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Abstract

Optimal Trajectory Shaping and Vector Field-based

Guidance for Missile System

Suwon Lee

Department of Mechanical and Aerospace Engineering

The Graduate School

Seoul National University

In this dissertation, a novel framework is proposed that combines the op-

timal trajectory shaping and a stable guidance algorithm for missile systems.

First, three-dimensional missile dynamic equations of motion are analyzed to

divide the time-scale into two. The separation of time-scale o↵ers easiness in

designing and analyzing the reference trajectory. The separated time-scale con-

sists of the dual-loop system of the missile’s three-dimensional kinematic sys-

tem. In the inner-loop, which is the fast-scale system, a tracking controller is

designed. The inner-loop dynamics is much faster than the outer-loop dynamics

at the time-scale, and the error state of the inner-loop system converges to zero

quickly. Therefore, the state variables of the inner-loop system can be consid-

ered as the control input variables for the outer-loop system. In the outer-loop,

which is the slow-scale system, the reference trajectory is designed. The optimal

reference trajectory is attained through the output shaping technique proposed

in this dissertation, which implements a parameterized curve into a trajectory

optimization problem.

The second part of the framework is about optimal output trajectory. The

nonlinear single-input-single-output system is considered for the design of the
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output trajectory shaping. The shape of the trajectory is manipulated by the

Bézier curve, a particular category of the polynomial curves. Because of the

characteristics of the Bézier curve, the Bézier curve is useful for shaping the

trajectory of the dynamic system. The last part of the framework is about

vector field-based guidance. Vector field-based guidance laws are designed for

two- and three-dimensional path-following guidance. The reference path can

be represented in an implicit function form or a parameterized curve form.

In this dissertation, both types of representations of the reference path are

covered with the vector field-based guidance algorithm. The guidance algorithm

mainly focuses on the convergence characteristics of the reference path. Vector

field designs with three di↵erent time-varying gains are also addressed, and the

convergent characteristics of each of the di↵erent vector fields are analyzed.

The e↵ectiveness of the proposed framework is demonstrated through nu-

merical simulations. It is possible to utilize the proposed methodologies, in-

cluding optimal output trajectory shaping technique and the vector field-based

guidance algorithms, not only for the missile systems but also for various non-

linear systems.

Keywords: Time-scale separation, Trajectory optimization, Vector field-based

guidance, Nonlinear control, Asymptotic stability, Finite-time convergence

Student Number: 2015-20785
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Chapter 1

Introduction

1.1 Motivation

Because of the growing utility and interests, three-dimensional path-planning,

guidance, and control algorithms have attracted much attention from industrial,

military, and academic fields. The enumerated technologies can be utilized for

various flight vehicles including missiles, Unmanned Aerial Vehicles(UAVs), and

drones. Especially, in the military field, missile system is one of the most critical

weapon systems for modern warfare. However, UAVs and drones are expand-

ing their area of mission activities including surveillance, reconnaissance, and

strategic utilization.

For a practical utilization of the aforementioned strategic assets, a proper

design of the mission is essential. Figure 1.1 shows an example of system ar-

chitecture for UAVs [1]. In the aspect of the system architecture, every three

components are necessary, which are organized hierarchically.

Among the three of them, the path-planning, or trajectory-planning al-

gorithm, takes the highest hierarchy of the entire mission management. The

objective of the trajectory-planning is to obtain inputs to a nonlinear dynamic

system that moves the system from the initial state to a specified goal state.

It is widely known that the shortest path connecting two points is the Dubins

1



2 Chapter 1

Figure 1.1 The system architecture that will be assumed throughout the book.
The path planner produces straight-line or Dubins paths through an obstacle
field. The path manager switches between orbit following and straight-line path
following to maneuver along the waypoint paths. The path-following block
produces commands to the low-level autopilot, which controls the airframe.
Each of the blocks relies on estimates of the states produced by filtering the
onboard sensors.

successive loop closure to design the autopilot control laws. Nested
control loops are closed one at a time, with inner loopsmaintaining roll
and pitch angles and outer loops maintaining airspeed, altitude, and
course.

The autopilot and the higher level blocks rely on accurate state
estimates obtained by dynamically filtering the onboard sensors, which
include accelerometers, rate gyros, pressure sensors, magnetometers,
and GPS receivers. A description of these sensors and their mathemati-
cal models is given in chapter 7. Because it is not possible tomeasure all
the states of small unmanned aircraft using standard sensors, state esti-
mation plays an important role. Descriptions of several state-estimation
techniques that are effective for MAVs are given in chapter 8.

A complete model of the flight dynamics coupled with the auto-
pilot and state estimation techniques represents a high dimensional,
highly complex, nonlinear system of equations. The full model of
the system is too complicated to facilitate the development of high
level guidance algorithms. Therefore, chapter 9 develops low-order
nonlinear equations thatmodel the closed-loop behavior of the system.
These models are used in subsequent chapters to develop guidance
algorithms.

One of the primary challenges with MAVs is flight in windy condi-
tions. Since airspeeds in the range of 20 to 40 mph are typical forMAVs,

Figure 1.1: An example of system architecture for UAVs [1]
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Figure 3.2 Three-dimensional Dubins manoeuvre of a UAV

consists of a coplanar circle manoeuvre with defined curvature κs, followed
by a normal start manoeuvre circle with defined curvature κs, a straight-line
manoeuvre and finally a finish manoeuvre circle with defined curvature κf.
The geometry that defines the final 2D manoeuvre is given in the previous
chapter in section 2.5. Figure 3.2 shows the resulting 3D Dubins path.

A more direct approach is to eliminate the initial rotation into a coplanar
configuration by performing a full 3D manoeuvre using 3D geometric anal-
ysis. Two approaches will be detailed in this chapter. The first is a true 3D
Dubins solution using differential geometric concepts, and the other is to use
a 3D spatial PH path, which is obtained in a similar manner to the 2D algo-
rithm by use of first-order Hermite interpolation. The resulting path is further
tuned to make the paths flyable by increasing the lengths of the boundary
tangent vectors. Both of these approaches are detailed in this chapter.

3.1 Dubins Paths in Three Dimensions Using
Differential Geometry

As already stated, in the case of 2D Dubins path, the frame (ts, ns) and (tf, nf)
lie in the same manoeuvre plane. That is, the binormal vectors of both the

Figure 1.2: An example of path-planning using three-dimensional Dubins ma-
neuver of a UAV [2]

2



path [3, 4]. Geometric approach is one of typical methods to define a reference

trajectory planning. In [5], Pythagorean hodograph was used for the trajectory

plannig of UAV group. Figure 1.2 shows an example of path-planning using

three-dimensional Dubins maneuver of a UAV [2]. Recently, trajectory-planning

considers additional aspects such as uncertainties, di↵erential constraints, mod-

eling errors, and optimality [6]. For example, in [7] and [8], path-planning for a

glider vehicle was studied.

After the reference path is generated by the path-planner, the next hierar-

chy is the guidance algorithm. The guidance algorithm generates the control

command that enables the vehicle to follow the reference path or to intercept a

specified point in the space. Usually, the guidance algorithms are classified into

the path-following and the homing guidance algorithms. The homing guidance

algorithms have been extensively studied in the missile guidance field [9, 10].

The path-following guidance algorithms have been mainly studied for, but not

limited to, UAVs [11–13].

The last part of the mission hierarchy is the control design including au-

topilot and stability augmentation system. The autopilot for aircraft [14] and

the Thrust Vector Control (TVC) for missiles [15] are typical examples for the

controller. The hierarchy should be systematically well-composed and designed

to attain the mission’s success.

The objective of this study is to develop a practical framework for the system

architecture, including the path-planning and guidance algorithm. To this end,

the nonlinear three-dimensional missile kinematic system is considered. The

framework proposed in this study can be utilized for the mission planning of

flight vehicles in consideration of the di↵erential constraints and optimality.

3



1.2 Literature Review

The literature review presented in this section is categorized into three parts

that is closely related to this study. The first category considers the prelimi-

nary for the system model: singular perturbation and timescale separation. The

second category considers the trajectory tracking algorithms. And the third cat-

egory is about the guidance algorithms.

1.2.1 Singular Perturbation and Timescale Separation

The dimension of the dynamic system can be reduced by singular pertur-

bation method, and therefore, the singular perturbation method is useful in

that the controllers can be desinged in the simplified low-dimensional subsys-

tem model, other than in the original high-dimensional nonlinear system [16].

In the late 1970’s, forced singular perturbation technique(FSPT) was propsed

for the model reduction and decentralized controller for linear system [17, 18].

The designed controller based on FSPT shows better performance compared to

the conventional modal trucation technique. In [19], the singular perturbation

method was utilized for variational problems including optimal control prob-

lem of aircraft. Khalil studied a two-step method to stabilize multiparameter

singularly perturbed system [20].

In 1980’s and early 1990’s, the singular perturbation method has been

is widely utilized for the modeling of the dynamic system having multiple

timescales. A forced singular perturbation model was obtained by artifically

inserting the perturbation parameter into the dynamic constraints of the fast-

timescale state variables [21,22]. By taking the perturbation parameter as zero,

zero-order approximation of the original system was obtained. However, the

reduced model with the zero-order approximation does not satisfy the end con-

4



dition imposed on the fast variables. Therefore, an additional boundary layer

correction was introduced [23,24]. There may exist multiple boundary layers if

multiple timescales are introduced for the problem. Typically, the FSPT was

applied to the missile guidance algorithm for the deveopment of the sub-optimal

solution, which replaces the necessity of solving the time-consuming two-point

boundary value problem(TPBVP) [25–27].

In late 1990’s, the systematic means of identifying the time-scale structure in

a nonlinear system was introduced by using regional Lyapunov exponents [28],

which focused on the behavior of the solutions to the variational equations

along the trajectories of a nonlinear systems to identify the timescale structure

of the nonlinear system. The Lyapunov exponents and their associated direction

vectors were used to identify the timescale structure of the nonlinear system.

Timescale analysis for nonlinear dynamics systems were further conducted in

early 2000’s [29–31]. Singular perturbation theory has been utilized in various

field and for various platforms. Shapira et al. studied singular perturbation

analysis of glide vehicle [32]. In the field of missile guidance, Dhananjay et al.

analyzed and compared various guidance laws based on timescale gap defined

from the Lyapunov exponents [33], and nonlinear missile autopilot was designed

using time-scale separation [34]. Surveys on singular perturbation theory in

aerospace applications can be found in [35,36]. Singular perturbations and time

scales in control theory and applications can also be found in [37].

1.2.2 Trajectory Tracking Algorithms

There exist various methods to address the trajectory tracking algorithms.

First, trajectory optimization can be performed to obtain the optimal control

input history [38]. In the trajectory optimization, a trajectory minimizing (or

5



maximizing) specified measure of performance is designed, which satisfies some

constraints including the boundary conditions. The optimum trajectory can

be obtained using a direct method or an indirect method [39]. The obtained

solution is the optimal trajectory with respect to a given cost function, and

therefore the optimal trajectory is often used as a baseline solution to com-

pare with other approaches. However, the trajectory optimization techniques

generally require a good initial guess and high computational e↵orts.

Another approach is to utilize trajectory tracking algorithms [1, 11, 40],

which usually consist of two stages: i) constructing a reference trajectory sat-

isfying the given constraints, and ii) designing a control algorithm that makes

the vehicle track the reference trajectory. The trajectory tracking algorithm

does not require iterative computation. However, it is not easy to impose all

constraints on the reference trajectory. For example, position and velocity con-

straints are easily imposed on the reference trajectory in three-dimensional

space, but it is di�cult to consider attitude constraints in general. To con-

sider the attitude constraint, the reference trajectory should be designed in

six-dimensional space, which makes the process of constructing a reference tra-

jectory much more di�cult. The feasibility of the constructed trajectory also

needs to be investigated, because not every trajectory is followable under a

given dynamic constraint. Therefore, a well-tailored trajectory is required for

the trajectory tracking algorithm, and additional optimization should be per-

formed if the problem has a specific cost function to be minimized. One possible

approach for constructing a feasible and reasonable reference trajectory is to

utilize the solution of the trajectory optimization problem [15].

An approach based on guidance algorithms may also be used to solve the tra-
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jectory tracking problem, especially for some specific systems and constraints.

For example, in missile guidance systems, the kinematic features of the missile-

target engagement geometry have been widely utilized, and various guidance

laws have been developed to intercept the target while satisfying some final con-

ditions. For this specific system, the impact angle or impact time constraints are

often considered in the target interception problems. The impact angle or im-

pact time guidance laws have been designed via trajectory optimization [41,42]

or trajectory tracking algorithms [10]. However, these approaches cannot be

used in general systems because the guidance-algorithm-based approaches can

be used only for specific systems such as missile systems.

On the other hand, parametric curves are often utilized to generate a ref-

erence path or trajectory for guidance or trajectory tracking. In [43] and [44],

the Pythagorean-Hodograph (PH) curve and Bézier curve were utilized in path-

planning for unmanned or autonomous vehicles. These curves can be modified

to satisfy a given curvature bound. Faigl and Vana studied surveillance planning

using Bézier curves [45]. Paths of di↵erent shape but identical arc length can

also be obtained by using PH curves. On the other hand, Bernstein polynomials

and Bézier curves can be used to approximate functions via numerical optimiza-

tion techniques. In [46], Bernstein polynomials were used to approximate the

optimal state/input histories as well as the costates using the indirect optimiza-

tion method. In [47], the direct finite elements in time (DEFT) method was used

for the direct transcription of optimal control problems with a Bernstein ba-

sis. In [48], the time interval was divided into subintervals, and trajectory and

control functions in each subinterval were approximated by Bézier curves to

solve the constrained quadratic optimal control of time-varying linear systems.
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The Bézier function was also used to estimate spacecraft trajectories to fit a

set of measured positions [49]. In these approaches, the Bernstein polynomials

were used as basis functions for connecting specific nodes, dividing the entire

trajectory. The Bernstein polynomials can be used as the basis for function

approximation, which has merit in that the approximants and their derivatives

converge uniformly to the corresponding functions and their derivatives. In [50],

Pythagorean-Hodograph Bézier curves were used to generate trajectories for a

team of cooperating vehicles with consideration of the spatial and temporal

constraints. In [51], the Bernstein approximation was utilized in motion plan-

ning for di↵erentially flat systems. However, these results are limited to the

motion planning and do not consider the guidance and control algorithms.

1.2.3 Guidance Algorithms

The proportional navigation guidance (PNG) law is one of the widely used

homing guidance laws for missile systems because of its simplicity in realiza-

tion and its guaranteed performance [52–56]. Guidance laws based on line-of-

sight (LOS) have been extensively studied [57]. Also, sliding mode guidance

was developed considering the nonsingularity against maneuvering targets [58]

and finite time-convergent characteristics [59]. However, these guidance laws

have some shortcomings including lack of full use of predicted target trajec-

tory and di�culty in analysis. On the other hand, di↵erential geometry-based

guidance laws have been developed [60]. In this approach, the target trajec-

tory was modeled as a geometric curve, and consequently, a small miss distance

could be achieved and the performance of the guidance law could be easily an-

alyzed. However, the di↵erential geometry-based guidance heavily depends on

the target information. Many guidance laws have been developed exploiting the
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characteristics of geometric shapes. For example, circular impact-time guidance

was designed [61], and the inscribed angle for a circle was used for the design

of guidance laws with geometric constraints [62–64]. Elliptic guidance law is

another example of geometry-inspired guidance laws [65].

In the 2000s, the vector field-based guidance law was developed for the path

following problem of the unmanned aerial vehicles [66, 67] which was not for a

target interception problem of the missile. The stand-o↵ target tracking prob-

lem of unmanned aerial vehicle is a typical utilization of the vector field-based

guiance algorithms [68–72]. Olavo et al. focused on developing a robustness

analysis framework with the target circulation problem using the vector field

based guidance [73]. Oh et al. utilized vector field guidance for the stando↵

tracking of moving target groups [74]. Goncalves et al. studied the vector field-

based guidance in n-dimensions and time-varying vector fields [75, 76]. For the

time-varying vector fields, additional time-varying component of the vector field

was considered [77]. Path following technique using the vector field-based guid-

ance law often combines the following for path segments including line and

circles [67, 78, 79]. The vector field for linear path following and circular path

following were separately designed and switched to follow the given path and

avoid obstacles [69,80,81]. Also, dynamic constraints and input saturation were

considered when designing the vector field [82–84].

Note that the vector field guidance is mainly used for the target tracking

missions of UAVs. The advantages of the vector field guidance law are that it

can be easily implemented for various types of problems including the precise

path following problem [11] and the missile-target interception problem [85].
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1.3 Contributions

The contributions of this dissertation are three-fold. First, missile’s three-

dimensional kinematic equations of motion is contemplated in the time-scale

aspect. Second, optimal trajectory planning algorithm is delivered. Third, vec-

tor field-based guidance algorithm is proposed and convergence analysis to the

reference path is performed.

The entire system architecture for the missile system is described in Fig. 1.3.

In Fig. 1.3, each part shows the contribution of this dissertation. The timescale

separation technique reduces the dynamic equations of the missile system. The

benefit of the system reduction is that simple control design and analysis are

possible. The OOTS plays the role of the path-planner and generates the ref-

erence path for the path-following guidance algorithm. The vector field-based

guidance algorithm is a path-following guidance algorithm. The guidance algo-

rithm calculates the command signal for the missile autopilot so that the missile

can follow the desired reference path.

OOTS

Path Planner

VFG

Path Following

Autopilot

Missile State Estimator

Path definition

(outer-loop

state command)

Inner-loop state

command

Timescale
separation

Control
command

states

tracking error

constraints

Figure 1.3: System architecture for the missile
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1.3.1 Contribution 1: Time-scale separation of the missile sys-

tem

Missile kinematics is divided into two and the divided systems organize

the dual-loop system, which is often called as the time-scale separation. The

time-scale separation divides the nonlinear dynamic system into the outer-loop

(slow time-scale) and the inner-loop (fast time-scale) systems. The time-scale

separation of the missile kinematics has several merits. First, the time-scale

separation makes the planning and analysis of the dynamic system simple be-

cause the separation bears the e↵ect of system order reduction. One can design

control algorithms for each respective reduced-systems (inner- or outer-loop

system) separately.

1.3.2 Contribution 2: Optimal output trajectory shaping algo-

rithm

Optimal output trajectory shaping algorithm is developed to design the op-

timal trajectory of nonlinear systems. The nonlinear single-input-single-output

system is considered. First, the output trajectory is shaped using parameterized

curves, i.e., Bézier curves, and the input trajectory is shaped by manipulating

the shape of the parameterized curves of the output trajectory. Next step is the

parameterization of the state trajectory. The relative degree of the nonlinear

system is essential for the parameterization of the state trajectory. The benefit

of the proposed method is that it is easy to impose the boundary conditions and

nonlinear constraints, because the trajectories of the system states and inputs

can be manipulated by adequately designing the shape of the output trajectory.

The shape of the trajectory can be optimized by parameter optimization algo-

rithms including sequential quadratic programming. After the development of
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the parameterization and the optimization of the trajectories, a nonlinear feed-

back linearization controller is designed. The feedback linearization controller

regulates the error between the designed trajectory and the system trajectory.

1.3.3 Contribution 3: Vector field-based guidance algorithm

Vector field-based guidance algorithm is designed for a two- and three-

dimensional missile systems with constant speed. The vector field is given as the

directional command for the missile in the specified space. Then, the missile is

controlled to follow the vector field command, which guarantees convergence to

a given reference curve. There exist two types of reference curves: 1) reference

curve represented as an implicit function, and 2) reference curve represented as

a parametric curve. In this study, both of the two types of reference curves are

considered. The vector field command is designed and analyzed in the aspect

of smooth and finite-time convergence to the reference curve.
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1.4 Dissertation Overview

This dissertation is oranized as follows. In Chapter 2, the normal form and

canonical form of a nonlinear system are addressed. The definition of the Bézier

curve is also delivered. Finite-time stability theory and finite-time convergence

guidance laws are addressed.

In Chapter 3, the time-scale separation of the missile’s three-dimensional

kinematics is mathematically explained.

In Chapter 4, the output trajectory shaping method for a nonlinear system is

discussed. The trajectory shaping is attained using a parameterized curve, i.e.,

Bézier curve. The parameterizations of the state, input, and internal state are

addressed. The trajectory optimization problem is solved for the parameterized

trajectories of the system.

In Chapter 5, the VFG algorithm is designed for reference path represented

as implicit function and parametric function. Three di↵erent types of gains

for vector field design are proposed and analyzed. The characteristics of the

convergence of the designed vector fields are discussed.

In Chapter 6, the performance of the proposed methodologies and design

framework is demonstrated by numerical simulations.

In Chapter 7, the summary of the main results of this dissertation is sum-

marized, and suggestions for future work are provided.
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Chapter 2

Mathematical Preliminaries

2.1 Perturbation Theory

It is di�cult to find a closed-form solution of a nonlinear ordinary di↵erential

equation, and therefore it is natrual to try to find a way to simplify the given

equation. For this, the perturbation theory is often considered to compromise a

mathematical method for finding an approximate solution to a problem, starting

from the solution of a simpler problem. However, it is not always possble to

obtain the regular perturbation model of the original problem, which can be

uniformly approximated by the asymptotic expansions.

Definition 2.1. Suppose f(x, ") and �(x, ") are continuous functions for x 2 I

and 0 < " < "1. In this case, �(x, ") is a uniformly valid asymptotic approx-

imation of f(x, ") for x 2 I if, given any positive constants �, there is an "2

(independent of x and ") such that,

|f � �|  �|�| for x 2 I and 0 < " < "2 (2.1)

where I designates an interval on the x-axis.
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2.1.1 Singular Perturbation Model

The singular perturbation problem is a problem containing a small parame-

ter that cannot be approximated by setting the parameter value to zero. For an

introductory example, let us consider the following dynamical system, which is

exploited from [86].

"y00 + 2y0 + 2y = 0, for 0 < x < 1, (2.2)

where

y(0) = 0 and y(1) = 1. (2.3)

Observe that if " = 0, the problem is no longer second order, and the solu-

tion cannot be uniformly approximated by an asymptotic expansion. This leads

to what is generally known as a singular perturbation problem. A singular per-

turbation generally, but not necessily, occurs when a problem’s small parameter

multiplies its highest operator.

In contrast to the regular perturbation problem, taking the parameter value

to zero may changes the order of the system in the singular perturbation prob-

lem. This property of the singular perturbation model is exploted to derive an

order-reduced system of dynamical systems. However, naively taking the param-

eter to zero changes the nature of the problem, which violates some boundary

conditions. Therefore, a boundary layer matching process is necessary to derive

the satisfactory solution of the problem. This method of approximating the so-

lution is called the method of matched asymptotic expansions. More detailed

explanations and examples can be found in [86,87].

The singular perturbation model of the dynamic equations of motions is
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often utilized to analyze the timescale separation of the state variables, because

the singularly perturbed problems are characterized by the dynamics operating

on multiple scales.

2.1.2 Multiple Scales

Let us consider the following example.

y00 + "y0 + y = 0 for 0 < t (2.4)

where

y(0) = 0 and y0(0) = 1 (2.5)

The exact solution of the above problem is

y(t) =
1p

1� "2/4
e�"t/2 sin

⇣
t
p
1� "2/4

⌘
. (2.6)

The solution of the problem has an oscillatory component and a slow variation

component. The regular power series expansion of the solution can be written

as

y(t) ⇠ y0(t) + "y1(t) + · · ·

⇠ sin(t)�
1

2
"t sin(t)

(2.7)

The second term in the expansion is as significant as the first term when "t ' 1

and grows unbounded, and therefore it can be argued that the regular approx-

imation of the solution is valid only when "t ⌧ 1. The multiple-scale approxi-

mation of the solution can alleviate this weakness.

Let us introduce the variable t1 = t and t2 = "qt. These two time scales,
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t1 and t2, will be treated as independent variables. Then, the original time

derivative can be transformed as follows,

d

dt
!

dt1
dt

@

@t1
+

dt2
dt

@

@t2
=

@

@t1
+ "q

@

@t2
(2.8)

Substituting (2.8) into Eqs. (2.4) and (2.5) yields

(@21 + 2"q@1 + "2q@22)y + "(@1 + "q@2)y + y = 0 (2.9)

where

y = 0 and (@t1 + "q@t2)y = 1 for t1 = t2 = 0. (2.10)

To simplify the notation, let us use the symbols @1 and @2 in place of @
@t1

and

@
@t2

. Observe that the solution of Eqs. (2.9) and (2.10) is not unique and require

additional conditions for the uniqueness of the solution.

Consider a power series expansion of the solution with respect to " as follows,

y ⇠ y0(t1, t2) + "y1(t1, t2) + · · · . (2.11)

Substituting the power series expansion into Eq. (2.9), we have

(@21 + 2"q@1@2 + "2q@22)(y0 + "y1 + · · · )

+"(@1 + "q@2)(y0 + "y1 + · · · ) + y0 + "y1 + · · · = 0.
(2.12)

By equating the coe�cients, it can be observed that q = 1. Finally, following

problems are obtained.
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Problem 1, O(1):

(@21 + 1)y0 = 0, y0 = 0, @1y0 = 1 (2.13)

when t1 = t2 = 0 (2.14)

Problem 2, O("):

(@21 + 1)y1 = �2@1@2y0 � @1y0, y1 = 0, @1y1 = �@2y0 (2.15)

when t1 = t2 = 0. (2.16)

First, the general solution of the Problem 1 can be found as

y0 = a0(t2) sin(t1) + b0(t2) cos(t1) (2.17)

where

a0(0) = 1 and b0(0) = 0. (2.18)

From the general solution of the Problem 1, the di↵erential equation for y1 is

obtains as

(@21 + 1)y1 = (2b00 + b0) sin(t1)� (2a00 + a0) cos(t1) (2.19)

Now, the general solution of the Problem 2 can be found as

y1 = a1(t2) sin(t1) + b1(t2) cos(t1)

�
1

2
(2b00 + b0)t1 cos(t1)�

1

2
(2a00 + a0)t1 sin(t1)

(2.20)
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Figure 2.1: Comparison between the exact solution, the multi-scale approxima-
tion, and the regular approximation

where

a1(0) = a00(0) and b1(0) = 0. (2.21)

The solution, Eq. (2.20), has the secular terms that grow without bound. How-

ever, a0(t2) and b0(t2) can be selected to satisfy the following constraints to

remove the secular terms.

2a00 + a0 = 0

2b00 + b0 = 0
(2.22)

From Eqs. (2.18) and (2.22), the coe�cients a0(t2) and b0(t2) are found to be

a0(t2) = e�t2/2 (2.23)

b0(t2) = 0 (2.24)
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Finally, the first-term approximation of the solution is obtained as follows,

y ⇠ e�"t/2 sin(t) (2.25)

This approximation is valid up to at least "t = O(1). The comparison between

the exact solution, the multi-scale approximation, and the regular approxima-

tion are shown in Fig. 2.1. This approximation is a uniformly valid asymptotic

approximation for 0  t  O(1" ).

2.2 Normal Form and Canonical Form

The normal form of a nonlinear system will be used in this study to obtain a

canonical form and design a tracking controller. In this section, the normal form

of the nonlinear system and transformation to the canonical form are breifly

introduced [88], [89].

2.2.1 Nonlinear SISO systems

Consider a following n-dimensional, single-input-single-output (SISO) sys-

tem.

ẋ = f(x) + g(x)u, y = h(x) (2.26)

where f, g and h are su↵ciently smooth in a domain D ⇢ Rn. Using the Lie

Derivative of h with respect to f , the derivative ẏ can be represented as

ẏ =
@h

@x
[f(x) + g(x)u] , Lfh(x) + Lgh(x)u (2.27)

20



Assume that h(x) satisfies the following equation for an integer ⇢ (relative

degree).

LgL
i�1
f h(x) = 0, for i = 1, 2, · · · , ⇢� 1, and LgL

⇢�1
f h(x) 6= 0 (2.28)

Then, the control input u appears in the equation of y(⇢) with a nonzero coef-

ficient as follows,

y(⇢) = L⇢
fh(x) + LgL

⇢�1
f h(x)u (2.29)

If a system has relative degree ⇢, then its input-output map can be converted

into a chain of integrators y(⇢) = v by the following state feedback control input.

u =
1

LgL
⇢�1
f h(x)

⇣
� L⇢

fh(x) + v
⌘

(2.30)

In order to find a transformation z = T (x) such that the new state z can be

partitioned into a ⇢-dimensional vector ⇠ and (n� ⇢)-dimensional vector ⌘, let

us define ⇠ as follows,

⇠ ,

2

66666664

y

y(1)

...

y(⇢�1)

3

77777775

=

2

66666664

h(x)

Lfh(x)
...

L⇢�1
f h(x)

3

77777775

. (2.31)

If ⇢ = n, the change of variables is given by

z = T (x) = col
⇣
h(x), Lfh(x), · · · , L

n�1
f h(x)

⌘
(2.32)
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On the other hand, if ⇢ < n, the change of variables can be taken as

z = T (x) =

2

666666666666664

�1(x)
...

�n�⇢(x)
���

h(x)
...

L⇢�1
f h(x)

3

777777777777775

,

2

64
�(x)
���

H(x)

3

75 ,

2

64
⌘

���

⇠

3

75 (2.33)

where �1 to �n�⇢ are chosen such that T (x) is a di↵eomorphism and

@�i
@x

g(x) = 0, for 1  i  n� ⇢. (2.34)

It can be stated that the transformation T (x) is di↵eomorphism for any ⇢ by

Theorem 2.1 [88].

Theorem 2.1 (Existence of a Di↵eomorphism [88]). If ⇢ = n, a neighborhood

N of x0 exists such that the map T (x) of Eq. (2.32), is a di↵eomorphism on N .

If ⇢ < n, then a neighborhood N of x0 and continuously di↵erentiable functions

�1(x), · · · ,�n�⇢(x) exist such that Eq. (2.34) is satisfied for all x 2 N and the

map T (x) of Eq. (2.33) is a di↵eomorphism on N .

When ⇢ < n, the change of variables in Eq. (2.33) transforms Eq. (2.26)

into

⌘̇ = f0(⌘, ⇠)

⇠̇ = Ac⇠ +Bc

⇣
L⇢
fh(x) + LgL

⇢�1
f h(x)u

⌘

y = Cc⇠

(2.35)
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where ⇠ 2 R⇢, ⌘ 2 Rn�⇢, (Ac, Bc, Cc) is a canonical form representation of a

chain of ⇢ integrators,

Ac =

2

40⇢�1,1 I⇢

0 01,⇢�1

3

5 , Bc =

2

40⇢�1,1

1

3

5 , Cc =
h
1 01,⇢�1

i
(2.36)

and

f0(⌘, ⇠) =
@�

@x
f(x)

���
x=T�1(z)

(2.37)

The vector ⌘ includes the internal state variables, and the corresponding dy-

namics is called the internal dynamics of the system.

In case ⇢ = n, the normal form reduces to

ż = Acz +Bc

⇣
Ln
fh(x) + LgL

n�1
f h(x)u

⌘
, y = Ccz (2.38)

2.2.2 Multi-input-multi-output system

Consider a following multi-input-multi-output (MIMO) system.

ẋ = f(x) +G(x)u, y = h(x) (2.39)

where x 2 Rn is the state vector, u 2 Rm is the control input vector of the

components ui, y 2 Rm is the system output vector of the components yi, f

and h are smooth vector fields, and G 2 Rn⇥m is a matrix whose columns are

smooth vector field gi. Input-output linearization of MIMO systems is obtained

similarly to the SISO case. Assume that ⇢i is the smallest integer that at least
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one of the inputs appears in y(ri)i , then

y(ri)i = Lri
f hi +

mX

j=1

LgjL
ri�1
f hiuj (2.40)

with LgjL
ri�1
f hi(x) 6= 0 for at least one j. For each output yi, we have

2

66664

y(r1)1

...

y(rm)
m

3

77775
=

2

66664

Lr1
f h1(x)

...

Lrm
f hm(x)

3

77775
+E(x)u (2.41)

The input-output linearization can be achieved only when the decoupling matrix

E is invertible. The following input transformation provides m equations of the

form y(ri)i = vi.

u = E
�1

2

66664

v1 � Lr1
f h1

...

vm � Lrm
f hm

3

77775
(2.42)
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2.3 Bézier Curve

The output trajectory profile can be generated by any paramterized curves.

In this study, for the simplicity and easiness in implementation, Bézier curve is

adopted to generate the ouput trajectory.

The Bézier curve is a part of Bernstein polynomials restricted to the paramter

interval [0, 1]. The Bernstein polynomials have a property that a continuous

function on the interval [0, 1] can be approximated uniformly [90]. The general

representation of N -th order Bézier curve with cruve parameter ⌧ is given as

follows,

BN (⌧) =
NX

v=0

bv,N (⌧)Pv, ⌧ 2 [0, 1] (2.43)

where

bv,N (⌧) =

✓
N

v

◆
⌧ v(1� ⌧)N�v (2.44)

The polynomials bv,N and constant coe�cients Pv determine the shape of the

curve. Note that the polynomials bv,N (⌧) are the Bernstein polynomials of Nth

degree, which form a complete basis over [0, 1]. The binomial coe�cient,
�N
v

�
,

is defined as ✓
N

v

◆
=

N !

v!(N � v)!
(2.45)

The derivative of the N -th degree Bernstein polynomials are the polynomials

of degree N � 1, which is given by,

d

d⌧
bv,N (⌧) = N(bv�1,N�1(⌧)� bv,N�1(⌧)) (2.46)
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The i-th derivative of bv,N (⌧) is reiresented as follows,

✓
d

d⌧

◆i

bv,N (⌧) =
n!

(n� i)!

min(v,i)X

k=max(0,v+i�N)

(�1)k+i

✓
i

k

◆
bv�k,N�i(⌧) (2.47)

More detailed explanations on the derivatives of Bernstein polynoimals can

be found in [91]. The coe�cients Pv, v = 0, · · · , N , are called the control points

of the Bézier curve. Note that the first coe�cient, P0, and the last coe�cient,

PN , determine the initial (⌧ = 0) point and final (⌧ = 1) point of the curve,

respectively. The polygon formed by connecting the control points with lines is

called the Bézier polygon, and the convex hull of the Bézier polygon contains

the Bézier curve.
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2.4 Finite-time Stability Theory

Continuous finite-time-stabilizing feedback controllers have been developed

in the 1990s. The continuous finite-time stabilization of the double integrator

system was studied [92]. Bhat et.al. pointed out that the finite-time convergence

implies the nonuniqueness of solutions, which is not possible in the presence of

Lipschitz-continuous dynamics. A rigorous foundation for the finite-time sta-

bility theory for continuous autonomous systems was studied in [93]. In the

early 2000s, finite-time control for nonlinear systems with specific structures

has been studied. Finite-time stabilization and stabilizability of the small-time

local controllable nonlinear system have been studied in [94]. To alleviate the

limitations of the finite-time controllers which require the full state informa-

tion, output feedback control law was developed for the finite-time control in

the 2010s [95–97]. In [98], impact angle constraind guidance law with finite-time

convergence was proposed using sliding mode technique. In [99], prescribed fi-

nite time stabilization technique was studied using time-varying feedback con-

trol. This technique can attain a uniformly prespecifiable convergence time, but

may require large time-varying gain.

In this section, the mathematical background for the finite-time stability

of continuous autonomous systems is introduced, which is mainly extracted

from [92]. The finite-time stability theory will be utilized for the development of

the guidance algorithm in Section V. Certainly, there exists some research works

on guidance laws based on the finite-time control. The finite-time convergent

guidance laws are also discussed in this section.
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2.4.1 Finite-time Stability of Continuous Autonomous Systems

Let us consider the following nonlinear system.

ẏ(t) = f(y(t)) (2.48)

where f : D ! Rn is continous on an open neighborhood D ✓ Rnof the origin

f(0) = 0. The finite-time stability of a system is defined as follows.

Definition 2.2. The origin is said to be a finite-time stable equilibrium of

(2.48), if there exists an open neighborhood N ✓ D of the origin and a function

Ts : N\{0} ! (0,1), called the settling-time function, such that the following

statements hold:

• Finite-time convergence : For every x 2 N\{0}, the solution of the system

 x is defined on [0, Ts(x)),  x(t) 2 N\{0} for all t 2 [0, Ts(x)), and

limt!Ts  
x(t) = 0.

• Lyapunov stability : For every open neighborhood U" of 0, there exists

an open subset U� of N containing 0 such that, for every x 2 U�\{0},

 x(t) 2 U" for all t 2 [0, Ts(x)).

The origin is said to be a globally finite-time stable equilibrium if it is a finite-

time stable equilibrium with D = N = Rn.

Suppose that the origin is a finite-time stable equilibrium of Eq. (2.48).

Then, it has a unique solution for every initial condition in an open neighbor-

hood of 0, including 0 itself.

Now, let us consider a motivating example for the derivation of the settling

time function.

28



A Motivating Example

The above example is extracted from [93].

ẏ(t) = �↵sign(y(t))|y(t)|� (2.49)

where sign(0) = 0,↵ > 0, and � 2 (0, 1). This system is continuous everywhere

and locally Lipschitz everywhere exept the origin. The solution for Eq. (2.49)

is obtained as follows,

ysol(t, x) =

8
>>>>>><

>>>>>>:

sign(x)[|x|1��
� ↵(1� �)t]

1
1�� , t <

1

↵(1� �)
|x|1��, x 6= 0

0, t �
1

↵(1� �)
|x|1��, x 6= 0

0, t � 0, x = 0

(2.50)

It can be readily seen that the settling-time function Ts : R ! R+ satisfies the

Definition 2.2.

Ts(x) =
1

↵(1� �)
|x|1�� (2.51)

Also, the Lyapunov stability of the system can be obtained by considering

a following Lyapunov function.

V (x) = x2 (2.52)

Therefore, the origin of the system (2.49) is a globally finite-time stable equi-

librium. Note that the settling-time function Ts is not Lipschitz continuous at

the origin. Now, the finite-time stability theorem is given as follows.
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Theorem 2.2 (Finite-time Stability [93]). Suppose there exists a continuous

function V : D ! R such that the following conditions hold.

• V is positive definite.

• There exist real numbers ↵ > 0 and � 2 (0, 1) and an open neighborhood

V ✓ D of the origin such that,

V̇ (x) + ↵V (x)�  0, x 2 V\{0}. (2.53)

Then, the origin is a finite-time stable equilibrum of (2.48). Also, if N is as in

Definition 2.2 and Ts is the settling-time function, then

Ts(x) 
1

↵(1� �)
V (x)1��, x 2 N (2.54)

and Ts is continuous on N .

The proof of Theorem 2.2 can be found in [93]. The converse to this theorem

is as follows.

Theorem 2.3 (Converse to the Finite-time Stability [93]). Suppose the origin

is a finite-time stable equilibrium of (2.48) and the settling-time function Ts is

continuous at 0. Let N be as in Definition 2.2 and let ↵ 2 (0, 1). Then, there

exists a continuous function V : N ! R such that the following conditions are

satisfied.

• V is positive definite.

• V̇ is real valued and continuous on N and there exists � > 0 such that

V̇ (x) + �(V (x))↵  0, x 2 N (2.55)
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2.4.2 Finite-time Convergence Guidance Laws

As stated in the previous section, there exist various studies on the guidance

laws with finite-time convergence. The finit-controll has robustness and the

finite-time convergent property, which are advantageous aspects, compared to

the conventional robust guidance laws including the H1 guidance, L2 gain

guidance, and Lyapunov-based nonlinear guidance laws. Practically, the homing

guidance problem requires the interception against the target in a very short

range of time to neutralize. However, the conventional nonlinear robust guidance

algorithms without finite-time convergence will converge to zero or a small

neighborhood of zero as the time approaches infinity. Therefore, it can be stated

that the theoretical findings are inconsistent with practical observations.

The guidance algorithms based on the finite-time stability theorem have

drawn attention from the late 2000s. A finite-time convergent guidance law

was proposed, in which the line-of-sight (LOS) angular rate converges to zero

in finite time [100, 101]. The structure of the finite-time convergent guidance

law is similar to that of the conventional sliding-mode guidance laws. Sliding

surface was designed for an impact-angle control guidance with the finite-time

convergent property [102]. The settling-time was computed in the converging

phase and the sliding phase, respectively, to obtain proper settling-time. The

finite-time convergent guidance algorithms were further developed considering

additional constraints, including the input saturation and three-dimensional

geometry [59,103].
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Chapter 3

Time-scale Separation and Dual-loop
System

3.1 Three-dimensional Kinematics

In this study, the 3-dimensional equations of motion (EOM) for a missile

are considered as follows,

ẋ(t) = Vm cos � cos� (3.1)

ẏ(t) = Vm cos � sin� (3.2)

ż(t) = �Vm sin � (3.3)

�̇(t) =
av
Vm

(3.4)

�̇(t) =
ah

Vm cos �
(3.5)

where x, y, z are the NED (North-East-Down) coordinate elements of the glider

vehicle with the origin located at the final target point, and Vm, �, � are the

speed, flight path angle, heading angle, respectively.

The coordinate system is described in Fig. 3.1. The missile is controlled

by av and ah, which are the accelerations towards the vertical and horizontal

directions, respectively.
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Figure 3.1: Coordinate system

The lateral accelerations are designed as follows,

av = �
Vm

"
(� � �d) (3.6)

ah = �
Vm cos �

"
(�� �d) (3.7)

where �d and �d are the desired values of the flight path angle and heading

angle, respectively, and 0 < " ⌧ 1. These values are given from the outer-loop

controller. Then, the kinematics for the flight path angle and heading angle can

be rewritten as follows,

�̇(t) = �
1

"
(� � �d) (3.8)

�̇(t) = �
1

"
(�� �d) (3.9)

In this study, the aerodynamic model is neglected for simplicity.
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3.2 Time-scale Separation

To separately design the inner-loop and outer-loop controllers, the time-scale

separation between the two loops is considered using the singular perturbation

method [86, 104]. Let us define a new time variable � = "t. Note that � can

be understood as a slow-scale time relative to time t because � ⌧ t. The time

di↵erentiation with respect to t can be replaced by the di↵erentiation with

respect to � using the relation d
d� = " d

dt . Then, the kinematic EOM, (3.1)-

(3.3),(3.8), and (3.9) can be rewritten as follows,

d

d�
(x) = "Vm cos � cos� (3.10)

d

d�
(y) = "Vm cos � sin� (3.11)

d

d�
(z) = �"Vm sin � (3.12)

d

d�
(�) = �(� � �d) (3.13)

d

d�
(�) = �(�� �d) (3.14)

The state variables can be classified into the outer-loop variables (x, y, z) and

inner-loop state variables (�,�). The inner-loop variables can be understood as

control variables in the outer-loop EOM.

The state history from the EOM has fast variations that occur on a time

scale, that is O(1), and it also has slow variations on a time scale O(1" ) [86,105].

To incorporate two time scales into the problem, let us introduce two time

variables as

t1 = �, t2 = "� (3.15)

These two time variables will be treated as independent variables. The time
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derivative with respect to � can be transformed as follows,

d

d�
=

dt1
d�

@

@t1
+

dt2
d�

@

@t2
=

@

@t1
+ "

@

@t2
(3.16)

To simplify the notation, let us use the symbols @1 and @2 in place of @
@t1

and

@
@t2

.

Note that the reciprocal of the parameter " resembles a control gain that

regulates the errors of � and �. In other words, a smaller " regulates the error

faster, and the di↵erence in time scale becomes larger.

3.3 Outer-Loop State Variables

Substituting Eq. (3.16) into (3.10) yields

(@1 + "@2)x = "Vm cos � cos� (3.17)

The original ordinary di↵erential equation (ODE) has been turned into a partial

di↵erential equation (PDE). Now, let us consider a power series expansion of

the form,

x ⇠ x0(t1, t2) + "x1(t1, t2) + · · · (3.18)

where (·)0 denotes a first-term approximation, and (·)1 denotes a second-term

approximation, etc. Applying Eq. (3.18) into Eq. (3.17) yields

(@1 + "@2)(x0 + "x1 + · · · ) = "Vm cos � cos� (3.19)
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From Eq. (3.19), the kinematics in the fast time scale O(1) and slow time scale

O(1" ) are obtained as

O(1) : @1x0 = 0 (3.20)

O(1/") : @1x1 + @2x0 = Vm cos � cos� (3.21)

Note from Eq. (3.20) that the first-term approximation of the state variable

x, i.e., x0, is constant, which is valid up to at least "t = O(1) [86]. Similarly,

for the other outer-loop variables y and z, we have

@1y0 = @1z0 = 0 (3.22)

In other words, the outer-loop state variables may be considered as constants

in the fast time scale.

3.4 Inner-Loop State Variables

Now, let us consider the inner-loop variable �. The power series expansion

for � can be written as follows,

� = �0(t1, t2) + "�1(t1, t2) + · · · (3.23)

Applying the power series expansion to Eq. (3.13), we have

(@1 + "@2)(�0 + "�1 + · · · ) = �(�0 + "�1 + · · ·� �d) (3.24)
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From Eq. (3.24), the kinematics in the fast time scale O(1) and slow time scale

O(1" ) are obtained as

O(1) : @1�0 = �(�0 � �d) (3.25)

O(1/") : @1�1 + @2�0 = ��1 (3.26)

with the initial conditions of

�0(0, 0) = �i, �1(0, 0) = 0 (3.27)

where �i is the initial flight path angle of the vehicle. The kinematics in Eq. (3.25)

and the initial condition in Eq. (3.27) are exactly identical to the original EOM

in Eq (3.13). Therefore, there is only fast-scale dynamics in O(1) and no slow-

scale dynamics in Eq. (3.13).

Let us assume that �d is a constant. Then, the general solution of the prob-

lem in O(1) can be represented as

�0 = a0(t2)e
�t1 + �d (3.28)

where

a0(0) = �i � �d (3.29)

From Eq. (3.28), coe�cient a0(t2) is an arbitrary function of t2, but it is required

to satisfy the initial condition in Eq. (3.29). Di↵erentiating Eq. (3.28) with

respect to t2 and substituting the resulting equation into Eq. (3.26), we obtain
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the PDE in the slow time scale as follows,

@1�1 = �a00e
�t1 � �1 = 0 (3.30)

where a00 = da0/dt2. There is no slow-scale dynamic equation, and therefore

Eq. (3.30) is zero. Consequently, a00 = 0, and the general solution for � = �0

can be represented as follows,

� = (�i � �d)e
�t1 + �d

= (�i � �d)e
�t2/" + �d (3.31)

Similarly, we have

� = (�i � �d)e
�t1 + �d

= (�i � �d)e
�t2/" + �d (3.32)

Equations (3.31) and (3.32) indicate that the inner-loop state variables expo-

nentially converge to the desired values in the fast-time scale.

If variable " becomes smaller, the converging rate becomes faster. Smaller "

can be understood as a larger control gain for the accelerations, which can also

be understood as the wider di↵erence between the fast-scale dynamics and the

slow-scale dynamics. Therefore, in the slow-scale dynamics O(1/"), the inner-

loop state variables � and � can be considered as the control variables because

the inner-loop state variables converge to the desired values in the fast-scale

dynamics.
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Figure 3.2: Block diagram of the dual-loop system

3.5 The Dual-Loop System

The given dynamic equations of motion is separated into two time-scales,

i.e., the slow-scale system and the fast-scale system. In the slow-scale system,

state variables are x, y, and z, and the inputs are � and �. And in the fast-scale

system, state variables are � and �, and the inputs are av and ah.

Figure 3.2 show the block diagram of the dual-loop system discussed in

this section. In the slow-scale system, the � and � are considered to be input

variables. Therefore, the role of the outer-loop controller is to generate proper

input command for the slow-scale system, i.e., �d and �d. Meanwhile in the

fast-scale system, the � and � are considered to be state variables and lateral

accelerations are used as input variables. The inner-loop controller generates

acceleration command for the fast-scale system to properly track the �d and

�d.

3.6 A Motivating Example for Timescale Separation

In this section, the merit of utilizing the timescale separation method in

designing a controller is discussed with a demonstration. Sliding model con-

troller(SMC) is adopted to design a controller for a missile. First, a control

design example using SMC without the timescale separation technique is pre-

sented.
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3.6.1 Controller Design without Timescale Separation

Let us consider the dynamic equations of motion given in Eqs. (3.1)-(3.5).

To design a SMC, the sliding surface � is defined as follows,

� = [x� xd, y � yd, z � zd,�1(ẋ� ẋd),�2(ẏ � ẏd),�3(ż � żd)]
T (3.33)

where (·)d is the desired values. It is assumed that the desired trajectory

[xd(t), yd(t), zd(t)] and thetime derivatives are given as the reference trajectory.

Let us consider the following Lyapunov function.

V =
1

2
�T� (3.34)

The time derivative of V is represented as follows,

V̇ = (x� xd)(ẋ� ẋd) + (y � yd)(ẏ � ẏd) + (z � zd)(ż � żd)

+ �1(ẋ� ẋd)(ẍ� ẍd) + �2(ẏ � ẏd)(ÿ � ÿd) + �3(ż � żd)(z̈ � z̈d)

= Vm

⇣
(x� xd) cos � cos�+ (y � yd) cos � sin�� (z � zd) sin �

⌘

�

⇣
(x� xd)ẋd + (y � yd)ẏ + (z � zd)ż

⌘

+ �1(Vm cos � cos�� ẋd)(� sin � cos�av � sin�ah � ẍd)

+ �2(Vm cos � sin�� ẏd)(� sin � sin�av + cos�ah � ÿd)

+ �3(�Vm sin � � żd)(� cos �av � z̈d)

, F (x, y, z, �,�) +G(�,�)a

(3.35)
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where

F = Vm

⇣
(x� xd) cos � cos�+ (y � yd) cos � sin�� (z � zd) sin �

⌘

�

⇣
(x� xd)ẋd + (y � yd)ẏ + (z � zd)ż

⌘

+ Vm

⇣
�1(cos � cos�� ẋd)(�ẍd)

+ �2(cos � sin�� ẏd)(�ÿd) + �3(� sin � � żd)(�z̈d)
⌘

(3.36)

G = [G1, G2] (3.37)

G1 = �1(Vm cos � cos�� ẋd)(� sin � cos�)

+ �2(Vm cos � sin�� ẏd)(� sin � sin�)

+ �3(�Vm sin � � żd)(� cos �)

(3.38)

G2 = �1(Vm cos � cos�� ẋd)(� sin�)

+ �2(Vm cos � sin�� ẏd)(cos�)
(3.39)

a = [av, ah]
T (3.40)

Now, the control input is designed as follows,

a = RG(GTRG)�1
⇣
� F � �TKsign(�)

⌘
(3.41)

where R is a positive definite weight matrix, and K = diag(k1, · · · , k6), ki >

0, i 2 {1, · · · , 6}. Then, the time derivative of the Lyapunov function becomes

V̇ = ��TKsign(�) � 0 (3.42)

The negative definite V̇ shows the Lyapunov stability of the designed controller.

Note that the design procedure of the SMC without the timescale sep-
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aration technique is quite complicated. It requires the second derivatives of

the reference trajectory, and there exists a lot of tuning parameters including

�i(i 2 {1, 2, 3}), R, and K. Also, it is di�cult to understand the physical impli-

cations of each term in the controller, which also leads to di�culties in tuning

the design parameters.

3.6.2 Controller Design with Timescale Separation

In this section, the controller is designed utilzing timescale separation tech-

nique. Likewise the previous section, it is assumed that the reference trajectory

[xd(t), yd(t), zd(t)] and its time derivatives are given.

Outer-loop Controller Design

In the outer-loop system, the state variables are xout = [x, y, z]T , and the

control inputs are uout = [�,�]T . Let us define the sliding surface � as follows,

� , [x� xd, y � yd, z � zd]
T (3.43)

The Lyapunov function is defined as follows.

V , 1

2
�T� (3.44)

The time derivative of the Lyapunov function is represented as follows,

V̇ = (x� xd)(ẋ� ẋd) + (y � yd)(ẏ � ẏd) + (z � zd)(ż � żd)

= Vm
�
(x� xd) cos � cos�+ (y � yd) cos � sin�� (z � zd) sin �

�

�
�
(x� xd)ẋd + (y � yd)ẏd + (z � zd)żd

�
(3.45)
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Now, let us design the control inputs to satisfy the following equations.

sin � , 1

Vm

⇣
k3sign(z � zd)� żd

⌘
, � 2

h
�
⇡

2
,
⇡

2

i
(3.46)

cos� , �
1

Vm cos �

⇣
k1sign(x� xd)� ẋd

⌘
(3.47)

sin� , �
1

Vm cos �

⇣
k2sign(y � yd)� ẏd

⌘
, � 2 [�⇡,⇡] (3.48)

That is,

� , arcsin

✓
1

Vm

⇣
k3sign(z � zd)� żd

⌘◆
2 [�⇡/2,⇡/2] (3.49)

� , atan2
⇣⇣

k2sign(y � yd)� ẏd
⌘
,
⇣
k1sign(x� xd)� ẋd

⌘⌘
2 [�⇡,⇡] (3.50)

where ki > 0 are the control gains which should be selected not to violate the

limit of the domain of the trigonometric functions. Then, the time derivative of

the Lyapunov function can be written as follows,

V̇ = �k1(x� xd)sign(x� xd)� k2(y � yd)sign(y � yd)� k3(z � zd)sign(z � zd)

= �k1|�1|� k2|�2|� k3|�3| � 0

(3.51)

Therefore, the outer-loop system is Lyapunov stable with the designed outer-

loop controller.
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Inner-loop Controller Design

The outer-loop control inputs are given as desired values for the inner-loop

state variables, �d and �d. The inner-loop controller is designed as follows,

av = �
Vm

"
(� � �d) (3.52)

ah = �
Vm cos �

"
(�� �d) (3.53)

In the inner-loop system, the outer-loop variables are considered as constant.

Therefore, the desired values �d and �d from the outer-loop system are consid-

ered as constant. The resulting inner-loop system dyamics can be represented

as follows,

�̇ = �
1

"
(� � �d) (3.54)

�̇ = �
1

"
(�� �d) (3.55)

From this example of designing SMC, the usefulness of the timescale sepa-

ration technique is demonstrated. In this particular example of designing SMC

for the reference trajectory following, it can be seen that the timescale sep-

aration technique significantly reduces the complexity in designing controller.

Especially, the SMC design in the outer-loop system is much simpler because of

the reduced system dimension by the timescale separation technique. Another

benefit of designing controller utilizing timescale separation technique is that

the physical meaning of the control command is intuitive. Therefore, it is easy

to select the design parameters when tuning the controllers.
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3.7 Summary

In this chapter, the time-scale separation and dual-loop system of the mis-

sile’s dynamic equation of motion are discussed. In the slow-scale system, the

fast-scale state variables are considered to be the control inputs. In the fast-scale

system, the slow-scale state variables are considered to be constants. Therefore,

the missile dynamic system can be understood as dual-loop system. In the fol-

lowing Chapter, the optimal output trajectory shaping (OOTS) algorithm is

proposed. The OOTS plays the role of the outer-loop controller and generates

the commands �cmd and �cmd. Moreover, the OOTS can provide reference tra-

jectory in the state space. Therefore, path following guiance algorithms can be

adopted to follow the reference path obtained from OOTS.
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Chapter 4

Optimal Output Trajectory Shaping

In this chapter, the optimal output trajectory shaping (OOTS) algorithm

is proposed. With OOTS, the trajectory of the system output is shaped and

optimized. It is shown that the state trajectory can be manipulated to sat-

isfy constraints by properly optimizing the shape of the output trajectory. The

shaping is attained by utilizing parameterized curves. That is, the shape of the

output trajectory is manipulated to fit to a parameterized curve, and the tra-

jectory is finally parameterized. In this dissertation, Bézier curve is adopted for

the parameterization of the output trajectory. When the output trajectory is

parameterized, it can be shown that the state trajectories can also be param-

eterized when there exists a di↵eomorphism for the nonlinear system and the

system output. In this chapter, the condition of possibility for the state param-

eterization of nonlinear system is discussed. Finally, the optimal trajectory for

the nonlinear missile system is obtained by OOTS.
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4.1 Time Parameterization

The relation between the curve parameter ⌧ and the time t needs to be

formulated to specify the output trajectory with given parameterized curve,

e.g., the Bézier curve. The time parameterization specifies the relation between

the curve paramter and the time with a smooth function. In this study, the

following time paramterizing function is considered.

t =
⌧

µ
, t 2 [0, tf ] (4.1)

where µ = 1/tf , and tf is the final time. The time parameterization is used

for a Bézier polynomial [50]. One can utilize various shape of functions when

designing the parameterization function, not only the linear function.

Because of the linear relationship, the curve parameter ⌧ increases uniformly

in time. Note that the arc-length of the curve may not increase uniformly if the

parametric speed of the curve is not constant. The parametric speed vp(⌧) =

|c
0(⌧)| of a curve c(⌧) is the derivative ds/d⌧ of the arc length s with respect

to the parameter ⌧ . If the parametric speed of a curve is constant, then the

points on the curve are distributed uniformly. However, the parametric speed

of rational curves, other than a straight line, is not constant [106].

Constant parametric speed is important for the trajectory tracking problem,

because a significant change in parametric speed may require an agile acceler-

ation command for the system to follow the trajectory accurately. Of course, it

does not matter in the path-following problem which does not specify a posi-

tion on the curve at a certain time. The vector field-based guidance algorithm

considered in this dissertation can be classified as a path-following guidance
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algorithm. In contrast, the optimal output trajectory tracking problem con-

siders the trajectory tracking problem, and therefore the parametric speed is

important.

The time parameterization process considered in this section can also be

understood as a re-parameterization of a geometric curve by rational functions.

One may easily imagine an arc-length parameterization of a curve which results

in the uniform parameterization over the curve with a unit parametric speed.

As stated before, it is impossible to exactly parameterize curves by rational

functions of the arc length. However, it is natural to ask the designer to ap-

proximate the given curve as closely as possible. Let us consider the parameter

transformation (or, re-parameterization) ⌧1 2 [0, 1] ! ⌧2 2 [0, 1] as follows,

⌧1 =
(1� ↵r)⌧2

↵r(1� ⌧2) + (1� ↵r)⌧2
(4.2)

The above transformation provides a rational transformation of the same degree

with a single degree of freedom, ↵r. Now, the closeness to arc-length parame-

terization can be measured with the following cost function.

Jcloseness =

Z 1

0
(|c0(⌧2)|� 1)2d⌧2 (4.3)

The unique solution minimizing Jcloseness can be found [107,108]. An exam-

ple of applying this method to a quadratic Bezier curve is shown in Fig. 4.1 [109].

The parameterization of the geometric curve can be attained with various

approaches including optimization techniques. The further inquisition of this

problem is beyond the scope of this dissertataion. In this study, a simple linear

transformation is utilized.
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Figure 4.1: Left: the parameter flow along the curve. Right: comparison of
parametric speed variations. [109]

4.2 Error dynamics

Assume that desired output trajectory p(⌧) is given with the time parame-

terization of Eq. (4.1). Let us define the error z1 = ỹ = y�p(⌧) for the nonlinear

SISO system in Eq. (2.26). Di↵erentiating z1 with respect to time gives,

ż1 = ˙̃y = Lfh(x)� µp0

ż2 = ¨̃y = L2
fh(x)� µ2p00

...

ż⇢ = ỹ(⇢) = L⇢
fh(x) + LgL

⇢�1
f h(x)u� µ⇢p(⇢)

(4.4)

where (·)0 stands for the di↵erentiation with respect to the curve parameter ⌧ .

The system can be partially linearized by designing the control algorithm u as

follows,

u = [LgL
⇢�1
f h(x)]�1

⇣
� L⇢

fh(x) + µ⇢p(⇢) + v
⌘

(4.5)
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Substituting Eq. (4.5) into Eq. (4.4) yields

ż = Acz +Bcv

ỹ = Ccz
(4.6)

where (Ac, Bc, Cc) has the canonical form. The error vector z = [z1, · · · , z⇢]T

can be regulated with proper contorl gain vector k as follows,

v = �kz

k = [k1, · · · , k⇢]
(4.7)

The resulting error dynamic equation can be obtained as follows,

ż = (Ac �Bck)z =

2

40⇢�1⇥1 I⇢�1

�k1 · · ·� k⇢

3

5 z (4.8)

Therefore, the error vector z can be regulated to zero asymptotically.
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4.3 State Parameterization

If the relative degree of the system is same with the dimension n of the

system, i.e., ⇢ = n, then the states can be represented as the parameterized

equations.

Let us consider the case ⇢ = n and the following di↵eomorphism.

⇠ = T (x) =

2

66666664

h(x)

Lfh(x)
...

L⇢�1
f h(x)

3

77777775

=

2

66666664

h(x)

Lfh(x)
...

Ln�1
f h(x)

3

77777775

(4.9)

Now, consider the following assumption.

Assumption 4.1. The system output precisely follows the given parameterized

trajectory p(⌧) using the control input from Eq. (4.5).

Assumption 4.1 is reasonable because the error dynamic equation, Eq. (4.8),

is asymptotically stable. Assumption 4.1 comprehends that ỹ = ˙̃y = · · · =

ỹ(n) = 0. Because the transformation T (x) is a di↵eomorphism, T (x)�1 exists

and the state vector can be represented as x = T (⇠)�1.

From Assumption 4.1 with the time parameterization in Eq. (4.1), we have

⇠̄(⌧) =

2

66666664

p

µp0

...

µ⇢�1p(⇢�1)

3

77777775

(4.10)
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and

x̄(⌧) = T�1(⇠̄) = T�1

 
2

66664

p
...

µ⇢�1p(⇢�1)

3

77775

!
(4.11)

In this study, the parameterized states are denoted as ⇠̄(⌧) and x̄(⌧) to avoid

confusion. Note that the control input, Eq. (4.5), can also be represented as a

parameterized equation using Eq. (4.11).

Remark 4.1. Final states x|⌧=1 can be specified by properly designing p, · · · , p(n�1).

In this study, p(⌧) is designed using the Bézier curve in Eq. (2.43), which can

be constructed by the selection of the coe�cients Pv.

Remark 4.2. There exists a minimum order of Bézier curve to impose the

initial and final boundary conditions of the state variables. For a system with n

number of boundary conditions, the minimum order of Bézier curve is N = n�1

to attain the curve satisfying the boundary conditions.
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4.4 Internal States

Consider a special case of Eq. (2.35) with the following dynamic equation.

⌘̇ = f0(⇠) 2 Rn�⇢ (4.12)

That is, the relative degree ⇢ < n, and the internal dynamics is determined by

the output h(x) and its derivatives, i.e., ⇠.

Under Assumption 4.1, the di↵erential equation can be represented with

respect to the curve paramter ⌧ as

µ⌘̄0 = f0(⇠̄(⌧)) (4.13)

A definite integral of the equation can be represented for the interval [0, ⌧1], ⌧1 2

(0, 1], as follows,

µ

Z ⌧1

0
⌘̄0d⌧ = µ

⇣
⌘̄|⌧=⌧1 � ⌘̄|⌧=0

⌘
=

Z ⌧1

0
f0(⇠̄(⌧))d⌧ (4.14)

Consider the change of variables in Eq. (4.11) and note that p(⌧) is a Bézier

curve. Then, the definite integral in Eq. (4.14) becomes a function of the Bézier

coe�cients,Pv. Therefore, Eq. (4.14) comprehends that the value of the internal

states ⌘ at given ⌧ = ⌧1 is determined by the Bézier coe�cients. This property

is used to make the internal state have a desired value at specified time.

Remark 4.3. The minimum order of Bézier curve in Remark 4.2 is modified

considering the constraints on the internal state variables. The minimum order

of Bézier curve is N = n+m� 1 in order to consider m number of constraints

on the internal state variables.
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4.5 Di↵erentially Flat System

When the nonlinear system is di↵rentially flat, the full state parameteri-

zation and control input parameterization become available. Flatness can be

understood as an extension of the notion of controllability from linear systems

to nonlinear systems. When the nonlinear system is a flat system with a flat

output, all the states and inputs can be explicitly expressed in terms of the flat

output and its finite number of derivatives [110].

Definition 4.1. Let us consider a nonlinear system of the following form.

ẋ(t) = f(x(t),u), x(0) = x0 (4.15)

where

u(t) 2 Rm, x(t) 2 Rn and Rank
@f(x,u)

@u
= m (4.16)

This system is flat if there exists an output y(t) represented as follows,

y(t) = (y1(t), · · · , ym(t)) (4.17)

and the following conditions are satisfied.

• The signals yi, i = 1, · · · ,m can be represented as functions of the states

xi, i = 1, · · · , n, inputs ui, i = 1, · · · ,m, and a finite number of deriva-

tives with respect to time dk

dtk
ui, k = 1, · · · ,↵i, i.e., y = �(x,u, u̇, · · · ,u↵).

• The states xi, i = 1, · · · , n, and inputs ui, i = 1, · · · ,m can be represented

as functions of the outputs yi, i = 1, · · · ,m, and of its derivatives with

respect to time dk

dtk
, i = 1, · · · ,m.
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• The components of y are di↵erentially independent.

The output satisfying these conditions is flat output and the system is a flat

system.

The flatness property is often utilized for solving the trajectory planning

problem. Because the states and inputs of the flat system are representable as

functions of the outputs and their derivatives, the OOTS technique can readily

be adopted for the flat system. An example of OOTS for a flat system will be

presented lated.

4.6 Optimal Output Trajectory Shaping using Bézier

Curve

In this section, OOTS algorithm using Bézier curve is introduced. Note that

optimality is attained by properly selecting the free coe�cients of the Bézier

curve, which are not specified by the boundary conditions. The optimization

problem of the Bézier curve coe�cients can be solved by any constrained nonlin-

ear optimization algorithms including sequencial quadratic programming (SQP)

method.

OOTS has several merits. First, boundary conditions are automatically sat-

isfied by specifying the coe�cients of the Bézier curve. Second, the di�culty

in the implementation is relatively low because the algorithm can easily find

the solution of the OOTS compared to indirect optimization approach solving a

two-point boundary value problems (TPBVP). Third, OOTS requires relatively

low computational cost to solve the problem compared to the conventional tra-

jectory optimization problem. Besides, if the parameterizations of the state and

input variables are possible, it is easy to impose specific constraints on the tra-
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jectory or manipulate the trajectory of variables by changing the coe�cients.

Remark 4.4. Because it is not possible for a Bézier curve with specific degree

N to represent an arbitrary function perfectly, the solution trajectory p(⌧) for

the OOTS can be understood as a sub-optimal solution for the trajectory op-

timization problem. If the degree of the Bézier curve increases, i.e., N ! 1,

then the OOTS solution approaches the optimal solution.

4.6.1 Higher Order Curves and Degree Increase

In Remarks 4.2 and 4.3, the minimum order of the Bézier curve (N =

n + m � 1) is considered, where the number of boundary conditions for state

variables is n and the number of constraints on the internal state variables is m.

If the degree of Bézier curve is higher than the minimum order, N = n+m�1,

then the remaining coe�cients can be used to optimize the trajectory.

Note that any Bézier curve can be represented with another Bézier curve

with higher order. Therefore, the higher order Bézier curve includes the lower

order Bézier curve. In other words, a curve represented by a Bézier curve can

always be represented as a Bézier curve with higher order.

Remark 4.5. A Bézier curve with degree N can be represented by a Bézier

curve with degree M for M > N . A degree N Bézier curve with control points

P0, · · · , PN is equivalent to the degree N + 1 Bézier curve. One particular pa-

rameterization of the control points are: P 0
0, · · · , P

0
N+1 where P 0

k = k
N+1Pk�1 +

(1� k
N+1)Pk.

Because a Bézier curve with degree N can be represented with another

Bézier curve with degree N +1, the optimal Bézier curve with degree N can be

utilized as an initial guess for obtaining the optimal Bézier curve with degree
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N + 1, after the degree increases. An example of utilizing the optimal solution

of the lower degree as the initial guess for the higher degree is presented at

the end of this chapter. As N increases, the Bézier curve has more degree of

freedom and the optimality would increase, i.e., the optimal cost function value

decreases. However, in the practical aspect, it is worth to know the proper value

of N . In practice, thresholding the increment of the optimal cost function value

is a typical strategy to determine the proper degree N . That is, the strategy is

to stop increasing N when the increment of the optimal cost function value is

below a predefined threshold value.

4.6.2 Optimization Problem Formulation

The optimization problem in output trajectory shaping using the Bézier

curve can be formulated to determine the remaining free coe�cients of the

Bézier curve as follows,

J(P0, · · · , PN , µ) = �(⇠̄(P0, · · · , PN ), µ)|⌧=1 +

Z 1

0
L(⇠̄(⌧, P0, · · · , PN ), ⌧)d⌧

(4.18)

where Pi, i 2 (1, · · · , N) are the coe�cients of the Bézier curve.

The boundary conditions for the output and states are already imposed

on the some coe�cients of the Bézier curve before solving the optimization

problem, and therefore the number of coe�cients to be optimized is reduced.

Note that the final time can also be considered by including µ as one of the

optimization variables.

When there exist boundary conditions for output y = h(x) = ⇠1 and

the initial/final conditions are yi and yf , then ⇠̄1(0) = p(0) = P0 = yi and

⇠̄1(1) = p(1) = PN = yf . The first and final coe�cients are determined by
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the output boundary conditions. Also, when there exist boundary conditions

for state xk = T�1(⇠k) and the initial/final conditions are xk,i and xk,f , then

⇠̄k(0) = µk�1p(k�1)(0) = T (xk,i) and ⇠̄k(1) = µk�1p(k�1)(1) = T (xk,f ). Because

p(k�1)(⌧) is linear function of P0, · · · , PN , one of any Pi, i 2 (1, · · · , N) can be

eliminated from the cost function, which reduces the number of coe�cients to

be optimized. Therefore, Bézier curve with degree N > n + m � 1 should be

used for the OOTS.
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Figure 4.2: Missile engagement geometry

4.7 A Motivating Example for OOTS - I

A basic example of OOTS is considered. The algorithm proposed in this

Chapter is applied to the nonlinear model of planar missile engagement dy-

namics against a stationary target. The system equation can be represented as

follows,

Ṙ(t) = �V cos�

�̇(t) =
V

R
sin� + �̇

(4.19)

where R is the distance to the target from the missile, V is a speed, � is the look

angle, and � is the flight path angle. It is assumed that the speed of the missile

is constant. Note that the nomenclature here are only valid in the examples of

this chapter. The missile engagement geometry is shown in Fig. 4.2.

The state variables are x = [x1, x2]T = [R,�]T , and the control input is �̇.
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The nonlinear system can be rewritten in the form of Eq. (2.26) as follows,

ẋ1 = �V cosx2

ẋ2 =
V

x1
sinx2 + u

y = h(x) = x1

(4.20)

The output y = x1 is selected for the missile to intercept the target. Therefore,

the boundary conditions for the output are y(0) = R0 and y(tf ) = 0.

Di↵erentiating the output with respect to time gives

dh(x)

dt
= Lfh(x) = �V cosx2

d2h(x)

dt2
= L2

fh(x) + LgLfh(x)u =
V 2

x1
(sinx2)

2 + V sinx2u
(4.21)

Because the relative degree is ⇢ = n = 2, the state parameterization is possible,

and the change in variables is defined as the following di↵eomorphism.

⇠ = T (x) =
h
h(x) Lfh(x)

iT
=
h
x1 �V cosx2

iT
(4.22)

Control algorithm and state parameterization

The control input is designed with positive gains k1 and k2 as follows,

u = LgLfh(x)
�1
⇣
� L2

fh(x) + µ2p00 + v
⌘

(4.23)

v = �[k1 k2]z (4.24)

z = [z1 z2]
T =

2

4 h(x)� p(⌧)

Lfh(x)� µp0

3

5 (4.25)
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where p(⌧) is the desired output trajectory with the time parameterization in

Eq. (4.1). The boundary conditions for the states are given as follows,

x1(0) = R(0) = R0, x1(tf ) = R(tf ) = 0

x2(0) = �(0) = �0, x2(tf ) = �(tf ) = 0
(4.26)

The parameterized states can be obtained using Eq. (4.11) as follows,

x̄(⌧) =
h
x̄1(⌧) x̄2(⌧)

iT
= T�1(⇠̄) =

h
p(⌧) cos�1(�µp0(⌧)/V )

iT
(4.27)

Trajectory generation

Let us consider the output trajectory p(⌧) represented by the Bézier curve

Bn(⌧). The cubic Bézier curve and its derivative are given as follows,

B3(⌧) = (1� ⌧)3P0 + 3(1� ⌧)2⌧P1 + 3(1� ⌧)⌧2P2 + ⌧3P3

B0
3(⌧) = 3(1� ⌧)2(P1 � P0) + 6(1� ⌧)⌧(P2 � P1) + 3⌧2(P3 � P2)

(4.28)

where Pi, i = 1, · · · , 3, are scalar control points. The control points can be

determined to satisfy the boundary conditions, Eq. (4.26), as

P0 = R0, P3 = 0

cos�1(�µB0
3(0)/V ) = �0, cos�1(�µB0

3(1)/V ) = 0
(4.29)

Using Eq. (4.28) in Eq. (4.29), we have

P1 = �
V

3µ
cos�0 +R0

P2 =
V

3µ

(4.30)
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Desired impact time, s Impact time error, s Bézier coe�cients
30 0.0002 [2000, 1250, 750, 750, 0]
60 0.0026 [2000, 500, 1500, 1500, 0]
75 0.0006 [2000, -250, 2250, 2250, 0]
90 0.0035 [2000, -1000, 3000, 3000, 0]
120 0.0017 [2000, -1750, 3750, 3750, 0]
150 0.0034 [2000, 125, 1875, 1875, 0]

Table 4.1: Guidance error and Bézier coe�cients for impact time control guid-
ance (Example 1)

In this particular example, all the coe�cients of the Bézier curve are deter-

mined by the boundary conditions. Therefore, there does not exist any design

parameters to be optimized.

Simulation results

Numerical simulation is conducted for various final times, i.e., tf = 30, 60,

90, 120, and 150 sec. The boundary conditions are chosen as R0 = 2, 000 m,

�0 = 0 deg, and speed of the missile V = 100 m/s. An initial range error of

300 m is considered for one simulation case, i.e., tf = 75 sec. The numerical

reslts of the simulation are shown in Fig. 4.3. As expected, the states x(t) of

all cases follow the trajectory x̄(⌧) well. The dashed line shows a case in which

there is an initial range error, but the system follows the prescribed trajectory

well by the proposed output trajectory tracking controller. The guidance error

and Bézier coe�cients are summarized in Table 4.1.
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Figure 4.3: Simulation result for ITCG
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4.8 A Motivating Example for OOTS - II

A nonlinear system with internal state is considered. In this example, impact

angle and time control guidance (IATCG) [111] is considered and the following

additional internal dynamics is considered in addition to Eq. (4.19).

�̇(t) = �
V

R
sin� (4.31)

where � is the line-of-sight angle. Note that the internal dynamics is in the

form of Eq. (4.12), that is, the internal state value at a certain moment can

be manipulated by shaping trajectory ⇠(⌧) in Eq. (4.14). Based on this action,

the desired impact angle can be attained by manipulating the final value of the

internal state �(tf ). To apply an additional condition for the internal state �,

a Bézier curve with n = 4 is used, i.e., p(⌧) = B4(⌧),

B4(⌧) = (1� ⌧)4P0 + 4(1� ⌧)3⌧P1 + 6(1� ⌧)2⌧2P2 + 4(1� ⌧)⌧3P3 + ⌧4P4

B0
4(⌧) = 4(1� ⌧)3(P1 � P0) + 12(1� ⌧)2⌧(P2 � P1) + 12(1� ⌧)⌧2(P3 � P2)

+ 4⌧3(P4 � P3)

(4.32)

By applying the boundary conditions of Eq. (4.26), we have

P0 = R0

P4 = 0

cos�1(�µB0
4(0)/V ) = �0

cos�1(�µB0
4(1)/V ) = 0

(4.33)
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Using Eqs. (4.32) and (4.33), we have

P1 = �
V

4µ
cos�0 +R0

P3 =
V

4µ

(4.34)

The remaining coe�cient P2 is used to determine the internal state value at

the final time.

Internal state parameterization

The internal dynamics can be rewritten as

⌘̇ = �
V

x1
sinx2 (4.35)

The above equation can be represented with respect to ⌧ as

µ⌘̄0(⌧) =
V

x̄1(⌧)
sin x̄2(⌧) =

V

p(⌧)
sin
⇣
cos�1

⇣
�

µ

V
p0(⌧)

⌘⌘
(4.36)

The definite integral representation can be obtained as follows,

µ
⇣
⌘̄(⌧1)� ⌘̄(0)

⌘
=

Z ⌧1

0

V

p(⌧)
sin
⇣
cos�1

⇣
�

µ

V
p0(⌧)

⌘⌘
d⌧ (4.37)

where ⌧1 = 1, ⌘̄(⌧1) = ⌘f = �(tf ) and ⌘̄(0) = 0 = �(t0). It is di�cult to ana-

lytically express the definite integral of the polynomials in the transcendental

function. However, there exists only one parameter P2 to be determined, and

therefore it is easy to find P2 satisfying Eq. (4.37) using numerical root-finding

algorithm.
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Desired impact angle, deg Impact angle error, deg Bézier coe�cients
60 0.3429 [2000, 2000, 1213.49, 625, 0]
90 0.5023 [2000, 2000, 1133.25, 625, 0]
120 0.6368 [2000, 2000, 998.68, 625, 0]
150 0.7020 [2000, 2000, 811.90, 625, 0]

Table 4.2: Guidance error and Bézier coe�cients for impact time and impact
angle control guidance (Example 2)

Remark 4.6. Note that the existence of the solution to Eq. (4.37) is not guar-

anteed in general. The existence of the solution depends on the given nonlinear

system and its boundary conditions. For the impact time and angle control prob-

lem, there is limited range of solutions, and not every ⌘f can be attained for the

given boundary conditions and tf .

Simulation results

Numerical simulation is conducted for various desired impact angles, i.e., the

final LOS angle. The final values of the internal state are chosen as ⌘f = �60,

�90, �120, and �150 deg. The boundary conditions are chosen as R0 = 2, 000

m, �0 = 90 deg, and the speed of the missile V = 100 m/s. The final time is

tf = 25 sec. The simulation results are shown in Figs. 4.4 and 4.5. The states

follow the desired trajectory well, and all the boundary conditions are satisfied.

Furthermore, the final value of the internal state ⌘(tf ) is satisfied. The guidance

error and Bézier coe�cients are summarized in Table 4.2.
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Figure 4.4: Simulation result for IATCG (range, lead angle)
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Figure 4.5: Simulation result for IATCG (LOS angle, inputs)
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4.9 A Motivating Example for OOTS - III

Figure 4.6: Description of the 2D crane

OOTS for the 2-D crane, which is a flat system is considered. This example

is exploited in [110], which is a classical and fundamental object of in control

theory. A trolly travels and rolling up and down the rope. The 2D crane is

described in Fig. 4.6. The traveling position D and the hoisting rope length

R are the control variables, and the coordinate of the payload m on the plane

(x, z) are the system output. The rope dynamics are neglected in this example.

Then, the dynamic model of this system is described as follows,

mẍ(t) = �T (t) sin ✓(t)

mz̈(t) = �T (t) cos ✓(t) +mg

x(t) = R(t) sin ✓(t) +D(t)

z(t) = R(t) cos ✓(t)

(4.38)

where T denotes the tension of the rope, and ✓ denotes the angle between the

rope and the vertical axis OZ. From the dynamic model of the 2D crane system,
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it can be seen that D(t), R(t), T (t), and sin ✓(t) can be represented as algebraic

functions of the outputs x(t) and z(t).

D = x�
ẍz

z̈ � g

R2 = z2 +

✓
ẍz

z̈ � g

◆2

T =
mR(g � z̈)

z

sin ✓ =
x�D

R

(4.39)

Therefore, the 2D crane’s dynamic system is flat with (x, z) as flat output.

The objective of this problem is to carry the payload from the steady-state

R = R1 > 0 and D = D1 at time t1, to the steady-state R = R2 > 0 and

D = D2 at time t2 > t1. To this end, any oscillations should be attenuated at

the end of the trajectory. Therefore, the following boundary conditions for the

outputs should be satisfied. For all i 2 {1, 2} and r 2 {1, 2, 3, 4},

(x, z)(ti) = (Di, Ri)

dr

dtr
(x, z)(ti) = 0

(4.40)

Let us consider the output trajectories as Bézier curves as follows,

x̄ = px(⌧)

z̄ = pz(⌧)
(4.41)

To satisfy the boundary conditions in Eq. (4.40), the minimum degree of the

Bézier curve is 9. The parameterizations are given as follows,

70



D̄(⌧) = px �
µ2p00xpz
µ2p00z � g

R̄(⌧) =

s

p2z +

✓
µ2p00xpz
µ2p00z � g

◆2
(4.42)

T̄ (⌧) =
mR̄(g � µ2p00z)

pz

sin ✓̄(⌧) =
px � D̄

R̄

(4.43)

The boundary conditions are represented as follows. For i 2 {x, z},

dk

d⌧k
pi(⌧)

�����
⌧=0

=
N !

(N � k)!

kX

j=0

✓
k

j

◆
(�1)j+kP i

j

dk

d⌧k
pi(⌧)

�����
⌧=1

=
N !

(N � k)!

kX

j=0

✓
k

j

◆
(�1)j+kP i

N�j

(4.44)

where P i
j , i 2 {x, z} is the j-th control point of the curve pi(⌧), and N is the

degree of the Bézier curve. The output trajectories px(⌧) and pz(⌧) satisfying the

dynamic model of 2D crane and the boundary conditions are computed using

Bézier curve of degree N = 9. The parameters are summarized in Table. 4.3.

The fixed initial and final times (t1, t2) implies µ = 1/(t2 � t1).

The trajectory planning result is shown in Figs. 4.7 and 4.8. Note that

a feasible trajectory satisfying the boundary conditions are obtained. In this

planning with N = 9 and fixed µ, no optimization process is required because

all of the control points and µ are defined by the boundary conditions. If the

designer consider Bézier curves of N > 9 or final-time free problem, a feasible

solution of the trajectory planning problem can be obtained by optimizing the

free control points and µ.
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Parameter m, kg R1, m R2, m D1, m D2, m t1, sec t2, sec
Value 10 0.4 0.4 0 1 0 1

Table 4.3: Parameter values for trajectory planning of 2D crane
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Figure 4.7: The successive motions of the trolley and the payload
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Figure 4.8: The trajectory planning for 2D crane using OOTS
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4.10 A Motivating Example for OOTS - IV

In this section, the comparison between the proposed method and the con-

ventional trajectory optimization technique using direct collocation method is

conducted. For the comparison, a scalar linear system, for which analytic solu-

tion can be calculated, is considered. For the OOTS, the degree of the Bézier

curve is increased using the method given in Remark 4.5. The optimality and

the computation times of the solutions are compared.

Let us consider the following scalar linear system.

ẋ(t) = ax(t) + bu(t) (4.45)

y(t) = cx(t) (4.46)

The boundary conditions are given as the initial and final condition for the

output and represented as follows,

y(0) = y0, y(T ) = yf (4.47)

where T is the final time. Let us consider the objective function which minimizes

the energy as follows,

min
u

J =
1

2

Z T

0
u(t)2dt (4.48)

The proposed OOTS method is used to obtain the optimal trajectory with

respect to the cost function in Eq. (4.48). Then, the optimality of the OOTS

solution is validated. To this end, the analytic solution of the optimization

problem is obtained.
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4.10.1 Analytic Solution

The state and costate equations are represented as follows,

ẋ = ax� b2�

�̇ = �a�
(4.49)

The analytic solutions are obtained as

�(t) = ea(T�t)�(T )

x(t) = x(0)eat �
b2

a
�(T )eaT sinh(�at)

u(t) = �b�(t)

(4.50)

When the final state x(T ) is given, the solution can be obtained as follows,

�(T ) =
⇣
x(T )� x(0)eaT

⌘⇣b2

a
eaT sinh(�aT )

⌘�1
(4.51)

Substitutiting Eq. (4.51) to Eq. (4.50), the analytic solution for the optimal

state and the optimal control input can be obtained.

4.10.2 Direct Collocation Solution

The trajectory optimization using direct collocation method is a process of

computing an open-loop solution to an optimal control problem. In the direct

collocation method, the state and control trajectories are approximated us-

ing polynomial splines. A trapezoidal method, Hermite-Simpson method, and

Runge-Kutta method are utilized to obtain the optimal solution.

4.10.3 OOTS Solution

The objective of this example is twofold. The first objective is to compare the

optimality (cost function value) and computation time of the OOTS solution.
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The merit of the OOTS lies in that the required computation time for obtaining

the (sub-)optimal solution is smaller, not sacrificing the optimality much. The

second objective is to verify that the optimality of the OOTS solution increases

as the degree of the Bézier curve, N , increases. To this end, the degree increase

technique stated in Remark 4.5 is utilized.

Figure 4.9 shows the trajectories of the analytic solution (4.9(a)), the direct

collocation solution (4.9(b)), and the OOTS solution (4.9(c)). The direct collo-

cation solution trajectory in Fig. 4.9(b) is obtaied using Runge-Kutta method

with 100 segements. That is, the trajectory is approximated using 100 number

of polynoimal splines. The OOTS solution trajectory in Fig. 4.9(c) is obtained

by Bézier curve of degree N = 7 of 1,000 segments. That is, 1,000 number of

uniformly sampled points on the curve are evaluted to evalute the curve dur-

ing the numerical optimization process. Note that the obtained trajectories are

almost same.

Figure 4.10 shows the comparison between methods. The cost function value

and optimization error are plotted in Fig. 4.10(a). The optimization error is

computed based on the cost function value of the analytic solution. The num-

bers of segments for OOTS solutions are 1,000, and the numbers of segments

for direct collocation solutions are 100. The number of segments for OOTS

and the direct collocation method a↵ects the evaluations of the curve. Methods

using larger number of segments provide more accurate result, and therefore

increasing the number of segments has an a�rmative e↵ect on the quality of

the optimal solution. However, in both of the methods, the computation time

increases when the number of segments increases, because it increases the num-

ber of evaluations. Especially for the direct collocation method, increasing the
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Figure 4.9: Example III - Optimization results
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((a)) Cost function value and optimization error

((b)) Computation time

Figure 4.10: Example III - Comparison between methods
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number of segments results in an increase in the number of parameters to be

optimized. Consequently, there exists a risk that the numerical solver may not

find a feasible solution when the number of segments is too large in the direct

collocation method. In contrast, the number of segments has nothing to do with

the number of parameters to be optimized for the OOTS.

Note that the OTTS solution of N = 3 shows a relatively high optimiza-

tion error. The optimization error of the direct collocation solution with the

trapezoidal method is the second biggest. As N increases, the optimality of

the OTTS solution gets better and the optimization error decreases. The di-

rect collocation solutions with the Hermite-Simpson method and Runge-Kutta

method shows similar optimality when N = 7 in this particular problem. From

the results shown in Fig. 4.10(a), it can be stated that increasing N has an

a�rmative e↵ect on the optimality because the curve of a higher degree has

more degree of freedom.

Figure 4.10(b) compares the computation time. The simulation was con-

ducted in AMD Ryzen 9 3900x Processor (3.80Ghz), using MATLAB R2020a.

Note that much more computation time is required for the direct collocation so-

lution than the OOTS solutions, although the number of segments is smaller in

the direct collocation method. Especially, the computation time of the Runge-

Kutta method is about 80 times longer than that of OOTS of N = 7, which

shows similar optimality. The computation time of OOTS increases as N in-

creases, because the number of parameters to be optimized increases. In the

process of solving the optimization problem, one can stop increasing N when

enough optimality is obtained. However, in practice, the optimization error can-

not be computed for the problems that the analytic solution is not available.
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Therefore, thresholding the decrement of the optimal cost function value can

be a possible stopping strategy.

4.11 Summary

In this chapter, it is shown that the output trajectory of a nonlinear SISO

system can be shaped and optimized using a parameterized curve including

Bézier curve. Also, not only the output trajectory but also the state trajectory

can be represented by parameterized curves. Consequently, the optimal state

trajectory can be easily obtaind by optimizing the shape of the parametric

curve. In OOTS, tracking to the reference trajectory for the system is attained

by the feedback linearization control algorithm. However, tracking to the refer-

ence trajectory can also be attained by other guidance and control techniques.

In the following Chapter, vector field-based guidance (VFG) law is designed for

the missile system. The missile can be guided to track the optimal reference

trajectory using VFG or feedback linearization control. The pros and cons of

the two di↵erent tracking techniques are compared by numerical simulation.
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Chapter 5

Vector Field-based Guidance Law
Design

In this chapter, the VFG algorithm for missile system is addressed. In the

VFG algorith, a vector field is defined in the position space. The missile is

controlled to follow the direction of the vector field and converge to a reference

trajectory, which is designed in the previous chapter. Therefore, designing VFG

can be understood as the matter of designing the direction of the vector field

in the position space. The reference curve can be a target’s predicted trajec-

tory that has to be intercepted by the missile, or an optimal trajectory that is

generated prior to the launch of the missile for the mission. In this chapter, the

VFG in two-dimensional space is designed for the reference trajectory which is

represented as implicit function. Then, VFG in three-dimensional space is de-

signed for the reference trajectory which is represented as parametric function.

The asymptotic stability and the finite-time stability of the VFG are analyzed

using the Lyapunov-like approach for both two- and three-dimensional guidance

algorithms with implicit and parameterized reference curves, respectively.

5.1 Vector Field Design in Two-Dimensional Space

Vector field is constructed as a linear combination of convergence vector and

orthogonal vector of the gradient vector [75]. To find the vector components,
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predicted target trajectory should first be defined. The predicted trajectory of

the target is given as an implicit function f(x, y) = 0 in two-dimensional space.

5.1.1 Convergence Vector and Traverse Vector

A convergence vectorwconv is defined by the gradient vector of the trajectory

function f(x, y) as

wconv = �sign(f)
rf

krfk
(5.1)

Because the gradient vector directs to the steepest ascent direction of the func-

tion, the convergence vector is also directed toward the target trajectory.

A traverse vector wtrav is defined as an orthogonal vector of the gradient

vector of the trajectory function, rf . In a two-dimensional plane, the traverse

vector can be obtained as

wtrav = �sign(g)
rg

krgk
(5.2)

rfT
rg = 0 (5.3)

where the orthogonal function g(x, y) can be calculated by analytically inte-

grating the orthogonal vector rg(x, y). For example, for a trajectory function

f(x, y) = �0.05(x2 � 9x � 10) � y, which is a second-order polynomial func-

tion, the corresponding orthogonal function is g(x, y) = 10 log(2x� 9)� y. The

trajectory function f , the orthogonal function g, and their gradient vectors are

visualized in Fig. 5.1.

Now, the vector field vector w(x, y) is designed as a linear combination of

the convergence vector, wconv, and the traverse vector, wtrav, as

w = kfwconv + kgwtrav (5.4)
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Figure 5.1: Visualization of f1(x, y), g1(x, y), and gradient vectors

where kf and kg are positive coe�cients satisfying the condition k2f + k2g = 1,

and therefore w is a unit vector.

5.2 Stability Analysis for Vector Field Represented as

Implicit Function

5.2.1 Stability of the Vector Field with Constant Coe�cients

Let us analyze that the vector field asymptotically converges to the specified

reference trajectory represented as the implicit functions f(x, y) and g(x, y).

Let us consider a Lyapunov candidate function.

V (x, y) =
1

2

�
f2(x, y) + g2(x, y)

�
(5.5)

Assuming that the missile can instantly follow the field vector, the velocity

vector can be written as follows.

2

4ẋ

ẏ

3

5 = VMw(x, y) (5.6)
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Di↵erentiating V (x, y) with respect to time and substituting Eqs. (5.1) - (5.4)

and (5.6) into the resulting equation yields

V̇ (x, y) = fḟ + gġ

= frfT

2

4ẋ

ẏ

3

5+ grgT

2

4ẋ

ẏ

3

5

= �VMkf |f |krfk � VMkg|g|krgk < 0 (5.7)

The Lyapunov function V (x, y) and the time derivative of V (x, y) are zero

only when both of the functions f(x, y) and g(x, y) are zero, and therefore the

system converges to the point (x⇤, y⇤), where f(x⇤, y⇤) = 0 and g(x⇤, y⇤) = 0.

There exists only one point, where f(x, y) and g(x, y) are equal to zero. Fi-

nally, by the Lyapunov stability theorem, the vector field is asymptotically sta-

ble to the point (x⇤, y⇤), where f(x⇤, y⇤) = g(x⇤, y⇤) = 0 are satisfied. However,

in actual engagement situation, the missile may not accurately and instantly

follow the vector field direction, especially when the speed of the missile is fast

and the direction of the vector field changes sharply. Therefore, time-varying

coe�cients kf and kg would be better than constant values, which will make

the missile approach the reference trajectory smoothly.

In this section, the stability analysis for a given reference curve f(x, y) = 0 is

performed. The vector field smoothly converges to the reference curve because

f(x, y) goes to zero, and ḟ(x, y) also goes to zero by means of the varying

coe�cients kf and kg.
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Let us consider a Lyapunov candidate function.

V =
1

2
s
T s (5.8)

where

s = [f ḟ ]T (5.9)

 =

2

4p11 p12

p12 p22

3

5 (5.10)

Note that P is a constant positive definite matrix, i.e., p11 > 0 and p11p22�p212 >

0. An additional condition, sign(p12/p22) < 0, is required for the finite-time

stability, which will be discussed in a later section. Di↵erentiating the Lyapunov

candidate function V with respect to time obtains

V̇ = p11fḟ + p12ḟ
2 + f̈

⇣
p12f + p22ḟ

⌘
(5.11)

Assume that the missile can ideally follow the vector field w(x, y) direction

at the current position with a constant VM . Then, the velocity components of

the missile in XY -coordinates can be represented as follows,

Ẋ = VMkg (5.12)

Ẏ = VMkf (5.13)

where the XY coordinate is a coordinate of which the X axis and the Y axis

direct to the wtrav and wconv directions, respectively, as shown in Fig. 5.2. The

velocity of the missile aligned to the direction of w is described in Fig. 5.3.
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Figure 5.2: Coordinates in two dimensional engagement

Figure 5.3: The velocity components in XY -coordinate
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Now, the time derivative of the function f(x, y) can be represented as fol-

lows,

ḟ =
⇥
fX fY

⇤
2

4Ẋ

Ẏ

3

5 = VM
⇥
fX fY

⇤
2

4kg

kf

3

5

= VMfY kf

(5.14)

where fX and fY are the partial derivatives of f in XY -coordinates. Note that

the X-axis is parallel to the tangent direction of the curve f(x, y) = 0 at any

point where fX = 0. The calculation procedure of fX , fY , fXX , fXY , fY X and

fY Y can be found in Appendix. Di↵erentiating Eq. (5.14) with respect to time

and using Eq. (5.13) in the resulting equation yields

f̈ =
d

dt
(ḟ) =

d

dt
(VMfY kf ) = VM (fY Y Ẏ )kf + VMfY k̇f

= V 2
MfY Y k

2
f + VMfY k̇f

(5.15)

Substituting Eq. (5.15) into Eq. (5.11) gives

V̇ = p11fḟ + p12ḟ
2 +

⇣
p12f + p22ḟ

⌘⇣
V 2
MfY Y k

2
f + VMfY k̇f

⌘
(5.16)

By designing a proper kf and k̇f for Eq. (5.16), the asymptotic stable or finite-

time stable vector field can be obtained.

5.2.2 Asymptotic Stable Vector Field Design

The time update rule for kf can be obtained from Eq. (5.16) for V̇ to have

a specific form. For the asymptotic stability, let us propose the update rule of
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kf as follows,

k̇f =
1

VMfY

n
� V 2

MfY Y k
2
f + (p12f + p22ḟ)

�1(�p11fḟ � p12ḟ
2
� ⇢1f

2
� ⇢2ḟ

2)
o

(5.17)

where ⇢1 and ⇢2 are positive scalars. Then, the time derivative of the Lyapunov

function can be written as

V̇ = �⇢1f
2
� ⇢2ḟ

2 (5.18)

Because V̇ is negative definite, the system is asymptotically stable for the point

(f, ḟ) = (0, 0). Note from Eq. (A.3) in Appendix that fY 6= 0 in general because

it is easy to choose a proper f(x, y) with nonzero gradient on the curve. In the

definition of k̇f in Eq. (5.17), k̇f is not defined only when (f, ḟ) = (0, 0), which

is the situation when the missile is on the reference trajectory and maintaining

that trajectory. By choosing k̇f = 0 on the point (f, ḟ) = (0, 0), k̇f can be

shown as a continuous function near zero as follows,

lim
f,ḟ!0

k̇f = lim
f,ḟ!0

1

VMfY

 
� V 2

MfY Y k
2
f +

�p11fḟ � p12ḟ2
� ⇢1f2

� ⇢2ḟ2

p12f + p22ḟ

!

= lim
f,ḟ!0

1

VMfY

(
�
⇢1
p12

f �
p12 + ⇢2

p22
ḟ +

⇣
� p11 +

⇢1p22
p12

+
p12(p12 + ⇢2)

p22

⌘ fḟ

p12f + p22ḟ

)

= lim
f,ḟ!0

1

VMfY

(
� p11 +

⇢1p22
p12

+
p12(p12 + ⇢2)

p22

)
1

p12/ḟ + p22/f

= 0

(5.19)

Note that limḟ!0(kf ) = 0 from Eq. (5.14). Therefore, by choosing kf = k̇f = 0

on the reference trajectory, the missile will maintain on the reference curve.
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5.2.3 Finite-time Convergent Vector Field Design

Let us analyze the finite-time convergence of the system. Now, let us propose

the following kf update rule instead of Eq. (5.17),

k̇f =
1

VMfY

⇣
� V 2

MfY Y k
2
f + (p12f + p22ḟ)

�1(�p11fḟ � p12ḟ
2
� ↵V �)

⌘
(5.20)

where f 6= 0 and ḟ 6= 0. Substituting Eq. (5.20) into (5.16) yields

V̇ = �↵V � (5.21)

The condition for the finite-time convergence is satisfied with the proposed

update rule in Eq. (5.20). Note that there is a singular case when (p12f+p22ḟ) =

0. To deal with the singular case, similar to Eq. (5.19), the update rule k̇f

approaching (f, ḟ) ! (0, 0) can be calculated as follows:

lim
f,ḟ!0

k̇f = lim
f,ḟ!0

1

VMfY

�↵V �

p12f + p22ḟ

= lim
f,ḟ!0

1

VMfY

�↵(p11f2 + 2p12fḟ + p22ḟ2)�

2�(p12f + p22ḟ)

(5.22)

Note that as f, ḟ ! 0, (p11f2 + 2p12fḟ + p22ḟ2) in Eq. (5.22) approaches zero

and smaller than 1. Therefore, the following inequality holds.

"
lim

f,ḟ!0
|k̇f |

#

�=1

< lim
f,ḟ!0

|k̇f | 

"
lim

f,ḟ!0
|k̇f |

#

�=�

(5.23)

where �  � < 1.

First, let us consider the � = 1 case. In this case, as like in Eq. (5.19), it

can be readily shown that the limit goes to zero. It can be shown that the limit
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of the median term in Eq. (5.23) is zero by showing that the limit of the right

term in Eq. (5.23) for certain � is zero.

Now, let us consider the polar coordinate variables r, ✓ for f, ḟ as follows,

f = r cos ✓, ḟ = r sin ✓ (5.24)

That is, the value of (f, ḟ) at an arbitrary (x, y) point can be represented

by using r and ✓. In the (f, ḟ)-plane, when the missile approaches the curve

f(x, y) = 0 smoothly, the system approaches the origin along a certain tra-

jectory satisfying the dynamic relationship between f and ḟ . Note that any

trajectories approaching the origin, i.e., f, ḟ ! 0, can be represented as r ! 0.

Therefore, Eq. (5.22) can be rewritten as follows,

lim
f,ḟ!0

k̇f = lim
r!0

1

VMfY 2�
�↵r2�(p11 cos2 ✓ + 2p12 cos ✓ sin ✓ + p22 sin2 ✓)�

r(p12 cos ✓ + p22 sin ✓)

= lim
r!0

�↵

VMfY 2�

 
r2�0(p11 cos2 ✓ + 2p12 cos ✓ sin ✓ + p22 sin2 ✓)�0

⇣
r(p12 cos ✓ + p22 sin ✓)

⌘�0/�

!�/�0

(5.25)

where �0 is an arbitrary scalar. Let us consider a special case � = 2
3 and �0 = 2.

lim
f,ḟ!0

k̇f

�����
�=2/3,�0=3

= lim
r!0

�↵

VMfY 2�

 
r4(p11 cos2 ✓ + 2p12 cos ✓ sin ✓ + p22 sin2 ✓)2

r3(p12 cos ✓ + p22 sin ✓)3

! 1
3

= lim
r!0

�↵

VMfY 2�

 
r(p11 cos2 ✓ + 2p12 cos ✓ sin ✓ + p22 sin2 ✓)2

(p12 cos ✓ + p22 sin ✓)3

! 1
3

= 0

(5.26)
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Note that the equation still has an indeterminate form, that is, the denominator

is zero when the following condition holds as r ! 0.

p12 cos ✓ + p22 sin ✓ = 0 (5.27)

However, it can be shown that this case cannot happen with a proper selection

of p12 and p22. Using Eqs. (5.24) and (5.27), we have

ḟ

f
= tan ✓ = �

p12
p22

(5.28)

Meanwhile, f and ḟ always have di↵erent signs because the convergent vector is

designed in the direction of f(x, y) = 0, which is the negative gradient direction,

or sign(ḟ/f) = �1. Therefore, if the sign of p12
p22

is designed to be negative,

then the condition (5.27) is not satisfied, and consequently the limit of k̇f for

�0 = 2/3 is zero.

Finally, using Eq. (5.23) and Eq. (5.26), the limit of kf for 2
3  � < 1 is

zero as f, ḟ ! 0. By defining k̇f = 0 at (f, ḟ) = (0, 0), k̇f can be shown as

a continuous function near the origin. That is, by choosing kf = k̇f = 0 at

the point (f, ḟ) = (0, 0), the missile will stay on the reference curve and finally

intercept the target. Note that the range of � can be widened analytically when

the pair of integers (�0,�0/�) is properly chosen. In this study, for the sake of

brevity, only the simple case (�0,�0/�) = (2, 3) is considered.

Theorem 5.1. Consider k̇f defined in Eq. (5.22) and its limit in Eq. (5.25).

When � = �0
2�0�1 for any positive odd interger �0 � 3, then limf,ḟ!0 k̇f = 0.
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Proof. Substituting � = �0
2�0�1 into Eq. (5.25) gives,

lim
f,ḟ!0

k̇f = lim
r!0

�↵

VMfY 2�

 
r2�0(p11 cos2 ✓ + 2p12 cos ✓ sin ✓ + p22 sin2 ✓)�0

r2�0�1(p12 cos ✓ + p22 sin ✓)2�0�1

! 1
2�0�1

= lim
r!0

�↵

VMfY 2�

 
r(p11 cos2 ✓ + 2p12 cos ✓ sin ✓ + p22 sin2 ✓)�0

(p12 cos ✓ + p22 sin ✓)2�0�1

! 1
2�0�1

= 0

(5.29)

Figure 5.4 shows the value of the numerator and the denominator in Eq. (5.25)

near the origin in (f, ḟ)-space for specific values of p11 = p22 = 1, p12 = �0.5,

and � = 2/3. Note that the limit of k̇f from Eq. (5.25) is not zero only when

the trajectory in (f, ḟ) approaches the origin along the dashed line. However,

that is not the case because the signs of f and ḟ are di↵erent. The guaranteed

settling time for the system is Ts  V (0)1��/↵(1 � �). The block diagram

of the system summarizing the update law of the coe�cient kf is shown in

Fig. 5.5.

Parameter Design without Time-update Law

The Lyapunov candidate function V in Eq. (5.8), which contains f and ḟ , is

considered to smoothly converge to the curve f(x, y) = 0. Note that the time-

derivative of ḟ appears when di↵erentiating V with respect to time, and the

dynamic update rule for k̇f is derived using the resulting equation. However,

there may exist some trajectories that make the update rule indeterminate, and

additional analysis for these cases were performed to address it in the previous

section.
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Figure 5.4: Visualization of the limit value near the origin
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In this section, a finite-time convergent gain, kf , without the dynamic up-

date rule is proposed. The gain kf can be designed without the inverse term,

and therefore no indeterminate case analysis is required. Additionally, a feasi-

ble region for the parameter pair (↵,�) could be obtained with this approach,

which provides a guideline for selecting proper parameters ↵ and �. Consider

the following Lyapunov candidate function, V1.

V1 = f2 (5.30)

Similar to Eq. (5.7), we have

V̇1 = 2fḟ = 2frfT

✓
�VMkf sign(f)

rf

krfk

◆

= �2VMkf |f |krfk (5.31)

It may be thought that the vector field does not smoothly converge to the curve

because the Lyapunov candidate function does not depend on ḟ . However, it

can be shown that f and ḟ go to zero as the interceptor missile approaches the

trajectory by selecting a proper value of kf .

For the finite-time convergence, the following inequality should be satisfied.

V̇1 + ↵V �
1 = �2VMkf |f |krfk+ ↵f2�

 0 (5.32)

This inequality condition can be rewritten with respect to the field vector gain,

kf , as follows,

kf,lower =
↵|f |2��1

2VMkrfk
 kf  1 (5.33)
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The vector field coe�cients kf can be determined to satisfy Eq. (5.33).

First, let us consider the case that kf = 1. In this case, the field vector w

directs towards the curve, which is the fastest strategy to arrive the reference

curve. However, in this strategy, the vector field may not approach the curve

smoothly, which may result in chattering phenomena of the lateral acceleration

command near the curve. Second, let us consider kf = kf,lower as an alternative.

In this case, when � > 0.5, as f ! 0, kf ! 0, and consequently, ḟ ! 0. Finally,

the missile converges to the curve smoothly before a specific settling time, which

is determined by the parameters ↵ and �. On the other hand, if kf,lower is larger

than 1, it is not possible to converge in the specific settling time determined

by the parameters. Therefore, a proper pair of parameters should be chosen for

the missile to approach the trajectory smoothly in the specified settling time

in Eq. (2.54).

Using Eq. (5.33) and the condition 0.5 < � < 1 of Theorem 2.2, the feasible

region for the parameters ↵ and � can be obtained. By taking the log function

to Eq. (5.33), the feasible area for the parameters ↵ and � can be obtained as

8
>>>>>><

>>>>>>:

� 
1
2

n
�

1
log |f | log↵+ log(2VMkrfk)

log |f | + 1
o

when |f | > 1

� �
1
2

n
�

1
log |f | log↵+ log(2VMkrfk)

log |f | + 1
o

when |f | < 1

↵  2VMkrfk when |f | = 1

(5.34)

The feasible parameter regions for various f values are depicted in Fig. 5.6. The

points, log(2VMkrfk) and 2VMkrfk, are also shown, which will be demon-

strated in the numerical simulation, Chapter 6. The gray regions are from the

conditions 0.5 < � < 1 and ↵ > 0, and the colored regions are from Eq. (5.34)
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((a))

((b))

Figure 5.6: Feasible area for parameters ↵ and �
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with specific f values. The remaining white region represents the feasible pa-

rameter region.

Because f(t) decreases as the missile approaches the reference curve, the

feasible region for the parameters (noncolored region) changes. Let us assume

that log(2VMkrfk) is constant and that only the |f | value is changing from

|f | � 1 to zero. If the missile is far from the curve and |f | > 1, then the

inclination is negative as shown in Fig. 5.6(a). As |f | decreases, the inclination

approaches to negative infinity until |f | ! 1. When |f | = 1, the dividing line

becomes vertical. As |f | continues to decrease from 1 to zero, the inclination

decreases from infinity to zero. That is, the dividing line rotates clockwise as

|f | ! 0. Figure 5.6(b) shows the same feasible region of Fig. 5.6(a), except

that the horizontal axis is ↵. Note that as the missile is close to the curve,

the dividing line rotates clockwise and the feasible area of the parameters is

widened, as shown in Fig. 5.6(a). Especially, when |f | < 1, the colored area is

almost submerged in the gray area (�  0.5), as shown in Fig. 5.6(b). It can be

also seen that when the speed of the missile VM is faster, the feasible region is

enlarged.
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5.3 Vector Field Design in Three-Dimensional Space

In this section, the vector field design in the previous section is expanded

to three-dimensional space. The basic concept of the construction of the vector

field in 3D space is the same with the construction of the vector field in 2D

space. Another di↵erent thing is that the reference curve is not given as implicit

functions, but given as parameterized curves.

Note that a practical reference curve in 2D space can be represented with a

single implicit function without any singular point, but it requires two implicit

functions for the representation of a curve in 3D space. That is, a curve in 3D

space is represented as the intersection between two surfaces that are defined

by the implicit functions. Therefore, it is convenient to consider the reference

curve in 3D space as a parameterized curve. However, as in 2D space, the vector

field for VFG in 3D space is defined as a linear combination of the convergence

vector and the traverse vector. Note that it is also possible to represent a curve

in 2D space as a parametric function, and therefore any of both representations

is possible to design in 2D or 3D space.

Because most of the methodologies for the analysis is the same with that of

the previous section, detailed explanations are omitted and briefly summarized

in this section.

5.3.1 Convergence Vector and Traverse Vector

Assumption 5.1. For an arbitrary missile position P(t) = [x(t), y(t), z(t)]T at

time t, the nearest point c(⌧⇤) on the reference curve c(⌧) is known.

Assumption 5.2. The missile can instantly follow the field vector. That is,

the direction of the missile’s velocity vector is the same with the direction of the

vector field w.
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Assumption 5.3. The speed of the missile Vm is constant.

The three-dimensional geometry of the missile position P(t) and the refer-

ence curve represented as parametric curve c(⌧) is shown in Fig. 5.7. The vector

field w is defined as the linear combination of the two vector field components,

wc and wt, as

w = kfwc + kgwt (5.35)

The convergence vector wc is a unit vector which has the same direction with

the range vector r = c(⌧⇤)�P(t). The traverse vector wt is a unit vector which

is tangent to the curve at the point c(⌧⇤). From the two possible choices of

the tangent direction, the direction that ⌧ increases is chosen as the traverse

vector’s direction. The normal vector wn = wc ⇥ wt is defined by the cross

product of the convergence vector and the traverse vector. Assumptions 5.1-5.3

are used for the VFG with respect to parameterized curve.
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Figure 5.7: Visualization of vector field components in 3D space
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5.4 Stability Analysis for Vector Field Represented as

Parametric Function

5.4.1 Stability of the Vector Field with Constant Coe�cients

Let us define the Lyapunov function V as follows,

V , 1

2
r
T
r (5.36)

Di↵erentiating V with respect to time yields

V̇ (r) = r
T
ṙ

= �VMkfr
T
wc

= �VMkfr
T r

krk

= �VMkfkrk  0

(5.37)

where

ṙ = �VMkfwconv (5.38)

Equation (5.38) is obtained from Assumption 5.2. The Lyapunov function V (r)

and the time derivative of V (r) are zero only when r , krk = 0. The vector

field is asymptotically stable to the curve (r = 0) by the Lyapunov stability

theorem.

5.4.2 Asymptotic Stable Vector Field Design

In this section, the asymptotic stable vector field is designed. The asymptotic

stable vector field converges to the reference curve smoothly because not only

r but also ṙ goes to zero by means of the varying coe�cients kf and kg.
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Let us consider a following Lyapunov candidate function.

V , 1

2
s
T s (5.39)

where

s = [r ṙ]T (5.40)

 =

2

4p11 p12

p12 p22

3

5 (5.41)

Note that is a constant positive definite matrix, i.e., p11 > 0 and p11p22�p212 >

0. Di↵erentiating V with respect to time yields

V̇ = p11rṙ + p12ṙ
2 + r̈(p12r + p22ṙ) (5.42)

Meanwhile, the time derivative of the distance to the curve, ṙ, is given as

ṙ = �VM
kfq

k2f + k2g
= �VMkf (5.43)

Di↵erentiating Eq. (5.43) yields

r̈ = �V̇Mkf � VM k̇f = �VM k̇f (5.44)

Note that the speed of the missile Vm is constant from Assumption 5.3. Substi-

tuting Eq. (5.44) into Eq. (5.42) gives,

V̇ = p11rṙ + p12ṙ
2
� Vmk̇f (p12r + p22ṙ) (5.45)
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Now, the time update rule for kf can be derived using Eq. (5.45) such that

V̇ has a specific form. Let us propose the update rule of kf for the asymptotic

stability as follows,

k̇f =
1

VM
(p12r + p22ṙ)

�1(p11rṙ + p12ṙ
2 + ⇢1r

2 + ⇢2ṙ
2) (5.46)

where ⇢1 and ⇢2 are positive scalars. Then, the time derivative of the Lyapunov

function can be written as

V̇ = �⇢1r
2
� ⇢2ṙ

2 (5.47)

Because V̇ is negative definite, the system is asymptotically stable for the point

(r, ṙ) = (0, 0). Note that the time update law in Eq. (5.46) is not defined when

p12r+p22ṙ = 0, that is, the missile is on the reference curve. By choosing k̇f = 0

on the point (r, ṙ) = (0, 0), k̇f can be shown as a continuous function near zero.

A detailed analysis is similar to that of the 2D case in Eq. (5.19).

5.4.3 Finite-time Convergent Vector Field Design

Let us propose a following kf update rule.

k̇f =
1

VM
(p12r + p22ṙ)

�1(p11rṙ + p12ṙ
2 + ↵V �) (5.48)

Then, the time derivative of V becomes

V̇ = �↵V � (5.49)

Note that there exists a singular condition of (p12r+p22ṙ) = 0. Dealing with this

singular case is similar to that of the 2D case in Eq. (5.22). Finally, choosing
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kf = k̇f = 0 at the point (r, ṙ) = (0, 0) completes a continuous update rule

for kf . The missile will stay on the reference curve if once converged to the

reference curve.

Parameter Design without Time-update Law

As given in Eq. (5.33), the vector field parameter kf can also be designed

without time-update law for parameteric reference curve. In this case, no inde-

terminate case analysis is required and a feasible region for the parameter pair

(↵,�) can be obtained with this approach. Let us define Lyapunov function

V (r) as follows,

V , r2 (5.50)

Time derivative of V (r) is,

V̇ (r) = �2VMkfr (5.51)

For the finite-time convergence, the following inequality should be satisfied.

V̇ + ↵V � = �2VMkfr + ↵r2�  0 (5.52)

Rewriting the inequality condition with respect to kf gives

kf,lower =
↵r2��1

2VM
 kf  1 (5.53)

Similar to that of the 2D case, choosing kf = kf,lower yields a smooth conver-

gence to the reference curve when � > 0.5. If kf,lower is larger than 1, it is not

possible to converge in the specific settling time determined by the parameters

(↵,�).
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5.5 Summary

In this chapter, vector field-based guidance algorithm for missiles with con-

stant speed was addressed. Reference path given for the missile to follow was

represented as an implicit function form or in a parametric curve form. Missile

is guided to converge to the reference path when it is away from the reference

path, and follow the path after the missile approaches the path.

The guidance algorithm can be realized in both two- and three-dimensional

space. The asymptotic and finite-time convergence attributes were analyzed and

discussed through Lyapunov approach. The stability analysis for the reference

path represented as an implicit function was discussed in two-dimensional space,

and the stability analysis for the reference path represented as a parameterized

curve was discussed in three-dimensional space.
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Chapter 6

Numerical Simulation

In this Chapter, numerical simulations are performed to demonstrate ef-

fectiveness of the proposed method. The OOTS technique from Chapter 4 is

utilzed to obtain an optimal trajectory for the outer-loop slow-scale system of

the missile. The obtained trajectory is considered as the reference path for the

VFG proposed in Chapter 5. The time-scale separation technique discussed in

Chapter 3 allows designers to design the inner-loop and the outer-loop com-

mands separately.

6.1 Optimal Trajectory Design

The outer-loop equations of motion, Eq. (3.1)-(3.3), are considered. The

state vector x(t) and input vector u(t) are defined as follows,

x(t) = [x, y, z]T (6.1)

u(t) = [�,�]T (6.2)
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Note that the considerted system is nonlinear MIMO system. Let us define the

output variables h(x) as follows.

h(x) =

2

4h1

h2

3

5 =

2

4 y

�z

3

5 (6.3)

Di↵erentiating the output variables with respect to time gives

d

dt
h1(x) = ẏ = Vm cos � sin�

d

dt
h2(x) = �ż = Vm sin �

(6.4)

Because the relative degrees are ⇢1 = 1 and ⇢2 = 1, the total relative degree is

⇢ = ⇢1+⇢2 = 2 and is smaller than the number of state variables, 3. Therefore,

there exists an internal state variable.

6.1.1 Control Input Design

The error state varaibles z can be defined as follows,

z = [z1, z2]
T =

2

4h1(x)� p1(⌧)

h2(x)� p2(⌧)

3

5 (6.5)

The corresponding error dynamic equation can be written as

ż =

2

4ż1

ż2

3

5 =

2

4Vm cos � sin�� µp01

Vm sin � � µp02

3

5 (6.6)

The control inputs �,� are designed to satisfy the following equation.
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sin � , 1

Vm

�
µp02 � k2z2

�

cos � sin� , 1

Vm

�
µp01 � k1z1

� (6.7)

Then, Eq. (6.6) becomes

ż = �[k1 k2]

2

4z1

z2

3

5 = �Kz (6.8)

where K = [k1, k2] is a control gain matrix with positive scalars k1 and k2.

6.1.2 State and Input Parameterization

Based on Assumption 4.1, the state parameterization is obtained as follows,

ȳ(⌧) = p1(⌧)

z̄(⌧) = �p2(⌧)
(6.9)

The input parameterization is obtained as follows,

�̄(⌧) = arcsin

✓
µp02(⌧)

Vm

◆
2 [�

⇡

2
,
⇡

2
]

�̄(⌧) = arcsin

✓
µp01(⌧)

Vm cos �̄(⌧)

◆
2 [�

⇡

2
,
⇡

2
]

(6.10)

The state variables y and z are parameterized as ȳ and z̄, and inputs �,�

are also parameterized as �̄ and �̄.
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6.1.3 Boundary Conditions

Let us consider the boundary conditions for states (ȳ, z̄), internal state (x̄),

and input (�̄, �̄). The boundary conditions for the states are given as follows,

ȳ(0) = y(0) = y0, ȳ(1) = y(tf ) = yf

z̄(0) = z(0) = z0, z̄(1) = z(tf ) = zf

(6.11)

The parametric curves p1(⌧) and p2(⌧) are Bezier curves that can be represented

as

p1(⌧) =
N1X

v=0

✓
N1

v

◆
⌧ v(1� ⌧)N1�v

P
1
v (6.12)

p2(⌧) =
N2X

v=0

✓
N2

v

◆
⌧ v(1� ⌧)N2�v

P
2
v (6.13)

where N1 and N2 are degrees, and P
1
v and P

2
v are the control points of each

curves. From Eq. (6.9), the control points can be determined to satisfy the

boundary conditions as

ȳ(0) = p1(0) = P
1
0 = y0, ȳ(1) = p1(1) = P

1
N1

= yf (6.14)

z̄(0) = �p2(0) = �P
2
0 = z0, z̄(1) = �p2(1) = �P

2
N2

= zf (6.15)

Note that the first (P1
0,P

2
0) and the last (P1

N1
,P2

N2
) control points are deter-

mined by the boundary conditions of the state variables.

The boundary conditions for the inputs are given as follows,

�̄(0) = �(0) = �0, �̄(1) = �(tf ) = �f

�̄(0) = �(0) = �0, �̄(1) = �(tf ) = �f

(6.16)
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The derivative of the parametric curves p1(⌧) and p2(⌧) can be represented as

p01(⌧) =
N1�1X

v=0

✓
N1

v + 1

◆
(v + 1)⌧ v(1� ⌧)N1�v�1

P
1
v+1

�

✓
N1

v

◆
(N1 � V )⌧ v(1� ⌧)N1�v�1

P
1
v

(6.17)

p02(⌧) =
N2�1X

v=0

✓
N2

v + 1

◆
(v + 1)⌧ v(1� ⌧)N2�v�1

P
2
v+1

�

✓
N2

v

◆
(N2 � V )⌧v(1� ⌧)N2�v�1

P
2
v

(6.18)

Similarly from Eq. (6.10), the control points can be determined to satisfy the

boundary conditions as

�̄(0) = arcsin

✓
µp02(0)

Vm

◆
= arcsin

✓
µN2(P2

1 �P
2
0)

Vm

◆
= �0 (6.19)

�̄(1) = arcsin

✓
µp02(1)

Vm

◆
= arcsin

 
µN2(P2

N2
�P

2
N2�1)

Vm

!
= �f (6.20)

�̄(0) = arcsin

✓
µp01(0)

Vm cos �̄(0)

◆
= arcsin

✓
µN1(P1

1 �P
1
0)

Vm cos �̄(0)

◆
= �0 (6.21)

�̄(1) = arcsin

✓
µp01(1)

Vm cos �̄(1)

◆
= arcsin

 
µN1(P1

N1
�P

1
N1�1)

Vm cos �̄(1)

!
= �f (6.22)

Therefore, the control points are determined as follows,

P
2
1 = P

2
0 +

Vm sin �0
µN2

(6.23)

P
2
N2�1 = P

2
N2

+
Vm sin �f

µN2
(6.24)

P
1
1 = P

1
0 +

Vm cos �0 sin�0

µN1
(6.25)

P
1
N1�1 = P

1
N1

+
Vm cos �f sin�f

µN1
(6.26)
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In summary, eight boundary conditions (y0, yf , z0, zf , �0, �f ,�0,�f ) are deter-

mined by eight control points (P1
0,P

1
N1

,P2
0,P

2
N2

,P1
1,P

1
N1�1,P

2
1,P

2
N2�1).

6.1.4 Internal State Parameterization

The parameterization of the internal state x(t) is given as an integral form.

From Eq. (3.1), the di↵erentiation with respect to ⌧ is given as follows,

µx̄0(⌧) = Vm cos �̄(⌧) cos �̄(⌧) (6.27)

The definite integral representation is obtained as follows,

µ (x̄(⌧1)� x̄(0)) =

Z ⌧1

0
Vm cos �̄ cos �̄d⌧ (6.28)

The boundary condition for the internal state can be represented as follows,

x̄(1) = x̄(0) +
1

µ

Z ⌧1

0
Vm cos �̄ cos �̄d⌧ ⌘ xf (6.29)

Note from Eq. (6.29) that the final value x̄(1) is determined by the initial value

x̄(0) and the shape of �̄(⌧) and �̄(⌧).

It is hard to analyticall express the definite integral of the polynomials in

the transcedental function, and therefore Eq. (6.29) can be satisfied by solving

the following optimization problem.

6.1.5 Optimization Problem Formulation

The optimal trajectory can be attained by the parameter optimization prob-

lem of the control points of the curves, p1(⌧) and p2(⌧). The optimization vari-

ables for optimization are P
1
v,P

2
v, v 2 {2, · · · , Ni � 2}, i 2 {1, 2}, and µ.
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Let us consider the following cost function for the optimization problem.

min J = �(x(P1
v,P

2
v), µ)

���
⌧=1

+

Z 1

0
L(x(P1

v,P
2
v), µ)d⌧ (6.30)

where

�(x) = (x̄(1)� xf )
2 (6.31)

L(x) = 1/µ (6.32)

Note that the cost function consists of two terms. The first term �(x) is for the

final value of the internal state x̄(1), the second term L(x) is for the minimum

time problem, minimizing 1/µ = tf .

Because the optimization problem formulated above belongs to a typical

nonlinlear parameter optimization problem, the optimal solution can be ob-

tained by numerical optimization algorithms including sequential quadratic pro-

gramming algorothm.

6.1.6 Nonlinear Constraints

Nonlinear constraints, or the path constraints, are the conditions that should

be satisfied throughout the trajectory. In this study, the limits on the angular

rates are considered, which are represented as the nonlinear constraints. The

angular rate is directly connected to the lateral acceleration of the missile.

Therefore, the limit on the angular rate can be understood as the limit con-

straint on the lateral accelaration.
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From Eq. (6.10), the angular rates can be obtained as follows,

sin �̄ =
µ

Vm
p02 (6.33)

sin �̄ =
µp01

Vm cos �̄
(6.34)

Di↵erentiating with respect to ⌧ yields

�̄0(⌧) =
µp002

Vm cos �̄
(6.35)

�̄0(⌧) =
µ

Vm cos �̄

✓
p001

cos �̄
+

p01 sin �̄�̄
0

(cos �̄)2

◆
(6.36)

The resulting nonlinear constraints are given as follows,

|�̄0(⌧)|  �̄0lim

|�̄0(⌧)|  �̄0
lim

(6.37)
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6.2 Simulation Demonstration

The results of the numerical simulation are provided in this section. The

boundary conditions considered in the simulation are summarized in Table. 6.1.

The speed of the missile is set to Vm = 100m/s.

6.2.1 Optimal Output Trajectory Shaping

Figures 6.1 and 6.2 show the minimum time optimal states and trajectory

with boundary conditions in Table 6.1. A Feasible solution satisfying the bound-

ary condition is obtained. Figures 6.3 and 6.4 show the minimum time optimal

states and trajectory with additional nonlinear constraints, Eq. (6.37). The con-

striained �̇ and �̇ history are shown in Fig. 6.5. The angular acceleration limits

are given as �̇lim = 1.2deg/s and �̇lim = 1.2 deg/s. Note that a feasible solution

is found that satisfies the boundary condition and the nonlinear constraint. The

optimization result are summarized in Table 6.2. The final time of the optimal

solution with nonlinear constraints is bigger than that without considering non-

linear constraints. The maximum altitude of the solution considering nonlinear

constraints is much higher.
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Initial States [x̄0, ȳ0, z̄0], m [0, 0, 0]
Initial Inputs [�̄0, �̄0], deg [80, 0]
Final States [x̄1, ȳ1, z̄1], m [10,000, 0, 0]
Final Inputs [�̄1, �̄1], deg [-80, 0]

Table 6.1: Boundary conditions

NL constraints Optimized coe�cients and final time
No p1 [0, 0, 0, 0, 0]

p2 [0, 2580.9, -228.12, 2680.9, 0]
tf 108.89 sec

Yes p1 [0, 0, 168.55, 0, 0]
p2 [0, 3858.2, 8211.7, 3858.2, 0]
tf 156.71 sec

Table 6.2: Optimal Bézier curve paramters and final time
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Figure 6.1: Optimized state history (minimum time)
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Figure 6.2: Optimized trajectory (minimum time)
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Figure 6.3: Optimized state history (minimum time, constrained)
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Figure 6.4: Optimized trajectory (minimum time, constrained)
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Figure 6.5: Optimized constrained variable history (minimum time, con-
strained)
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Analysis on Optimized Trajectory

The optimized trajectories are analyzed by numerical simulation. The feed-

back linearization controller using Eq. (6.8) is used, but the limited lateral

acceleration is considered in the simulation. Therefore, the missile may not

have enough maneuverability to follow the optimal trajectory if the nonlinear

constraints are not considered in the optimization. Figures 6.6 - 6.8 show the

simulation result. The optimized trajectory requires a sharp maneuver in �.

However, the missile cannot follow the given reference trajectory because of the

limitation in the lateral acceleration.

Figures 6.9 - 6.11 show the simulation result with the optimal trajectory

considering the nonlinear constraints. Because the nonlinear constraints are

considered to generate the reference trajectory in the optimization process, the

resulting lateral acceleration command is small enough for the missile to follow

the reference trajectory.

The optimal trajectory obtained by utilizing the proposed OOTS algorithm

can be used to follow reference trajectory by any arbitrary path-following guid-

ance algorithms. In this dissertation, the reference trajectory is designed for the

VFG algorithm. Because the reference trajectory is given in three-dimensional

space, the three-dimensional VFG proposed in Sec. 5.3 is used for the design

of the vector field. In this study, three types of vector fields are considered:

i) Asymptotic stable vector field, Eq. (5.46), ii) a vector field with finite-time

convergent kf with update law, Eq. (5.48), and iii) a vector field with inite-time

convergent kf without update law, Eq. (5.53).
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Figure 6.6: OOTS simulation result - states (w/o NL constraints)
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Figure 6.7: OOTS simulation result - accelerations (w/o NL constraints)

Figure 6.8: OOTS simulation result - trajectory (w/o NL constraints)
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Figure 6.9: OOTS simulation result - states (with NL constraints)
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Figure 6.10: OOTS simulation result - accelerations (with NL constraints)

Figure 6.11: OOTS simulation result - trajectory (with NL constraints)
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6.2.2 OOTS and Asymptotically Stable VFG

In this section, the OOTS with feedback linearization controller, Eq (6.8) is

compared with the asymptotically stable VFG, Eq. (5.46).

In this simulation, the initial position error in (x, y, z) is considered. The

feedback linearization controller regulates the error between the reference tra-

jectory and the system output variables, y, and z. However, the controller

cannot consider x, the internal state variable, and therefore the initial error

a↵ects the boundary condition of the internal state variable not to be satisfied.

Meanwhile, VFG is robust against the initial position error than the feedback

linearization controller. The optimal trajectory is given as the reference curve

to VFG, and VFG regulates the range and the range-rate from the curve.

The initial position error, e0, considered in the simulation is e0 = [0, 100,�100]m,

where P(0) = P0 + e0. Figures 6.12 - 6.14 show the simulation result using

OOTS. The OOTS regulates the output trajectory error. However, the internal

state, x, could not meet the desired final value, and a considerable miss distance

occurs because of the initial position error. Figures 6.15 - 6.17 show the simu-

lation result using VFG. Results of the OOTS result and VFG are summarized

in Table. 6.3.

Outer-loop controller Miss distance, m
OOTS 280.43

VFG, Asymptotic stable 0.87

Table 6.3: OOTS and asymptotically stable VFC (initial position error e0 =
[0, 100,�100])
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Figure 6.12: Trajectory-following simulation using OOTS, states
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Figure 6.13: Trajectory-following simulation using OOTS, accelerations

Figure 6.14: Trajectory-following simulation using OOTS, trajectory
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Figure 6.15: Trajectory-following simulation using VFG, states

129



0 20 40 60 80 100 120 140 160

time [sec]

-2

-1

0

1

2

a
z, 

m
/s

2

0 20 40 60 80 100 120 140 160

time [sec]

-2

-1

0

1

2

a
y, 

m
/s

2

Figure 6.16: Trajectory-following simulation using VFG, accelerations

Figure 6.17: Trajectory-following simulation using VFG, trajectory
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6.2.3 Monte-Carlo Simulations for VFGs

To verify the proposed method, Monte-Carlo simulation is performed. The

initial position error is considered as a random vector, pe ⇠ N (0, 502), from

the Gaussian distribution. A hundred number of Monte-Carlo simulations are

conducted. The random seed is controlled for a fail comparison between various

parameters. That is, the same set of 100 random simulations is considered

for each parameter settings. The distributions of the initial position error are

shown in Figs 6.18 and 6.19. The parmeters for the Monte-Carlo simulations are

summarized in Table. 6.4. The reference curve is the optimal trajectory obtained

by the OOTS considering the nonlinear constraints. The lateral accelerations’

limits are also considered in the simulation.

The Monte-Carlo simulations are conducted for three di↵erent outer-loop

controllers, that is, the proposed VFG algorithms: asymptotically stable VFG

and finite-time convergent VFGs. The mean values of the miss distance using

three VFG algorithms are summarized in Table. 6.5.
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Figure 6.18: Gaussian distribution of the initial position error for Monte-Carlo
simulation

-100

100

-50

50 100

0

z 
e

rr
o

r,
 m

50

500

y error, m x error, m

100

0
-50

-50
-100 -100

Figure 6.19: The scattered initial position errors for Monte-Carlo simulation
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Algorithm Parameter Value

Asymptotically stable kf P


5 0.05

0.05 0.05

�

(⇢1, ⇢2) (0.6, 0.8)

Finite-time convergent kf , #1 P


5 0.05

0.05 0.05

�

(↵,�) (0.4, 0.9)
Finite-time convergent kf , #2 (↵,�) (0,4. 0.9)

Table 6.4: Parameter settings for the proposed algorithms

Algorithm Mean miss distance, m
Asymptotically stable kf 0.8783
Finite-time stable kf , #1 0.5909
Finite-time stable kf , #2 0.5247

Table 6.5: Performance summary of proposed guidance algorithms
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Asymptotically Stable VFG

The asymptotically stable VFG useds the kf update law, Eq. (5.46). For a

given random initial position error from the curve, the missile is guided to follow

the reference curve. The mean values of the miss distance of the Monte-Carlo

simulation is 0.8783m.

Finite-Time Convergent VFG #1

The finite-time convergent VFG #1 uses the kf update law, Eq. (5.48). For

a given random initial position error from the curve, the missile is guided to

follow the curve using VFG with the finite-time convergent gain update law

(k̇f ). The upper limit of the settling time, Eq. (2.54), is compared with the

actual convergent time. For comparison, the actual convergent time is defined

as when the normalized Lyapunov function value, the Lyapunov function value

divided by the initial value, becomes smaller than 0.01.

Figure 6.20 shows the settling time’s upper limit, which is computed from

Eq. (2.54), and the actual settling time, which is computed from the normalized

Lyapunov function. Note that the actual settling time is smaller than the upper

limit for all Monte-Carlo simulations. Therefore, it can be stated that Eq. (2.54)

estimates the settling time conservatively. The mean value of the miss distance

of the Monte-Carlo simulation is 0.5909m.

Finite-Time Convergent VFG #2

The finite-time convergent VFG #2 uses the kf , Eq. (5.53). For a given

random initial position error from the curve, the missile is guided to follow the

curve using VFG with the finite-time convergent gain (kf ). The upper limit of

the settling time, Eq. (2.54), is compared with the actual convergent time. The

actual convergent time, defined before, is again used for the comparison.
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Figure 6.21 shows the settling time’s upper limit and the actual settling

time. Again, the actual settling time is smaller than the upper limit for all

Monte-Carlo simulations, and it can be stated that Eq. (2.54) conservatively

estimates the settling time. Although the same ↵ and � values are used for both

of the finite-time convergent VFG #1 and #2, the upper limit of the settling

time is di↵erent because the definition of the Lyapunov function is di↵erent for

each other. The mean value of the miss distance of the Monte-Carlo simulation

is 0.5247m.
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Chapter 7

Conclusions

7.1 Concluding Remarks

A framework for the generation of optimal trajectory and guidance algo-

rithms for the missile system was proposed in this dissertation. The proposed

framework consists of the time-scale separation of the missile’s kinematic sys-

tem, nonlinear optimal trajectory generation using parameterized curves, and

the vector field-based guidance algorithm design.

First, the time-scale separation of the missile’s kinematic equations of mo-

tion was discussed. The separation divides the system into the outer-loop(slow-

scale) and the inner-loop(fast-scale) systems. In the slow-scale system, the opti-

mal trajectory of the system was designed. The fast-scale system state variables

are considered as control input variables in the slow-scale system. The desired

control input command designed in the slow-scale system is handed over to

the fast-scale system and plays the reference command role. In the fast-scale

system, a regulating controller was designed for the system to follow the given

reference command from the slow-scale system.

Second, the optimal trajectory was designed as a parameterized curve in

the design space. The derivation of the optimal trajectory was accomplished in

the slow-scale system of the missile’s kinematic system. The output trajectory
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tracking control algorithm was proposed for attaining the parameterization of

the system output, states, and input variables. The boundary conditions and

nonlinear constraints of the trajectory can be readily imposed by manipulating

the shape of the parameterized curve, i.e., Bézier curve.

Third, the vector field-based guidance algorithm was proposed. The vector

field-based guidance algorithm is a two- or three-dimensional guidance algo-

rithm for a missile with constant speed. The reference curve represented in an

implicit function or a parameterized curve was considered for the path following-

guidance of the missile. The vector field was computed in the design space and

used as the directional command for the missile. The missile was controlled to

follow the vector field direction. The design of the vector field focuses on the

asymptotic and finite-time convergence on the reference curve.

The proposed methodologies construct the framework for the optimal trajectory-

generation and following-guidance of the missile in the three-dimensional space.

Numerical simulations were conducted for the demonstration and performance

evaluation of the proposed framework. The methodologies proposed in this dis-

sertation could be utilized for any appropriate systems and applications.
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7.2 Future Work

The methodologies proposed in this dissertation should be further developed

for the improvements. The improvements can be a generalization of the method,

utilizing various functions, and an expansion that gives more degree of freedom.

First, it is required to secure the robustness of the feedback linearization

controller in OOTS. The numerical simulation demonstrated that the feedback

linearization controller is weak to the error in the initial configuration for sat-

isfying the boundary conditions, especially for the internal states.

Second, though a linear time-parameterization and Bézier curve-based state-

parameterization are considered in this study, di↵erent parametric functions

and curves can also be used for the parameterization. For instance, a nonlinear

parameterization of time may enhance the representation availability on the

state trajectory shaping.

Third, the vector field-based guidance algorithm should be expanded to con-

sider time-varying speed. In the proposed method, the vector field generates a

directional command input to the missile system. Usually, assumption on con-

stant speed is widely used in designing the missile guidance laws. However, it is

not the case for other platforms including UAVs or cars. Therefore, the vector

field-based guidance algorithm should be expanded to the guidance algorithm

with time-varying speed, which gives the directional command and the com-

mand with magnitude. The vector field with time-varying magnitude has more

degree of freedom than that of the vector field without magnitude command.
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Appendix

Calculations of Partial Derivatives of
Trajectory Functions

Figure A.1 shows the coordinates in two dimensional engagement. The

(X,Y ) components of the XY�coordinates depend on the function f . The

relation between the xy-coordinate and the XY -coordinate is defined as fol-

lows,

@f

@X
= fX =

@f

@x

@x

@X
+
@f

@y

@y

@X
(A.1)

@f

@Y
= fY =

@f

@x

@x

@Y
+
@f

@y

@y

@Y
(A.2)

Equations (A.1) and (A.2) can be rewritten in matrix form as
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4fX

fY

3

5 =

2

4
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@y
@Y

3
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4fx
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3

5 , R

2

4fx

fy

3

5 (A.3)

In Eq. (A.3), the transformation matrix R is a rotational matrix with the ro-

tation angle ↵, which is shown in Fig. A.1, as

R =

2

4cos↵ � sin↵

sin↵ cos↵

3

5 (A.4)
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Figure A.1: Rotation angle between the xy and XY coordinates.

where

sin↵ =
fx

krfk
(A.5)

cos↵ =
fy

krfk
(A.6)

Note that krfk =
q
f2
x + f2

y .

From Eqs. (A.3) - (A.6), the partial derivatives of f in XY -coordinate can

be derived as follows,
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Di↵erentiating Eq. (A.7) with respect to the components of theXY�coordinates

157



yields

fXX = 0, fXY = 0 (A.8)

fY X = 0, fY Y =
@fY
@x

@x

@Y
+
@fY
@y

@y

@Y
(A.9)

Partially di↵erentiating fY from Eq. (A.7) in XY -coordinate, the following

equations are obtained.

@fY
@x

=
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q
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x + f2
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1

2
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y

⌘�1/2⇣
2fxfxx + 2fyfxy

⌘
=

1

fY
(fxfxx + fyfxy)

(A.10)

@fY
@y

=
1

fY
(fxfxy + fyfyy) (A.11)

Finally, using Eqs. (A.4)-(A.6) and Eqs. (A.10)-(A.11) in Eq. (A.9), fY Y can

be obtaind as follows,

fY Y =
1

f2
Y

((fxfxx + fyfxy) fx + (fxfxy + fyfyy) fy) (A.12)
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