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Abstract 

 

Magnet-inspired intuitive  

design tool for inner structures  

of solid models 
 

KAM Dong Uk 

Department of Mechanical Engineering 

The Graduate School 

Seoul National University 

 

In this study, a new intuitive design tool that allows users to 

interactively design the internal structure of a given outer boundary 

is proposed. This study is inspired by the behavior of conductive 

particles under magnetic force. As the conductive particles are dense 

near from the magnet, the proposed approach yields denser Voronoi 

cells near from the magnet-like control points that are moved 

interactively by the designer. By describing the relation between the 

proposed design tool and the generated Voronoi structure, the 

parameters the user can interact with are also suggested. The inner 

structures of soild models can be created and modified by adjusting 

the location and number of control points and these parameters. In 
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addition, each Voronoi cell is modified to have a skin of desired 

thickness by a subdivision. Two applications of this design tool are 

proposed. The first proposed application is to control the center of 

gravity of the part, and the second is to improve the mechanical 

properties of certain areas of the part. In conclusion, we propose a 

new concept for a design tool that can lead the changing 

manufacturing paradigm with additive manufacturing. 

 

Keywords : CAD tool, inner structure design, Voronoi structure, 

magnet-inspired interface  
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Chapter 1.  Introduction 
 

Recently, 3D printers have made it possible to easily create complex 

shapes that are difficult to make with conventional machining process. 

A typical 3D slicer program automatically fills the inside of a given 

mesh model with two options: density value and basic shape. 

However, these general 3D slicers provide only the regular type infill 

option in which the 2D shape is stretched in the stacking direction, 

as shown in Fig. 1. Therefore, the current slicer cannot fully utilize 

the advantages of the internal complex shape.  

 

 

 

Fig. 1. Various infill structures used in typical 3D slicers 
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Therefore, many studies have been conducted to utilize complex 

internal structures. For example, studies that improve the mechanical 

properties of solids against weight by removing insignificant regions 

[1, 2], methods of making sparse structures with good ventilation [3, 

4], and studies to control the elasticity of objects using specific cell 

structures [5, 6] have been advanced. Regli et al. [7] mentioned that 

a new paradigm of the material structure modeling process is 

emerging thanks to the advancement of additive manufacturing.  

However, most of these studies are focused on the process of 

creating the optimal shape for a given condition rather than the 

modeling process in which the user can interact with and change the 

structure.  

Complex internal structures to a certain extent can be modeled using 

existing computer-aided design(CAD) tools such as Solidworks or 

CATIA. These solid modelers have been added design functions 

considering the traditional machining process. Consequently, these 

are mainly strong in modeling the external shape of the product. 

However, it is extremely tedious and time-consuming work for users 

to deploy them to create complex internal shapes. That is, although 

the fabrication technology capable of creating a complex shape has 

been highly developed, there has not been enough research on CAD 
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tools that can sufficiently draw the utility of the additive 

manufacturing technology, owing to their limitations in modeling the 

internal shape. In this regard, Gao et al. [8] noted that the field of 

additive manufacturing cannot flourish without research on natural 

user interface-driven internal shape modeling methods. 

Jenkins [9] pointed out that many modern engineers do not use CAD 

systems because of their long learning times. In particular, according 

to Jenkins, CAD tools that are easy to learn and use will have a major 

impact on productivity. For this reason, traditional CAD tools have 

also been changed so that non-CAD experts can learn and intuitively 

use them in shape design [9-11].  

However, it is difficult to create various models used in additive 

manufacturing in current CAD systems. Azman et al. [12] evaluated 

current CAD tools through the design of cellular structures. In this 

research, it took more than 1.5 hours to design repeating patterns of 

cellular structures using current CAD tools. In conclusion, current 

CAD tools were evaluated as too difficult, time consuming, and heavy 

for computers to handle complex designs. 

It can be said that Autodesk's Netfabb is a leading alternative CAD 

tool for internal shape design, as shown in Fig. 2. Netfabb's basic 

design principle is a type of bottom-up lattice modeling method that 
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first specifies the shape of a unit volume and repeats it in three axes 

to create the whole structure. However, this method only fills the 

inside of the solid body with a repetitive pattern of the same unit 

shape, and it is difficult for the user to make the internal shape 

partially different or change the local density. 

Therefore, in this paper, a design tool that helps general users to 

design an inner structure is proposed. 

 

Fig. 2. Netfabb: lattice-based inner structure design tool 
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Chapter 2.  Related Works 

 

2.1. Related works 

In this section, we review existing studies on internal design and 

complex shape design methods.  

2.1.1. Topology optimization 

Traditional topology optimization is the process of creating a shape 

that meets a given internal and external condition in a limited domain 

[13]. However, traditional topology optimization methods usually 

take a long time depending on the size of the domain and have the 

disadvantage of not being able to guarantee internal connectivity. In 

addition, it is difficult for the user to predict the resulting shape, and 

a bumpy shape may appear on the side to which an external force is 

applied, or an unnecessary branch shape may occur [14]. 

Nevertheless, topology optimization has been used in various ways 

to design the internal shape. 

Jang et al. [15] proposed a method to mimic the human femur 

structure in two dimensions through topology optimization. Although 

these authors obtained greatly similar results to femur structure, as 

a limitation of this research, they mentioned that a large-scale 

numerical analysis method is needed. 
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Similarly, Jun Wu et al. [2] proposed a topology optimization method 

that mimics the bone structure in three dimensions. They pointed out 

that if there is a small difference between the fabricated product and 

the traditional topology optimization result, or if the external force is 

slightly different from the simulation input, the mechanical properties 

of the part may be insufficient. Therefore, to overcome these 

limitations, they designed a bone-like porous structure using the 

local density as an additional constraint.  

However, although these researchers achieved speed improvement 

over the previous study, their method has the disadvantage of taking 

a considerable time to acquire the shape [16].  

Larsen et al. [17] proposed a method of obtaining an optimal frame 

structure through topology optimization. They defined an integrated 

problem that considered both Michell’s problem of obtaining the 

minimum weight of a truss that satisfies the external condition [18] 

and the problem of minimizing compliance property. Thereafter, they 

obtained a fully connected structure through an automated solution 

process. However, this approach is limited to 2D situations. 

 

2.1.2. Lattice-based modeling 

Daynes [19, 20] and Rahul Arora et al. [14] designed a lattice 

structure optimized for tensor fields obtained through finite element 
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method(FEM). In these studies, it is emphasized that conventional 

topology optimization methods require users to spend a significant 

amount of time on post processing, because geometry that is highly 

difficult to manufacture is often obtained. Therefore, the aurthor 

devised a method to automatically extract the Michell truss structure 

aligned to the stress field acquired through FEM. However, as a 

limitation of their method, Rahul et al. noted that there are few ways 

for users to control the entire structure, and further research on the 

user interface is required. 

 

 

Fig. 3. Lattice sweeping method 
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Fig. 4. Undesired swept lattice 

Gupta et al. [21] studied the lattice-sweeping method that produces 

a 3D lattice structure with 2D grid input and a parametric path as 

shown in Fig. 3. Sweep operation is a commonly used design tool in 

conventional solid-modeling systems. It is a method of repeating an 

input profile along a parametric path to create a smooth 3D shape. To 

generate profiles repeatedly, it is necessary to calculate the local 

coordinates on the input parametric path at given intervals. As the 

method of calculating local coordinates, rotation minimizing frame [22] 

or steady affine motion method [23] can be applied. However, using 

the lattice sweep method can generate an undesired structure under 

certain conditions, such as a region with high curvature as shown in 

Fig. 4. 

Bremnnan-Craddock [24] studied the process of creating a 
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conformal lattice structure. They firstly created a trimmed regular 

lattice inside the solid model. Thereafter, postprocessing was 

performed by wrapping a sparse structure called net-skin for the 

outer shell of the trimmed lattice. However, the author also pointed 

out that an additional process is required to change the inner density 

of the structure. 

 

2.1.3. L-system based modeling 

Zhou et al. [25] devised a way to design supports used in 3D printers 

using the L-system. L-system is a method of designing a tree-like 

structure by defining seed points and the growth rules of each branch.  

The L-system was created to mimic the growth pattern of plants  

[26] and has been used for digital tree generation algorithms [27, 28] 

and automatic city street generation processes [29]. The rules of L-

system can be classified into three types: rewriting, branching and 

growing. However, although L-system can easily be used to create 

complex shapes, it has the disadvantage of it being difficult to 

guarantee connectivity at the end of the branches and to predict the 

whole generated structure. 

 

2.1.4. Honeycomb-like 3D structure 

Lin Lu et al. [30] proposed the algorithm to design the inner shape 
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of the honeycomb-like structure conforming to the corresponding 

stress field. They first calculated the stress field inside the solid 

model for a given external force condition. Then, the corresponding 

Voronoi structure was created using this stress field, and the design 

process was performed to create a volumetric porous structure by 

calculating the harmonic field between the outer surface and the 

center of each Voronoi cell. However, there is a limitation that the 

relationship between the design structure and actual mechanical 

properties is not strictly defined. Another limitation is that it takes an 

hour or more to attain the final shape. 

 

2.1.5. Cellular structure design 

Research on the cell structure design can be classified into studies 

on the shape design of the unit cell itself and studies on the overall 

shape design considering the connectivity of cells. 

Aremu et al. [31] proposed a method to create a complete grid design 

by discretizing various cell shapes in voxel units and combining the 

repeated cell structure and the net-skin covering the outside. 

Fryazinov et al. [32] proposed a method of creating a repetitive 

pattern of cellular structures that was previously difficult to make 

through function representation.  

Shanqing Xu et al. [33] studied a method of designing a cellular 
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structure using anisotropic values as user input. This cellular 

structure is basically lattice based, and authors discussed how the 

topology of the unit cell structure and the thickness of the lattice 

change the mechanical properties of designed structure. This study 

suggests that the shape of the internal structure is closely related 

with the mechanical characteristics, but the limitation as a design tool 

is obvious in that it is the study of a single cell structure. 

Berger et al. [34] simulated mechanical properties about unit cell 

structures classified into six types. They concluded that a closed 

form structure in which cubic and octet shapes are combined can 

maximize the stiffness. They also stated that the use of complex 

cellular structures would become increasingly widespread in 

engineering systems. 
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2.2. Requirements for inner structure modeling tool 

The requirements of the inner design tools of solid models presented 

in this study are as follows: 

First, the design tool should be able to change the inner density of 

the solid model. In the studies related to topology optimization, 

complex shapes were designed using the local volume density as the 

constraint. The reason for using this constraint is based on the 

relationship between the porosity and the mechanical properties.  

Zhang et al. [35] modeled the implants used for the load-bearing 

bone tissue reconstructions as the porous cellular structures, and 

then analyzed the mechanical properties of each model depending on 

the porosity. As a result of the analysis, it was confirmed that as the 

porosity increased, the compressive strength and elastic modulus 

decreased. Wang’s result [36] also shows that the relative yield 

strength and modulus of elasticity decreased as the porosity of the 

cellular structure increased.  

In addition, the study of shape design using input mechanical 

properties supports why users need to control the internal density of 

solid models.  

From the modeling results through homogenization [37] or solid 

isotropic material with penalization [38, 39], it can be proved that 

there is a positive proportional relationship between mechanical 
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properties and internal structure density. 

As an example of the actual design process, let us assume that the 

designer performs the internal design of T-shaped parts as shown 

in Fig. 5. In general, the designer expects the mechanical properties 

of the intersection to be important and will perform an inner structure 

design process that increases the density at the intersection.  

Second, the design tool should be able to interact with users in real 

time. Each of the studies mentioned in section 2.1 achieved good 

results, but most of them were focused on the optimization process 

not the computational cost. Therefore, users have to wait a long time, 

ranging from tens of minutes to several hours, before obtaining the 

designed result. 

 

Fig. 5. T-shaped part 
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In terms of human-computer interaction, Goodman’s study [40] 

shows that the shorter system response time of the graphic user 

interface(GUI) increases the productivity of the design process. 

Finally, design tools should be easy to use even for nonprofessionals. 

As mentioned in the introduction, even if the content of the software 

is well made, the impact can be reduced if the user cannot easily use 

it.  

For example, conventional surface-modeling systems [41, 42] use 

control points to create and modify surfaces as shown in Fig. 6. 

These control points act as handles that utilize interactive graphics 

capabilities in modern CAD systems. Similarly, the inner design tools 

of solid models should also provide handles to allow users to interact 

with them. 

 

 

Fig. 6. Control points for Bezier/B-spline surface[41]  



 

 15 

Chapter 3.  Method 
 

3.1. Concepts of modeling tools 

 

Fig. 7. Phyllotaxis, visualization of magnetic field lines,  

bubble structure 

To create a user-friendly interior shape design tool, we took 

inspiration from various shapes found in nature, as shown in Fig. 7. 

These shapes are a kind of cellular structure that gradually changes 

its density.  
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Fig. 8. Generated infill structures using a typical 3D slicer program 

with various density options, density 20% (left) and 40% (right) 

It can be found how the term “denser infill” is accepted in common 

sense through the infill structures from a typical 3D slicer program. 

Fig. 8 shows the generated infill structures using a typical 3D slicer 

program with various density options. In this case, a high density of 

cellular structures means that there are small but large numbers of 

cells.  

Initially, we assumed that each cell is a conductor particle inside the 

solid model. Then naturally, the magnet-like attractors presented 

themselves as a candidate of design tool for inner cellular structures. 

In this case, a denser structure near attractors will be expected.  

To apply this idea, it is necessary to specify the behavior between 

the attractors and the conductor particles. There have been studies 

[43] to use magnets to control conductor particles in practical 

experiments, as well as studies [44-46] to determine the behavior 
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of conductor particles under the magnetic force through simulation. 

However, the purpose of these studies is the fabrication of the 

products [43, 44] or to explain the behavior of magnetic particles 

[46].  

In particular, most simulation studies [45, 47] assume a dynamic 

situation and the position of the particle changes for every time step. 

In this case, all relations between each particle have to be defined 

and calculated, which involves prohibitive computational cost. Thus, 

a different approach is necessary to apply this idea to real-time 

interactive applications.  

In this paper, rather than directly calculating the relation between 

attractors and each cell, an indirect method is used in which cellular 

structure divides and occupies the field generated by attractors. That 

is, the segmentation algorithm has been applied.  

First, the stippling algorithm [48, 49], which is often used in 2D 

applications, is adapted to determine the location of each cell. In 2D 

stippling, the number of points inside of the unit area varies according 

to the intensity value of the input image, as shown in Fig. 9.  
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Fig. 9. An example of 2D digital stippling [49] 

Points acquired through the stippling algorithm have only location 

information. Thus, to create a porous structure, it is necessary to 

generate local volume information using those points. To do this, the 

Voronoi tessellation algorithm [50] is utilized, as shown in Fig. 10. 

The Voronoi tessellation algorithm is a method of segmenting a space 

using bisectors between adjacent points. In this study, Rycroft’s 

Voro++ library [51] is used. 

 



 

 19 

 

 

 

Fig. 10. The Voronoi tessellation procedure 
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The overall process of this paper is shown in Fig. 11. The first step 

is to load the solid model as shown in Fig. 11 (a). The user adds 

attractors that can control the inner field of the solid model. 

Depending on the added attractors, an internal field is created and 

modified as shown in Fig. 11 (b). After that, the user determines the 

number of cells inside the solid model and generates Voronoi cells 

according to the inner field. After that, as shown in Fig. 11 (c), each 

cell is scaled around its center, in other words, each cell boundary is 

thickened to create a fabricable porous structure. As shown in Fig. 

11 (e), the user can perform the feedback design by adjusting the 

control points or the parameters. Fig. 11 (d) shows a fabricated inner 

structure through these processes. 
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Fig. 11. Schematic diagram of this research 
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3.2. 3D stippling through Linde-Buzo-Gray (LBG) algorithm 

Digital stippling is a method of determining the location of each stipple 

by evenly dividing the total value of the input scalar field. In general, 

2D stippling takes a grayscale picture as its input. To apply this 

method to 3D application, the field values must be determined 

according to the attractors. In addition, the values should be able to 

be integrated numerically. Those methods will be described in 

section 3.3 and 3.4. In this section, the adapted stippling algorithm is 

described. 

As a stippling algorithm, Lloyd’s algorithm [52], which changes and 

optimizes the position of a fixed number of points can be utilized. 

However, using Lloyd’s algorithm, the results may vary depending 

on the initial positions of the points. Therefore, in this study, the 

Linde-Buzo-Gray (LBG) algorithm [49], a generalized method of 

Lloyd’s algorithm, is used. The pseudo code is Algorithm. 1. 
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Algorithm. 1. Pseudo code for 3D stippling based on LBG algorithm 

 

3D stippling optimization based on LBG algorithm 

Input: The number of stipple n, density field ρ, seed points 𝐏𝟎 

Result: The stipple positions P 

Initialize; 

iter = 0; 

stopCondition = false; 

𝐏 = 𝐏𝟎; 

while stopCondition == false do 

  build Voronoi diagram V using P 

  for each Voronoi cell 𝐕𝐢 do 

     calculate cell value 𝒗𝒂𝒍𝐢 = ∫ 𝛒 ∈ 𝐕𝐢 

  end 

   stopCondition = true; 

for each Voronoi cell 𝐕𝐢 do 

    if 𝒗𝒂𝒍𝐢 < 𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅𝐋 

     delete 𝐕𝐢 

     stopCondition = false; 

else if 𝒗𝒂𝒍𝐢 > 𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅𝑯 

 split 𝐕𝐢 

stopCondition = false; 

else 

move 𝐕𝐢 

end 

end 

update P using V 

iter = iter + 1; 

end 
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The algorithm starts with calculating the total summation of the field 

in the entire volume domain. Then the objective value of each cell is 

calculated through dividing the total value by the target number of 

cells. Thereafter, all the field values in each cell are integrated. A 

different action is operated to each cell depending on the integrated 

value. Fig. 12 describes the relation between each cell value and 

actions. If the value of the cell is greater than the objective value, the 

cell is divided into two cells. Otherwise, if it is smaller than the target 

value, the cell is removed. Otherwise, only the cell’s position is 

adjusted. In summary, the number and location of cells are 

simultaneously adjusted through the LBG algorithm. 

Owing to numerical errors, it is difficult to accurately match the 

integrated value of each cell with the objective value. Therefore, in 

this paper, it is assumed that the integrated value matches the 

objective value if it is within the range of 0.8-1.2 times of the 

objective value. 

 



 

 25 

 

 

 

Fig. 12. Cell behaviors while LBG optimization 
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3.3. On the scalar field equation 

In the stippling algorithm, the Voronoi cell and the field values are 

highly related. That is, in this paper, the field equation generated by 

attractors directly determines the size and position of the Voronoi 

cell. Therefore, the field equation suitable for the intuition of this 

research must be determined. 

Given a control point, it is expected that a transitional inner structure 

will be designed according to the distance from a control point. Fig. 

13 shows the 2D Voronoi tessellation results according to various 

field equations using the distance from the control point as a 

parameter. Generally, it can be said that in Fig. 13 (e), (f), (h), (i), 

the size of the cell over distance changed too quickly, and in (b), it 

hardly changed.  
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Fig. 13. 2D Voronoi tessellation results according to various field 

equations 𝝆(𝒓), (a) Experimental environment, (b) 𝟏/𝒓𝟎.𝟓, (c) 𝟏/𝒓𝟏.𝟎, 

(d) 𝟏/𝒓𝟏.𝟓, (e) 𝟏/𝒓𝟐.𝟎, (f) 𝟏/𝒓𝟑.𝟎, (g) 𝒆−𝒓𝟎.𝟓
, (h) 𝒆−𝒓𝟏.𝟎

, (i) 𝒆−𝒓𝟐.𝟎
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To assist an intuitive understanding of the relationship among control 

points, cells, and field equations, Fig. 14 shows a balloon that changes 

size according to the atmospheric pressure. As the altitude increases, 

the atmospheric pressure decreases. In addition, as the atmospheric 

pressure decreases, the balloon size increases. Consequently, a high 

altitude makes a large balloon size. In this way, the distance from the 

attractor can be a parameter of the field equation, and the cell’s 

position and size will be determined from the field values.  
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Fig. 14. Balloon size change according to atmospheric pressure 
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3.3.1. One-dimensional case 

When there is no effect of the attractor, as shown in Fig. 15 (a), it is 

reasonable that the subset space has the same length. On the other 

hand, if the length of the subset space increases linearly as shown in 

Fig. 15 (b), the corresponding field equation can be the criterion of 

the attractor’s strength. The following is the process of deriving the 

field equation when the subset length increases linearly. 

The objective function of the stippling method is to set the area so 

that the integration of the field values of each area is the same. That 

is, for the 1D case, when the field value of a specific position 𝑥 is 

𝜌(𝑥), Equation (3.1) should be satisfied. 

 

 ∫ 𝜌(𝑥)𝑑𝑥
𝑥1

𝑥0

= ∫ 𝜌(𝑥)𝑑𝑥
𝑥2

𝑥1

= ⋯ = ∫ 𝜌(𝑥)𝑑𝑥
𝑥𝑛

𝑥𝑛−1

  
(3.1) 

 

If 𝜌(𝑥) is a constant value 𝜌𝑐𝑜𝑛𝑠𝑡, Equation (3.1) can be rewritten as 

Equations (3.2) and (3.3). 

 

 𝜌𝑐𝑜𝑛𝑠𝑡 × ∫ 𝑑𝑥 = 
𝑥1

𝑥0

𝜌𝑐𝑜𝑛𝑠𝑡 × ∫ 𝑑𝑥 = ⋯ = 
𝑥2

𝑥1

𝜌𝑐𝑜𝑛𝑠𝑡 × ∫ 𝑑𝑥
𝑥𝑛

𝑥𝑛−1

  
(3.2) 
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 𝜌𝑐𝑜𝑛𝑠𝑡 × 𝑙1 = 𝜌𝑐𝑜𝑛𝑠𝑡 × 𝑙2 = ⋯ = 𝜌𝑐𝑜𝑛𝑠𝑡 × 𝑙𝑛  
(3.3) 

 

Therefore, the lengths of all subset regions have the same value as 

shown in Equation (3.4). 

 

 𝑙1 = 𝑙2 = ⋯ = 𝑙𝑛  
(3.4) 

 

In this case, the relation between the length and the partial integration 

of each subset is shown in Fig. 16. 
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Fig. 15. 1D case example, (a) Evenly divided case, (b) Linearly increased case
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Fig. 16. Relation between the field equation and each segment 
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If the number of subsets is 𝑛 and the length of the entire space is 𝐿, 

the position 𝑥𝑖  of the sector dividing the specific region can be 

written as in Equation (3.5). 

  

 𝑥𝑖 = ∑ 𝑙𝑘

𝑖

𝑘=1

= ∑ 𝑘

𝑖

𝑘=1

× 𝑙1 =
𝑖(𝑖 + 1)

𝑛(𝑛 + 1)
× 𝐿  

(3.5) 

 

if 𝑖 is a positive integer value, Equation (3.6) holds. 

  ∫ 𝜌(𝑥)𝑑𝑥
𝑥𝑖

0

= ∫ 𝜌(𝑥)𝑑𝑥

𝑖(𝑖+1)
𝑛(𝑛+1)

×𝐿

0

=
𝑀

𝑛
× 𝑖  

(3.6) 

 

Assuming that Equation (3.6) holds even when 𝑖 is a positive real 

number, Equation (3.8) can be obtained by differentiating both sides 

by 𝑖 in Equation (3.7).  

 

 
𝐿(2𝑖 + 1)

𝑛(𝑛 + 1)
𝜌 (

𝑖(𝑖 + 1)

𝑛(𝑛 + 1)
× 𝐿) =

𝑀

𝑛
  

(3.7) 

   

 

 𝜌 (
𝑖(𝑖 + 1)

𝑛(𝑛 + 1)
× 𝐿) =

𝑀(𝑛 + 1)

𝐿(2𝑖 + 1)
  

(3.8) 

To express 𝑖  as 𝑥 , Equation (3.11) can be obtained by solving 

Equation (3.10) from Equation (3.9). 
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 𝑥 =
𝑖(𝑖 + 1)

𝑛(𝑛 + 1)
× 𝐿  

(3.9) 

   
 

 𝑖2 + 𝑖 −
𝑛(𝑛 + 1)

𝐿
𝑥 = 0  

(3.10) 

 

 𝑖 =
1

2
(√

4𝑛(𝑛 + 1)

𝐿
𝑥 + 1 − 1)  

(3.11) 

 

 

Because 𝑖 is assumed to be a positive real number, 𝑥𝑖 can also be 

regarded as a positive real number with continuity. That is, for an 

arbitrary 𝑥, 𝜌(𝑥) can be expressed as Equation (3.12). 

 

 
𝜌(𝑥) =

𝑀(𝑛 + 1)

𝐿(2𝑖 + 1)
=

𝑀(𝑛 + 1)

𝐿 (√4𝑛(𝑛 + 1)
𝐿 𝑥 + 1)

 
 

(3.12) 

 

∴ 𝜌(𝑥) ∝
1

𝑥0.5
 𝑖𝑛 𝑜𝑛𝑒 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑐𝑎𝑠𝑒 

 

Fig. 17 shows the result obtained through this field equation. 
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Fig. 17. An example result of the 1D case 
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3.3.2. Two dimensional case 

 

Fig. 18. 2D uniform scalar field (left), 

expected tessellation result (right) 

In the 2D case, unlike the 1D case, not only the size of the 

subsections but also their arrangement must be considered. In the 

simplest case, when the scalar field is uniform, a honeycomb 

structure can be expected, as shown in Fig. 18.  
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Fig. 19. An example of a 2D case, (a) visualization of a scalar field, (b) 

distorted honeycomb shapes, (c) distorted honeycomb shapes along 

radial direction, (d) circular approximation of (c) 

However, it is difficult to derive the field equation corresponding to 

the case where the scale of the cell changes linearly as shown in Fig. 

19 (b), (c) unlike the 1D case. In this study, the problem is simplified 

using the Euclidean distance 𝑟 between the control point 𝑂 and a 

specific location (𝑥, 𝑦) as a parameter. In this case, the position (𝑥, 𝑦) 

can be expressed in a polar coordinate system centered on the 

control point as shown in Equations (3.13) and (3.14).  



 

 39 

 𝜌(𝑥, 𝑦) = 𝜌(𝑟),  
(3.13) 

𝑤ℎ𝑒𝑟𝑒 𝑟 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑥, 𝑦) 𝑎𝑛𝑑 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑜𝑖𝑛𝑡 (𝑥0, 𝑦0)  

 

 𝑟 = √(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2  
(3.14) 

 

Similar to the 1D case, assuming that the scale of each region 

increases linearly with the distance 𝑟, Equation (3.15) holds.  

 

 ∫ ∫ 𝜌(𝑟)𝑑𝑟
𝑟𝑖

𝑟𝑖−1

𝑑𝜃
𝜃
ℎ

(𝑟)

𝜃𝑙(𝑟)

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑛  
(3.15) 

 

However, it is highly difficult to determine 𝜌(𝑟)  analytically in 

Equation (3.15), because the integral range in the theta direction can 

vary with the distance 𝑟 in the radial direction. The meaning of the 

integral form can be found through a 1D example. Equation (3.7) can 

be rewritten as in Equations (3.16) to (3.19). 

 

 
𝐿(2𝑖 + 1)

𝑛(𝑛 + 1)
𝜌(𝑥𝑖) =

𝑀

𝑛
  

(3.16) 

 

 (𝑖 + 0.5)
𝐿

𝑛(𝑛 + 1)/2
× 𝜌(𝑥𝑖) =

𝑀

𝑛
  

(3.17) 
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 (𝑖 + 0.5)𝑙1 × 𝜌(𝑥𝑖) =
𝑀

𝑛
  

(3.18) 

 

 𝑖 × 𝑙1 × 𝜌(𝑥𝑖)  +  0.5 × 𝑙1 × 𝜌(𝑥𝑖) =
𝑀

𝑛
  

(3.19) 

 

Considering 𝜌(𝑥𝑖) as the representative value and 0.5 × 𝑙1 × 𝜌(𝑥𝑖) as 

the error term, Equation (3.19) can be thought of as follows. 

 

𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 ×  𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 +  𝑒𝑟𝑟𝑜𝑟 = 𝑇𝑜𝑡𝑎𝑙 𝑠𝑐𝑎𝑙𝑎𝑟 𝑣𝑎𝑙𝑢𝑒 

 

For the error term, the unit length 𝑙1 is 𝑂 (
1

𝑛2) and 𝜌(𝑥𝑖) is 𝑂(1), so 

it can be considered 𝑂 (
1

𝑛2). That is, if the number of cells 𝑛 is large 

enough, this error can be acceptably ignored.  

Similar to the 1D case, if the representative value of a specific 

location and the area of the corresponding region can be calculated, 

an approximate representation of 𝜌(𝑟) can be determined. 

Actually, each cell would be created as a distorted hexagon as shown 

in Fig. 19 (c). However, as already mentioned, it is highly difficult to 

calculate those areas analytically. Therefore, the shape of each cell 

is approximated to a circle with linearly increasing scaling factor. The 
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positions of the sectors dividing each cell are triangular numbers as 

shown in Equation (3.20).   

 

 𝑟𝑖 = ∑ 𝑠𝑘

𝑖

𝑘=1

= ∑ 𝑘

𝑖

𝑘=1

× 𝑠1 =
𝑖(𝑖 + 1)

2
× 𝑠1 ,  

(3.20) 

𝑤ℎ𝑒𝑟𝑒, 𝑠𝑖 𝑖𝑠 𝑎 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑟𝑒𝑔𝑖𝑜𝑛  

 

Assuming that 𝑟𝑖  and 𝑖  are positive real values, Equation (3.21) 

holds. 

 𝑟 =
𝑖(𝑖 + 1)

2
× 𝑠1  

(3.21) 

 

Equation (3.21) can be rewritten in the form of an implicit function, 

as Equation (3.22). Then, 𝑖 can be expressed for 𝑟 as in equation 

(3.23). 

 

 𝑖2 + 𝑖 −
2𝑟

𝑠1
= 0  

(3.22) 

 

 𝑖 =
1

2
(√

8𝑟

𝑠1
+ 1 − 1)  

(3.23) 

 

If the representative value of each cell is set as the center value of 
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the circle, Equation (3.24) holds. 

 

 
𝜋𝑠𝑖

2

4
𝜌(𝑟) =

𝑀

𝑛
  

(3.24) 

 

Equation (3.24) can be rewritten as Equations (3.25) and (3.26). 

 

 𝜌(𝑟) =
𝑀

𝑛

4

𝜋𝑖2𝑠1
2  

(3.25) 

 

 
𝜌(𝑟) =  

16𝑀

𝜋𝑛𝑠1
2 (√

8𝑟
𝑠1

+ 1 − 1)

2 
 

(3.26) 

   
 

∴ 𝜌(𝑟) ∝
1

𝑟1.0
 𝑖𝑛 𝑡𝑤𝑜 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑐𝑎𝑠𝑒 

 

Fig. 20 shows the tessellation result through this field equation 𝜌(𝑟).  
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Fig. 20. An example of a 2D case 
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3.3.3. Three-dimensional case 

For a 3D case, similar to the case for 2D, it is assumed that the shape 

of each cell is a sphere and the scale factor increases linearly in the 

radial direction. As shown in Equation (3.27), the field equation 

𝜌(𝑥, 𝑦, 𝑧) is expressed as 𝜌(𝑟) having only the radial distance 𝑟 as a 

parameter. 

 𝜌(𝑥, 𝑦, 𝑧) = 𝜌(𝑟),   
(3.27) 

𝑤ℎ𝑒𝑟𝑒 𝑟 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑥, 𝑦, 𝑧) 𝑎𝑛𝑑 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑜𝑖𝑛𝑡 (𝑥0, 𝑦0, 𝑧0) 

 

The positions of the sectors dividing each cell are triangular numbers 

as shown in Equation (3.28). 

 

 𝑟𝑖 = ∑ 𝑠𝑘

𝑖

𝑘=1

= ∑ 𝑘

𝑖

𝑘=1

× 𝑠1 =
𝑖(𝑖 + 1)

2
× 𝑠1   

(3.28) 

𝑤ℎ𝑒𝑟𝑒, 𝑠𝑖 𝑖𝑠 𝑎 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑟𝑒𝑔𝑖𝑜𝑛  

 

Assuming that 𝑟𝑖  and 𝑖  are positive real values, Equation (3.29) 

holds. 

 

 𝑟 =
𝑖(𝑖 + 1)

2
× 𝑠1  

(3.29) 
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Equation (3.29) can be rewritten as Equations (3.30) and (3.31). 

 

 𝑖2 + 𝑖 −
2𝑟

𝑠1
= 0  

(3.30) 

 

 𝑖 =
1

2
(√

8𝑟

𝑠1
+ 1 − 1)  

(3.31) 

 

If the representative value of each cell is set as the center value of 

the circle, Equation (3.32) holds. 

 

 
4𝜋𝑠𝑖

3

3
𝜌(𝑟) =

𝑀

𝑛
  

(3.32) 

 

Equation (3.32) can be rewritten as Equations (3.33) and (3.34). 

 

 𝜌(𝑟) =
𝑀

𝑛

4

𝜋𝑖3𝑠1
3  

(3.33) 

  

 
𝜌(𝑟) =

32𝑀

𝜋𝑛𝑠1
3 (√

8𝑟
𝑠1

+ 1 − 1)

3 
 

(3.34) 

 

∴ 𝜌(𝑟) ∝
1

𝑟1.5
 𝑖𝑛 𝑡h𝑟𝑒𝑒 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑐𝑎𝑠𝑒 
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Fig. 21 shows the tessellation result through this field equation 𝜌(𝑟). 
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Fig. 21. An example of a 3D case, (a) input surface mesh, (b) experiment environment,  

(c) tessellated 3D Voronoi structure, (d, e, f) visualization of the clipped volume. 
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3.4. Implementation 

 

Fig. 22. Input surface mesh (left) and its solid voxelization (right) 

It is possible to calculate the continuous field values through the 

equations derived in section 3.3, but it is difficult to analytically 

integrate the total field values of each Voronoi cell. Therefore, in this 

research, the numerical integration method is used.  

First, the input solid model is voxelized as shown in Fig. 22. Then 

each voxel is clustered to the nearest Voronoi cell, followed by the 

numerical integration being performed through the sum of each voxel 

values as shown in Fig. 23.  

Each voxel value is calculated independently for each control point. 

If there are multiple control points, the largest value is determined 

as the voxel value. This is because if the voxel value is calculated as 

an overlap sum according to the control points, unlike the intuition 
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initially thought, dense inner structure may appear in areas further 

away from control points. 
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Fig. 23. (a) input surface mesh, (b) solid voxelization of (a), (c) Voronoi cells and their dependent voxels 
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3.5. Creation of the volumetric cell structure 

 

Fig. 24. Harmonic porous carving [30] 

It is required for fabrication to make each Voronoi cell has a skin of 

a certain thickness with void inside as shown in Fig. 24. Lin Lu et al. 

[30] calculated the harmonic field of each cell to obtain the inner iso-

surface of each; the volumetric porous structure was acquired as 

shown in Fig. 24. However, in this method, considerable 

computational power is required because the finite element method 

of each cell should be solved. Therefore, in this study, cellular 

carving is performed through volume-based scaling and Catmull-

Clark subdivision algorithm is adapted to obtain similar results 

compared to Lin Lu et al.’s.  
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3.5.1 Volume-based scaling 

The empty space of a porous structure can be represented by the 

inner surfaces generated using the outer surface of each cell. That 

is, the space between the outer and inner surfaces of each cell will 

be filled with the materials during the additive manufacturing process. 

Therefore, the scaling factor sf  of each cell determines the wall 

thickness of the generated porous structure. By referring to Zhuo 

Wei’s work [53], the equation to calculate the scaling factor is 

determined as in Equation (3.35), while 𝑉𝑐  is the volume of the 

original cell, and 𝑉𝑐
′ is the volume to be left. 

 

 sf = √
𝑉𝑐 − 𝑉𝑐

′

𝑉𝑐

3

  
(3.35) 

 

Because it is tedious work to determine 𝑉𝑐
′ for each cell individually, 

a type of volume distribution method is used. The designer uses the 

entire volume to leave 𝑉′ as an input parameter. Additionally, it can 

be said that the distribution method determines the behavior of the 

outer wall thickness. In this paper, the uniform distribution method is 

adapted as shown in Equation (3.36). 
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 𝑉𝑐
′ =

𝑉′

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠
  

(3.36) 

 

The maximum and minimum values of the scaling factor are set for 

exception handling. The default scaling factor range is 0.7-0.9, but 

the designer can handle this range. Fig. 26 (a) shows the designed 

inner structure. 
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3.5.2 Catmull-Clark Subdivision 

 

Fig. 25. Catmull-Clark subdivision of a cube 

The Catmull-Clark subdivision [54] is a method of creating smooth 

mesh surfaces as shown in Fig. 25. This method has the advantage 

for creating a smooth mesh quickly, but the result is shrunken 

compared to the original mesh. However, this shortcoming is 

acceptable in this paper. The shrunken region in the Catmull-Clark 

subdivision is the edge of the Voronoi cell and this region can play 

the same role as the fillet. Fig. 26 (b) shows the result after the 

Catmull-Clark subdivision process. 
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Fig. 26. (a) Initial Voronoi structure, (b) after Catmull-Clark subdivision. 
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3.5.3. On the boundary Voronoi cell 

 

Fig. 27. Voronoi cell clipping, (a) before clipping, (b) after clipping 

As mentioned earlier, because Voronoi tessellation is performed 

using bisectors between close points, the outermost Voronoi cells are 

open structures. Therefore, postprocessing is required to make the 

boundary Voronoi cell inside the input solid model. In this paper, the 

Voronoi clipping process [55] is performed as a postprocessing as 

shown in Fig. 27. 
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Chapter 4.  Results and Discussion 

4.1. Results 

The program developed in this study is shown in Table 1 and from 

Fig. 28 to Fig. 39. The field equation used in this program is 

inductively determined via section 3.3. Specifically, Equation (4.1) is 

used, which takes the distance 𝒓 between a voxel position and a 

control point as a parameter. 

 

 𝜌(𝑟) =
1

(√𝑟 + 1 − 1)
𝑐  

(4.1) 

 

There are three parameters that the user can control: the strength of 

the control point 𝑐, the number of cells 𝑛, and the carving volume 

percentage 𝑝. The subdivision is the process of smoothing out the 

inner structure, so it has been implemented as a user-selectable 

toggle type.  

Table 1 shows the operations used in the program. Fig. 28 shows the 

display when the program is initially run. When a solid model is loaded, 

it is displayed in the center of GUI as shown in Fig. 29. As shown in 

Fig. 30, when the user enters the voxel resolution, the program 

automatically performs a solid voxelization process as shown in Fig. 

31. After that, the user adds any number of control points as in Fig. 
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32 and then enters each parameter as shown in Fig. 33. Fig. 34 

through Fig. 39 show examples of designed inner structures.  

Users may want to leave the area near the joints of the bracket as 

solid state, as shown in Fig. 40 (a). Because considerable effort is 

required to apply the parametric interface used in the existing CAD 

system, the program is configured to obtain the same result as if the 

constraint was adapted by using the original solid body and the 

modified solid body. First, the control points are set on the modified 

solid body as shown in Fig. 41. The designed inner structure is shown 

in Fig. 42. Then, as shown in Fig. 43 and Fig. 44, if the outer surface 

is replaced with the modified surface mesh, the constrained design 

can be obtained.  

To measure the running time of the program, the same procedure 

was conducted for several examples. The program was executed on 

Windows 10 64bit, Intel i7-4930K CPU. The whole process was 

done on a single CPU, and the field values were calculated whenever 

a control point was changed or added. The tested models are shown 

in Fig. 45, and the statistics are shown in Table 2. The field value 

calculation time is excluded from the statistics because it is short 

enough for the user to interact with the program, and it increases 

linearly with the number of control points.
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Table 1. Control actions in the proposed program 
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Fig. 28. Initial display 
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Fig. 29. Loaded mesh file (half sphere) 
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Fig. 30. Dialog for voxelization 
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Fig. 31. Visualization of the voxelized mesh 
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Fig. 32. A control point at the bottom of the mesh 
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Fig. 33. Dialog for creating inner structure 
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Fig. 34. Transparent visualization of the created inner structure before Catmull-Clark subdivision 
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Fig. 35. Clipped visualization of the created inner structure before Catmull-Clark subdivision (bottom) 
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Fig. 36. Clipped visualization of the created inner structure before Catmull-Clark subdivision (center) 
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Fig. 37. Transparent visualization of the created inner structure after Catmull-Clark subdivision 
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Fig. 38. Clipped visualization of the created inner structure after Catmull-Clark subdivision (bottom) 
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Fig. 39. Clipped visualization of the created inner structure after Catmull-Clark subdivision (center) 
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Fig. 40. (a) Original bracket, (b) edited bracket 
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Fig. 41. Control points on the outer surface of Fig. 40 (b) 
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Fig. 42. Inner structure visualization of Fig. 41 
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Fig. 43. Visualization after changing outer shell of Fig. 42 
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Fig. 44. Clipped visualization of Fig. 43 
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Fig. 45. Tested models. (a) cone, (b)cube, (c)half sphere, (d) T-shape, (e) table 
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Example 
# Mesh vertices 

of input surface 
# Voxels # Voronoi cells 

Time(s) 

Voxelization Stippling Subdivision Total 

Cone 73,186 90 x 90 x 101 50 1.141 0.212 11.097 12.450 

Cube 2,402 101 x 101 x 101 51 0.684 1.521 0.142 2.347 

Half sphere 2,601 156 x 156 x 79 73 1.065 5.602 0.697 7.364 

T-shape 549,936 201 x 16 x 171 149 0.425 0.645 0.487 1.557 

Table 12,364 201 x 201 x 201 49 5.151 7.161 0.436 12.748 

Table 2. Statistics on the examples 
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As shown in Table 2, it takes a few seconds to create an inner 

structure, and the user can fully interact with the application. 

However, in some cases, certain operations take a little longer than 

others. In the case of voxelization operation and stippling operation, 

it can be seen that the time increases in proportion to the voxel 

resolution.  

In the cone case, the subdivision process takes a considerable amount 

of time. In the subdivision process, the number of vertices in the 

resulting mesh is increased exponentially in proportion to the number 

of vertices in the initial mesh. In the current application, each cell is 

managed as a separate mesh, and Voronoi clipping process increases 

the number of vertices in each cell near the boundary as shown in 

Fig. 46. Consequently, applying the subdivision process to those cells 

increased a considerable amount of time. 

On the other hand, in the case of a cube or half sphere, it is believed 

that the number of vertices in each cell dose not increase excessively 

during clipping process because the surface mesh is small. In the case 

of the T-shape, it is believed that the number of cell vertices does 

not increase excessively because most of the clipping processing is 

performed with points that exist on the same plane.  
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Fig. 46. Many vertices in boundary cells before subdivision process 
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4.2. Application to strengthen the weak part 

As mentioned in Chapter 3, an application that strengthens the weak 

region can be considered. In this case, only the density of the part to 

be strengthened increases, and the density of the other regions is 

relatively low. This means the user can leverage the mechanical 

properties of the part over its weight. Consequently, the productivity 

improvement can be achieved. Fig. 47 shows the inner structure of 

T-shaped parts designed and fabricated through this research. 

 

 

Fig. 47. T-shaped part with designed inner structure  
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4.3. Application to control the center of mass 

In this study, the carving volume is evenly divided over the entire 

cell. This means that the weight near the control points is heavy. 

Therefore, the result of this study can be used in the application that 

controls the center of gravity as the user’s intention. 

Xie [56] researched the design of internal structures that did not 

need support structures during the additive manufacturing process. 

Similarly, for the solid model such as in Fig. 48 (a), the internal 

structure was designed to enable self-standing as shown in Fig. 48 

(b) by using the program developed in this study. It can also be used 

to generate the intended eccentricity, as shown in Fig. 49.  
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Fig. 48. An example of the object that controls center of mass, (a) the 

dimension of the object, (b) the object showing self-standing 
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Fig. 49. The intended eccentric structure design, (a) the object with cover showing eccentricity,  

(b) the inner structure of the object 
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Chapter 5.  Conclusion 

In this study, a new design tool for internal structures of solid models 

is proposed. This tool is characterized by mimicking the shape that 

exists in nature, especially the behavior of magnets, to emphasize the 

user’s intuition.  

Of course, some additional considerations are required to use this 

study in practical applications. In this study, the local density can be 

controlled through several parameters. However, from an analytical 

point of view, further studies on the relation between mechanical 

properties and the density of the structures should be performed.  

Also, additional user-friendly interfaces are required. The proposed 

design tool can only control the overall structure. Therefore, it is 

necessary to implement an interface that allows users to control 

individual cells. It is also necessary to integrate with interfaces used 

in the existing CAD system. In this study, the point type interface is 

suggested as a design tool, but parametric curve or surface type 

interfaces can be proposed. In this case, it may be possible to perform 

an internal shape design that is more closely related to the external 

shape.  

In addition, further research on the field equation is needed. 

Approaching from a probabilistic point of view would be one way. 

Similar to Alexa et al.'s [57] work of sampling points on a 3D surface 
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using a probability distribution function, the positions of cells in the 

internal structure can be obtained through statistical functions. Also, 

if a tensor field is used rather than a scalar field, the cell anisotropy 

can be utilized. 

However, this study is meaningful in that it presents the inner 

structure’s design tool of solid models that even nonexperts can use 

quickly and easily. In particular, the development in the field of 

additive manufacturing is expected to be facilitated by the proposed 

design tool. 
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Abstract (Korean) 

 

솔리드 모델의 내부 구조를 위한  

직관적인 자석 모사 디자인 도구 
 

감 동 욱 

서울대학교 대학원 

기계항공공학부 

 

본 연구에서는 주어진 외부 형상에 대해, 사용자가 상호작용하며 내부 

구조를 모델링할 수 있는 새로운 디자인 도구를 제시하였다. 이 디자인 

도구는 자연에서 자석과 같은 끌개가 동작하는 방식을 모사한다. 본 연

구에서는 사용자와의 빠른 상호작용 및 직관과 유사한 형태를 만들기 위

해, 보로노이 구조를 그 기반으로 두고있다. 디자인 도구와 생성되는 보

로노이 구조 간의 관계를 기술함으로써, 사용자가 상호작용할 수 있는 

파라미터들을 제시하였다. 사용자는 디자인 도구의 위치, 개수 및 각 도

구가 가지는 파라미터의 조절을 통해 내부 구조를 생성, 변경할 수 있다. 

각 보로노이 셀의 스케일 조절을 통해 실제 제품 제작에 활용될 수 있도

록 하였으며, 그 내부 구조가 부드럽게 연결될 수 있도록 Subdivision 

알고리즘을 응용하였다. 이러한 디자인 도구의 활용처로, 제품 무게 중

심의 조절 및 부품이 가지는 특정 부분의 역학적 성질을 좋게 만드는 두 

가지 응용분야를 제시하였다. 결론적으로 적층 제조 방법으로 인해 변화
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하는 제조업의 패러다임을 선도할 수 있도록, 내부 구조를 설계할 수 있

는 디자인 도구라는 새로운 개념을 제시하였다. 

 

주요어 : CAD 도구, 내부 구조 디자인, 보로노이 구조, 자석 모방 

학  번 : 2014-21864 
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