lane 

keeping maneuver. Therefore, the driver model of the surrounding vehicles only 

needs to consider the clearance characteristics with preceding vehicle. To 

develop the adaptive cruise control algorithm, the driving characteristics were 

studied [Moon,'08]. These driving characteristics have been used for driver 

model in simulation test.  
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7.1.2. Overtaking simulation for decision-making evaluation 

Overtaking is important situation in decision-making for lane change 

behavior. In the overtaking, speediness is important as well as maintaining 

safety with surrounding vehicles by changing the lane in the DLC situation. In 

order to evaluate the performance of the proposed algorithm, it was compared 

with the algorithms of other methods.  

The first algorithm to be compared is to use the traffic flow [Suh,'16]. In DLC, 

when the velocity of the preceding vehicle is much slower than the set velocity 

of the ego vehicle, a lane change is demanded. However, the ego vehicle does 

not need to change the lane in this situation if it involves taking a risk. Therefore, 

the traffic flow speed of adjacent lanes should be considered. In previous 

research, traffic flow is characterized by microscopic and macroscopic points 

of view [Li,'04]. This dissertation focuses on the microscopic point of view 

because local sensors of the ego vehicle can only measure a limited area. A 

problem occurs if traffic flow is simply defined as the average speed of the side 

lane vehicles in the recognition range. The traffic flow is set to the average 

speed, considering the weight according to the distance, since the speed of the 

vehicles is more meaningful as the distance of the recognized vehicle is closer. 

Traffic flows on left and right lanes are defined using the recursive least square 

method with forgetting factors. The cost function of recursive least square with 

forgetting factors is as follows: 
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where   denotes the forgetting factor; t  denotes the current time; v  
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denotes the average speed weighted by the distance of the object vehicles 

during a near future, which can be estimated from the object vehicle prediction; 

and ˆ
flowv  denotes traffic flow. v  is as follows: 
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where m  denotes the number of target vehicles in the target lane; ,x lv  

denotes the velocity of the l-th target vehicle; and ,x lp  denotes the relative 

position of the l-th target vehicle. 

A derivative of equation (7.4) equals zero, which means a minimum cost. 

From this method, the traffic flow is derived as: 
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Substitute ( )P t  and simple mathematical techniques, traffic flow can be 

rewritten as: 
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Based on the set velocity of the ego vehicle, the preceding vehicle velocity 

and traffic flow of adjacent lanes, lane change is demanded. The condition is as 

follows in a discretional lane change. If three conditions are satisfied, a lane 

change is demanded. 

 , ,
ˆ[ ( )] [ ] [ 2 ]preceding des preceding flow x preceding LK precedingv v v v p SD         (7.8) 

The second algorithm to be compared is to use the supervised learning 



 121 

method [Chae,'19]. In DLC, when the velocity of the preceding vehicle is much 

slower than the set velocity of the ego vehicle, a lane change is demanded. In 

situation of Figure 7.3, it is good to make a lane change between side-front 

vehicle and side-rear vehicle, but if conducting a lane change behind side-rear 

vehicle, the autonomous vehicle might face a slower driving situation. It is 

difficult to judge whether it is possible to enter in front of the side-rear. This is 

because the autonomous vehicle should consider algorithm operation methods, 

perception range, control characteristic and diverse uncertainty. The rule-based 

method could not this complex problem. Also, the rule-based method also has 

a disadvantage that the performance varies greatly depending on the tuning 

parameter. To overcome the limitations of the rule-based method, supervised 

learning method is adopted for overtaking decision. 

 

 

Figure 7.3. Difficult situation to decide lane change demand.  
 

Learning method is adopted to judge whether it would be good or bad to 

conduct overtaking in various situations. Since it is not possible to implement 

all situations as actual vehicle conditions, simulation is used for data generation. 

Figure 7.4 shows the concept of supervised learning. Based on simulation-

based data, the training is carried out and overtaking decision machine is 
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derived. Overtaking is determined based on the learned machine. 

 

 

Figure 7.4. Concept of supervised learning for overtaking decision.  

 

Various data sets are needed to develop the learning based the overtaking 

decision algorithm. A data generation was carried out through simulation 

studies. In simulation, the ego vehicle is equipped with the autonomous driving 

algorithm. Lane change demand module is excluded from the autonomous 

driving algorithm. Surrounding vehicles are tracking a pre-determined velocity 

and maintaining safety with a preceding vehicle. In the simulation, various 

situations are implemented by changing the initial condition of all the vehicles, 

and one simulation means one episode. A number of simulations are conducted 

for episode generation with changing to initial conditions as equation (7.9). 

Overall episode number is 18,750. Since there is the two case that overtaking 

is required or not, two simulations are carried out for each episode as shown in 

Figure 7.5. Simulation time is 60 sec and sampling time is 0.1 sec. 
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(a) Case 1: No lane change demand. 

 

(b) Case 2: Left lane change demand. 

Figure 7.5. Two case about one episode.  

 

For a supervised learning, it is necessary to determine whether lane keeping 

is good or overtaking is good for each episode and to label it. In order to 

consider speediness, the case that the travelled distance is greater is labeled. If 

the travelled distance of the lane change is slightly bigger than that of the lane 

keeping, then the lane keeping is better. Also, minimum clearance is considered 

to reflect safety with surrounding vehicles. In the case of the lane change where 

minimum clearance is smaller than safe clearance, it is labeled as lane keeping.  

Input variables is shown in equation (7.10). Response variable is labeled as 

0 or 1 which means the lane keeping is better or the lane change is better. About 
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entire labelled data sets, the supervised learning is conducted using an ensemble 

method. The type of the ensemble method is bootstrap aggregating. Learning 

accuracy is 98.6%. Around 61% of the entire data sets predict that the lane 

keeping is better, while 39% predicts that the overtaking need to be required. 
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  (7.10) 

 

 

Figure 7.6. Schematic of supervised learning for overtaking decision.  

 

A total of three algorithms have been validated in simulation study: 1) traffic 

flow based overtaking decision, 2) supervised learning based overtaking 

decision, 3) desired space velocity based overtaking decision (the proposed 

algorithm). Figure 7.7 shows simulation environment where there are nine 
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target vehicles. Initial velocity and desired velocity of target vehicles are less 

than 110km/h which is the desired velocity of the ego vehicle. This environment 

could make overtaking situations. Initial condition of all vehicles is shown in 

Table 11. 

 

 

Figure 7.7. Validation simulation initial vehicle disposition.  

 

Table 11. Validation Simulation Initial Condition of Vehicles 

 

Ini X Position 

[m] 

Ini Y Position 

[m] (Lane) 

Ini Velocity 

[km/h] 

Set Velocity 

[km/h] 

Set Time Gap 

[sec] 

Ego 0 0 110 110 - 

Target 1 -11 3.5 (1) 80 100 1.3 

Target 2 42 0 (2) 90 90 1.3 

Target 3 46 3.5 (1) 80 80 1.6 

Target 4 114 0 (2) 90 100 0.8 

Target 5 187 0 (2) 90 90 1.6 

Target 6 254 3.5 (1) 80 100 1.6 

Target 7 262  90 90 1.6 

Target 8 310 3.5 (1) 80 100 1.3 

Target 9 390 3.5 (1) 80 80 1.6 
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The base models uses the traffic flow based overtaking decision algorithm 

and the supervised learning based overtaking decision algorithm. The proposed 

model is the desired space velocity based overtaking decision algorithm. 

During 150 seconds, the traffic flow based model conducts two lane changes, 

while the supervised learning based model and proposed model conduct three 

lane changes. Therefore, the two models traveled more distances without 

significantly slowing down than the traffic flow based model. Also, the all 

models keep a minimum clearance of in-lane vehicle above 20m. Average 

calculation time of overtaking decision algorithms is shown in Table 12. The 

supervised learning method has a large calculation time. Since traffic flow and 

desired space methods are rule-based method, calculation time is small. As a 

results, the proposed decision algorithm has the same excellent performance as 

learning method and has much less computation time, even though the proposed 

decision algorithm is rule-based method, 

 

 

 

  

Table 12. Average calculation time of overtaking decision algorithms 

Decision Algorithm Calculation Time [ms] 

Traffic Flow 0.0016 

Supervised Learning 1.78 

Desired Space Velocity 0.0035 
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(a) Driving mode. 

 

(b) Velocity. 
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(c) Travelled distance. 

 

(d) Minimum clearance. 

Figure 7.8. Simulation results.  
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7.1.3. Overtaking simulation to evaluate the effectiveness of virtual vehicle 

To evaluate the effectiveness of virtual vehicle, the proposed overtaking 

algorithm has been evaluated through simulation. The simulation environment 

is a two-lane straight road. Figure 7.9 and Table 13 represent the initial 

condition of ego vehicle and surrounding vehicles. Seven surrounding vehicles 

were placed in arbitrary positions. Surrounding vehicles use the initial velocity 

as the set velocity and proceeds to safety control if a preceding vehicle exists. 

The time gap used for safety control is 1.36 s [Moon,'08]. The surrounding 

vehicles do not change lanes. Vehicle model used in the simulation has input 

constraints described in SMPC problems. To show the effectiveness of virtual 

targets, an algorithm without a virtual target has been compared with the 

proposed algorithm (with the virtual target).  

 

Table 13. Validation Simulation Initial Condition of Vehicles 

 X Position [m] Y Position [m] Velocity [km/h] 

Ego 0 0 100 

Target 1 -70 3.5 110 

Target 2 -30 3.5 100 

Target 3 10 3.5 100 

Target 4 68 3.5 90 

Target 5 70 0 80 

Target 6 110 0 80 

Target 7 120 3.5 100 
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Figure 7.9. The initial condition of the simulation.  

 

Figure 7.10 shows the simulation results. At two seconds, both algorithms 

demand the lane change to the overtaking lane because of the slower preceding 

vehicle. Then no virtual algorithm tries to enter in front of target 3. However, 

as target 4 is recognized in the perception range, it changes to enter the space 

between targets 2 and 3. This could be seen through the fluctuating desired 

position, desired velocity, and acceleration. On the other hand, the proposed 

algorithm attempts to enter the space between targets 2 and 3 as soon as a lane 

change is required. This is because the proposed algorithm always thinks virtual 

targets are placed on the perception range limit. The proposed algorithm could 

prepare for vehicles coming in outside the perception range. As a result, the 

proposed algorithm enters the overtaking lane more quickly. Then, it overtakes 

targets 5 and 6 and returns to the driving lane again. The proposed algorithm 

travels a greater distance with a smoother acceleration than no virtual algorithm. 
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(a) Desired longitudinal position. 

 

(b) Desired longitudinal velocity. 

 

(c) Longitudinal acceleration. 
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(d) Longitudinal velocity. 

 

(e) Driving mode. 

 

(f) Global Y position. 

Figure 7.10. Simulation results. 
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7.1.4. Simulation about cut-in vehicle safety to evaluate the stochastic risk 

assessment and the predictive control 

The proposed autonomous driving algorithm employs appropriate stochastic 

predictions. The algorithm guarantees safety and human-like driving based on 

the stochastic risk assessment and the predictive control reflecting prediction. 

To evaluate the effectiveness of the stochastic risk assessment and the 

predictive control, the proposed algorithm has been evaluated through 

simulation. The situation, in which the front vehicle cuts-in, occurs very 

frequently on the road. At this time, if the cut-in vehicle is slower than ego 

vehicle, there is a risk of collision, so proper safety control is required. If the 

proactive control is reflected, a much safer and more human-like driving is 

possible.  

The simulation environment is a two-lane straight road. Figure 7.11 

represents the initial condition of ego vehicle and cut-in vehicle. Simulations 

are repeated in this environment that can be slightly modified for parameters. 

Simulation parameters are modified randomly and all parameters are selected 

to consider occurring in the actual road as shown in equation (7.11). The monte-

carlo simulation has been run 145 times. 

 

 

Figure 7.11. The initial condition of the simulation.  
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A total of three algorithms were compared to check the performance of the 

algorithm. The base algorithm is an algorithm that does not use collision 

probability and proactive control. Without considering collision probability, 

safety control is performed when surrounding vehicle overlaps with the future 

behavior of the ego vehicle. In MPC for safety control, the current information 

is used instead of using predicted information. The second algorithm to be 

compared is an algorithm that uses prediction information in MPC. If the future 

behavior is assumed to collide, the planning for collision avoidance is reflected 

in the MPC. Finally, the proposed algorithm not only employs prediction 

information into the MPC, but also uses collision probability when assessing 

risk of future collision. 

As shown in Figure 7.12 (c) and (d), it can be seen that all algorithms satisfy 

sufficient safety. However, it can be seen that the second and proposed 

algorithms reflecting future behavior in MPC use much less deceleration. This 

is because they predict the collision of the cut-in vehicle and decelerate in 

advance. The amount of deceleration of the proposed algorithm is the least 

because the deceleration is performed earlier. 
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(a) Desired longitudinal acceleration. 

 

(b) Velocity. 

 

(c) Clearance 

 

(d) Time gap. 

Figure 7.12. One case in monte-carlo simulation. 
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Results of repeated simulations have been expressed through histogram. 

Insignificant data was excluded to draw histogram. Desired acceleration below 

-0.1m/s2, clearance below 20m, and time gap below 4sec were considered for 

histogram. Figure 7.13 shows comparison of base and proposed algorithm. 

Both algorithms maintain the safety well, but the proposed algorithm shows 

better performance. The base algorithm uses too much deceleration. This can 

lead to poor ride quality, as well as a danger to the rear vehicle.  

Figure 7.14 shows comparison of proactive and proposed algorithm. Both 

algorithms implement the proactive motion well, but the proposed algorithm 

shows better performance. The proposed algorithm shows better safety 

performance while using less deceleration. 
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(a) Desired longitudinal acceleration 

 

(b) Clearance 

 

(c) Time gap. 

Figure 7.13. Comparison of base and proposed algorithms in monte-carlo 

simulation. 
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(a) Desired longitudinal acceleration 

 

(b) Clearance 

 

(c) Time gap. 

Figure 7.14. Comparison of proactive and proposed algorithms in monte-carlo 

simulation. 
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7.1.5. Merging simulation in on-ramp to evaluate MLC 

Simulation environment is shown in Figure 7.15. In the target lane, nine 

surround vehicles exist. These vehicles are platooning like real human driver’s 

behavior. These vehicles’ velocity is based on general highway situation. In the 

merge lane, the automated vehicle exist. This vehicle’s initial velocity is based 

on general intersection situation. To show the effectiveness of the automated 

driving algorithm, monte-calro simulations are repeated in this environment 

that can be slightly modified for parameters. Simulation parameters are 

modified randomly and all parameters are selected to consider occurring in the 

actual road as shown in equation (7.12). 

 

 

Figure 7.15. Simulation environment. 

 

 

,

,

[0.8 1 1.2]

[80 81 82 83 84 85 86 87 88 89 90] [ / ]

[0 10 20 30 40] [ ]

(TG ) (velocity ) / 3.6 4 [m]

(i 1,2,3,....,8 / j i 1)

(TG ) (velocity ) / 3.6 4

set

set

set

i j set set

des i set set

TG

velocity km h

Initial clearance m

cl rand rand

cl rand rand







  

  

  

, i

[m]

( ) [km/ h]

( ) [km/ h]

(i 1,2,3,....,9)

( ) [m]

i set

des set

initial set

vel rand velocity

vel rand velocity

cl rand Initial clearance









  (7.12) 

 



 140 

The simulation results via computer simulation are presented. Not only one 

simulation data but also repeated simulations data are analyzed. Analysis of one 

simulation data is as follows. In Figure 7.16, the driving situation at each time 

is presented. When time is 1second, all vehicles are placed depending on 

simulation initial condition. When time is 5second, the subject vehicle has 

decelerated to retain space in order to merge. When time is 9second, the subject 

vehicle has accomplished lane change on proper space between surround 

vehicles. 

In Figure 7.17 (a), the ego vehicle has decelerated to place desired merge 

position which is selected as the safe space. Figure 7.17 (b) demonstrates the 

velocities of three vehicles that are the ego vehicle, a front vehicle and a rear 

vehicle. The front and rear vehicles mean the vehicles that are located 

adjacently to the merge space when the ego vehicle merges to the target lane. 

This means that this merge does not significantly interfere with the flow of 

traffic. In Figure 7.17 (c), the driving mode decision algorithm determines lane 

change appropriately. Based determination of the driving mode, lateral control 

input for autonomous driving vehicle is calculated. Figure 7.17 (d) 

demonstrates that the performance of controller is satisfied to change lane.  
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(a) T=1sec. 

 

(b) T=5sec. 

 

(c) T=9sec. 

Figure 7.16. Driving situation of one case among monte-calro simulation. 
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(a) Longitudinal acceleration. 

 

(b) Velocity of three vehicles. 

 

(c) Driving mode. 

 

(d) Lateral acceleration. 

Figure 7.17. Results of one case among monte-calro simulation. 
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In this time, repeated simulations data is analyzed. Simulations are repeated 

in 45 times varying parameters. Through repeated simulations, it can be 

checked to ensure that whether the ego vehicle perform successful merging. 

Figure 7.18 (a) demonstrates stacked velocities of three vehicles that are the 

subject vehicle, a front vehicle and a rear vehicle. Adaptation of velocity flow 

in the target lane appears in all simulation cases. In Figure 7.18 (b), the lateral 

position of the subject vehicle is presented. The automated vehicle has varied a 

lane change point depending on varied simulation. Figure 7.18 (c) demonstrates 

domain of clearance and relative velocity with the front and rear vehicles. In all 

simulation cases, the data of first safety factor have maintained in safe region. 

This means that the automated vehicle maintains the safety with surround 

vehicles when merging. In Figure 7.18 (d), longitudinal position of the subject 

vehicle is presented when the subject vehicle is on the merge lane. This position 

shows second safety factor. Because this position maintains a positive, the 

automated vehicle is successful in merging. 

 

 

(a) Velocity of three vehicles. 
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(b) Lateral position. 

 

(c) First safety factor: clearance and relative velocity domain. 

 

(d) Second safety factor: escape distance (longitudinal position). 

Figure 7.18. Accumulated results of monte-calro simulation. 
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7.1.6. Interactive lane change simulation in congested traffic to evaluate 

the yield intention inference 

To evaluate the performance of lane change in congested traffic, the proposed 

interactive lane change algorithm has been evaluated through simulation. The 

simulation environment is a two-lane straight road. The simulation is a situation 

in which the ego vehicle has to move to the next lane because of the accident 

vehicle in front. The accident vehicle is 80 meters ahead. The next lane is 

congested and nine vehicles are driving at low speed. Out of nine side vehicles, 

the ego vehicle starts from the same longitudinal position as the fifth vehicle. 

Based on the fifth vehicle, the remaining eight vehicles are positioned 

according to their desired time gap. The velocity of the side vehicles and the 

desired time gap of each side vehicle are randomly determined for each monte-

calro simulation. 

 

 

Figure 7.19. Initial conditions of lane change simulation in congested traffic. 

 

An important feature of this simulation is the lane change yield intention. 

Real vehicles have different intentions to yield to lane changes depending on 

the driver's disposition. As shown in A, the yield propensity depends on the 

lateral position of the vehicle attempting to change lanes. To mimic this, three 

yield intentions were made and randomly distributed to nine side vehicles. The 

lateral position at which the yield starts was defined as yieldp . Therefore, some 
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vehicles give way to traffic pressure of autonomous vehicles, while others do 

not. It is important for autonomous vehicle to understand this well and to do 

interactive lane change. 

 

 

Figure 7.20. Lateral position related with yield intention of side vehicles. 

 

Simulation parameters are selected to consider occurring in the actual road 

as shown in equation (7.13). The monte carlo simulation has been run 150 times. 
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  (7.13) 

 

A total of three algorithms were compared to check the performance of the 

algorithm. The compared algorithms use constant parameters for lane change 

safety distance. One is based on highway data and the other is based on urban 

data. The former is called the conservative safety distance (CSD) and the latter 



 147 

is called the progressive safety distance (PSD). The proposed algorithm adopts 

the lane change safety distance with yield intention, which is called yield 

intention based safety distance (YISD).  

Figure 7.21 shows the distribution of the time it takes to change lanes through 

monte-calro simulation. Figure 7.22 shows the distribution of clearance 

between the ego vehicle and the rear vehicle when changing lanes. This 

represents the performance of safety. The comparison result of the three 

algorithms is represented in Table 14. Here, the lane change completed time 

means the time until the simulation starts and the lane change is completed. The 

lane change success rate represents the ratio of the simulations that successfully 

change lanes among all simulations. The CSD shows the highest degree of 

safety. However, lane change completed time is too long and success rate is 

significantly low because the CSD is too conservative. The PSD has good lane 

change completed time and success rate, but its safety is low. The YISD shows 

the best lane change completed time and success rate, while ensuring sufficient 

safety performance.  

 

 

 

 

 

 



 148 

 

Figure 7.21. Lane change completed time in congested traffic. 

 

  

Figure 7.22. Clearance between ego vehicle and rear vehicle when finishing 

lane change in congested traffic. 

 

 

 

 

 

 

Table 14. Interactive lane change performance in congested traffic 

 CSD PSD YISD 

LC completed time [sec] 24.60 18.08 17.83 

Clearance with rear vehicle [m] 19.97 13.05 13.36 

LC success rate (between two vehicles) 0.36 0.84 0.86 

Collision case 0 4 0 
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7.2. Vehicle Test  

 

We evaluated the proposed algorithm through vehicle test. The autonomous 

driving algorithms must be verified by vehicle test after verification is 

completed by simulation. The final goal of the proposed algorithm is to 

implement it on autonomous vehicles, so vehicle test is the final stage of 

verification. The proposed algorithm has been developed to cope with a 

changeable autonomous vehicle rather than a specific autonomous vehicle. The 

proposed algorithm is adaptive to the localization and perception modules, the 

upper modules of autonomous driving. Therefore, vehicle tests are conducted 

using various vehicles, not just one vehicle. Vehicle tests have been conducted 

using the three autonomous vehicles introduced in Section 2. Each of the three 

vehicles has different sensor sets, localization and perception modules. 

Therefore, it can be seen that the proposed algorithm shows stable performance 

for various uncertainties and changeability of vehicles. Lane change is an 

essential driving function regardless of the road environment. Therefore, 

vehicle tests have been conducted in both highway and urban environments. In 

Korea, a policy exists for the real road test of autonomous vehicles. This policy 

grants permission for autonomous driving through autonomous driving test, fail 

safe test, and driver override test. Three test vehicles used in this dissertation 

accepted this permission, so the vehicles are able to drive on actual roads. 

 

 



 150 

7.2.1. Self-directed Test using First Vehicle Platform 

Before testing the vehicle with various external vehicles on the actual road, 

the vehicle test has been carried out by itself [Chae,'18]. This can confirm the 

basic algorithm operation in the actual vehicle that could not be confirmed in 

the simulation. The proposed autonomous driving algorithm is validated 

through self-directed vehicle test. As shown in Figure 7.23, there are two 

normal vehicles on the first lane and an autonomous lane on the second lane. 

At this time, the autonomous driving vehicle is required to make a lane change 

to the left. The test scenarios are summarized in Table 15. There are four 

scenarios in total and the initial speed and initial position of the three vehicles 

are different. Especially, the scenario 4 assumes that virtual vehicles exits 

closely in front of and behind both side vehicles in order to simulate a 

congestion situation. The target speed of the autonomous vehicle is the same as 

the initial speed. 

 

 

Figure 7.23. Three vehicles relation of test scenario. 
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Figure 7.24 shows four snap shots of each test scenario. The blue vehicle is 

the autonomous vehicle and the red vehicles are the surrounding vehicles. The 

blue line is the target path of autonomous vehicle, and the blurred blue vehicles 

are the predicted information after one and two seconds, respectively. Red 

points are point cloud of LiDAR sensor. On the right side of the autonomous 

vehicle, guardrails and trees are recognized by LiDAR. On the left side, the 

corners of the surrounding vehicles are recognized by LiDAR and perceived as 

vehicles by the perception algorithm. The long rectangular box around the red 

vehicle indicates the safe distance used in the motion planning algorithm. The 

green line indicates the lanes recognized by the camera sensor, and the black 

dotted line is the centerline of the lanes processed by the lane filter. 

The first snapshot in each scenario shows the initial condition. In all scenarios, 

although a lane change is required, there is a lane change risk due to safety 

distance of the side vehicles on the target lane. The second snapshots shows the 

autonomous driving vehicle taking action to be able to change lanes. In scenario 

1, the autonomous vehicle determines that it is best to move in front of the side-

Table 15. Validation test initial condition of vehicles 

No ,1iniV
 ,2iniV

 ,3iniV
 1,iniC

 2,iniC
 3,iniC

 iniTG  

1 30kph 30kph 30kph 10m -10m -20m 1.2 

2 30kph 30kph 30kph 10m -2m 12m 1.2 

3 10kph 10kph 10kph 25m -4m 21m 9.3 

4 10kph 10kph 10kph 18m -8m 10m 6.6 
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front vehicle, and accelerate. In scenario 2, the autonomous vehicle determines 

that it is best to move behind the side-rear vehicle, and decelerates. In scenario 

3, the autonomous vehicle judges that there is sufficient space between the side-

rear vehicle and the side-front vehicle and accelerates to enter that space. As 

mentioned above, the scenario 4 assumes that virtual vehicles exits closely in 

front of and behind both side vehicles in order to simulate a congestion situation. 

Therefore, the autonomous vehicle does not judge that it is good to move at the 

most forward or the rearmost point like scenario 1, 2. The autonomous vehicle 

proceeds with traffic pressure to convey the lane change intention to the side-

rear vehicle. In other words, the autonomous vehicle goes into space between 

two side vehicles and attaches slightly to the target lane. The third snapshots 

shows the autonomous driving vehicle performing the lane change. Especially, 

in scenario 4, the side-rear vehicle responded to traffic pressure, giving space 

for lane change. The fourth snapshots shows that the lane change has been 

successfully completed while keeping the safety with the surrounding vehicles. 
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(a) Scenario 1.                  (b) Scenario 2. 

 

(c) Scenario 3.                  (d) Scenario 4. 

Figure 7.24. Four snap shots of each test scenarios. 
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Figure 7.25 shows test results of scenario 3. Figure 7.25 (a) shows the 

longitudinal acceleration. From 0 to 8 seconds, the autonomous vehicle 

accelerates to a space where lane change is possible. The vehicle makes 

longitudinal control considering the safety with the side-front vehicle from 8 

seconds, when the lane change starts. Figure 7.25 (b) demonstrates, through 

lateral position by measured camera sensor, that the lane change starts from 8 

seconds and the autonomous vehicle arrives at the target lane about 11 seconds. 

Figure 7.25 (c) shows the steering angle used to performing lane change, 

demonstrating that the lane change is completely on the target lane at about 16 

seconds. Figure 7.25 (d) demonstrates domain of clearance and relative velocity 

with the side-front and side-rear vehicles. Black dots are before lane change. 

Red circles are during and after lane change. Initially, the side-rear vehicle is so 

close that the lane change cannot be performed. After the distance from the side-

rear vehicle is extended, the lane change begins. This shows that the 

autonomous vehicle maintains the safety with surround vehicles when lane 

changing. 

 

 

(a) Longitudinal acceleration. 
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(b) Lateral position. 

 

(c) Steering angle. 

 

(d) Safety with surrounding vehicles. 

Figure 7.25. Test results of scenario 3. 
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7.2.2. Highway DLC and MLC Test using First Vehicle Platform 

The proposed lane change algorithm has been evaluated through a real 

vehicle test. Figure 7.26 shows the test environment where the three highways 

connect by three ramps as a circulation course. This environment makes the 

DLC and the MLC consecutively. Information on each road section is given in 

Table 16.  

 

Figure 7.26. Vehicle test environment. 
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The vehicle test proceeded on a total of five and a half laps around the circular 

course. The total travelled distance is 103 km, and the number of lane changes 

conducted is 92. Figure 7.27-Figure 7.32 show the selected three lane change 

situations among the 92 lane changes. The three lane change situations are the 

on-ramp, the off-ramp, and the general road. Snapshots of the three lane change 

situations are shown in Figure 7.27, Figure 7.29, and Figure 7.31. In the 

snapshots, the blue line is the target path of the ego vehicle, and the blue 

Table 16. Information of each road section 

 Kind Feature Lane change reason 

① Ramp Max curvature = 300 m - 

① On- ramp Limited distance = 200 m Mandatory 

①→② Normal The number of lanes: 3 Discretionary 

② Off-ramp Go to exit lane from 1 km ahead Mandatory 

② Ramp Max curvature = 350 m - 

② On- ramp Limited distance = 200 m Mandatory 

②→③ Normal The number of lanes: 4 Discretionary 

③ Off-ramp Go to exit lane from 1 km ahead Mandatory 

③ Ramp Max curvature = 200 m - 

③ On- ramp Limited distance = 150 m Mandatory 

③→① Normal The number of lanes: 4 Discretionary 

① Off-ramp Go to exit lane from 1 km ahead Mandatory 
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diamonds are the predicted positions of the ego vehicle after 1 and 2 s, 

respectively. The small red circle is a current position reference of the ego 

vehicle. The red points represent measured data of the LiDARs and radar 

sensors. The red vehicles represent surrounding vehicles. The pink rectangular 

box around the red vehicle indicates the safety distance. The green line indicates 

the lanes recognized by the camera sensor, and the black dotted line is the 

centerline of the lanes. In this dissertation, the driving mode is so important. 

The concepts of the lane change demand and possibility are expressed by 

arrows. The arrow indicates the driving mode and the direction of the lane 

change. The colored arrows indicate the lane change demand. A red arrow 

indicates that the action of the lane change is risk. Therefore, the lane change is 

impossible. A blue arrow shows that the lane change mode proceeds because 

the safety distances have been sufficiently guaranteed.  

Figure 7.28, Figure 7.30, and Figure 7.32 represent test results of the three 

lane change situations: driving mode, acceleration, safety domain with 

surrounding vehicles, distance with side vehicles on target lane, steering angle 

and lateral positon. These figures show that the ego vehicle succeeds in 

changing the lane, while using appropriate acceleration and maintaining safety 

with the surrounding vehicles. Figure 7.28 (a), Figure 7.30 (a) and Figure 7.32 

(a) indicate the driving mode which is related with the lane change demand and 

possibility concept for the active lane change. In Figure 7.28 (b), Figure 7.30 

(b) and Figure 7.32 (b), the time-varying safety distances are shown. The 

driving mode is decided by the safety distance and clearance with vehicles on 

target lane. The acceleration in Figure 7.28 (c), Figure 7.30 (c) and Figure 
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7.32 (c) is satisfactory for both smooth ride quality and clearance control. The 

acceleration tracking controller has been tuned for smooth ride quality in 

normal driving situations in which the desired acceleration is in the range of 

±1m/s^2. The clearance control characteristics described in Figure 7.28 (d), 

Figure 7.30 (d) and Figure 7.32 (d) illustrate that the vehicle behaviors of the 

ego vehicle are in safe region with sufficient safety margin. It should be noted 

that, in emergency braking situations, the designed acceleration is of large 

values and the tacking performance should be much better and faster to avoid 

collisions. In emergency braking situations, a different set of gains is used for 

fast tracking performance. In Figure 7.28 (f), Figure 7.30 (f) and Figure 7.32 

(f), it indicates the lane change moment that the lateral position has a sudden 

change in a very short time.  

Figure 7.27 presents four snapshots of on-ramp driving. In the Figure 7.27 

(a), the ego vehicle is demanded to conduct a left lane change by road 

environment. However, the side vehicles are located so close. Therefore, the 

lane change is impossible. These Figure 7.27 (b) and Figure 7.27 (c) show that 

the ego vehicle is performing a lane change in the desired space. In the Figure 

7.27 (d), the ego vehicle completes the lane change and maintains safety with a 

preceding vehicle. The Figure 7.27 (e) indicates the biased steering input due 

to an on-ramp road with slight curvature. This shows that the lateral model with 

consideration for road curvature has good performance about the lane keeping 

and lane change. 

Figure 7.29 shows four snapshots of off-ramp. The ego vehicle could know 

that the vehicle is getting closer to off-ramp. A right lane change is demanded 
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in order to go to the exit lane. This is shown in Figure 7.29 (a). Since the side-

rear vehicle is located so close, the ego vehicle decides to go forward in front 

of the side-rear vehicle. This is shown in Figure 7.29 (b). The Figure 7.29 (c) 

shows that the ego vehicle is changing the lanes. In addition, a signpost appear 

in the Figure 7.29 (c), the signpost means that current position of the ego vehicle 

is close to off-ramp. In the Figure 7.29 (d), the vehicle completes the lane 

change. 

Figure 7.31 presents four snapshots of overtaking situation in the general road. 

The Figure 7.31 (a) shows that the preceding vehicle is too slow and traffic flow 

in the left lane is good. Therefore, the ego vehicle is needed to make a left lane 

change. It is impossible to perform the lane change immediately due to the 

vehicles in the side lane. However, the lane change is soon possible because a 

side vehicle moves to the other lane. The Figure 7.31 (b) and the Figure 7.31 

(c) indicate that the ego vehicle performs the lane change and maintains safety 

with a preceding vehicle in the new lane. In the Figure 7.31 (d), the ego vehicle 

finishes overtaking a slow truck and matching the traffic flow in the new lane. 
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(a) First snapshot. 

 

(b) Second snapshot. 

 

(c) Third snapshot. 

 

(d) Fourth snapshot. 

Figure 7.27. Snapshots in on-ramp (MLC). 
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(a) Driving mode. 

 

(b) Distance with vehicles on target lane. 

 

(c) Longitudinal acceleration. 
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(d) Safety domain with surrounding vehicles. 

 

(e) Steering input. 

 

(f) Lateral position. 

Figure 7.28. Test results in on-ramp (MLC). 
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(a) First snapshot. 

 

(b) Second snapshot. 

 

(c) Third snapshot. 

 

(d) Fourth snapshot. 

Figure 7.29. Snapshots in off-ramp (MLC). 
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(a) Driving mode. 

 

(b) Distance with vehicles on target lane. 

 

(c) Longitudinal acceleration. 
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(d) Safety domain with surrounding vehicles. 

 

(e) Steering input. 

 

(f) Lateral position. 

Figure 7.30. Test results in off-ramp (MLC). 
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(a) First snapshot. 

 

(b) Second snapshot. 

 

(c) Third snapshot. 

 

(d) Fourth snapshot. 

Figure 7.31. Snapshots in general road section (DLC: overtaking). 
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(a) Driving mode. 

 

(b) Distance with vehicles on target lane. 

 

(c) Longitudinal acceleration. 
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(d) Safety domain with surrounding vehicles. 

 

(e) Steering input. 

 

(f) Lateral position. 

Figure 7.32. Test results in general road section (DLC: overtaking). 
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Figure 7.33 shows cumulative test data which has been collected in five and 

a half laps of the circular course. The total travelled distance is 103 km, and the 

ego vehicle performs the lane change 92 times. As shown in Figure 7.33 (a) and 

Figure 7.33 (b), the ego vehicle always maintains safety performance with a 

preceding vehicle. The minimum clearance is 11.4203 m, and the minimum 

time gap is 0.5528 s. This means that safety performance is maintained within 

the defined safety distances. In Figure 7.33 (c), a safety domain of relative 

velocity and clearance is shown. States with surrounding vehicles can be found 

all located within the safe area which appears in Section 2. This means that all 

lane changes have been carried out while keeping safety of the surrounding 

vehicles. Lastly, Figure 7.33 (d) represents the longitudinal and lateral 

acceleration of the ego vehicle during lane changes 92 times. Given that 

previous studies [Wan,'11, Toledo,'03, Ahmed,'99] about lane changes, the 

longitudinal and lateral acceleration are reasonable. This indicates that lane 

changes are performed without compromising the ride quality of passengers. 
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(a) Histogram of safety index: Clearance. 

 

(b) Histogram of safety index: Time gap. 

 

(c) Safety domain with surrounding vehicles. 
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(d) Longitudinal and lateral acceleration. 

Figure 7.33. Vehicle test results: cumulative test data. 
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7.2.3. Highway Overtaking Test for DLC using Second Vehicle Platform 

The proposed lane change algorithm has been evaluated through a real 

vehicle test [Chae,'20]. The test environment is the Gyeongbu Expressway in 

Korea. The highway is four lanes one way and has a speed limit of 110 km/h. 

The vehicle test has been conducted using the first and second lanes according 

to the road regulations. The total driving distance was 200 km and 106 lane 

changes were made for overtaking. Figure 7.34 represents the test environment. 

 

 

Figure 7.34. Vehicle test environment. 
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Figure 7.35 shows the snapshots of the selected one overtaking situation 

among the 106 lane-change maneuvers. The selected overtaking situation is a 

situation in which the ego vehicle enters to the overtaking lane after seeing a 

slow preceding vehicle. And because of slow vehicles in the driving lane, the 

ego vehicle continues to drive in the overtaking lane. Then, the ego vehicle 

returns to the proper space in the driving lane. As a result, the ego vehicle 

overtakes four vehicles. In the snapshots, the blue vehicle is the ego vehicle. 

The black vehicles are surrounding vehicles. Important vehicles among 

surrounding vehicles are colored vehicles. The red vehicle is the preceding 

vehicle. The orange vehicles are vehicles on side lanes. The boxes drawn 

around important vehicles indicate safe distances. The red points represent 

point clouds of the LiDAR sensors. The blue line means the desired path of the 

ego vehicle. The green lines represent the lanes recognized by the camera sensor. 

The azure line means the reference of a longitudinal position. It could be seen 

that the reference changes according to the decided target space. In this 

dissertation, the driving mode is very important. The concepts of lane change 

demand, and possibility are expressed by arrows. The arrow represents the 

driving mode and the direction of the lane change. The colored arrows indicate 

the lane change demand. A red arrow represents that the lane change is 

impossible. A blue arrow indicates that the lane change mode proceeds because 

the safe distances have been sufficiently guaranteed. The texts at the top of the 

snapshot represent the reference position, the reference velocity, and the desired 

acceleration, respectively. 

 



 175 

 

(a) First snapshot (Time: 11sec). 

 

(b) Second snapshot (Time: 18sec). 

 

(c) Third snapshot (Time: 69sec). 

 

(d) Fourth snapshot (Time: 90sec). 

 

(e) Fifth snapshot (Time: 100sec). 

Figure 7.35. Vehicle test snapshots: the selected one overtaking situation. 

 

 



 176 

Figure 7.36 represents the test results of the selected overtaking situation: 

driving mode, overtaking decision velocity, distance with surrounding vehicles, 

safety domain with surrounding vehicles, acceleration, and lateral position. 

These figures show that the ego vehicle proceeds to overtake, while using 

appropriate acceleration and maintaining safety with the surrounding vehicles. 

Figure 7.36 (a) indicates the driving mode that is related to the lane change 

demand and possibility concept for the overtaking. The left lane change is for 

entering to the overtaking lane, and the right lane change is for returning to the 

driving lane. In Figure 7.36 (b), the overtaking decision velocities are shown. 

The lane change demand is determined according to the decision velocities. In 

Figure 7.36 (c), the distances with the surrounding vehicle are indicated as 

clearance and safe distance. The gray area in Figure 7.36 (c) indicates the 

situation where the lane change is demanded. In the grayed out area of Figure 

7.36 (c), the states of the nearest vehicle on the target lane are displayed. In 

other areas, the states of the preceding vehicle are displayed. When the 

clearance is greater than the safe distance in the gray area, lane change mode 

starts. This shows the concept of lane change possibility. In the case where lane 

change is not demanded, the lane-keeping situation shows the clearance and the 

safe distance from the preceding vehicle. It shows that the distance to the 

preceding vehicle is above the safe distance. The clearance control 

characteristics described in Figure 7.36 (d) show that the behaviors of the ego 

vehicle are in a safe region with a sufficient safety margin. The acceleration in 

Figure 7.36 (e) is satisfactory for both smooth ride quality and clearance control. 

Figure 7.36 (f) indicates the lane change moment and shows that the lateral 
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position has a sudden change within a very short time. 

 

 

(a) Driving mode. 

 

(b) Overtaking decision velocity. 

 

(c) Distance with surrounding vehicles. 
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(d) Safety domain with surrounding vehicles. 

 

(e) Longitudinal acceleration. 

 

(f) Lateral position. 

Figure 7.36. Vehicle test results: the selected one overtaking situation. 
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Figure 7.37 shows cumulative test data was about 106 lane changes. In Figure 

7.37 (a), Figure 7.37 (b), and Figure 7.37 (c), the ego vehicle always 

maintains safety performance with a preceding vehicle. The minimum 

clearance is 14.1175 m, and the minimum time gap is 0.8355 s. This means that 

safety performance is maintained within the defined safe distances. All lane 

changes have been carried out while keeping the safety of the surrounding 

vehicles. Lastly, Figure 7.37 (d) represents the longitudinal and lateral 

acceleration of the ego vehicle during 106 lane changes. This indicates that 

overtaking maneuvers have been performed without compromising the ride 

quality of passengers. 

 

(a) Histogram of safety index: Clearance. 

 

(b) Histogram of safety index: Time gap. 
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(c) Safety domain with surrounding vehicles. 

 

(d) Longitudinal and lateral acceleration. 

Figure 7.37. Vehicle test results: cumulative test data. 
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7.2.4. Urban DLC and MLC Test using Third Vehicle Platform 

The proposed lane change algorithm has been evaluated through a real 

vehicle test. The test environment is the Sangam-dong, Seoul in Korea. The 

vehicle test has been conducted on circulation course that was designated as an 

autonomous driving test bed. This is a course for an autonomous circular shuttle 

bus. Figure 7.38 represents the test environment. Seoul City provides a high 

definition map in the autonomous driving test bed. Figure 7.39 shows the high 

definition map and the circulation course on the map.  

 

 

Figure 7.38. Vehicle test environment. 
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Figure 7.39. High definition map of autonomous driving test bed in Seoul. 

 

The environment is a complex urban road and has a speed limit of 50 km/h. 

The circulation course consists of a total of 4 straight roads. All roads vary from 

two lane to four lane roads as shown Figure 7.40. Figure 7.41 shows the all path 

and main path of the high definition map on the circular course. From main 

path, it can be seen that various lane changes are needed to proceed with the 

circulation course in a complex urban environment. The ego vehicle performs 

various lane change maneuvers while cycling in the environment. This study 

presents the two results of MLC and DLC in the most difficult situation. 
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Figure 7.40. Complex urban road which is vehicle test environment. 

 

 

Figure 7.41. All path and main path on the high definition map.  

 

Figure 7.42 shows the snapshots of the MLC situations. The selected situation 

is a situation in which the ego vehicle makes the MLC to follow main path after 

turning right. At this time, there are also a parked vehicle in front, so the ego 

vehicle needs to change lanes while maintaining safety with the parked vehicle. 

In the snapshots, the blue vehicle is the ego vehicle. The green points represent 

point clouds of the LiDAR sensors. The blue boxes are dynamic obstacles. The 
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red points represent static obstacles. The pink line means the future trajectory 

of the ego vehicle. In this dissertation, the driving mode is very important. The 

concepts of lane change demand, and possibility are expressed by arrows. The 

arrow represents the driving mode and the direction of the lane change. The 

colored arrows indicate the lane change demand. A red arrow represents that 

the lane change is impossible. A blue arrow indicates that the lane change mode 

proceeds because the safe distances have been sufficiently guaranteed.  

Figure 7.43 represents the test results of the selected MLC situation: driving 

mode, lateral position, acceleration, velocity, distance with surrounding 

vehicles, and trajectory. These figures show that the ego vehicle proceeds to 

MLC, while using appropriate acceleration and maintaining safety with the 

surrounding vehicles. Figure 7.43 (a) indicates the driving mode that is related 

to the lane change demand and possibility concept for the MLC. Figure 7.43 (b) 

indicates the lateral position which shows lane change motion based on driving 

mode. The acceleration is shown in Figure 7.43 (c). The velocity is shown in 

Figure 7.43 (d). The desired velocity is important in this scene. The set velocity 

on the road after a right turn is 22.5 km/h. In this situation, it can be seen that 

the lower desired velocity is set due to the front obstacle. And during lane 

change, the desired velocity is restored by overtaking velocity planning. In 

conclusion, the ego vehicle succeeds in changing lanes without stopping while 

maintaining safety with the vehicle in front. Figure 7.43 (e) shows that 

clearance with the parked vehicle remains above the safety distance. When the 

clearance is lower than the safety distance, it is already avoiding and passing 

sideways. Figure 7.43 (f) represents the path and trajectory of the ego vehicle. 
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To follow main path, the ego vehicle proceeds to MLC and shows the trajectory 

to complete it. 

Figure 7.44 shows the snapshots of the DLC situations. The selected situation 

is a situation in which the ego vehicle makes the DLC to overtake the bus that 

has stopped in front. After the ego vehicle moves to the next lane to overtake 

the bus, the bus picks up all the passengers and departs quickly, crossing several 

lanes at once. Therefore, the bus proceeds to cut-in sharply in front of the ego 

vehicle, and it is possible to check the safety maintenance for cut-in vehicle. 

Figure 7.45 represents the test results of the selected DLC situation: driving 

mode, lateral position, acceleration, velocity, distance with surrounding 

vehicles, and trajectory. These figures show that the ego vehicle proceeds to 

DLC, while using appropriate acceleration and maintaining safety with the 

surrounding vehicles. Figure 7.45 (a) indicates the driving mode that is related 

to the lane change demand and possibility concept for the DLC. Because the 

bus is stuck at a stop and stopped, it is difficult for the ego vehicle to determine 

the lane change mode from a distance. As the ego vehicle gets closer to the bus, 

it judges that it is impossible to pass by lane keeping and decides to perform 

lane change. Therefore, the ego vehicle inevitably stops behind the bus and then 

proceeds to change lane. Figure 7.45 (b) indicates the lateral position which 

shows lane change motion based on driving mode. The acceleration and 

velocity are shown in Figure 7.45 (c) and (d), respectively. Figure 7.45 (e) 

shows clearance and safety distance with the overtaken bus. When the ego 

vehicle changes lanes to overtake the bus, clearance with the bus remains above 

the safety distance. When the clearance is lower than the safety distance, it is 
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already avoiding and passing sideways. And after 150 seconds, the bus picks 

up all the passengers and accelerates, making a sharp cut-in in front of the ego 

vehicle. At this time, the clearance appears below the safety distance, but the 

clearance gets closer to the safety distance through proper safety control. Figure 

7.45 (f) represents the path and trajectory of the ego vehicle. To overtake the 

temporary stopped bus, the ego vehicle proceeds to DLC despite deviating from 

main path.  
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(a) First snapshot (Time: 15sec). 

 

(b) Second snapshot (Time: 30sec). 

 

(c) Third snapshot (Time: 65sec). 

 

(d) Fourth snapshot (Time: 110sec). 

 

(e) Fifth snapshot (Time: 150sec). 

Figure 7.42. Vehicle test snapshots: the MLC situation. 
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(a) Driving mode. 

 

(b) Lateral position. 

 

(c) Longitudinal acceleration. 

 

(d) Longitudinal velocity. 
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(e) Clearance with the parked vehicle in front. 

 

(f) Path and trajectory of the ego vehicle. 

Figure 7.43. Vehicle test results: the MLC situation. 
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(a) First snapshot (Time: 5sec). 

 

(b) Second snapshot (Time: 45sec). 

 

(c) Third snapshot (Time: 150sec). 

 

(d) Fourth snapshot (Time: 180sec). 

 

(e) Fifth snapshot (Time: 220sec). 

Figure 7.44. Vehicle test snapshots: the DLC situation. 
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(a) Driving mode. 

 

(b) Lateral position. 

 

(c) Longitudinal acceleration. 

 

(d) Longitudinal velocity. 
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(e) Clearance with the overtaken bus. 

 

(f) Path and trajectory of the ego vehicle. 

Figure 7.45. Vehicle test results: the DLC situation. 
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7.2.5. Self-directed Interactive Lane Change Test using Second Vehicle 

Platform 

The proposed lane change algorithm has been evaluated through a real 

vehicle test. The test environment is the test bed located at Siheung Campus, 

Seoul National University in Korea. The test bed was established for the 

purpose of developing and verifying autonomous vehicles. Figure 7.46 shows 

the test bed.  

 

Figure 7.46. Test bed for autonomous vehicles at Siheung Campus, Seoul 

National University. 

 

In this test bed, the interactive lane change test has been conducted. In this 

test, one autonomous vehicle and two vehicles that are actually driven by 

humans are used. The autonomous vehicle is second platform in the dissertation. 

In this test, it is necessary to simulate the lane change of the congestion traffic. 

It is practically impossible to use multiple vehicles for congested traffic 

situation. Therefore, it is implemented that there are virtual vehicles of 

congestion in front of and behind the two vehicles driven by humans. Figure 

7.47 represents the test environments. The yield intention by surrounding 
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vehicles to change lanes of autonomous vehicles is important. Accordingly, the 

surrounding vehicles driven by humans take the behavior of yielding or not 

yielding. 

 

Figure 7.47. Interactive lane change vehicle test environment. 

 

Autonomous vehicle attempts to change lanes between surrounding vehicles. 

The first situation is a situation in which the side-rear vehicle has yield intention. 

Therefore, the autonomous vehicle can change lanes immediately. The second 

situation is a situation in which the side-rear vehicle has no intention to yield. 

Therefore, the autonomous vehicle fails to change lanes and goes in front of the 

side-front vehicle. Since the side-front vehicle has yield intention, the 

autonomous vehicle changes lanes in front of the side-front vehicle. Figure 7.48 

shows the two situations. 
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(a) First situation. 

 

(b) Second situation. 

Figure 7.48. Two situation of interactive lane change vehicle test. 

 

The test snapshots of first situation are represented in Figure 7.49. The test 

results of first situation are shown in Figure 7.50. The autonomous vehicle is 

well aware of the yield intention of the side-rear vehicle and immediately 

succeeds in changing lanes. 

The test snapshots and results of second situation are represented in Figure 

7.51 and Figure 7.52, respectively. The autonomous vehicle is well aware of 

the non-yield intention of side-rear and abandon the lane change. Then, the 

autonomous vehicle drives in front of the side-front vehicle. After moving to 

the front of the side-front vehicle, the autonomous vehicle figures out the yield 

intention of side-front vehicle and proceeds with the lane change. 
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(a) First snapshot (Time: 0sec). 

 

(b) Second snapshot (Time: 7sec). 

 

(c) Third snapshot (Time: 10sec). 
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(d) Fourth snapshot (Time: 12sec). 

 

(e) Fifth snapshot (Time: 17sec). 

Figure 7.49. Vehicle test snapshots: the first situation. 
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(a) Driving mode. 

 

(b) Lateral position. 

 

(c) Longitudinal acceleration. 
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(d) Longitudinal velocity. 

 

(e) Clearance with the two side vehicles. 

 

(f) Yield intention of the side-rear vehicle. 

Figure 7.50. Vehicle test results: the first situation. 
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(a) First snapshot (Time: 0sec). 

 

(b) Second snapshot (Time: 7sec). 

 

(c) Third snapshot (Time: 21sec). 
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(d) Fourth snapshot (Time: 24sec). 

 

(e) Fifth snapshot (Time: 26sec). 

 

(f) Sixth snapshot (Time: 31sec). 

Figure 7.51. Vehicle test snapshots: the second situation. 
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(a) Driving mode. 

 

(b) Lateral position. 

 

(c) Longitudinal acceleration. 
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(d) Longitudinal velocity. 

 

(e) Clearance with the two side vehicles. 

 

(f) Yield intention of the two side vehicles. 

Figure 7.52. Vehicle test results: the second situation. 
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Chapter 8 Conclusion & Future Works 

 

8.1. Conclusion  

 

Human driver data based active lane change algorithm has been developed 

in this dissertation. Since most autonomous vehicles recognize the environment 

by the local sensor, there is a problem with the limitation of the cognitive range. 

Virtual targets have been devised to cope with this problem. Since proper 

prediction is helpful for autonomous driving, the stochastic prediction models 

of both ego vehicle and surrounding vehicle are presented. In terms of reflecting 

uncertainties, the stochastic prediction is conducted. Since autonomous driving 

systems must be acceptable to both drivers and passengers, the human driving 

data of lane change has been acquired to design the system to accurately 

simulate drivers. Based on the acquired driving data, safety indices are defined 

for the lane change situation. Rule based and learning based approaches are 

adopted for safety indices. Safety indices are supplemented with intention 

inference using LSTM based RNN, which can cope with various lane changes. 

To validate about safety performance, these indices are analyzed kinematically. 

Then, stochastic prediction-based safety distances are derived by safety indices 

and prediction models. Also, collision probability has been employed to 

consider various uncertainties. The active lane change algorithm has been 

developed based on these risk assessment. Decision and motion planning are 
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conducted based on the stochastic prediction-based safety distance, which is 

able to achieve safety performance without heavy computational burden. The 

algorithm has considered the decision rules that drivers adopt when performing 

lane change. For this purpose, the concepts of availibility, target space, demand, 

and possibility for lane change have been devised. The desired driving mode is 

decided to handle both DLC and MLC. Intuitive and efficient motion planning 

has determined desired states and constraints according to the desired driving 

mode. Longitudinal and lateral motion planning proceed, respectively, in which 

references and constraints are defined in each of the states. The references are 

decided based on the stochastic prediction-based safety distances. The safe 

driving envelope is adopted as constraints. The envelope is defined as an area 

in which the ego vehicle can drive without collision with surrounding vehicles. 

Finally, in order to track the desired motion, a decoupled control architecture 

has been adopted solving the SMPC problem.  

The effectiveness of the proposed automated driving algorithm has been 

evaluated via test-data based simulations and vehicle tests. In order to show 

various performances, a total of 5 types of simulations have been proceeded. 

Simulation tests show performance improvement compared to other algorithms. 

And they reveal repeated performance improvement through monte-calro 

simulation. The performance of the proposed algorithm has been investigated 

via a vehicle test on highways and urbans. The vehicle test results revealed that 

safe and comfortable lane changes have been achieved using our autonomous 

test vehicle. A number of test results have been compared with human driving 

data and shown the similar behavior pattern. 
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The main contributions of this work are as follows: 1) the virtual vehicle is 

devised to overcome perception limitation by local sensors and blind spots; 2) 

the safe distance with intention inference is defined for driver acceptance using 

rule based and learning based approaches; 3) the diverse uncertainites for safety 

improvement are considered using stochastic prediction based safety distance 

and the collision probabiltiy; 4) the efficient and intuitive decision-making and 

motion planning are achieved using driving mode and target space; 5) based on 

stochastic prediction and SMPC, the smooth and safe driving performance are 

accomplished with light computation for vehicle implementation; and 6) the 

efficacy of safe and repetitive driving performance are confirmed by simulation 

tests and actual vehicle tests. 
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8.2. Future Works  

 

Future works aim at advancing the proposed algorithm, which could perform 

successful lane changes in congested traffic. Congestion occurs on both 

highways and urbans. Lane changes in congested traffic are especially 

important in urban driving. In congested situations, the only safety distances 

may be insufficient to conduct lane change decision and planning. It is 

important to infer yield intentions of surrounding vehicles. Intention inference 

of surrounding vehicles is currently studied for autonomous driving in highway 

on-ramp and urban intersection. In this dissertation, such intention inference 

has been applied to surrounding vehicles in congested lane change situations.  

Also, it is necessary to transmit the intent of the lane change. The intent could 

be conveyed to surrounding vehicles through turn signal or lateral motion of 

the ego vehicle. The proposed algorithm has been vailidated to carry out 

interactive lane changes through simulation study. Future works aims to 

validate advanced interactive lane change with real vehicle test on actual roads.   

Future works also aim at advancing the proposed algorithm, which could 

perform biased driving. Biased driving is requied with diverse situations on 

both highways and urbans. Biased driving is needed to avoid side vehicles 

running in the lane or parked on the shoulder. There is a need for motion 

planning for vehicles that can be avoided without having to change lanes. In 

particular, it is essential when avoiding shoulder vehicles on the first lane.  
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초    록 

 

데이터 기반 안전 영역 및 충돌 확률을 이용한 

능동형 차로 변경 판단 및 제어 알고리즘 개발  

 

지난 수십 년 동안 주의 산만, 졸음 또는 실수와 같은 인적 

오류로 인한 교통 사고는 전체의 94 %를 차지한다. 안전 운전은 

도로 교통 차량 분야들의 목표이기 때문에 주요 자동차 제조업체는 

운전자 지원 및 능동형 안전 시스템을 개발해왔다. 최근 대부분의 

자동차 제조업체는 이미 능동형 안전 시스템을 상용화했다. 자율 

주행 시스템 개발을 위한 개별 능동형 안전 시스템들을 통합하여 

안전성을 높이고 사망자 줄이려는 수많은 연구가 진행되고 있다. 

더욱이 최근 자동차 산업의 관심은 능동적 안전 개발에서 주변 

환경을 감지하고 스스로 운전할 수 있는 자율 주행 시스템으로 

확장되고있다. 환경, 인구 통계, 사회 및 경제적 측면에서 자율 

주행의 영향을 평가하기 위해 많은 프로젝트가 진행되었다. 

많은 문헌을 통해, 자율 주행 시스템이 교통 사용자의 안전을 

높이고 교통 혼잡을 줄이며 운전자 편의를 향상시키는 것으로 

입증되었다. 자율 주행 차량의 핵심 기술인 인지, 거동 계획, 제어 

등을 위한 다양한 방법론이 개발되었다. 그러나 현재의 자율 주행 

알고리즘은 각 기술의 개별 개발에 초점을 맞추고 있다. 결과적으로 

통합 관점에서 자율 주행 시스템을 개발하는 것이 필요하다. 
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이 논문에서는 운전자 특성을 고려한 자율 주행 차량용 능동형 

차로 변경 제어 알고리즘의 설계, 구현 및 평가에 대해 기술한다. 

운전자와 주변 차량의 안전을 모두 고려하여 차로 변경이 

수행되어야 한다. 따라서 자율 주행 시스템은 사람의 운전 특성을 

기반으로 설계되어야 한다. 주행 데이터를 바탕으로 규칙 기반 및 

학습 기반 접근 방식을 사용하여 안전 지수를 정의하였다. 또한 

충돌 확률을 통해 다양한 불확실성을 고려한다. 이를 바탕으로 

확률론적 위험 판단 기반 차로 변경 결정 및 제어 알고리즘이 

개발되었다. 주행 모드 결정은 모든 차로 변경 상황을 대처한다. 

주행 데이터 기반의 안전 지수를 고려하여 차로 변경을 위한 목표 

거동이 계획된다. 확률론적 모델 예측 제어 기법을 통해 차량의 

최종 제어 입력이 결정된다. 제안된 알고리즘은 실제 차량에 

구현하기 위해 다양한 불확실성, 계산 부하 및 센서 한계를 

고려하였다. 

제안 된 자율 주행 알고리즘의 효과는 시뮬레이션 및 차량 테스

트를 통해 평가되었다. 다른 알고리즘에 비해 성능 향상을 보여주기 

위해 다양한 시뮬레이션을 진행하였다. 제안된 능동형 차로 변경 알

고리즘은 다양한 주행 도로에서 안전하고 편안한 차로 변경을 차량

에 성공적으로 구현했다. 

 

주요어: 자율 주행 자동차, 운전자 주행 데이터, 확률론적 예측, 위

험 판단, 의도 추론, 회귀 뉴럴 네트워크, 의사 결정, 차로 변경 판

단, 거동 계획, 가상 차량, 모델 예측 제어, 능동형 차로 변경. 
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