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Abstract 

Sound-based Remote Manufacturing Process 

Monitoring using Convolutional Neural 

Network (CNN) 

Jisoo Kim 

Department of Mechanical Aerospace Engineering 

The Graduate School 

Seoul National University 

 

   Smart factory is the main keyword in the field of manufacturing 

processes about the fourth industrial revolution. To realize the smart 

factory, making all pieces of device into smart devices that are 

connected to the centralized system to enable a real-time exchange 

of information is essential. Sound can be efficient means to make 

devices as smart devices because sound can contain the status 

information of various devices simultaneously, and it can be recorded 

easily outside of a device using only a microphone. In this study, 

multi-device operation monitoring system by analyzing sound is 

developed. Mic arrays for acquiring the sound were installed at the 
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outside the devices and recorded the sounds from several devices 

simultaneously. By analyzing the recorded sound with log-mel 

spectrogram and Convolutional Neural Network (CNN), the system 

could detect the operational status of three devices with an accuracy 

of 71–92%. To improve the performance, virtual data set was created 

by composition of individual device operating sounds of different 

intensities. With this virtual data set, accuracy can be enhanced to 

87% ~ 99% accuracy and, required sound data amount could be 

reduced. Developed system was applied successfully in monitoring 

experiments in two different environments: a workshop in which 

hand-operated device was used and a factory with a computer 

numerical control machine and verifying the performance. 

 

Keywords : Multi-device Monitoring, Sound monitoring,  

Convolutional Neuron Network (CNN), Smart factory 

Student Number : 2016-30178 
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Chap. 1 Introduction 

 

1.1 Fourth industrial revolution 

 

The most important keyword that has recently hit the world will be 

the Fourth Industrial Revolution. However, while the impact of these 

Fourth Industrial Revolution is felt by all, it is not really defensive to 

define the Fourth Industrial Revolution. In the era of people and 

animals as power sources, the first industrial revolution that moved 

machines to power sources, the first industrial revolution that 

allowed mechanized businesses to turn electricity into power sources, 

the second industrial revolution that included various internal 

combustion engines using oil, the use of various plastics, and the 

integration of various information and communication technologies 

with the development of computers and the onset of the Internet, and 

the revolution that took place, and the revolution that took place. It 

was also clear that the technology driving the change and its impact. 

However, the 4th Industrial Revolution is being carried out 

simultaneously in many areas, with the level of large technological 

advancements that led to the existing revolution. The improvement 

in the performance of artificial neural networks enabled by the 

development of computing power shows that machines can excel in 
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many areas of recognition and optimization, and the development of 

information communication technology has allowed all equipment to 

be attached to and controlled in real time, making it possible for 

factories, homes, and offices to move like an organism, beyond the 

time when people were exchanging information directly through a 

small number of communication devices. For space engineering, once 

considered only for technology flaunting, it embodies a wide range of 

functions, enabling it to provide location information quickly and 

accurately to all devices around the world through a more 

sophisticated and popular GPS system. Also, these changes are not 

being carried out independently, but are being combined to create 

greater synergy. 

In the wake of the fourth industrial revolution, many countries, 

universities, institutions, and companies are trying to develop 

relevant technology. The most commonly recognized aspect of this 

industrial revolution is the advancement of Information and 

Communication Technology (ICT) [1, 2]. Improvement of 5G 

telecommunication, which enables the fast response and large 

bandwidth, and Internet of Things (IoT), which enables the 

installation of telecommunication functions in all devices, make the 

rapid and widespread gathering of information possible. Cloud 

computing and big data management technology make it possible to 
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store information. Significant improvements in computing power have 

led to Artificial Intelligence (AI) with high performance via efficient 

data analysis techniques, such as machine learning [3-8]. 

After all, the most important keyword of the Fourth Industrial 

Revolution can be seen as "Connected" [9]. 

 

 

Figure 1 Concept of 1st, 2nd, 3rd and 4th industrial revolution [10] 
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1.2 Smart factory and smart devices 

Smart factory is the main keyword in the field of manufacturing 

processes about the fourth industrial revolution [11]. Smart factory 

can be defined as manufacturing system with device connected to a 

cloud-based, centralized system and interactive information 

exchange functions through the internet and cloud. Through this 

centralized system, a higher level of monitoring, analysis, control, and 

design is possible, and thus smart factories are of interest as the 

future of manufacturing [12-15].  

 

 

Figure 2 Concept of smart factory [16] 
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A Cyber-Physical System (CPS) is the virtual system that can 

simulate the manufacturing process based on the collected 

information. Currently, experimentation with device in a virtual space 

has gone beyond the level of individual pieces of device to test what 

happens in the factory in advance and to simulate the entire plant's 

performance [17]. Such CPSs have been applied to factory design 

and have begun to improve the performance of actual plants [18-29]. 

 

 

Figure 3 Concept of Cyber Physical System (CPS) [30] 
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The most important part of realizing a smart factory and a CPS is 

making all pieces of device into smart devices that connect to system 

based on the IoT The status of each device can be shared in real time 

and gathered in the cloud to enable the better identification and 

control of device than was previously possible [23, 31-38]. Thus, it 

must be possible to collect detailed information about each device. 

Nowadays, newly developed device normally mount the IoT-based 

features to be smart device. However, device that was produced long 

ago typically lacks any means of connection to other device or 

systems. The technology to turn such device into smart devices 

easily and at a low cost is an urgent research task [39, 40]. This is 

more urgent for small companies which are likely to be more 

dependent on existing device than large enterprises that can design 

and build new plants and acquire new device [41]. Because small 

companies lack sufficient capital and are unable to renovate entire 

factories, it is difficult for them to introduce sweeping changes, which 

forces them to face the reality that they cannot match the pace of 

change elsewhere [42-44]. 
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1.3 Methods of device monitoring  

For these reasons, technologies are being developed to remotely 

monitor the status of a device using various methods, such as visual 

/ sound / heat / power consumption [45]. 

 

 

 

Figure 4 Comparison of monitoring method 
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Visual methods are commonly used to observe the operation of 

device and to identify abnormal conditions [46-48]. Analyses of 

these methods have recently been enhanced by the use of Artificial 

Intelligence (AI) such as Convolutional Neuron Network (CNN) [49, 

50]. Attempts have been made to read the information from the 

display panel installed at the device [42] or to visually recognize and 

analyze information maps of entire manufacturing process systems 

[51]. 

 

 

Figure 5 Monitoring using vision [42, 49] 
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Heat is the most basic piece of information used to understand the 

status of numerous pieces of device and plants, and controlling 

heating and cooling is a basic process in managing device [52]. 

Nowadays, various studies are being conducted using technology of 

measuring the distribution of heat, such as thermal imaging cameras 

which has improved significantly enough to make it possible to obtain 

information in real time [53, 54]. 

 

 

Figure 6 Monitoring using thermo-sensor [52] 
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Measuring power consumption requires the installation of an 

additional device, but studies are being conducted on this method 

because information about the target device can be extracted without 

requiring supplementary information and the data are highly reliable  

[55-57] 

 

 

 

Figure 7 Monitoring using power consumption [56, 57] 

 



 

 11 

Finally, sound is commonly used to identify the status of device. 

Because it shows good performance for diagnosing problems with 

mechanical parts, such as tool wear and vibration, many studies have 

been conducted [58, 59]. In addition, analyses of vibrations have 

been gaining attention recently, in which vibrations have been 

converted into two-dimensional (2D) data and used to classify the 

condition of machines with an AI tool used in image processing. The 

following section gives more details 

 

 

Figure 8 Manufacturing monitoring  

using acoustic emission [33] 
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1.4 Sound monitoring and Convolutional Neuron Network 

(CNN) 

 

Sound is a vibration transmitted through a medium such as a gas, 

liquid, or solid. One of the notable characteristics of sound is that if 

various signals coincide, they overlap without affecting one another. 

Various pieces of information can be contained in sound, and this 

information is maintained even if there is interference from other 

factors. Thus, information can be obtained even when the 

surrounding environment is not controlled, and information about 

multiple sources can be acquired simultaneously.  

 

 

Figure 9 Overlap and seperation of waves 
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Because processing sound produces a lot of data, recent analyses 

have used Artificial Natural Networks (ANN) [60, 61] or Support 

Vector Machines (SVM) [62], or Random Forest (RF) [63] rather 

than traditional methods of analysis. Analyzing sound via its one-

dimensional raw signal is difficult, but it can be accomplished more 

easily if the sound is converted into 2D data via a Fourier transform 

and sorted by frequency. In the case of 2D data, studies are being 

conducted to classify signals in various ways. For instance, it is 

straightforward to apply Convolutional Neuron Network (CNN), 

which is frequently used in image processing [64, 65]. 

 

 

Figure 10 Concept of Convolutional Neuron Network (CNN) [66] 
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A typical example of current research on classifying signals is in fault 

diagnosis. Various studies are being to recognize an unusual sound 

when failure has occurred because it is possible to diagnose the 

failure simply by installing a sensor such as a microphone outside 

device [67-73]. 

In addition, there are many attempts to detect defects during or just 

after the manufacturing process by classifying sound from that 

process [74-77]. Similarly, attempts to detect defects in device, 

such as leaking pipes, are analyzing acoustic emissions via CNN [78].  

 

 

Figure 11 Prediction of the quality of AM products with operation 

acoustic emission during process [75] 
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Other current research includes categorizing noise in cities [79], 

monitoring the condition of structure [80], classifying human 

activities [81], and identifying genres of music [82]. 

 

 

Figure 12 Classifying the human activities with sonar and CNN [81] 

 

 

Figure 13 Classifying the genre of music with CNN [82] 
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In sum, various studies have recently been conducted using CNNs, 

and these have good results analyzing various sounds. As mentioned 

previously, a number of studies have been conducted to determine 

the condition of device using sound; however, no attempt has been 

made to monitor the condition of multi devices in real time. Therefore, 

this research aims to develop a sound-based system that can monitor 

the status of various device in operation simultaneously in a 

manufacturing process. 
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Chap 2. System Modeling 

 

2.1 Concept of Convolutional Neural Network (CNN) 

 

The Convolutional Neural Network (CNN) is an image processing 

method first proposed by LeCun [66]. CNN has shown significant 

success in processing images and other forms of data. The 

convolutional layer of a CNN contains a large number of filters and 

extracts the characteristics of the input data through these filters. 

Then local characteristics are extracted by a pooling layer. In the 

present study, raw data were processed with a Fourier transform to 

make them 2D; these were the input data for CNN. Another CNN 

layer, the context one, also used a 2D filter. Note that the input data 

were from one audio channel, unlike, for instance, an image formed 

of red, green, and blue channels. 

Input data are passed through a convolutional filter to extract the 

characteristics of each piece of data. The 2D convolutional filter is 

calculated by the following formula: 

 

𝑌𝑖+1 = (𝑌𝑖  ×  𝐹) + 𝑏 =  ∑ ∑ (𝑌𝑖  ×  𝐹) + 𝑏−𝑀
𝑀

−𝑁
𝑁  ................................................. (1) 
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where Yi and Yi+1 are the data before and after passing through the 

filter, respectively; F is the filter; and b is the bias. The set of Yi+1 is 

called the feature map. 

A pooling layer, which extracts important local information from the 

feature map, is typically applied after the convolutional layer. 

However, as it passes through the pooling layer, the dimensions of 

the feature map are reduced. Average or max pooling layers are 

commonly used; in the present study, we used the latter. The max 

pooling operation extracts only the maximum size of the filter kernel 

in the feature map. The geometry extracted from the filter kernel is 

obtained as follows: 

 

A = [𝑎𝑖𝑗] (i, j ≤ n)  .................................................................................................................. (2) 

maxpooling(A) = max (𝑎𝑖𝑗)  ............................................................................................... (3) 

 

where A is the filter kernel and aij is an element of the filter kernel. 

A completely connected layer and softmax classification were added 

to classify the data by alternately using convolution and pooling 

layers. A typical 2D CNN structure is discussed below. 
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2.1.1 Dropout 

 

Dropout is a technology that can reduce data overfitting. Particularly 

when training a small neural network, dropout can prevent a reduction 

in performance, providing an easy and effective way to solve this 

problem. In the present study, dropout techniques were applied 

during training to prevent hollowing out, with repeated extraction of 

the same function. Some hidden neurons were set to zero so that they 

were not included in feedforward learning. 

 

 

Figure 14 Concept of dropout [83] 

. 
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2.1.2 Softmax classifier 

 

Softmax regression is typically implemented as the top layer of the 

neural network for multi-state classification. Information derived 

from multiple hidden layers is used as input for supervised classifiers 

according to global back-propagation optimization. In the present 

study, we used softmax regression as a mechanical health status 

classifier in the network. Training samples are represented by x(i) 

and their label set is y(i) where i = 1, 2, . , K is the number of training 

samples.  

 

x(i) ∈ 𝑅𝑁×𝐿, 𝑦(𝑖) ∈ {1,2,3,4, … . , 𝐾}  ................................................................................ (4) 

(K is the number of categories labeled) 

 

For x(i), input sample, softmax regression can estimate the 

probability as  

 

P(y(i) = j | 𝑥(𝑖)) 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑙𝑎𝑏𝑒𝑙 𝑗 (𝑗 = 1,2,3, … , 𝐾)  .................................... (5) 
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The estimated probability of x(i) belonging to each label can be 

obtained according to the hypothesis function,  

 

Softmax(x(i)) = [𝑝(𝑦(𝑖))|𝑥(𝑖), 𝑝(𝑦(𝑖)) = 2|𝑥(𝑖), … , 𝑝(𝑦(𝑖)) = 𝐾|𝑥(𝑖)] 

= [
𝑒𝑥(1)

∑ 𝑒𝑥(𝑗)𝑘
𝑗=1

,
𝑒𝑥(2)

∑ 𝑒𝑥(𝑗)𝐾
𝑗=1

, … . ,
𝑒𝑥(𝑖)

∑ 𝑒𝑥(𝑗)𝐾
𝑗=1

]  ................................................................................. (6) 

 

This classifier verifies that the output is positive and the sum is 1, so 

that the output of the network can be interpreted as the probability 

of each class. 
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2.2 Fourier transform 

 

In mathematics, a Fourier transform (FT) is a mathematical 

transform that decomposes a function (often a function of time, or a 

signal) into its constituent frequencies, The Fourier transform of a 

function of time is a complex-valued function of frequency, whose 

magnitude (absolute value) represents the amount of that frequency 

present in the original function, and whose argument is the phase 

offset of the basic sinusoid in that frequency. 

The Short-time Fourier transform (STFT), is a Fourier-related 

transform used to determine the sinusoidal frequency and phase 

content of local sections of a signal as it changes over time.  

In practice, the procedure for computing STFTs is to divide a longer 

time signal into shorter segments of equal length and then compute 

the Fourier transform separately on each shorter segment. This 

reveals the Fourier spectrum on each shorter segment. One then 

usually plots the changing spectra as a function of time, known as a 

spectrogram or waterfall plot. 

With this STFT, arbitrary 1-D digital data with discrete value can be 

transformed from 1-D time domain to 2-D frequency domain. And it 

is usually used to analyze the time domain signals such as sound. 
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Figure 15 Signal processing method for pettern classfication [84] 

 

 

Figure 16 Concept of Fourier Transform [85] 
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2.2.1. Continuous-time STFT 

Simply, in the continuous-time case, the function to be transformed 

is multiplied by a window function which is nonzero for only a short 

period of time. The Fourier transform (a one-dimensional function) 

of the resulting signal is taken as the window is slid along the time 

axis, resulting in a two-dimensional representation of the signal. 

Mathematically, this is written as: 

 

STFT{x(t)}(τ, ω) ≡ X(τ, ω) = ∫ 𝑥(𝑡)𝜔(𝑡 − 𝜏)𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞
   ................................... (7) 

 

where is the window function, commonly a Hann window or Gaussian 

window centered around zero, and x(t) is the signal to be transformed 

(note the difference between the window function  

is essentially the Fourier transform of ,a complex function 

representing the phase and magnitude of the signal over time and 

frequency. Often phase unwrapping is employed along either or both 

the time axis, to suppress any jump discontinuity of the phase result 

of the STFT. The time is normally considered to be "slow" time and 

usually not expressed in as high resolution as time  
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2.2.2. Discrete-time STFT 

In the discrete time case, the data to be transformed could be broken 

up into chunks or frames (which usually overlap each other, to reduce 

artifacts at the boundary). Each chunk is Fourier transformed, and 

the complex result is added to a matrix, which records magnitude and 

phase for each point in time and frequency. This can be expressed 

as: 

 

STFT{x[n]}(m, ω) ≡ X(m, ω) = ∑ 𝑥[𝑛]𝜔[𝑛 − 𝑚]𝑒−𝑗𝜔𝑛∞
𝑛=−∞    .......................... (8) 

 

likewise, with signal x[n] and window w[n]. In this case, m is discrete 

and ω is continuous, but in most typical applications the STFT is 

performed on a computer using the fast Fourier transform, so both 

variables are discrete and quantized. 

 

spectrogram{x(t)} ≡ X(m, ω) = ∑ 𝑥[𝑛]𝜔[𝑛 − 𝑚]𝑒−𝑗𝜔𝑛∞
𝑛=−∞    ........................ (9) 

 

The magnitude squared of the STFT yields the spectrogram 

representation of the Power Spectral Density of the function: 
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2.3 Log-mel spectrogram 

 

Log-mel spectrogram is one of the most popular spectrogram based 

on STFT. Studies have shown that humans do not perceive 

frequencies on a linear scale. We are better at detecting differences 

in lower frequencies than higher frequencies. Therefore, Mel 

spectrum is more suitable in human's auditory sense characteristic 

that presents the linear distribution under the 8000 Hz and the 

logarithm growth above the 8000 Hz, we utilize this point to obtain 

the Log-Mel spectrum static. The relationship between the Mel 

spectrum and the frequency is shown as 

𝑓𝑚𝑒𝑙 = 2595 × 𝑙𝑜𝑔10 (
1+𝑓

700
)   ......................................................................................... (10) 

 

 

Figure 17 Relation between frequency and log-mel spectrum static 
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We adopt the number of 40 filterbanks to process the raw signal 

under the control of the 16 kHz sample rate and the length of FFT is 

set to 512.  

 

Figure 18 Filterbank for log-mel spectrogram 

 

Furthermore, we choose the hamming window which is taken the 

window length of 25 ms and the window shift of 10ms to add into the 

signal. Before gaining the 40 Mel-filterbank vectors, we also select 

the lower frequency of 50 and the upper frequency of 7000. Then we 

will take the signal to feed into the filterbanks to get the Hm(k), which 

is shown as  
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𝐻𝑚(k) = 

𝑘 − 𝑓(𝑚 − 1)

𝑓(𝑚) − 𝑓(𝑚 − 1)
 (𝑖𝑓 𝑓(𝑚 − 1) ≤ 𝑘 ≤ 𝑓(𝑚)) 𝑜𝑟 

𝑓(𝑚 + 1) − 𝑘

𝑓(𝑚 + 1) − 𝑓(𝑚)
 (𝑖𝑓 𝑓(𝑚) ≤ 𝑘 ≤ 𝑓(𝑚 + 1)) 𝑜𝑟 

0 (𝑖𝑓 𝑘 < 𝑓(𝑚 − 1) 𝑜𝑟 𝑓(𝑚 + 1) < 𝑘)  ................................................................. (12) 

 

According the results of computing, we will get the outputs from the 

filterbanks, and then multiply the energy spectrum is used by the 

STFT processed from the raw signal, which is shown as 

 

log − melspec(m) =  ∑ log (
𝑓(𝑚+1)
𝑘=𝑓(𝑚−1) 𝐻𝑚(𝑘) × |𝑋(𝑘)|2   ................................. (13) 

 

where the |X(k)|2 describes the energy spectrum in the points 

of kth energy, m is the number of the filterbanks and k is the 

point of the FFTs. 
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2.4 Proposed architecture 

Deep neural networks are capable of the adaptive capture of 

information related to facial expressions from raw input signals 

through multiple nonlinear transformations and approximate, complex, 

nonlinear functions; such networks are typically used as the main 

CNN architecture. To this architectural base, algorithms can be added 

to efficiently train networks and improve diagnostic performance. 

Figure 19 shows the structure of the proposed network for acoustic 

monitoring. In the proposed framework, raw collected data are 

converted into 2D form and used as the model input, and no prior 

expertise in signal processing and fault diagnosis required. 

A zero-adjustment operation is implemented to ensure that the 

geometry map dimensions are not changed. Pooling layers are usually 

used in deep networks to reduce the number of parameters and 

accelerate the training process while retaining important features of 

the information. Pooling layer decisions depend on specific fault 

diagnosis problems and their data sets. In most cases, the average 

pooling layer is used between two remaining building blocks. Finally, 

the learned features extracted by the system are passed to fully 

connected layers and softmax regression to estimate the failure 

categories. Batch normalization can accelerate the training process, 

in particular for deep learning, and has demonstrated good 
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performance in recent studies. In the present study, batch 

normalization was used after each convolutional layer. In addition, we 

used the rectified linear unit activation function in the network. 

Because it does not suffer from gradient diffusion during the training 

process, better performance can typically be achieved, in particular 

in a deep structure. 

Cross entropy function is used as loss function in the learning 

process. Back-propagation (BP) algorithms are applied to all weight 

updates in the layers and used the stochastic gradient drop 

optimization method during training. When a lot of training data are 

required, useful training samples can be generated by data 

enhancement. Multiple CNN building blocks can potentially be 

stacked in the network to ensure better functional extraction through 

a deeper structure. 
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Figure 19 Proposed convolutional neural network architecture for 

operational monitoring. 
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2.5 Concept of monitoring system 

The algorithms proposed in the present study are shown in Figure 

20. First a raw signal is acquired to form a data set for training. The 

raw signal may be obtained directly from a mic array in advance, but 

it is also possible to use a virtual data set, which will be described in 

Chapter 5. Data were trimmed to a duration of 1 sec and were labeled 

to allow data sorting. Data augmentation process was conducted, 

including translating and adjusting the time scale, and added 

background noise, giving the final data set.  

Then data composed in this way were converted into 2D form with a 

log-mel spectrogram. Log-mal spectrogram is a kind of wavelet 

transform based on short-time Fourier transform (STFT) that 

allocates a frequency band area to a human audible frequency and 

converts its size to a logarithmic scale; it can provide results similar 

to what a person hears. Thus, it is mainly used in the sound 

recognition field and achieves very high performance, in particular in 

classification [86]. Data set was sorted according to the operating 

status of each devices. 

To use trained CNN, a machine's operating sound is recorded through 

a mic array and, as in the process of preparing the training data set, 

trimmed to samples 1 sec long and converted into 2D data with the 

log-mel spectrogram. The CNN then calculates the predicted 
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probability of each operational status of each device, thus predicting 

the most likely operational status of the device. 

In our proposed monitoring system, each device has its own CNN that 

classifies the operational status of that item, and the system monitors 

all device in parallel. Each CNN classifies only the operational status 

of its one item, regarding the sound of all other items as noise. The 

advantage of this monitoring system is that, even if several devices 

are operating simultaneously, it is possible to identify a piece of 

device and its status provided only that operating sound is detected 

and to monitor unlimited devices simultaneously. 

The specifications of the hardware and software used in this research 

are listed in Table 1 
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Figure 20 Concept diagram of sound data conversion from 1D to 2D 
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Figure 21 Schematic of the monitoring system 
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Table 1 Specification of hardware/software 

Specification Value 

Operating System Microsoft® Windows® 10 Home 

Software Platform MATLAB R2020a 

System RAM Samsung® 32 GB (DDR3) 

Processor Type (CPU) Intel® core i7-4790 (3.9 GHz) 

Graphics Card (GPU) NVIDIA® GeForce GTX 750  

(RAM: 1GB) 
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2.6 Parallel and independent system 

Sound has the characteristics of being recorded differently by the 

location of listening and the setting of the microphone, but the human 

ear is all recognized by the same kind of sound. Also, sound can 

generally be propagated by bypassing obstacles, so when recording 

sound, various noise is inevitably mixed. This is important in the 

process of building a system that recognizes real-world sound 

system. Moreover, sounds generated when the equipment is operated 

tend to repeat slightly different sounds while being similar. Given all 

these considerations, it was judged that it was not efficient to 

separate/recognize these sounds by creating a single large neural 

network. 

In this situation, we considered how real people perceive sound. In 

the end, people usually listen to a variety of sounds at the same time, 

but when analyzing them specifically, they tend to focus on one sound. 

This is because in all cases the same model can be used if individual 

sounds are classified as sounds of a particular equipment and other 

noise. 

For this reason, the system was implemented by building and merging 

multiple simple independent artificial neural networks, which are 

solely responsible for individual equipment, using the characteristics 
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of overlapping sounds that retain their own characteristics when 

multiple sounds were added. 
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Chap 3. Development of the monitoring system  

 

3.1 Hardware of monitoring system 

In this chapter, we describe the creation of a real monitoring system 

and explain how we obtained the data required. We explain the type 

of information obtained through this recording process and describe 

the results from analyzing it through a given algorithm. 

The process begins with recording sound from a workspace. The 

detailed specification of the recording device (Respeaker Mic Array 

2.0) is given in Table 2. Information of target devices is as shown in 

Table 3 and example of the recorded signal is shown in Figure 22. 

The number of outputs from the mic array is five: Four signals are 

the raw signals from each mic, and the fifth is output by the digital 

signal processor. Omnidirectional mics are used, so a phase 

difference exists that depends on the time differences in arrival and 

the received signals are almost identical. 
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Table 2 Specification of mic array 

Specification Value 

Name Respeaker Mic Array 2.0 

No. of Mic 4 (Output: 5ch) 

Sensitivity 26 dBFS (Omnidirectional) 

Diameter Φ70 mm 

Max sample rate 48 kHz 

Digital signal processor XMOS XVF-3000 

Recording Program Audacity 2.3.3 

Appearance of mic array 
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Figure 22 Signals received and processed from the by mic array 
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Figure 23 Operating sounds from the target devices after 

processing by STFT and log-mel spectrogram. 
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Table 3 Monitoring target device 

Name 
Intensity  

of sound 
 

Bandsaw 80 dBA 

 
 

Drill 65 dBA 

 
 

Pump 87 dBA 

 
 

Turning 95 dBA 

 
 

※ Intensity of background sound: 55 dBA 
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3.2 Training with actual data 

 

A bandsaw, a drill, a pump, and a turning were selected as targets for 

monitoring. These devices were placed in the laboratory in arbitrary 

positions. Figure 23 shows a recording results of their operating 

sounds post-processed with STFT and log-mel spectrogram.  

To make the data set for training, recording was performed according 

to the scheme in Figure 24 and Table 4. Two mic arrays were 

installed, and two signals were collected from each: the raw signal 

from mic 1 and the digital signal processor output. Recording lasted 

800 sec and recorded sound whose total length is 3200sec was 

divided the results into 3200 files of 1 sec duration each. To ensure 

variety in the data, the mic arrays were installed at arbitrary locations. 
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Figure 24 Experimental setup for acquiring sample data  

to train the monitoring system. 

(a) The times at which the devices were operated.  

(b) The position of each device. 
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Table 4 Specification of dataset for data training 

Specification Value 

Total number of data  

(recording time) 
3200 files (800 sec) 

Data format .wav file with 1 sec length 

Number of target device 4 (bandsaw, drill, pump, turning) 

Number of channel 
4 (2ch per each mic array and  

2 mic arrays) 
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Figure 25 Results of operation monitoring 
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Based on that recorded sound, monitoring system was trained. Figure 

25 shows the results of using the system to monitor the pump and 

turning: The system was aware of the sound of the device and could 

detect that it was operating without problems when two devices were 

operating simultaneously or when the devices were operating with 

noise (such as a person clapping). 
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3.3 Performance evaluation of monitoring system 

 

To evaluate the performance of the system, test data set was created 

according to the scheme in Figure 26 and Table 5. As before, two 

mic arrays were installed, and two signals from each (the raw signal 

from mic 1 and the digital signal processor output) were recorded for 

160 sec, giving a total of 640 sec of recorded sound. The data were 

divided into 640 .wav files of 1 sec duration each. To ensure variety 

in the data, the mic arrays were installed in new, arbitrary locations. 

Performance of the monitoring system was evaluated by comparing 

the results for this test set to the operational scheme; performance 

was defined as the proportion of predictions that matched the 

operational status of each device. 
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Figure 26 Experimental setup for acquiring the test data set for 

evaluating the monitoring system. (a) The times at which the 

devices were operated. (b) The position of each device. 
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Table 5 Specification of standard data set 

Specification Value 

Total number of data  640 files (160 sec) 

Data format .wav file with 1 sec length 

Number of target device 
4 (bandsaw, drill, pump, 

turning) 

Number of channel 
4 (2ch per each mic array and 2 

mic arrays) 
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The performance results are shown in Figure 27. The accuracy of 

the monitoring system was approximately 70%, 53%, 95%, and 91% 

for the bandsaw, drill, pump and turning, respectively. This shows 

that the system could recognize the sounds of the bandsaw, pump, 

and turning well but could not recognize the sound of the drill. This 

is because the drill was very quiet, so the CNN did not properly 

extract its characteristics during the training process; the sound of 

the drill was disguised by other device sounds even when it was 

operating. 
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Figure 27 Performance of the monitoring system based on real data  

(Training data set consisted of 3,200 samples over a target 

frequency range of 50–7,000 Hz) 



 

 54 

3.3.1 Recognition performance at the different mic position 

The intensity of sound decreases in proportion to the square of the 

distance. This shows that the location of the mic and the resulting 

distance change from the music source are closely related to the 

strength of the signal input through the mic. This means that when 

the various sounds are combined, location of mic can be important 

variable that can directly affect to recognition performance. 

To deduce the relation between location and distance from sound 

source (device), monitoring was executed with 6 different point and 

8 different operation condition for 10 sec each, total monitoring time 

was 480 sec. Detail condition is as Figure 28 and the results are as 

shown in Table 6. 
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Figure 28 Performance test with different mic position 

 

Table 6 Recognition performance with different mic position 
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3.3.2 Recognition performance with different operation mode  

  

Device can operate differently depending on its operating mode and 

environment. It means, device can emit the different operation sound. 

Existing methods of monitoring responding to specific conditions 

often fail to function properly due to changes in these signals. 

However, for monitoring systems based on artificial intelligence and 

CNN, monitoring is possible even if there are some changes in signal. 

 

To check the recognition performance in these situations, monitoring 

was executed for bandsaw at the different situation, with 2 operation 

speed (130 m/min, 200 m/min) and 2 materials (wood, NC nylon). 

Recognition accuracy was 92% and detail result was same as Figure 

29.  
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Figure 29 Bandsaw operation monitoring with different operation 

environment  
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3.4 Enhancement of performance 

3.4.1 Modifying target frequency range 

  

 

To increase the recognition rate for the device, changing the 

frequency targeted for monitoring is tried. Figure 30 shows the 

results after conversion the sound used in the test data set to the 

frequency domain using STFT. The operating sound of device is 

usually concentrated at a specific frequency, and the performance of 

the monitoring system should improve if the system is set to focus 

on that frequency. In the case of the bandsaw, the target frequency 

range was changed from 50 – 7,000 Hz to 10 – 1,500 Hz, mainly 

because of its distinct characteristics in the low-frequency area, 

below 1,500 Hz. The accuracy of the monitoring system thus 

improved from 71% to 85%, as can be seen in Figure 31. 
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Figure 30 Fourier transformed operating sound 

 

 

Figure 31 Performance evaluation of monitoring system with 

different target frequency ranges (left) 50 Hz ~ 7000 Hz and 

(right) 10 Hz ~ 1500 Hz 
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As can be seen above, performance can be improved just by changing 

the frequency range. To see how the performance changes due to the 

frequency range change are shown, experiments were conducted in 

more diverse frequency areas, and the results were same as Figure 

32.  Based on the results of the experiments shown in Figure 33 the 

values were estimated as three dimensions to see the trend. 
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Figure 32 Monitoring accuracy with different frequency range 
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Figure 33 Estimated accuracy with various frequency range 
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3.4.2 Enhancement of performance: Various neuron network 

 

As mentioned in Section 2.7, this monitoring system uses a method 

of converting 1D data of 16,000 Hz based on time-magnitude into 

time-frequency-magnitude-based 2D data using Fourier Transform 

and Log-mel spectrogram, which is classified using artificial neural 

networks. Artificial neural networks play a role in classifying 2D data, 

and they use simple CNN like Figure 19, but it is safe to use other 

artificial neural networks that classify existing images. So in this 

section, Comparing performance was executed using other neural 

networks with more complex structures that are mainly used for 

image classification. The neural networks used here are simple CNN, 

ResNet-19, ResNet-50 and GoogLeNet. 

Each neural network was used for bandaw monitoring among 

standard files and the target frequency domain was 50 Hz to 7000 

Hz. 

 

As Figure 34 shows, the monitoring performance of each network 

was 71%, 77%, 77%, and 79%, respectively, confirming that more 

complex networks could be improved, but not significantly. 
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Rather, considering the computational speed and learning volume of 

each network, and the size of the network, we could see the 

importance of selecting the appropriate network. 
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Figure 34 Accuracy of bandsaw monitoring  

with various neuron network 

 
Table 7 Test result with various neuron network 

Network 
Size of 

network 
Input data 

Classify time 

(640 images) 

Simple-CNN 0.5 MB 
40x98x1 

Value 
8.0 sec 

ResNet-18 40 MB 
40x98x3 

RGB image 
21.9 sec 

ResNet-50 86 MB 
40x98x3 

RGB image 
39.8 sec 

GoogLeNet 22 MB 
40x98x3 

RGB image 
37.5 sec 

 

  



 

 66 

3.4.3 Wavelet transform based monitoring 

In case of log-mel spectrogram, 1-D data was transformed with 2-

D data (time/frequency – intensity) based on STFT. However 

nowadays wavelet transform is often used. The strong point of 

wavelet transform is flexible time-frequency band. Unlike STFT, 

which uses trigonometric functions which make all the bandwidth 

same, wavelet transform has short time-long frequency band at the 

high-frequency range and long time-short frequency band at the 

low-frequency range, so wavelet transform can take advantage of 

the signal's characteristics better. Although it has the advantage of 

being able to better understand the characteristics of signals, it also 

has the disadvantage of increasing computation. 

Using wavelet transform, 1-D data can be transform to 2-D data as 

shown in Figure 35 and training with existing simple CNN structure 

was executed. These trained network shows the 74% accuracy. It 

means just using wavelet transform performance can be improved 

from 70% to 75%. And these wavelet transformed data also trained 

with ResNet-50, more complex neural network, and recognition 

performance can be improved to 82.5% Detail result is as shown at 

Figure 36 
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Figure 35 STFT based data process and wavelet transform based 

data process 

 

 

 

 
Figure 36 Recognition performance with wavelet transform 
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3.5 Virtual data set 

 

Sounds have the characteristic of being able to preserve their own 

information independently while overlapped. This means that it is 

possible to create a new virtual data set with combined, simple, 

mechanical sounds by combining .wav files. The advantages are that 

any size data set can be created, a data set can be created for a 

situation that is difficult to realize, and it is easy produce a new data 

set because it requires only recording the machine's operating sound 

rather than reproducing multiple situations.  

Figure 37 shows the process of creating a virtual data set and the 

factors to consider. Using this process, virtual data sets were made 

for various situations by combining the operating sounds of the 

machines that we wanted to monitor.  
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(m: no. of devices to be monitored) 

Process 1) Pooling the sample operation sound –  

(p: no. of sample sound (Augmentation method 1)) 

𝑃𝑖 = {𝐷1, 𝐷2, … , 𝐷𝑝) (𝑖 = 1,2, … , 𝑚)  ........................................................................... (14) 

(Di=Sample operation sound of device i, 16000Hz, 1sec) 

 

Process 2) Extracting the sample from the pool 

𝑆𝑝𝑟𝑒−𝑖 = Rand(𝑃𝑖)𝑜𝑟 
𝑅𝑎𝑛𝑑(𝑃𝑖)

max (𝑅𝑎𝑛𝑑(𝑃𝑖))
 𝑜𝑟 

𝑅𝑎𝑛𝑑(𝑃𝑖)

max (𝑅𝑎𝑛𝑑(𝑃𝑖)
× 𝑟   ............................. (15) 

 

(Rand(X): Randomly extract the elements from the set X) 

(ri: Random value between 0 ~ 1) 

Value of Si can be decided by setting of virtual data composition  

 

Process 3) Cutting the extracted sample and paste 

𝑆𝑖(𝑥) = 𝑆𝑝𝑟𝑒−𝑖(x + b − a) (𝑥 = 𝑎, 𝑎 + 1, … , 𝑎 + 𝑠𝑖 − 1) 

𝑆𝑖(x) = 0 (x = 1,2, … , a − 1, a + 𝑠𝑖, a + 𝑠𝑖 + 1, … ,16000)  ............................... (16) 

 

si: random integer between 1 and 16000  

(size of extraction) 

a,b: random integer between 1 and (16000- si) 

(position of extraction and paste) 
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Process 4) Guide generation 

(gv,i: Random value between “0 ~ 1”) 

(gm: Random value between “0 ~ (2m -1)” or “1 ~ (2m -1)”) 

Via binarizing the gm, value of gm,i can be defined. If you want to use 

the data with the zero sound, value of gm can be define with random 

value between “0 ~ (2m -1)”, but if you do not want, , value of gm 

can be define with random value between “1 ~ (2m -1)”. 

 

Process 5) Composition of extracted data 

(j: no. of data at the virtual data set) 

𝐷𝑖 = {𝐶𝑖|𝐶𝑖 = 𝐶𝑝,𝑖  𝑜𝑟 
𝐶𝑝,𝑖

max (𝐶𝑝,𝑖)
 𝑜𝑟 

𝐶𝑝,𝑖

max (𝐶𝑝,𝑖)
× 𝑟} (𝑖 = 1,2,3, … , 𝑗) 

when 𝐶𝑝,𝑖 =  ∑ 𝑔𝑣,𝑖 × 𝑔𝑚,𝑖 × 𝑆𝑖
𝑚
𝑖=1  (𝑖 = 1,2, … , 𝑗)  ............................................. (17) 

(r: Random value between 0 ~ 1) 

 

Value of Ci can be decided by setting of virtual data composition  

 

Process 6) Adding extra factors like background noise 

𝑉𝑖 = {𝐴𝑖|𝐴𝑖 = 𝐶𝑖 + 𝐵𝑖} (𝑖 = 1,2,3, … , 𝑗)  .................................................................... (18) 

(Bi: Background noise data) 
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The following items were considered in the process:  

(Factors 1)  

The number of samples of data in the sound pool 

 

(Factors 2)  

Whether to modify the intensity of the extracted samples:  

no modification, modification to the same intensity, modification to a 

random intensity 

  

(Factor 3) 

Length of sound to be cut and position to be paste 

 

(Factors 4) 

Whether to include a sample with no sound (all device off) 

 

(Factors 5) 

Whether to modify the intensity of the combined sample: no 

modification, modification to the same intensity, modification to a 

random intensity 

 

(Factors 6)  

Whether to include a background sound.   
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Figure 37 Schematic of the creation of a virtual data set for training 
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The performance of the monitoring system using the virtual data set 

under the conditions listed in Table 8 is as shown in Figure 38. The 

accuracy of the monitoring system was approximately 87%, 59%, 

97%, and 99% for the bandsaw, drill, pump and turning, respectively. 

Thus, the monitoring system trained with the virtual data set 

operated just as it had when it was trained with real recordings. The 

performance for some devices improved by about 10%. However, for 

the drill, the monitoring performance was poor even with the virtual 

data set. 

 



 

 74 

Table 8 Specification of the virtual dataset  

Specification Value 

Raw data in the sample pool 
10 files per device (1 sec per 

file) 

Total data  2,999 .wav files 

Intensity of raw data Modified to the same intensity 

Zero-sound sample Excluded 

Intensity of combined data No modification 

Background sound 
Recorded sound when all 

devices are off 

Frequency range 
10 – 1,500 Hz (bandsaw) 

50 – 7,000 Hz (other devices) 

 

 

 

Figure 38 Performance evaluation of monitoring system based on 

virtual data set 
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3.6 Measuring intensity of sound based on masking 

 

In the case of operating sound from a mechanical device, signals are 

produced across the wide frequency bands, not in narrow frequency 

bands, which often have waveforms similar to noise, so it is not easy 

to separate sounds in the traditional way of separating sounds such 

as TDOA, beamforming, etc. Therefore, there is a limit to measuring 

the intensity of a particular sound. 

In this section, measuring the intensity of operation sound from 

specific devices by applying masking to the algorithm that recognizes 

sound will be tried. 

The principle used in this attempt is the overlay of sound. In other 

words, it is to manufacture a mask that reverses the sound of the 

machine that is intended to obtain intensity, and apply the mask from 

a weak point to a strong point to check whether the sound is 

recognized. When mask is applied and the monitoring system 

recognizes that there is no more operating sound of a particular 

equipment in the sound applied, the applied mask strength is defined 

as the intensity of the sound of specific devices. The detailed 

algorithms are as in Figure 39. 
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Figure 39 Concept diagram of intensity measuring 
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Method of producing Mask is as shown in Figure 40, and the detailed 

formula for this is as follows. 

M(b) =
(max(𝑀𝑝(𝑏))−𝑀𝑝(𝑏))

𝑁
 (𝑀𝑝(𝑏) = ∑ (𝑆(𝑡 × 𝑓, 𝑏) × 𝑓)

𝑡=1/𝑓
𝑡=0    .................. (19) 

 

Relative intensity (I) can be expressed as 

I =
𝑛

𝑁
   ......................................................................................................................................... (20) 

 

M(b): mask  

S(t,b): Intensity value from log-mel spectrogram 

t: time 

b: frequency band 

f: frame length 

N: mask division rate 

n: no. of mask applying until trained net classified as “off” 
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Figure 40 Fabrication of mask using existed operation sound data 

 

 

 

Figure 41 Applying mask with intensity value (a) 0 (b) 0.2 (c) 0.5 
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Measuring the intensity of pump operation sound using mask was 

tried. Since it is impossible to control the sound intensity of the pump 

itself, the experimenter took the mic array and moved away from the 

pump, then moved back to the pump, and measured the strength of 

the signal received by the mic array. Since the strength of sound is 

inversely proportional to the square of distance, the distance from 

the sound source pump and the strength of the sound are directly 

related. As can be seen in Figure 42, it was possible to confirm that 

the strength of the sound varies with the distance from the pump. 

 

 

Figure 42 Measure the intensity of sound with different distance 
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Starting from the front of the pump, the change of sound was 

measured by moving one step at a time. At each step, mic array 

stayed for at least 5 seconds, and the distance between each step and 

step was specified at 0.45 m. 

There was some error at the measured intensity at each step, but 

basically it was confirmed that when mic array move further from 

source, signal strength perceived by the mic array was getting 

smaller. 

 

Figure 43 Measure the intensity of sound: step test 
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In order to verify the performance even operation sound of other 

devices was interrupted, the experiment was conducted while turning 

and bandsaw operating at the same time and the results were the 

same as Figure 44. As can be seen in Figure 44 regardless of whether 

turning and bandsaw were operated, recognized intensity of the pump 

sound was confirmed to be higher as the distance smaller and at the 

moment the pump operation was stopped, the perceived sound 

intensity was zero, even though other equipment was operated and 

emitted sound. 

 

Figure 44 Measure the intensity of sound with different devices 
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Chap 4. Applying to real factory 

 

To verify the performance of the currently developed monitoring 

system, the application was attempted in two environments similar to 

the actual factory, not in the laboratory environment. 

Because the system monitors the manufacturing process by 

determining whether a device is being used, it was decided that the 

system should be conservative and indicate only when device was 

definitely being used. As can be seen at the Figure 45, due to the 

characteristics of CNN, phase can be divided with “clearly predicted 

section” and “not clearly predicted section”, and most errors 

appear in “not clearly predicted section”. To guarantee the 

robustness, based on the predicted results obtained by the multi mic 

array, it was decided to exclude errors by indicating only when the 

average value of predicted probability from multi mic array that a 

device was on was “limit value” or higher 
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Figure 45 Clearly predicted section / not clearly predicted section 
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4.1 Case – Workshop with hand-operated device 

 

The first case of real monitoring was performed in a workshop with 

hand-operated device. The workshop was a space where students 

could freely create their own prototypes, and it was characterized by 

a variety of noises, including a fan for air conditioning. 

The target devices were a turning, a bandsaw, and an airgun. All 

device had no electrical components except a simple power switch, 

and none of the device were smart devices. In this experiment, the 

air gun was the focus because of the very loud and unusual sound it 

emits and the fact that it is typically used between process steps for 

removing burrs or cleaning parts. 
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Figure 46 Workshop with hand-operated device 

 

Table 9 Detail information about monitoring 

Specification Value 

Monitoring period 800 sec 

Neuron network Simple CNN 

Limit value 0.9 

Dataset pool 90 sec per devices 

Size of virtual dataset 9,999 .wav files 
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The monitoring results are shown in Figure 47. As can be seen, the 

operational status of each device was monitored accurately. 3 

devices were monitored with high accuracy, 98% ~ 100%.  In 

particular, it was shown that it was possible to infer the actual 

operation time of the machine in general, and that it was also possible 

to use this result and monitoring system to monitor the entire process. 
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Figure 47 Monitoring results in a workshop with hand-operated 

devices 
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As a result of monitoring, it was possible to determine when the 

actual equipment was in use. Figure 48 is a result of analyzing how 

each process of this manufacturing process was conducted based on 

the monitoring results. As can be seen, it showed that even for hand-

operated devices that do not have any IoT devices, the work can be 

linked to a central system and computerized. In other words, using 

the developed monitoring system, existing equipment could also be 

"connected" and "smart device" using mic array installed outside the 

equipment without extra equipment installation. 

 

 

Figure 48 Process monitoring result of  

workshop with hand-operated devices 
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4.2 Case – Factory with a Computer Numerical Control 

(CNC) machine 

The other case of real monitoring was conducted at a factory that 

makes actual products using computer numerical control (CNC) 

machines, which are most commonly used in product manufacturing. 

The entire monitored CNC machine was controlled by a computer 

with firmware. It was impossible to measure and transmit the status 

of the device because no IoT-related functions could be performed 

separately outside of the machine's own system. In addition, because 

of the characteristics of the firmware provided by the manufacturer, 

it was impossible for the user to customize it to identify or transmit 

the status of the device. 
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Figure 49 Factory with a Computer Numerical Control (CNC) 

machine 

 

Table 10 Detail information about monitoring 

Specification Value 

Monitoring period 1,524 sec 

Neuron network ResNet-18 

Limit value 0.7 

Dataset pool 90 sec per devices 

Size of virtual dataset 2,999 .wav files 
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The results of monitoring are shown in Figure 50. As can be seen, 

the operational status of each device was monitored accurately. 3 

devices were monitored with high accuracy, 98%. The process being 

performed was drilling, but it was impossible to monitor the use of 

this device because it emitted no sound. However, it was possible to 

monitor the CNC machine's Automatic Tool Changer (ATC), which 

only operated when the machine was operating. There were mis-

prediction between ATC and airgun due to the similarity of operation 

sound of these devices.  
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Figure 50 Monitoring results at a factory  

with a computer numerical control (CNC) machine 
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Due to the nature of the process, CNC Machine itself is a process in 

which the sound is very small compared to the ambient noise, so it is 

impossible to monitor with sound alone. ATC and airgun were used 

to monitor this indirectly. ATC is a device that moves when the CNC 

is operated. However, due to the characteristics of ATC, it is an 

instrument that operates eventfully during the process, so there is a 

limit to knowing the entire CNC machine operation time. In addition, 

there is no guarantee that the CNC will operate between the time and 

time when the ATC is activated. 

So the device that I focused most on during this process monitoring 

is airgun. airgun is a device used mainly for cleaning. In order to carry 

out the process accurately, it must be operated before and after CNC 

operation. This means that the CNC will not run while the airgun is 

running. 

Both ATC and airgun are devices that utilize compressed air, and 

have similar operating sounds. Thus, errors may occur in the 

recognition of mechanical sounds in both equipment. However, due to 

the characteristics of ATC that operates only during CNC operation 

and the characteristics of Airgun that operates only when CNC is not 

operated, if the two equipment is judged to have been operated at the 

same time, error handling was considered as an error. 
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(However, the airgun may be used externally for cleaning other 

devices while using CNC equipment, but this is to be treated as an 

exception.) 

If it is determined that the airgun and ATC are operated 

simultaneously, 

1) Short use within one or two seconds is considered ATC, 

considering the characteristics of the airgun that is not used for a 

short period like one or two seconds. 

2) If the use is carried out in a long section for more than 3 seconds, 

it is considered as airgun has been operated, and if it is determined 

to be ATC operation during that time, it shall be deemed that it has 

not been operated. 

This is used to infer the hours of use of CNC equipment as shown 

below. 

1) If the airgun operated between the ATC operation hours, the CNC 

equipment is assumed to have not been operated. 

2) If the airgun was not operated between the ATC operation hours, 

the CNC equipment is estimated to have been operated. 

3) However, if there was a gap of more than 100 seconds between 

the ATC operating hours, the draft assumes that the CNC equipment 

was not activated. 
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The CNC operating time estimates in the light of the above principles 

are as shown in Figure 51. The CNC operation itself was not 

monitored, but CNC operating time can be predicted with an accuracy 

of about 92%. 

It also succeeded in identifying how much time each process of the 

corresponding manufacturing process is consuming. 
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Figure 51 Process monitoring result of a factory  

with a computer numerical control (CNC) machine 
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4.3 Case – Factory with aluminum casting process 

The third monitoring site was the aluminum casting process line. The 

monitoring target is three equipment belonging to the line, the first is 

a cooler that cools down the heated die for casting, the second is a 

grinder that removes the burr of manufactured products, and the last 

is a separater that separates the handle of the product from the actual 

product.  

Not only did the plant operate several very loud equipment at the 

same time, but it was also a site where a lot of noise was generated 

due to air conditioning equipment and various working noises. 

The equipment of the plant was very old, and there were no IoT 

functions except simple control panel inside the machine. In addition, 

the factory's methods of work were all dependent on people, so 

simple tasks such as checking the number of works were all carried 

out manually, and simple analyses such as checking the hours of 

operation of equipment could not be performed. 
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Figure 52 Factory with aluminum casting process 

 

Table 11 Detail information about monitoring 

Specification Value 

Monitoring period 2,000 sec 

Neuron network Simple CNN 

Limit value 0.8 

Dataset pool 90 sec per devices 

Size of virtual dataset 9,999 .wav files 
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The operation time of each equipment installed on the manufacturing 

line was as shown in Figure 53. As can be seen in the Figure 53, it 

can be confirmed that each equipment is operated repeatably with a 

constant cycle. It was monitored that after only the cooler operated 

six times alone, all the equipment continued to operate repeatedly 

with a constant cycle. Approximate operating hours were monitored 

using this monitoring system, but not all operating hours were 

accurately captured. In case of separater with 1 second work, some 

errors occurred when some of the working time spanned by two 

frames separated by 1 second. From this, it was shown that 

consideration of the frequency and overall length of the data was 

needed. However, it was possible to determine roughly whether and 

how often the equipment was operating. 
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Figure 53 Monitoring results  

at a factory with aluminum casting process   
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Figure 54 is the result of monitoring the actual process based on 

equipment operation status. Monitoring was carried out from the 

break time (lunch time). Preliminary operation that was only with 

cooler operation and test fabrication was executed. 6 times of 

preliminary operation was monitored as operation of cooler without 

the operation of grinder and separater. After preliminary operation, 

at the 13:21:09, main manufacturing process with operation of cooler 

/ grinder / separater was started and this main manufacturing process 

was also successfully monitored. Exact number of processes could 

be counted and process time for each process can also be checked. 

This process data can be used as the data for process optimization in 

the future. 

In this very noisy environment, for the actual product production 

process, this monitoring system has demonstrated that it can be 

successfully monitored. 
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Figure 54 Process monitoring result of a factory  

with a factory with aluminum casting process 
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Chap 5 Application 

 

5.1 Application: Sound-based manufacturing process 

monitoring system 

 

Application of this research is a sound-based comprehensive 

process monitoring technology. Install a mic array near the line 

where the process is being carried out, listen to the operation sound 

in real time, and upload it to the central cloud server using the 

Internet. It is also possible to analyze the uploaded voice signal to 

identify which equipment is currently operating, to store the history 

of the operation, to determine how the equipment was operated, and 

to monitor the entire process. Especially for this purpose, it is 

sufficient to install only microarray near the equipment without 

having to install a separate device on the equipment itself, so it is 

possible to make smart devices for outdated equipment at low cost, 

obtain process information, and conduct separate research. 

Figure 55 is the example of sound based manufacturing process 

monitoring system. 
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Figure 55 Example of Sound-based manufacturing process 

monitoring system 
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Monitoring the operation of a CNC machine's ATC showed that it is 

possible to monitor events based on instantaneous sound as well as 

continuous operating sound. Thus, further research is planned to 

improve the stability of the processes in a factory by continuously 

monitoring for various emergency situations. 

When using mic array, it is possible to derive the direction where 

sound occurred from by using the phase difference caused by Time 

Delay of Arrival (TDOA) caused by the space between each mic. 

Figure 56 shows the location of a three-dimensional mobile device 

(drone) by identifying the location of the sound source with the mic 

array used at the monitoring system. This means that the location of 

the sound source can be sufficiently determined by the using mic 

array, which shows that it is possible to recognize a particular sound 

that can occur in an emergency situation setup by combining multiple 

mic arrays and to track where it originated when the sound is 

recognized. 
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Figure 56 Drone position detection by sound analyzing 
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Chap 6 Conclusion 

 

Here a system for monitoring the operational status of multiple 

devices operating simultaneously by classifying their operational 

sounds using a CNN was developed. 

When the CNN was trained with recorded operating sounds, the 

system recognized the operational status of the device with an 

accuracy of approximately 71–92%. However, it could not 

appropriately monitor quiet devices, such as a drill. After we modified 

the targeted frequency range, accuracy improved to 71% to 85% for 

the bandsaw. When trained with a virtual data set created by 

combining 1 sec sound files from each device, the system had an 

accuracy of approximately 87–99%. 

To verify that the monitoring system worked without problems in an 

actual working environment, monitoring system was tested in a 

workshop and a factory. When the system was trained using only 

recorded sounds rather than a virtual data set, it detected the 

operational statuses of a devices only with the mic array at the 

environment with loud noise. 
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초    록 

스마트공장은 4차 산업혁명을 주제로 한 제조공정 분야의 주요 

키워드다. 스마트 팩토리를 실현하기 위해서는 모든 기기를 중앙집중식 

시스템과 연결된 스마트 기기로 만들어 실시간으로 정보를 교환할 수 

있도록 하는 것이 필수적이다. 소리는 다양한 장치의 상태 정보를 

동시에 담을 수 있고, 마이크만 사용하여 기기 외부에서 쉽게 녹음할 수 

있기 때문에 기기를 스마트 기기로 만드는 효율적인 수단이 될 수 있다. 

본 연구에서는 소리 분석을 통한 멀티 디바이스 작동 모니터링 시스템을 

개발하였다. 소리 획득을 위한 마이크를 기기 외부에 설치하고 여러 

기기의 소리를 동시에 녹음했다. 로그멜스펙트로그램과 합성곱 

신경망(CNN)으로 녹음된 소리를 분석해 71~92%의 정확도로 3개 

장치의 작동 상태를 탐지할 수 있었다. 성능 향상을 위해 강도가 다른 

개별 기기 작동 사운드의 구성을 통해 가상 데이터 세트를 생성하여 

학습시켰으며, 이를 통해 정확도를 87%~99%까지 높일 수 있으며, 

필요한 사운드 데이터 양을 줄일 수 있다. 개발된 시스템은 수작업 

장치를 사용한 작업장 및 CNC 기계가 설치된 공장 환경, 알루미늄 

주조공장 등에 적용되어 성공적으로 모니터링을 수행하였다. 

주요어 : 다장비 모니터링, 음성 기반 모니터링, 합성곱 신경망 (CNN), 

스마트 팩토리 
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