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Abstract 
 

State monitoring of the complex system needs a large number of sensors. 

Especially, studies in soft electronics aim to attain complete measurement 

of the body, mapping various stimulations like temperature, 

electrophysiological signals, and mechanical strains. However, 

conventional approach requires many sensor networks that cover the entire 

curvilinear surfaces of the target area. We introduce two measuring system, 

novel electronic skins that could measure three dimensional touch 

information and dynamic human motions with a single sensor. Laser-

induced multiscale structures of metal electrodes enable to achieve target 

sensitivity and performance. Moreover, deep-neural network successfully 

decodes the dynamic human motions. This technology is expected to 

provide a turning point in health-monitoring, motion tracking, and soft 

robotics. 
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Chapter Ⅰ  

 

Introduction 

 

1.1 Background 

The human-machine interface (HMI) provides a direct pathway between 

humans and machines. They have many roles in industries, healthcare, and 

entertainment (Figure 1). Recent advancements in soft sensors and 

actuators have unleashed the higher potential of HMI devices for its 

mechanical compliance, which provides a comfortable environment to the 

user. 

 An HMI is a bidirectional communication interface that is divided into 

human to machine (H2M) systems and machine to human (M2H) systems. 

H2M devices include sensors for measuring command signals such as 

touch, voice, and gesture, which allow for better system control, and 

measurement systems for measuring electrophysiological signals such as 

electromyography (EMG), electrocardiography (ECG), and 

electrooculography (EOG). M2H devices provide electrical, thermal, 

visual, or mechanical feedbacks that simulate various sensations. H2M 

control systems use sensors with various mechanisms. These include strain 
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sensors that directly measure deformations owing to human motions or 

stretchable electrodes, which indirectly measure electric signals of the 

muscle. The performance of these sensors has been greatly improved in 

recent years through the integration of multiple functions, logic circuitry, 

and multi-dimensional detecting ability.  

Although majority of soft HMI devices concentrate on H2M systems, 

M2H system with a stretchy form is on the rise owing to increased demand 

for wearable virtual and augmented reality (VR and AR) devices. These 

technologies include tactile feedback, thermal sensations, and wearable 

assistive devices. Since these system fabrications into stretchable forms 

require sophisticated technologies, only few reports of fully stretchable 

M2H devices exist. Recently, HMI device performances have been 

improved with the assistance of machine intelligence. These sophisticated 

electronic systems allow for the prediction of body motions with few 

sensors, detection of objects, and decoding neural command signals.  
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Figure 1. Compositions of flexible HMI devices. 
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As shown in Figure 2, length scale of the HMI devices decreases in order 

to achieve higher sensitivity. Nanoscale structures are required for 

measuring under few kPa pressure regions as depicted in Figure 3. 

Nanoscale enhances the sensing capability by concentrating electrons or 

pressure at the very edge of the pyramid1-3 or dome-like structures4-8, and 

nano cracks enables to achieve high mechano-sensitivity9. There are 

various patterning methods for HMI devices as shown in Figure 4; laser-

based patterning method are superior to these methods since the process is 

done at low temperature and in a non-vacuum environment, which 

prevents significant damage of the flexible polymer from occurring during 

the process. However, the resolution of the laser-based patterning methods 

(visible laser sintering method) is limited to few microns, which are 

inadequate for nanoscale patterns for ultra-sensitive sensor applications.  

Therefore, as shown in Figure 5, we included dynamic variations during 

the fabrication process. These include variations in fluid state of the 

nanomaterial (Marangoni flow), and external mechanical stress 

(displacement controlled bending) to the fabricated material.  
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Figure 2. Scale of the electrode patterns according to the working region. 

 

 
Figure 3. Nano scale patterns of the ultra-sensitive HMI devices. 
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Figure 4. Advantage of laser processed electrode patterns.
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Figure 5. Comparison with the conventional laser patterning method. 
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1.2. Purpose of Research 

 The focus of this thesis is the development of skin-like human-machine 

interface (HMI) through laser-induced nano patterning. Sensors are 

augmented through nano-structuring of metal electrodes via dynamic laser 

thermal irradiation. New levels of sensor signal identification are also 

demonstrated with the aid of machine intelligence. The thesis includes the 

following area of research:   

- Analysis of laser-induced multiscale Marangoni structure 

- Analysis of laser-induced cracking of metal nanoparticles 

- Wearable and transparent 3D touch applications  

- Intelligence aided sensor decoding human motions  
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Chapter Ⅱ 

 

Laser-induced Marangoni structure 

 

2.1 Fabrication of the multiscale structure 

So far, non-flat surface morphology appearing in the selective laser 

sintering (SLS) process was considered to be a metallurgical defect, the 

so-called ‘balling effect’. However, controlling the irradiation parameter 

with the support of sophisticated physical analysis, the morphology can be 

easily manipulated to a desired structure. In this way, we developed a self-

generated microstructure by laser-induced spatial thermal gradient. When 

the laser is scanned on the spin coated AgNP layer, a temperature 

difference arises between the laser spot center and the lag side. The 

temperature of the spot center is higher than the lag side, since the lag side 

has been cooled by the ambient environment. In this temperature 

distribution, the surface shear stress of the molten silver layer acts toward 

the relatively cold area, i.e., the lag side, since generally the surface tension 

of common liquids decreases with increasing temperature. Consequently, 

surface force causes Marangoni convection flow, which circulates in the 
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right-hand direction with respect to the out of plane direction (Figure 6c). 

This circulating flow plays a key role in determining the surface 

morphology of the resultant electrode during laser irradiation (Figure 6a). 

Since the surface morphology reconstruction caused by Marangoni flow 

occurs during the time when the AgNP layer remains in a liquid state, two 

time scales are major factors in laser-induced surface deformation: a time 

scale for Marangoni convection flow (τc) and the characteristic time in 

which the AgNP layer remains liquid (τliq). The temporal dependence of 

the surface temperature profile induced by laser irradiation is shown in 

Figure 6b, where τl, τm, and τs are the laser irradiated heating time, melting 

time, and solidification time, respectively. The gray area denotes the time 

interval in which the AgNP layer remains liquid (τliq = τl + τs - τm). The two 

time scales (τs, τm) are negligible since they are relatively small compared 

to τl ; thus, the key time scales are 

 τliq ≈ 𝜏𝜏l =  
𝐿𝐿

𝑣𝑣scan
 (1) 

 𝜏𝜏c ~
𝐿𝐿
𝑈𝑈

=  
𝜇𝜇𝐿𝐿2

|𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑� |∆𝑇𝑇𝑇𝑇
, ∆𝑇𝑇 ~ 

𝑄̇𝑄
𝑘𝑘𝑘𝑘

 (2) 

where L is the characteristic dimension (laser spot radius, 10 μm), vscan is 

the laser scan speed (200 mm s-1), U is the characteristic Marangoni flow 

speed, μ is the viscosity of molten silver, |dγ/dT| is the surface tension 

gradient with respect to the temperature of molten silver, H is the height 
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of AgNP layer, 𝑄̇𝑄 is the laser power, and k is the thermal conductivity of 

the AgNP layer. We quantitatively investigated the surface deformation 

process by introducing the Surface shaping number (S) : 

 𝑆𝑆 =  
𝜏𝜏l
𝜏𝜏c

=  
|𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑� |
𝜇𝜇𝜇𝜇𝜇𝜇

𝑄̇𝑄
𝑣𝑣scan

 (3) 

which is a dimensionless number defined as the ratio between τc and τl (≈ 

τliq), indicating the speed of the circulating flow compared to the 

solidification rate. When a large spatial thermal gradient is established in 

the pristine AgNP surface, surface shear stress affects the interface 

between liquid silver and ambient air, making it energetically unstable. A 

small geometrical perturbation that inherently exists on the AgNP surface 

causes the molten silver surface to undergo a transition to an energetically 

favorable state, which tends to minimize the surface free energy. Such a 

transition rate is inversely proportional to the mass transportation 

characteristic time, τc. The process condition can be classified in to three 

cases depending on the value of S. Firstly, S < 1 (τc is larger than τl, Figure 

6d). Since the molten silver cools down rapidly, solidification occurs 

before the unstable liquid silver interface initiates its transition. In this 

instance, surface reconstruction cannot occur, and the resultant electrode 

remains flat. Secondly, S ~ 1 (τc is comparable to τl, Figure 6e). 

Solidification and transition takes place simultaneously; thus, the silver is 
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solidified and develop its structure during the intermediate morphological 

transition. Since the cycle of the reconstruction is analogous to the 

transition cycle, a regular wave structure is generated behind the laser scan 

direction. Lastly, S > 1 (τc is smaller than τl, Figure 6f). In this situation, 

enough time is provided to preserve the liquid phase. Since the initial 

geometrical perturbation is randomly distributed over the surface, this 

condition generates unbalanced spherical island structures, which is the 

lowest energy configuration of the interface. Since the laser profile and the 

shape are also important parameters determining the resultant surface 

morphology, further rigorous investigations should be required. The brief 

discussion regarding these parameters is found in Supplementary Note 6. 
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Figure 6. Self-generated multiscale structure by laser induced Marangoni 

flow. a, Time scales of micro thermofluidic phenomena under optimum 

conditions for regular wavy structure. b, Temporal dependence of 

characteristic temperature profile induced by single cycle of laser scanning. 

c, Marangoni convection in molten AgNP layer induced by laser scanning.  
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Figure 7. a-c, 3D scanned image and surface profile of AgNP layer with 

different laser conditions with S = 0.48 (a), S = 0.97 (b) and S = 1.36 (c). 
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2.2 Time scales regarding the temperature induced by laser 

irradiation 

To irrustrate a thermal phenomenum during laser sintering, ‘Lumped 

capacitance model’ which can predict the temperature of solids 

experiencing a sudden change in its thermal environment1 was employed. 

The model stands on the assumption which describes gradient of 

temperature field in a solid as zero, that is, thermal conduction in a solid 

would be negligible due to the fast changing of thermal environment. A 

situation of heat transfer for high conductive material can be also 

illustrated by such a way. Since the AgNP layer heated by laser irradiation 

also experiences extremely fast heat exchange, ‘Lumped capacitance 

model’ could explain the temporal change of representative temperature of 

the system. Basic derivation of the model starts from energy balance of 

control volume, 

 𝜌𝜌𝑐𝑐p𝑉𝑉
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

=  −ℎ𝐴𝐴(𝑇𝑇 − 𝑇𝑇∞) + 𝑄̇𝑄 (4) 

where 𝜌𝜌𝑐𝑐p𝑉𝑉  is heat capacity of control volume, T is characteristic 

temperature, h is convective heat transfer coefficient, A is the area of heat 

exchange, 𝑇𝑇∞ is ambient temperature, and 𝑄̇𝑄 is volumetric heat input. 

With proper initial condition (say T(0) = 𝑇𝑇∞) for heating section (regime 
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(i), (ii) in Figure 2b), above first order ordinary differential equation gives 

us the solution form of exponentials, 

 𝑇𝑇(𝑡𝑡) =  
𝑄̇𝑄

𝜌𝜌𝑐𝑐p𝑉𝑉
�1 − exp�−

ℎ𝐴𝐴
𝜌𝜌𝑐𝑐p𝑉𝑉

𝑡𝑡�� + 𝑇𝑇∞ (2) 

The solution for cooling part (regime (iii), (iv) in Figure 2b) can be 

obtained imposing an initial condition as T(0) = 𝑇𝑇i with 𝑄̇𝑄 = 0 

 𝑇𝑇(𝑡𝑡) = (𝑇𝑇i − 𝑇𝑇∞) exp�−
ℎ𝐴𝐴
𝜌𝜌𝑐𝑐p𝑉𝑉

𝑡𝑡� + 𝑇𝑇∞ (3) 

In consequence, the general temporal evolution of representative 

temperature of the system is expressed by exponentials having time 

constant related to heat capacity. In a one cycle of laser scanning, there are 

distinctive steps expected during evolution of temperature. Firstly, a solid 

AgNP layer is heated up until its melting point (regime (i)). The time 

required to melt a solid silver layer is defined as 𝜏𝜏m. Secondly, silver layer 

is heated until laser irradiation terminated (regime (i), (ii)). Laser time 

which heat input 𝑄̇𝑄 exists is indicated as 𝜏𝜏l. Note that each time constants 

of exponentials are different since heat capacity of solid silver is quite 

deviated from liquid silver’s, and between two regions, constant 

temperature section must be inserted because of melting transition. After 

heating section (regime (i), (ii)), natural cooling (regime (iii), (iv)) would 

be occurred, time constants for each phase are same as heating section, but 

this statement is not inferring that rate of change of temperature is also 
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same, since heating and cooling situation have different multiplied 

coefficient of exponential.   
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2.3 Marangoni convection flow characteristic time scale 

When thermal gradient is induced by laser along scanning direction, 

circulating flow toward lag side would be driven by generated surface 

shear stress. We considered driving and drag forces acting on interface for 

determining the characteristic velocity of the flow in film layer.  

According to the lubrication theory, inertia terms in the Navier-Stokes 

equation could be negligibly small under condition that system we are 

interested has very small height compare to system characteristic length, 

i.e. film flow. In these circumstances, the force balance of differential 

surface can be read as follow. 

 𝜏⃡𝜏 ∙ 𝑑𝑑A =  𝛁𝛁(𝛾𝛾)𝑑𝑑𝑑𝑑 (4) 

where 𝑑𝑑𝑑𝑑 is infinitesimal area of heated region. Left hand side is viscous 

shear force where 𝜏⃡𝜏 is surface stress tensor and right hand side is driving 

force where 𝛁𝛁(𝛾𝛾) gradient vector of surface tension. Since laser beam has 

radial symmetry, surface tension gradient acts effectively to x direction on 

z surface. Therefore, except 𝜏𝜏xz all other stress tensor component would 

be negligible. The force balance relation can be reduced considering only 

radial component (x direction), 

 𝜏𝜏x𝑧𝑧𝑑𝑑𝑑𝑑 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 (5) 



１９ 

 

 𝜇𝜇
𝑑𝑑𝑢𝑢x
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (6) 

Applying the order-of-magnitude analysis to Supplementary equation 6,  

 𝜇𝜇
𝑈𝑈
𝐻𝐻

~|
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

|
∆𝑇𝑇
𝐿𝐿

 (7) 

where 𝜇𝜇  is viscosity of liquid silver, U is characteristic velocity of 

Marangoni convection, 𝛾𝛾 is surface tension of liquid silver, and ∆𝑇𝑇 is 

characteristic temperature difference. Thus, the scaling of characteristic 

velocity of Marangoni convection becomes, 

 𝑈𝑈 ~ 
𝐻𝐻∆𝑇𝑇
𝜇𝜇𝜇𝜇

|
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

| (8) 

Finally, the scaling of characteristic time of Marangoni convection is that 

 𝜏𝜏c ~ 
𝐿𝐿
𝑈𝑈

=  
𝜇𝜇𝐿𝐿2

𝐻𝐻∆𝑇𝑇
1

|𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑� |
  (9) 

∆𝑇𝑇 will be discussed in detail with heat transfer analysis, Supplementary 

Note 3.  
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Figure 8. Schematic diagram of laser heated unit cell. The characteristic 

length of scanning direction, L is chosen to be half width of laser intensity, 

10 μm. Layer height, H is 1 μm. The lubrication approximation can be 

applied; inner flow velocity profile is assumed linear. 
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2.4 Heat transfer consideration & thermal time scale 

The order of temperature difference ∆𝑇𝑇 between the center of laser spot 

and lag side can be scaled by comparing magnitudes of each terms in 

integrated heat conduction equation.  

 𝜌𝜌𝑐𝑐p
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑘𝑘∇2𝑇𝑇 + 𝑞̇𝑞 (10) 

where 𝜌𝜌𝑐𝑐p is volumetric heat capacity of layer, k is thermal conductivity. 

Using geometrical and thermal remarks of molten silver layer system , 

integrated both side with respect to x, z direction, 

 𝜌𝜌𝑐𝑐p𝐻𝐻
𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝑇𝑇𝑇𝑇𝑇𝑇
𝐿𝐿

0
=  𝑘𝑘𝑘𝑘�

𝜕𝜕2𝑇𝑇
𝜕𝜕𝑥𝑥2

𝑑𝑑𝑑𝑑
𝐿𝐿

0
+ 𝑞𝑞′′𝐿𝐿 (11) 

 
𝜌𝜌𝑐𝑐p𝐻𝐻𝐻𝐻

𝜕𝜕
𝜕𝜕𝜕𝜕
∆𝑇𝑇 =  𝑘𝑘𝑘𝑘 �

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑟𝑟=𝐿𝐿

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑟𝑟=0

� + 𝑞𝑞′′𝐿𝐿 

 

(12) 

The order of magnitude analysis transforms Supplementary equation 12 to 

 𝜌𝜌𝑐𝑐p𝐻𝐻𝐻𝐻
∆𝑇𝑇
𝜏𝜏l

~ 𝑘𝑘𝑘𝑘
∆𝑇𝑇
𝐿𝐿

+ 𝑞𝑞′′𝐿𝐿 (13) 

 ∆T ~
𝑞𝑞′′𝐿𝐿2

𝜌𝜌𝑐𝑐p𝐻𝐻𝐿𝐿2
𝜏𝜏l

− 𝑘𝑘𝑘𝑘
=  

𝑞𝑞′′𝐿𝐿2

(𝜌𝜌𝑐𝑐p𝑣𝑣scan𝐿𝐿 − 𝑘𝑘)𝐻𝐻
 (14) 

𝑞𝑞′′ = 𝑎𝑎𝑞𝑞laser′′   where 𝑎𝑎  is absorbance of silver at 532nm and 𝑞𝑞laser′′   is 

irradiated laser heat flux. But temporal contribution term has one 

dimensional parameter that we treat as micro scale. For vivid picture of 

such a dimensional property of laser induced temperature field, we had 
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investigated comparing laser scan speed and thermal conduction diffusion 

speed. With proper condition of laser micro process, we can expect thermal 

diffusion speed be much faster than scanning speed for concrete formation 

of electrode. Thus,  

 𝑣𝑣conduction ~
𝛼𝛼
𝐿𝐿

=  
𝑘𝑘

𝜌𝜌𝑐𝑐p𝐿𝐿
 (15) 

 
𝑣𝑣scan

𝑣𝑣conduction
 ~ 

𝑣𝑣scan𝜌𝜌𝑐𝑐p𝐿𝐿
𝑘𝑘

≪ 1 (16) 

 𝑣𝑣scan𝜌𝜌𝑐𝑐p𝐿𝐿 ≪  𝑘𝑘 (17) 

Under condition usually implemented in laser experiment, we could have 

checked above assumption, left hand side of inequality is 

9.63 mW m−1K−1  while the right hand side is 180 W m−1K−1  which 

has 4 order of magnitude larger than left side (Supplementary Table 3). 

With this comparison, the characteristic temperature difference is 

expressed as: 

 ∆𝑇𝑇 ~ 
𝑞𝑞′′𝐿𝐿2

𝑘𝑘𝑘𝑘
=  

𝑞̇𝑞
𝑘𝑘𝑘𝑘

 (18) 

Time scales related temporal change of temperature, 𝜏𝜏m, 𝜏𝜏l and 𝜏𝜏s  are 

compared for understanding major factor of the process. Each times are 

scaled by ratio between heat exchange rate and related heat amount except 

𝜏𝜏l which can be scaled explicitly. 
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𝜏𝜏m ~ 
𝜌𝜌𝐻𝐻𝐿𝐿2{𝜑𝜑m + 𝑐𝑐p(𝑇𝑇m − 𝑇𝑇∞)}

𝑞̇𝑞

=  
𝜌𝜌𝐻𝐻{𝜑𝜑m + 𝑐𝑐p(𝑇𝑇m − 𝑇𝑇∞)}

𝑞𝑞′′
 ~ 𝐻𝐻 

(19) 

 𝜏𝜏l ~ 
𝐿𝐿

𝑣𝑣scan
 ~ 𝐿𝐿 (20) 

 𝜏𝜏s ~ 
𝜌𝜌𝑐𝑐p𝐻𝐻𝐻𝐻2∆𝑇𝑇
ℎ𝐿𝐿2∆𝑇𝑇

=  
𝜌𝜌𝑐𝑐p𝐻𝐻
ℎ

 ~ 𝐻𝐻 (21) 

where 𝜑𝜑m  is latent heat of silver for melting, 𝑇𝑇m  is the melting 

temperature of silver and ℎ  is convective heat transfer coefficient of 

AgNP layer. These relations show that 𝜏𝜏l is the largest time scale since 

𝐻𝐻 < 𝐿𝐿 ≪ 1 m, while other factors are intensive thermodynamic property 

except 𝑞𝑞′′ . Furthermore, other two time scale have large denominator 

compare to 𝜏𝜏l. Input laser heat flux 𝑞𝑞′′ is extremely large from nature of 

laser irradiation, effective natural convective heat transfer coefficient, h is 

enhanced with large surface area. Meanwhile, calculation of time scales2 

verifies above observation. 

 𝜏𝜏m =  
1
𝛼𝛼
�

(𝑇𝑇m − 𝑇𝑇∞)𝑘𝑘
𝐼𝐼a

�
2

 , for surface absorption (22) 

Irradiated optical energy cannot propagate further the absorption length, 

the inverse of absorption coefficient for irradiated laser beam wavelength. 

When absorption length is very much shorter than thermal length of 

material, the optical energy converts to heat at the only thin layer whose 
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height would be order of absorption length. The optical length of Ag for 

532nm electromagnetic irradiation3 is 12.3nm while thermal length is 

13μm which has 3 order of magnitude larger than optical length. 

Solidification time is expressed as, 

 𝜏𝜏s =  
𝐻𝐻2

4𝜁𝜁2𝛼𝛼
(1 +

2𝜁𝜁√𝛼𝛼𝜏𝜏l
𝐻𝐻

) (23) 

Where 𝜁𝜁  is the diemsionless constant, physically reasonable values 

within closed interval [0.25,1]. 

We calculated above three time scales2 with following conditions: 𝑣𝑣scan =

200 mm s−1 and 𝑞̇𝑞 = 90 mW. As expected, 𝜏𝜏l is dominant time scale 

in heating & solidification process (Supplementary Table 1), we concluded 

that the liquid time of AgNP layer is approximately equal to 𝜏𝜏l. 

The surface morphology of AgNP layer is governed by the non-

dimensional number S, ratio between Marangoni convection characteristic 

time 𝜏𝜏c and liquid time 𝜏𝜏liq. Following the logical step in Supplementary 

Note 1, 2, we determined the number S as below. 

 S =  
𝜏𝜏liq
𝜏𝜏c

=  
|𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑� |
𝜇𝜇𝜇𝜇𝜇𝜇

𝑄̇𝑄
𝑣𝑣scan

 (24) 

We fixed process speed, 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 200 mm s−1 (𝜏𝜏l = 50 μs), the list of S 

for AgNP shown in Supplementary Table 2. 
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𝜏𝜏m 𝜏𝜏l 𝜏𝜏s 

0.117 ns 50 μs 2.76 μs 

Supplementary Table 1. Calculated time constants 

 

𝑄̇𝑄(mW) 
S (Surface shaping 

number) 

10 0.097 

50 0.48 

100 0.97 

120 1.16 

140 1.36 

Supplementary Table 2. Various S values in processing laser powers 

 

Property (symbol) Value reference 

Surface tension gradient 

(𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑� ) 
0.1869 mN m−1 K  [7] 

Density (𝜌𝜌) 8600 kg m−3 [8] 

Specific heat (𝑐𝑐p) 0.28 kJ kg−1 K−1 [9] 

Thermal conductivity (𝑘𝑘) 180 W m−1 K−1 [10] 

Viscosity (𝜇𝜇) 25.12 mPa ∙ s [11] 

Absorbance (a) 0.47 
Supplementa

ry Figure 5 

Supplementary Table 3. Thermofluidic properties of AgNP layer 
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2.5 Boundary condition between AgNP layer and substrate in 

heat transfer analysis 

In derivation of characteristic temperature difference, ∆𝑇𝑇 , a heat flux 

across interface between AgNP and PET was treated as zero, i.e. adiabatic 

condition. This assumption can be verified by two unique natures of the 

process; 1) The processing time of laser melting is very short (50 μs) and 

2) There is distinctive thermal diffusivity difference between AgNP layer 

and PET substrate. Within these conditions the heat provided by laser 

should not propagate through to the substrate. Comparing the propagated 

thermal lengths of each parts during 50 μs, the length for AgNP is about 

26 times longer than the PET substrate (thermal length of the AgNP : 61.1 

μm, thermal length of the PET substrate : 2.33 μm). 

Furthermore, the time dependent FEM simulation (conditions are listed in 

Supplementary Table 5) was implemented for clear verification. As 

depicted in Supplementary Figure 3, simulated heat flow rate across the 

interface between AgNP and PET is negligibly small compared to the heat 

applied by laser irradiation, indicating that the majority heat exists in the 

high conductive region. Meanwhile, if the substrate has a high thermal 

conductivity, e.g. copper, thermal lengths of each materials should have 

the same order of magnitude, expecting that the heat flow propagates to 

both substrate and AgNP layer. We implemented the simulation replacing 
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the substrate into Copper. The heat flow rate across interface was higher 

compared to the previous one, showing that 90 % of the irradiated power 

was propagated to the substrate (Supplementary Figure 3b).  

Through above consideration, the boundary condition for the surface 

between AgNP layer and PET substrate can be approximated by adiabatic 

(i.e. insulated), and the heat transfer would be dominated by the AgNP 

layer.   

 

 

Figure 9. Simulation for verifying the adiabatic boundary condition. a. 

Irradiated heat rate is absorbed to AgNP layer, remained heat transmitted to 

substrate. b. The heat flows to the substrate in different ways depending on 

thermal diffusivity condition. 
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Chapter Ⅲ 

 

Wearable and Transparent 3D touch 

 

3.1 Background of 3D touch 

3D touch, also known as Force Touch, is a new field and becoming more 

widely valued in the market for its versatile function and outstanding 

interactions with users and accessibility to additional functionality by 

applying alternative touch motions. Commonly, spatial and pressure 

information are measured separately by simply combining two 

independent sensor components: a force sensor and a touch panel. Apple 

Inc. first released force touch technology in 20141, placing force sensors 

underneath the four corners of the rigid glass touch panel. In addition, 

researchers in academia developed various transparent pressure sensors2-7 

and integrated these sensors with commercial touch screen module8. 

However, the simply combined system has significant limitations; the 

sensing capability will be hindered if the force sensor is arranged at the 

bottom of the panel, and the transparency will be reduced in case that the 

force sensor is placed above the panel. Various tablet computers9,10 are also 

capable of force sensing, which indeed functions only in the presence of 
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its own extra stylus device. As stated above, a simple combination of 

different sensors is usually necessary to distinguish the position and 

pressure signals; hence, merging two functions in a single device is very 

challenging and causes various practical problems although a single device 

3D touch that can simultaneously sense pressure and location will be the 

most ideal force touch device.  

Besides, developing a force sensor operating under human touch 

motions is one of the key goals that address these challenges. Recently 

reported force sensors possess geometric features which contain 

conductive nanomaterials to obtain the required sensing ability11-19. The 

majority of them can be classified as pyramid6,7,20 or dome-like 

structures2,21-24, both of which concentrate the pressure or electrons at the 

very edge of the structure in order to enhance the sensing capability. 

Typical pressures produced by normal touch are distributed in the 10-100 

kPa range25,26, and since there is a strong relationship between the structure 

and the sensor performance, a concrete theoretical model that captures this 

relationship is necessary to describe the targeted pressure region, whereas 

previous studies have relied on simple analysis via curve-fitting21,23.  
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3.2 Fabrication process of 3D touch 

Figure 1 illustrates the entire fabrication process and structure of the 3D 

touch sensor. The sensor consists of two transparent layers and the 

fabrication of the upper layer is shown in Figure 10a. An ultra-thin silver 

nanowire (AgNW) network is uniformly sprayed onto the transfer material, 

covered with the desired mask pattern, and further embedded into UV 

curable polyurethane acrylate (PUA), the latter being designed to enhance 

the mechanical stability and surface flatness. Figure 10b shows a 

successfully fabricated free-standing transparent AgNW-PUA composite. 

Ultra-thin and long silver nanowires were synthesized by a polyol method 

with extremely high aspect ratio (30 nm thick and 50 µm long). The high 

aspect ratio nanowires significantly enhance the surface conductivity (~20 

Ω/sq) while maintaining high transparency (>95%, Supplementary Figure 

1) due to the decreased critical volume fraction of nanowires required to 

ensure a successive percolation network to achieve a conductive film27-29. 

The bottom layer consists of silver nanoparticles (AgNPs), which were 

also synthesized by a polyol method. The fabricated silver nanoparticle ink 

is first spin-coated on a PET substrate and then a 532 nm wavelength laser 

is focused at the AgNP layer to selectively convert the AgNPs into a 

continuous micro-sized comb-like metal pattern, as shown in Figure 1c. 

The aforementioned laser process is done at low temperature and in a non-
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vacuum environment which prevents significant damage of the flexible 

polymer from occurring during the process30-32. Since the sintered particles 

adhere strongly to the substrate, the surrounding residue could be easily 

removed by cleaning with polar solvents (e.g. water, ethanol). The 

transparent comb-like electrode fabricated by this process is depicted in 

Figure 11. 

 

Figure 10. Fabrication of a wearable transparent 3D touch. a, Schematic 

depicting the fabrication of the upper transparent layer. b, Schematic 

depicting the fabrication of the lower transparent layer. 
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Figure 11. a, Free standing AgNW-PUA composite upper layer with SEM 

image. The inset in the right image shows a higher magnification image 

displaying the ultra-thin metal nanowire network. Scale bars, 150 μm and 50 

μm (inset) b, Free standing AgNP comb-like lower layer with enlarged picture 

of an interdigitated electrodes. Inset shows a magnified image of the surface. 

Scale bars, 100 μm and 20 μm (inset) 
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The right image shows a microscope image of the patterned electrode 

with a 100 μm interval and 20 μm width. A higher magnification image is 

shown in the yellow-boxed inset. Both of the layers are then attached and 

encapsulated by PUA. The unique bi-layer sensor system is illustrated in 

Figure 12. Both the layers contribute to the excellent transparency (>85%); 

the transmittance (plotted on the left corner) was measured by UV-vis 

spectrophotometry. Macroscopically, the sensing mechanism is due to 

contact between the comb-like electrode array and silver nanowire 

percolation network. Microscopically, a higher external pressure forms a 

larger contact area between the percolation network and the self-generated 

corrugated structure along the electrode as demonstrated in magnified 

schematic, leading to more conducting pathways between the 

interdigitated electrodes. An overview of the sensor operation is provided 

in Figure 13. Arbitrary types of stylus such as a finger or any type of pen 

can be used to operate the sensor independent of the material’s permittivity. 

The sensor system not only could measure the force but also recognize the 

contact position in simultaneous operation.  

 

 

 



３４ 

 

 

 

Figure 12. Schematic of the whole sensor system (Inset shows the 

transmittance of the system) with illustration of magnified image. 

Interdigitated lower electrodes are showing corrugated structure. 

 

Figure 13. Illustration displaying the performance of the 3D touch. 
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3.3 3D touch applications 

The working mechanism of the transparent 3D touch is illustrated in 

Figure 14. The sensor consists of six independent wires, four at the upper 

AgNW layer and two at the bottom interdigitated electrode. Wires are 

colored depending on their electrical status: potential input, voltage read, 

and open state. In order to detect the 3D signal, three steps of voltage 

switching are necessary. First, an equipotential distribution parallel to the 

x-axis is generated through the AgNW layer (X1-X2). The touched x-

coordinate will be measured by the bottom read line (P1), detecting the 

voltage at the contact point. The bottom electrode is fabricated in the S ~ 

1 condition, where the surface is regularly corrugated, which enables it to 

detect a wide range of pressures. In the same manner as the x-direction, 

the y-coordinate will be detected by applying a potential difference 

through the y-axis (Y1-Y2). After the coordinate detection, the electrode 

at the upper layer is switched as an open state, preventing current leakage 

through the upper electrode. Voltage is then applied in the remaining 

bottom electrode (P2), detecting the increased conducting pathways 

between the comb-like electrodes. As shown in Figure 15, the 3D touch 

was directly attached to the monitor screen and successfully able to draw 

a 3D structured object. We drew a continuous circle with increasing 

pressure, and a 3D structured spring was simultaneously generated on the 
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screen. Furthermore, drawing a 3D structured G-clef was accomplished as 

depicted in Figure 16. An upper view of the G-clef is shown on the right 

corner, where the high-pressure region can be observed on the tail of the 

G-clef. As a proof-of-concept demonstration of its application as wireless 

wearable 3D touch, we combined the sensor with an integrated circuit 

board, MCU, and Bluetooth module as illustrated in Figure 17. The 3D 

touch was conformably attached to the forearm, and successfully 

transmitted the 3D information of a hand drawn star. To demonstrate the 

device’s expandability, a sensor was fabricated with a sensing network of 

100 pixels (10×10) consisting of 5 mm x 5 mm sized cells (Figure 18, V, 

R and S denote the voltage line, read line, and sensor, respectively). The 

sensor is capable of detecting a miniaturized PDMS foot, exhibiting an 

excellent pressure distribution. Also, four different pieces of PDMS 

forming the letters “ANTS” were placed on top of the sensor, showing a 

perfect pressure configuration, as shown in Figure 19.  
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Figure 14. Working mechanism of 6-wire transparent 3D touch. b, 3D 

structured spring drawn by altering pen pressure 

 

Figure 15. 3D touch was directly attached to a monitor while the spring is 

simultaneously displayed on the left. Also the pen pressure can be displayed 

as different line thicknesses as depicted on the right corner. 
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Figure 16. 3D structured G-clef drawn by 3D touch: 3D touch was directly 

attached to the monitor while the G-clef is simultaneously displayed on the 

left. The 2D figure of the G-clef is shown on the right corner.  

 

 
Figure 17. Demonstration as a wearable and wireless 3D touch: Illustration 

of drawing 3D structured star and the real image of the attached system on 

forearm. 
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Figure 18. Picture of the 10×10 sensory array and the inset shows the entire 

system connected to the analyzer. Magnified image of a single cell containing 

comb-like electrode. Scale bar, 3 mm.  

 

Figure 19. a, 3D pressure distribution of an artificial foot. Exact scale of the 

foot is compared next to the distribution. b, Sample image of PDMS block 

forming the letter ‘N’ placed on top of the sensor array. c, Pressure 

configuration showing the letters ‘A’, ‘N’, ‘T’, and ‘S’. 
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Chapter Ⅳ 

 

Theoretical Analysis of the Multiscale 

Structure  

 

4.1 Background of 3D touch 

The output signal of the sensor is mainly dictated by two factors, the 

pressure-dependent contact surface between the layers and the consequent 

change in the electrical path. A theoretical model based on contact 

mechanics and geometrical resistance analysis was constructed in order to 

predict these processes. A magnified illustration of the comb-like electrode 

in the red box (Figure 20a). The geometric modeling parameters of the 

sensor are illustrated in the magnified images of three different views 

(Figure 20b). As shown in the XZ plane view, the repeating unit of 

corrugated structure could be estimated as a single sinusoidal wave, where 

δ is the amplitude of the wave, λ is the wavelength, and a is the projected 

length of the contact area. Since the modulus of the lower layer (comb-like 

electrode on the polymer substrate, Elower = 83 GPa) is much higher than 

that of the upper layer (AgNW-PUA composite, Eupper = 20 MPa), the 

lower layer can be considered as a rigid body; hence, we could consider 



４１ 

 

that there would be a linear elastic deformation of the AgNW composite 

above the rigid corrugated surface. Since the nanowire is randomly 

distributed over the polymer and could be treated as a continuous metal 

layer, the nanowire concentration would not significantly affect the output 

signal of the sensor. Therefore, the change in contact area directly affects 

the bridging current between the interdigitated electrode, shown in the YZ 

plane view, where w is the width of the electrode and d is the distance 

between the neighboring electrodes. The bridging current between the 

electrodes is shown in the XY plane view, and the current density is 

calculated by numerical simulation. Relations between the two-

dimensional average pressure (P) and normal displacement (uz(x) = 

δcos(2πx/ λ)) can be derived by solving the two-dimensional problems of 

an elastic half-space,  

 

𝑃𝑃[N m−1] =  
𝜋𝜋2𝐸𝐸𝐸𝐸

𝜆𝜆(1 − 𝜈𝜈2)
�

1
1!
�

2𝜋𝜋
𝜆𝜆
� 𝑎𝑎2𝐽𝐽1 −

1
3!
�

2𝜋𝜋
𝜆𝜆
�
3
𝑎𝑎4𝐽𝐽3

+
1
5!
�

2𝜋𝜋
𝜆𝜆
�
5
𝑎𝑎6𝐽𝐽5 − ⋯� 

(4) 

The series Jn and the functional form of the actual contact area at are also 

given. As demonstrated in Figure 21, the relation between the contact 

length and conductance should be considered to further develop the 

relationship between the external pressure and output current signal of the 

sensor. As shown in Figure 22, a higher pressure generates more 
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conducting pathways, which causes an increase in the output current at a 

fixed supply voltage. However, since the equipotential line is non-linear, 

the conductance cannot be easily calculated by the simple electric 

conductance relation, G = σA/l, where σ is the conductivity, A is the cross-

sectional area, and l is the length of the conductor. In this situation, the 

conductivity could be calculated by mapping every point of the physical 

plane (Z-plane) conformally to a corresponding auxiliary plane (χ-plane), 

the so-called, conformal representation. Among such methods, we used 

the Schwarz-Cristoffel transformation. By transforming the extremities of 

the contact area on the Z-plane, the equipotential line becomes linear on 

the χ-plane. Consequently, the geometrical resistance (G) can be 

approximated as 

 𝐺𝐺 ≅
𝐾𝐾′(𝑘𝑘)
𝐾𝐾(𝑘𝑘) , 𝑘𝑘 ≅  tanh [(

𝜋𝜋
2
�
𝑌𝑌
𝑋𝑋
�] (5) 

where X = l/l′, Y = at /l′, and K denotes a complete elliptic integral of the 

first kind. A detailed derivation and an approximation of single cell 

conductance can be found. Since the entire sensor system is a combination 

of these micro cells, the total conductance of the sensor can be calculated 

by a parallel sum approximation. Therefore, the total conductance is given 

by  
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 𝐶𝐶t = 𝑁𝑁𝑁𝑁𝑁𝑁
1
𝐺𝐺

 ~ O(10−1)
1
𝐺𝐺

 (6) 

where N is the number of corrugated micro cells O(102), σ is the 

conductivity of AgNW network O(104) S/m and t is the thickness of the 

AgNW layer O(10-7) m. Thus, the correction factor is on the order of 10-1 

in SI units. Taking the correction value of 5.6-1 and combining Equations 

4 and 6, we could finally deduce the theoretical model of the sensor which 

explains the relation between the pressure and output current signal. 

Theoretical values were found to match perfectly with the experimental 

values, as depicted in Figure 23. To further investigate the performance of 

the sensor, we controlled two parameters, δ and d, which are amplitude 

and distance, respectively. An electrode with a flat surface (δ = 0) operates 

as a contact between metal plates, i.e., the contact will form instantly. The 

pressure sensitivity seems to be extremely high; however, the sensing 

range is relatively small (<10 kPa). As a demonstration, a flat surface 

sensor is capable of detecting consecutive loading of five micro capacitor 

chips (5 μg each), where the inset shows the sensor and the micro capacitor 

chip compared with a US quarter coin (Figure 24). An electrode with a 

corrugated surface (δ = 100 μm), has an enhanced sensing range, attributed 

to the multiscale structure, which makes it possible to detect inputs in the 

high-pressure regime (10-100 kPa) produced by daily life25,26, and the 

applications of this structure will be covered. The distance between the 
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electrodes also affects the sensor performance, as shown in Figure 25. A 

narrower electrode approaches the metal plate, and due to the same 

phenomenon above, increased sensor sensitivity can be observed in the 

figure. Furthermore, the sensor endures 30,000 pressure cycles with 24 ms 

response time (Supplementary Note 13).  These results successfully 

demonstrate the accurate performance of the sensor, and from the 

theoretical analysis, the performance of the sensor is freely adjustable and 

can be implemented in various applications for different purpose.  

  



４５ 

 

 

Figure 20. Theoretical analysis of the sensor. a, Picture of free-standing lower 

comb-like electrode with magnified image in which the black dashed box 

denotes the control surface. b, Illustration of electro-mechanical phenomenon 

with respect to the three different views in the control surface. XZ plane side 

view (left), YZ plane side view (center), and XY plane top view (right). XY 

top view containing simulation image of current distribution over the AgNW 

layer. 
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Figure 21. Diagram of the theoretical analysis.  

 

 

Figure 22. Schematics of the adjusted current distribution according to 

different external pressure and contact area. Right side denotes the conformal 

representation of the equipotential line. 
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Figure 23. Current change for different surface morphology and comparison 

between the theoretical data from equations 4 and 6.  

 

Figure 24. Demonstration as a high sensitive sensor (flat morphology, S = 

0.48).  
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Figure 25. Output signal distribution as a function of electrode distance 

compared with the theoretical data. 
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4.2 The relation between contacted area and applied pressure 

The contact problem of elastic body with rigid arbitral surface was 

investigated for model the situation of operating the sensor. In condition 

that δ
λ
≪ 1, shear strain of upper layer is negligible so that longitudinal 

strain should be dealt dominantly. Relations between the two-dimensional 

average pressure, 𝑝𝑝(𝑥𝑥) and normal displacement, 𝑢𝑢z(𝑥𝑥) can be derived 

as followed4: 

 �
𝑝𝑝(𝑠𝑠)
𝑥𝑥 − 𝑠𝑠

𝑑𝑑𝑑𝑑
𝑎𝑎

−𝑎𝑎
= −

𝜋𝜋𝜋𝜋
2(1 − 𝜈𝜈2)

𝑑𝑑𝑢𝑢z
𝑑𝑑𝑑𝑑

 (26) 

If we let the right hand side be g(𝑥𝑥) , made up from a combination of 

material parameters and displacement gradient, the equation has a general 

solution of the form5 as  

 𝑝𝑝(𝑥𝑥) =  
1

𝜋𝜋2√𝑎𝑎2 − 𝑥𝑥2
�

√𝑎𝑎2 − 𝑠𝑠2𝑔𝑔(𝑠𝑠)
𝑥𝑥 − 𝑠𝑠

𝑑𝑑𝑑𝑑
𝑎𝑎

−𝑎𝑎
+ 

𝐶𝐶
𝜋𝜋2√𝑎𝑎2 − 𝑥𝑥2

 (27) 

where C is integral constant which denotes the average pressure among 

the contact region (C = π∫ 𝐹𝐹(𝑠𝑠)𝑑𝑑𝑑𝑑𝑎𝑎
−𝑎𝑎 ). If we take The equation above can 

be solved in which that 𝑢𝑢z  is of polynomial form : 𝑢𝑢z′ =  −𝐴𝐴nxn . 

Sinusoidal displacement, 𝑢𝑢z =  𝛿𝛿cos (2𝜋𝜋
𝜆𝜆
𝑥𝑥) , can be expressed as 

polynomial form by Taylor series. The pressure distribution for single term 

of polynomial nth power (𝑢𝑢z′ =  −𝐴𝐴n𝑥𝑥𝑛𝑛) is shown as 
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 𝑝𝑝n(x) =  −
𝐸𝐸𝐴𝐴n𝑎𝑎𝑛𝑛+1

2(1 − 𝜈𝜈2)𝜋𝜋
𝐼𝐼n

√𝑎𝑎2 − 𝑥𝑥2
+ 

𝑃𝑃n
𝜋𝜋√𝑎𝑎2 − 𝑥𝑥2

 (28) 
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�
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𝑎𝑎
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for even n, 
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−
1 ∙ 3 ∙ 5⋯ (𝑛𝑛 − 2)

2 ∙ 4⋯ (𝑛𝑛 + 1)
� 

for odd n, 

(29) 

Using the continuity boundary conditions ( 𝑝𝑝(𝑎𝑎) = 𝑝𝑝(−𝑎𝑎) = 0 ) and 

conditions for avoiding the singularity of the equation, the relation 

between the average external pressure (𝑃𝑃n) for single term of polynomial 

and projected contact length (𝑎𝑎) can be derived as  

 𝑃𝑃n =
𝐸𝐸𝑎𝑎𝑛𝑛+1

2(1 − 𝜈𝜈2)𝐴𝐴n𝐼𝐼n(𝑎𝑎) (30) 

we set the coefiicient 𝐴𝐴n be counterpart of expanded cosine function,  

 
𝐴𝐴2n−1 =  

2𝜋𝜋𝜋𝜋
𝜆𝜆

�
2𝜋𝜋
𝜆𝜆
�
2𝑛𝑛−1 (−1)𝑛𝑛−1

(2𝑛𝑛 − 1)!
 

𝐴𝐴2n = 0 

(31) 



５１ 

 

The final expression of nth approximated external pressurue should 

contain from 1 to n terms. 

 

𝑃𝑃 = �𝑃𝑃n

∞

𝑛𝑛=1

=  ��
𝐸𝐸𝑎𝑎2𝑛𝑛

(1 − 𝜈𝜈2)
𝜋𝜋𝜋𝜋
𝜆𝜆
�

2𝜋𝜋
𝜆𝜆
�
2𝑛𝑛−1 (−1)𝑛𝑛−1

(2𝑛𝑛 − 1)!
𝐼𝐼2n−1(𝑎𝑎)�

∞

𝑛𝑛=1

 

(32) 

This relation can be expressed identical to equation 1 in manuscript. 

 

𝑃𝑃[N m−1] =  
𝜋𝜋2𝐸𝐸𝐸𝐸
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(33) 

where 𝐽𝐽n = 1 − 1
2
− −  1

8
− ⋯−  1∙3∙5⋯(𝑛𝑛−2)

2∙4⋯(𝑛𝑛+1)
 

To construct the relation between external pressure and conductance, one 

should consider converting the projected area (a) to actual contact length 

(𝑎𝑎𝑡𝑡). The relation between actual contact length (𝑎𝑎𝑡𝑡) and projected length 

of contact area (𝑎𝑎) can be given by  

 𝑎𝑎𝑡𝑡 =
𝜆𝜆
𝜋𝜋
𝐸𝐸(

2𝜋𝜋
𝜆𝜆
𝑎𝑎| − �

2𝜋𝜋𝜋𝜋
𝜆𝜆
�
2

) (34) 

where E(x|k2) is the elliptic integral of the second kind with parameter 

k2. Actual contact length directly affects the bridging current between the 

electrodes. 
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4.3 Parallel micro resistance approximation 

The micro resistors appeared by the external pressure are arranged along 

interdigitated electrodes periodically (Figure 26a). When the interval 

between cells is larger than contact area, 𝑎𝑎t ≪ 𝜆𝜆,  electrical current 

started at one side of micro resistance flows heading to its facing 

counterpart (Figure 26b). So that some cell of micro resistor cannot 

influence electrically to another cell. Therefore, the total impedance of one 

pair of interdigitated electrode can be approximated as an impedance of 

parallel connection of single cells. The charge conservation equation was 

solved by a simple FEM to confirm the independence between each cells 

(Figure 26c, d). The horizontal current density was visualized to show 

distinct electrical separation of each cells. In a typical sensor working 

range, the error between total resistance and parallel approximation was 

only about 4.34%. 
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Figure 26. Simulation of the parallel micro resistance. a. Repeated unit cell 

of interdigitated electrode. Periodical distance is its wavelength λ. b. 

Nonlinear stream line of electrical current of each single cell. As applied 

pressure increases, contact area a_t is also magnified resulting larger 

conductance. c. Vertical current density averaged along horizontal direction. 

The current density of single micro resistor enveloped by current density of 

multiple network. Normalized resistance of single cell is 2.38 while 

multiple’s is 0.498. d. 2D view (same as supplementary Figure 2b) of current 

density of multiple network. Each cell’s current distribution is well isolated. 
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4.4 Calculation of single cell micro resistance 

Unlike the usual rectangular resistor where the equipotential line is 

parallel to the electrodes, the micro resistors between interdigitated 

electrodes have nonlinear equipotential contour. The geometrical 

resistance can be obtained analytically using the Schwarz-Cristoffel 

mapping to calculate the resistance of such resistors12. Specify the position 

of vertexes defining geometry in the complex plane. The vertexes of micro 

resistor cell as P, Q, R, and S. resistor’s electrode position is identified by 

A, B, C, and D. Through three conformal mapping steps (Figure 27), it is 

possible to convert the physical plane, Z-plane to imaginary one, χ-plane 

whose equipotential line is parallel to each other. With property of 

conformal transformation, conservation of local angle preserves the 

geometrical resistance. First step of transformation is that Z-plane to t-

plane by following manner. 

 t = sn2(𝑚𝑚𝑚𝑚, 𝑘𝑘)  (35) 

where u = sn−1𝑥𝑥 =  ∫ 𝑑𝑑𝑑𝑑
�(1−𝑡𝑡2)(1−𝑘𝑘2𝑡𝑡2)

,𝑥𝑥
0   Jacobi elliptic function, m =

𝐾𝐾
𝑙𝑙

= 𝐾𝐾′

𝑙𝑙′
 k is chosen by K

′

K
= 𝑙𝑙′

𝑙𝑙
 relation, 
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𝐾𝐾 =  �
𝑑𝑑𝑑𝑑

�(1 − 𝑡𝑡2)(1 − 𝑘𝑘2𝑡𝑡2)
 ,

1

0
𝐾𝐾′

=  �
𝑑𝑑𝑑𝑑

�(1 − 𝑡𝑡2)(1 − 𝑘𝑘′2𝑡𝑡2)
 ,

1

0
 𝑘𝑘′ = �1 − 𝑘𝑘2 

(36) 

Secondly, for matching the vertexes of micro resistor and its electrode, the 

transformation  

 u =  
𝑑𝑑 − 𝑏𝑏
𝑏𝑏 − 𝑎𝑎

𝑡𝑡 − 𝑎𝑎
𝑑𝑑 − 𝑡𝑡

 (37) 

was applied. Finally, inverse transformation of first step, 

 u = sn2(𝜒𝜒, 𝜆𝜆),
1
𝜆𝜆2

=  
𝑑𝑑 − 𝑏𝑏
𝑏𝑏 − 𝑎𝑎

𝑐𝑐 − 𝑎𝑎
𝑑𝑑 − 𝑡𝑡

 (38) 

leads t-plane to χ-plane configuration, which easily calculates the 

geometrical resistance provided by the ratio of sides of rectangle 𝐹𝐹
𝐹𝐹′

 

(Supplementary Figure 7d). If we non-dimensionalize the lengths as 𝑋𝑋 =

 𝑙𝑙/𝑙𝑙’ ,𝑌𝑌 = 𝑎𝑎t/𝑙𝑙’, an excellent approximation of geometrical resistance was 

investigated with conditions 𝑋𝑋 << 1,𝑌𝑌 < 0.5 .6 The sensor’s geometry 

and working circumstances satisfy above condition, we safely 

approximated the geometrical resistance as 

 G ≅ K′(k)/K(k), where k ≅ tanh [(π
2
�Y
X
�]. (39) 
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Figure 27. Three steps of conformal transformation, from Z-plane to χ-plane. 

a. t plane, each vertex is arranged along real axes, horizontal axes. b. Z-plane, 

geometrical representation of single micro resistor on imaginary plane. c. u-

plane, vertexes of micro resistor and electrodes are matched together by t-u 

transformation. d. χ-plane, newly positioned vertexes of electrodes are 

merged to each four corners. The geometrical resistance can be calculated by 

using F,F^'. 
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4.5 Influence of AgNW quantity on sensor performance 

As the nanowire is randomly distributed over the polymer, the NW 

composite could be treated as a continuous metal layer. Since the output 

signal of the sensor is related with the micro-scale contact between the NW 

composite and the corrugated electrode, the sensitivity and the electrical 

response will be maintained with the altered nanowire density. As shown 

in Figure 28a, the nanowire density was controlled in three different 

conductivity. Supplementary Figure 28b depicts that the output signals are 

identical to the theoretical value, which proves that the concentration is 

irrelevant to the electrical response. Yet, the low density of nanowires near 

the percolation threshold may have issues in stability and repeatability in 

signals. 
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Figure 28. Output signal change with altering nanowire density a. Prepared 

nanowire composite with different density. b. Output signal with altering 

nanowire density.  
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4.6 Detailed information of laser sintered electrodes 

Detailed information regarding laser sintering process is shown in Figure 

29. Figure 29a depicts the TEM image of the nanoparticle ink with average 

diameter of 40 nm. Nanoparticle ink is spin-coated on PET in 200 rpm for 

60 sec, and uniformly distributed nanoparticle layer is prepared as shown 

Figure 29b. The thickness of the spin-coated nanoparticle layer is around 

1 μm as the SEM image is Supplementary Figure 29c. The magnified SEM 

image of the coated particles are shown in Figure 29d. The optical system 

for laser sintering fabrication is schematically shown in Figure 29e. 

Flexibility of the electrode is shown in Supplementary Figure 14a, b. Ag 

microstructure is bent in 3mm curvature and the durability of the structure 

is shown in Figure 30b (5000 cycles in 1 Hz condition). The surface 

morphology of the Ag structure is captured in a larger view by the 3D 

surface profiler in order to investigate the uniformity of the structure 

(Figure 30c). Furthermore, the conductivity of the Ag microstructure is 

measured by the 4-point probe method. By the general relationship, ρ/t =

𝑉𝑉
𝐼𝐼

𝜋𝜋
𝑙𝑙𝑙𝑙2

, the conductance of the structure can be calculated by the measured 

resistance (V/I=0.0956 Ω) and the thickness of the Ag structure (t = 1 μm). 

The resultant conductance of the structure is therefore calculated by 

2.32×106 S m-1. 
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Figure 29. Basic information for laser sintering process. a. TEM image of Ag 

nanoparticle. Scale bar 100 nm. b. Picture of the spin-coated Ag nanoparticle 

layer on PET substrate. c. SEM image of the spin-coated layer. Scale bar 1 

μm. d. Magnified SEM image of deposited particle layer. Scale bar 400 nm. 

e. Optical setting of the laser sintering system, where inset represents the 

melted particle after laser irradiation. 
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Figure 30. Flexibility and uniformity of the Ag electrode. a. Electrical 

stability under bending. b. Cyclic response under 3 mm bending curvature c. 

Uniformity of the corrugated structure 
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Chapter Ⅴ 

 

Laser-induced Crack of Metal 

Nanoparticles 

 

5.1 Laser-induced crack generation  

Selective laser sintering provides a sophisticated method for 

manipulating the critical crack strain. As illustrated in Figure 31, high 

power annealing lowers the porosity of the particle layer and provides a 

higher bonding energy per unit area, 𝑤𝑤f  through the necking between 

particles34,35. According to Irwin36, a crack propagates further when the 

following condition is satisfied. 

𝐺𝐺c =  −
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑅𝑅 (3) 

where 𝐺𝐺𝑐𝑐 is the critical energy release rate, 𝑈𝑈 is the potential energy of 

body, 𝐴𝐴 is the crack area, and 𝑅𝑅 is the resistance function. The typical 

energy release rate for the displacement-controlled case gradually 

decreases with the crack size37 as depicted in Figure 32. The resistance 

function, represented by the right-hand side of Equation 3 is defined as 

follows:  
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𝑅𝑅(a) = 2𝑤𝑤f𝐻𝐻(𝑎𝑎 − 𝑎𝑎0) (3) 

where a is crack size, 𝐻𝐻(𝑥𝑥) is the Heaviside step function, and 𝑎𝑎0 is the 

void size determined by the porosity of the sintered layer. Since critical 

cracking occurs at the intersection point of the G and R curve interpreting 

Equation 3, the resistance function is categorized into three cases based on 

the relative position of G to the maximum strain 𝜀𝜀max; these include non-

cracking (Figure 32a), stable cracking (Figure 32b), and unstable cracking 

(Figure 32c).  

The excessive power of the laser anneals the particle layer into a fine 

bulk metal structure with high bonding energy. Since the R curve is above 

the set of G curves in Figure 32a, the intersection point is inexistent; thus, 

the crack cannot propagate further and maintains its initial size. We found 

that the condition for non-cracking was above ~13 mW. The illustration in 

Figure 32d and the SEM image demonstrate that the crack is restricted at 

the boundary of the annealed area, restricting cracking of the sensor’s 

active area. Meanwhile, at low power annealing condition under 7 mW 

provides an inadequate bonding energy to bypass the envelope of G curves 

as shown in Figure 32c. In such a case, the R curve with bonding energy 

𝑤𝑤f4 meets the G curve corresponding to some strain 𝜀𝜀c4; however, the 

equilibrium crack size is infinitely large since the intersection point with 

maximum strain 𝜀𝜀max  diverges. Moreover, the particle layer lacks the 
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electrical path delivering sensor signals due to insufficient annealing 

power, and the corresponding crack feature is depicted in Figure 32f. The 

annealing condition between unstable cracking and non-cracking involves 

a distinct intersection point of the G and R curves throughout the straining 

range as shown in Figure 32b, with a finite equilibrium crack size for 

various conditions (stable cracking). In this condition, easy manipulating 

of the critical crack strain of the resultant structure is possible by varying 

the laser power. For instance, the higher power induces a smaller void size 

(𝑎𝑎2) and higher bonding energy (𝑤𝑤f2) on the structure, causing a smaller 

critical crack strain (𝜀𝜀c2 < 𝜀𝜀c3). We already confirmed such a relation in 

the interpretation. To investigate the dependence of the annealing power 

on the sensitivity in the stable crack regime, we found the correlation 

between the critical crack strain and the length of crack is given by:  

𝜀𝜀𝑐𝑐2 ~ 
4𝑏𝑏
𝐿𝐿2
𝑝𝑝 (3) 

where 𝑏𝑏 is the thickness of the sensor, 𝐿𝐿 is the length of the sensor, 

and 𝑝𝑝 is the propagated length of the crack. Equation 5 shows that the 

square of the critical crack strain is proportional to the propagated length 

of the crack. As shown in Figure 32e, the crack is propagated with a certain 

crack length and reduces the conducting path of the sensor, which in turn, 

increases the resistance ratio 𝛼𝛼. Moreover, 𝑝𝑝 directly represents the grain 

structure of the sintered area, whereas other properties like young’s 
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modulus are combined with other physical properties to define the grain 

size. 

 

Figure 31. Schematic representation of sintered particle layer and SEM image 

of the cross section of annealed (right) and non-sintered (left) particle layer. 

Scale bar, 40 μm.  
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Figure 32. a-c Energy release rate curve and resistance function of ‘Non-

cracking’ (a), ‘Stable cracking (b), and ‘Unstable cracking’ (c). Arrow at the 

bottom describes the increasing direction of electrical conductivity (blue) and 

degree of crack (grey). d-f. Crack appearance for each regime, ‘Non-cracking’ 

(d), ‘Stable cracking’ (e), and ‘Unstable cracking’ (f). The first row indicates 

the schematic of crack length and the second shows the SEM images respect 

to each case. Scale bar, 14 μm.  
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Figure 33. The operating output resistance of the sensors prepared by 

different laser power. 
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5.2 Highly sensitive strain sensor through crack-based 

structure 

Previous works on crack-based ultra-sensitive sensors mainly involve 

fabrication by bending a metal-sputtered soft substrate18-20. The 

performance of the conventional sensors is engineered through varying 

substrate thicknesses, substrate modulus, annealing times, and using stress 

concentration structures21-22. However, previous approaches failed in 

deducing the relation between the control parameters and the sensor 

performance. The conventional technology barely explains the grain size 

that is associated with crack characteristics. A correlation between these 

can be examined by analyzing the signal outputs during the initial crack 

formation, whereas previous studies relied on the data obtained from the 

sample after cracking ends.  

As depicted in Figure 34, initial cracking of the laser annealed layer is 

proceeded before utilizing as a sensor, and the electrical response in 

respect to strain in the cracking process significantly varies from that in 

the sensor operation process. The electrical resistance discontinuously 

increases in the initial micro cracking, whereas in the sensor utilization, a 

continuous change of resistance is observed since the gap of the crack is 

widened continuously. The discontinuous nature of initial cracking makes 

it difficult to obtain meaningful information from the signal output; 
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therefore, we designed a bending test under quasi-static conditions as 

shown in Figure 35, leading the set of discontinuous cracks to propagate 

continuously along the line. Crack occurs in regions where the local strain 

𝜀𝜀 is higher than the critical crack strain 𝜀𝜀𝑐𝑐 (red), and do not occur below 

the critical strain (black). Since the first buckling mode of thin film is 

defined as a sinusoidal form, the curvature of the deformed sensor is 

represented as cosine curve.  

 The projected length of cracked zone 𝑙𝑙cp  is defined implicitly as 

follows: 

𝜀𝜀�𝑙𝑙cp,𝑑𝑑𝑑𝑑� =  𝜀𝜀𝑐𝑐 (3) 

where 𝜀𝜀 is the local strain of the sensor and dl is the displacement of 

the bending stage. The resistance ratio between the non-cracked and 

cracked region is defined as 𝛼𝛼 =  𝑟𝑟𝑐𝑐 𝑟𝑟𝑛𝑛⁄   where 𝑟𝑟𝑐𝑐  is the resistance per 

unit length of the cracked zone and 𝑟𝑟𝑛𝑛 is the resistance per unit length of 

the non-cracked zone. The normalized resistance of the sensor according 

to the displacement dl of the bending stage is expressed as: 

𝑅𝑅(𝑑𝑑𝑑𝑑)
𝑅𝑅0

=  
2
𝐿𝐿

(𝛼𝛼 − 1)𝑙𝑙c(𝑑𝑑𝑑𝑑) + 1 (3) 

where 𝑅𝑅0  is the initial resistance of the sensor and 𝑙𝑙𝑐𝑐  is the length of 

cracked zone. In this model, two free factors, 𝜀𝜀𝑐𝑐 and 𝛼𝛼 that determine the 

final shape of the electrical response are found by fitting the experimental 
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data as shown in Figure 36. Higher laser power decreases the 𝜀𝜀𝑐𝑐 and 𝛼𝛼; 

𝜀𝜀𝑐𝑐 = 2.977 × 10−4,𝛼𝛼 = 1.846   for 9 mW, 𝜀𝜀𝑐𝑐 = 2.4 × 10−4,𝛼𝛼 = 1.4 

for 11 mW. Conditions under 6 mW are not enough to provide electrical 

pass ways through annealing between the particles and cases above 13 mW 

cannot be appropriately fitted by two free factors. A structure with larger 

grain size yields longer 𝑝𝑝 and smaller crack asperity since the formation 

of the crack scatters less at the coarse grain boundary38. Moreover, the 

distribution of the crack asperity exhibits fractal similarity to the grain size 

distribution by the renormalization theory. Since the finely cracked face 

responds sensitively under strain, the sensor with larger p is more sensitive 

(Gauge Factor (GF) > 2000 at 0.55%) as shown in Figure 33. The overall 

process of the theoretical analysis is summarized in Figure 37. 
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Figure 34. Electrical response while initial cracking (left) and sensor 

operation (right). 

 

Figure 35. Schematic illustration and modeling parameters of displacement 

controlled bending environment. 
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Figure 36. The initial cracking resistance changes of the sensors prepared by 

different laser power with model-fitting curve. 

 
 

 

Figure 37. Main performance indicators during the fabrication process. a. 

Influence of laser condition on the parameters. b. Relation between laser 

power and the parameters. 
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Figure 38. Theoretical analysis defining sensor’s sensitivity  
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5.3 Geometrical modeling of the quasi-static bending 

condition to exploit crack characteristics 

The porous sintered region of the sensor under quasi-static bending 

condition should be cracked locally when local strain exceeds above 

critical crack strain, 𝜀𝜀𝑐𝑐. The situation is schematically illustrated in Figure 

39, the red zone depicts a cracked region whose local strain exceeds the 

critical crack strain, dl is linear displacement of bending stage, and 𝑙𝑙cp is 

the projected length of cracked zone, and L is the initial length of the sensor. 

Since the first buckling mode of beam is sinusoidal1, the sensor would 

bend along sinusoidal curve. Therefore, the shape of bent sensor can be 

modeled as, 

𝑤𝑤(𝑥𝑥) =  𝑤𝑤0 cos �
𝜋𝜋𝜋𝜋

𝐿𝐿 − 𝑑𝑑𝑑𝑑
� (1) 

The sensor attached to the substrate (PET, thickness = 10 μm) 

conformably, the local strain of upper face of cosine curve could be 

directly read as the sensor’s local strain. The height of cosine is defined 

using geometrical restriction, constant length condition, 

� 𝑤𝑤0
(𝐿𝐿−𝑑𝑑𝑑𝑑)/2

0
cos �

𝜋𝜋𝜋𝜋
𝐿𝐿 − 𝑑𝑑𝑑𝑑

�d𝑥𝑥 =
𝐿𝐿
2

 (2) 

Such a constriction yields the 𝑤𝑤0 as the function of dl. From elemental 

calculus, we could derive the local strain of the sensor as the function of x 

and dl. 
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𝜀𝜀(𝑥𝑥,𝑑𝑑𝑑𝑑) =  
ℎ 𝜋𝜋2𝑤𝑤0(𝑑𝑑𝑑𝑑)cos � 𝜋𝜋𝜋𝜋

𝐿𝐿 − 𝑑𝑑𝑑𝑑�

2(𝐿𝐿 − 𝑑𝑑𝑑𝑑)2 �1 + �𝜋𝜋𝑤𝑤0(𝑑𝑑𝑑𝑑)
𝐿𝐿 − 𝑑𝑑𝑑𝑑 sin � 𝜋𝜋𝜋𝜋

𝐿𝐿 − 𝑑𝑑𝑑𝑑��
2
�

3
2
 

(3) 

where h is the thickness of sample. The curvature of cosine which 

decreases monotonically along x direction leads same trend of its local 

strain. Therefore, we can divide the cosine curve in two sections; the black 

zone: the local strain is lower than critical crack strain and the red zone: 

the local strain is higher than critical crack strain.  

The projected length of cracked zone divides the cracked and the non-

cracked zone and is defined as following implicit form. 

𝜀𝜀�𝑙𝑙cp,𝑑𝑑𝑑𝑑� =  𝜀𝜀𝑐𝑐 (4) 

In a given critical crack strain, the projected length of cracked zone is 

function of dl and monotonically increases. 

To observe the microscopic phenomena of cracking, we conducted a 

quasi-static bending experiment with simultaneously measuring the 

electrical resistance of the sensor. The modeled electrical resistance can be 

expressed using projected length of cracked zone and resistances per unit 

length, 𝑟𝑟𝑐𝑐 , 𝑟𝑟𝑛𝑛 . A resistance variation after cracking should be negligible 

since initial cracking process is occurred discontinuously. When crack 

propagates beyond the initial void size slightly, the percolation of the 
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electrical path could be broken. Such a change of physical parameter 

related to percolation probability around the percolation threshold 

significantly effects on resultant values2 and we can treat each resistance 

as constant.  

 

 

(5) 

Therefore, the total resistance of the sensor is deduced as, 

𝑅𝑅(𝑑𝑑𝑑𝑑) = 2𝑟𝑟𝑐𝑐𝑙𝑙𝑐𝑐 + 𝑟𝑟𝑛𝑛(𝐿𝐿 − 2𝑙𝑙𝑐𝑐) (6) 

 

𝑙𝑙𝑐𝑐 =  � �1 + 𝑤𝑤(𝑥𝑥)2𝑑𝑑𝑑𝑑
𝑙𝑙cp

0
 (7) 

where 𝑙𝑙𝑐𝑐  is length of cracked zone. Equation 6 can be manipulated 

further 

𝑅𝑅
𝑅𝑅0

=  
2
𝐿𝐿

(𝛼𝛼 − 1)𝑙𝑙𝑐𝑐 + 1 (8) 

where 𝑅𝑅0 = 𝑟𝑟𝑛𝑛𝐿𝐿 , initial resistance of the sensor, and 𝛼𝛼 =  𝑟𝑟𝑐𝑐 𝑟𝑟𝑛𝑛⁄  , the 

resistance ratio between cracked and non-cracked zone. Combining 

equation 4, 7, and 8, we successfully found the relationship of the linear 

deformation of bending stage and the sensor’s resistance. There are only 

two free factors in the model, the critical crack strain, 𝜀𝜀𝑐𝑐  and the 
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resistance ratio 𝛼𝛼 . Our purpose of designing the quasi-static bending 

experiment was exploiting the characteristic of cracking process which is 

hidden behind the data. The model naturally provides the effective factor 

determining the sensor’s performance, two free factors 𝜀𝜀𝑐𝑐  and 𝛼𝛼 . In 

order to find the two characteristic factors corresponding the laser 

condition, we employed the least square regression to fit the experimental 

dl vs. 𝑅𝑅 𝑅𝑅0⁄  data using 𝜀𝜀𝑐𝑐 and 𝛼𝛼. The data were well fitted; however, 

actual signal had some jump point inferring the discontinuous generation 

of micro cracks. The model stands on the assumption of continuous 

propagation of cracked zone. 

 

 

Figure 39. The modeling parameters related to a. the geometrical model and 

b. the thin film cracking model 
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5.4 Critical strain and propagated length of crack 

When bending stress is applied to the as-prepared sensor, crack 

propagates from non-sintered to sintered region.  

If a specific strain is applied to the conducting region, the crack in the 

non-sintered region will act as a crack seed in the sintered region, which 

will propagate the crack further. The relationship between crack depth and 

critical strain is essential to extract the performance characteristics of the 

sensor along with test. According to Irwin, cracks are known to propagate 

under the following conditions. 

𝐺𝐺𝑐𝑐 =  −
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 2𝑤𝑤f (9) 

where 𝐺𝐺𝑐𝑐 is the critical energy release rate, 𝑈𝑈 is potential energy of body, 

A is crack area, and 𝑤𝑤f is fracture energy per unit area. Since total strain 

energy is potential energy plus work done by external stress, the potential 

energy of elastic body can be defined as follows. 

𝑈𝑈 = 𝑆𝑆 −𝑊𝑊 (10) 

Since the experiment illustrated at Figure 35 was conducted under quasi-

static displacement equilibrium bending condition, work done by external 

force, W can be expressed by  

𝑊𝑊 = 𝑃𝑃𝑃𝑃 (11) 

Also, elastic strain energy S should be calculated by 
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𝑆𝑆 =  � 𝑃𝑃𝑃𝑃𝑃𝑃
𝑙𝑙

0
=  
𝑃𝑃𝑃𝑃
2

 (12) 

where P is external force, and l is linear deformation. Therefore, 

𝑈𝑈 =  −
𝑃𝑃𝑃𝑃
2

=  −𝑆𝑆 (13) 

The energy release rate related to quasi-static displacement equilibrium 

condition is defined as follows. 

𝐺𝐺 =  
1
𝑏𝑏
�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑙𝑙

=  
𝑙𝑙

2𝑏𝑏
�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑙𝑙
 (14) 

where b is thickness of the sensor, and p is the propagated length of crack. 

We manipulated Equation 14 further for exploiting the relation between 

critical crack strain and crack depth. Considering the geometry of the 

sensor system, the energy release rate can be transformed, 

𝐺𝐺 =  
𝐿𝐿𝐿𝐿
2𝑏𝑏

�
𝑑𝑑(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)

𝑑𝑑𝑑𝑑
�
𝑙𝑙

=  
𝐸𝐸𝐸𝐸𝐸𝐸

2
�𝜀𝜀
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑙𝑙
 (15) 

where E is young’s modulus of sintered region, w is width, and L is length 

of sintered region. Inserting the energy release rate (Equation 15) to the 

critical condition occurring the cracking (Equation 9), the following 

relation is satisfied. 

𝐸𝐸𝐸𝐸𝐸𝐸
2

�𝜀𝜀
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝜀𝜀= 𝜀𝜀𝑐𝑐

= 2𝑤𝑤f (16) 

We integrated the Equation 16 both side with respect to p approximating 



８０ 

 

that the bonding energy 𝑤𝑤f is constant4, and the initial strain-free state 

has no distinctive crack. 

𝜀𝜀𝑐𝑐2 =  
8𝑤𝑤f
𝐸𝐸𝐸𝐸𝐸𝐸

𝑝𝑝 (17) 

Meanwhile, the fracture energy could be approximated by the atomic 

potential 𝑈𝑈𝑎𝑎 with Taylor expansion about an equilibrium position 

𝑤𝑤f ~ 
1

2𝛿𝛿2
𝛿𝛿2 �

𝜕𝜕2𝑈𝑈𝑎𝑎
𝜕𝜕𝑟𝑟2

�
𝑟𝑟=𝑟𝑟0

=  
1
2
�
𝜕𝜕2𝑈𝑈𝑎𝑎
𝜕𝜕𝑟𝑟2

�
𝑟𝑟=𝑟𝑟0

 (18) 

where 𝛿𝛿 is displacement to occur a cracking of body, 𝑟𝑟0 is equilibrium 

position of atom, and r is elongation coordinate. Young’s modulus can be 

also approximated by similar way, 

𝐸𝐸 =  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝐿𝐿
𝑤𝑤𝑤𝑤

 ~ �
𝜕𝜕2𝑈𝑈𝑎𝑎
𝜕𝜕𝑟𝑟2

�
𝑟𝑟=𝑟𝑟0

𝐿𝐿
𝑤𝑤𝑤𝑤

 (19) 

With above ingredients, we have the approximated relation between 

critical crack strain and crack depth for the tiny strain regime of a thin film, 

𝜀𝜀𝑐𝑐2 ~ 
4𝑏𝑏
𝐿𝐿2
𝑝𝑝 (20) 

The scaling comparison leads the order of magnitude of the critical crack 

strain using the sintered region’s geometry,  

𝑝𝑝 ~ 𝑂𝑂(10−7m),𝑏𝑏 ~ 𝑂𝑂(10−6m), and 𝐿𝐿 ~ 𝑂𝑂(10−3m). 

𝜀𝜀𝑐𝑐  ~ 𝑂𝑂 �
10−610−7

10−6
�

1
2

= 𝑂𝑂(10−3~10−4) (21) 
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We could confirm the validity of Equation 20 through the result 

indicated. The characteristics of cracking were calculated by the method 

found; 𝜀𝜀𝑐𝑐 = 2.977 × 10−4,𝛼𝛼 = 1.846  for 9 mW, 𝜀𝜀𝑐𝑐 = 2.40 ×

10−4,𝛼𝛼 = 1.4 for 11 mW. The order of magnitude of the critical strain 𝜀𝜀𝑐𝑐 

is 10−4  for each case which is good agreement with Equation 21. 

Furthermore, if we assumed that the resistance ratio 𝛼𝛼  is linearly 

proportional to the length of crack,  

𝜀𝜀𝑐𝑐2

𝛼𝛼
�
power=11 mW

=  4.80 × 10−8 ~ 
𝜀𝜀𝑐𝑐2

𝛼𝛼
�
power=9 mW

=  4.11 × 10−8   

(22) 

Since we fabricated the sensors maintaining the same geometry, above 

quantity should be similar for varying the laser power. Note that the 

independent approach to investigate the crack characteristics merged in 

Equation 4 and 20.  
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5.5 The relation between crack asperity and the sensitivity 

Kang et. al.5 found that the crack asperity distribution has fractal self-

similarity to the grain size distribution by renormalization group theory. 

They brought the log-normal distribution which is well explained grain 

size distribution. The key fitting parameters are the grain size parameter 

𝜀𝜀0  and the deviation 𝜇𝜇 . Defining the log-normal distribution as crack 

asperity distribution, they derived the normalized conductance 𝑆𝑆  with 

respect to the strain 𝜀𝜀. 

𝑆𝑆 =  
1
2

(1 − erf �
ln (𝜀𝜀/𝜀𝜀0

𝜇𝜇
�) (23) 

where erf(x) is the error function, 𝜀𝜀0 is grain size parameter, and 𝜇𝜇 is the 

deviation of distribution. As shown in Figure 40, the sensor data is fitted 

by Equation 23, and found the large grained structure has higher sensitivity. 

(𝜀𝜀0  = 0.2489, 𝜇𝜇 =  1.196  for 6 mW, 𝜀𝜀0  = 0.38, 𝜇𝜇 =  1  for 9 mW). 

Note that the actual grain size (𝑑𝑑0 = 𝑘𝑘𝜀𝜀0) cannot be directly defined by 

the grain size parameter (𝜀𝜀0), since the parameter 𝑘𝑘 differs by the laser 

power.  
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Figure 40. Output signal variance among different laser power conditions 
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Chapter Ⅵ 

 

Deep-learned skin decoding human 

motions 

 

6.1 Highly sensitive skin-like sensor fabrication 

The process requires a sensor that is sensitive enough to measure the 

minute deformation while holding high conformability with the skin in 

order to catch the subtle topology transitions of the wrist. Digital laser 

fabrication provides a viable solution to obtain both features through laser 

controlled cracking and serpentine patterning. The periodic serpentine 

structure exhibits higher level of elastic deformation, causing a conformal 

contact between the electrode and skin; this promotes sensing of minute 

skin deformation. A crack-induced layer with micro serpentine patterns 

can easily be generated by simply scanning the laser with different power 

conditions. Cracked layer is used as a sensing element, since these 

structures are widely utilized in detection of minute mechanical 

stimulations. Figure 41 illustrates the fabrication process and the structure 

of the sensor. Colorless Polyimide (CPI) is uniformly coated on a glass 

substrate and fabricated silver nanoparticle (AgNP) ink is then spin-coated 



８５ 

 

over the layer. The bilayer of AgNP and PI is firstly patterned into the 

serpentine structure through a 355 nm wavelength laser ablation (over 100 

mW). This process is better than the conventional fabrication method29,30 

often requiring high temperature, vacuum environment, or a pre-processed 

mold. Subsequently, the laser power is lowered within a certain range (6 

mW ~ 13 mW) to selectively convert the AgNPs into a crack-induced layer. 

The patterned structure is easily peeled from the glass substrate, with 

Figure 42a depicting the magnified optical image of the final structure. 

The sensor performance is controlled through the annealing region as 

depicted in the middle line of Figure 42b. The fabricated free-standing 

sensor is displayed in Figure 42c.   

The sensor is directly mounted on the skin through the assistance of 

adhesive PDMS. The strain distribution of the sensor under 15 % strain is 

observed through a finite element method (FEM, COMSOL Multiphysics) 

as illustrated in Figure 42d. On account of the out-of-plane buckling 

deformation of the sensor, an effective strain under 2% is applied through 

the electrode.  
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Figure 41. Highly sensitive skin sensor fabrication by laser induced crack 

generation. a, Schematic depicting the patterning and crack fabrication by 

laser fabrication.  

 

Figure 42. a, Optical image of the fabricated sensor. Scale bar, 200 μm b, 

Magnified image of the sensor which distinctively shows the annealed region. 

Scale bar, 50 μm c, Picture of the free-standing fabricated sensor. d, FEM 

image showing strain distribution of the sensor.  
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6.2 Deep-learned skin-like sensor system 

An illustration of motions in human body is shown in Figure 43. 

Movement of any joint is associated to its surroundings10, involving 

electrical signals such as action potential of muscle, or mechanical signals 

of skin deformation. The blue arrows highlight the likely information flow 

caused by the movement from the main joints. Attempts to capture these 

signals are numerous including measuring the movement of the foot from 

shin11, knee movements from thigh12, and information converging around 

the pelvis13 with signals representing the entire gait motions. Similarly, 

motion of the arm14 and the face expression15 can be also identified. 

Predicting the status of motion aside from the main joints is like 

earthquake prediction, mainly involving time, location, and magnitude. 

Similarly, the aim of our study is to decode and extract the ‘epicentral’ 

motions from the detected signal. Among the numerous motions generated 

in the human body, hand exhibits the highest degree of freedom which 

exquisitely performs a range of tasks16; hence, predicting its motions is 

very challenging. Our study, therefore, initially focused on decoding the 

dynamic finger motions in real-time. Figure 44a illustrates the platform of 

the sensing system. A topographical movement of the wrist is triggered by 

the epicentral finger motion, with the attached crack-based sensor 

producing a signal containing the motion information. A sample scanned 
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electron microscopy (SEM) image of the sensor crack is shown in the 

lower right corner. The magnified image of the sensor attached above the 

skin is shown in Figure 44b. The serpentine patterns allow a conformal 

contact with the epidermis, enabling a more direct measurement of skin 

deformation. The design of our analysis is shown in Figure 44c. The wrist 

contains information reflective of several finger motions. The highly 

sensitive crack-based sensor detects the deformation of the wrist as 

unidentified signals. The signals are then analyzed in a temporal sequence 

through our encoding network, and the current status of the motion is 

simultaneously generated through the decoding network. 
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Figure 43. Schematic depicting the possible flow of information through our 

body. The information may include foot, knee, hand, arm, gait, and also face 

expressions.  
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Figure 44. a, Illustration of measuring the epicentral motions of fingers. 

Upper left image depicts the measurement of the topographical change of the 

wrist caused by the finger motions. Lower right image shows the SEM image 

of the cracked region of the sensor. Scale bar, 40 μm. b, Magnified image of 

the sensor conformably attached on skin. Scale bar, 1 mm. c, Design of the 

proposed sensory system. 
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6.3 Learning the dynamic motions with a single sensor 

We used a deep neural network to identify complex hand motion from 

highly sensitive sensor signals. As illustrated in Figure 45, various hand 

motions result in signals from skin deformations and muscle movements. 

To guide our network to correctly identify the moving finger, we defined 

a metric space as in Figure 46. The R values express the bend of a finger 

while θ values represent the identity of the moving finger.   

The metric is designed to consider the spatial positions of the fingers 

and how humans distinguish different hand motions. It is much harder to 

distinguish hand motions when the fingers are barely bent than when they 

are fully bent. Furthermore, the motions of two fingers apart are more 

easily distinguished than motions of two fingers that are close to each other. 

Therefore, to represent this, points on our metric space are closer to each 

other when r and the difference between their θ values are lower. This 

Euclidean distance between points is used as our network’s loss function 

to help it learn to differentiate different hand motions. For example, if the 

little finger is the finger that is bent, we pose a higher penalty for our model 

when it incorrectly determines the bent finger as the thumb than when it 

incorrectly determines it as the ring finger. 

Therefore, we designed neural network to accomplish two tasks: firstly, 

analyzing sensor signal patterns into a latent space encapsulating temporal 
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sensor behavior and secondly, mapping latent vectors to our finger motion 

metric space defined above. Encoding and decoding network in Figure 47 

achieve above goals respectively. To maximize user convenience 

regarding usability and mobility, we used a single-channeled sensor to 

generate signals corresponding to complex hand motions. Thus, it was 

necessary to utilize temporal sensor patterns to correctly determine the 

hand motion the signals were generated from. We therefore trained a long 

short-term memory (LSTM) network, a type of RNN architecture, to 

identify such temporal behaviors, as it is a type of deep neural network 

designed to analyze sequential data. To map latent vectors into 

corresponding points in our 2d metric space, the decoding network is 

composed of two separate dense layers, mapping encoded latent vectors 

into r and θ respectively. 
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Figure 45. Depiction of skin deformations for different finger bending 

motions. 

 

 

Figure 46. Metric space defining single finger bending motions: physical 

alignment of fingers in a hand is expressed in the metric space with R 

representing the amount of a finger bent and θ identifying the position of a 

finger in a hand. 
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The resulting vectors from our network are visualized in Figure 48. We 

used principal component analysis to project the latent vectors onto the 2D 

vector space. In general, the sensor signals corresponding to a specific 

finger create a circle in the 2D vector space. Since the finger motions 

involve a cycle of bending and unbending the finger between a starting 

straightened position and an ending bent position, this observation is 

expected. However, there are two main changes to the data after it is passed 

through the encoding network. Firstly, the starting points, where all fingers 

are straightened, are aligned by the encoding network. By labeling the 

input vectors as a point in the half-circle metric space that we defined, we 

intended to represent the starting points as closer vectors in our metric 

space. The alignment above demonstrates that our model maps 

straightened finger motions to closer latent vectors as we intended. 

Secondly, the data points for the ring finger, which were widely distributed 

across the projected 2D plane before encoding, create a circle with a radius 

similar to those of the other fingers after encoding. The encoding network 

transforms different data points to latent vectors that represent their 

corresponding finger motion. Therefore, even if the original sensor signals 

had different values, they are still projected to similar latent variables as 

long as they correspond to the same finger motion. This demonstrates that 

our network correctly utilizes temporal sensor behavior to analyze the 
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different patterns for each finger motion. Figure 48 shows the generation 

of r and θ values by the dense layers from the network-produced vectors 

mapped to the metric space. Even though some data points are 

misclassified when the r value is low, dense layers clearly discriminate 

different finger motions when the fingers are significantly bent and the r 

values are high (Figure 55). A real-time demo of our network analyzing 

sensor signals from the hand motions of the sensor wearer can be seen in 

Figure 50.  
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Figure 47. Neural network is composed of an encoding network and a 

decoding network. LSTM layers are used in encoding network to analyze 

temporal sensor patterns to generate latent vectors. Two independent dense 

layers map created latent vectors to our metric space expressing hand motions. 

Dropout is used as the regularization technique to prevent the network to be 

overfitted to a single use case. 

 
Figure 48. 2D PCA illustration of output vectors produced by encoding 

network. Each circular cluster demonstrates that encoding network can 

correctly identify cyclic finger motions from sequential sensor inputs. e 

Figure of how sensor inputs in training dataset are mapped to the metric space 

after passing our network 
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Finger motions are generated by analyzing the strain changes at the 

subject’s wrist site. However, a simple wrist movement can also modify 

sensor signals by producing non-finger motion noises. To verify whether 

our sensor can generate signals that allow our model to distinguish 

between different noises and finger motions, we conducted an additional 

experiment to check if our model can classify five motions and three types 

of noises generated by non-finger bending motions as shown in Figure 49a. 

Three noises are sensor signals caused by directly touching the sensor, 

twisting the wrist, and bending the wrist, we call them touch, twist and 

wrist respectively.  

To perform the classification task, we modified the decoding network to 

a 3-layered dense block producing 8-dimensional vector output. Each 

value in an output vector is model predicted probability for each 8 classes. 

A class with a maximum probability is chosen as the model predicted class 

for a given sensor input. As illustrated in the confusion matrix in Figure 

49b, our model could correctly classify finger motions and noises with 

96.2% in average and 92.9% in the worst case for little finger motions. The 

result shows that our sensor can generate distinctive signal patterns for 

different hand motions including non-finger motions so that our model can 

distinguish finger motions from noises generated by three non-finger 

motions. 
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Figure 49. Noise analysis of the sensor a. Signal outputs of various noise. b. 

Confusion matrix of decoding finger motions included with external noise. 

 
 

 

Figure 50. Snapshot of user following the instructions 
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From the above results, we know that given the sensor data of a user, 

our network is trained to correctly classify the user’s finger motions. 

However, attaching the sensor to a different user, the muscle movements 

and sensor values corresponding to the hand motions of the new user may 

be different from those of the previous users, as human muscle movement 

vary from person to person. Since our network is trained for different 

sensor patterned dataset, the network may consequently fail to determine 

hand motions by the new user. We therefore need to retrain the network 

with the new data from the new user. However, if we train our model from 

scratch, we need at least 2000 sensor frame from 80 seconds of finger 

movement for each finger. It is impractical and inconvenient to collect a 

400 seconds of training dataset each time the sensor is attached to a new 

user. Even if we were to collect enough data, the training time necessary 

for the LSTM network to extract the hidden sensor patterns from the 

dataset is too high. Similar issues arise when the sensor is attached to an 

area different from before or when the sensor itself is replaced with a new 

one. These problems hinder practical applications aimed for usage by 

multiple end users. 

To address these problems, we designed the RSL (Figure 51), a deep 

learning system guides user to collect data and automatically processes 

them to retrain our models with only a small amount of data in a short 
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period of time. The procedure of the system (Figure 50) involves following 

onscreen instructions to collect data for 8 seconds per finger when the 

sensor is placed on a new user . By sliding a time window of size 16, we 

group the collected data to form 16 consecutive sensor signal input. The 

generated input is used as a single input for our model.  

The RSL system uses transfer learning42 techniques to utilize knowledge 

on sensor behaviors obtained during previous training steps. The 

parameters for the LSTM and dense layers are then transferred from the 

pre-trained model to the new model. After retraining for around five 

minutes with the newly collected data, the model is then ready to generate 

the hand motions of the new user. 

Through RSL system, all steps required for generating the hand motions 

of a new user are processed automatically. Typically, the temporal behavior 

patterns of the sensor signals that were already previously analyzed by our 

pre-trained model is transmitted to the new network. Consequently, the 

retraining time is massively reduced because the network only needs to 

retrain its mapping functions to map input values to a different range of 

sensor values. The effectiveness of using transfer learning is evident in the 

loss comparison graph (Figure 53). In the absence of transfer learning, 

over 20 minutes are required for the loss to decrease to below 0.1, whereas 

in its presence, the time is within five minutes for the same dataset.  
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Figure 51. The processes of rapid situation learning (RSL) that utilizes 

transfer learning. When the sensor is attached to a new position and a small 

amount of retraining data is collected, the new network utilizes knowledge 

learned during pretraining by transferring parameters from pretrained 

network, reducing the amount of dataset, and time for retraining. g Photo of 

actual hand motion generation. 
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As a proof-of-concept demonstration of our system’s expandability, the 

sensor is used to decode the keyboard typing of numpad which the signals 

are combined with the movements of the wrist and the finger. The modified 

model decoded 9 classes of number in real-time that are pressed by fingers 

(Figure 56). Moreover, a single sensor is also attached on pelvis to identify 

the gait motions. The modified model successfully generated the positions 

of the ankle and knee as shown in Figure 57. Moreover, the signals are 

collected in the cases where the wrist and the finger movements are 

coupled.  

 

 

 

 

 

 

 

 

 



１０３ 

 

 

Figure 52. Learning characteristics. a. Varying LSTM layers and loss 

difference. b. Loss difference between non-transfer and transfer learning data. 

 

Figure 53. Structure of the LSTM unit 
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6.4 Data Processing and Network Design 

Two datasets were used to train the model: a dataset for pre-training and 

a dataset for recalibration. The data values within the pre-training dataset 

(15930 frames) range from 170 to 195 (units). 3,186 frames were collected 

from 100 seconds of finger motion data for each finger. The recalibration 

dataset contains 1,000 data frames, or 200 data frames from 8 seconds of 

data for each finger. The data values within the recalibration dataset exhibit 

a different range, which is dependent on the position of the sensor, the user, 

and the sensor itself.  

By using a sliding time window of size 16 along the data sequence, 16 

frames of consecutive sensor values were regarded as a single input. This 

was done to utilize the temporal behaviors of the sensor signals. Each input 

was labeled with two float values, r and θ (0 ≤ r, θ ≤ 1). θ represents the 

finger with which the movement is done. θ values start from 0 if the 

movement is from the thumb and ends at 1 if the movement is from the 

little finger, with the values for the fingers in between increasing linearly 

by 0.25. 

For r, which represents how bent the finger is, we picked the local 

maximum and minimum of the sensor values to distinguish the bent and 

unbent states. Each local maximum and minimum were labeled as having 

an r value of 1 and 0, respectively. For intermediate sensor values, the r 
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values were linearly interpolated as the ratio of the difference between the 

current sensor value and the closest local minimum and the difference 

between the closest local maximum and the closest local minimum. 

Although we could have used a motion capture device or depth camera 

to be more precise with our r values, we decided to avoid such devices as 

we want a simple and convenient method to train our model with only our 

single-channeled sensors. 

We then split the pre-training dataset into training and test subsets. By 

chronologically organizing and splitting the 16-frame-long inputs 

belonging to one data sequence into 10 consecutive groups of equal size 

and randomly choosing eight of those groups for the training set and two 

for the test set, we increased the regularization effect by minimizing the 

number of frames that appear in both the training set and the test set. This 

was done for all data sequences in the pre-training dataset. In both the 

training dataset and the test dataset, the same number of groups were 

selected for each finger to even out the data distribution. 

Our network consists of a 5-layered LSTM network, a type of Recurrent 

neural network and two separate 3-layered dense networks. Recurrent 

neural network is a type of neural network typically designed for dealing 

with sequences of inputs. RNN is composed of RNN units which combine 

current input and hidden vector passed from previous unit to generate 
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current output. Therefore, RNN is well-suited to processing time series 

data. Unlike standard RNNs, LSTM networks additionally train three gates 

(input gate, output gate, and a forget gate) to regulate the flow of 

information from one cell to another. The overall structure of the LSTM is 

illustrated in Figure 54. 

LSTM unit takes an additional vector, Ct−1, the previous memory cell. 

Following its literal meaning, memory cell contains integrated information 

from previous LSTM units. LSTM has a forget gate, an input gate, an 

output gate inside each unit controlling the next memory cell, Ct, to be 

passed on to the next unit. Two activation functions, σg, for sigmoid 

function and tanh for hyperbolic tangent functions, are applied for each 

gate outputs to control the range of output vectors. Here’s the overall 

equation of three gates vectors. 

ft = σg (Wxf xt + Whfht−1 + bf) (24) 

it = σg (Wxixt+Whiht−1+bi) (25) 

ot = σg (Wxoxt + Whoht−1 + bo) (26) 

Three vectors, ft, it, ot, are parameterized by its corresponding weights 

matrices W. Weight matrices are trained so that the unit can modify 

memory cell based on current input and hidden vector. Taking current 

input vector, xt, and hidden vector, ht−1, as input, gates generate vectors 

ranging from 0 to 1. Sigmoid function, σg, is used to bind the gates vectors 
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in between 0 and 1. However, they are multiplied to different vectors to 

achieve different purposes. 

st = tanh (Wxgxt + Whght−1 + bg) (27) 

Ct = ft ⨀Ct−1 + it⨀st (28) 

ht = ot ⨀tanh(Ct) (29) 

Following its literal meaning, ft is multiplied element-wise to previous 

memory cell Ct−1 to determine how much information from the pass are 

going to be forgotten in current unit. Symbol ⨀ means Hadamard product, 

which also stands for element-wise product. Input gate vector it, in contrast, 

determines the amount of current input xt and ht−1 to be taken account in 

current memory cell Ct. Input gate vector, it, is multiplied by st and added 

to memory cell. st represents memory generated from current input and 

previous hidden state. Hyperbolic tangent is used to generate st so that not 

only the magnitude but also the sign of st is considered. Finally, Output 

gate vector is multiplied by the current memory state Ct to generate a new 

hidden state ht and it is passed to the next state. The last LSTM unit will 

take a memory cell containing key information summarizing passed input 

sequence and generate output based on it. Generated latent output vectors 

imply sensor patterns for sensor signals within a time window. 

Since we aimed to not only accurately determine the hand motion but 

also quickly re-calibrate the sensor when needed, we determined the 
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number of layers for each network by comparing testing accuracy versus 

training time as shown in Figure 53. A 5-layered LSTM network achieved 

the fastest training time to reach the same level of accuracy. However, 9-

layered network shows significantly higher loss values than other 

shallower networks. While a deeper neural network can interpret more 

complex patterned data, it can also easily be overfitted for a bounded 

dataset. 9-layered network contains an excessive number of parameters so 

that it is too biased to training dataset. As a result, the network is overfitted 

to the training dataset so that it is not generalized to predict unseen data 

pattern. In particular, we are utilizing a sequence of a single sensor value 

to generate corresponding hand motion. Thus, our task has a relatively low 

data dimension. Furthermore, the data is collected manually by attaching 

it on human arms, making it difficult for us to collect huge amount of data. 

Thus, the LSTM with 3 to 7 layers were more suitable for our current 

dataset size, while 9-layered LSTM was too deep. This result can be 

changed if we collect more data from more people. 

Each frame within a 16-frame-long input was sequentially passed into 

LSTM units to produce a 128-dimensional hidden vector. Three trainable 

gates in each LSTM unit controlled the information flow from a unit to the 

next unit, preventing the gradient vanishing problem and enriching the 

information received by dense layers. While LSTM layers could process 
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sequential data inputs to generate latent vectors summarizing temporal 

behaviors of sensor signals, we are aiming to map such high dimensional 

latent vectors into our metric space expressing single-finger motions. 

Therefore, a decoding network that maps implicative latent vectors into 

coordinates in half-circle metric space is needed. Decoding network is 

composed of two separate dense layers. Dense layers allow our model to 

decide the dimension of output vectors while decoding information 

embedded in latent vectors from the encoding network. 

The resulting 128-dimensional vector was concatenated with the input to 

create a 144-dimensional vector, which is then passed onto the decoding 

network consists of two separate dense layers groups. One generates r 

values while the other generates θ values. The rectified linear unit (ReLU) 

was used as the activation functions for the dense layers. To prevent 

overfitting to the small recalibration training dataset, 30% dropout was 

applied to all layers. We implemented the network using the PyTorch deep 

learning framework. The Adam optimizer of learning rate 10^-4 was used 

for training the network. The Euclidean distance between the predicted 

point and the labeled point within our metric system was calculated and 

used as the loss function for training our network. 

To visualize the user’s hand motion for our real-time demo, a virtually 

generated hand that mirrors the user’s hand motion was generated using 
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the cross-platform visual engine Unity (unity.com). We modified a VR 

hand motion asset in the Unity Asset Store to implement our demo. After 

a user attaches the sensor, our network generates r and θ values, which are 

then sent to our Unity application through socket connections and used to 

move the virtual hand in accordance with the values and the corresponding 

hand motion on the metric space we defined in Figure 48. Socket 

connections were created with the Python socket module API. For points 

labeled with a θ value that is not a multiple of 0.25, we projected the point 

to the nearest finger and moved the corresponding finger of the virtual 

hand. To avoid collisions caused by simultaneous hand motion orders, 

fixed time step that determines when physics calculations are performed 

in Unity is set as 0.3 seconds. 
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Figure 54. PCA analysis of sensor a. PCA before passing encoding network. 

b. PCA after passing encoding networks. 
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6.5 Keyboard typing 

In addition, we collected sensor signals while typing number pad 

keyboard to demonstrate the use cases where wrist movements and finger 

movements are coupled. We collected 12000 sensor frames while typing a 

number keyboard. We again grouped 16 consecutive sensor signals into 

one input. Each input is labeled from 1 to 9 that are pressed by fingers. 

Therefore, our decoding layer is now transformed to generate 9-

dimensional vector representing likelihoods of each 9 classes.  

 

Figure 55. Keypad learning a. Confusion matrix of decoding the keypad 

typing. b. Classification accuracy of keypad input prediction. 
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6.6 Predicting the gait motions  

To verify the generalizability of our sensor, we also checked whether our 

model can generate the gait motions of a user using data from a sensor 

attached to the left side of their pelvis. By recording a 1920 x 1080 

resolution video of the user's gait motion while gathering sensor signals, 

we collected 3145 frames of video data and 5158 points of sensor data.  

Each frame was manually labeled with the pixel coordinates of the pelvis, 

left knee and left ankle, and then synchronized with the sensor values 

obtained during the frame (Figure 57). The labelled position of the pelvis 

was fixed for all frames to clearly show gait motion between frames. For 

sensor values collected between two consecutive video frames, the 

coordinates of the left knee and ankle were estimated through linear 

interpolation of their coordinates in the two frames. Just as we 

preprocessed the data for hand motion generation, we grouped 16 

consecutive sensor signals as one input so that our model can utilize the 

sequential patterns of the sensor signals, with each input labelled with the 

corresponding gait motion of the last signal within the input.  

To generate positions of the ankle and the knee, we modified the last layer 

of our decoding network to generate a 4-dimensional output vector instead. 

With 3 dense layers and dropout combined, the decoding network is 

transformed so that it maps a latent vector generated by the encoding 
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network to two points within the image space of the video. Thus, the first 

two values of the output vector represent the x and y coordinates of the left 

knee, while the last two values represent the coordinates of the left ankle. 

The loss function for our model training (Figure 58) is the mean squared 

errors between the labeled points and the predicted points. 80% of the 

sensor frames are used as the training set and the remaining 20% of the 

sensor frames are used as the testing set. The results of predicting gait 

motions form the test sets are demonstrated in Figure 57b-c.  
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Figure 56. Predicting gait motions by a single sensor attached on pelvis a. 

Experimental settings of receiving gait signals. b-c. Successfully decoded gait 

motions.  
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Figure 57. Mean Squared Error for gait motion prediction model. 
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Chapter Ⅶ 

 

Conclusion 

- Wearable and transparent 3D touch by laser induced Marangoni 

flow 

We have created a new type of transparent 3D touch, for the first time (to 

our knowledge), which operates in a single device. The integrated sensor 

was fabricated through mask-less laser processing of Ag nanoparticles and 

spray coating of Ag nanowires. The conditions for the various multi-scale 

structures generated by laser thermal gradient were evaluated and 

characterized by a dimensionless surface shape number, S. The 

mechanism of the sensor was precisely investigated by contact mechanics 

and conformal mapping of the current distribution and a concrete 

correlation between the surface morphology and the sensor performance 

was found. The analytical model relating them laid the foundation for 

determining the design and patterning parameters of the sensor for various 

applications. With the assistance of the newly suggested 6-wired system, 

the sensor could assign 3D sensing capability to various surfaces while 

remaining nearly imperceptible to the user. 3D touch also demonstrated 

perfect operation in a wearable and wireless environment. This system can 

have a great impact in the implementation of future wearable devices and 
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brings a powerful new dimension to human-machine interactions.  

 

- A deep learned skin sensor decoding complex human motion 

Inspired by the understanding of detection techniques for measuring 

converging signals, we present a technique for measuring dynamic 

motions by a deep-learned soft sensor attached on the surface of the skin, 

that is, superior to conventional approaches. Apart from the traditional 

wafer-based fabrication, the proposed laser fabrication provides a 

powerful solution for viable sensor utilization. The relationship between 

the sensor performance and the controlling parameters was investigated to 

ensure precise manipulation. A deep neural network is synchronized with 

the measuring equipment and the sensor, demonstrating a perfect operation 

in decoding finger motions. The concept of our system is expandable to 

other body parts, and offers great potential for detecting other stimuli and 

physiological signals. For device expansion on other body parts, a concrete 

ergonomic analysis will be needed to select an optimum location to 

measure epicentral motions. Methods of selecting required number of 

sensors and technique of integrating with wireless platform is necessary 

for practical use. 
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Abstract 

 Augmented skin electronics for 
human-machine interaction based on 
laser nano structuring and machine 

intelligence 
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Seoul National University 
 

 복잡한 시스템의 상태 모니터링에는 많은 수의 센서가 필요하다. 특히 

소프트 전자소자에 대한 연구는 체온, 전기 생리 학적 신호, 기계적 긴장

과 같은 다양한 자극을 매핑하는 것을 목표로 한다. 그러나 기존의 접근 

방식은 대상 영역의 전체 표면을 뒤 덮는 수 많은 센서 네트워크가 필요

했다. 본 논문은 하나의 센서만을 활용하여 3 차원 터치 정보와 사람의 

움직임을 측정할 수 있는 새로운 전자 스킨에 대해 소개한다. 나노 파티

클의 레이저 유도 멀티 스케일 구조를 통해 목표 감도와 성능을 달성할 

수 있으며, 딥 뉴럴 네트워크를 활용하여 인체의 움직임을 예측하였다. 

이 기술은 건강 모니터링, 동작 추적 및 소프트 로봇 공학의 전환점을 

제공 할 것으로 예상된다. 

 

Keywords : 피부형 센서, 레이저 나노 구조, 기계 지능 
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