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Abstract
Sound—based Remote Manufacturing Process

Monitoring using Convolutional Neural

Network (CNN)

Jisoo Kim
Department of Mechanical Aerospace Engineering
The Graduate School

Seoul National University

Smart factory is the main keyword in the field of manufacturing
processes about the fourth industrial revolution. To realize the smart
factory, making all pieces of device into smart devices that are
connected to the centralized system to enable a real—time exchange
of information is essential. Sound can be efficient means to make
devices as smart devices because sound can contain the status
information of various devices simultaneously, and it can be recorded
easily outside of a device using only a microphone. In this study,
multi—device operation monitoring system by analyzing sound is

developed. Mic arrays for acquiring the sound were installed at the
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outside the devices and recorded the sounds from several devices
simultaneously. By analyzing the recorded sound with log—mel
spectrogram and Convolutional Neural Network (CNN), the system
could detect the operational status of three devices with an accuracy
of 71-92%. To improve the performance, virtual data set was created
by composition of individual device operating sounds of different
intensities. With this virtual data set, accuracy can be enhanced to
87% ~ 99% accuracy and, required sound data amount could be
reduced. Developed system was applied successfully in monitoring
experiments in two different environments: a workshop in which
hand—operated device was used and a factory with a computer

numerical control machine and verifying the performance.

Keywords : Multi—device Monitoring, Sound monitoring,
Convolutional Neuron Network (CNN), Smart factory
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Chap. 1 Introduction

1.1 Fourth industrial revolution

The most important keyword that has recently hit the world will be
the Fourth Industrial Revolution. However, while the impact of these
Fourth Industrial Revolution is felt by all, it is not really defensive to
define the Fourth Industrial Revolution. In the era of people and
animals as power sources, the first industrial revolution that moved
machines to power sources, the first industrial revolution that
allowed mechanized businesses to turn electricity into power sources,
the second industrial revolution that included various internal
combustion engines using oil, the use of various plastics, and the
integration of various information and communication technologies
with the development of computers and the onset of the Internet, and
the revolution that took place, and the revolution that took place. It
was also clear that the technology driving the change and its impact.
However, the 4th Industrial Revolution is being carried out
simultaneously in many areas, with the level of large technological
advancements that led to the existing revolution. The improvement
in the performance of artificial neural networks enabled by the

development of computing power shows that machines can excel in
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many areas of recognition and optimization, and the development of
information communication technology has allowed all equipment to
be attached to and controlled in real time, making it possible for
factories, homes, and offices to move like an organism, beyond the
time when people were exchanging information directly through a
small number of communication devices. For space engineering, once
considered only for technology flaunting, it embodies a wide range of
functions, enabling it to provide location information quickly and
accurately to all devices around the world through a more
sophisticated and popular GPS system. Also, these changes are not
being carried out independently, but are being combined to create
greater synergy.

In the wake of the fourth industrial revolution, many countries,
universities, institutions, and companies are trying to develop
relevant technology. The most commonly recognized aspect of this
industrial revolution is the advancement of Information and
Communication Technology (ICT) [1, 2]. Improvement of 5G
telecommunication, which enables the fast response and large
bandwidth, and Internet of Things (IoT), which enables the
installation of telecommunication functions in all devices, make the
rapid and widespread gathering of information possible. Cloud

computing and big data management technology make it possible to
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store information. Significant improvements in computing power have
led to Artificial Intelligence (AI) with high performance via efficient
data analysis techniques, such as machine learning [3—8].

After all, the most important keyword of the Fourth Industrial

Revolution can be seen as "Connected" [9].

Figure 1 Concept of 1%, 2" 3™ and 4" industrial revolution [10]



1.2 Smart factory and smart devices

Smart factory is the main keyword in the field of manufacturing
processes about the fourth industrial revolution [11]. Smart factory
can be defined as manufacturing system with device connected to a
cloud—based, centralized system and interactive information
exchange functions through the internet and cloud. Through this
centralized system, a higher level of monitoring, analysis, control, and
design is possible, and thus smart factories are of interest as the

future of manufacturing [12—15].
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A Cyber—Physical System (CPS) is the virtual system that can
simulate the manufacturing process based on the collected
information. Currently, experimentation with device in a virtual space
has gone beyond the level of individual pieces of device to test what
happens in the factory in advance and to simulate the entire plant's
performance [17]. Such CPSs have been applied to factory design

and have begun to improve the performance of actual plants [18—29].
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The most important part of realizing a smart factory and a CPS is
making all pieces of device into smart devices that connect to system
based on the IoT The status of each device can be shared in real time
and gathered in the cloud to enable the better identification and
control of device than was previously possible [23, 31—38]. Thus, it
must be possible to collect detailed information about each device.
Nowadays, newly developed device normally mount the IoT —based
features to be smart device. However, device that was produced long
ago typically lacks any means of connection to other device or
systems. The technology to turn such device into smart devices
easily and at a low cost is an urgent research task [39, 40]. This is
more urgent for small companies which are likely to be more
dependent on existing device than large enterprises that can design
and build new plants and acquire new device [41]. Because small
companies lack sufficient capital and are unable to renovate entire
factories, it is difficult for them to introduce sweeping changes, which
forces them to face the reality that they cannot match the pace of

change elsewhere [42—44].
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1.3 Methods of device monitoring

For these reasons, technologies are being developed to remotely

monitor the status of a device using various methods, such as visual

/ sound / heat / power consumption [45].
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Visual methods are commonly used to observe the operation of
device and to identify abnormal conditions [46—48]. Analyses of
these methods have recently been enhanced by the use of Artificial
Intelligence (AI) such as Convolutional Neuron Network (CNN) [49,
50]. Attempts have been made to read the information from the
display panel installed at the device [42] or to visually recognize and

analyze information maps of entire manufacturing process systems

[51].
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Figure 5 Monitoring using vision [42, 49]



Heat is the most basic piece of information used to understand the
status of numerous pieces of device and plants, and controlling
heating and cooling is a basic process in managing device [52].
Nowadays, various studies are being conducted using technology of
measuring the distribution of heat, such as thermal imaging cameras
which has improved significantly enough to make it possible to obtain

information in real time [53, 54].
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Figure 6 Monitoring using thermo—sensor [52]



Measuring power consumption requires the

installation of an

additional device, but studies are being conducted on this method

because information about the target device can be extracted without

requiring supplementary information and the data are highly reliable
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Finally, sound is commonly used to identify the status of device.

Because it shows good performance for diagnosing problems with

mechanical parts, such as tool wear and vibration, many studies have

been conducted [58, 59]. In addition, analyses of vibrations have

been gaining attention recently, in which vibrations have been

converted into two—dimensional (2D) data and used to classify the

condition of machines with an Al tool used in image processing. The

following section gives more details
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Figure 8 Manufacturing monitoring

using acoustic emission [33]



1.4 Sound monitoring and Convolutional Neuron Network

(CNN)

Sound is a vibration transmitted through a medium such as a gas,
liquid, or solid. One of the notable characteristics of sound is that if
various signals coincide, they overlap without affecting one another.
Various pieces of information can be contained in sound, and this
information is maintained even if there is interference from other
factors. Thus, information can be obtained even when the
surrounding environment is not controlled, and information about

multiple sources can be acquired simultaneously.
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Figure 9 Overlap and seperation of waves
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Because processing sound produces a lot of data, recent analyses
have used Artificial Natural Networks (ANN) [60, 61] or Support
Vector Machines (SVM) [62], or Random Forest (RF) [63] rather
than traditional methods of analysis. Analyzing sound via its one—
dimensional raw signal is difficult, but it can be accomplished more
easily if the sound is converted into 2D data via a Fourier transform
and sorted by frequency. In the case of 2D data, studies are being
conducted to classify signals in various ways. For instance, it is
straightforward to apply Convolutional Neuron Network (CNN),

which is frequently used in image processing [64, 65].
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i 'TTT—

1605
05 B £g layee  OUTPUT
84 10

r

INPUT

Full conrecton Gaussian connections
Convaluticns Sutsampling Convolutors  Subsampling Full cannection

Figure 10 Concept of Convolutional Neuron Network (CNN) [66]
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A typical example of current research on classifying signals is in fault
diagnosis. Various studies are being to recognize an unusual sound
when failure has occurred because it is possible to diagnose the
failure simply by installing a sensor such as a microphone outside
device [67—-73].

In addition, there are many attempts to detect defects during or just
after the manufacturing process by classifying sound from that
process [74—77]. Similarly, attempts to detect defects in device,

such as leaking pipes, are analyzing acoustic emissions via CNN [78].

©

Table 2 Test results (im *5) for different classes (in rows) versus ground troth (in columns)
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Figure 11 Prediction of the quality of AM products with operation
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! % et et

L



Other current research includes categorizing noise in cities [79],
monitoring the condition of structure [80], classifying human

activities [81], and identifying genres of music [82].

GNU Radio T

Figure 13 Classifying the genre of music with CNN [82]
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In sum, various studies have recently been conducted using CNNs,
and these have good results analyzing various sounds. As mentioned
previously, a number of studies have been conducted to determine
the condition of device using sound; however, no attempt has been
made to monitor the condition of multi devices in real time. Therefore,
this research aims to develop a sound—based system that can monitor
the status of various device in operation simultaneously in a

manufacturing process.
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Chap 2. System Modeling

2.1 Concept of Convolutional Neural Network (CNN)

The Convolutional Neural Network (CNN) is an image processing
method first proposed by LeCun [66]. CNN has shown significant
success in processing images and other forms of data. The
convolutional layer of a CNN contains a large number of filters and
extracts the characteristics of the input data through these filters.
Then local characteristics are extracted by a pooling layer. In the
present study, raw data were processed with a Fourier transform to
make them 2D; these were the input data for CNN. Another CNN
layer, the context one, also used a 2D filter. Note that the input data
were from one audio channel, unlike, for instance, an image formed
of red, green, and blue channels.

Input data are passed through a convolutional filter to extract the
characteristics of each piece of data. The 2D convolutional filter is

calculated by the following formula:

Yier = X F)4b= IV X F) 4D eeeeessssreeeseesssssssssssssesssnns (D
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where Y; and Yi+1 are the data before and after passing through the
filter, respectively; F is the filter; and b is the bias. The set of Yi+1 is
called the feature map.

A pooling layer, which extracts important local information from the
feature map, is typically applied after the convolutional layer.
However, as it passes through the pooling layer, the dimensions of
the feature map are reduced. Average or max pooling layers are
commonly used; in the present study, we used the latter. The max
pooling operation extracts only the maximum size of the filter kernel
in the feature map. The geometry extracted from the filter kernel is

obtained as follows:

A = [a55] (1] S D) sttt s s (2)

mMaxpooling(A) = MAX(Aj) wmmmrrmsmssmsssmssssssssssssssssssss s 3)

where A is the filter kernel and aj; is an element of the filter kernel.
A completely connected layer and softmax classification were added
to classify the data by alternately using convolution and pooling

layers. A typical 2D CNN structure is discussed below.
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2.1.1 Dropout

Dropout is a technology that can reduce data overfitting. Particularly
when training a small neural network, dropout can prevent a reduction
in performance, providing an easy and effective way to solve this
problem. In the present study, dropout techniques were applied
during training to prevent hollowing out, with repeated extraction of
the same function. Some hidden neurons were set to zero so that they

were not included in feedforward learning.
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(a) Standard Neural Net (b) After applying dropout

Figure 14 Concept of dropout [83]
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2.1.2 Softmax classifier

Softmax regression is typically implemented as the top layer of the
neural network for multi—state classification. Information derived
from multiple hidden layers is used as input for supervised classifiers
according to global back—propagation optimization. In the present
study, we used softmax regression as a mechanical health status
classifier in the network. Training samples are represented by x (i)
and their label setis y(i) wherei =1, 2, ., K is the number of training

samples.

X(D) € RVXL (1) € {1,2,3/4, o) K} coeeseesesesssssesessssssssssss st 4)

(K is the number of categories labeled)

For x(i), input sample, softmax regression can estimate the

probability as

P(y(Q) =j | x(i)) for each label j (j =1,2,3, ..., K) rvrmmmmrrrerrressssnnnn (5
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The estimated probability of x(i) belonging to each label can be

obtained according to the hypothesis function,

Softmax(x(i)) = [p(y(i))|x(i),p(y(i)) = 2|x(i), ...,p(y(i)) = K|x(i)]

eX(D) eX(2) o)

= (G o G L er T ar ) (6)

This classifier verifies that the output is positive and the sumis 1, so
that the output of the network can be interpreted as the probability

of each class.

21 -":rxﬁ-! "‘i' ]_-li [« =



2.2 Fourier transform

In mathematics, a Fourier transform (FT) is a mathematical
transform that decomposes a function (often a function of time, or a
signal) into its constituent frequencies, The Fourier transform of a
function of time is a complex—valued function of frequency, whose
magnitude (absolute value) represents the amount of that frequency
present in the original function, and whose argument is the phase
offset of the basic sinusoid in that frequency.

The Short—time Fourier transform (STFT), is a Fourier—related
transform used to determine the sinusoidal frequency and phase
content of local sections of a signal as it changes over time.

In practice, the procedure for computing STFTs is to divide a longer
time signal into shorter segments of equal length and then compute
the Fourier transform separately on each shorter segment. This
reveals the Fourier spectrum on each shorter segment. One then
usually plots the changing spectra as a function of time, known as a
spectrogram or waterfall plot.

With this STFT, arbitrary 1—D digital data with discrete value can be
transformed from 1—D time domain to 2—D frequency domain. And it

1s usually used to analyze the time domain signals such as sound.
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Figure 16 Concept of Fourier Transform [85]
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2.2.1. Continuous-time STFT

Simply, in the continuous—time case, the function to be transformed
is multiplied by a window function which is nonzero for only a short
period of time. The Fourier transform (a one—dimensional function)
of the resulting signal is taken as the window is slid along the time
axis, resulting in a two—dimensional representation of the signal.

Mathematically, this is written as:

STFT{(D}(t, @) =X(t,0) = [ xO0(t = el st (7)

where is the window function, commonly a Hann window or Gaussian
window centered around zero, and x (t) is the signal to be transformed
(note the difference between the window function

1s essentially the Fourier transform of ,a complex function
representing the phase and magnitude of the signal over time and
frequency. Often phase unwrapping is employed along either or both
the time axis, to suppress any jump discontinuity of the phase result
of the STFT. The time is normally considered to be "slow" time and

usually not expressed in as high resolution as time
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2.2.2. Discrete-time STFT

In the discrete time case, the data to be transformed could be broken
up into chunks or frames (which usually overlap each other, to reduce
artifacts at the boundary). Each chunk is Fourier transformed, and
the complex result is added to a matrix, which records magnitude and
phase for each point in time and frequency. This can be expressed

as:
STFT{x[n]}(m, ) = X(m, w) = XX _ x[n]w[n —mle 7" ... (8)

likewise, with signal x[n] and window w [n]. In this case, m is discrete
and  1s continuous, but in most typical applications the STFT is
performed on a computer using the fast Fourier transform, so both

variables are discrete and quantized.
spectrogram{x(t)} = X(m, w) = ¥ _, x[n]w[n — mle /@™ ... 9

The magnitude squared of the STFT vyields the spectrogram

representation of the Power Spectral Density of the function:

25 -"'H._i _'w.l_':-_ T



2.3 Log-mel spectrogram

Log—mel spectrogram is one of the most popular spectrogram based
on STFT. Studies have shown that humans do not perceive
frequencies on a linear scale. We are better at detecting differences
in lower frequencies than higher frequencies. Therefore, Mel
spectrum 1s more suitable in human's auditory sense characteristic
that presents the linear distribution under the 8000 Hz and the
logarithm growth above the 8000 Hz, we utilize this point to obtain
the Log—Mel spectrum static. The relationship between the Mel

spectrum and the frequency is shown as

1+f
LR T o (10)

. 3000
3 2500
E »
g 2000
g 15
é— 1500 |
= 1000 |
=
g0 500
-

0

0 2000 4000 6000 8000
Frequency (Hz)

Figure 17 Relation between frequency and log—mel spectrum static
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We adopt the number of 40 filterbanks to process the raw signal
under the control of the 16 kHz sample rate and the length of FFT is
set to b12.

Filter: 1

| Filter: N

fe————— Frequency Range ——

Figure 18 Filterbank for log—mel spectrogram

Furthermore, we choose the hamming window which is taken the
window length of 25 ms and the window shift of 10ms to add into the
signal. Before gaining the 40 Mel—filterbank vectors, we also select
the lower frequency of 50 and the upper frequency of 7000. Then we
will take the signal to feed into the filterbanks to get the Hm(k), which

is shown as
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Hm(k) =

k—f(n—1
Fm) ]_C(;rém _)1) (if fm—1) <k <f(m)) or
1) —k
f(];::l_-il-)zf(m) (if fm)<k<f(m+1)) or
0 (if k<fM—=1) 0F FMF 1) K K) ooeseseseesssssssssssssssssssssssssssss (12)

According the results of computing, we will get the outputs from the
filterbanks, and then multiply the energy spectrum is used by the

STFT processed from the raw signal, which is shown as

log — melspec(m) = 170D 1og(H (k) X |XUO? e (13)

where the | X (k) |? describes the energy spectrum in the points
of kth energy, m is the number of the filterbanks and k is the

point of the FFTs.

28 -":l't\._i _'w.l.':-_ T



2.4 Proposed architecture

Deep neural networks are capable of the adaptive capture of
information related to facial expressions from raw input signals
through multiple nonlinear transformations and approximate, complex,
nonlinear functions; such networks are typically used as the main
CNN architecture. To this architectural base, algorithms can be added
to efficiently train networks and improve diagnostic performance.
Figure 19 shows the structure of the proposed network for acoustic
monitoring. In the proposed framework, raw collected data are
converted into 2D form and used as the model input, and no prior
expertise in signal processing and fault diagnosis required.

A zero—adjustment operation is implemented to ensure that the
geometry map dimensions are not changed. Pooling layers are usually
used in deep networks to reduce the number of parameters and
accelerate the training process while retaining important features of
the information. Pooling layer decisions depend on specific fault
diagnosis problems and their data sets. In most cases, the average
pooling layer is used between two remaining building blocks. Finally,
the learned features extracted by the system are passed to fully
connected layers and softmax regression to estimate the failure
categories. Batch normalization can accelerate the training process,

in particular for deep learning, and has demonstrated good

¥ , -1 =]
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performance in recent studies. In the present study, batch
normalization was used after each convolutional layer. In addition, we
used the rectified linear unit activation function in the network.
Because it does not suffer from gradient diffusion during the training
process, better performance can typically be achieved, in particular
in a deep structure.

Cross entropy function is used as loss function in the learning
process. Back—propagation (BP) algorithms are applied to all weight
updates in the layers and used the stochastic gradient drop
optimization method during training. When a lot of training data are
required, useful training samples can be generated by data
enhancement. Multiple CNN building blocks can potentially be
stacked in the network to ensure better functional extraction through

a deeper structure.
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Figure 19 Proposed convolutional neural network architecture for

operational monitoring.
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2.5 Concept of monitoring system

The algorithms proposed in the present study are shown in Figure
20. First a raw signal is acquired to form a data set for training. The
raw signal may be obtained directly from a mic array in advance, but
it is also possible to use a virtual data set, which will be described in
Chapter 5. Data were trimmed to a duration of 1 sec and were labeled
to allow data sorting. Data augmentation process was conducted,
including translating and adjusting the time scale, and added
background noise, giving the final data set.

Then data composed in this way were converted into 2D form with a
log—mel spectrogram. Log—mal spectrogram is a kind of wavelet
transform based on short—time Fourier transform (STFT) that
allocates a frequency band area to a human audible frequency and
converts its size to a logarithmic scale; it can provide results similar
to what a person hears. Thus, it is mainly used in the sound
recognition field and achieves very high performance, in particular in
classification [86]. Data set was sorted according to the operating
status of each devices.

To use trained CNN, a machine's operating sound is recorded through
a mic array and, as in the process of preparing the training data set,
trimmed to samples 1 sec long and converted into 2D data with the

log—mel spectrogram. The CNN then calculates the predicted

¥ , -1 =]
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probability of each operational status of each device, thus predicting
the most likely operational status of the device.

In our proposed monitoring system, each device has its own CNN that
classifies the operational status of that item, and the system monitors
all device in parallel. Each CNN classifies only the operational status
of its one item, regarding the sound of all other items as noise. The
advantage of this monitoring system is that, even if several devices
are operating simultaneously, it is possible to identify a piece of
device and its status provided only that operating sound is detected
and to monitor unlimited devices simultaneously.

The specifications of the hardware and software used in this research

are listed in Table 1
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Figure 20 Concept diagram of sound data conversion from 1D to 2D
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Table 1 Specification of hardware/software

Specification

Value

Operating System

Microsoft® Windows® 10 Home

Software Platform

MATLAB R2020a

System RAM

Samsung® 32 GB (DDR3)

Processor Type (CPU)

Intel® core i7—4790 (3.9 GHz)

Graphics Card (GPU)

NVIDIA® GeForce GTX 750

(RAM: 1GB)
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2.6 Parallel and independent system

Sound has the characteristics of being recorded differently by the
location of listening and the setting of the microphone, but the human
ear is all recognized by the same kind of sound. Also, sound can
generally be propagated by bypassing obstacles, so when recording
sound, various noise 1s inevitably mixed. This is important in the
process of building a system that recognizes real—world sound
system. Moreover, sounds generated when the equipment is operated
tend to repeat slightly different sounds while being similar. Given all
these considerations, 1t was judged that it was not efficient to
separate/recognize these sounds by creating a single large neural
network.

In this situation, we considered how real people perceive sound. In

the end, people usually listen to a variety of sounds at the same time,

but when analyzing them specifically, they tend to focus on one sound.

This is because in all cases the same model can be used if individual
sounds are classified as sounds of a particular equipment and other
noise.

For this reason, the system was implemented by building and merging
multiple simple independent artificial neural networks, which are

solely responsible for individual equipment, using the characteristics
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of overlapping sounds that retain their own characteristics when

multiple sounds were added.
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Chap 3. Development of the monitoring system

3.1 Hardware of monitoring system

In this chapter, we describe the creation of a real monitoring system
and explain how we obtained the data required. We explain the type
of information obtained through this recording process and describe
the results from analyzing it through a given algorithm.

The process begins with recording sound from a workspace. The
detailed specification of the recording device (Respeaker Mic Array
2.0) is given in Table 2. Information of target devices is as shown in
Table 3 and example of the recorded signal is shown in Figure 22.
The number of outputs from the mic array is five: Four signals are
the raw signals from each mic, and the fifth is output by the digital
signal processor. Omnidirectional mics are used, so a phase
difference exists that depends on the time differences in arrival and

the received signals are almost identical.
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Table 2 Specification of mic array

Specification Value
Name Respeaker Mic Array 2.0
No. of Mic 4 (Output: 5ch)
Sensitivity 26 dBFS (Omnidirectional)
Diameter ®70 mm
Max sample rate 48 kHz
Digital signal processor XMOS XVF—-3000
Recording Program Audacity 2.3.3

Appearance of mic array

70mm
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processing by STFT and log—mel spectrogram.
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Table 3 Monitoring target device

Intensity

Name
of sound
Bandsaw 80 dBA
Drill 65 dBA
Pump 87 dBA
Turning 95 dBA

¥ Intensity of background sound: 55 dBA
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3.2 Training with actual data

A bandsaw, a drill, a pump, and a turning were selected as targets for
monitoring. These devices were placed in the laboratory in arbitrary
positions. Figure 23 shows a recording results of their operating
sounds post—processed with STFT and log—mel spectrogram.

To make the data set for training, recording was performed according
to the scheme in Figure 24 and Table 4. Two mic arrays were
installed, and two signals were collected from each: the raw signal
from mic 1 and the digital signal processor output. Recording lasted
800 sec and recorded sound whose total length is 3200sec was

divided the results into 3200 files of 1 sec duration each. To ensure

variety in the data, the mic arrays were installed at arbitrary locations.
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Table 4 Specification of dataset for data training

Specification

Value

Total number of data

(recording time)

3200 files (800 sec)

Data format

.wav file with 1 sec length

Number of target device

4 (bandsaw, drill, pump, turning)

Number of channel

4 (2ch per each mic array and

2 mic arrays)
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Based on that recorded sound, monitoring system was trained. Figure
25 shows the results of using the system to monitor the pump and
turning: The system was aware of the sound of the device and could
detect that it was operating without problems when two devices were
operating simultaneously or when the devices were operating with

noise (such as a person clapping).
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3.3 Performance evaluation of monitoring system

To evaluate the performance of the system, test data set was created
according to the scheme in Figure 26 and Table 5. As before, two
mic arrays were installed, and two signals from each (the raw signal
from mic 1 and the digital signal processor output) were recorded for
160 sec, giving a total of 640 sec of recorded sound. The data were
divided into 640 .wav files of 1 sec duration each. To ensure variety
in the data, the mic arrays were installed in new, arbitrary locations.
Performance of the monitoring system was evaluated by comparing
the results for this test set to the operational scheme; performance
was defined as the proportion of predictions that matched the

operational status of each device.

49 A 2]

-
=1

1



120 130 140

110

100

Mic Array |

(b)

Tuming imeme—e—m m — ]
10 20 30 40 50 60 70 80
6m

Bandsaw
Drill |
Pump

weel

Figure 26 Experimental setup for acquiring the test data set for
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Table 5 Specification of standard data set

Specification

Value

Total number of data

640 files (160 sec)

Data format

.wav file with 1 sec length

Number of target device

4  (bandsaw, drill, pump,

turning)

Number of channel

4 (2ch per each mic array and 2

mic arrays)
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The performance results are shown in Figure 27. The accuracy of
the monitoring system was approximately 70%, 53%, 95%, and 91%
for the bandsaw, drill, pump and turning, respectively. This shows
that the system could recognize the sounds of the bandsaw, pump,
and turning well but could not recognize the sound of the drill. This
1s because the drill was very quiet, so the CNN did not properly
extract its characteristics during the training process; the sound of
the drill was disguised by other device sounds even when it was

operating.
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Figure 27 Performance of the monitoring system based on real data



3.3.1 Recognition performance at the different mic position

The intensity of sound decreases in proportion to the square of the
distance. This shows that the location of the mic and the resulting
distance change from the music source are closely related to the
strength of the signal input through the mic. This means that when
the various sounds are combined, location of mic can be important
variable that can directly affect to recognition performance.

To deduce the relation between location and distance from sound
source (device), monitoring was executed with 6 different point and
8 different operation condition for 10 sec each, total monitoring time
was 480 sec. Detail condition is as Figure 28 and the results are as

shown in Table 6.
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. Distance from point
Point T .

Bandsaw Pump Turning

1 1.5m 4.7m 3.7m

2 41m 23m 3.7m -

3 39m | 23m | 15m |2

4 3.8m 6.1 m 4.1m

5 5lm 8.9m 6.9m

6 93m 13.4m 11.3m

Figure 28 Performance test with different mic position

Table 6 Recognition performance with different mic position

) Bandsaw Pump Turning
Point
overall | on off overall on off overall on ofl
1 TH0% [ 95.0% | 35.0% | 97.5% | 95.0% | 100.0% | 92.5% | B5.0% | 100.0%
2 T25% | 92.5% 1 52.5% | 98.8% | 97.5% | 100.0% | 97.5% | 95.00% r 10005
3 TLEW | 90.0%  52.5% [ 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0%
4 G3.8% | 80.0% 1 47.5% | 98.8% | 97.5% | 100.0% | 100.0% | 100.0% - 100.0%%
5 GE.B% | 75.0%  62.5% | 98.8% | 97.5% | 100.0% | 100.0% | 100.0% | 100.0%
o 62.5% | T0.0% 1 55.0% | 93.8% | RT.A% | 10000% | B5.0% | TO.0MG ' 1000
- ]
5 2 A=t



3.3.2 Recognition performance with different operation mode

Device can operate differently depending on its operating mode and
environment. It means, device can emit the different operation sound.
Existing methods of monitoring responding to specific conditions
often fail to function properly due to changes in these signals.
However, for monitoring systems based on artificial intelligence and

CNN, monitoring is possible even if there are some changes in signal.

To check the recognition performance in these situations, monitoring
was executed for bandsaw at the different situation, with 2 operation
speed (130 m/min, 200 m/min) and 2 materials (wood, NC nylon).

Recognition accuracy was 92% and detail result was same as Figure

29.
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Figure 29 Bandsaw operation monitoring with different operation
environment
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3.4 Enhancement of performance

3.4.1 Modifying target frequency range

To increase the recognition rate for the device, changing the
frequency targeted for monitoring is tried. Figure 30 shows the
results after conversion the sound used in the test data set to the
frequency domain using STFT. The operating sound of device is
usually concentrated at a specific frequency, and the performance of
the monitoring system should improve if the system is set to focus
on that frequency. In the case of the bandsaw, the target frequency
range was changed from 50 - 7,000 Hz to 10 - 1,500 Hz, mainly
because of its distinct characteristics in the low—frequency area,
below 1,500 Hz. The accuracy of the monitoring system thus

improved from 71% to 85%, as can be seen in Figure 31.

58 -":l't\._i _'w.l.':-_ T



Bandsaw is ‘on’

T

- -

Frequency (kHz)
e . w

L

0
0
Time (sec)

Frequency range that
shows the character of the
sound from “bandsaw”:

0 Hz ~ 1500 Hz

Target frequency range:
50 Hz ~ 7000 Hz
= 10 Hz ~ 1500 Hz

10 20 30 40 S0 60 70 %0 90 100 110 120 130 140 150 160
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Figure 31 Performance evaluation of monitoring system with

different target frequency ranges (left) 50 Hz

(right) 10 Hz ~ 1500 Hz
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As can be seen above, performance can be improved just by changing
the frequency range. To see how the performance changes due to the
frequency range change are shown, experiments were conducted in
more diverse frequency areas, and the results were same as Figure
32. Based on the results of the experiments shown in Figure 33 the

values were estimated as three dimensions to see the trend.
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Figure 32 Monitoring accuracy with different frequency range
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3.4.2 Enhancement of performance: Various neuron network

As mentioned in Section 2.7, this monitoring system uses a method
of converting 1D data of 16,000 Hz based on time—magnitude into
time—frequency —magnitude—based 2D data using Fourier Transform
and Log—mel spectrogram, which is classified using artificial neural
networks. Artificial neural networks play a role in classifying 2D data,
and they use simple CNN like Figure 19, but it is safe to use other
artificial neural networks that classify existing images. So in this
section, Comparing performance was executed using other neural
networks with more complex structures that are mainly used for
image classification. The neural networks used here are simple CNN,
ResNet—19, ResNet—50 and Googl.eNet.

Each neural network was used for bandaw monitoring among
standard files and the target frequency domain was 50 Hz to 7000

Hz.

As Figure 34 shows, the monitoring performance of each network
was 71%, 77%, 77%, and 79%, respectively, confirming that more

complex networks could be improved, but not significantly.
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Rather, considering the computational speed and learning volume of
each network, and the size of the network, we could see the

importance of selecting the appropriate network.
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B Accuracy: “on”

B Accuracy: “off”
1.0
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08
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LN
S04
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Simple CNN ResMNet-18 ResNet-50 GooglLeNet
Figure 34 Accuracy of bandsaw monitoring
with various neuron network
Table 7 Test result with various neuron network
Size of Classify time
Network network Input data (640 images)
40x98x1
Simple—CNN 0.5 MB 8.0 sec
Value
40x98x3
ResNet—18 40 MB 21.9 sec
RGB image
40x98x3
ResNet—50 86 MB 39.8 sec
RGB image
40x98x3
GoogLeNet 22 MB 37.5 sec
RGB image
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3.4.3 Wavelet transform based monitoring

In case of log—mel spectrogram, 1—D data was transformed with 2—
D data (time/frequency - intensity) based on STFT. However
nowadays wavelet transform is often used. The strong point of
wavelet transform is flexible time—frequency band. Unlike STFT,
which uses trigonometric functions which make all the bandwidth
same, wavelet transform has short time—long frequency band at the
high—frequency range and long time—short frequency band at the
low—frequency range, so wavelet transform can take advantage of
the signal's characteristics better. Although it has the advantage of
being able to better understand the characteristics of signals, it also
has the disadvantage of increasing computation.

Using wavelet transform, 1—D data can be transform to 2—D data as
shown in Figure 35 and training with existing simple CNN structure
was executed. These trained network shows the 74% accuracy. It
means just using wavelet transform performance can be improved
from 70% to 75%. And these wavelet transformed data also trained
with ResNet—50, more complex neural network, and recognition
performance can be improved to 82.5% Detail result is as shown at

Figure 36

66 A 2]

-
=1

1



Fourier Transform / Log-mel Spectrogram Wavelet Transform (Morlet wavelet)

Transformed Data (128x512) Transformed Data (16000x111)

Final data (40 x 98) | Final data (40 x 98)

Figure 35 STFT based data process and wavelet transform based

data process
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Figure 36 Recognition performance with wavelet transform
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3.5 Virtual data set

Sounds have the characteristic of being able to preserve their own
information independently while overlapped. This means that it is
possible to create a new virtual data set with combined, simple,
mechanical sounds by combining .wav files. The advantages are that
any size data set can be created, a data set can be created for a
situation that is difficult to realize, and it is easy produce a new data
set because it requires only recording the machine's operating sound
rather than reproducing multiple situations.

Figure 37 shows the process of creating a virtual data set and the
factors to consider. Using this process, virtual data sets were made
for various situations by combining the operating sounds of the

machines that we wanted to monitor.
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(m: no. of devices to be monitored)

Process 1) Pooling the sample operation sound -

(p: no. of sample sound (Augmentation method 1))

P ={D1,D3,..,Dp) (i = 1,2, ;M) corsrsrsrssmssssmssssssssssssssssssssssssssssssssss (14)

(Di=Sample operation sound of device i, 16000Hz, 1sec)

Process 2) Extracting the sample from the pool

_ ] Rand(P;) Rand(P;)
Spre—i = Rand(P;)or p——— or — Rand(Fy) X T erveeeervesesssserssesnens (15)

(Rand (X) : Randomly extract the elements from the set X)
(ri: Random value between 0 ~ 1)

Value of S; can be decided by setting of virtual data composition

Process 3) Cutting the extracted sample and paste
Si(x) = Spre-i(x+b—a) (x=aa+1,..,at+s;—1)

S(x) =0 (x=1,2..,a—La+s,a+5+1,..,16000) .oorrrrrsrsrirs (16)

si- random integer between 1 and 16000
(size of extraction)
a,b: random integer between 1 and (16000— s;)

(position of extraction and paste)
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Process 4) Guide generation

(gvi Random value between “0~ 17 )

(gm: Random value between “0~ (2" =1)" or “1~ (2" -1)")
Via binarizing the gm, value of gmi can be defined. If you want to use
the data with the zero sound, value of gm can be define with random
value between “0 ~ (2™ —1)” , but if you do not want, , value of gm

can be define with random value between “1 ~ (2™ —1)" .

Process 5) Composition of extracted data

(j: no. of data at the virtual data set)

Cp,i or Cp,i
maX(Cp,i) max(Cp,l-)

D; ={Gi|C; = Cp; or x1} (i=123,..,))

when Cp,i = Z:;ll Iv,i X Gm,i X Si (l =1,2, ,]) ............................................. (17)

(r: Random value between O ~ 1)

Value of C; can be decided by setting of virtual data composition

Process 6) Adding extra factors like background noise

Vi = {AllAl = Ci + Bl} (l = 1,2,3, ,_]) .................................................................... (18)

(Bi: Background noise data)
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The following items were considered in the process:
(Factors 1)

The number of samples of data in the sound pool

(Factors 2)

Whether to modify the intensity of the extracted samples:

no modification, modification to the same intensity, modification to a

random intensity

(Factor 3)

Length of sound to be cut and position to be paste

(Factors 4)

Whether to include a sample with no sound (all device off)

(Factors 5)

Whether to modify the intensity of the combined sample: no

modification, modification to the same intensity, modification to a

random intensity

(Factors 6)

Whether to include a background sound.

71



BIEP PAMQUIOD nonisod
a Sumdap(oo £q spumos ajdumes Amniqe (Zyy91 225 1)
Funmen 2 Smppe £q o1 21sed pue jood a1 wox 221A2p 1PE2 JO
10] Jasejep elep Ansuayng pumnos d[dures punos ajdues spunos ajdmes
ay 20 2 QU0 JO nonesIpoN A ) a1 1peNXT 10 1004
t 201A2p
H « JO punos
o uonerad(

l.

N

izl
EREE

joselep [enua
pasodwo))

LA

e

RS

g

sl [ EE] [olC
ERIERIE RIS

¢ 201A9p
JO punos
uoneradp

7 291A9p
JO punos
uonerad

[ 2d1a2p
JO punos
uonerad()

Figure 37 Schematic of the creation of a virtual data set for training

n

'-F*
T

-I:'E:i

Rk

72



The performance of the monitoring system using the virtual data set
under the conditions listed in Table 8 is as shown in Figure 38. The
accuracy of the monitoring system was approximately 87%, 59%,
97%, and 99% for the bandsaw, drill, pump and turning, respectively.
Thus, the monitoring system trained with the virtual data set
operated just as it had when it was trained with real recordings. The
performance for some devices improved by about 10%. However, for
the drill, the monitoring performance was poor even with the virtual

data set.
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Table 8 Specification of the virtual dataset

Specification

Value

Raw data in the sample pool

10 files per device (1 sec per

file)

Total data

2,999 .wav files

Intensity of raw data

Modified to the same intensity

Zero—sound sample

Excluded

Intensity of combined data

No modification

Background sound

Recorded sound when all

devices are off

Frequency range

10 - 1,500 Hz (bandsaw)
50 - 7,000 Hz (other devices)

B Accuracy: “on”
B Accuracy: “off”

Bandsaw

Drill

Pump Turning

Figure 38 Performance evaluation of monitoring system based on

virtual data set
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3.6 Measuring intensity of sound based on masking

In the case of operating sound from a mechanical device, signals are
produced across the wide frequency bands, not in narrow frequency
bands, which often have waveforms similar to noise, so it is not easy
to separate sounds in the traditional way of separating sounds such
as TDOA, beamforming, etc. Therefore, there is a limit to measuring
the intensity of a particular sound.

In this section, measuring the intensity of operation sound from
specific devices by applying masking to the algorithm that recognizes
sound will be tried.

The principle used in this attempt is the overlay of sound. In other
words, it is to manufacture a mask that reverses the sound of the
machine that is intended to obtain intensity, and apply the mask from
a weak point to a strong point to check whether the sound is
recognized. When mask 1s applied and the monitoring system
recognizes that there is no more operating sound of a particular
equipment in the sound applied, the applied mask strength is defined
as the intensity of the sound of specific devices. The detailed

algorithms are as in Figure 39.
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Method of producing Mask is as shown in Figure 40, and the detailed

formula for this is as follows.

(max(Mp (b))—Mp(b))
N

M(b) =

Relative intensity (I) can be expressed as
n

I=y

M (b): mask

S(t,b): Intensity value from log—mel spectrogram

t: time

b: frequency band

f: frame length

N: mask division rate

n: no. of mask applying until trained net classified as “off”
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| Reverse
(Max — Value)

Acoustic Average
Emission Signal Value of Signal

Figure 40 Fabrication of mask using existed operation sound data

(a) (b) (c)

Figure 41 Applying mask with intensity value (a) 0 (b) 0.2 (c) 0.5
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Measuring the intensity of pump operation sound using mask was
tried. Since it is impossible to control the sound intensity of the pump
itself, the experimenter took the mic array and moved away from the
pump, then moved back to the pump, and measured the strength of
the signal received by the mic array. Since the strength of sound is
inversely proportional to the square of distance, the distance from
the sound source pump and the strength of the sound are directly
related. As can be seen in Figure 42, it was possible to confirm that

the strength of the sound varies with the distance from the pump.
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Starting from the front of the pump, the change of sound was
measured by moving one step at a time. At each step, mic array
stayed for at least 5 seconds, and the distance between each step and
step was specified at 0.45 m.

There was some error at the measured intensity at each step, but
basically it was confirmed that when mic array move further from

source, signal strength perceived by the mic array was getting

smaller.
1Step . . 2Step L 3Swep 4Step L OStep  6Step |

0.6 + . - + -
g
;f} v Y o \’I /y’ - v ey Vi — A . .“| ,]I |
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< 0 ‘ NT Y v
g 0 7
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0
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Y\, Moving Path;
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Figure 43 Measure the intensity of sound: step test
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In order to verify the performance even operation sound of other
devices was interrupted, the experiment was conducted while turning
and bandsaw operating at the same time and the results were the
same as Figure 44. As can be seen in Figure 44 regardless of whether
turning and bandsaw were operated, recognized intensity of the pump
sound was confirmed to be higher as the distance smaller and at the
moment the pump operation was stopped, the perceived sound
intensity was zero, even though other equipment was operated and

emitted sound.

Direction of Approach to Pump Direction Away from Pum
(on) Turning / Band-saw / Pump (on) Turning / Band-saw (off) Pump

Y

0.45
0.4
0.35
0.3 \Y 7 "" T ‘ I
025 L ANA LS V'

V |
02
0.15

Strength of Acoustic Emission

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 &
Time (scc)

H
y

 Moning Path:3 5m

I
.

Hm

Figure 44 Measure the intensity of sound with different devices
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Chap 4. Applying to real factory

To verify the performance of the currently developed monitoring
system, the application was attempted in two environments similar to
the actual factory, not in the laboratory environment.

Because the system monitors the manufacturing process by
determining whether a device is being used, it was decided that the
system should be conservative and indicate only when device was
definitely being used. As can be seen at the Figure 45, due to the
characteristics of CNN, phase can be divided with “clearly predicted
section” and “not clearly predicted section” , and most errors
appear in “not clearly predicted section” . To guarantee the
robustness, based on the predicted results obtained by the multi mic
array, it was decided to exclude errors by indicating only when the
average value of predicted probability from multi mic array that a

device was on was “limit value” or higher
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4.1 Case — Workshop with hand-operated device

The first case of real monitoring was performed in a workshop with
hand—operated device. The workshop was a space where students
could freely create their own prototypes, and it was characterized by
a variety of noises, including a fan for air conditioning.

The target devices were a turning, a bandsaw, and an airgun. All
device had no electrical components except a simple power switch,
and none of the device were smart devices. In this experiment, the
air gun was the focus because of the very loud and unusual sound it
emits and the fact that it is typically used between process steps for

removing burrs or cleaning parts.
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Figure 46 Workshop with hand—operated device

Table 9 Detail information about monitoring

Specification Value
Monitoring period 800 sec
Neuron network Simple CNN
Limit value 0.9

Dataset pool

90 sec per devices

Size of virtual dataset

9,999 .wav files
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The monitoring results are shown in Figure 47. As can be seen, the
operational status of each device was monitored accurately. 3
devices were monitored with high accuracy, 98% ~ 100%. In
particular, it was shown that it was possible to infer the actual

operation time of the machine in general, and that it was also possible

to use this result and monitoring system to monitor the entire process.
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Figure 47 Monitoring results in a workshop with hand—operated

devices
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As a result of monitoring, it was possible to determine when the
actual equipment was in use. Figure 48 is a result of analyzing how
each process of this manufacturing process was conducted based on
the monitoring results. As can be seen, it showed that even for hand—
operated devices that do not have any IoT devices, the work can be
linked to a central system and computerized. In other words, using
the developed monitoring system, existing equipment could also be
"connected" and "smart device" using mic array installed outside the

equipment without extra equipment installation.

Phase 1: 21 3sec Phase 2: 23l Phas: 3: 31 7sec
Bandsaw: |l=ec Bandsawn: | 3sec Bandsiw: 22sec
Adrpun: Bse Adrpun: s P Adrgun: T
Taremg: 14250 Rest Turmang: 1205 _._Il'w'-". Turning: | Dse:
Adrpun: Taed LR Avrpun: 13sa: S Adrgun: | dsec
- i . "
. {Predicied) | | |
Turmning
{Actual) —— I —
. {Frediciedy | I IIm | W N |
Air-Cun +—1 —1 1
{Acrasl) 1 [| ] [ ] [ ] |
{Predicieds HEl [ | |
Bandsam 1 1
{Acraaly HE [ | |
] 50 o0 150 200 IS0 R 35S0 40 450 5000 550 A0 650 T TR0 ROMY
Teme {=ec)

Figure 48 Process monitoring result of

workshop with hand—operated devices
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4.2 Case — Factory with a Computer Numerical Control

(CNC) machine

The other case of real monitoring was conducted at a factory that
makes actual products using computer numerical control (CNC)
machines, which are most commonly used in product manufacturing.
The entire monitored CNC machine was controlled by a computer
with firmware. It was impossible to measure and transmit the status
of the device because no IoT —related functions could be performed
separately outside of the machine's own system. In addition, because
of the characteristics of the firmware provided by the manufacturer,
it was impossible for the user to customize it to identify or transmit

the status of the device.
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Figure 49 Factory with a Computer Numerical Control (CNC)

machine

Table 10 Detail information about monitoring

Specification Value
Monitoring period 1,524 sec
Neuron network ResNet—18
Limit value 0.7

Dataset pool

90 sec per devices

Size of virtual dataset

2,999 .wav files
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The results of monitoring are shown in Figure 50. As can be seen,
the operational status of each device was monitored accurately. 3
devices were monitored with high accuracy, 98%. The process being
performed was drilling, but it was impossible to monitor the use of
this device because it emitted no sound. However, it was possible to
monitor the CNC machine's Automatic Tool Changer (ATC), which
only operated when the machine was operating. There were mis—
prediction between ATC and airgun due to the similarity of operation

sound of these devices.
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Figure 50 Monitoring results at a factory

with a computer numerical control (CNC) machine
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Due to the nature of the process, CNC Machine itself is a process in
which the sound is very small compared to the ambient noise, so it is
impossible to monitor with sound alone. ATC and airgun were used
to monitor this indirectly. ATC is a device that moves when the CNC
is operated. However, due to the characteristics of ATC, it is an
instrument that operates eventfully during the process, so there is a
limit to knowing the entire CNC machine operation time. In addition,
there is no guarantee that the CNC will operate between the time and
time when the ATC is activated.

So the device that I focused most on during this process monitoring
1s airgun. airgun is a device used mainly for cleaning. In order to carry
out the process accurately, it must be operated before and after CNC
operation. This means that the CNC will not run while the airgun is
running.

Both ATC and airgun are devices that utilize compressed air, and
have similar operating sounds. Thus, errors may occur in the
recognition of mechanical sounds in both equipment. However, due to
the characteristics of ATC that operates only during CNC operation
and the characteristics of Airgun that operates only when CNC is not
operated, if the two equipment is judged to have been operated at the

same time, error handling was considered as an error.
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(However, the airgun may be used externally for cleaning other
devices while using CNC equipment, but this is to be treated as an
exception.)

If it is determined that the airgun and ATC are operated
simultaneously,

1) Short use within one or two seconds is considered ATC,
considering the characteristics of the airgun that is not used for a
short period like one or two seconds.

2) If the use is carried out in a long section for more than 3 seconds,
it is considered as airgun has been operated, and if it is determined
to be ATC operation during that time, it shall be deemed that it has
not been operated.

This is used to infer the hours of use of CNC equipment as shown
below.

1) If the airgun operated between the ATC operation hours, the CNC
equipment is assumed to have not been operated.

2) If the airgun was not operated between the ATC operation hours,
the CNC equipment is estimated to have been operated.

3) However, if there was a gap of more than 100 seconds between
the ATC operating hours, the draft assumes that the CNC equipment

was not activated.
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The CNC operating time estimates in the light of the above principles
are as shown in Figure 51. The CNC operation itself was not
monitored, but CNC operating time can be predicted with an accuracy
of about 92%.

It also succeeded in identifying how much time each process of the

corresponding manufacturing process is consuming.
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Figure 51 Process monitoring result of a factory

with a computer numerical control (CNC) machine
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4.3 Case — Factory with aluminum casting process

The third monitoring site was the aluminum casting process line. The
monitoring target is three equipment belonging to the line, the first is
a cooler that cools down the heated die for casting, the second is a
grinder that removes the burr of manufactured products, and the last
1s a separater that separates the handle of the product from the actual
product.

Not only did the plant operate several very loud equipment at the
same time, but it was also a site where a lot of noise was generated
due to air conditioning equipment and various working noises.

The equipment of the plant was very old, and there were no IoT
functions except simple control panel inside the machine. In addition,
the factory's methods of work were all dependent on people, so
simple tasks such as checking the number of works were all carried
out manually, and simple analyses such as checking the hours of

operation of equipment could not be performed.
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Table 11 Detail information about monitoring

Specification Value
Monitoring period 2,000 sec
Neuron network Simple CNN
Limit value 0.8

Dataset pool

90 sec per devices

Size of virtual dataset

9,999 .wav files
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The operation time of each equipment installed on the manufacturing
line was as shown in Figure 53. As can be seen in the Figure 53, it
can be confirmed that each equipment is operated repeatably with a
constant cycle. It was monitored that after only the cooler operated
six times alone, all the equipment continued to operate repeatedly
with a constant cycle. Approximate operating hours were monitored
using this monitoring system, but not all operating hours were
accurately captured. In case of separater with 1 second work, some
errors occurred when some of the working time spanned by two
frames separated by 1 second. From this, it was shown that
consideration of the frequency and overall length of the data was
needed. However, it was possible to determine roughly whether and

how often the equipment was operating.
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Figure 53 Monitoring results

at a factory with aluminum casting process
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Figure 54 is the result of monitoring the actual process based on
equipment operation status. Monitoring was carried out from the
break time (lunch time). Preliminary operation that was only with
cooler operation and test fabrication was executed. 6 times of
preliminary operation was monitored as operation of cooler without
the operation of grinder and separater. After preliminary operation,
at the 13:21:09, main manufacturing process with operation of cooler
/ grinder / separater was started and this main manufacturing process
was also successfully monitored. Exact number of processes could
be counted and process time for each process can also be checked.
This process data can be used as the data for process optimization in
the future.

In this very noisy environment, for the actual product production
process, this monitoring system has demonstrated that it can be

successfully monitored.
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Chap 5 Application

5.1 Application: Sound-based manufacturing process

monitoring system

Application of this research is a sound—based comprehensive
process monitoring technology. Install a mic array near the line
where the process is being carried out, listen to the operation sound
in real time, and upload it to the central cloud server using the
Internet. It is also possible to analyze the uploaded voice signal to
identify which equipment is currently operating, to store the history
of the operation, to determine how the equipment was operated, and
to monitor the entire process. Especially for this purpose, it is
sufficient to install only microarray near the equipment without
having to install a separate device on the equipment itself, so it is
possible to make smart devices for outdated equipment at low cost,
obtain process information, and conduct separate research.

Figure 55 is the example of sound based manufacturing process

monitoring system.
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Monitoring the operation of a CNC machine's ATC showed that it is
possible to monitor events based on instantaneous sound as well as
continuous operating sound. Thus, further research is planned to
improve the stability of the processes in a factory by continuously
monitoring for various emergency situations.

When using mic array, it is possible to derive the direction where
sound occurred from by using the phase difference caused by Time
Delay of Arrival (TDOA) caused by the space between each mic.
Figure 56 shows the location of a three—dimensional mobile device
(drone) by identifying the location of the sound source with the mic
array used at the monitoring system. This means that the location of
the sound source can be sufficiently determined by the using mic
array, which shows that it is possible to recognize a particular sound
that can occur in an emergency situation setup by combining multiple
mic arrays and to track where it originated when the sound is

recognized.
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Chap 6 Conclusion

Here a system for monitoring the operational status of multiple
devices operating simultaneously by classifying their operational
sounds using a CNN was developed.

When the CNN was trained with recorded operating sounds, the
system recognized the operational status of the device with an
accuracy of approximately 71-92%. However, it could not
appropriately monitor quiet devices, such as a drill. After we modified
the targeted frequency range, accuracy improved to 71% to 85% for
the bandsaw. When trained with a virtual data set created by
combining 1 sec sound files from each device, the system had an
accuracy of approximately 87-99%.

To verify that the monitoring system worked without problems in an
actual working environment, monitoring system was tested in a
workshop and a factory. When the system was trained using only
recorded sounds rather than a virtual data set, it detected the
operational statuses of a devices only with the mic array at the

environment with loud noise.
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