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Abstract

Dynamics and Control Problems of Novel Aerial

Manipulation Systems with Rotor Actuation

Hyunsoo Yang

Department of Mechanical and Aerospace Engineering

The Graduate School

Seoul National University

In this thesis, we deal with dynamics and control problems of novel aerial ma-

nipulation systems with rotor actuation. Aerial manipulation systems include:

1) drone equipped with robotic arm inheriting flying capability of multi-rotor

drone while it also inherits versatile manipulation capability from robotic arm;

and 2) distributed rotor-based vibration suppression system which is devel-

oped to manipulate and transport of long flexible load by distributing scalable

modules along with the load with onboard sensing capability.

The drone-manipulator system is inherited under-actuated property of con-

ventional multi-rotor drone and a high degree of freedom of robotic manipula-

tor while the system dynamics are fully coupled between these two subsystems.

To deal with this under-actuated nonlinear dynamics, we reveal an underlying

structure of the nonlinear drone-manipulator dynamics, which can substan-

tially facilitate the control design and analysis by applying passive decomposi-

tion. We show that the Lagrange dynamics of drone-manipulator systems can

i



be completely decoupled into: 1) the center-of-mass dynamics in E(3), which,

similar to the standard drone dynamics, is point-mass dynamics with under-

actuation and gravity effect; and 2) the “internal rotational” dynamics of the

drone’s rotation and manipulator configuration, which assumes the form of

standard Lagrange dynamics of a robotic manipulator with full-actuation and

no gravity effect. Relying on this structure, we propose a novel backstepping-

like end-effector tracking control law, which can allow us to assign different

roles for the center-of-mass control and for the internal rotational dynamics

control according to task objectives.

In the second part, RVM (Robot-based Vibration Suppression Modules) is

proposed for the manipulation and transport of a large flexible object. Since

the RVM is designed to be easily attachable/detachable to the object, this

RVM allows distributing over the manipulated object so that it is scalable

to the object size. The composition of the system is partly motivated by the

MAGMaS (Multiple Aerial-Ground Manipulator System), however, since the

multirotor-drone usage is mechanically too complicated and its design is not

optimized for manipulation, thus we overcome these limitations using dis-

tributed RVMs and newly developed theory. For this, we first provide a con-

strained optimization problem of RVM design with the minimum number of

rotors, so that the feasible thrust force is maximized while it minimizes un-

desirable wrench and its own weight. Then, we derive the full dynamics and

elucidate a controllability condition with multiple distributed RVMs and show

that even if multiple, their structures turn out similar to composed with a sin-

gle multi-rotor drone. We also elucidate the optimal placement of the RVM
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via the usage of LQG (Linear Quadratic Gaussian) framework.

Keywords: Aerial Robot, Aerial Manipulation, Dynamics, Control, Optimal

Placement, Underactuation
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Chapter 1

Introduction

1.1 Motivation and Contribution

Multi-rotor drones have been researched extensively in recent years due to

their agile performance, relative-easiness to control, and affordability, with

the rapid advancements in sensors, actuators, materials, and embedded com-

puting. These multi-rotor drone, or more generally, unmanned aerial vehicles

(UAVs) or aerial robots, are also promising to extend the ground-bounded

ability of the typical (wheeled) mobile robots to the three dimensional space.

Some application examples include: remote landscape survey, aerial photog-

raphy and movie shooting, surveillance and reconnaissance, etc. Free flying

motion control problem of small-size multi-rotor aerial robots is now well es-

tablished with many strong theoretical results (e.g., [1–10]) and commercial

systems (e.g., [11, 12]). So successful has been this multi-rotor aerial robot

particularly for the aerial photography and visual inspection applications by

extending humans’ eyes to the sky.

The next step, naturally along this line of reasoning, would then be to ex-

tend humans’ hands to the sky, namely, the problem of aerial operation and
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manipulation (e.g., [13–16]), which can be useful for such applications as in-

frastructure maintenance [17], remote construction [18], object transport and

assembly [19–21], etc. To make this multi-rotor drone a truly versatile and

practically useful robotic platform, it is also desirable, if not necessary, to en-

dow them with a capability of manipulation and interaction with environmen-

t/object through some physical power change. Some results for this include: 1)

cable-suspended transport tasks using a single or multiple quadrotors [22, 23];

2) grasping using a gripper attached on aerial robots [24] and stability analysis

to prevent instability caused by inertia changing [25]; 3) avian-inspired passive

perching mechanism without no active actuation [26]; and 4) aerial manipula-

tion with a tool (e.g., screw driver) rigidly-attached on the quadrotor and its

internal dynamics stability analysis [27, 28].

The problem of employing and controlling the quadrotor with a multi-

degree-of-freedom (DOF) robotic manipulator, which would likely be one of

the promising choice platform for the aerial manipulation has been actively

studied only from few years ago with much less results available (e.g., [29–

33]). The key challenge inherent in this quadrotor-manipulator (QM) system

is that: 1) the combined QM-system dynamics, which needs to be considered

when precise/dynamic control is desirable, is very complicated and nonlinear

with total system’s DOF at least the same as the quadrotor’s 6-DOF in SE(3);

and 2) the quadrotor platform is under-actuated in its translation with the

body-fixed 1-DOF thrust force control input, although the quadrotor rotation

and the manipulator itself are typically fully-actuated. Perhaps, due to these

challenges, the majority of the available results on this QM-system rather

consider the quadrotor and the manipulator as separate systems and see their
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coupling as disturbance (e.g., [29, 30]); or do not fully take into account the

QM-system’s large-dimensional nonlinear dynamics in SE(3) and/or the issue

of under-actuation when designing/analyzing control laws (e.g., [30, 31, 33]).

The aerial manipulation is not limited to the conventional multi-rotor drone

system. In recent year, there have been many attempts to adapt distributed

rotor-based actuation to aerial manipulation by introducing novel aerial robot

platform or partially adapting the rotors to the robotic system. In [34], ODAR

(Omni-Directional Aerial Robot) is introduced to have omni-directional wrench

generation capability for aerial manipulation and LASDRA (Large-size Aerial

Skeleton System with Distributed Rotor Actuation) [35] is developed to en-

able aerial manipulation by adapting ODAR as a link while overcome limited

payload and flight time. HALO and DRAGON (dual-rotor multi-link robot

with ability of multi-DOF aerial transformation) is composed of multiple link

with joint actuation and each link does not have flying capability. Hiryu-1

and 2 also consist of parallel link mechanism and joints actuated by thrusters

and motors attached on each link. However, the above-mentioned results are

limited in rigid object manipulation. On the other hand, many large-size ob-

jects often include long/slender object, such as bar, beam, and pipe. For this

long/slender object handling, an induced torque by center-of-mass far from

the grasping location is crucial as well as its high payload. As the length of

the object gets longer, the deflection and the vibration become significant,

thus it is hard to be handled by the conventional robotic system and possibly

hazardous due to undesirable vibration.

Let us consider the problem of large-size object transport and manipulation

with aerial robot. For this, the (virtually) unlimited workspace of the aerial
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robots would be useful. However, at the same time, such construction usually

requires manipulation of large-size objects (e.g., steel bar, wood beams, etc.)

typically too heavy to carry by many usual aerial robots alone due to the in-

herent rotor-battery limitation. On the other hand, ground (mobile or fixed)

manipulators are typically of high payload, yet, their workspace (or working

height) limited. To address this challenge, the MAGMaS (Multiple Aerial-

Ground Manipulator System) was proposed in [36] as a heterogeneous system

composed of multiple ground (mobile) manipulators (with high payload, yet,

limited workspace) and aerial robots (with large workspace, yet, limited pay-

load) to collaboratively manipulate a large-size heavy object by utilizing their

capabilities in a complementary manner. The MAGMaS, of course, can be use-

ful for other applications as well, e.g., warehouse automation, manipulation of

large/heavy repair/inspection tool, etc.

The main contribution of this thesis is to reveal an underlying structure of

the nonlinear QM-dynamics, which can substantially facilitate the control de-

sign and analysis by applying passive decomposition [37–39]. More precisely,

we show that, although often dauntingly complicated due to its nonlinearity

and large-DOF, the Lagrange dynamics of the QM system, consisting of a 6-

DOF quadrotor platform andm-DOF robotic manipulator, can be decomposed

into the following two completely decoupled systems: 1) The center-of-mass

translation dynamics in E(3), which, similar to the standard quadrotor dy-

namics, is the point-mass dynamics under-actuated only with the body-fixed

thrust force input and under the effect of gravity; and 2) The (3 + m)-DOF

“internal” dynamics of quadrotor’s rotation and manipulator configuration,

which has the form of standard Lagrange dynamics of robot manipulators
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with full-actuation, yet, without any gravity effect.

Relying on this revealed structure, we also propose a novel backstepping-

like end-effector tracking control law for the QM-system, which allows us

to utilize the redundancy of the QM-system, and, thereby, to assign differ-

ent roles to the center-of-mass dynamics control (e.g., more authority during

transportation task) and that of the internal rotational dynamics (e.g., more

authority for precise end-effect control). We also perform a simulation to il-

lustrate/verify our proposed control framework for a planar QM-system with

2-DOF robotic arm. This underlying structure of the QM-system and the pro-

posed backstepping-like control framework, in fact, are equally applicable to

any vehicle-manipulator systems such as spacecraft with a multi-DOF robotic

arm or underwater vehicle equipped with robotic manipulators.

Standing upon our result on the dynamics and control of the single QM

system [40], we propose a novel hierarchical cooperative control framework for

multiple dynamic QM systems, which can endow the cooperatively-grasped

object with an user-specific target behavior according to various task objec-

tive. Our proposed control framework is hierarchical and also modular with the

following layers/sub-modules: 1) Object behavior design, which computes

the required wrench for the cooperatively-grasped object to achieve the user-

specific target behavior according to task objectives (e.g., trajectory tracking,

velocity-field following, compliant interaction, etc.); 2) Optimal coopera-

tive force distribution, which optimally assign contact force of each QM

system to cooperatively achieve the desired object behavior, while minimizing

a certain cost function and respecting the friction-cone constraints to prevent
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slippage; and 3) Individual QM system control, which extends the end-

effector position control of [40] for the admittance-type contact force control

of each QM system with unknown object stiffness model and force sensor/es-

timator [41], while also explicitly taking into account the different dynamics

characteristics of the (slower/coarse) quadrotor and the (faster/fine) manipu-

lator.

The focus of [36], however, was, on top of proposing this new class of

MAGMaS and its implementation, to propose the control framework for the

large/slender rigid object manipulation by employing the complementary ca-

pabilities and redundancy of the ground-aerial robots. In this thesis, we ex-

tend this result of [36] to the case of load manipulation with flexibility, which

is crucial for long/slender object manipulation, yet, not addressed in [36]. For

this, we first provide a rigorous modeling of the MAGMaS with the (slender)

load flexibility incorporated into that using Euler-Bernoulli beam theory. We

then propose a novel collaborative control framework for the flexible load-tip

pose tracking, where the ground manipulator provides slower nominal pose

tracking with overall load weight holding, whereas the aerial robot1 faster vi-

bration suppression with some load weight sharing. We also elucidate the issue

of controllability stemming from that the aerial robot provides less number of

actuation than that of the modes of the load flexibility; and delineate some

peculiar conditions for this vibration suppression controllability with their

physical meaning manifested.

1It is also worthwhile to mention that this aerial robot, by providing collocated load-tip
actuation, can allow us to circumvent the well-known issue of nonminimum-phase dynamics
for load-tip pose tracking control if only ground robot is employed [42, 43].
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We propose a robot-based vibration suppression modules (RVM) which is

optimally designed to manipulate the large flexible object while suppressing

its vibration. Since the RVM is easily attachable/detachable to the object, an

arbitrary number of the distributed RVMs can be adapted to various length-

/shape/weight of object. The system composition of the RVM is partly mo-

tivated by our previous result of MAGMaS (Multiple Aerial-Ground Manip-

ulator System) [44], which utilizes a single quadrotor at the flexible load-tip.

However, the quadrotor requires mechanically complicated and large payload

structure, e.g., passive rotational joint, to connect the object while allowing

free rotation. Besides, the quadrotor is optimized for flying capability in terms

of the number of the rotors and its allocation [7]. The design and distributed

actuation principles are partly inspired by ODAR (Omni-Directional Aerial

Robot) [34] and LASDRA (Large-size Aerial Skeleton System with Distributed

Rotor Actuation) [35, 45]. In these two results, the aerial robots are composed

of distributed unit modules designed to maximize control wrench for omni-

directional flying on each rigid link while the RVM is designed for vibration

suppression of flexible object with a more simplified and compact design.

We aim the role of the RVM as follows: 1) vibration suppression of the

flexible load; and 2) object weight sharing to support limited ground manipu-

lator torque. Therefore, we first provide a novel RVM design by optimizing the

thrust generation along the sagittal plane while minimizing undesirable wrench

along other directions based on contrained optimization. Here, we utilize two

rotors which is the minimum number that can generate control actuation along

E(2). Since an arbitrary number of the RVM can be utilized, we derive the

system dynamics for arbitrary number of RVM and show that the flexible load
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dynamics is composed of linear diagonal matrices even with multi-modules. In

the control problem, since the number of vibration modes and RVM can be

arbitrary and this might induce controllability issue, thus we come up with

controllability condition and elucidate its physical meaning for the distributed

RVMs thanks to dynamic structure similar to [44]. Furthermore, we provide

not only the place not to allocate the RVM based on controllability but also

the place the RVM needs to be allocated to maximize vibration suppression

capability based on controllability gramian. Experiments are performed to

demonstrate the effectiveness of the proposed theory and RVM.

1.2 Outline

The outline of this thesis is as follows. As the first part, in Chapter 2, we

introduce dynamics and control problem of a single drone-manipulator sys-

tem based on passive decompostion. Lagrange dynamics of the QM-system

is derived in Sec. 2.2 with some structure shown. An interesting/useful un-

derlying structure of the QM-dynamics, i.e., it is decomposable into the dy-

namics of the quadrotor-like center-of-mass dynamics and that of the internal

rotation similar to standard fully-actuated robot arm dynamics with no grav-

ity effect present, is revealed in Sec. 2.3 using passive decomposition [37–39].

Backstepping-like end-effector trajectory tracking control design is presented

in Sec. 2.4, In Chapter 3, dynamics and control problem of a single drone-

manipulator is extended to cooperation of multiple drone-manipulator sys-

tem. The proposed hierarchical control framework and its constituting layers

are presented in Sec. 3.3 with relevant simulation results. In the second part,
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we introduce vibration suppression of flexible load using a multi-rotor drone

in Chapter 4 and a novel rotor-based vibration suppression module in Chapter

5. Sec. 4.2 describes in depth the system at hand. In Sec. 4.3, the dynamical

model of the system, including the vibrations in the load is derived and Sec.

4.4 makes use of it to construct the control scheme. Sec. 4.5 presents realistic

simulation results which validate our approach. Sec. 5.2 explains how the RVM

is optimally designed. In Sec. 5.3, the dynamical model of the system includ-

ing the vibrations in the load is derived and Sec. 5.4 makes use of it to derive

controllability and optimal placement. Sec. 5.6 presents experimental results

which validate our approach. In Chapter 6, we summarize the contribution of

this thesis with description of possible future works.
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Chapter 2

Dynamics and Control of Single Drone-

Manipulator System

2.1 Introduction

Multi-rotor drones1 have been researched extensively in recent years due to

their agile performance, relative-easiness to control, and affordability, with the

rapid advancements in sensors, actuators, materials, and embedded comput-

ing. These quadrotors, or more generally, unmanned aerial vehicles (UAVs)

or aerial robots, are also promising to extend the ground-bounded ability of

the typical (wheeled) mobile robots to the three dimensional space. Some ap-

plication examples include: remote landscape survey, aerial photography and

movie shooting, surveillance and reconnaissance, etc. For this, many powerful

results have been reported for the motion control of quadrotors (e.g.,[1–6]).

To make this quadrotor a truly versatile and practically useful robotic plat-

form, it is also desirable, if not necessary, to endow them with a capability of

1Throughout this thesis, we limit the term ‘drone’ to the multi-rotor type drone even
though there are other types of drone including fixed-wing, VTOL (vertical takeoff and
landing, etc. It is worthwhile to note that the proposed theories in this thesis can be applied
to conventional multi-rotor drone, although we use the terminology ‘quadrotor’ mixed with
‘multi-rotor drone’.
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manipulation and interaction with environment/object through some physi-

cal power change. Some results for this include: 1) cable-suspended transport

tasks using a single or multiple quadrotors [22, 23]; 2) grasping using a grip-

per attached on aerial robots [24] and stability analysis to prevent instability

caused by inertia changing [25]; 3) avian-inspired passive perching mechanism

without no active actuation [26]; and 4) aerial manipulation with a tool (e.g.,

screw driver) rigidly-attached on the quadrotor and its internal dynamics sta-

bility analysis [27, 28].

The problem of employing and controlling the quadrotor with a multi-

degree-of-freedom (DOF) robotic manipulator, which would likely be the ul-

timate choice platform for the aerial manipulation has been actively studied

only from few years ago with much less results available (e.g., [29–33]). The

key challenge inherent in this quadrotor-manipulator (QM) system is that:

1) the combined QM-system dynamics, which needs to be considered when

precise/dynamic control is desirable, is very complicated and nonlinear with

total system’s DOF at least the same as the quadrotor’s 6-DOF in SE(3);

and 2) the quadrotor platform is under-actuated in its translation with the

body-fixed 1-DOF thrust force control input, although the quadrotor rotation

and the manipulator itself are typically fully-actuated. Perhaps, due to these

challenges, the majority of the available results on this QM-system rather

consider the quadrotor and the manipulator as separate systems and see their

coupling as disturbance (e.g., [29, 30]); or do not fully take into account the

QM-system’s large-dimensional nonlinear dynamics in SE(3) and/or the issue

of under-actuation when designing/analyzing control laws (e.g., [30, 31, 33]).
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In this chapter, applying passive decomposition [37–39], we reveal an under-

lying structure of the nonlinear QM-dynamics, which can substantially facil-

itate the control design and analysis. More precisely, we show that, although

often dauntingly complicated due to its nonlinearity and large-DOF, the La-

grange dynamics of the QM system, consisting of a 6-DOF quadrotor platform

and m-DOF robotic manipulator, can be decomposed into the following two

completely decoupled systems:

• The center-of-mass translation dynamics in E(3), which, similar to the

standard quadrotor dynamics, is the point-mass dynamics under-actuated

only with the body-fixed thrust force input and under the effect of grav-

ity; and

• The (3 +m)-DOF “internal” dynamics of quadrotor’s rotation and ma-

nipulator configuration, which has the form of standard Lagrange dy-

namics of robot manipulators with full-actuation, yet, without any grav-

ity effect.

Relying on this revealed structure, we also propose a novel backstepping-

like end-effector tracking control law for the QM-system, which allows us

to utilize the redundancy of the QM-system, and, thereby, to assign differ-

ent roles to the center-of-mass dynamics control (e.g., more authority during

transportation task) and that of the internal rotational dynamics (e.g., more

authority for precise end-effect control). We also perform a simulation to il-

lustrate/verify our proposed control framework for a planar QM-system with

2-DOF robotic arm. This underlying structure of the QM-system and the pro-

posed backstepping-like control framework, in fact, are equally applicable to

12
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Figure 2.1: Quadrotor with m-DOF robot arm: p = (x, y, z) is quadrotor’s
center position, pe = (xe, ye, ze) end-effector position, and λ thrust force

input.

any vehicle-manipulator systems such as spacecraft with a multi-DOF robotic

arm or underwater vehicle equipped with robotic manipulators.

2.2 Lagrange Dynamics of Quadrotor-Manipulator

System

Consider a quadrotor system in SE(3) with a m-DOF serial-link robot arm

as shown in Fig. 2.1. The configuration of this quadrotor-manipulator (QM)

system can then be given by

q := [p;φ; θ] ∈ <n, n := 6 +m

13



where p = (x, y, z)T ∈ <3 is the quadrotor’s geometric (as well as mass)

center position in the inertial NED-frame, φ = (φr, φp, φy)
T ∈ <3 is the rol-

l/pitch/yaw angles, and θ = (θ1, · · · θm)T ∈ <m is the joint angles of the

robotic arm.

Define also the translation and rotation Jacobians [46], Jvi(r) ∈ <3×n and

Jwi(r) ∈ <3×n, s.t.,

vj = Jvj (r)q̇, wj = Jwj (r)q̇ (2.1)

for j = 0, 1, ...,m, where vj , wj ∈ <3 are respectively the translation velocity

of the mass center and the angular velocity of the j-th link, with j = 0 rep-

resenting the quadrotor platform and j = 1, ...,m each link of the robot arm.

Here, note that the Jacobians Jvj , Jwj are only functions of (fully-actuated)

r := [φ; θ] ∈ <3+m and not (under-actuated) p = (x, y, z).

Using (2.1), we can also construct the QM-system’s kinetic energy κ :=

(1/2)q̇TM(q)q̇ with the inertia matrix M(q) ∈ <n×n as given by:

M(r) :=

m∑
j=0

[
mjJ

T
vjJvj + JTwjRjIjR

T
j Jwj

]

where mj > 0 and Ij > 0 are the mass and the moment of inertia of the

j-th link about their center of mass expressed in their body-fixed frame [46].

Here, note that this M(q) is again only a function of r and not of p, i.e., the

QM-system dynamics is symmetric w.r.t. p if no gravity is present. We can

14



then easily see that the inertia matrix M(r) assumes the following structure:

M(r) =

 Mp Mpr(r)

MT
pr(r) Mr(r)

 (2.2)

where Mp = mI3 ∈ <3×3, where m :=
∑m

j=0mj > 0 is the total mass of the

QM-system, with mo,mi being the mass of the quadrotor and the j-th arm

link.

The QM-system is also under-actuated, that is, r = [φ; θ] ∈ <3+m is fully-

actuated with the quadrotor’s roll/pitch/yaw torque inputs and that for each

link of the robot arm, while p = (x, y, z)T ∈ <3 is under-actuated with only

the thrust force input λ, whose direction is fixed to the quadrotor’s body-fixed

D-direction. More precisely, we can write the control action for the QM system

s.t.,

τ = [−λRoe3; τφr ; τφp ; τφy ; τ1; ..., τm] ∈ <n (2.3)

where λ ∈ < is the thrust force input, Ro(φr, φp, φy) ∈ SO(3) is the rota-

tion matrix of the quadrotor parameterized by (φr, φp, φy), e3 = [0; 0; 1] is a

basis vector representing the D-direction, and (τφr , τφp , τφy) and τi ∈ < are

respectively the quadrotor’s roll/pitch/yaw torques and that of each axis of

the manipulator.

The quadrotor-manipulator system is also under the effect of gravity along
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the inertial frame’s D-direction. We can write this gravitational potential en-

ergy by

ϕ(q) := −
m∑
j=0

mjgzj (2.4)

where zi ∈ < is the D-directional position of the j-th link of the QM-system

(with ż > 0 implying going down along the D-direction). Using the kinetic

energy κ := (1/2)q̇TM(r)q̇ and this gravitational potential energy ϕ(q), we

can obtain the Lagrange dynamics of the QM-system s.t.,

M(r)q̈ + C(r, ṙ)q̇ + g(q) = τ + f (2.5)

where C(r, ṙ) ∈ <n×n is the Coriolis matrix with Ṁ−2C being skew-symmetric,

g(q) = ∂ϕ(q)/∂q ∈ <n is the gravitational force, τ ∈ <n is the (under-

actuated) control action, and f ∈ <n is the external force. The inertia matrix

M(r) in (3.2) has the following property, which will be instrumental for the

ensuing development on the geometric structure of (3.2).

Proposition 1. If we write Mpr(r) in (2.2) s.t.,

Mpr(r) =


cxφr cxφp cxφy cx1 · · · cxm

cyφr cyφp cyφy cy1 · · · c
y
m

czφr czφp czφy cz1 · · · czm


the gravity force vector g(q) can also be written as

gT (q) = −[0, 0,m, czφr , c
z
φp , c

z
φy , c

z
1, · · · , czm]g (2.6)
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Proof: Recall that the ij-th component of M(r) is given by ∂2κ
∂q̇i∂q̇j

. Therefore,

with Mp = diag[m,m,m], the assertion to prove is equivalent to

∂2κ

∂ż∂q̇i
= −1

g

∂ϕ

∂qi

Note also that the Jacobians Jvj and Jwj have the following structures:

Jvj (r) =


1 0 0

0 1 0 Jr1vj · · · J
r3+m
vj

0 0 1

 (2.7)

Jwj (r) =


0 0 0

0 0 0 Jr1wj · · · J
r3+m
wj

0 0 0


Therefore,

∂2κ

∂ż∂q̇i
=

1

2

∂2

∂ż∂q̇i

m∑
j=0

mj q̇
TJTvjJvj q̇ (2.8)

since terms with Jwj in the kinetic energy κ do not contain ż, thus, will

disappear by the partial differentiation w.r.t. ż. Moreover, from (2.7), we have

Jvj q̇ =


ẋ

0

0

+


0

ẏ

0

+


0

0

ż

+

3+m∑
k=1

Jrkvj ṙk
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thus, we can write: with Jqivj ∈ <3 being the i-th column vector of Jvj ,

∂2κ

∂ż∂q̇i
=

∂2

∂ż∂q̇i


m∑
j=0

n∑
i=1

mj


0

0

ż


T

Jqivj q̇i

 =
m∑
j=0

mje
T
3 J

qi
vj

since, again, only the terms both with ż and q̇i can survive the operation ∂2

∂ż∂q̇i
.

On the other hand, time derivative of the gravity potential ϕ(q) in (2.4) can

be computed s.t.,

dϕ

dt
=
∂ϕ

∂q
q̇ = −

m∑
j=0

mjgżj = −
n∑
i=1

m∑
j=0

mjge
T
3 J

qi
vj q̇i

where we use żj = eT3 Jvj q̇ = eT3
∑n

i=1 e
T
3 J

qi
vj q̇i. This then implies that

∂ϕ

∂qi
= −

m∑
j=0

mjge
T
3 J

qi
vj

which completes the proof.

2.3 Passive Decomposition of Quadrotor-Manipulator

System

We apply passive decomposition [37, 38] to exhibit a peculiar underlying struc-

ture of the QM-system dynamics, which can be used in control design or analy-

sis purpose. This property is in fact also shared by many platform-manipulator
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systems (e.g., spacecraft with robotic manipulator, thrust-propelled underwa-

ter vehicle with robot arm, etc). Following [39], we first define the shape map

h(q) := r, that is, the “internal rotation” with full-actuation. Then, we can

split the tangent space of the QM-system s.t.,

∆> := {q̇ ∈ <n|Lq̇h(q) = Lq̇r = 0} = null(∂r/∂q)

∆⊥ := {v ∈ <n|vTM(q)ξ = 0,∀ξ ∈ ∆>}

where Lq̇h(q) is the Lie derivative of h(q) along q̇. This then implies that the

tangent space splits s.t.,

TqM = ∆> ⊕∆⊥ (2.9)

where 1) ∆> is called tangential distribution (i.e., parallel to the level set of

h(q)) and the QM-system dynamics projected on this is called locked system

dynamics, whereas 2) ∆⊥ is called normal distribution (i.e., orthogonal com-

plement of ∆> w.r.t. the inertia matrix M(q)) and the QM-system dynamics

on this ∆⊥ is called shape system dynamics.

In coordinates, following [39], since ∆> can be identified by ṗ while ∆⊥

should span the tangent space of r, we can write this decomposition (2.9) s.t.,

q̇ =
[

∆> ∆⊥

] νL

ṙ

 :=

 I3 T (r)

0 In−3


︸ ︷︷ ︸

=:S(r)

ν (2.10)

where ∆> = [I3; 0] ∈ <n×3 and ∆⊥ = [T (r); In−3] ∈ <n×n−3 are matrices
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respectively identifying ∆> and ∆⊥, and νL ∈ <3, which describes the center-

of-mass motion of the QM-system to be shown below.

Lemma 1. If we write T (r) s.t.,

T (r) =


axφr axφp axφy ax1 · · · axm

ayφr ayφp ayφy ay1 · · · a
y
m

azφr azφp azφy az1 · · · azm


majri = −cirj , where cirj is the ji-th element of Mpr(r) in Prop. 1.

Proof: From the passive decomposition (2.9), the tangential and the normal

distributions are orthogonal with each other w.r.t. M(q) metric, that is,

[I3 0]M(r)

 T (r)

In−3

 = MpT (r) +Mpr = 0

implying that

T (r) = −M−1
p Mpr

where Mp = mI3 is a positive and diagonal definite matrix.

Applying this passive decomposition to (3.2), we now reveal an underlying

structure of the QM-system dynamics, namely, its dynamics can be completely

decoupled into the translational center-of-mass dynamics of νL and the inter-

nal rotational dynamics of r, where the former has the form of the thrust

propelled vehicle dynamics (e.g., quadrotor) with the under-actuation and the

gravity effect showing up; whereas the latter has the form of the usual La-

grange dynamics of robotic manipulator with full-actuation.
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Proposition 2. Applying the passive decomposition (2.9), we can transform

the QM-system dynamics (3.2) into:

MLν̇L + gL = τL (2.11)

ME(r)r̈ + CE(r, ṙ)ṙ = τE (2.12)

where

1. Locked system (2.11) describes the center-of-mass dynamics of the QM-

system with νL = ṗCoM, ML = mI3, gL(q) = −[0; 0;mg] ∈ <3 and

τL = λRo(φ)

2. Shape system (2.12) describes the rotational dynamics of r of the QM-

system with positive and symmetricME ∈ <(3+m)×(3+m), skew-symmetric

ṀE − 2CE and fully-actuated τE ∈ <3+m.

Proof: The assertions on ML,ME and the skew-symmetricity of ṀE − 2CE

can be easily shown if we rewrite the dynamics (3.2) using q̇ = Sν (and

q̈ = Sν̇ + Ṡν) with

 ML 0

0 ME

 := STM(r)S

 CL CLE

CEL CE

 := ST [M(r)Ṡ + C(r, ṙ)S]

with ṀL−2CL and ṀE−2CE both being skew-symmetric, and CEL = −CTLE .

See [37] for more details.
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The assertions on τL, τE can also be shown by seeing

[τL; τE ] := ST (r)τ

where τ is given in (3.1) with τφr , τφp , τφy and τi, i = 1, 2, ...,m, all arbitrarily

assignable. The assertion on gL(q) and the absence of the gravity in the shape

dynamics (2.12) can be proved from

[gL, gE ] := ST (r)g(q)

where qL =
[
I3 03×(3+m)

]
g(q) = −[0; 0;mg] from (2.6); and also qE =[

T T (r) I3+m

]
g(q) = 0 with the i-th component of qE given by

(axri , a
y
ri , a

z
ri , 0, ..., 0, 1, 0, ..., 0︸ ︷︷ ︸

i-th 1

)g(q) = −mgazi − czri = 0

from Prop. 1 with the expression of g(q) given in (2.6).

The center-of-mass position is given by

mpCoM = mop+

m∑
j=1

mjpj

where p is the quadrotor’s center-of-mass and pj is that of the j-th link of the

robot arm. Then,

mṗCoM = moṗ+

m∑
j=1

mj ṗj =

m∑
j=0

mj

n∑
i=1

Jqivj q̇i

22



from (2.1). If we extract only the x-component of ṗCoM, we have

mṗxCoM =
n∑
i=1

m∑
j=0

mje
T
1 J

qi
vj q̇i = mẋ+

3+m∑
i=1

cxri ṙi

where we use the facts that
∑m

j=0mje
T
1 J

qi
vj = m and eT1 J

qi
vj = 0 for i = 2, 3. If

we collect the similar results for mṗyCoM and mṗzCoM and use Lem. 1, we can

then achieve

mṗCoM = mṗ−mT (r)ṙ

which implies that ṗCoM = νL, since ṗ = νL + T (r)ṙ from (2.10).

Lastly, note that the first row of the Lagrange dynamics (3.2) can be written

as

mẍ+
3+m∑
i=1

cxri r̈i +
n∑
i=1

n∑
j=1

1

2

(
∂cxj
∂qi

+
∂cxi
∂qj
−
∂cij
∂x

)
q̇iq̇j = τ1

where τ1 is the first component of τ , cxj = m1j and cij = mij , and the term∑n
i,j=1

1
2

(
∂cxj
∂qi

+
∂cxi
∂qj
− ∂cij

∂x

)
q̇iq̇j is the Coriolis term [46], where ∂cij/∂x = 0,

since M(r) is a function of r only. We can further simplify

n∑
i,j=1

1

2

(
∂cxj
∂qi

+
∂cxi
∂qj

)
q̇iq̇j =

n∑
i,j=1

∂cxj
∂qi

q̇iq̇j =

3+m∑
i=1

dcxrj
dt

ṙj

due to the symmetry in i and j, cxj = 0 for k = 2, 3 (since Mp = mI3) and

∂cj/∂qi = 0, i = 1, 2, 3 from M(r) being a function of only r. Then, the above

dynamics equation can be rewritten as

mẍ+
3+m∑
i=1

cxri r̈i +
3+m∑
i=1

dcxri
dt

ṙi = τ1 (2.13)
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with a similar also hold for the dynamics of ÿ, z̈.

Recall from (2.10) with Lem. 1 that

mνxL = mẋ+

3+m∑
i=1

cxri ṙi

the differentiation of which with (2.13) then becomes

mν̇xL = τ1 (2.14)

with a similar hold for νyL and νzL. This then means that the center-of-mass

dynamics is given by the locked system dynamics (2.11) with no Corilois terms

therein (i.e., CL = 0 and CLE = 0). This also means that CEL = −CTLE = 0

as well (see [37] for more details on this condition). This completes the proof.

Therefore, although often seemingly overwhelmingly complicated in its orig-

inal Lagrange dynamics form (3.2), the QM-system dynamics possesses the un-

derlying structure as manifested in (2.11)-(2.12) with the following interesting

properties:

• It is in fact a combination of the center-of-mass translation dynamics of

νL and the internal rotational dynamics of r;

• The νL-dynamics is, similar to, e.g., the quadrotor dynamics [5], just a

point-mass dynamics with body-fixed thrust force input;

• The ṙ-dynamics is similar to the standard Lagrange dynamics of the

fully-actuated serial-link robot manipulator;

24



• Gravity effect and the under-actuation affect only along the νL-dynamics

direction and completely decoupled from the ṙ-dynamics;

• The νL-dynamics and the ṙ-dynamics are completely decoupled from

each other, with neither acceleration coupling nor Coriolis coupling.

Note also that this underlying structure (2.11)-(2.12) is universally applica-

ble to many practically important systems, which consist of a moving/flying

platform with robotic arm attached on it (e.g., spacecraft with robotic ma-

nipulator, thrust propelled underwater vehicle with robot arm, etc.). This de-

composition (2.11)-(2.12) would also facilitate control design procedure, since,

for instance, we can design control laws for the center-of-mass motion and the

internal rotational motion, separately and individually. In the next Sec. 2.4,

we present a trajectory tracking control framework, whose design is facilitated

by our passive decomposition result as provided above.

2.4 Trajectory Tracking Control Design

The structure identified above would facilitate control design for otherwise

typically very complicated dynamics of the QM-system (3.2). Although other

control objectives would be possible, here, as a first step to utilize this under-

lying structure of the QM-system, we focus on the trajectory tracking of the

end-effector, which is perhaps the most basic control objective among others.

For this, let us first denote by pe := (xe, ye, ze) ∈ <3 the end-effector Cartesian

position expressed in the inertial NED-frame. We can then establish a forward

kinematic relation between pe and q, and, furthermore, can obtain its Jacobian
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relation in the following form s.t.,

ṗe =
[
I3 A(r)

]
q̇ = νL +B(r)ṙ (2.15)

where A(r) ∈ <3×(3+m) and we use q̇ = S(r)ν in (2.10) with B(r) := A(r) +

T (r).

For the trajectory tracking of the end-effector, we then want ṗe = ṗde−k(pe−

pde) where k > 0 is a constant control gain. From this relation, we can further

define the desired value for νdL s.t.,

νdL := pde − k(pe − pde)−B(r)ṙ (2.16)

Of course, in general, νL 6= νdL. Define eL := νL − νdL. Then, using (2.15), we

can obtain

ėp + kep = eL (2.17)

where ep := pe − pde . Here, note that, if eL → 0, ep → 0 exponentially. The

above relation then naturally give a rise to the following backstepping-like

control generation equation.

Theorem 1. Consider the locked and shape systems (2.11)-(2.12). Then, we

will have (ep, eL)→ 0 exponentially, if we set τL, τE s.t.,

τL+MLBr̈ = (2.18)

− γep − αeL + gL +ML[p̈d − λėp −
dB

dt
ṙ]
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where γ, α, λ > 0 are constant.

Proof: Define

V1 =
1

2
eTp ep

Then, from (2.17), we have

dV1

dt
= −keTp ep + eTp eL

Following the backstepping procedure, let us augment V1 s.t.,

V2 =
1

2
eTp ep +

1

2γ
eTLMLeL (2.19)

with γ > 0. Then, Time derivative of V2 is represented as following

dV2

dt
= −keTp ep + eTp eL +

1

γ
eTLMLėL

= −keTp ep + eTp eL +
1

γ
eTL[τL − gL(q)−MLν̇

d
L]

= −keTp ep +
1

γ
eTLMLBM

−1
E [τE − CE ṙ]

+
1

γ
eTL[γep + τL − gL −ML(p̈d − kėp −

dB

dt
ṙ)]

from (2.11) and (2.16), where the term M−1
E (τE−CE ṙ) = r̈ comes from (2.12).

Thus, by plugging (2.18) into this, we can obtain

dV2

dt
= −keTp ep −

α

γ
eTLeL ≤ 0 (2.20)

implying that (ep, eL)→ 0 exponentially.
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Note that the control generation equation (2.18) would be in general a re-

dundant equation, that is, even though we have 1-DOF control τL = λRo(φ),

we also have (3 +m)-DOF control τE . This then further implies a possibility

to assign control actions across τL and τE depending on the task objective. For

instance, if the task is simply a transport, it would be more proper to assign

more control action on τL, while making that for τE only complementary. Or,

if the task is a precise motion control with the platform almost stationary, τL

would need to compensate for the gravity gL(q), while the other precise mo-

tion control action is assigned to τE . How to assign (and consequently design)

control actions for τL and τE , given a task objective, is a very interesting topic

and we spare it for future research.

Here, note that, due to the issue of under-actuation, we cannot assign τL

arbitrarily. One way to choose τL = λRo(φ) for the end-effector trajectory

tracking task is to choose λ, φd s.t.,

τL = λRo(φd) (2.21)

= γep − αeL +GL +ML[p̈d − λėp −
dB

dt
ṙ − ζ(r)]

where ζ(r) is a function to encode a certain sub-task for r-motion under the

end-effector trajectory tracking, whereas the inclusion of dB
dt ṙ is to avoid a

certain undesirable behavior incurred due to internal dynamics [27, 28] (e.g.,

r → 0 even with (ep, eL) → 0: the topic of this internal dynamics is beyond

the scope of this thesis and will be reported in a future publication).
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Figure 2.2: Snapshots of end-effector trajectory tracking of a planar
quadrotor with 2-DOF arm with error convergence. Here, η1 = φ + θ1 + θ2

and η2 = φ+ θ1

We also choose τE s.t.,

MLB(r)r̈ = MLB(r)[τE − CE(r, q̇)ṙ] = (2.22)

− γep − αeL + gL +ML[p̈d − λėp −
dB

dt
ṙ]− τL

where τL = λRo(φ) (not λRo(φd)). This then means that, even if τL, due to

the under-actuation, does not precisely satisfy its control generation equation

(3.7), the condition (2.18) is still ensured and so is the exponential convergence
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of (ep, eL)→ 0. Now, suppose that the τL-generation (3.7) is achieved. Then,

from (2.18), we have

Br̈ = B(τE − CE ṙ) = ζ(r) (2.23)

This then implies that ζ(r) can encode a certain sub-task objective for the

r-motion while still enforcing the end-effector trajectory tracking control. One

such a sub-task example is

ζ(r) = B{r̈d − kd(ṙ − ṙd)− kp(r − rd)} (2.24)

to drive r → rd while enforcing end-effector tracking. We may also include

other sub-task objectives in this ζ(r) (e.g., maximization of manipulability),

the details of which will be reported in a future publication. Note also that

B(r) ∈ <3×(3+m) in the τE-control generation equation (3.8) is a fat matrix.

That means that B(r) assumes a non-trivial nullspace, and any motion in that

nullspace can be used to achieve another control objective in addition to the

trajectory tracking and the sub-task for the r-motion, although, in this case,

this sub-task will be limited only to the motion outside that nullspace.

We apply this control law to the end-effector trajectory tracking control

for a quadrotor with 2-DOF arm, whose motion is constrained on its sagital

plane, and the result is shown in Fig. 2.2, where the trajectory is given by xde =

4 sin t/5, yde = −2.5 sin(t/4) and the sub-task desired manipulator configura-

tion rd is given as φ+θ1 +θ2 = −2π/3+0.6 sin t/6, φ+θ1 = −π/3+0.3 sin t/5.

The null-space motion as given by φ̇ = −θ̇1 is used to attain the desired pitch

angle φd to align τL according to (3.7). We also perform another simulation,

30



−0.2 0 0.2 0.4 0.6 0.8
−0.8

−0.6

−0.4

−0.2

0

0.2

x−position(m)

z
−

p
o
s
it
io

n
(m

)

quadrotor trajectory

0 10 20 30 40 50 60
−10

−5

0
force vs time

time(sec)

fo
rc

e(
N

)

Figure 2.3: Snapshots of the quadrotor-manipulator system under
admittance-type force control with force profile.

where, assuming that a force sensor is available, an admittance-type force con-

trol is implemented for the end-effector with a visco-elastic virtual wall. See

Fig. 2.3 for the result.
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2.5 Conclusion

In this chapter, we reveal a certain underlying structure of the nonlinear La-

grange dynamics of the quadrotor-manipulator (QM) system, that is, its dy-

namics, although often overwhelmingly complex, can be completely split into:

1) the quadrotor-like center-of-mass dynamics in E(3) with all under-actuation

and gravity effect; and 2) the “internal” dynamics of quadrotor’s rotation and

the manipulator configuration in the form of standard Lagrange dynamics with

full actuation and no gravity effect. Relying on this structure, we propose a

backstepping-like end-effector trajectory tracking control law, which allows for

different control authority for each of these systems according to task objec-

tives by exploiting the redundancy inherent in the system. Simulation using a

planar quadrotor with a 2-DOF arm for trajectory tracking and force control

is also performed to verify the proposed theoretical framework.
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Chapter 3

Cooperative Hierarchical Control of

Multiple Drone-Manipulator Systems

3.1 Introduction

The multi-rotor drone platform has attracted extensive attention from re-

searchers in the academia and the industry alike, with many strong results pro-

posed particularly for the motion control of the quadrotors [2–5, 47]. Although

many number of useful applications (e.g., aerial photography, surveillance, en-

tertainment, etc.), this pure motion control of the quadrotor is restricted to

“passive tasks” with no physical interaction with objects or external envi-

ronments, and we believe that, to be truly a versatile robotic platform, it is

necessary to endow this quadrotor platform with the ability of manipulation

and/or physical interaction.

Some attempts have been made along this line, particularly utilizing simple

interacting/manipulating mechanisms to circumvent the quadrotor’s limited

payload (typically few hundreds grams), e.g.,: 1) operation using a simple

un-actuated tool (e.g., screw-driver) attached on the quadrotor [27, 28]; 2)
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operation using a simple gripper attached on the quadrotor[24]; and 3) payload

transport using cable attached to the quadrotor was proposed in [23]. Although

promising in terms of its mechanical simplicity and light weight, such simple

tool, gripper or cable, yet, can only provide limited manipulation capability

due to the lack of their actuation.

Aiming for dexterous aerial manipulation, quadrotor-manipulator (QM) sys-

tems have been recently considered (e.g., [29–33, 48]). See Fig. 2.1. One of

the key challenges in deploying this QM system is that its dynamics is fairly

complicated with large degree-of-freedom (DOF) and the nonlinear dynamic

quadrotor-manipulator coupling, while the control design itself is also hin-

dered by the under-actuation of the quadrotor platform. Perhaps, due to this

difficulty, majority of the QM system control results either considered the

quadrotor and the manipulator separately with their dynamic coupling con-

sidered as disturbance (e.g., [29, 30]); or simplified the QM system to be fully-

actuated kinematic/dynamic systems while not explicitly taking into account

the quadrotor’s under-actuation into their control design (e.g., [31, 48]). To

address this dynamic complexity, in [40], we revealed that, albeit seemingly

complicated, the QM system dynamics is in fact composed of the completely-

decoupled centroid translation dynamics and the internal (or shape) dynamics

(of the quadrotor’s rotation and the manipulator’s joint angles), with the for-

mer assuming the form of the standard under-actuated quadrotor dynamics

and the latter the form of the standard fully-actuated robot dynamics (with

no gravity). Exploiting this decomposition, in [40], we could also design a

backstepping end-effector tracking control in a fairly straightforward fashion.

This QM system, yet, if deployed alone, would still suffer from the problem
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of limited payload (e.g., for AscTecr Pelican with 500g manipulator, remain-

ing payload would be only around 100g). Multiple cooperative QM systems

would then resolve this payload problem while also providing redundancy and

manipulability unattainable by a single QM system. Results on these multiple

cooperative QM systems, however, are very rare, perhaps due to the afore-

mentioned dynamics complexity of even a single QM system. In fact, to our

knowledge, all the results on aerial cooperative manipulation have been re-

stricted to the quadrotors equipped only with simple tool, gripper or cable

with some of them even assuming the quadrotors to be quasi-static (e.g., [49],

[22, 50] , [51]).

In this thesis, standing upon our recent result on the dynamics and control

of the single QM system [40], we propose a novel hierarchical cooperative

control framework for multiple dynamic QM systems, which can endow the

cooperatively-grasped object with an user-specific target behavior according

to various task objective. Our proposed control framework is hierarchical and

also modular with the following layers/sub-modules (see Fig. 3.1):

• Object behavior design, which computes the required wrench for the

cooperatively-grasped object to achieve the user-specific target behav-

ior according to task objectives (e.g., trajectory tracking, velocity-field

following, compliant interaction, etc.);

• Optimal cooperative force distribution, which optimally assign

contact force of each QM system to cooperatively achieve the desired

object behavior, while minimizing a certain cost function and respecting

the friction-cone constraints to prevent slippage; and
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• Individual QM system control, which extends the end-effector posi-

tion control of [40] for the admittance-type contact force control of each

QM system with unknown object stiffness model and force sensor/esti-

mator [41], while also explicitly taking into account the different dynam-

ics characteristics of the (slower/coarse) quadrotor and the (faster/fine)

manipulator.

3.2 Preliminary

3.2.1 Dynamics Modeling of QM System

In this chapter, we deal with the cooperation of N QM systems, each with

multi-DOF serial-link manipulator. See Fig. 2.1. The configuration of a single

QM system can then be given by

q := [p;φ; θ] ∈ <n, n := 6 +m

where p = [x; y; z] ∈ <3 is the quadrotor platform’s center-of mass in the

inertial NED-frame, φ = [φr;φp;φy] ∈ <3 is the roll/pitch/yaw angles of the

quadrotor, and θ = [θ1; · · · ; θm] ∈ <m is the joint angles of the manipulator.

The QM-system is under-actuated, that is, the control action for the QM-

system is given by

τ = [−λRe3; τφr ; τφp ; τφy ; τ1; ...; τm] ∈ <n (3.1)
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where λ ∈ < is the thrust force, R(φr, φp, φy) ∈ SO(3) is the rotation matrix

of the quadrotor parameterized by (φr, φp, φy), e3 = [0; 0; 1] is a basis vector

representing the D-direction, and (τφr , τφp , τφy) and τi ∈ < are respectively

the quadrotor’s roll/pitch/yaw torques and that of each manipulator joints.

r = [φ; θ] ∈ <3+m is fully-actuated with the torque input (τφr , τφp , τφy) and τi,

while p = [x; y; z] ∈ <3 is under-actuated with only the thrust force input λ,

whose direction is fixed to the quadrotor body-fixed D-direction.

From the kinetic energy κ = 1
2 q̇
TM(r)q̇, where M(r) ∈ <n×n is inertia

matrix, and the gravitational potential energy ϕ(q), Lagrange dynamics of the

QM-system is given by

M(r)q̈ + C(r, ṙ)q̇ + g(r) = τ + f (3.2)

where C(r, ṙ) ∈ <n×n is the Coriolis matrix with Ṁ−2C being skew-symmetric,

g(q) = ∂ϕ(q)/∂q ∈ <n is the gravitational force, τ ∈ <n is the control action

(3.1), and f ∈ <n is the external disturbance. Note that inertia matrix M(r)

is only a function of r due to symmetry in E(3), thus dynamics is symmetric

w.r.t. p if no gravity is present.

3.2.2 Dynamics Decomposition and Control of QM System

In [40], we showed that the QM system dynamics (3.2) is in fact composed of

the following two decoupled dynamics:

mLp̈L + gL = τL + fL (3.3)

ME(r)r̈ + CE(r, ṙ)ṙ = τE + fE (3.4)
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where pL ∈ <3 is the center-of-mass position of the total QM system with

mL > 0 being its mass; r = [φ; θ] is the internal rotation withME(r), CE(r, ṙ) ∈

<(3+m)×(3+m) being its inertia and Coriolis matrices respectively with skew-

symmetric ṀE − 2CE ; gL ∈ <3 is the gravity vector, τL = −λRe3 ∈ <3 and

τE ∈ <3+m are the (under-actuated) thrust input for pL and the fully-actuated

control for r; and fL ∈ <3, fE ∈ <3+m are transformed external disturbances.

This dynamics decomposition (3.3)-(3.4) possesses the following remarkable

properties: 1) the two dynamics are completely decoupled from each other with

no inertial, Coriolis and gravity couplings; 2) the center-of-mass pL dynamics

(3.3) has the form of the standard under-actuated quadrotor dynamics with

τL = −λRe3; 3) the internal rotation dynamics (3.4) has the form of the

standard fully-actuated manipulator dynamics; and 4) gravity effect shows up

only in (3.3) and not in (3.4). This decomposition structure (3.3)-(3.4) turns

out to hold for general vehicle-manipulator systems (e.g., underwater ROV

with arm, space robot equipped with manipulator, etc.). This decomposition

(3.3)-(3.4) also generalizes the concept of virtual manipulator in [52] to the

case with the gravity.

In [40], exploiting the dynamics decomposition (3.3)-(3.4). we proposed a

trajectory tracking control for the QM system’s end-effector position pe ∈ <3,

which can be written as

ṗe = ṗL +B(r)ṙ (3.5)

where pL and r are respectively the QM system center-of-mass position and

the internal rotation, whose dynamics are decoupled in (3.3)-(3.4), and B(r) ∈
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<3×(m+3) is a Jacobian-like matrix from ṙ to ṗe with the inertial parame-

ters embedded in it. Then, differentiating (3.5) and individually incorporating

(3.3)-(3.4), in [40], we could design the control generation equation to achieve

pe → pde s.t.,

τL +mLBM
−1
E [τE − CE ṙ] =

−γep − αeL + gL +mL[p̈de − kėp −
dB

dt
ṙ] (3.6)

where γ, α, k > 0 are control gains, ep := pde − pe, and eL := ṗdL − ṗL with

ṗdL := ṗde + k(pde − pe) − B(r)ṙ. Satisfying this control equation (3.6) then

guarantees that (ep, eL)→ 0 exponentially [40].

In the control generation equation (3.6), τL = −λRe3 cannot be arbitrarily

assigned due to the under-actuation. However, τE ∈ <m+3 is fully-actuated,

thus, similar to the case of redundancy resolution, can be utilized to satisfy

(3.6) even with the under-actuated τL. Exploiting this redundancy, in [40], we

suggest to allocate the control to τL and τE s.t.,

τdL = −γep − αeL + gL +mL[p̈de − kėp − dB
dt ṙ − ζ(r)] (3.7)

mLBM
−1
E [τE − CE ṙ] (3.8)

= −γep − αeL + gL +mL[p̈de − kėp − dB
dt ṙ]− τL

where, in (3.7), τdL is the desired thrust input, whereas, in (3.8), τE is set to

satisfy the control equation (3.6) even if τL 6= τdL due to the under-actuation,

while τE in the nullspace of BM−1
E is utilized to align the quadrotor ori-

entation to that of τdL. Also, in steady-state with τL → τdL, we have, from
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(3.7)-(3.8), mLB(r)r̈ → ζ(r), which can encode a certian sub-task (e.g., sin-

gularity avoidance, etc.). This control allocation (3.7)-(3.8) then allows us to

achieve the end-effector trajectory tracking pe → pde even in the presence of

under-actuation with τL → τdL and the steady-state sub-task ζ(t).

For our hierarchical cooperative control framework, in Sec. 3.3, we will ex-

tend this position control (3.6) to enable each QM system to exert their desired

contact force by using (uncertain) object stiffness model and force sensing/es-

timator, while also explicitly incorporating slower/coarse quadrotor dynamics

and faster/fine manipulator dynamics.

3.3 Hierarchical Control Framework for Multiple

QM Systems

For the cooperative control of multiple QM systems, here, we adopt an hier-

archical and modular approach, where an hierarchy is constructed from the

highest-level task (i.e., object behavior design such as object transport or com-

pliant interaction between the grasped object and external environment) to the

middle-level task (i.e., optimal distribution of the resultant object wrench for

generating the target object behavior to each QM system’s end-effector) and to

the lowest-level task (i.e., individual QM system admittance-type end-effector

force control to realize the optimally-assigned contact force), while also each

layer can be modified/replaced according to task objectives. See Fig. 3.1. In

the following, we will discuss each component of this hierarchical cooperative

control framework in details.
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Figure 3.1: Hierarchical cooperative control framework of multiple QM
systems

3.3.1 Object Behavior Design

As stated above, depending on the task objective, the cooperatively-grasped

object should exhibit a certain desired behavior such as trajectory tracking,

compliant interaction, etc. The goal of the object behavior design block of our

proposed control framework is to determine the object wrench to achieve the

designated target behavior of the object. For this, we assume that the grasped

object is a 6-DOF rigid-body, whose dynamics is given by:

mop̈o +mog = fo + fext

Iẇo + wo × Iowo = τo + τext

where mo ∈ <, Io ∈ <3×3 are the mass and moment of inertia of the object,

po, wo ∈ <3 are its position and angular velocity, fo, τo ∈ <3 are the resultant

force and torque exerted by the N QM systems’ end-effectors, and fext, τext ∈

<3 are its interaction force/torque with external environments.

We can then design fo and τo to achieve some desired behavior of the grasped

object. For instance, impedance interaction at the object center-of-mass with
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scaled apparent inertia with rotational spring behavior can be achieved by

fo = αfext +mog +mop̈
d
o +D(ṗdo − ṗo) +K(pdo − po)

τo = −γwo − σ[RTdRo −RTo Rd]∨

where α is to scaling the apparant mass of the object at its center-of-mass,

fext is external force which may be obtained by force sensor or disturbance ob-

server [41], pdo ∈ <3 is the desired object trajectory, D,K ∈ <3×3 are the sym-

metric and positive-definite damping and spring gains, Rd is the set-rotation

for the rotational spring, γ, σ are the damping and the rotation stabiliza-

tion gain for rotation dynamics and [·]∨ denotes the operation so(3) → <3

[53]. This impedance type behavior can be used for physical interaction tasks

with external environment, humans or another objects by changing its pa-

rameter to behave lighter/softer (i.e., low impedance) or heavier/stiffer (e.g.,

high impedance) than the original system. Note that, for such physical inter-

action tasks, we typically have small (p̈o, ṗo, wo). Also note that with α = 0

or (fext, τext) ≈ 0, which typically true for the transport operation, the object

transport can be achieved.

3.3.2 Optimal Cooperative Force Distribution

To realize the desired object wrench, Fo := [fo; τo] ∈ <6, as designed in Sec.

3.3.1, we then need to determine the contact force fdo,i ∈ <3 exerted by each

QM system’s end-effector on the grasped object. For this, we utilize the fol-

lowing Jacobian relation between the object wrench Fo and the end-effector
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force fo,i s.t.,

Fo = Jof̄o (3.9)

where Jo ∈ <6×3N is the object Jacobian and f̄o = [fo,1; · · · , fo,N ] ∈ <3N is

the collection of the end-effector contact forces of all the QM systems, with

fo,i ∈ <3 being the end-effector contact force of the i-th QM system, which

contains both the normal and shear/friction forces as shown in Fig. 3.2. Here,

we assumed that the contact between each QM system and the object is the

point contact with friction and without moment transmission. The case of

more general contact scenarios will be studied in a future publication. Then,

the end-effector force fo,i can be decomposed with respect to the object surface

s.t.,

fo,i = fn,i · un,i + fs1,i · us1,i + fs2,i · us2,i

where un,i, us1,i, us2,i ∈ <3 are the normal and tangential directional unit

vectors, which are orthogonal with each other; and fn,i, fs1,i, fs2,i ∈ < are the

magnitude along each direction. See Fig. 3.2.

Here, in (3.9), Jo ∈ <6×3N is typically a fat matrix (3N > 6). Therefore, the

solution of f̄o of (3.9) is not unique with different “internal/null-space forces”.

Moreover, the contact force of each QM system should satisfy the friction

cone constraint [54] to maintain the contact while avoiding slippage. We now

formulate this problem of finding f̄o as the following constrained optimization
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problem:

minfs,fn α1f
T
s fs + α2f

T
n fn (3.10)

subject to Fo = JoN fn + JoT fs√
f2
s1,i + f2

s2,i ≤ µfn,i, i = 1, 2, · · ·N

where α1, α2 > 0 are the weights, fn := [fn,1; · · · ; fn,N ] ∈ <N and fs :=

[fs1,1; fs2,1; · · · ; fs1,N ; fs2,N ] ∈ <2N are respectively the collections of the nor-

mal and shear friction force components of fo,i w.r.t. the object contact surface,

µ > 0 is the static friction coefficient, and N ∈ <3N×N and T ∈ <3N×2N re-

spectively identify the tangential and normal directions with their expressions

given by

N = diag(un,1, · · · , un,N ), T = diag(us,1, · · · , us,N ).

where us,i = [us1,i, us2,i] ∈ <3×2 is the collection of the i-th QM system’s

tangential directional unit vectors.

For this constrained optimization problem, we choose α1 > α2 > 0 to ensure

the shear/friction force fs,i to be low to have a better margin against the con-

tact slippage, while also simultaneously preventing excessively large normal

contact force. Note also that: 1) the equality constraint of (3.10) is merely a

different representation of the object Jacobian relation (3.9), whereas the in-

equality constraint in (3.10) is to enforce the friction-cone condition to ensure

no-slip contact. This optimization problem is convex and has the structure of

force optimization problem (FOP), thus this can be formulated as a semidef-

inite programming problem (SDP) or a second-order cone problem (SOCP)
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Figure 3.2: Contact force decomposition and object stiffness model.

[54, 55]. This FOP can be solved by standard numerical optimization method,

however, to solve more faster depending on tasks, problem should be cus-

tomized (e.g., dual problem [55]) rather than general SDP or SOCP. But, in

this chapter, for the case of three QM systems and not agile motion in 3.3.4,

standard method is sufficient to provide real-time solution.

Each individual QM system should then be able to exert this optimally-

distributed contact force fo,i. For this, we may attempt to devise a direct

end-effector force control, which, yet, may not be straightforward to design

here due to the presence of the quadrotor under-actuation along with the

actuation redundancy of the QM system. Moreover, in practice, the robotic

manipulator, which can be attached on the quadrotor platform, would likely

have non-negligible joint friction. Even further, given the hardware and control

precision limitations of currently available quadrotor platforms, the achievable

speed of the cooperative manipulation of the grasped object would be rather

slow. Due to this reason, in this chapter, we adopt the admittance-type force
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control and, for that, in Sec. 3.3.3, we will extend the position control law (3.6)

to the case of uncertain object deformation model, while also explicitly taking

into account the different dynamics characteristics of the quadrotor platform

and the robotic manipulator.

3.3.3 Force Control of QM System with Object Stiffness Model

To derive the admittance-type end-effector force control for each QM system,

similar to [56], here, we assume that the deformation of the object is small so

that it can be approximated by the linear stiffness model, i.e.,

fe,i = −Ko(pe,i − po,i) (3.11)

where fe,i ∈ <3 is the contact force exerted by the object to the QM system’s

end-effector with fe,i = −fo,i, pe,i, po,i ∈ <3 are respectively the positions of

the end-effector and the (undeformed) contact point of that end-effector on the

grasped object, and Ko ∈ <3×3 is the uncertain stiffness matrix. Here, we also

assume that the deformation associated with each QM system’s end-effector

is independent from each other.

To achieve the admittance-type contact force control, we now design the

evolution of the end-effector target position pde,i ∈ <3 s.t.,

ṗde,i := k1(fe,i − fde,i) + k2

∫
(fe,i − fde,i)dt+ ṗo,i (3.12)

where k1, k2 > 0 are the PI control gains, fe,i is the contact force feedback, for

which we assume force sensor or disturbance estimator for each QM system[41],
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and fde,i ∈ <3 is the desired contact force assigned by the optimal cooperative

force distribution algorithm (3.10). Here, note that we can compute po,i with

the position and orientation sensing of the object center with the information

on its undeformed shape.

Theorem 2. Consider the N multiple cooperative QM systems with each of

their dynamics given by (3.3)-(3.4) and their desired end-effector force given

by fde,i (i.e., from (3.10)). Suppose that the object acceleration p̈o and the rate

of change of each QM system’s desired contact force ḟde,i are bounded. Then,

if we set the control τL, τE s.t.,

τL +mLBM
−1
E [τE − CE ṙ] = −fL −mLBM

−1
E fE

+gL +mL[ ˆ̈pde − βėp − γ(ef + ε

∫
efdt)− dB

dt ṙ] (3.13)

where ef := fe,i − fde,i, ˆ̈pde,i = p̈de,i + η with bounded η, γ, β, ε > 0 and ε <

k1 ·λmin[Ko], (ef , efI , ėp) is ultimately bounded, where efI :=
∫
efdt+ ḟd with

ḟd := (1/k2)K−1
o ḟde,i and ep := pe,i − pde,i.

Proof: Using the object stiffness model (3.11) and the evolution equation

(3.12), we have

ėf = −Ko(ṗ
d
e,i − ṗo,i)−Koėp − ḟde,i

= −k1Koef − k2Ko

∫
efdt−Koėp − ḟde,i (3.14)

From this, let us define the following Lyapunov function candidate:

V1 :=
1

2
eTf ef +

1

2
eTfIk2KoefI + εeTf efI
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where ε is a small constant to make V1 to be positive-definite and to be de-

termined below. Then, using (3.12)-(3.14), the time derivative of V1 is given

by

dV1

dt
= −

 ef

efI

T  k1Ko − εI3
1
2εk1Ko

1
2εk1Ko εk2Ko


︸ ︷︷ ︸

:=Q

 ef

efI



+
[
εf̈d k2Kof̈d

] ef

efI

− ėTpKo(ef + εefI) (3.15)

where Q > 0 for small enough ε < k1 · λmin[Ko]. To proceed more, again, we

define Lyapunov candidate function V2:

V2 := V1 +
1

2γ
ėpKoėp

Time derivative is derived using (3.3), (3.4),

dV2

dt
= −

 ef

efI

T

Q

 ef

efI

+
[
εf̈d k2Kof̈d

] ef

efI


− 1

γ
ėTpKo[γ(ef + εefI)− ëp] (3.16)

where ëp = p̈e,i(τL, τE)− p̈de,i(ḟe,i, ḟde,i, fe,i,, fde,i, p̈o,i). The first term is extended

by dynamics (3.3)-(3.4) and (3.5) where

p̈e,i =
1

mL
[τL + fL − gL] +BM−1

E [τE + fE − CE ] + Ḃṙ. (3.17)

In the second term of ëp, p̈
d
e,i is given by parameters in the parenthesis. fe,i
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is known from force sensor/estimator, ḟde,i, p̈o,i assumed to be bounded by as-

sumption and fde,i is known from optimal cooperative force distribution. Then,

all the parameters in the parenthesis are known or bounded, thus, we can write

p̈de,i = ˆ̈pde,i − η where ˆ̈pde,i is estimated from known parameter or numerically

calculated and η is bounded remained term. From this, control generation

equation (3.13) can be equivalently represented as following equation using

(3.3)-(3.4) and (3.17)

p̈e,i − ˆ̈pde,i = γ(ef + εefI −
1

k2
K−1
o ḟde,i)− βėp. (3.18)

Using this relation, time derivative V̇2 becomes

dV2

dt
= −

 ef

efI

T

Q

 ef

efI

− β

γ
ėTpKoėp

+
[
εf̈d Kok2f̈d

] ef

efI

+
1

γ
ėTpKoη̄ (3.19)

where η̄ = η− 1
k2
K−1
o ḟde,i which is bounded. Then, all the terms, which are not

negative definite, are bounded, thus are (ef , efI , ėp) are ultimately bounded

by control (3.13).

Note from Th. 2 that we can guarantee the desired force tracking by enforc-

ing (3.13), even if the object stiffness Ko is unknown. Note also that, in the

control input (3.13) with the target position dynamics (3.12), there is no usage

of the object stiffness Ko. This proposed admittance-type force control (3.13)

shares the similar development idea with the position tracking control of [40]
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(i.e., (3.7)-(3.8)). Yet it has been extended from (3.7)-(3.8) by incorporating

the (unknown) object stiffness model Ko, the target position evolution equa-

tion, and the cross-coupling term (i.e., ε) to guarantee ultimately boundedness

even in the presence of (inaccessible) ḟde,i, f̈
d
e,i.

We further modify this admittance-type force control here to explicitly into

account the different dynamics characteristics of the (slower/coarse) quadro-

tor platform and the (faster/fine) robotic manipulator. More precisly, we as-

sign the desired control generation equation (3.13) into the (under-actuated)

quadrotor thrust control τL = −λRe3 and the (fully-actuated) internal rota-

tion dynamics control τE s.t.,

τdL = gL +mL[LPFwc(σ)[ ˆ̈p
d
e ]− βėp − ζ(r)]− fL (3.20)

mLBM
−1
E [τE − CE ṙ] = −fL −mLBM

−1
E fE − τL

+gL +mL[ ˆ̈pde − βėp − γ(ef + ε

∫
efdt)−

dB

dt
ṙ] (3.21)

where LPF is a low pass filter operator and wc(σ) is the cut-off frequency

of this LPF, which we define to be a function of the manipulability σ of

the robot manipulator [57]. Also, similar to (3.7), here, we design the desired

thrust input τdL via (3.20), which will be achieved by using the internal rotation

control τE in the null-space of BM−1
E , whereas the other components of τE

can still guarantee the control generation equation (3.13) even if τL 6= τdL via

(3.20)

Here, additional terms are introduced by external force fL, fE from in-

teraction with the grasped object. We design the control input τL and τE

(3.20)-(3.21) to cancel out these external forces fL, fE . Physically, fL affect
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the dynamics of the total QM system’s center-of-mass position, so that thrust

τL should resist fL. On the other hand, fE perturbs the quadrotor rotation and

the manipulator configuration, thus, τE is used to cancel out fE to maintain

its posture.

Our proposed force control should also allow each QM systems to maintain

its non-singular posture. For instance, when the QM system manipulates, the

quadrotor platform should to keep a certain distance from the object for safety

and the manipulator needs to recede from singular configuration which can

cause instability. For this, the subtask ζ(r) utilized.

In (3.20), the low pass filter (LPF) is only applied to p̈de , because gravity

should be maintained by thrust τL and other terms are cancelled out or con-

verge to small bounded value by Th. 2. Then, the LPF in the control equation

(3.20) assigns low frequency slow motion to quadrotor platform via τL, then,

the remained trajectory, which is high frequency component after substituting

low frequency component, would be assigned to manipulator via τE . But, some

infeasible desired motion can be generated without kinematic consideration.

Since the manipulability is an index for measuring singularity, we propose to

adapt the cut-off frequency depending on the manipulability using following

relation

wc = wc,min

(σmax
σ

)
where wc,min is the minimum cut-off frequency, σ is manipulability, σmax is

maximum value of the manipulability. From this equation, more specifically,

if this manipulability σ is sufficient (i.e., σ ≈ σmax), the cut-off frequency of
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Figure 3.3: Snapshots of the object pushing task using the multiple QM
system under admittance-type force control with force profile.
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the LPF is set to be lower and almost all the motion would be assigned to the

robotic manipulator via τE . On the other hand, near the singularity σ ≈ 0,

the cut-off frequency will be set to be higher and almost all the motion would

be assigned to the quadrotor platform via τL.

3.3.4 Simulation

We perform two simulations using our proposed cooperative control frame-

work. Here, the inertial parameter of quadrotor arem0 = 2kg and (Ixx, Iyy, Izz) =

(1.24, 1.24, 1.24)kg ·m2 which are similar with AscTecr Pelican. 2-dof manip-

ulator’s inertial parameters are (m1,m2) = (0.5, 0.4)kg and moment of inertia

is assumed as cylinder and its length is (l1, l2) = (0.4, 0.3)m. Manipulator

parameters are larger than real system to see dynamics effect. Moment of in-

ertia is usually inaccurate, even though we can measure exact mass and length

of the manipulator, thus, we add 20% error in the moment of inertia. Mass

and stiffness of the object in the simulation, Fig. 3.5-3.4, are mo = 0.4kg,

ko = 200N/m which have ∼ 2cm of deformation to resist its weight. And also,

here, we assume a force sensor to measure the exerting force which usually

have white noise. To simulate this noise, we add a noise w ∼ N (0, 0.04) with

3σ = 0.6. Low pass filter with time constant T = 0.5 is also applied to reduce

sensor noise, therefore, the measured force have delay due to filter.

The first simulation in Fig. 3.5 shows compliant interaction using the grasped

object. For this, compliant behavior of the object is designed for object behav-

ior design layer based on 3.3.1. Here, we control the grasped object position to

y-axis. Then, to achieve this desired behavior, the optimization provides the
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Figure 3.4: Snapshots of the object transport using cooperative QM
systmes control of compliant behavior with unknown mass and parameter

adaptation.
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Figure 3.5: Snapshots of the quadrotor-manipulator system under
admittance-type force control with force profile.

desired force distribution fde,i. Using control (3.20)-(3.21), each QM system is

controlled to achieve the desired forces fde,i. Then, the grasped object pushes

the object in a stationary manner. At 2.5 second, the grasped object contacts

with the another, black, object. Therefore, some position error is induced by

repulsive force and the compliant behavior still can follow the desired force

fdo , though bounded force error exists. See the bottom of Fig. 3.5.

In the second simulation, Fig. 3.4, we add an unknown mass on the station-

ary grasped object and perform circular trajectory tracking. At first, due to

the unknown mass, grasped object goes to downward and position error is in-

creased. However, the QM systems still can maintain the object grasping, even

though the unknown mass disturbs position. Using the parameter adaptation

of the unknown mass about the object dynamics [58], position error converges

to zero and follows the desired trajectory. Note that, the second peak at 8 sec
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is caused by initial condition error (velocity and acceleration) of trajectory

tracking.Chap3:

3.4 Conclusion

In this chapter, we propose the cooperative control framework for multiple QM

systems which consist of following hierarchical structure: 1) object bahavior

design; 2) optimal cooperative force distribution; and 3) individual QM sys-

tem control. The proposed control framework can be adapted to variable tasks

which need different behavior by changing a specific control block rather than

redesign the whole controller. And also, different types of individual QM sys-

tem controllers are also applicable to this control framework without variation

of the hierarchical structure. We extend previous result about the QM system

position controller (3.6) from decoupled dynamics structure to admittance-

like force control (3.13). Moreover, we propose how to control the individual

QM system, using the decoupled dynamics (3.3)-(3.4), depending on differ-

ent dynamics characteristics of the (under-actuated/slower/coarse) quadrotor

platform and the (fully-actuated/faster/fine) manipulator. Simulation results

of cooperative object transport and compliant interaction are presented.
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Chapter 4

Flexible Load Vibration Suppression

using Multi-rotor Drone

4.1 Introduction

Free flying control problem of small-size multi-rotor aerial robots is now well

established with many strong theoretical results (e.g., [7–10]) and commercial

systems (e.g., [11, 12]). So successful has been this multi-rotor aerial robot

particularly for the aerial photography and visual inspection applications by

extending humans’ eyes to the sky. The next step, naturally along this line

of reasoning, would then be to extend humans’ hands to the sky, namely, the

problem of aerial operation and manipulation (e.g., [13–16]), which can be

useful for such applications as infrastructure maintenance [17], remote con-

struction [18], object transport and assembly [19–21], etc.

Now, let us consider the problem of large-size structure construction. For

this, the (virtually) unlimited workspace of the aerial robots would be useful.

However, at the same time, such construction usually requires manipulation

of large-size objects (e.g., steel bar, wood beams, etc.) typically too heavy

57



Figure 4.1: MAGMaS composed of one ground manipulator and three
aerial robots with a co-manipulated large object.

to carry by many usual aerial robots alone due to the inherent rotor-battery

limitation. On the other hand, ground (mobile or fixed) manipulators are typ-

ically of high payload, yet, their workspace (or working height) limited. To

address this challenge, the MAGMaS (Multiple Aerial-Ground Manipulator

System) was proposed in [36] as a heterogeneous system composed of multi-

ple ground (mobile) manipulators (with high payload, yet, limited workspace)

and aerial robots (with large workspace, yet, limited payload) to collabora-

tively manipulate a large-size heavy object by utilizing their capabilities in

a complementary manner. The MAGMaS, of course, can be useful for other

applications as well, e.g., warehouse automation, manipulation of large/heavy

repair/inspection tool, etc. See Fig. 4.1.

The focus of [36], however, was, on top of proposing this new class of

MAGMaS and its implementation, to propose the control framework for the
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large/slender rigid object manipulation by employing the complementary ca-

pabilities and redundancy of the ground-aerial robots. In this chapter, we ex-

tend this result of [36] to the case of load manipulation with flexibility, which

is crucial for long/slender object manipulation, yet, not addressed in [36]. For

this, we first provide a rigorous modeling of the MAGMaS with the (slender)

load flexibility incorporated into that using Euler-Bernoulli beam theory. We

then propose a novel collaborative control framework for the flexible load-tip

pose tracking, where the ground manipulator provides slower nominal pose

tracking with overall load weight holding, whereas the aerial robot1 faster vi-

bration suppression with some load weight sharing. We also elucidate the issue

of controllability stemming from that the aerial robot provides less number of

actuation than that of the modes of the load flexibility; and delineate some

peculiar conditions for this vibration suppression controllability with their

physical meaning manifested. Simulations are also performed to demonstrate

the effectiveness of the proposed theory.

4.2 System Description

In this section, we recall and detail the composition of the Multiple Aerial

Ground Manipulators System (MAGMaS) introduced in [36]. We then pro-

vide the dynamical modeling developed in Sec. 4.3. A MAGMaS consists of a

n-degrees of freedom (DoFs) ground manipulator, some load/object to manip-

ulate and one or several aerial robot (e.g., quadrotor) connected to the load,

1It is also worthwhile to mention that this aerial robot, by providing collocated load-tip
actuation, can allow us to circumvent the well-known issue of nonminimum-phase dynamics
for load-tip pose tracking control if only ground robot is employed [42, 43].
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see. Fig 4.1. This system is proposed to outperform the other approaches on

aerial manipulation by taking advantage of its heterogeneity: 1) higher pay-

load and unlimited operation time of the robotic manipulator; 2) dealing with

large objects or workspace with a group of aerial robots [36].

We assume a manipulated object as a long bar with skewed rectangular

shape cross-section so that the vibration along only one direction is substantial,

while that along the other negligible. We also confine ourselves to the case of

planar manipulation in this chapter. The ground manipulator considered is

then a planar n-dof manipulator. We also limit our study to a MAGMaS

composed of a single aerial robot, which grasps (or is attached to) the bar-

end. Even with this reduction, as can be seen below, the obtained key technical

results and frameworks would be extendable to more general cases as well. The

aerial robot is connected to the bar by the mean of small arm mounted on a

passive rotational joint, whose center of rotation coincides with aerial robot

center-of-mass (CoM). This is a requirement to limit the torque exerted by the

aerial robot on the load as the actuation limits on the torque of such platform

are typically quite low. This also implies that the load and the aerial robot

exchange only force, not moment. See Fig. 4.2.

From the sketch in Fig. 4.2, we can detail the notations used throughout

the chapter. On the ground, n-DoF robot arm is mounted whose joint config-

uration is defined as θ ∈ <n. The position of each joint and the center-of-mass

of each links w.r.t. the inertial frame W are defined as pWi ∈ <2 and pWc,i ∈ <2

respectively. Similarly, the end-effector position of the robot arm is defined as

pWe ∈ <2. For brevity, we will omit the W when the position is represented in

the inertial frame. Define the position and the orientation of the aerial robot
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Figure 4.2: Sketch of the configuration of the MAGMaS.

attached on the load-tip w.r.t. W as par ∈ <2 and θ̄ar ∈ <. For any angle,

e.g. θ, the notation θ̄ represents the absolute angle, e.g., θ̄i =
∑i

j=1 θj , while

θ representing relative angle throughout this chapter.

The flexible load is rigidly attached to end-effector of the robot arm. The

relative angle between the end-effector and the flexible load is given as θl. As

shown in Fig. 4.3, the position and orientation of the flexible load along the

x-axis w.r.t. the flexible load frame L at time t can be written as

pLf (x, t) =

 x

w(x, t)

 , θf (x, t) =
∂w(x, t)

∂x

where w(x, t) is the deflection along y-direction at x in the load frame L.

We omit x at the load-tip position x = lf for brevity, i.e., pLf (lf ) = pLf and

θf (lf ) = θf . Recall that the aerial robot is connected to the flexible load via a

passive rotational joint, which allows free relative rotation of the aerial robot
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Figure 4.3: Euler-Bernoulli beam deflection model.

as stated above, θ̄ar can be independently controlled by the aerial robot. The

length of the arm between the load-tip and the aerial robot CoM is dconn which

is assumed zero in the rest of the chapter, thus neglecting torque generated

on the load by the aerial robot thrust via the rigid connecting arm.

4.3 System Modeling

The dynamic model of the MAGMaS based on the Euler-Bernoulli beam the-

ory and Euler-Lagrange equation is derived in this section. We first briefly

introduce the Euler-Bernoulli equation which is not a main contribution of

this chapter, and then derive the dynamic equation of the whole MAGMaS.

4.3.1 Flexibility Modeling of the Load

Here, we suppose to include only transverse vibration, i.e., torsional effects

are neglected, with restriction of motion of the MAGMaS to planar space.

This assumption can be enforced by a proper structural design of the load

(e.g., long slender beam) [59]. To model vibration of the flexible load, here, we

adopt Euler-Bernoulli beams theory [59], whose governing equation is given
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as follows

ρA(x)
∂2w(x, t)

∂t2
+
∂2

∂t2
EI(x)

∂2w(x, t)

∂t2
= 0 (4.1)

where E, I, ρ, A are Young’s modulus, the second moment of area, the den-

sity and the intersection area of the flexible load respectively. These material

properties are invariant for the homogeneous load with uniform cross section,

thus, in this chapter, we assume the constant parameters along the flexible

load to simplify the beam model and to meet the practical objects (e.g., long

rectangular wooden rod). Using the separation of variables, a solution of given

partial differential equation (4.1) can be written s.t.,

w(x, t) =

m∑
i=1

φi(x)δi(t) =: Φ(x)δ(t) (4.2)

where w(x, t) ∈ < is the load deflection along the y-direction at x and time t

w.r.t the load frame L, m is the number of assumed vibration modes, φi(x) is

the time invariant mode shape function, δi(t) describes the time varying part of

the deflection associated with given mode shape φi(x), Φ := [φ1, · · · , φm] ∈ <m

is the combined row vector of mode shapes and δ := [δ1; · · · ; δm] ∈ <m is the

combined column vector of δi. In practice, high frequency modes are suppressed

quickly due to their damping. Therefore, we only consider a finite dimension

m of the vibration modes.

The explicit solution form of φi(x) can be written as following

φi(x) = C1,i coshβix+ C2,i cosβix+ C3,i sinhβix+ C4,i sinβix (4.3)
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where Ci are the coefficients, β4
i = w2

n,iρA/EI, and wn,i is the natural fre-

quency of i-th vibration mode. All these parameters are determined by the

boundary condition of Euler-Bernoulli equation (4.1). To determine these co-

efficients, we adopt two boundary conditions: 1) the clamped boundary con-

ditions at x = 0, (i.e., at the end-effector position); 2) the mass boundary

conditions for moment and shear force at the load-tip lf induced by aerial

robot. These are expressed as following four conditions [60]:

w(x = 0, t) = 0, θb(x = 0, t) ≈ dw

dx
= 0 (4.4)

M(x = lf ) = 0 (4.5)

V (x = lf ) = −marẅb(lf , t) +marge2 (4.6)

where θb is deflection angle, M(lf ) = EI ∂w
2

∂x2
is the moment, V (lf ) = −EI ∂w3

∂x3

is the shear force at the load-tip. Using these four equations derived from

the boundary conditions, five coefficients C1,i, C2,i, C3,i, C4,i, βi can only be

determined up to scale [60]. The scale of the coefficients can be determined by

normalization based on the following relation

ρA

∫ lf

0
φi(x)2dx+marφi(lb)

2 =
EI

w2
n,i

∫ lf

0
φ′′i (x)2dx (4.7)

This relation is derived by (4.1), (4.4)-(4.6). By assuming the left hand side

of (4.7) to be unity, the mode shape φi is normalized, then we can determine

scale of coefficients Ci,j .

Here, the mode shape is the eigenfunction describing the deflection based

on Euler-Bernoulli equation (4.1). Therefore, orthogonality is enforced to each
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mode shapes for i 6= j [60] s.t.:

∫ lf

0
φ′′i (x)φ′′j (x)dx = 0 (4.8)∫ lf

0
φi(x)φj(x)dx+marφi(lf )φj(lf ) = 0 (4.9)

Based on these orthogonality, the inertia and the stiffness are expressed as

diagonal matrix in the Sec. 4.3.4.

As a result, we define the system configuration as q = [θT , δT ]T ∈ <n+m

where δ ∈ <m is the time-dependant deflection variable for the flexible load

defined in (4.2).

4.3.2 Kinetic Energy of the MAGMaS

To derive Euler-Lagrange equation of the MAGMaS, first, the kinetic energy

of the MAGMaS is obtained s.t.,

T = Tarm + Tbar + Tar

where Tarm, Tbar, Tar are the kinetic energies of the manipulator, the flexi-

ble load and the aerial robot respectively. Explicit expression of each kinetic
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energies are given as following:

Tarm =
3∑
i=1

1

2
miṗ

T
c,iṗc,i +

1

2
Ic,iw

2
i

Tbar =
ρA

2

∫ lb

0
ṗf (x)T ṗf (x)dx

Tar =
1

2
marp

T
f pf +

1

2
Iarw

2
ar

where pf (x) ∈ <2 is the position of the flexible bar along the x-axis of the load

frame w.r.t. the inertial frame W with its expression and the time derivative

are given as following

pf (x) = pe +RWL

 x

w(x, t)


ṗf (x) = ṗe +RWL

S(ωf )

 x

w(x, t)

+

 0

ẇ(x, t)


=

[Je 0

]
+

RWL
−w(x, t)

x

 1Tm e2Φ(x)


︸ ︷︷ ︸

=:Jf (x)∈<2×(n+m)

θ̇
δ̇

 (4.10)

where Je ∈ <2×n is the robot arm Jacobian for the end-effector, wf =
∑n

i=1 θ̇i

is the angular velocity of the flexible load frame L which is same as the angular

velocity of the end-effector, 1m = [1; · · · ; 1] ∈ <m is one vector, e2 = [0; 1] ∈ <2

is the unit vector and Φ(x) = [φ1(x), · · · , φm(x)] ∈ <m is the mode shape row

vector at x. Here, recall that we deal with the planar motion, thus we only

consider pitch motion for the aerial robot which is expressed as θ̄ar ∈ < and

its time derivative war ∈ <.
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4.3.3 Potential Energy

The potential energy of the MAGMaS is expressed as the summation of the

gravitational potential energies and the elastic potential energy of the flexible

load:

U = Uarm + Ubar,el + Ubar,g + Uar

The gravitational potential energies are expressed as

Uarm =
n∑
i=1

mige
T
2 pc,i, Uar = marge

T
2 pf (lf )

Ubar,g = ρAgeT2

(
pe +

∫ lb

0
RWL p

L
f (x)dx

)

where g ∈ < is the gravitational acceleration. Note that the position of the

aerial robot is same as the load-tip position par = pf (lf ) due to the assumption

of dconn ≈ 0. The elastic energy of the flexible load can be written as

Ubar,el =
EI

2

∫ lb

0

(
∂2w

∂x2

)2

dx =
EI

2

m∑
i=1

m∑
j=1

dijδiδj

where dij :=
∫ lb

0 φ′′i φ
′′
jdx is satisfying the orthogonality in (4.8).

4.3.4 Euler-Lagrange Dynamics

Using the kinetic T and the potential energy U , the Lagrangian is defined as

L = T − U . Then, we can derive following Euler-Lagrange dynamics of the
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MAGMaS:

Mθ Mθδ

Mδθ Mδ

 q̈ +

Cθ Cθδ

Cδθ 0

 q̇ + g(q) +

0 0

0 K

 q = B(q)

τm
τar

 (4.11)

where Mθ ∈ <n×n, Mδ ∈ <m×m, Mθδ = MT
δθ ∈ <m×n are the inertia matrix,

Cθ ∈ <n×n, Cδθ ∈ <m×n, Cθδ ∈ <n×m are the Corilois matrix, g(q) ∈ <n+m

is the gravity force vector, B(q) ∈ <(n+m)×(n+2) is the input mapping ma-

trix, τm ∈ <n is the joint torque and τar = λRare2 ∈ <2 is the aerial robot

thrust input with the rotation matrix Rar ∈ SO(2), and the thrust magnitude

λar ∈ < . The inertia matrix for flexibility Mδ and the stiffness matrix K are

constant diagonal matrix where the off-diagonal terms are eliminated by the

orthogonality properties (4.8) and (4.9). Note that the aerial robot rotation is

independent to above dynamics thanks to the passive rotational joint design of

the connector, thus the aerial robot rotational dynamics is excluded in (4.11).

We can consider the aerial robot as a rotating thrust generator similar with

[13]. The input mapping matrix B(q) have the following structure

B(q) =

In JTf

0 Bδ,ar


where In ∈ <n×n is the identity matrix, Jf is the Jacobian of the load-tip

defined in (4.10), Bδ,ar ∈ <m×2 is the input matrix for the flexibility dynamics
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with the following expression

Bδ,ar =


−φ1(lf ) sin θ̄l φ1(lf ) cos θ̄l

...
...

−φm(lf ) sin θ̄l φm(lf ) cos θ̄l

 (4.12)

where θ̄l =
∑
θi + θl is the absolute orientation of the flexible load at the end-

effector. From the input mapping matrix B(q), the manipulator control input

τm cannot directly apply its torque to the flexible load dynamics while the

aerial robot input τar directly control the flexible load along Bδ,ar. Note that

the matrix Bδ,ar is rank one matrix along ΦT although it is m by 2 matrix.

Therefore, the m-DoFs flexible load dynamics is under-actuated with rank one

input unless the number of the mode shape m is one.

4.4 Control Design

For the MAGMaS, our control objective is the position/orientation trajectory

tracking of the flexible load-tip (c.f., rigid object control in previous work [36]).

For this control objective, if we only have the robot arm control input τm,

i.e., the dynamics (4.11) without aerial robot input τar, the zero dynamics is

unstable [61]. On the other hand, the MAGMaS can overcome this fundamental

issue by incorporating the aerial robot as a force generator to the flexible load

dynamics as shown in (4.11) with τar.

However, as shown in the structure of Bδ,ar in (4.12), we only have rank

one control input to stabilize m-dim flexible load vibration dynamics. To re-

solve this under-actuation problem, we divide this control objective into the
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following two sub-problems: 1) slow fully-actuated robot arm control; 2) under-

actuated flexible load vibration suppression via the fast aerial robot control.

First, for the fully actuated manipulator dynamics, by considering the flexible

load at the equilibrium similar to a rigid body, we can design a desired trajec-

tory for the robot arm end-effector (pde , θ̄
d
e) based on the inverse kinematics.

Then, the robot arm is enforced to follow the computed desired trajectory.

Next, for the under-actuated flexible load dynamics, since we cannot generate

arbitrary control input due to less number of the actuation than the modes of

the load flexibility, we perform the controllability analysis for the linearized

dynamics by assuming perfect trajectory tracking of the robot arm which is

established in first step. Then, we design the vibration suppression controller

(i.e., for δ̇i → 0) for the aerial robot. When we compute the equilibrium of the

flexible load in the first step, we also design the aerial robot thrust to compen-

sate the deflectio n at the flexible load-tip w(lf )→ 0 whose physical meaning

is the gravity induced deflection compensation. In the second step, the control-

lability analysis validate the proposed controller can stabilize vibration near

the equilibrium deflection. Here, as the vibration dynamics is relatively faster

than end-effector trajectory, this linearization approach is feasible.

4.4.1 Manipulator Control

For the end-effector trajectory tracking of the manipulator, we first transform

the joint space dynamics (4.11) into the manipulator workspace dynamics

using Jacobian mapping:

ξ̇ = Jξ θ̇, ξ̈ = J̇ξ θ̇ + Jξ θ̈
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where ξ := [pe, θ̄e] ∈ <3 is the end-effector position/orientation w.r.t. the iner-

tial frame W, Jξ ∈ <3×n is the manipulator Jacobian for the joint angle θ to

ξ. Here, we assume the non-redundant manipulator (i.e., n = 3) to focus on

the cooperative control with the aerial robot rather than deal with the manip-

ulator’s redundancy. Then, the MAGMaS dynamics in workspace coordinates

can be written as following

Mξ Mξδ

Mδξ Mδ

ξ̈
δ̈

+

Cξ Cξδ

Cδξ 0

ξ̇
δ̇

+ ST g(q)

+

0 0

0 K

ξ
δ

 = STB(q)

τm
τq

 (4.13)

where S = diag(J−1
ξ , Im) ∈ <(n+m)×(n+m) is transformation matrix. Using this

workspace dynamics, we can design following control input

τm = M̄ξ ξ̈d + C̄ξ ξ̇ +Deė+Kee− Cξδ δ̇ −MξδK̄δ + ḡe

− (J−1
e Jb(q)−MξδB̄δ,ar)τar (4.14)

where e = ξ − ξd is the end-effector position/orientation error, M̄ξ = Mξ −

MξδM
−1
δ Mδξ, C̄ξ = Cξ −MξδM

−1
δ Cδξ, ḡξ = J−1

e gθ −MξδM
−1
δ gδ, K̄ = M−1

δ K

and De,Ke ∈ <3×3 are positive definite control gain matrices. Here, the desired

end-effector trajectory can be computed from the desired load-tip trajectory by

assuming the deflection is zero (i.e., w(lf ) = 0) which is enforced by the aerial

robot control. Note that this inverse kinematics is same with the standard

manipulator. Then, the closed-loop dynamics for the manipulator workspace
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is given as following

M̄ξ ë+Deė+Kee = 0

Given closed loop dynamics converges to e→ 0 with positive definite M̄ξ, De,Ke.

Note that the manipulator dynamics is fully-actuated standard robot dynam-

ics, thus the controller can be easily extended to redundant manipulator [62]

for n > 3 or other controllers (e.g., robust control, adaptive control, etc.).

4.4.2 Flexible Load Dynamics Analysis

From previous section 4.4.1, the proposed robot arm control guarantees ξ →

ξd. Therefore, the vibration dynamics can then be rewritten as follows with

ξ = ξd

δ̈
δ̇

 =

0m −M−1
δ K

Im 0m

δ̇
δ

+

M−1
δ Bδ,ar

0

 τar −
M−1

δ E

0m


=:

0m −K̄

Im 0m

δ̇
δ

+

B̄δ,ar
0

 τar −
Ē

0

 (4.15)

where E is defined as

E := Mδξ ξ̈
d + Cδξ ξ̇

d + gδ(θ̄
d
e)
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We can further simplify the control input expression using the definition of

Bδ,ar in (4.12) and τar as following

B̄δ,arτar = M−1
δ Bδ,arR(θ̄ar)e2λar (4.16)

= M−1
δ ΦT cos(θ̄ar − θ̄l)︸ ︷︷ ︸

=:bδ,ar∈<m

λar = b̄δ,arλar

where R(θ̄ar) ∈ SO(2) is rotation matrix and θLar = θ̄ar − θ̄l is the relative

orientation of aerial robot w.r.t. the flexible load frame. Recall that θ̄ar is

independently controlled, thus if we regulate θ̇Lar = 0, then the input mapping

vector b̄δ,ar can be considered as a constant.

4.4.2.1 Linearization

Due to the under-actuation with the rank one aerial robot input b̄δ,arλar for

the m-DoFs flexible load dynamics (4.15), we cannot completely cancel out the

coupling between the manipulator and the flexible load Ē. Therefore, we design

a flexible load vibration/deflection suppression controller with controllability

analysis. To analyse controllability, we need to linearize the dynamics (4.15)

at the equilibrium deflection δe ∈ <m along the end-effector trajectory ξd.

Here, we can assume relatively slow manipulator end-effector motion than

vibration (i.e., ξ̇ � δ̇) because the robot arm can generate desired velocity for

the load-tip with slow manipulator end-effector motion as length of the load

increases.

We aim to behave the flexible load similar to the rigid body, thus the control

objective of the aerial robot includes both the vibration suppression δ̇ = 0 and
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the deflection compensation w(lf ) = 0. Note that zero deflection at the tip

w(lf ) = 0 does not imply zero deflection for all location along the load (i.e.,

not δi(x) = 0 for all x). Therefore, w(lf ) = 0 is the equilibrium point of the

linearized flexible load dynamics which is also the assumption of the inverse

kinematics of (pde , θ̄
d
e) in Sec. 4.4.1.

First of all, we design a feedforward control input to compensate the gravity

force at the equilibrium deflection δe to satisfy w(lf ) = 0. The equilibrium

deflection satisfies following equality

Kδe + gδ(θ) = bδ,arλar

We then get the following expression for the deflection w(lf ) by multiplying

ΦK−1

Φδe = ΦK−1(bδ,qrλar − gδ(θ))

Then, the control input for the gravity induced deflection compensation can

be proposed as

λar = (ΦK−1bδ,ar)
−1ΦK−1gδ (4.17)

Note that stiffness matrix K is a diagonal invertible matrix, thus ΦK−1bδ,ar =∑
φ2
i (lf )/Kii cos(θLar) is also invertible unless cos(θLar) = 0. Then, the equilib-

rium deflection vector δe can be written as following

δe = (−I +K−1bδ,ar(ΦK
−1bδ,ar)

−1Φ)K−1gδ(θ)
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Note that the equilibrium deflection δe enforced by λar satisfies zero deflection

at the load-tip, i.e.,w(lf ) = Φδe = 0.

Finally, we can linearize the dynamics (4.15) at the equilibrium deflection

δe

¨̃
δ

˙̃
δ

 =

0m −K̄

Im 0m


︸ ︷︷ ︸

=:A

 ˙̃
δ

δ̃

+

b̄δ,ar
0


︸ ︷︷ ︸

=:B

λ̄ar (4.18)

where δ̃ = δ − δe and λ̄ar = λar − (ΦK−1bδ,ar)
−1ΦK−1gδ.

4.4.2.2 Controllability

The linearized flexible load dynamics (4.18) is represented by 2m configura-

tions ( ˙̄δ, δ̄) with the rank one aerial robot input Bλar. Therefore, we need

to verify whether the input Bλar can suppress the vibration/deflection to

the equilibrium ( ˙̄δ, δ̄) → (0, 0) in the linearized system before designing a

controller. For this, we utilize the controllability matrix C of the linearized

deflection dynamics (4.18) defined as following

C := [B AB · · · ABm−1] ∈ <2m×2m.

Combining with (4.18), the controllability matrix C can be written as

C =

b̄δ,ar 0 · · · (−K̄)m−1b̄δ,ar 0

0 b̄δ,ar · · · 0 (−K̄m−1)b̄δ,ar

 (4.19)
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The given linearized flexible load dynamics (4.18) is controllable, if the con-

trollability matrix satisfies rank(C) = 2m.

To figure out the condition for the controllability, we need to check the

condition for det(C) 6= 0. Here, we can simplify the evaluation of det(C) by

utilizing the column permutation of the matrix C which only have impact on

the sign of the determinant. Using the column permutation, we can collect all

the odd columns and even columns, then the controllability matrix C can be

expressed as block diagonal matrix of following submatrix Cs:

Cs =
[
b̄δ,ar K̄b̄δ,ar · · · K̄m−1b̄δ,ar

]

From the property of block diagonal matrix, |det(C)| = |det(Cs)|2, thus we only

need to analyse det(Cs). The determinant of Cs is described in the following

Lemma.

Lemma 2. Consider the submatrix of the controllability matrix Cs of the lin-

earized system (4.18). Then the determinant of the matrix Cs satisfies following

equation

det(Cs) =

m∏
i=1

b̄i ·
m∏
j=1

(
EIdjj
Mδ,jj

−
EId(j+1)(j+1)

Mδ(j+1)(j+1)

)
(4.20)

where b̄i is i-th component of b̄δ,ar, Mδ,ii is (i, i) component of the inertia

matrix Mδ and dii =
∫
φ′′i (x)2dx. If j = m, then j + 1 is considered as 1.
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Proof: If m = 2, we can compute det(Cs) as following

det(Cs) =

∣∣∣∣∣∣b̄1
EId11
Mδ,11

b̄1

b̄2
EId22
Mδ,22

b̄2

∣∣∣∣∣∣ = b̄1b̄2(
EId22

Mδ,22
− EId11

Mδ,11
)

Next, we assume (4.20) is satisfied for m = n − 1. If this relations is also

available for m = n, then the equation (4.20) is satisfied for any positive

integer m. For m = n the determinant is given as following

det(Cs) =
∣∣∣b̄δ,ar K̄b̄δ,ar · · · K̄n−1b̄δ,ar

∣∣∣
= det

(
diag(b̄1, · · · , b̄n) ·

[
1n K̄1n · · · K̄n−11n

])
=

n∏
i=1

b̄i · det
([

1n K̄1n · · · K̄n−11n

])
︸ ︷︷ ︸

=:Kn

where 1n = [1, · · · , 1]T ∈ <n is n-dim one vector. First term of right hand side

is same with (4.20), thus we need to verify second term. According to Laplace’s

formula, determinant of matrix is expressed as summation of determinant of
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submatrices

det (Kn) =

n∑
j=1

(−1)(j+1)det(Kn,(1,j))

=

n∑
j=1

(−1)(j+1)
∣∣∣K̄(j,j)1n−1 · · · K̄n−1

(j,j)1n−1

∣∣∣
=

n∑
j=1

(−1)(j+1)
∣∣∣K̄(j,j)

∣∣∣ · ∣∣∣1n−1 · · · K̄n−2
(j,j)1n−1

∣∣∣
=

n∑
j=1

(−1)(j+1)det(K̄(j,j))det(Kn,(n,j))

=

n∑
j=1

(−1)(j+1)
n∏
i=1
i 6=j

wn,i ·
n∏
i=1
i 6=j

(wn,i − wn,i+1) (4.21)

where Kn,(i,j), K̄(i,j) ∈ <(n−1)×(n−1) are matrices whose i-th column and j-th

row are eliminated from the original matrices Kn, K̄ and wn,i := EIdii/Mδ,ii

is the natural frequency of i-th mode. For the last equation, every wn,i have

(n− 1)-order. If we consider this equation as a function of wn,i (i.e., f(wn,i) =

0), then (n−1) order polynomial function have (n−1) solutions. It is straight-

forward to show wn,i = wn,j ∀j ∈ {1, · · · , i− 1, i+ 1, · · · , n} are the solutions

of this polynomial equation using (4.21) by substituting it to solution. As a

result, equation (4.20) is satisfied for m = n and, thus, satisfied for any posi-

tive integer m.

From Lemma 2, the three conditions to ensure controllability of the lin-

earized system can be extracted in the following theorem:

Theorem 3. Consider the linearized flexible load dynamics (4.18) and control-

lability matrix C. Then, if the following three conditions are met, the linearized
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flexible load dynamics is controllable:

1) Design condition φi(lf ) 6= 0,∀i = 1, · · · ,m;

2) Control condition cos(θLar) 6= 0, i.e., θLar 6= π
2 + kπ, k ∈ Z;

3) Physical condition EIdii
Mδ,ii

6= EIdjj
Mδ,jj

(or wn,i 6= wn,j).

Proof: According to Lemma 2, det(Cs) is represented as product of b̄i and

EIdii
Mδ,ii

− EIdjj
Mδ,jj

. The conditions for det(Cs) = 0 are induced by b̄i = 0 or

wn,i = EIdii
Mδ,ii

=
EIdjj
Mδ,jj

= wn,j . From the expression of b̄i in (4.16) and given

that Mδ > 0, we can conclude the condition translates to φi(lf ) = 0 and/or

cos(θLar) = 0 which are the design and the control condition. The later one

directly correspond to the physical condition.

To satisfy the design condition, the mode shape at the aerial robot attach-

ment position should not be zero, i.e., φi(lf ) 6= 0. This controllability condition

enforces a design criteria for attaching the aerial robot to avoid the node po-

sition, i.e., φi(x) = 0,∀i = 1, · · · ,m. This design condition is valid for our one

aerial robot case of the MAGMaS whose aerial robot is connected at the flexi-

ble load tip (i.e., x = lf ). This conditions can also be applied to the MAGMaS

with multiple aerial robots.

If the aerial robot cannot meet the control condition, i.e., cos(θLar) = 0 or

θLar = π
2 + kπ, k ∈ Z, then the thrust of the aerial robot is aligned to x-axis

of the load frame L and subsequently cannot exert force along the deflection

direction. This controllability condition impose to control the aerial robot
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Figure 4.4: Ongoing experimental setup for the MAGMaS with a quadro-
tor, a flexible load and a manipulator.

orientation to cos(θLar) 6= 0. In this chapter, to preserve the control condition

and to maximize the thrust input along the deflection of the flexible load, we

control the aerial robot attitude to θ̄ar = θ̄l, i.e., cos θ̄Lar = 1.

The physical condition represents identical natural frequency between two

different modes. Physically, two vibration modes with identical natural fre-

quency represented as one combined vibration mode. Mathematically, we com-

pute unique vibration mode for each distinct natural frequencies. Therefore,

this condition is always satisfied.

4.4.3 Aerial Robot Control

Vibration suppression can be achieved by the aerial robot control input b̄ar,δλar

based on the controllability analysis. Then, we design two independent control:

1) the aerial robot orientation control for the thrust aligning; 2) the vibration

suppression control for the flexible load using the aerial robot thrust. Recall

that these two independent controller are available due to the independent
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Figure 4.5: Snapshot of the eight-shaped trajectory tracking with proposed
controller. Color in the flexible load represents its relative deflection w.r.t. a

rigid load.

rotational dynamics of the aerial robot thanks to the passive rotational joint

connector. This rotational joint cannot exert torque to the flexible load.

First, we design aerial robot orientation controller to align thrust direction

to the perpendicular direction of the flexible load(i.e., y-direction of the flexible

load frame L). The control objective is expressed as θ̄ar → θ̄l. This control

objective maximize magnitude of the input vector bδ,ar for the load vibration.

For the planar case, the orientation control of the angular rate controlled aerial

robot is given as following

θ̇ar = ˙̄θde + k(θ̄dl − θ̄ar)

where θ̄dl = θ̄de + θl is the desired load orientation with constant θl,
˙̄θl = ˙̄θe
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Figure 4.6: Simulation results with three different controllers: 1) proposed
control; 2) PD control; 3) manipulator control w/o vibration suppression.
Trajectory tracking (top) and tracking with perturbation (bottom). An ex-

ternal force is applied to at 8, 16s for the bottom.

and k is control gain. Note that angular velocity controlled aerial robot can

capture many commercially available UAV [8]. For the torque controlled aerial

robot, we can exploit a control design proposed in [10].

Next, using the linearized flexible load dynamics and the controllability

analysis in Sec. 4.4, we can design various linear controller to suppress the

vibration. Here, we utilize LQR (linear quadratic regulator) to optimally sup-

press vibration in the MAGMaS.

λar = KLQR

 ˙̄δ

δ̄

+ (ΦK−1bδ,ar)
−1ΦK−1gδ (4.22)
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where KLQR ∈ <1×2m is the control gain based on LQR.

4.5 Simulation

To verify the performance of the proposed control scheme, we conduct a set of

two simulations. In these simulations, the system parameters are based on real

platform data and are as follow: 1) inertia parameters (m1,m2,m3,ml,mar) =

(4, 4, 4, 0.591, 1)kg and moment of inertia are evaluated as rectangular bar; 2)

length (l1, l2, l3, lf ) = (0.4, 0.4, 0.4, 2.5)m; 3) bar properties EI = 51.3Nm2,

ρA = 0.205kg/m. From this load property, its natural frequencies are given as

(wn,1, wn,2) = (1.44, 8.98)Hz which are experimentally retrieved via vibration

excitation and FFT analysis. We only consider the first 2-modes as the other

higher frequency modes are negligible in our identification experiments. Here,

we utilize two vibration modes m = 2 from our preliminary experiments of

the wooden load vibration. From the third to higher modes, the magnitude of

vibration is negligible and suppressed fast by its own damping.

For the simulation, we assume that the deflection of each modes δi is avail-

able. In practice, we can indirectly measure the mode deflection by measuring

w(x, t) using MoCap or strain gage for several different points as following

w(x1, t)

w(x2, t)

 =

φ1(x1) φ2(x1)

φ1(x2) φ2(x2)


︸ ︷︷ ︸

=:Φ12

δ1(t)

δ2(t)



where xi are the points which makes non-zero determinant of matrix Φ12.
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The first simulation consists in a trajectory tracking task. As mentioned

in Sec. 4.4, we can design the trajectory of the end-effector by considering

the flexible load as rigid body. Here, the trajectory is given as (xde , y
d
e , θ̄e) =

(0.1 sin(t), 0.1 cos(0.5t), 0.2 sin(0.5t)). To validate our approach, we compare

three different controllers for this trajectory tracking task: 1) proposed con-

troller in (4.14) and (4.22); 2) manipulator controller without vibration sup-

pression: τm is same with (4.14) and λar is same with (4.17); 3) PD control in

[43]: λar is same with (4.17) and τm satisfies

τm = M̄ξ ξ̈d +Deė+Kee+ ḡe − (J−1
e Jb(q)−Bδ,ar)τar

For controller 2 and 3, the aerial robot input is just gravity compensation

of the flexible load and the aerial robot. The simulation result are gathered

in Fig. 4.6. Under the tracking controller 2, vibration is not suppressed while

control 3 and the proposed controller is suppressing the vibration. Controller

3 can suppress the vibration, however it only relies on energy dissipation, the

convergence time is slower than our proposed controller which can directly

suppress the vibration using the aerial robot control input τar.

The second simulation in Fig. 4.6 includes perturbations by an external force

on the load-tip. The perturbations are given as (fx, fy) = (5, 15)N at t = 8s

and t = 16s during 0.05s. In this plot, we exclude the result of controller 2

whose vibration amplitude is too large to compare. Similar to the first simula-

tion, after the perturbation, both controller 3 and our proposed controller can

suppress the vibration although the convergence is much slower for controller

3.
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Those two simulations validate our proposed approach to leverage MAG-

MaS’s heterogeneous design, by exploiting the aerial robot control input, tra-

jectory tracking performances are increased.

4.6 Conclusion

In this chapter, we extend results on the MAGMaS, a novel cooperative het-

erogeneous manipulation system [36], to the case of flexible load manipulation.

In particular, we derive the dynamical model of a planar MAGMaS, includ-

ing vibrations in the long slender load. We then propose a control strategy

for both trajectory tracking and effective vibration cancellation by exploiting

the dynamical properties of such an under-actuated system for vibration, in

particular vibration cancellation is achieved through a linearization scheme.

Along the way, the conditions for controllability of the vibrations modes are

exhibited. The validity of this approach is demonstrated in two simulations by

comparing its performance to the one of previously proposed approaches.
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Chapter 5

Rotor-based Vibration Suppression Mod-

ule

5.1 Introduction

Large-size object transport and manipulation are one of the important tasks

in industries, thus, these tasks also have been tried to be partially or fully

handled by robotic systems typically in the assembly line in manufacturing.

Regarding large-size object manipulation, there are several attempts to bring

the robotic system to the outside of the factory using multiple robots [63–65].

Recently, ETHZ demonstrates a structure construction by assembling steel

rebar, timber, and blocks using robotic manipulator [66]. ATOUN is proposed

to assist human workers to transport a heavy object [67].

However, the above-mentioned results are limited in rigid object manipu-

lation. On the other hand, these large-size objects often include long/slender

object, such as bar, beam, and pipe. For this long/slender object handling,

an induced torque by center-of-mass far from the grasping location is crucial
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Figure 5.1: Cooperative manipulation of flexible object composed of one
ground manipulator and distributed RVMs (Robot-based Vibration suppres-

sion Module).

as well as its high payload. As the length of the object gets longer, the de-

flection and the vibration become significant, thus it is hard to be handled

by the conventional robotic system and possibly hazardous due to undesirable

vibration.

In this chapter, we propose a robot-based vibration suppression modules

(RVM) which is optimally designed to manipulate the large flexible object

while suppressing its vibration. Since the RVM is easily attachable/detachable

to the object, an arbitrary number of the distributed RVMs can be adapted to

various length/shape/weight of object. The system composition of the RVM is

partly motivated by our previous result of MAGMaS (Multiple Aerial-Ground

Manipulator System) [44], which utilizes a single quadrotor at the flexible

load-tip. However, the quadrotor requires mechanically complicated and large

payload structure, e.g., passive rotational joint, to connect the object while

allowing free rotation. Besides, the quadrotor is optimized for flying capability
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Figure 5.2: Optimized design and rotor allocation of RVM.

in terms of the number of the rotors and its allocation [7]. The design and dis-

tributed actuation principles are partly inspired by ODAR (Omni-Directional

Aerial Robot) [34] and LASDRA (Large-size Aerial Skeleton System with Dis-

tributed Rotor Actuation) [35, 45]. In these two results, the aerial robots are

composed of distributed unit modules designed to maximize control wrench

for omni-directional flying on each rigid link while the RVM is designed for

vibration suppression of flexible object with a more simplified and compact

design.

We aim the role of the RVM as follows: 1) vibration suppression of the

flexible load; and 2) object weight sharing to support limited ground manipu-

lator torque. Therefore, we first provide a novel RVM design by optimizing the

thrust generation along the sagittal plane while minimizing undesirable wrench

along other directions based on contrained optimization. Here, we utilize two

rotors which is the minimum number that can generate control actuation along

E(2). Since an arbitrary number of the RVM can be utilized, we derive the

system dynamics for arbitrary number of RVM and show that the flexible load

dynamics is composed of linear diagonal matrices even with multi-modules. In
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Figure 5.3: Cooperative manipulation of flexible object composed of one
ground manipulator and distributed two RVMs.

the control problem, since the number of vibration modes and RVM can be

arbitrary and this might induce controllability issue, thus we come up with

controllability condition and elucidate its physical meaning for the distributed

RVMs thanks to dynamic structure similar to [44]. Furthermore, we provide

not only the place not to allocate the RVM based on controllability but also

the place the RVM needs to be allocated to maximize vibration suppression

capability based on controllability gramian. Experiments are performed to

demonstrate the effectiveness of the proposed theory and RVM.

5.2 Robot-based Vibration Suppression Modules De-

sign

5.2.1 System Description

We recall the composition of distributed RVMs and a ground manipulator for

the flexible object manipulation. A manipulation system consists of a n-degrees

of freedom (dof) ground manipulator, a load/object to be manipulated and
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distributed RVMs connected to the load, see Fig. 5.8. This system is proposed

to overcome the limitation of approaches with quadrotor [36, 44, 68] by taking

advantages of distributed modules with rotor actuation: 1) optimized design

and simplified structure for manipulation and vibration suppression; and 2)

dealing with large and flexible objects with distributed RVMs.

We assume a manipulated object as a long bar with skewed rectangular

shape cross-section so that the transverse vibration is substantial only, while

that along the others are negligible. We also confine ourselves to the case of

planar manipulation for simplicity and the results are extendable to more gen-

eral cases of course. We do not limit the location and the number of RVMs

connected to the flexible load (c.f., one-quadrotor at the bar-end [44]). The

RVM is rigidly connected to the flexible load through screw tightening mech-

anisms. This simple connection structure provides lighter and smaller RVM

compared to a passive rotational joint in [44].

The actuation property of the rotor that generates both thrust force and

moment along the rotor rotation axis makes the design problem non-trivial.

Here, we consider to use the thrust force for vibration suppression control, then

an undesirable torque can affect to other direction, e.g., a torsional torque.

Therefore, we should consider both maximizations of the thrust force in the

sagittal plane and minimization of the torsional torque. Different from the

conventional multirotor drone, the RVM does not necessary to have at least

four rotors for flying capability, thus we utilize only two rotors for RVM which

is sufficient to provide control input in E(2) to minimize the number of rotors

while realizing the compact and lightweight design.
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5.2.2 Design Optimization

The goal of module design optimization is to specify the optimal attaching

location of each rotor ri ∈ <3 and the respective thrust generation direction

ui ∈ <3 all expressed in the RVM body frame B. The search space of the

optimization is then given by U := {ui ∈ <3||ui| = 1, i = 1, 2} and R := {ri ∈

<3||ri| ≤ rmax, i = 1, 2} where U and R are the set of the thrust direction

vectors and the location vectors, respectively, the condition |ui| = 1 is used

to let ui ∈ S2, and rmax is the maximum allowable length for all the rotor

locations. Here, we set rmax = 0.15m. Our design procedure presented here

can also be extended for other numbers of rotors as well.

We can then formulate the design optimization problem as a constrained

optimization problem s.t.

(u∗1, u
∗
2, r
∗
1, r
∗
2) := arg max

u,r
(u1 × u2)T ey (5.1)

subj. to ui ∈ U , ri ∈ R (5.2)

(ri × ui + γui) · ex = 0,
∑

ri × ez = 0 (5.3)

|(r1 − r2) · (u1 × u2)|
|u1 × u2|

≥ daero (5.4)

where (·)∗ is optimal value, γ is thrust to moment ratio and ex, ey, ez ∈ <3

are unit vector of corresponding axis. The thrust generated by two rotors

renders a plane whose normal vector is u1 × u2 while its area is |u1 × u2|.

The bigger area means the bigger thrust generation capability along the plane.

Therefore, to maximize thrust generation capability along xz-plane, we project

this area into xz-plane for the cost function (5.1). Each constraints stand for

91



+ θ̄1

θ̄2
θ̄3

θl

θ̄m,2

τ1

τ2

τ3

λm,2

{W}

{L}

λm,1
θ̄m,1

l1 l2

λm,2

Figure 5.4: Sketch of the configuration of the system.

following conditions: (5.2) constrain unit direction vector ui ∈ S2 and limit the

maximum volume of the rotor location; (5.3) balance torsional torque around

x-axis induced by rotor thrust and moment to prevent torsional deflection of

the flexible load and balance torsional torque around x-axis induced by weight

of the acutator; and (5.4) constrains the airflow interference among rotors by

ensuring the distance among their airflow larger than a certain value daero.

(5.4) represents the shortest distance between the center axis of the cylinder

produced by airflow. As shown in [34], if the distance between two rotors is

longer than a certain value daero, the airflow interference can be negligible. We

solve this constrained optimization and the resultant RVM design is illustrated

in Fig. 5.2.
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5.3 Dynamics Modeling with Multiple Distributed

RVMs

From the sketch in Fig. 5.4, we detail the notations used throughout the chap-

ter. On the ground, n-dof robot arm is mounted whose joint configuration

is defined as θ ∈ <n. The position of each joint, the center-of-mass of each

links and end-effector of robot arm w.r.t. the inertial frame W are defined as

pWi , p
W
c,i ∈ <2 and pWe ∈ <2 respectively. For brevity, we will omit the W when

the position is represented in the inertial frame. Define the position and the

orientation of the RVM attached along the flexible load w.r.t. W as pm,i ∈ <2

and θm,i ∈ <. For any angle, e.g. θ, the notation θ̄ represents the absolute

angle, e.g., θ̄i =
∑i

j=1 θj , while θ representing relative angle throughout this

chapter.

The flexible load is rigidly attached to end-effector of the robot arm, thus

relative angle between the end-effector and the flexible load is constant θl. As

shown in Fig. 5.5, the position and orientation of the flexible load along the

x-axis w.r.t. the flexible load frame L at time t can be written as pLf (x, t) =

[x;w(x, t)] and θf (x) = ∂w(x,t)
∂x where w(x, t) is the deflection along z-direction

at x in L. Recall that the RVMs are rigidly attached to the flexible load at the

user determined location. At the given location, the RVM can be considered

as a thrust generator along the sagittal plane. Thanks to the RVM design in

5.2.2, the resultant thrust direction θt,i can be arbitrarily determined.
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Figure 5.5: Euler-Bernoulli beam deflection model.

5.3.1 Flexibility Modeling of the Load

To model vibration of the flexible load, here, we adopt Euler-Bernoulli beams

theory [59], whose governing equation is ρA∂2w(x,t)
∂t2

+ ∂2

∂x2
EI ∂

2w(x,t)
∂x2

= 0 where

E, I, ρ, A are Young’s modulus, the second moment of area, the density and

the intersection area of the flexible load respectively. We assume the con-

stant parameters along the flexible load to simplify the beam model and to

meet the practical objects. Using the separation of variables, a solution of

given partial differential Euler-Bernoulli equation can be written s.t. w(x, t) =∑m
i=1 φi(x)δi(t) =: Φ(x)δ(t) where m is the number of assumed vibration

modes, φi(x) is the time invariant mode shape function, δi(t) describes the

time varying part of the deflection associated with given mode shape φi(x),

Φ := [φ1, · · · , φm] ∈ <m and δ := [δ1; · · · ; δm] ∈ <m are the corresponding row

and column vector. In practice, high frequency modes are suppressed quickly

due to their damping. thus, finite dimension m of the vibration modes are

considered. As a result, we define the system configuration as q = [θT , δT ]T ∈

<n+m.
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The attached location of the RVM can be arbitrarily chosen by the user,

therefore, the flexible load model should be derived to adopt arbitrary num-

ber of the RVM at arbitrary location. Since each RVM is rigidly attached

to flexible beam, the RVM provides substantial mass and moment of inertia

at attached location. Therefore, to solve Euler-Bernoulli equation, the mass

and the moment of inertia of each RVM should also be incorporated to the

boundary condition: Msi−1(lsi−1) = Msi(0) + Im,i ∂ẅs∂x

∣∣
x=0

and Vsi−1(lsi−1) =

−mm,iẅs(0)+Vsi(0) where M(x) = E ∂2w
∂x2

is the moment and V (x) = −EI ∂3w
∂x3

is the shear force and the subscript si represent i-th segments divided by (i−1)-

th and i-th module with l0 = 0 and lnm+1 = lf as illustrated in Fig. 5.4 and

Fig. 5.5. Therefore, the flexible load is divided into nm+1 segments. Since the

length of the RVM module (l ≈ 0.05m) is typically smaller than the length

of manipulated flexible beam (lf > 1m), the RVM location is approximately

expressed as a point along x-axis. Then, the solution can be computed by si-

multaneously solving the Euler-Bernoulli equation of all segments. Note that

the resultant mode shapes of all the segments are the eigenfunctions of the

Euler-Bernoulli equation, thus the integration along the overall length still

hold orthogonality between each mode shape for i 6= j s.t.:

∫ lf

0
φ′′ij(x)dx = 0 (5.5)

ρA

∫ lf

0
φij(x)dx+

nm∑
k=1

(
mm,kφij(lk) + Im,kφ′ij(lk)

)
= 0

where φij := φiφj and mm,i, Im,i are mass and moment of inertia of i-th RVM.
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5.3.2 Euler-Lagrange Dynamics

Using the kinetic energy T and the potential energy U , the Lagrangian is

defined as L = T −U . This Lagrangian is identical with standard robot except

for the flexible load. To compute its kinetic energy, the position and velocity

along the flexible load is necessary w.r.t. W:

pf (x) = pe +RWL

(
x w(x, t)

)T
, ṗf (x) = Jf (x)q̇ (5.6)

where Jf ∈ <2×(n+m) is the flexible load Jacobian attached on robot arm,

1m ∈ <m is one vector, e2 = [0; 1] ∈ <2 is the unit vector. Its corresponding

kinetic energy is given as Tbar = ρA
2

∫ lf
0 ṗf (x)T ṗf (x)dx.

Regarding the potential energy, the elastic energy is also different with

standard robot dynamics Ubar,el = EI
2

∫ lb
0

(
∂2w
∂x2

)2
dx = EI

2

∑m
i=1

∑m
j=1 dijδiδj

where dij :=
∫ lb

0 φ′′i φ
′′
jdx satisfies the orthogonality in (5.5).

Then, we can derive following Euler-Lagrange dynamics of the cooperative

manipulation system with the RVM:

Mθ Mθδ

Mδθ Mδ

 q̈ +

Cθ Cθδ

Cδθ 0

 q̇ + g +

0 0

0 K

 q = Bτ (5.7)

where Mθ ∈ <n×n, Mδ ∈ <m×m, Mθδ = MT
δθ ∈ <n×m are the inertia matrix,

Cθ ∈ <n×n, Cδθ ∈ <m×n, Cθδ ∈ <n×m are the Corilois matrix, g ∈ <n+m is

the gravity force vector, B(q) ∈ <(n+m)×(n+2nm) is the input mapping matrix,

τ = [τa; τm] ∈ <n+m is control input with the joint torque of manipulator

τa ∈ <n and the module thrust input τm = [λ1Rm,1e2; · · · ;λnmRm,nme2] ∈
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<2nm where Rm,i ∈ SO(2) is the rotation matrix of i-th module, and λm,i ∈ <

is the thrust magnitude. It is important to note that the inertia matrix for

flexibility Mδ and the stiffness matrix K are constant diagonal matrix, even if

multiple RVM in contrast to a single quadrotor in [44], where the off-diagonal

terms are eliminated because δ̇iδ̇j terms in the kinetic energy and δiδj terms

in the elastic energy meets the orthogonality properties (5.5). Note that the

RVM is rigidly attached to the flexible load, thus its equation of motion is

incorporated in the above dynamics. The input mapping matrix B(q) have

the following structure

B =

In Bθm

0 Bδm

 ∈ <(n+m)×(n+2nm)

where In ∈ <n×n is the identity matrix, Bθm = [JTfθ(l1) · · · , JTfθ(lnm)] ∈

<n×nm is the input mapping matrix from the module thrust to robot arm

joints, Bδm = [Bδm,1 · · ·Bδm,nm ] ∈ <m×2nm is the input matrix for the flexi-

bility dynamics with

Bδm,i = Φ(li)
T [− sin θ̄l, cos θ̄l] (5.8)

where θ̄l =
∑
θi + θl is the absolute orientation of the flexible load at the

end-effector of the arm. Note that the manipulator control input τa cannot

directly apply its torque to the flexible load dynamics while the RVM input

τm directly control the flexible load along Bδm. Since the matrix Bδm,i has

rank one although each RVM can generate thrust in E(2), the m-dof flexible

load dynamics can be under-actuated when the number of the RVM is less

than the number of the mode shape (i.e., nm < m).
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5.4 Controllability Analysis

The controller design is motivated by diagonal and constant dynamic structure

of the flexible load in (5.7). Then, we divide the control framework into the

following two sub-problems: 1) fully-actuated robot arm nominal trajectory

tracking; 2) flexible load vibration suppression and gravity compensation via

the distributed RVMs.

However, as shown in the structure of Bδm in (5.8), depending on the rela-

tion between the number of the modules nm and mode shapes m, given robotic

system can be under-actuated to the vibration dynamics. Thus, we analyse the

controllability condition, which is only handled for single quadrotor attached

on the flexible load in [44], therefore, the theory should be extended to dis-

tributed RVMs. In addition, the terms in Bδm is determined by location of the

RVMs, thus we can expect that the distribution of RVMs affect to not only

controllability but also the control performance.

5.4.1 Flexible Load Dynamics Linearization

The fully actuated robot arm control guarantees ξ → ξd where ξ = (pe, θe) ∈

<3 is end-effector pose. Therefore, the vibration dynamics can then be rewrit-

ten with ξd as follows

δ̈
δ̇

 =

0m −K̄

Im 0m

δ̇
δ

+

B̄δm
0

 τm −
M−1

δ E

0

 (5.9)
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where K̄ := M−1
δ K, B̄δm := M−1

δ Bδm and E is defined as E := Mδξ ξ̈
d +

Cδξ ξ̇
d + gδ(θ̄

d
e). We can further simplify the control input expression using the

definition of Bδm in (5.8) and τm as follows

B̄δ,mτm = M−1
δ

[
Φ(l1)T cos θLt,1 · · ·Φ(lnm)T cos θLt,nm

]︸ ︷︷ ︸
=:bδm∈<m×nm

λm

where θLt,i = θt,i − θ̄l is the relative thrust generation direction of i-th RVM

w.r.t. the flexible load frame L. Recall that θt can be independently controlled

thanks to arbitrary thrust generation capability of RVM in E(2) as stated in

Sec. 5.2.

Depending on relation between nm, m and placement of the RVM, the

system can lose its controllability. Therefore, we design the flexible load vi-

bration/deflection suppression controller based on controllability analysis. To

analyse controllability, we linearize the dynamics (5.9) at the equilibrium de-

flection δe ∈ <m along the end-effector trajectory ξd.

We aim that the flexible load behaves similar to the rigid body, thus the

control objective of the RVM includes both the vibration suppression (i.e.,

δ̇ = 0) and the deflection compensation w(lf ) = 0. For this, we design a

feedforward control input to compensate the gravity at the equilibrium de-

flection δe to satisfy w(lf ) = 0 as λm = (ΦK−1bδm)†ΦK−1gδ(θ̄
d
e) where (·)†

is Moore-Penrose pseudo inverse. Here, we choose λm solution that mini-

mize overall energy consumption by minimizing in terms of thrust two-norm.

Then, the corresponding equilibrium deflection shape mode vector satisfies

δe = (−I +K−1bδm(ΦK−1bδm)−1Φ)K−1gδ(θ̄
d
e). Note that the equilibrium de-

flection δe satisfies zero deflection at the load-tip, i.e., w(lf ) = Φδe = 0.
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Finally, we can linearize the dynamics (5.9) at the equilibrium deflection δe

¨̃
δ

˙̃
δ

 =

0m −K̄

Im 0m


︸ ︷︷ ︸

=:A

 ˙̃
δ

δ̃

+

b̄δm
0


︸ ︷︷ ︸

=:B

λ̄m (5.10)

where δ̃ = δ − δe and λ̄m = λm − (ΦK−1bδm)†ΦK−1gδ.

5.4.2 Controllability

The linearized flexible load dynamics (5.10) is represented by 2m-dof configu-

rations [
˙̃
δ; δ̃] ∈ <2m with nm-dof RVM inputs via Bλm. And the input mapping

matrix B is a function of the module placement φi(lj) and the thrust direction

θt,i. Therefore, we need to verify whether the input λm can suppress the vibra-

tion/deflection in the linearized system. For this, we utilize the controllability

matrix C := [B AB · · · A2m−1B] ∈ <2m×2mnm of the linearized dynamics

(5.10) which is computed as follows

C = I2 ⊗
[
b̄δm −K̄ · · · (−K̄)m−1b̄δm

]
︸ ︷︷ ︸

=:Cs∈<m×mnm

(5.11)

where ⊗ is Kronecker product. The linearized flexible load dynamics (5.10)

is controllable, if the controllability matrix has full row rank. Since the left

term of Kronecker product is identity matrix, to figure out the controllability

condition, we need to check the full row rank condition of Cs. However, the

controllability matrix is not a square matrix for multiple RVM case, thus

we cannot directly apply previous result by checking determinant (c.f., square
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matrix Cs ∈ <m×m in [44]). Since the full row rank condition for Cs is equivalent

to det(CsCTs ) > 0, we first evaluate it.

Lemma 3. Consider the submatrix of the controllability matrix Cs of the lin-

earized system (5.10). Then the matrix Cs satisfies following properties:

CsCTs =

nm∑
i=1

diag(b̄i,1, · · · , b̄i,m)KmKTmdiag(b̄i,1, · · · , b̄i,m)

where Km := [1m, K̄1m, · · · , K̄m−11m] and b̄i,j is (i, j) component of b̄δm; and

det(CsCTs ) =
m∏
i=1

(

nm∑
j=1

b̄2i,j) ·
m∏
k=2

1≤l<k

w2
n,k−l + f(bδm,Km) (5.12)

where wn,k−l := wn,k − wn,l and f(bδm,Km) is residual function satisfying

following inequality:

f(l, θm) ≥ −
m∏
i=1

(

nm∑
j=1

b̄2i,j) ·
m∏
k=2

1≤l<k

w2
n,k−l

where ≥ is replaced by > only when
∏m
i=1(

∑nm
j=1 b̄

2
i,j) ·

∏m
k=2

1≤l<k
w2
n,k−l 6= 0.

Proof: The first item is the result of straightforward calculation of the matrix

multiplication. Regarding the second item, the given matrix CsCTs ∈ <m×m is

positive semi-definite symmetric matrix and it always satisfy following inequal-

ity from xCsCTs x ≥ 0,∀x ∈ <m : |x| = 1 which is equivalent to det(CsCTs ) ≥ 0.

101



From the Leibniz formula of the matrix determinant, the determinant of

CsCTs can be written as

det(CsCTs ) =
∑
σ∈Sn

sgn(σ)
n∏
i

(

nm∑
j=1

b̄i,j b̄σi,j)Km,1KTm,σi


±

m∏
i=1

(

nm∑
j=1

b̄2i,j)
∑
σ∈Sn

sgn(σ)
n∏
i

(
Km,1KTm,σi

)
(5.13)

where sgn(·) is the sign function of permutations in the permutation group Sn

which returns 1 or −1 for even and odd permutations respectively. We employ

the result of Theorem 1 in [44] for det (Kn) in second line equation which is

similar to well-known Vandermonde matrix structure whose determinant is

given by

det
(
KmKTm

)
=
∑
σ∈Sn

sgn(σ)
n∏
i

(
Km,1KTm,σi

)
= det (Km)2 =

m∏
k=2

1≤l<k

w2
n,k−l (5.14)

Since this determinant is larger than zero and the term (
∑nm

j=1 b̄
2
i,j) ≥ 0, the

resultant product term in (5.12) and (5.13) should be larger than zero. This

(5.14) explain the first term in (5.12) and the second line is equivalent with

(5.13).

Other terms stand for the residual function f(bδm,Km). Regarding the resid-

ual function, if
∑nm

j=1 b̄
2
i,j 6= 0, ∀i = 1, · · · ,m, then there exists i that sat-

isfies diag (b̄i,1 · · · , b̄i,m)x 6= 0,∀x ∈ <m : |x| = 1. On the other hand, if
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wn,i 6= wn,j , ∀i, j = 1, · · · ,m : i 6= j , KnKTn is positive definite from its de-

terminant expression in (5.14). If
∑nm

j=1 b̄
2
i,j = 0 or wn,k = wn,l for some i, j, l,

then the inequality automatically hold due to semi-positive definite matrix

CsCTs .

From Lemma 3, the three sufficient conditions to ensure controllability of

the linearized system can be extracted in the following theorem:

Theorem 4. Consider the linearized flexible load dynamics (5.10) and control-

lability matrix C. Then, if the following three conditions are met, the linearized

flexible load dynamics is controllable:

1) Placing condition
∑nm

j=1 φi(lj)
2 6= 0, ∀i = 1, · · · ,m;

2) Tilting condition cos(θLt,i) 6= 0 or θLt,i 6= π
2 + kπ, k ∈ Z

3) Mode independency condition wn,i 6= wn,j .

Proof: According to Lemma 3, det(CsCTs ) > 0 if (
∑nm

j=1 b̄
2
i,j) 6= 0, ∀i =

1, · · · ,m and w2
n,k−l 6= 0, ∀k, l = 1, · · · ,m and k 6= l. Therefore, the flexi-

ble load dynamics (5.10) is controllable when the placing, tilting and mode

independency conditions meet.

To satisfy the placing condition, at least one of the mode shape at the

RVM location should not be zero for each vibration mode, i.e.,
∑nm

j=1 φi(lj)
2 6=

0,∀i = 1, · · · ,m. This controllability condition enforces a design criteria for

attaching the RVM to avoid the node position, i.e., φi(x) = 0. Unlike a single
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quadrotor case in previous result [44], even though one of the RVM is located

at the node position of i-th mode, the whole system is controllable as long as

there exists a RVM that is not located in node position of i-th mode.

If the RVM cannot meet the tilting condition, i.e., cos(θLt,i) = 0, then the

thrust of the RVM is aligned to x-axis of the load frame L and subsequently

cannot exert force along the deflection direction. This controllability condition

imposes to control the thrust direction to cos(θLt,i) 6= 0. This condition can

always be preserved since the RVM is designed to instantly generate arbitrary

direction thrust in the plane. On the other hand, If we use a quadrotor as

shown in [44], the quadrotor attitude should be controlled to generate desired

thrust direction.

Theorem 4 suggests sufficient conditions for the controllable system. The

exact necessary and sufficient condition for controllability can elucidate when

the system become uncontrollable, however, those exact conditions does not

meet the practicality. For example, even though two vibration modes have

same natural frequency against the physical condition, the system can be

controllable with certain condition. However, the physical condition cannot

be violated theoretically. Therefore, in practice, the sufficient conditions are

enough to ensure controllability.
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5.5 Optimal placement

5.5.1 Optimal Placement of Actuator

In the previous section, the controllability is affected by how the RVMs are

distributed along the flexible load. However, the controllability analysis does

not explain how well the RVMs can suppress the vibration and what is the

optimal RVM placement. For this, we adopt controllability gramian approach

whose definition is given by Wc =
∫∞

0 eAτBBT eA
T τdτ . An asymptotically

stable system should have unique bounded solution with integration along

infinite time horizon. Since the linearized vibration dynamics is spring-mass

system, we add the damping term to (5.10). This assumption is valid, because

the real system always suppress the vibration with its own small damping as

time goes by. The coefficient is verified to have small value D ≈ 0, thus we

add the diagonal damping term D similar to diagonal K, however, note that

it can be neglected by assuming it to zero as we utilize in previous section.

Here, we transform the linearized dynamics (5.10) into equivalent state space

representation to simplify controllability analysis as ẋ = Âx + B̂λm where

x = [δ̇1;wn,1δ1; · · · , δ̇m;wn,mδm] ∈ <2m is transformed state and the matrix Â

and B̂ satisfy corresponding transformation. Then, the controllability gramian

solution is given in the following theorem

Theorem 5. Consider the linearized flexible load dynamics ẋ = Âx + B̂λm.

Suppose the damping ratio satisfy ζi � wn,i and ζi ≈ 0,∀i = 1, · · · ,m. Then,
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Figure 5.6: Optimal placement of two RVMs on aluminum bar. det(Wc)
provides (l1, l2) = (1.15m, 1.95m) (left). tr(Wc) provides (l1, l2) =

(1.25m, 1.95m) (right).

the controllability gramian is derived s.t.,

Wc ≈ diag(W11, · · · ,Wmm) (5.15)

where Wii = diag
(

βii
4ζiwn,i

, βii
4ζiwn,i

)
and βij =

∑nm
k=1 b̄i,k b̄j,k.

Proof: Using transformed linearized dynamics, the controllability gramian

can be solved by Sylvester equation similar to [69] and its block matrix is

Wij =
βij
dij

aij(ζiwn,j + ζjwn,i) wn,jcji

−wn,icji aij(ζiwn,i + ζjwn,j)


with dij = 4wn,iwn,j(ζiwn,i + ζjwn,j)(ζiwn,j + ζjwn,i) + (w2

n,i − w2
n,j)

2, aij =

2wn,iwn,j and cji = (w2
n,j − w2

n,i).

From the assumption ζi � wn,i and ζi ≈ 0, dij ≈ (wn,i−wn,j)2 for i 6= j and

dii = 16w3
n,iζ

2
i for i = j. Then, the off-diagonal block matrices are not depend
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on 1/ζ, however, the diagonal block matrices depend on 1/ζ. Therefore, the

components in the off-diagonal matrices are approximated to zero since those

are relatively smaller than the diagonal matrices in (5.15).

Controllability gramian Wc characterizes the minimal energy required to

steer the state from zero to certain state (i.e., xTW−1
c x) [70]. From this prop-

erty, different quantitative measures of controllability considered in literature

[71]. The trace of Wc related to the average control energy over random target

states, however this metric cannot show how effectively it can suppress all

the vibration, because only slow vibration modes are dominant. On the other

hand, the determinant of Wc represents the volume of the ellipsoid containing

the states that can be reached with an unit-energy, thus max tr(Wc) represents

the effectiveness of vibration suppression to every vibration modes. Here, we

choose the controllability metric as det(Wc) to effectively suppress the vibra-

tions which is given in Fig. 5.6 for experimental setup in Sec. 5.6. These metrics

are represented by the singular values of Wc and directly computed by βii
4ζiwn,i

according to Theorem 5.

Theorem 5 gives an intuition that the location where it maximizes mode

deflection or its summation is the optimal placement which is compatible with

Theorem 4 that shows the node positions can makes system uncontrollable.

And the controllability conditions are also compatible with the structure of

Wc in Theorem 5. In Theorem 5, the determinant of Wc is represented by the

multiplication of the diagonal terms. The diagonal terms become zero when

βii = 0 which is also shown in Lemma 3, thus Wc cannot be singular as long

as placing and tilting condition hold.
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5.5.2 Optimal Placement of Module

In Sec. 5.5.1, the analysis about the optimal placement of actuators shows that

the maximization of deflection, deflection angle and strain or its summation

give an optimal placement for actuators and sensors while its node position

give loss of the controllability or the observability. Even though these analysis

give an intuition of the optimal placement of each case, however, it still can-

not provide optimal placement of the RVM equipped with both actuator and

sensor.

Here, the deflection of the flexible load can be measured by an external

measurement such as MoCap, however, we aim to realize onbaord estimation

of the deflection through the sensor equipped with RVM rather than rely on

external measurement. For this, we need to verify whether the deflection of

the load can be estimated by sensors. The sensors equipped with RVM can be

formulated by following output relation

[
ya

]
︸︷︷︸

=:y∈<nm

=
[
0m Caδ

]
︸ ︷︷ ︸

=:C∈<2nm×2m

 ˙̃
δ

δ̃

 (5.16)

where ya ∈ <nm is output variable represents angle measurement from IMU,

Caδ = [Φ′(l1); · · · ; Φ′(lnm)] ∈ <nm×m is output matrix for ya.

Therefore, we need to formulate an optimal placement of RVM to maxi-

mize both control capability for vibration suppression via rotors of RVMs and

sensing capability for deflection via sensor equipped on RVM. However, the

optimal placement for actuation and sensor are not identical, thus, we need to
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quantify both capabilities as an unified cost function to deal with these conflict

conditions. For this, we adopt a LQG (Linear Quadratic Gaussian) formula-

tion to give a quantitative value at a given RVMs placement. To adopt the

LQG formulation, we first derive a linearized flexible load vibration dynamics

driven by additive white Gaussian noise:

ẋ = Ax+Buu+Bvvx (5.17)

y = Cyx+Dyvy (5.18)

where vx ∈ <2m and vy ∈ <2nm are the uncertainty of the system dynamics

and output model whose covariance matrices are Vx := E[vxv
T
x ] ∈ <2m×2m and

Vy := E[vyv
T
y ] ∈ <2nm×2nm . This linear system is originally derived in (5.10),

however, since the LQG formulation allows to handle uncertainties on the

dynamics model and measurement model, the additive white Gaussian noise

is additionally introduced compared to (5.10) and (5.16). The uncertainty in

linearized dynamics vx includes modeling error, uncertainty from rotor thrust

dynamics and inertial parameters, etc. For the output model, the uncertainty

vy mainly comes from the uncertainty of sensor and modeling error of between

deflection and measurement. The LQG formulation have an advantage that

can handle uncertainties in models while the controllability and observability

gramian in Sec. 5.5.1 can handle deterministic system.

To quantify the given RVMs placement based on (5.17), we utilize infinite

horizon LQG (Linear Quadratic Gaussian) formulation since this formulation

provides a cost regardless of the initial and final state, thus it is suitable to

evaluate the control and sensing capability. Then, the cost function is given as
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follows

J := min
lim t→∞

E
[
x(t)TQx(t) + u(t)TRu(t)

]
where E(·) is expectation of probabilistic variable, Q ∈ <2m×2m and R ∈

<nm×nm are the weight matrices which are assumed to be diagonal matrix in

here. Here, we can apply infinite horizon LQG problem since the flexible load

dynamics is formulated by a linear time-invariant system. The cost function

represents the optimal performance of control and state estimation with given

RVMs distribution.

According to LQG theory, the separation principle of linear system with

additive noise provides the solution of this minimization problem that can be

equivalently represented by following equation:

J = trace
[
Q

1
2Y ∗(Q

1
2 )T
]

+ trace
[
B̄TXB̄

]
where B̄ := Y ∗CTy (DyVyD

T
y )−

1
2 , and X ∈ <n×n, Y ∈ <n×n are the solution of

following two algebraic Riccati equations

ATX∗ +X∗A−X∗Bu(R)−1BT
uX

∗ +Q = 0

AY ∗ + Y ∗AT − Y ∗CT (DyVyD
T
y )−1CY ∗ +BvVxB

T
v = 0.

Each Riccati equation represents the algebraic Riccati equation for infinite

horizon LQR (Linear Quadratic Regulator) and steady state Kalman filter.

Thus, it can be interpreted that the optimal solution is given by the separated

formulation of optimal controller and optimal estimator with given RVMs
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distribution.

At every RVM placement, the LQG problem gives both optimal controller

and optimal estimator with corresponding cost function value J . If we define

a given RVMs placement set P := {l1, · · · , lnm}, then the optimal cost and

its corresponding LQR and Kalman filter gain can be calculated. The opti-

mal placement formulation can be summarized into following minimization

problem:

P∗ = arg min
P

J(P) (5.19)

where P∗ = {l∗1, · · · , l∗nm} is the set of optimal placement. Here, this LQG

formulation concerns about the placement of RVMs only, thus, even though

the thrust direction Rm,ie2 also affect to control capability, we assume the

direction is fixed with unit vector ey.

Note that the controllability gramian and the LQG formulation is equivalent

when the output model is deterministic, i.e., vy = 0 and the cost function

only includes weight on input, i.e., Q = 0. Due to the duality between the

controllability and the observability, the observability gramin is also equivalent

with LQG when the control input is zero and the model propagation noise

vx = 0. Since LQG be computed with various weight matrix Q,R, it can

manage the system with different properties and purposes using various weight

matrix such as maximizing control performance, minimizing control effort.

It is also noticeable that the proposed optimal placement can be extended

with various robust controller including H2, H∞ controller by replacing the
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Figure 5.7: Optimal placement of two RVMs on aluminum bar. Left top
plot represents control cost J1 and right top plot represents estimation cost

J2. Bottom plot shows resultant LQG cost.

cost function of (5.19). The cost function can be any function that can quantify

the capability of control and sensing.

The optimal placement is determined by material property, i.e., density,

Young’s modulus, cross section area, etc, and the relative inertia between the

flexible load and the RVM and number of RMVs on the flexible load. However,

since the RVM is rigidly attached on the flexible load during the task, the

optimal placement is calculated off-line and it is provided as a lookup table.
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5.5.3 Control Design

Here, we utilize LQR to optimally suppress vibration along with the gravity

compensation for the RVM. And we utilize computed torque control for the

robot arm. This control is same with the approach introduced in previous

result. For more detail, please refer [44].

5.6 Experiment

We implement two RVMs attached on 2m long aluminium bar at optimal place

in Fig. 5.6 with cross section 40mm×3mm as shown in Fig. 5.8. Each RVM is

constructed based on optimal design in Sec. 5.2 and equipped with Pixhawk

for computing, wireless communication between ground PC and ESCs control.

MoCap is used to measure the position and orientation of each RVM and

load-tip deflection. Power supply unit is used to supply power to the RVMs,

however, each module can also be operated using onboard battery.

Three experimental verifications are performed for this two RVM system:

1) stationary robot arm with external disturbances and 2) one end position

manipulated by robot arm. These two experiments are compared to the same

scenarios without RVMs; and 3) one end pose manipulated by human operator.

In the first experiment, an operator exerts external disturbances every 3 to

5 seconds at various location on the aluminium bar. On the other hand, the

disturbances are exerted every 9 to 10 seconds for the experiment without

RVMs because the vibration persists for a long time. It takes about 1 min to

totally suppress the vibration with its structural damping. The plot in Fig.
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Figure 5.8: Snapshots and load-tip deflection plot for stationary robot
arm under external disturbances. Red arrows represent times external forces

exerted.

Figure 5.9: Snapshots and load-tip deflection plot for one-end position
manipulated by robot arm. Yellow shaded columns represent times the robot

arm moves.
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Figure 5.10: Snapshots for vibration suppression of flexible load using dis-
tributed RVMs with pose manipulated by human operator.

5.8 shows that RVMs effectively suppress the vibration before it reaches next

peak of sinusoidal deflection.

In the second experiment, the external disturbance is replaced by the mo-

tion of robotic arm. To see the vibration suppression performance, the RVM

input does not have feedforward input of the robot arm. The robot motion

includes both upward and downward motion and this motion induces vibra-

tion. In Fig. 5.9, the plot shows that the RVM can suppress the vibration right

after the motion stops. In contrast, without RVM, the plot shows that even

though its amplitude is amplified or reduced depending on direction of robot

arm motion and vibration, the vibration is not suppressed during the bar is

manipulated. The last experiment shows that the distributed RVMs system

can also be applied to non-stationary robot systems or even cooperative tasks

with humans.

Three experiments also show that the gravity induced deflection of the alu-

minium bar is compensated by the RVMs so that the vibration shifted from

-0.8m to 0m.
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5.7 Conclusion

In this chapter, we propose a novel RVM to manipulate and transport a large

flexible object. The number of modules can be varied to adapt the various

object since the RVM can be easily attachable/detachable. The RVM is opti-

mally designed to maximize the feasible thrust generation area along the plane

that vibration occurs with the minimum number of rotors while it minimizes

undesirable torque. We derive the full dynamics of the distributed RVMs and

elucidate the controllability condition. Furthermore, we also propose the op-

timal placement of the RVMs on the flexible load based on the controllability

gramian. Experimental validation of the distributed RVMs is also presented.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis addresses the dynamics and control problems of novel aerial ma-

nipulation system based on rotor based actuation. The aerial manipulation

system includes: 1) quadrotor manipulator system; and 2) novel rotor-based

vibration module.

For the first part, we reveal a certain underlying structure of the nonlinear

Lagrange dynamics of the quadrotor-manipulator (QM) system, that is, its dy-

namics, although often overwhelmingly complex, can be completely split into:

1) the quadrotor-like center-of-mass dynamics in E(3) with all under-actuation

and gravity effect; and 2) the “internal” dynamics of quadrotor’s rotation and

the manipulator configuration in the form of standard Lagrange dynamics with

full actuation and no gravity effect. Relying on this structure, we propose a

backstepping-like end-effector trajectory tracking control law, which allows for

different control authority for each of these systems according to task objec-

tives by exploiting the redundancy inherent in the system. Simulation using a
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planar quadrotor with a 2-DOF arm for trajectory tracking and force control

is also performed to verify the proposed theoretical framework.

Based on a result of single QM system, we also propose the cooperative con-

trol framework for multiple QM systems which consist of following hierarchical

structure: 1) object bahavior design; 2) optimal cooperative force distribution;

and 3) individual QM system control. The proposed control framework can be

adapted to variable tasks which need different behavior by changing a specific

control block rather than redesign the whole controller. And also, different

types of individual QM system controllers are also applicable to this control

framework without variation of the hierarchical structure. We extend the result

about the QM system position controller from decoupled dynamics structure

to admittance-like force control. Moreover, we propose how to control the

individual QM system, using the decoupled dynamics , depending on differ-

ent dynamics characteristics of the (under-actuated/slower/coarse) quadrotor

platform and the (fully-actuated/faster/fine) manipulator. Simulation results

of cooperative object transport and compliant interaction are presented.

For the second part, we extend results on the MAGMaS, a novel cooperative

heterogeneous manipulation system [36], to the case of flexible load manipula-

tion. In particular, we derive the dynamical model of a planar MAGMaS, in-

cluding vibrations in the long slender load. We then propose a control strategy

for both trajectory tracking and effective vibration cancellation by exploiting

the dynamical properties of such an under-actuated system for vibration, in

particular vibration cancellation is achieved through a linearization scheme.

Along the way, the conditions for controllability of the vibrations modes are

exhibited. The validity of this approach is demonstrated in two simulations by
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comparing its performance to the one of previously proposed approaches. The

possible next step for this work are the experimental validation for the planar

case, the system for which is already in construction, and the extension of the

theoretical work to the general 3-dim case with multiple aerial robots. We then

propose a novel RVM to manipulate and transport a large flexible object. The

number of modules can be varied to adapt the various object since the RVM

can be easily attachable/detachable. The RVM is optimally designed to maxi-

mize the feasible thrust generation area along the plane that vibration occurs

with the minimum number of rotors while it minimizes undesirable torque. We

derive the full dynamics of the distributed RVMs and elucidate the controlla-

bility condition. Furthermore, we also propose the optimal placement of the

RVMs on the flexible load based on the controllability gramian. Experimen-

tal validation of the distributed RVMs is also presented. Some possible future

research topics include: 1) sensor fusion with onboard sensor; 2) MoCap-less

operation of distributed RVMs.

6.2 Future Work

We believe that the dynamics formulation and the control framework pre-

sented in this thesis will provide a general framework for other aerial manip-

ulation systems with large DOF or systems with flexible components. The

proposed dynamics formulation and control framework is not limited to the

drone-manipulator system, thus it can be applied to large-DOF articulated

robotic systems such as mobile manipulator, ROV, space robot, and a hu-

manoid robot. The design framework also can be utilized to design other novel
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aerial robots or the robotic system to optimally allocate the actuator with the

minimum number. In addition, the analysis and the optimal placement of the

actuator/sensor also can be employed in other robotic systems include flexible

and soft components.

The dynamics formulation can be applied to not only the drone-manipulator

system but also the general vehicle-manipulator system and this vehicle-manipulator

system includes a humanoid robot. Differential geometric interpretation of the

decomposition might provide a connection to other dynamics formulation and

the fundamental properties to have these decoupled properties. From this de-

coupled dynamics structure, the complex control design problem can be sim-

plified into a simple control design problem of two decoupled dynamics. Here,

we provide the backstepping-based controller with dynamic properties of each

decoupled dynamics, however, other control frameworks can be employed with

the proposed dynamic structure while incorporating the properties of a given

vehicle-manipulator system.

The control framework proposed for the drone-manipulator system is vali-

dated via simulation results in this thesis. The real implementation has many

practical issues such as the development of precise and light-weight robotic

arm, difficulties of torque control for lightweight robotic arm due to high gear

ratio of the motor, force-torque control with under-actuation, etc. Thus, the

real implementation and its practical problem might be a possible direction of

this thesis.

For long and slender objects, the flexibility of the objects plays an important
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role in the manipulation and transport of the payload. Furthermore, the flexi-

bility of the link or joint of the aerial manipulation system and robotic systems

that interact with the environment also plays an important role to ensure safe

interaction without precise control, estimation under external disturbances.

Thus, the controllability and observability also can be extended to more gen-

eral robotic systems with multiple flexible links, joints, or even soft robots.

In addition, unlike the rigid link and joint, the flexible and soft component in

the robotic system can degrade control and estimation performance. Thus, it

is important to determine and analyze how and where to place the actuator

and sensor along with the robot. And the performance of the overall system

can be affected by which sensor and actuator are employed. Therefore, the

framework and analysis presented in this thesis might be extended and pro-

vide direction for starting analysis for those problems of flexible components

and actuator/sensor allocation.
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초록

본 학위논문에서는 로터로 구동되는 새로운 공중조작 시스템의 동역학과 제

어문제에 대해서 기술한다. 본 논문에서 기술하는 새로운 공중조작 시스템은 1)

드론과 로봇팔을 결합한 드론-매니퓰레이터 시스템과 2) 유연성을 갖는 물체의

진동저감을위한로터기반진동저감모듈이며,각각의공중조작시스템의동역학

해석과 제어기법에 대해 기술한다.

드론-매니퓰레이터 시스템의 구동부족 문제와 높은 자유도의 비선형 동역학

문제를 해결하기 위해 수동성기반 동역학 분할기법을 적용하여 일반적인 다중

로터 드론의 구동부족 동역학과 같은 형태의 전체 시스템 무게중심의 병진운동

동역학과, 일반적인 완전 구동 로봇팔의 동역학과 같은 로봇 동역학으로 구성된

전체시스템의 회전 동역학으로 나누어짐을 보였으며 이 동역학 구조를 활용한

단일 및 다중 드론-매니퓰레이터의 협조제어기법을 제시하였다.

다음으로로터구동에기반한진동저감모듈연구에서는진동저감을위한최소

한의 로터를 가지며, 원하는 방향으로 최대한의 힘과 진동저감에 방해되는 최소

한의토크를가지도록하는최적설계방법을제안하였다.이를바탕으로유연성을

갖는 물체위에 손쉽게 탈부착이 가능하며, 다양한 물체의 크기에 적용이 가능한

확장성을 확보하였으며, 탑재된 온보드 센서를 통해 물체의 변형 측정이 가능

하도록 하였다. 진동저감을 위한 물체와 모듈이 결합되었을때의 동역학 해석 및

제어가능성에대하여해석하였으며,여러개의모듈을배치하였을때제어와추정

을최적화하는방법을제시하였다.마지막으로관련된시뮬레이션과실험결과를

제시한다.



주요어: 드론, 공중조작, 동역학, 제어, 최적배치, 구동부족
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