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Abstract

Zero-Shot Learning for Transfer of a Throwing Task

via Domain Randomization

Sungyong Park

Department of Mechanical & Aerospace Engineering

The Graduate School

Seoul National University

Deep reinforcement learning (DRL) on continuous robot control has received a wide range of

interests over the last decade. Collecting data directly from real robots results in high sample

complexities and can cause safety accidents, so simulators are widely used as efficient alternatives

for real robots. Unfortunately, policies trained in the simulation cannot be directly transferred to

real-world robots due to a mismatch between the simulation and the reality, which is referred to

as ‘reality gap’. To close this gap, domain randomization (DR) is commonly used. DR guarantees

better transferability in the zero-shot setting, i.e. training agents in the source domain and testing

them on the previously unseen target domain without fine-tuning. In this work, the positive in-

fluence of DR on zero-shot transfer in Sim2Sim setting with an object throwing task is presented.

Keyword : Robot manipulation, Reinforcement learning, Zero-shot learning, Domain randomiza-

tion

Student Number : 2019-21027
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1
Introduction

With advances in deep learning, “deep reinforcement learning” (DRL) has become applicable

to high-dimensional problems. DRL has recently yielded remarkable results such as achieving

superhuman performances in games [1,2] and training cooperative multiple agents [3]. Especially,

DRL has succeeded in learning complex robotic control tasks which were previously regarded as

unsolvable due to continuous state/action spaces [4, 5]. Over the last decade, a number of DRL

algorithms have been suggested to learn continuous control policies. However, deploying DRL

methods directly in the real-word robot is not appropriate; their inherent high sample complexity

slows the entire training time, and exploratory actions of the early learning phase may cause

safety accidents.

Training robot control tasks in the simulation is one of the promising approaches that avoid

some problems in real-robot learning, and a lot of simulators are widely used as efficient alter-

natives for real robots. With physically well-modeled simulators, agents can acquire diverse and

vast training data at a low cost. Additionally, since simulators can run multiple robot agents

simultaneously, they can learn control policies drastically faster than real-world robots.

Unfortunately, policies trained in the simulation cannot be directly transferred to real-world

robots due to unavoidable limitations of the simulator’s precision; model discrepancies between

the simulation and real-world dynamics always exist. This model mismatch is referred to as the
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“reality gap”.

To tackle this problem, a popular method is to diversify simulation environments in which

an agent is trained. By choosing a different value of simulation parameters (e.g. mass, friction)

randomly at each episode, an agent can be exposed to various learning environments, which is

referred to as domain randomization (DR). With DR, an agent can be induced to learn a general

policy that works in a wide range of environments, including real-world robots. Generally, DR is

regarded as one of the reliable methods for the zero-shot domain transfer, where a policy optimized

in the source domain (e.g. simulation) is tested on the target domain (e.g. real world) without any

fine-tuning [6, 7].

If the source domain is the simulation and the target domain is the real-world robot, it is

referred to as the sim-to-real (Sim2Real) transfer [8]. We can also set the sim-to-sim (Sim2Sim)

transfer setting, both the source and target domains are the simulation but with different values

of domain parameters. In this work, using the RL algorithm DDPG [9], the positive influence

of DR on zero-shot transfer in Sim2Sim setting with an object throwing task is presented. The

throwing task is rarely selected for evaluating DR because it includes prehensile manipulation

involved with contact dynamics which hinder learning.

Further, I investigate the robustness of policies learned with DR against ‘unmodeled’ effects,

i.e. physical attributes that are not modeled in the simulator. Inevitably, due to the inherent

imprecision of the simulator, there always exist unmodeled effects and they decrease transfer

performances to the real world. In Sim2Sim setting, unmodeled real-world effects can be considered

as domain parameters that are not randomized in the source simulation during the training phase

and vary only in the target simulation [10].

1.1 Literature review

In [6,8], they use the uniform sampling to choose some parameter values to instantiate the source

domain, such as the textures of objects or the height of the table. This DR method is called

‘uniform domain randomization’ (UDR). It is a simple idea and easy to implement, but it shows

reasonable performances in real-world rollouts when compared to simulation results.

In EPOpt [10], they apply the adversarial training idea to DR and change the way training

2



data are selected. When the agent is trained, the agent interacts with environments instantiated

from domain parameters sampled from the Gaussian distribution and outputs trajectories. At

every iteration, EPOpt determines which trajectories are used to train the agent and selectively

chooses trajectories that present low returns from total trajectory data. This technique achieves

more generalized policy in simulation target domains and high zero-shot performances. UDR

and EPOpt are similar in that they don’t update their distributions over domain parameters;

UDR maintains the uniform distribution in the whole training phase and EPOpt the Gaussian

distribution. However, EPOpt introduces its own extra trajectory-sampling strategy and it leads to

a more robust policy. [10] also investigates the influence of EPOpt on ‘unmodeled’ effects. Applied

to Sim2Sim transfer setting, EPOpt also shows better zero-shot performances to unmodeled effect.

In ADR [5], they introduce a set of neural networks referred to as ‘SVPG particles’ [11, 12].

They output domain parameter values, in other words, they output randomized environments

where agents are trained. SVPG particles are updated to output more difficult environments

which make agents hard to achieve high performance. The difficulty is measured by introducing

the reference environment and the discriminator neural network. The discriminator is updated to

discriminates between trajectories from randomized environments and trajectories from reference

environments. SVPG particles are more rewarded when they output the environment which causes

the wrong prediction from the discriminator. This mechanism makes the RL agent be exposed to

more difficult environments and induces it to learn a more robust policy. Similar to EPOpt, ADR

also uses the adversarial training method. However, the different point from EPOpt is that ADR

updates the way domain parameters are sampled; ADR selects environments where trajectory

data are sampled, not trajectories directly.

In this paper, I use UDR to train robust policies and to compare them to policies trained

without any DR methods.
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1.2 Thesis contribution

In this paper, I present several results as follows:

1. The result shows that policies trained with DR show higher zero-shot performances (i.e.

more generalized performances) over target domains.

2. I succeed in learning an object throwing task, which is rarely selected for evaluating DR

because of its prehensile manipulation involved with contact dynamics which hinder learning.

3. Referring to [10], I build the experiment setting to realize ‘unmodeled’ effects in the simu-

lation and the result shows that DR also outputs policies robust to unmodeled effects.

1.3 Thesis outline

The remainder of this paper is written as follows. In Chapter 2, I introduce the background

knowledge related to RL in order to help readers to understand the rest chapters, including the

explanation about notations. In Chapter 3, I elaborate the RL algorithm DDPG which I use to

train the policy in this paper. In Chapter 4, I explain the concept of DR method and how it

works. The entire setup for the robot simulation experiment is concretely described in Chapter 5

and simulation results are in Chapter 6. Chapter 7 contains the conclusion.
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2
Background

In this chapter, I describe notations used in the remainder of this paper and introduce background

concepts related to RL underlying through this paper.

2.1 Reinforcement learning (RL)

Reinforcement learning (RL) is one of the promising machine learning methods, training the

agent to maximize total rewards which it obtains from the outside environemnt. RL assumes the

environment to be Markov Decision Process (MDP) with the tuple M = (S,A, P,R, p0, γ, T ).

S and A denote the continuous state space and the continuous action space, respectively. The

dynamics of the environment is represented by the state-transition probability P : S×A×S → R+.

For every timestep, an agent gets a reward from the predefined reward function of the environment

R : S×A→ R. A distribution of initial state is denoted as p0 : S → R+ and γ denotes the discount

factor. I set every episode to terminate at a fixed horizon T . An action at ∈ A is drawn from a

policy π(at|st) given a state st ∈ S, denoted as at ∼ π(at|st), and a state st+1 ∈ S follows the

state-transition probability, denoted as st+1 ∼ P (st+1|st, at). The goal of an RL agent is to find

the optimal policy parameterized by θ that maximizes the expected discounted sum of rewards
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over trajectories τ = (s0, a0, ..., sT , aT ), i.e. the policy maximizes the objective as follows:

Eπθ [R(τ)] = Eπθ

[
T∑
t=0

γtR(st, at)

]
(2.1)

where R(τ) is the entire trajectory reward and R(st, at) the single-step reward.

2.2 Actor-critic structure

The actor-critic structure is the basic idea of a large number of RL algorithms. The actor neural

network suggests the way the RL agent acts; it refers to the policy π(at|st). The critic neural

network evaluates the action the agent takes; in most cases, it refers to the action-value function

Q(st, at) which predicts the expected return from the visited state and the taken action at a

certain timestep.

2.3 Deterministic policy

The deterministic policy, different from the stochastic policy which represents the probability

distribution over actions given a state, represents the function that outputs a single action value

from the input state. From the point of view of RL, the deterministic policy has several strengths

compared to the stochastic policy. (i) When the gradient of policy weights is calculated (i.e.

policy gradient), the stochastic policy requires the expectation calculation over the state space

and the action space, but the deterministic policy only deals with the state space to calculate

the expectation [13]. (ii) The deterministic policy can convert the on-policy algorithm into the

off-policy algorithm. When the critic is trained, the TD(Temporal Difference) target is used to

form the critic loss, and this TD target is induced by the Bellman equation (Eq. (2.2)).

Qπ(st, at) = Ert,st+1

[
r(st, at) + γEat+1 [Qπ(st+1, at+1)]

]
(2.2)

If the policy is deterministic, we can remove inner expectation over the action space as Eq. (2.3)

and it indicates that we can update the policy with trajectories obtained from different policies [9].

Qπ(st, at) = Ert,st+1 [r(st, at) + γQπ(st+1, π(st+1))] (2.3)

6



3
Deep Deterministic Policy Gradient (DDPG)

In this work, I use an RL algorithm Deep Deterministic Policy Gradient (DDPG) to train policies.

DDPG is a model-free, off-policy algorithm with actor and critic approximated by neural networks.

DDPG can scale to high-dimensional, continuous control problems and it has been one of the

widely popular value-based DRL algorithms.

DDPG adopts two major techniques from Deep Q Network (DQN) [14]. Similar to DQN,

DDPG (i) updates target networks toward original networks slowly, i.e. “soft” target updates and

(ii) uses a ‘replay buffer’ to train agents with temporally uncorrelated state transition samples.

This leads to stable updates of actor and critic without divergence, and DDPG shows good

performances on complex continuous action tasks.

In this chapter, I elaborate on how DDPG works and which techniques are used. Much of this

chapter refers to [9, 13] a lot, including notations.
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3.1 Policy update

DDPG adopts the policy update method from the DPG algorithm [13]. When dealing with con-

tinuous actions, calculating the optimized action value that makes the action-value function max-

imum at each timestep is computationally expensive. Instead, DPG updates the policy according

to the gradient of Q as follows:

θπ ← θπ + αEs
[
∇θπQ(s, π(s; θπ); θQ)

]
(3.1)

where α is the learning rate. With the chain rule, we can divide the gradient of Q into two parts

as follows:

θπ ← θπ + αEs
[
∇θππ(s; θπ)∇aQ(s, a; θQ)|a=π(s;θπ)

]
(3.2)

3.2 Training techniques

In this section, I elaborate on training techniques DDPG uses to achieve stable convergence and

efficient learning.

3.2.1 Target networks

Similar to DQN, DDPG creates target networks for the actor and the critic to calculate the TD

target yi of the critic loss as follows:

Lcritic = Esi,ai,ri,si+1

[
(yi −Q(si, ai; θ

Q))2
]

(3.3)

where yi = ri + γQ′(si+1, π
′(si+1; θ

π′
); θQ

′
). θπ and θQ represent weights of the actor and the

critic. The apostrophe on superscript letters represents the target network.

At the beginning of the training, target networks are copied from their own original actor and

critic as initialization. At every timestep, target networks are updated as follows:

θQ
′ ← τθQ + (1− τ)θQ

′

θπ
′ ← τθπ + (1− τ)θπ

′
(3.4)

where τ � 1. This ‘soft’ target update changes target networks slowly and eventually slows down

the learning process, but it is regarded as the inevitable trade-off in order to increase the stability

of optimization.
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3.2.2 Replay buffer

Since DDPG uses the deterministic policy, it can train agents off-policy. As mentioned in Sec-

tion 2.3, the off-policy algorithm can use transition data generated from past policies to train the

policy that the agent currently follows.

The repository where the past transitions are stored for later updates refers to the ‘replay

buffer’. At every timestep, the transition (si, ai, ri, si+1) is stored to the replay buffer and the

minibatch of transitions is sampled to update networks. If the replay buffer is full, the oldest data

are removed from the buffer. In short, DDPG employs the ‘experience replay’ method by using

the replay buffer as in DQN.

Most optimization algorithms are based on ‘independently and identically distributed’ (i.i.d)

samples; training data have to be sampled independently on other samples and from the unchang-

ing distribution. However, neural networks used in RL are barely exposed to those i.i.d-sampled

data since transitions in trajectories are sequential (i.e. temporally correlated). The experience

replay method can relieve this problem by randomly choosing transitions from random timesteps

as training data.

3.2.3 OU noise

Since DDPG uses the deterministic policy, the policy completely loses the exploration mechanism.

To deal with this problem, authors in DDPG introduce the Ornstein-Uhlenbeck noise (i.e. OU

noise) to the deterministic policy. At every timestep, OU noise is sampled and added to the

deterministic policy. OU noise is well known for its exploration ability when it is applied to the

environment with inertia.
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4
Domain Randomization (DR)

In this chapter, I elaborate on the concept of DR with RL notations and the formula of RL.

The objective of DR is to obtain policies robust to environments where policies have rarely or

even never experienced but are supposed to be applied. If we refer to the environment where

the RL agent is trained as ‘the source domain’ and where the trained RL agent is evaluated ‘the

target domain’, the objective of DR can be rewritten: to obtain polices which are trained only in

source domains, but show high performance over target domains without any additional training

on target domains (or even any extra fine-tuning). We can instantiate various environments by

changing the values of ‘domain parameters’. If we apply trained policies to other domains, we

refer to this as ‘transfer’. Since DR methods transfer the policy to the target domain without any

target domain training data, we refer to this as ‘zero-shot domain transfer’ [5].

10



4.1 Objective function

If we regard domain parameters ξ (e.g. mass, friction coefficient) as random variables, the environ-

ment is instantiated by randomized parameters and thus transition dynamics change; transition

probability is additionally conditioned by ξ, which can be written in st+1 ∼ P (st+1|st, at, ξ). ξ is

sampled from the predefined distribution p parameterized by φ, which can be written as ξ ∼ pφ(ξ).

Thus, the final objective of reinforcement learning with DR is to find the policy parameter θ that

maximizes the expected discounted sum of rewards under pφ(ξ):

max
θ

Eξ[Eπθ [R(τ)]] (4.1)

Eq. (4.1) is composed of two expectation parentheses. Inner parentheses represent the expected

return over policies and this formula with the outermost maximization is exactly same with

the objective function of RL (Eq. (2.1)). However, outer expectation wrapping the original RL

objective changes the goal of the agent; the agent is updated to achieve high performance on

overall ‘source’ domains (the agent can access only to the source domain when the agent is in the

training phase). The policy trained with this modified objective is robust to the variation of the

target domain and shows better zero-shot performances.
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4.2 Uniform Domain Randomization (UDR)

For simplicity, I assume the parameter distribution p as the uniform distribution with predefined

ranges for each parameter. The policy optimization algorithm is DDPG. The whole process of

UDR is shown in Algorithm 1 as follows:

Algorithm 1: UDR

Initialize: policy πθ, replay buffer R

1 for i← 1 to Niteration do

2 ξ ∼uniform(ξlow, ξhigh)

3 build an environment E from ξ

4 for t← 1 to Ntimesteps do

5 generate the transition (st, at, rt, st+1) ∼ E with πθ

6 R← R ∪ (st, at, rt, st+1)

7 sample the transition minibatch T from R

8 θ ← PolicyOptimization(θ, T )

9 end

10 end
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5
Experimental setup

In this chapter, I describe the entire robot simulation experiment setup in detail. As mentioned

earlier, I set the sim-to-sim(Sim2Sim) transfer setting, both the source domain and the target

domain are the simulation but with different values of the domain parameter.

5.1 Robot and task setup

I use MuJoCo physics engine [15] to construct a simulator for the 6-DOF manipulator UR3 and

make an object throwing task environment (Fig. 5.1). A simulation timestep is 0.002 s. I set the

object as a cube with a side length of 3 cm and a container box with a dimension of 20 cm × 20

cm × 15 cm to which the cube is thrown. The position of the container box is fixed as 1.1 m in

the x-coordinate. Initial joint angles for 6 joints of UR3 are [0, -45, -90, -180, -90, 90] degrees by

the order of joint 1 ∼ joint 6.

For simplicity, I just operate joints 2, 3, 4 of UR3 and fix the other joints same as initial

conditions. Rotation of joints 2, 3, 4 is limited within a range of [-90, 0] degrees, [-90, 90] degrees,

[-270, -45] degrees, respectively. Additional saturation is applied when each joint torque exceeds

its motor’s input.

Each training episode starts with grippers gripping the object and grippers are set to release

after 0.5 s.
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Figure 5.1: MuJoCo simulator of UR3 for an object throwing task.

5.2 State and action

Raw observation dimension is 45 comprised of the joint angles, the joint velocities, and the po-

sition and velocity of the object. Observation is converted into 7-dimensional state. The state is

comprised of observation elements corresponding to joints 2, 3, 4 and the gripper translation to

check if it has released the object.

Action is comprised of desired joint velocities of 3 dimension. It is converted into torque by

the internal PID controller. Grippers are opened at a predefined time so the input torques to

grippers are not included in action space.
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(a) (b)

Figure 5.2: Reward shaping : (a) Agents get negative rewards when the cube is too far from the container

box (b) Agents get positive rewards when the cube touches the floor of the container box.

5.3 Reward function shaping

I construct the reward function for the throwing task as follows:

rt = −C1rdist + C2rtouch (5.1)

In Eq. (5.1), rt represents single-step reward at timestep t, rt = R(st, at), and it consists of two

sub-rewards (Fig. 5.2). C1 and C2 are the positive hyperparameters to be shaped. rdist represents

the L2 distance between the cube and the center of the container floor. This sub-reward penalizes

farther distance. rtouch represents the sensor reading which outputs 1 for every timestep when the

cube touches the container floor. This sub-reward encourages the cube to arrive in the container.

rtouch is a bonus reward that is necessary because, without this sub-reward, the agent can get

lower rewards even though the cube gets in the container. For example, a cube thrown directly

before the outer wall of the container in a short time can get higher total rewards than a cube

flying in an arc and falling into the container with a longer time because the latter was penalized

by rdist for its overall trajectories.

15



5.4 Domain parameters

I choose three simulation parameters to randomize: the damping coefficient of the gripper joints,

the damping coefficient of the object and the density of the object.

Even though UR3 grippers have just 2 joint motors to operate, the total grippers are comprised

of several sub-elements and there are 8 other joints so the number of the total joints is 10. They

have the same damping coefficient value.

In the simulator, an object is regarded as a 6-DOF free joint and it also has parameters of joint:

friction loss, damping coefficient, stiffness. I choose the damping coefficient to randomize due to

its dominance against the others; the damping coefficient has a greater effect on the trajectory of

the object than the others.

The parameters above are randomized in the source domain. I also choose the density of the

object as the domain parameter which varies only in the target domain to realize unmodeled

real-world effects. Since I fixed the object shape as a cube with the same side length, the same

density also means the same mass.
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5.5 Policy training scheme

I trained two kinds of policies: the baseline policy (”Baseline”) and the policy with the uniform

domain randomization (”UDR”). The baseline was trained on a single simulator instance, in other

words, default environment dynamics parameters. UDR was trained on randomized simulated

environment instances which are instantiated by sampling parameters uniformly in predefined

ranges at the beginning of every training episode. Randomized domain parameters for training are

defined in Section 5.4. Default parameter setting and predefined ranges are provided in Table 5.1.

Table 5.1: Training parameter setting.

Parameters Default Range

Gripper damping [N·m·s] 1 [0.7,1.3]

Object damping [N·s/m] 5e-4 [1e-4,1e-3]

At the beginning of every rollout, uniform noise u ∼ uniform(0, 0.01) was added to the initial

joint velocities of UR3 to provide an initial state distribution and to avoid the same results when

the same policy is applied. I trained agents with 5 random seeds for each policy (Baseline, UDR).

Each agent was trained for 500 episodes and each episode consists of 1500 timesteps. For the

reward function in Eq. (5.1), I set C1 = 0.1 and C2 = 0.1. If the agent succeeds in throwing the

cube in the container box within the last 10 episodes, the task is considered to be solved and the

training process is finished.
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5.6 Policy evaluation scheme

To test the transfer performance of the baseline and UDR, I set up target domains with 81 different

sets of parameters; 9 gripper damping coefficients are uniformly sampled as [0.2, 0.4, · · · , 1.6, 1.8]

and 9 object damping coefficients are log-uniformly sampled as [5e-6, 5e-5.5, · · · , 5e-2.5, 5e-2]

which are combined with each other to instantiate simulation environments. Note that large parts

of target domains are unseen during the training phase. I rollout 5 trajectories on each target

domain and evaluate the total rewards for each policy.

I design another experiment setup to investigate the robustness of DR against unmodeled

effects and choose the ‘object density’ as the unmodeled parameter. I rollout the baseline and UDR

on target domains with varying object densities while gripper damping and object damping are

fixed. Since the object is set to have a fixed cube shape, the object density is linearly proportional

to the ‘object mass’. The baseline and UDR are trained in source domains with the constant

object density of 1000 kg/m3 and I assess the zero-shot performance of the baseline and UDR

on target domains where the object density varies from 150 kg/m3 to 15000 kg/m3 while other

parameters are the same with the default setting in Table 5.1.
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6
Results

In this chapter, I enumerate the results of our Sim2Sim experiment setting. Each section in this

chapter includes the discussion.

6.1 Learning curves

I obtain the learning curves comparing the performance of the baseline and UDR (Fig. 6.1). The

results are averaged across 5 random seeds and shaded areas represent one standard deviation. If

one of the agents solve the throwing task (based on Section 5.5) before the entire 500 episodes

are done, I freeze that agent; I end the training of that agent and assume that it maintains its

last return consistently until the entire episodes are done.

It is inappropriate to compare learning curves of the baseline and the UDR directly since (i)

the number of episodes that agents experience is not constant for all agents because of freezing and

(ii) environments change for every episode in the UDR setting. Nevertheless, those learning curves

represent the whole training process clearly; we can see that UDR agents outperform in terms of

overall training time and learn faster than the baseline agents. Learning curves demonstrate that

DR boosts the learning process.
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Figure 6.1: Learning curves of Baseline and UDR.
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6.2 Performance on target domains

As stated in Section 5.6, target domain parameters are sampled from the wider ranges. They

include the original training source domain but also include simulation environments that are

previously unseen. The plots in Fig. 6.2 show the performance of policies on each target envi-

ronment. A small square cell comprising the whole heatmap indicates a single instantiated target

domain. The results are averaged across 5 random seeds. Thicker color means that the policy

outputs higher total rewards. The white square in the middle of Fig. 6.2.(b) indicates the original

source domain of UDR (Table 5.1). The areas outside of the marked square are unseen environ-

ments during training.

Both randomization dimensions (Gripper damping, Object damping) affect whether or not

the cube is thrown according to the intended action. Changing the values of these parameters

beyond their original ranges creates challenging environments. For example, lowering or raising

the gripper damping affects the sensitivity to input torques of grippers, which makes grippers

release the cube faster or slower than intended. Lowering or raising the object damping affects

the momentum of the cube and the throwing trajectory of the cube, which makes the cube fly

farther or shorter than intended. These effects are visualized in Fig. 6.2.

As shown, UDR outperforms the baseline for all the target domains and exhibits competitive

zero-shot transfer performance to the unseen test domains.
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(a)

(b)

Figure 6.2: Performance heatmap of (a) Baseline and (b) UDR. Thicker color represents higher total

rewards. The object damping axis is displayed in log-scale.
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6.3 Performance to unmodeled effects

Parameters for unmodeled effects that changed in the target domain are far different from the

unseen domain since they are not only unseen during training but are not even randomized. As

stated in Section 5.6, the parameter of the object density is set as an unmodeled parameter; it is

changed only in the target domain, not in the source domain. Fig. 6.3 demonstrates that UDR

shows better zero-shot performance on the environment with the unmodeled object density and

outperforms the baseline over the entire range.

Figure 6.3: Performance to unmodeled effects of the object density. The object density axis is displayed in

log-scale.
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6.4 Goal-in rate

Apart from the total rewards, I also assess ‘goal-in rate’, i.e. whether the cube arrives inside the

container box at the end of each episode, which is another major objective of the object throwing

task. The results are tabulated in Table 6.1 and show that UDR succeeds in throwing the cube

and putting it in the container box more while the baseline fails at almost all attempts.

Table 6.1: Goal-in rate of UDR and Baseline. ‘Unseen’ represents the target domain in Section 6.2 and

‘Unmodeled’ represents the target domain in Section 6.3.

Target domain UDR(%) Baseline(%)

Unseen 22.9 3.0

Unmodeled 11.6 1.8
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7
Conclusion

In this work, I presented analyses about the sim-to-sim zero-shot transfer performance of an RL

algorithm with DR. The source domain and the target domain were constructed by MuJoCo

simulation of robot manipulator UR3. Policies were trained on the source domain with or without

DR on cube throwing task and tested on two kinds of target domains: environments sampled from

parameters unseen during training and environments sampled from parameters unseen and even

unmodeled during training. The results show that policies trained with DR outperform policies

trained without DR and can generalize better for the target domain without fine-tuning domain

parameters.

For future works, I plan to set a sim-to-real (Sim2Real) transfer experiment where the source

domain is the simulation and the target domain is the dynamics of real-world UR3. Modifying

the method to instantiate the environment where the agent is trained is also considered.
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국 문 초 록

심층강화학습(DRL)을 연속 공간 상의 로봇 제어에 적용하는 문제는 지난 십수 년간 많은 관심을

받아 왔다. 실제의 로봇을 작동시켜 학습 데이터를 얻는 방식은 샘플 복잡도(sample complexity)를

높이고 안전 사고를 초래할 수 있어, 많은 경우에 로봇의 학습은 시뮬레이터로 효율적으로 대체되고

있다. 그러나, 시뮬레이션 상에서 학습된 정책(policy)은 보통 실제의 로봇의 운용에 바로 적용하기가

힘들다. 시뮬레이션의 근본적인 한계로 인해 불가피하게 생기는 시뮬레이션과 실세계 사이의 불일

치 때문으로, 이 간극을 ‘리얼리티 갭’(reality gap) 또는 ‘심투리얼 갭’(Sim2Real gap)으로 부른다.

이 간극을 줄이는 방법으로 도메인 랜덤화(domain randomization) 기법이 주로 이용된다. 도메인

랜덤화 기법을 이용하여 강화학습 에이전트를 학습시키면 제로샷(zero-shot) 설정에서의 전이 능력

(transferability)의개선이보장된다.이는즉학습이이루어지는소스도메인(source domain)의범위

에 포함되지 않는 환경을 타겟 도메인(target domain)으로 정하여 테스트를 진행하더라도, 추가적인

미세 조정(fine-tuning) 및 학습 없이 비교적 적정한 성능이 도출됨을 의미한다. 본 논문에서는 던지

기 동작을 임무(task)로 하며, 도메인 랜덤화 기법을 학습에 이용하는 것이 서로 다른 파라미터 값을

가지는 시뮬레이션 간의 제로샷 전이에 어떤 영향을 미치는지 조사한다.

주요어 : 로봇 매니퓰레이션, 강화학습, 제로샷 학습, 도메인 랜덤화.

학번 : 2019-21027
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