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In this thesis, we study the airport gate assignment problem under uncertainty

in arrival and departure times of flights which may cause overlaps between

flights assigned to the same gate. In this respect, we establish a gate assignment

schedule where overlaps between flights are prevented with probabilistic guar-

antees, while maximizing the sum of preference values of flights for gates. We

propose a network-based integer programming model with chance constraints

that limit the probability of an overlap occurrence in each gate less than a

given threshold value, for which the probability that a pair of flights overlaps

is predicted based on historical data. We also propose a strengthened integer

programming model for the problem based on the concept of flight assignment

patterns, and devise a branch-and-price algorithm to solve the model. Compu-

tational experiments are conducted with real and artificial instances which are

based on the real data of Incheon International Airport in 2019. The results
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show the efficiency of the proposed algorithm as well as the robustness of the

derived schedules compared to the existing approaches.
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work flow model, Chance constraint, Branch-and-price algorithm
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Chapter 1

Introduction

1.1 Background

The airport gate assignment problem (AGAP) is one of the major decision

problems in the airport industry that has been studied by researchers in the field

of optimization [1]. In each gate in airports, each arrival or departure flight needs

a ground service time for cleaning, maintenance, embarking or disembarking,

etc. Therefore, in AGAP, flights are assigned to airport gates under certain

constraints or objectives. It establishes a gate assignment schedule for given

start and end times of ground service schedule of each flight, as illustrated

in Figure 1.1. While the demand for air transport is large and growing, gates

are valuable resources that are quite time-consuming and costly to build more.

Therefore, a clever and efficient use of existing gates is required.

Figure 1.1: Illustration of AGAP
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There have been various objectives and constraints considered in AGAP.

For example, maximizing the sum of preference values of flights for gates [2, 3,

4], minimizing total passenger walking distance [5, 6, 7, 8] or minimizing the

number of towing operations [2, 3, 7] have been considered as objectives. For

constraints, flight-gate compatibility [3, 7, 9] which is caused by aircraft size

or flight requirements keeps flights from being assigned to inappropriate gates.

Adjacency constraints [3, 10, 11] prevent two large aircraft from being assigned

to adjacent gates at the same time.

Above all, one of the most important issues in AGAP is the uncertainty of

the start and end times of flight schedules. The uncertainty is caused by various

factors such as violent weather conditions, staffing issues, delays in previous

airports, incidents during ground services, etc.

Figure 1.2 illustrates an example that shows how uncertainty happens in

flight schedules and causes overlaps of flight schedules in a gate assignment

schedule. The original gate assignment schedule was made according to the

nominal start and end times of flight schedules. However, on the day of the

Figure 1.2: Illustration of an overlap in a gate assignment schedule
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operation, the realizations of start and end times of flight schedules are changed

from the nominal times due to the uncertainty, and an overlap of flight schedules

happens in gate 2.

A schedule with overlaps is practically impossible to implement as it is,

since one gate can handle only one flight at a time, and the schedule requires

some real-time remedies for overlaps. For example, the following flight of the

overlapping pair may wait for the assigned gate to be clear, which may cause

a chain of delays for other flights assigned to the same gate. Also, a partial or

complete rescheduling may be required. All these remedies require additional

complex decision making and may have negative impacts on punctuality and

passenger satisfaction as well as airport resources. Therefore, the uncertainty

should be considered in the airport gate assignment in order to prevent overlaps.

In this thesis, we focus on the uncertainty of the start and end times of flight

schedules and the issue of preventing overlaps between flights in AGAP.
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1.2 Literature Review

To prevent overlaps in AGAP, several studies modelled the uncertainty of flight

schedules and considered the expectation of some measures associated with

overlaps. Dorndorf et al. [3], Yan and Tang [12], and Seker and Noyan [13] all

assumed that the ground service duration of each flight is fixed whereas its real

start time is random. Dorndorf et al. [3] used independent gamma distributions

to model the uncertainty of real start times of arrival flights. To deal with the

uncertainty, they minimized the expected total number of overlaps. They dis-

cretized the gamma distributions with 1 minute intervals. The expectation is

set to be two minutes early, the median to be six minutes early, and the earliest

to be 30 minutes early. Yan and Tang [12] obtained the empirical distribution

of real start times from real data of CKS Airport in Taiwan. They minimized

the total expected penalty caused by wait times of passengers. About 88 per-

cent of departing flight delays were 0 to 20 minutes, and for arriving flights,

about 76 percent of the delays were -9 (early) to 20 minutes. They used a

scenario-based model to maximize the weighted sum of preference values and

the expected penalty caused by wait times of passengers. Seker and Noyan [13]

used independent triangular distributions to model the uncertainty of real start

times. They used the distribution with parameters -10, 50, and 90 which is

left-skewed to reflect the fact that a delay is more likely than an earliness, and

used a scenario-based model. They set the expected number of total overlaps

as a primary objective to minimize, and compared different indirect measures

as the second objectives to minimize: the expected variance of idle times, the
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expected total semi-deviation of idle times, and the expected number of posi-

tive semi-deviation of idle times, where the term idle time indicates the nominal

time interval between the schedules of consecutively assigned flights.

Yu et al. [6] assumed that the uncertainty lies in both start and end times of

the flights. They modelled the uncertainty with independent log-normal distri-

butions, and fitted the overlap probability function to an exponential function

of the idle time. They used the expected total overlap duration as a robustness

measure to minimize.

Lim and Wang [5], Aoun and El Afia [9], Castaing et al. [14], and Kim et al.

[15] assumed that the uncertainty lies in each flight pair, and directly captured

the uncertainty of each flight pair. Lim and Wang [5] and Aoun and El Afia

[9] used estimation functions to estimate the expectation of the probability

that a flight pair overlaps. The estimation functions reflected the fact that the

larger idle time results in the smaller probability of overlap. They minimized

the expected total number of overlaps. Kim et al. [15] modelled the expected

overlap duration as a function of idle time. They fitted the historical data of

overlap duration to an exponential function and minimized the expected total

overlap duration. Castaing et al. [14] used historical data of overlaps of each

flight pair to estimate the probability of overlap and the overlap duration. They

used both the expected number of overlaps and the expected overlap duration as

objectives, and additionally proposed minimizing worst case expected overlap

duration.

There have been approaches that did not explicitly involve uncertainty in

their models, but indirectly prevented overlaps in schedules by considering idle
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times between flights. Benlic et al. [2] and Kumar and Beirlaire [16] captured

short idle times between flights and penalized them. The idea is that short idle

times are susceptible to small disruptions leading to overlaps, since an idle time

works as a buffer to absorb unexpected changes. In the same sense, Daş [8] used

the variance of idle times as a robustness measure and minimized the variance

to distribute the idle times evenly.

Xu et al. [17] assumed that the start time of each flight is fixed whereas

its real end time is random, and the distribution of each random end time

is measured by a regression model, where the delay factors are classified into

three classes: common factors, individual predictable factors and unpredictable

factors. Unlike others stated above, where the ways of optimizing expectation

regarding uncertain elements have been proposed, Xu et al. [17] proposed min-

imizing (1− α)−quantile of total overlap duration to give a quantitative guar-

antee on the robustness of the schedules.
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1.3 Motivations and Contributions

As we introduced in the previous section, most of the studies proposed optimiza-

tion models considering the expectation of measures associated with overlaps.

However, the derived schedules from these approaches may be difficult to imple-

ment in some cases depending on how uncertainty is realized. In other words,

these approaches cannot give a quantitative guarantee on the implementation

of schedules without overlaps. As far as we know, there have been no research

that took into account the quantitative guarantee, except for Xu et al. [17].

However, they solve the model approximately which leads to a conservative

solution. Also, the gate assignment schedules obtained from the model cannot

guarantee the effectiveness of each gate, as the total overlap duration of all

gates is considered. This can lead to an imbalance of overlaps among gates.

In this thesis, we propose a mathematical model that establishes a gate

assignment schedule that gives a quantitative guarantee to the possibility of

implementation, which has not been researched enough in previous studies.

Specifically, we assume that the start and end times of ground service sched-

ule for each flight are uncertain. Based on this assumption, we estimate the

overlap probability of each pair of flights when they are assigned to the same

gate. Based on this estimation, we propose an AGAP model, named overlap

chance-constrained airport gate assignment problem (OCAGAP), with chance

constraints that limit the probability of an overlap occurrence in each gate less

than a given threshold value and maximize the sum of preference values, and

also propose a solution approach based on column generation.
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1.4 Organization of the Thesis

The remainder of the thesis is organized as follows. In Chapter 2, we present

a formal description of the problem and propose mathematical models with

chance constraints. In Chapter 3, a non-parametric prediction method of overlap

probabilities based on empirical survival function is presented. In Chapter 4,

we give a branch-and-price algorithm to solve the model we proposed. Chapter

5 is about computational experiments. We proposed detailed examination of

the effectiveness of the model and the efficiency of the algorithm based on

comparison with existing ones. Finally, a summary and concluding remarks

appear in Chapter 6.
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Chapter 2

Models for OCAGAP

In this chapter, we formally define OCAGAP that limit the probability of an

overlap occurrence in each gate. Then we give an integer programming (IP)

model for OCAGAP using network flow, and further strengthen the IP model

using flight assignment patterns.

2.1 Problem Definition

The sets for OCAGAP are listed as follows:

• M : the set of normal (contact) gates. A gate m ∈ M is a normal gate

that can handle one flight at a time.

• A remote gate 0 : Unlike contact gates in the set M , the remote gate

is assumed to have unlimited capacity, and more than one flight can be

assigned to the gate simultaneously. Since passengers have to walk or ride

a bus to move between the remote gate and the airport terminal, the

preference value of every flight for the remote gate is set to be 0.

• N : the set of flights. A flight i ∈ N is defined by its nominal start time

s̄i and nominal end time ēi where s̄i < ēi. Without loss of generality, we
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assume that the flights are sorted in ascending order of s̄i.

• N(m) ⊆ N, ∀m ∈ M : the set of flights that can be assigned to gate m,

according to the compatibility.

Next, the parameters for OCAGAP are listed as follows:

• pij , ∀i, j ∈ N : overlap probability between flights i and j. It indicates

the probability that the schedules of flight i and j overlap given that the

flights are assigned to the same gate.

• πim, ∀m ∈M,∀i ∈ N(m) : preference value of flight i for gate m.

• εm, ∀m ∈ M : the maximum limit of the probability that an overlap

occurs in gate m.

In OCAGAP, a normal gate can handle only one flight at a time, so the

inequality ēi ≤ s̄j holds for flights i and j that are assigned sequentially to the

same gate m. Also, the flight-gate compatibility constraints are considered, i.e.,

only the flights that belong to N(m) can be assigned to gate m. The objective is

to maximize the sum of preference values of flights for gates. Let Fm be the set

of consecutively assigned flight pairs (i, j) in gate m. For each (i, j) ∈ Fm, let

Yij be the binary random variable which is equal to 1 if flights i and j overlap.

Then, Fm satisfies the following inequality for all m ∈M :

P

 ∑
(i,j)∈Fm

Yij ≥ 1

 ≤ εm, ∀m ∈M. (2.1)

10



Constraints (2.1) are chance constraints that limit the probability of an overlap

in gate m less than the given threshold value εm. We consider these chance

constraints for all m ∈M in OCAGAP.

We now show the computational complexity of OCAGAP. It is obvious that

the special case of OCAGAP with εm = 1 for all m ∈M is deterministic AGAP

whose objective is to maximize the sum of preference values. This problem is

proven to be NP-hard by Jaehn [4]. Therefore, OCAGAP is NP-hard.

Remark. OCAGAP is NP-hard.
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2.2 Integer Programming Models for OCAGAP

In this section, we give integer programming models of OCAGAP using the

notation given in Section 2.1. The constraints and objective can be expressed

on a network flow model by Maharjan and Matis [18].

The additional inputs for the network representation of gate m are listed as

follows:

• s : start node.

• t : end node.

• N ′(m) ⊆ N, ∀m ∈M : the set of duplicate nodes i′ ∈ N of N(m).

• V : the set of all nodes that consists of s, t, all nodes in N(m), and all

nodes in N ′(m).

• A : the set of all arcs that consists of (s, i) for all i ∈ N(m), (i, i′) for

all i ∈ N(m) and i′ = i, (i′, j) for all i′ ∈ N ′(m), j ∈ N(m) such that

ēi′ ≤ s̄j , and (i′, t) for all i′ ∈ N ′(m).

Figure 2.1 illustrates an example of the network. The set of compatible

flights N(m) is assumed to be {1, 2, . . . , n} here. The network consists of nodes

i corresponding to flights and their duplicated nodes i′. Dummy nodes s and

t are the start and end nodes of a path. Node i is connected to its duplicated

node i′, and node i′ is connected to nodes j of flights that can come right

after the flight i in the gate. Node s is connected to all nodes i and node t

is connected from all nodes i′. Then, a path from node s to t represents an

12



Figure 2.1: Network representation of an assignment schedule of a gate

assignment schedule of a gate that comprises of the flights that the path passes

by. For instance, the red path in Figure 2.1 represents an assignment schedule

of a gate with flights 1, 3, and n.

A gate assignment schedule is thus represented by the set of |M | paths in

which each flight node i ∈ N is passed by at most one path. Flights that are

not assigned to any path are assigned to the remote gate.

13



2.2.1 Compact Model for OCAGAP

Based on the network, OCAGAP without considering uncertainty using chance

constraints is formulated with an integer programming model defined as follows:

maximize
∑
m∈M

∑
i∈N(m)

πimx
m
ii′ (2.2)

subject to
∑

m∈M∪{0}

xmii′ = 1, ∀i ∈ N, (2.3)

∑
i∈N(m)

xmsi = 1, ∀m ∈M, (2.4)

∑
j∈δ+(i)

xmij =
∑

j∈δ−(i)

xmji , ∀m ∈M,∀i ∈ N(m) ∪N ′(m), (2.5)

∑
i∈N(m)

xmit = 1, ∀m ∈M, (2.6)

xmij ∈ {0, 1}, ∀m ∈M,∀i, j ∈ N(m) ∪N ′(m) ∪ {s, t}. (2.7)

The decision variables xmij correspond to the arcs from node i to j in the network.

In terms of the gate assignment schedule, xmii′ = 1 implies that flight i is assigned

to gate m and xmi′j = 1 implies that flight i is followed by flight j in gate m.

The objective function (2.2) is to maximize the sum of preference values of the

schedule. Constraints (2.3) state that each flight i must be assigned to a gate.

Constraints (2.4)-(2.6) are the flow balance constraints for the networks of the

gates.

With the decision variables xmij , the chance constraint (2.1) can be restated

14



as follows:

P

 ∑
i,j∈N(m)

Yijx
m
i′j ≤ 0

 ≥ 1− εm, ∀m ∈M.

Also, it is obvious that the following holds:

P

 ∑
i,j∈N(m)

Yijx
m
i′j ≤ 0

 = P
{
Yijx

m
i′j = 0, ∀i, j ∈ N(m)

}

Note that for consecutive flight pairs (i, j) and (j, k) in Fm, the following rela-

tionship holds:

P{Yij = 0, Yjk = 0} = P{Yjk = 0|Yij = 0}P{Yij = 0}

We assume that an overlap between flights i and j does not affect the overlap

probability between flights j and k, i.e., Yij does not affect Yjk, as buffer times

in flight schedules can absorb the affect of overlaps. Under the assumption, the

following holds:

P{Yjk = 0|Yij = 0} = P{Yjk = 0}

Generalizing these observations, the chance constraints (2.1) can be expressed

as follows:

∏
i,j∈N(m)

P{Yijxmi′j = 0} ≥ 1− εm,∀m ∈M.

15



Since P{Yij = 0} = 1− pij , the following holds:

∏
i,j∈N(m)

(
1− pijxmi′j

)
≥ 1− εm, ∀m ∈M.

Then, the chance constraints (2.1) can be linearized by taking logarithms on

both sides of the inequality above as follows:

∑
i,j∈N(m)

log (1− pij)xmi′j ≥ log(1− εm), ∀m ∈M. (2.8)

The constraints (2.8) are what we call the overlap probability chance con-

straints. Then, the compact model for OCAGAP is defined as follows:

C : maximize (2.2) (2.9)

subject to (2.3)− (2.7), (2.8). (2.10)
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2.2.2 Pattern-based Model for OCAGAP

We additionally propose a pattern-based model for OCAGAP. Let a flight as-

signment pattern for gate m be a set of flights that can be assigned together to

gate m by satisfying the overlap probability chance constraints and the com-

patibility constraints. Then for each gate m ∈ M , the set of flight assignment

patterns can be defined as Qm. Note that each q ∈ Qm can be expressed as an

|N | dimensional binary vector, x̄q = (x̄q1, ..., x̄
q
|N |) where x̄qi = 1 when q includes

flight i. Note that for any pattern q, ēi ≤ s̄j holds for all i < j ∈ N such that

x̄qi = x̄qj = 1. Using this notation, the pattern-based model for OCAGAP is

defined as follows:

P : maximize
∑
m∈M

∑
q∈Qm

 ∑
i∈N(m)

πimx̄
q
i

 zqm (2.11)

subject to
∑

m∈M∪{0}

∑
q∈Qm

x̄qi z
q
m = 1, ∀i ∈ N, (2.12)

∑
q∈Qm

zqm ≤ 1, ∀m ∈M, (2.13)

zqm ∈ {0, 1}, ∀m ∈M, ∀q ∈ Qm. (2.14)

The binary decision variable zqm equals to 1 if gate m chooses flight as-

signment pattern q. The objective function (2.11) is to maximize the sum of

preference values of the schedule. Constraints (2.12) imply that each flight i is

assigned to a gate. Constraints (2.13) state that each gate m chooses at most

one pattern.
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2.2.3 Comparison of the OCAGAP Models

We close this section by comparing the proposed models for OCAGAP. Since

there exist exponentially many flight assignment patterns, the number of vari-

ables in the pattern-based model is exponential in |N |, whereas the number

of variables in the compact model is polynomial in |M | and |N |. However, the

pattern-based model has an upper bound provided by the linear programming

(LP) relaxation at least as tight as that of the compact model. Let the up-

per bound provided by the LP relaxation of the pattern-based model and the

compact model be ZpLP and ZcLP , respectively. Then, the following theorem

holds.

Theorem 2.1. ZpLP ≤ ZcLP .

Proof. We show that a feasible solution of the pattern-based model can be

transformed into a feasible solution of the compact model. Since each flight

assignment pattern corresponds to a simple path from s to t in the network

representation, the feasible solution of the pattern-based model can be inter-

preted as a linear combination of simple paths. It is clear that this solution is

feasible for the compact model. Therefore, a feasible solution of the pattern-

based model can be transformed into a feasible solution of the compact model,

and ZpLP ≤ ZcLP .
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Chapter 3

Prediction of Overlap Probabilities

In this chapter, we study how to determine the overlap probabilities in OCA-

GAP. We first define the overlap probability function, and propose a non-

parametric prediction method with which we predict the overlap probability

of flights using historical data.

3.1 Definition of Overlap Probability Function

We denote the nominal start and end times of flight i by s̄i and ēi, and assume

that the start and end times of flights are uncertain due to the unexpected events

such as violent weather conditions, staffing issues, delays in previous airports,

incidents during ground services, etc. Due to the uncertainty, real start and

end times of the flights deviate from the nominal start and end times, and the

deviations are denoted by ŝi and êi. Without loss of generality, we assume that

ŝi and êj are independent random variables for different flights i, j ∈ N . An

overlap occurs between consecutively assigned flights i and j in one gate if the

ground service of flight i ends later than the start time of flight j. The overlap
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probability pij is then set as follows:

pij = P{s̄j − ēi ≤ êi − ŝj}.

Note that s̄j− ēi is the nominal idle time between flights i and j. Let s̄j− ēi = t.

Then the overlap probability when the nominal idle time is t is defined as a

function f(t) = P{t ≤ êi − ŝj}. We name f(t) an overlap probability function.

Figure 3.1 illustrates an outline of the graph of f(t) between departure and

arrival flights, which is drawn from the historical data of flights in Incheon

International Airport in 2019. Specifically, for all days in 2019, we collected

every pair of flights i and j on the same day where i is a departure flight and

j is an arrival flight. For each t ∈ Z, f(t) is is assumed to be the proportion of

flight pairs that would have overlapped if they had been assigned to the same

gate, i.e., s̄j − ēi ≤ êi − ŝj , where Z is the set of integers.

Note that f(t) is similar to a survival function which gives the probability

that some object will survive beyond any specified time [19]. If we regard a

Figure 3.1: An outline of f(t) between departure and arrival flights estimated
with flight data in 2019
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random variable êi− ŝj as a random lifespan of an object, the survival function

of the object indicates the probability that the object will survive beyond t.

The survival function is then defined as P{t ≤ êi− ŝj}, which is same with the

definition of f(t) stated above. Based on this observation, we propose a non-

parametric prediction method based on empirical survival function to predict

f(t) of the target day.
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3.2 Prediction Method based on Empirical Survival

Function

Suppose that we consider the dataset of flights in d days just before the target

day, and we use the dataset to predict f(t) of the target day. Our speculation

is that the uncertainty of flights is affected as time passes, and the uncertainty

in the latest data reflects current uncertainty better than the older data. Let

the dataset be Td. Each flight i in Td has (s̄i, ēi) with realized (ŝi, êi). Then we

can generate samples of êi − ŝj by calculating ∆tij = êi − ŝj for each i, j ∈ Td.

Let the number of samples be N . Then the empirical survival function can be

defined as follows:

f̂N (t) =
1

N
∑

{i,j}⊂Td

I(∆tij ≥ t)

where I(∆tij ≥ t) is 1 if ∆tij ≥ t, and 0 otherwise. Note that this estimator

converges to f(t) derived from the population in Td asymptotically [20], i.e.,

supt∈R |f̂N (t) − f(t)| → 0 for sufficiently large N , where R is the set of real

numbers. However, our purpose is to predict f(t) derived from the population

in target day. To justify the use of this estimator as a predictor, in the next

section, we conduct a case study for real data of Incheon International Airport

in 2019. In the case study, we measure the accuracy of the predictor and also

give a recommendation of parameter d.
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3.3 Case Study

In this section, we conduct a case study using the real flight data of Incheon

International Airport in 2019. We first categorized the flights into 8 different

types for finer prediction of f(t): 4 different classes of airlines (Korean Air,

Asiana Air, the rest of the Korean airlines, and foreign airlines) for arrival or

departure flights. Flight pairs are classified into a total of 64 types according

to the combination of the types of two flights in a pair, and f(t) is predicted

separately for each type of the flight pairs. For each flight in the data, we are

provided only with nominal and real start times for arrival flights, and nominal

and real end times for departure flights. Therefore, we assumed that ŝi = êi for

all i ∈ N , and that the ground service duration of each flight is 30 minutes which

is the mean value considered in Yu et al. [6]. Combining these information, we

derived nominal and real start and end times of ground service schedule for each

flight. For example, if flight i is a departure flight and its given nominal and

real end times are 13:00 and 13:20, then the nominal and real start times are

assumed to be 12:30 and 12:50. We disregard flights with ŝi < −60 or ŝi > 120

as abnormal situations which account for less than 1% of total data.

To give a recommendation on parameter d and measure the accuracy of

prediction, we conduct predictions on June and July data. With different d, we

computed the predictor f̂N (t) for each type of the flight pair on each day. For

example, if f(t) in June 1st is predicted with d = 7, the prediction is based on

the flight data from May 25th to 31st. Since the true form of f(t) is not given,

we regard the empirical survival function of target day as the f(t) from the
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asymptotic convergence property. Since the unit time of ŝi and êi is 1 minute

in the data and we disregarded flights with ŝi < −60 or ŝi > 120, we measure

the root mean squared error (RMSE) of two functions as follows:

RMSE =

√√√√ 1

361

180∑
t=−180

(f̂N (t)− f(t))2.

Figure 3.2 shows the boxplots of average RMSE of 64 types of predictions

for each day in June and July for each d. At first, the RMSE tends to decrease as

d increases, but at certain point, the benefit of using larger sample with larger

d is offset by the increase of bias by including more outdated data. As a result,

the minimum average RMSE of 0.02244 and the minimum median RMSE of

0.02108 is obtained when d = 35. Also, the standard deviation is 0.02108, which

is the 4th best value. What we recommend is thus using d around 35 or one

month, and we used d = 35 for the computational experiments.

Figure 3.2: Boxplots of RMSE for various d
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Chapter 4

Solution Approach for Pattern-based
Model

As we mentioned in Section 2.2.3, the pattern-based model has exponentially

many variables while it has an advantage that it has LP relaxation bound at

least as tight as that of the compact model. To take advantage of the pattern-

based model, we devise a branch-and-price algorithm (B&P) based on the col-

umn generation method [21, 22] which is practically useful when solving LP

problems with a large number of variables.

4.1 Column Generation Method for LP Relaxation

The pattern-based model, named master problem, is solved in a branch-and-

bound framework. At each node of the branch-and-bound tree, we solve the LP

relaxation of the master problem using the column generation method. Since

the pattern sets Qm have exponentially many patterns, we consider a master

problem where the pattern sets Qm are substituted by the restricted pattern

sets Q̂m ⊂ Qm for all m ∈M . The problem is called restricted master problem

(RMP) and defined as follows:
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RMP : maximize
∑
m∈M

∑
q∈Q̂m

 ∑
i∈N(m)

πimx̄
q
i

 zqm (4.1)

subject to
∑

m∈M∪{0}

∑
q∈Q̂m

x̄qi z
q
m = 1, ∀i ∈ N, (4.2)

∑
q∈Q̂m

zqm ≤ 1, ∀m ∈M, (4.3)

zqm ∈ {0, 1}, ∀m ∈M, ∀q ∈ Q̂m. (4.4)

Upon solving the LP relaxation of RMP, we use the dual optimal solutions

ui and vm of the constraints (4.2) and (4.3) to solve the sub-problems. A flight

assignment pattern that improves current objective value of RMP can be gen-

erated by solving a sub-problem for each gate. The sub-problem SP(m) for gate

m is defined as follows:

SP(m) : minimize
∑
i∈N

(ui − πim)xii − vm (4.5)

subject to
∑

i∈N(m)

xsi = 1, (4.6)

∑
j∈δ+(i)

xij =
∑

j∈δ−(i)

xji, ∀i ∈ N(m) ∪N ′(m), (4.7)

∑
i∈N ′(m)

xit = 1, (4.8)

∑
i∈N(m)

log(1− pij)xi′j ≥ log(1− εm), (4.9)

xij ∈ {0, 1}, ∀i, j ∈ N(m) ∪N ′(m) ∪ {s, t}. (4.10)
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If the optimal objective value of SP(m) is greater than 0, the corresponding

flight assignment pattern is profitable, and it is added to Q̂m to improve the

objective value of RMP. The column generation method for master problem is

iterated to solve the LP relaxation of RMP and SP(m) for each m ∈ M until

no flight assignment pattern is added to Q̂m for all m ∈M . Then, the optimal

LP relaxation solution of the master problem is obtained.
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4.2 Branching Variable

If the optimal solution of the LP relaxation of the master problem is not integral,

it is not a feasible solution of the master problem, and we need to branch the

node to search for integral solution. Note that a feasible solution ẑ of the master

problem can be translated into a feasible solution x̂ of the LP relaxation of the

compact model as follows:

x̂mii′ =
∑
q∈Q̂m

x̄qi ẑ
q
m, ∀i ∈ N(m), ∀m ∈M.

Branching on the variables in the pattern-based model itself may lead to

slow convergence of the algorithm because of the large number of variables.

Therefore, in this branch-and-price algorithm, we branch on the most fractional

variable x̂mii′ translated from ẑ. Flight i is assigned to gate m in its left child

node, i.e., xmii′ = 1, while the assignment is not allowed in its right child node,

i.e., xmii′ = 0. Note that this branching rule just fixes some variables xmii′ to 0 or

1 in the sub-problems. Therefore, additional constraints are not required in the

sub-problems for each branched node and its successors, and the structure of

the sub-problems is not destroyed.

Further, we have the following proposition that ensures that the branching

rule we choose gives an integer solution with respect to the variables in the

pattern-based model.

Proposition 4.1. If ẑqm is fractional, then there exists i ∈ N(m) with fractional

28



x̂mii′. [21]

Proof. Let F be the set of indices of patterns with fractional ẑqm and assume

that there is no fractional x̂mii′ . We assume that there are at least two patterns

in F since if F = {q}, then x̂mii′ is fractional for every i such that x̄qi = 1.

Since
∑

q∈Qm
ẑqm ≤ 1 in (2.13), we have

∑
q∈F ẑ

q
m ≤ 1. Then,

∑
q∈F x̄

q
i ẑ
q
m ≤∑

q∈F ẑ
q
m ≤ 1 for i ∈ N . If

∑
q∈F x̄

q
i ẑ
q
m = 0, then x̄qi = 0 for all q ∈ F . If∑

q∈F x̄
q
i ẑ
q
m = 1, then x̄qi = 1 for all q ∈ F . It means that the patterns in F are

same, which is a contradiction.
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4.3 Initialization

An initial feasible solution gives a lower bound that helps reduce the size of the

branch-and-bound tree. Since RMP is always feasible as gate 0 is a remote gate

that can handle unlimited number of flights simultaneously, a feasible solution

can be derived by solving RMP with any kind of patterns in the restricted

pattern sets. Therefore, we obtain a feasible solution by solving RMP after gen-

erating a number of columns and using them as initial columns. Specifically,

at node 0 of the branch-and-bound tree, an initial LP is solved with the col-

umn generation method, and a number of patterns are generated. Then, before

branching, we apply a typical branch-and-bound algorithm to obtain the op-

timal feasible solution of RMP with the restricted pattern set. It is a feasible

solution of the master problem, and the initial feasible solution gives an initial

lower bound of the optimal solution that helps reduce the size of the search tree.

Finally, the flowchart for the overall branch-and-price algorithm is described in

Figure 4.1, where S denotes the set of active nodes in the branch-and-bound

tree, and lb and ub denote the lower and upper bound respectively.
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Start.

Solve the LP relaxation of RMP using col-
umn generation. Obtain the optimal solution
z∗ and its objective value Z∗. ub ← Z∗.

Is z∗ integral?

Branch-and-bound to optimality to get a
feasible solution. lb ← Z∗ and S ← {}.

Branch the node to two child
nodes. Add the nodes in S.

Is active node set S empty
or lb+ 1 > ub?

Select next node with best bound rule
and solve LP relaxation of the node using

column generation. Remove the node from S.

Terminate with the
best feasible solution.

Is Z∗ ≥ lb+ 1?

Fathom the node.

lb ← Z∗ if lb < Z∗.

Is z∗ integral?

N

Y

Y

N

Y

N

Y

N

Figure 4.1: Overall procedure of the branch-and-price algorithm
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Chapter 5

Computational Results

Computational tests are performed to evaluate the efficiency of the proposed

algorithm and the effectiveness of the gate assignment schedules obtained from

OCAGAP. We compare the branch-and-price algorithm to a commercial MIP

solver to test the efficiency, and then we compare the gate assignment schedules

obtained from OCAGAP to the schedules obtained an existing AGAP model to

test the effectiveness. Proposed models and algorithm were implemented with

version 8.9 of Xpress [23]. We choose the best-bound rule for node selection in

the branch-and-price algorithm, and also, the sub-problems for all gates were

solved simultaneously using parallel processing. All tests were performed on a

PC with Intel Core 3.60 GHz processors and 32 GB RAM. The computational

time is limited to 600 seconds. Notation of the result tables is given as follows:

• %Gap : the relative gap between the LP relaxation bound ZLP and the

optimal objective value Z∗. If no optimal solution is found within the time

limit, the value of the best feasible solution found is used instead.
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%Gap =
ZLP − Z∗

Z∗
× 100

• #Node : the number of nodes in the branch-and-bound tree

• #Col : the number of columns generated in the branch-and-price algo-

rithm

• Time : the computational time until the optimal solution is found. If the

optimality is not achieved within the time limit, then Time = 600.

• #Opt : the number of optimal solutions among 10 instances in the con-

figuration

• Date : the date of the instance in August 2019.

• Obj : the best objective value found

• #RG : the number of flights assigned to the remote gate in the gate

assignment schedule

• #OG : the number of gates with at least one overlap in the gate assign-

ment schedule obtained

• #OF : the number of overlapping flight pairs in the gate assignment

schedule obtained

• OD : the total overlap duration in minutes in the gate assignment schedule

obtained
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5.1 Implementation Issue of Overlap Probability

Since the logarithms log(1− pij) in the linearized chance constraints (2.8) can

be irrational and numerical errors arise when computing with irrational num-

bers, we need to determine how to deal with the logarithms in the models for

OCAGAP before implementation. We deal with them by slightly overestimat-

ing the overlap probabilities, which is same as underestimating the logarithms,

in order not to compromise the feasibility of the constraints. Specifically, we use

natural logs for the logarithms, and round the logarithms up to three decimal

places. Therefore, the chance constraints (2.8) are modified as follows:

∑
i,j∈N(m)

b1000 log (1− pij)c
1000

xmi′j ≥ log(1− εm), ∀m ∈M. (5.1)

To analyze the errors induced by the changed constraints, let p̄ij be the over-

estimated overlap probability for pij . That is,

log (1− p̄ij) :=
b1000 log (1− pij)c

1000
. (5.2)

Then, the following holds:

log (1− p̄ij) > log (1− pij)− 0.001. (5.3)

Putting both sides of the inequality to the power of the natural constant e

yields the following:
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1− p̄ij >
1− pij
e0.001

. (5.4)

The inequality is organized in terms of p̄ij as follows:

p̄ij < 1− 1

e0.001
+

pij
e0.001

. (5.5)

Note that 1 − 1
e0.001

is slightly smaller than 0.001 and
pij
e0.001

≤ pij . Moreover,

pij ≤ p̄ij according to the definition of p̄ij . Thus, the following relationship

holds:

pij ≤ p̄ij < pij + 0.001. (5.6)

The inequality above indicates that the error of the overlap probability caused

by rounding is smaller than 0.001. In other words, each overlap probability is

overestimated by at most 0.001, which is quite small and negligible.
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5.2 Computational Comparison of Proposed Models

To compare the computational performances of proposed models, we generate

artificial instances from real data of Incheon International Airport in August

2019. For each instance, we first choose |M | gates where |M | ∈ {5, 10}, and

randomly choose |N | flights where |N | ∈ {60, 80, 100, 120} that are compatible

with the chosen gates, with their airline types, compatible gates, and the nomi-

nal start and end times in minutes in the real data, and we generate 10 instances

for each combination of |M | and |N |. For each gate, we distinguished whether

or not a given flight is compatible with the gate depending on the airline of the

flight; we regarded the flights of the airlines that have never assigned a flight

to the gate in 2019 as incompatible with the gate.

For each instance, we conducted experiments for each of the three different

types of preference values πim, since computational performances are dependent

on the preference values. For the first type, each preference value is set to be

the average number of passengers carried by the flights of the airline with the

same destination or origin according to the real data in 2019. Therefore, the

objective is to maximize the number of passengers assigned to the contact gates.

The second type is to set every preference value to 1. The objective is thus to

maximize the number of flights assigned to the contact gates. The last type is

to randomly generate the preference values from the set {1, 2, 3}. Flights can

have various degrees of preferences for the gates depending on the aircraft size,

number of passengers, airline, origin or destination, etc. We assume that the

preference values can be classified into three classes: 1, 2, and 3. We randomly
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give one of the three values for each combination of a flight and a gate. The

objective is thus to maximize the sum of preference values of flights for gates.

For simplicity, we assume that every deviation of start and end times of

the flights is generated from an identical probability distribution. For the prob-

ability distribution, we chose gamma distribution, which is used in Dorndorf

et al. [3] to model the uncertainty of the flight schedules. We specifically used

the deviations of start and end times of all the flights handled in Incheon In-

ternational Airport fitted to the gamma distribution. Before fitting, we disre-

gard flights with ŝi < −60 or ŝi > 120 as abnormal situations which account

for less than 1% of total data, and since gamma distributions are defined for

positive numbers, we added 60 to each deviation. The resulting distribution

is Γ(12.7, 0.18); the shape parameter of the distribution is 12.7, and the rate

parameter is 0.18. We assume that we are provided with the parameters of un-

derlying gamma distribution of the flight delays, so we construct the overlap

probabilities pij from the convolution of the two independent and identically

distributed gamma distributions.

The pattern-based model is solved by the branch-and-price algorithm we

proposed. The compact model is solved by a branch-and-bound algorithm with

the same variable branching and node selection strategy. The average results of

the 10 instances for each |M | and |N | are given except for the column #Opt.

The results when the objective is to maximize the number of passengers

assigned to the contact gates are reported in Table 5.1 and Table 5.2. %Gap

results show that the LP relaxation value of the pattern-based model is not

only tighter than that of the compact model, but also close to the optimal

37



T
a
b

le
5
.1

:
C

om
p

u
ta

ti
on

a
l

co
m

p
ar

is
o
n

w
h

en
m

ax
im

iz
in

g
th

e
n
u

m
b

er
of

p
as

se
n

ge
rs

(|M
|=

5)

|M
|
|N
|

ε
P

a
tt

er
n

-b
a
se

d
C

om
p

ac
t

%
G
a
p

#
N
od
e

#
C
ol

T
im
e

#
O
p
t

%
G
a
p

#
N
od
e

T
im
e

#
O
p
t

5
6
0

0
.0

5
0.

08
7

1
57

.0
38

2.
3

11
.9

10
1.

46
3

2.
1

0.
6

10
0
.1

0.
07

0
95

.9
33

8.
7

9.
0

10
2.

35
3

24
.7

1.
1

10
0.

15
0
.1

08
17

1.
9

43
8.

5
15

.3
10

1.
63

2
12

.5
1.

2
10

0
.2

0.
09

6
1
07

.9
42

7.
6

13
.3

10
1.

42
4

10
.9

1.
3

10
80

0.
05

0
.0

61
16

0.
3

3
28

.6
23

.1
10

1.
84

4
41

.4
1.

8
10

0
.1

0.
03

2
14

.5
23

9.
5

5.
6

10
1.

86
5

24
.2

1.
8

10
0.

15
0
.0

56
24

7.
5

56
5.

3
64

.2
10

1.
89

9
45

3.
2

3.
4

10
0
.2

0.
06

9
4
01

.8
71

9.
2

90
.7

9
1.

73
8

30
3.

6
3.

5
10

10
0

0
.0

5
0.

03
8

10
.2

19
7.

3
4.

5
10

1.
41

3
26

.4
2.

3
10

0
.1

0.
03

3
9
.2

24
2.

0
7.

4
10

1.
61

4
32

7.
8

3.
6

10
0.

15
0
.0

74
32

4.
7

68
5.

0
73

.7
10

1.
52

3
89

6.
2

5.
7

10
0
.2

0.
03

5
46

.3
40

3.
3

25
.2

10
1.

43
3

1,
67

0.
0

6.
4

10
12

0
0
.0

5
0.

06
4

81
.3

23
3.

7
19

.3
10

1.
62

1
12

7.
1

3.
6

10
0
.1

0.
05

1
1
87

.7
39

7.
4

69
.0

9
1.

67
4

1,
01

4.
0

5.
8

10
0.

15
0
.0

40
19

2.
8

42
7.

6
69

.0
9

1.
38

4
1,

94
7.

5
8.

5
10

0
.2

0.
02

1
6
.7

23
2.

8
12

.8
10

1.
25

4
2,

17
8.

4
9.

6
10

38



T
ab

le
5.

2:
C

o
m

p
u

ta
ti

o
n

al
co

m
p

a
ri

so
n

w
h

en
m

ax
im

iz
in

g
th

e
n
u

m
b

er
of

p
as

se
n

ge
rs

(|M
|=

10
)

|M
|
|N
|

ε
P

at
te

rn
-b

as
ed

C
om

p
ac

t

%
G
a
p

#
N
od
e

#
C
ol

T
im
e

#
O
p
t

%
G
a
p

#
N
od
e

T
im
e

#
O
p
t

1
0

6
0

0
.0

5
0.

00
0

1
19

.2
77

4.
8

9.
0

10
1.

34
3

0.
9

0.
6

10
0
.1

0.
00

0
1
41

.9
89

4.
8

10
.6

10
1.

36
1

0.
9

0.
5

10
0
.1

5
0.

00
0

1
80

.4
91

0.
4

15
.3

10
1.

16
1

1.
0

0.
8

10
0
.2

0.
00

0
2
84

.1
1,

14
0.

7
22

.1
10

1.
49

3
0.

9
0.

9
10

80
0.

05
0
.0

51
33

6.
2

1
,4

70
.4

74
.1

10
1.

81
4

11
.9

2.
5

10
0
.1

0.
02

1
1
86

.7
1,

28
7.

5
69

.3
9

1.
79

6
16

2.
2

2.
9

10
0
.1

5
0.

03
3

3
40

.7
1,

77
0.

4
89

.0
9

1.
44

7
34

.5
3.

5
10

0
.2

0.
06

5
3
79

.7
2,

21
4.

4
12

0.
5

9
1.

51
9

22
5.

1
3.

5
10

10
0

0
.0

5
0.

11
0

7
52

.9
2,

58
4.

5
36

4.
2

4
1.

57
4

2,
38

5.
4

35
.4

10
0
.1

0.
06

2
4
44

.5
1,

95
1.

0
20

5.
1

7
1.

58
7

1,
46

1.
0

20
.3

10
0
.1

5
0.

14
1

5
05

.8
3,

05
8.

6
37

0.
6

4
1.

59
8

7,
22

5.
3

11
7.

3
9

0
.2

0.
05

4
6
24

.2
3,

39
7.

7
38

2.
2

4
1.

32
0

2,
29

2.
1

33
.5

10
12

0
0
.0

5
0.

10
3

9
13

.2
2,

42
9.

3
40

8.
7

4
1.

49
8

9,
09

0.
4

12
5.

3
9

0
.1

0.
11

9
7
96

.5
2,

99
7.

8
48

4.
9

2
1.

47
7

20
,0

40
.4

13
9.

7
9

0
.1

5
0.

08
2

5
59

.6
2,

86
1.

5
43

0.
9

3
1.

29
2

10
,3

21
.3

18
2.

5
9

0
.2

0.
09

5
3
49

.9
2,

95
9.

8
38

2.
6

4
1.

23
2

10
,6

43
.0

16
3.

6
9

39



objective value. However, in spite of the difference in the LP relaxation bounds,

the pattern-based model spent more computational time in general because

of the column generation procedure. Therefore, the compact model generally

gave optimal solutions in short times compared to the pattern-based model.

Moreover, when |M | = 10, the pattern-based model could not give optimal

solutions for most of the instances compared to the compact model.

The results when the objective is to maximize the number of flights assigned

to the contact gates are reported in Table 5.3 and Table 5.4. The overall re-

sults are similar to the results of the first experiment where the objective is

to maximize the number of passengers assigned to the contact gates. %Gap

of the pattern-based model is smaller than that of the compact model, but

the column generation procedure needed a significant amount of computational

time. Therefore, the compact model generally gave optimal solutions in short

times compared to the pattern-based model, but the difference between the two

models were smaller than in the results in Table 5.1 and Table 5.2. Also, the

numbers of instances that the optimal solutions are found are similar in the two

models.

The results when the preference values are 1, 2, or 3 are presented in Ta-

ble 5.5 and Table 5.6. %Gap results show that the LP relaxation value of the

pattern-based model is far tighter than that of the compact model, and they

are close to the optimal objective value. As a result,the pattern-based model

searched significantly less nodes in the branch-and-bound tree compared to the

compact model, when every instance reached the optimal solution, especially

in large instances when |N | = 100 and |N | = 120 at both |M |. Overall, the
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number of nodes in the branch-and-bound tree, the number of columns gener-

ated in the branch-and-price algorithm, and the computation time spent were

significantly less than in the previous experiments. Both models could give op-

timal solutions for almost every instance. In the previous two experiments that

maximized the number of passengers or flights assigned to the contact gates,

any flight has an identical preference value for every contact gate, whereas in

this experiment, a flight is allowed to have different preference values for the

different gates. It means that the preferable flight-gate pairs are more easily dis-

tinguished. Therefore the computations were easier with the preference values

in this experiment.

Since almost every instance reached its optimal solution within the time

limit when the preference values are 1, 2, or 3, an additional experiment is per-

formed for larger instances with |M | = 10 and |N | ∈ {140, 160, 180, 200}, and

the results are reported in Table 5.7. %Gap results show that the LP relaxation

value of the pattern-based model is tighter than that of the compact model

and close to the optimal objective value. Due to the gap, the number of nodes

in the branch-and-bound tree to obtain the optimal solution is significantly

less in the pattern-based model than in the compact model. Compact model

could not converge to the optimal solutions within the time limit in most of

the instances where the pattern-based model gave the optimal solutions. These

results of Time and #Opt are opposite to the results where the objective is to

maximize the number of passengers assigned to the contact gates, which shows

that computational performances are highly dependent on the choice of the

objective function.
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5.3 Effectiveness of Gate Assignment Schedules Ob-

tained from OCAGAP

To evaluate the effectiveness of the gate assignment schedules obtained from

OCAGAP, we compare them to the schedules obtained from deterministic

AGAP model with buffer time (BAGAP). Mangoubi and Mathaisel [24] pro-

posed using a fixed buffer time between two consecutive flights to absorb the

deviations of flight schedules. We put buffer time b in start and end times for

each flight, i.e., each flight’s nominal start and end times s̄i and ēi are changed

to s̄i − b and ēi + b respectively. Therefore, the nominal idle time between con-

secutively assigned flights is at least 2b in the schedule obtained from BAGAP.

5.3.1 Tests on Real Instances

In practice, the gates can be classified into several groups according to their

locations. Furthermore, specific airlines can be assigned to each group of gates.

To simulate more realistic situation in the experiment, we select 5 gates in

the western side of the terminal 1 in Incheon International Airport and the

corresponding airlines as an instance for each day from August 1 to August 20.

The set of flights N of the instance is the flights that are handled in the gate

that day. The minimum, maximum, and average size of the flight sets |N | of the

20 instances is 46, 60, and 53.2. We predict f(t) with the data of the 35 latest

days before each day according to the result in Figure 3.2. For example, for the

instance in August 1, we predict f(t) with the empirical survival function based

on the dataset of flights from June 27 to July 31. The preference values are set
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to be the numbers of passengers as in Section 5.2.

Table 5.8 and Table 5.9 shows Obj, #RG, #OG, #OF and OD obtained

from solving the pattern-based model of OCAGAP. With smaller ε, OCAGAP

gives a schedule with less #OG, #OF and OD while the number of passengers

assigned to the contact gates is decreased and the number of flights assigned to

the remote gate is increased. For each schedule, the expected number of gates

with overlaps is |M |ε, which is 5ε in the instances, and the average #OG in

the result are similar to the expectations. It indicates that the number of gates

with overlaps is predictable with historical data.

Also, Obj, #RG, #OG, #OF and OD of the schedules obtained from

BAGAP are reported in Table 5.10 and Table 5.11. The schedules with buffer

time b = 0 shows the largest objective values, but overlaps take place in a lot

of gates for every instance, and the schedules are impossible to be implemented

as they are because of the overlaps. If the buffer time b is increased, resulting

#OG, #OF and OD is decreased, while Obj becomes larger and #RG becomes

smaller.

Figure 5.1 illustrates the average #OG and Obj of the schedules obtained

from OCAGAP and BAGAP. When the Obj are similar, the schedules obtained

from OCAGAP give smaller #OG than the schedules obtained from BAGAP.

For example, compared to the result for BAGAP with b = 60, the result for

OCAGAP with ε = 0.25 shows smaller #OG while Obj is slightly larger.

The x-axis of Figure 5.1 is substituted with average #OF and average

OD in Figure 5.2 and Figure 5.3 each. The results show the same tendency;

the schedules obtained from OCAGAP give smaller #OF or OD than the
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schedules obtained from BAGAP when Obj are similar. Overall, compared to

the schedules obtained from BAGAP, OCAGAP gives schedules with smaller

number of overlapping flights, gates with overlaps, and the total duration of

overlaps when the number of passengers assigned to the normal gates is similar.

Figure 5.4 shows the average #OG and #RG of the schedules obtained

from solving OCAGAP and BAGAP. In the schedules obtained from OCA-

GAP, #OG is generally smaller even when #RG is smaller. It means that in

OCAGAP, fewer flights are handled in the remote gate and normal gates handle

more flights than AGAP while keeping the number of gates with overlaps small.

To see why these results appeared, we finally made an additional observation

of the obtained schedules. For the instance of August 7, OCAGAP with ε = 0.25

and ε = 0.3 obtained schedules with more number of passengers assigned to the

contact gates and less number of flights assigned to the remote gate, while the

numbers of gates and flight pairs with overlaps and the total duration of overlaps

are smaller, compared to the schedule obtained from BAGAP with 2b = 60. We

first observed the nominal idle times between flights in in the schedule obtained

from BAGAP with 2b = 60. The minimum and the maximum idle times are 60

and 255 minutes respectively. The variance of the idle times are 1,932. Next,

the idle times of the schedule obtained from OCAGAP with ε = 0.25 has

the minimum of 15 minutes, which is smaller than that of BAGAP, and the

maximum of 310 minutes, which is larger than that of BAGAP. Also, variance

is 3,369, which is far larger than that of BAGAP. In the same sense, the idle

times of the schedule obtained from OCAGAP with ε = 0.3 have the minimum

of 30 minutes, the maximum of 385 minutes, and the variance 4,344. We can
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Figure 5.1: Comparison of average Obj and #OG

Figure 5.2: Comparison of average Obj and #OF
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Figure 5.3: Comparison of average Obj and OD

Figure 5.4: Comparison of average #RG and #OG
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see that the idle times obtained in the schedule obtained from OCAGAP are

allocated more flexibly in order to meet the limit of the overlap probability

and assign flights more effectively. This explains why the results in Figure 5.1,

Figure 5.2, Figure 5.3, and Figure 5.4 appeared.
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5.3.2 Tests on Artificial Instances with Various Delay Cases

In Section 5.3.1, we used real data of Incheon International Airport in 2019

including the historical delays of flight schedules to test the effectiveness of

OCAGAP. Since there are various factors that affect the uncertainty of flight

schedules, the data we used cannot reflect some harsh or moderate circum-

stances. For example, if the weather condition around the airport is violent, the

uncertainty of flight schedules may increase. If airlines establish policies that

put more emphasis on punctuality of flight schedules, the uncertainty may de-

crease. The point is that the degree to which flight schedules are uncertain also

varies depending on the situation. Therefore, we evaluated the effectiveness of

OCAGAP on several different delay cases.

In order to model different delay cases, we use the gamma distribution used

in Section 5.2. We fitted the deviations of start and end times of all the flights

handled in Incheon International Airport to the gamma distribution, and the

resulting distribution is Γ(12.7, 0.18). Based on the distribution, we consider

5 distributions Γ(12.7k, 0.18) for k ∈ {0.25, 0.5, 1, 1.5, 2}. Figure 5.5 illustrates

the probability distributions depending on k. The larger k is, the worse the

uncertainty gets; the variance of the probability distribution goes higher. When

k ∈ {0.25, 0.5, 1}, we translated each distribution by 60 in the negative direction

and then limited the domain of the function from -60 to 120. When k = 1.5,

the distribution is translated by 90 in the negative direction and the domain is

limited from -60 to 120. When k = 2, the distribution is translated by 120 in

the negative direction and the domain is limited from -60 to 120.
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Figure 5.5: Gamma distributions of 5 different delay cases

We generate 10 instances when |M | = 5 and |N | = 50 in the same way in

Section 5.2, except that we generate 5 cases for each instance with the flight

delays generated from each of the 5 gamma distributions mentioned above.

For each delay case, we assume that we are provided with the parameters of

underlying gamma distribution of the flight delays, and construct the overlap

probabilities pij from the convolution of the two independent and identically

distributed gamma distributions.

The average Obj, #RG, #OG, #OF and OD of 10 instances for each k and

ε obtained from solving the pattern-based model of OCAGAP are given in Table

5.12. When k is same, the larger ε gives schedules with larger Obj and smaller

#RG, while it gives larger #OG, #OF and OD. When k becomes larger,

the variance of the underlying probability distribution of flight uncertainty is

increased. Thus, #OG, #OF and OD becomes larger for similar Obj or #RG.

Table 5.13 shows the average Obj, #RG, #OG, #OF and OD of 10 in-

stances for each k and b obtained from solving BAGAP with various buffer

times. For same b, Obj and #RG are same for all k, because the predicted
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Table 5.12: Test results of OCAGAP for various delays

k ε Obj #RG #OG #OF OD

0.25 0.05 7,080.6 7.1 0.3 0.3 1.6
0.1 7,235.1 6.0 0.3 0.3 1.1

0.15 7,273.5 5.3 0.6 0.6 3.1
0.2 7,279.0 5.2 0.9 0.9 4.4

0.25 7,335.1 5.0 0.8 0.8 8.1
0.3 7,346.7 4.8 0.7 0.7 7.1
0.4 7,426.5 4.3 1.6 1.7 18.2
0.5 7,445.2 4.2 1.4 1.6 16.3
0.6 7,546.8 3.8 2.5 2.5 30.9

0.5 0.05 6,807.1 9.6 0.8 0.9 12.8
0.1 7,004.0 8.0 1.4 1.5 18.5

0.15 7,093.8 7.0 1.1 1.1 20.1
0.2 7,221.0 6.2 1.8 1.9 30.4

0.25 7,261.0 5.7 1.8 1.9 32.3
0.3 7,273.5 5.3 1.7 2.1 31.2
0.4 7,336.2 4.8 2.4 2.7 41.1
0.5 7,419.1 4.4 2.6 3.1 48.0
0.6 7,521.2 3.9 3.0 3.6 62.0

1 0.05 6,476.3 12.2 0.6 0.6 8.9
0.1 6,646.1 10.7 1.5 1.5 34.9

0.15 6,824.3 9.5 2.0 2.0 42.1
0.2 6,940.9 8.6 1.7 1.7 33.0

0.25 7,053.8 7.6 2.4 2.8 58.0
0.3 7,143.7 6.6 2.3 2.7 71.9
0.4 7,267.8 5.8 2.8 3.6 86.6
0.5 7,350.5 4.9 3.1 4.1 98.2
0.6 7,452.1 4.4 3.9 5.0 155.4

1.5 0.05 6,161.9 14.3 1.0 1.0 28.7
0.1 6,468.4 12.5 0.9 1.0 23.0

0.15 6,586.6 11.5 1.1 1.1 26.5
0.2 6,754.9 10.2 2.2 2.4 62.6

0.25 6,867.3 9.2 2.3 2.4 57.7
0.3 6,963.3 8.5 2.7 3.0 80.6
0.4 7,143.3 6.8 3.5 4.5 103.7
0.5 7,279.3 5.6 3.4 4.7 111.3
0.6 7,388.6 4.9 4.3 5.2 138.7

2 0.05 5,933.9 16.0 0.7 0.7 17.3
0.1 6,252.7 13.8 1.0 1.0 26.4

0.15 6,449.7 12.6 1.2 1.3 30.6
0.2 6,565.3 11.7 1.4 1.6 54.5

0.25 6,698.8 10.9 2.5 2.6 70.9
0.3 6,814.2 10.1 2.0 2.2 61.6
0.4 7,017.7 8.3 3.4 3.8 94.6
0.5 7,205.2 6.5 3.6 4.3 107.8
0.6 7,342.9 5.2 3.5 4.9 147.7
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Table 5.13: Test results of BAGAP for various delays

k 2b Obj #RG #OG #OF OD

0.25 120 5,033.0 21.8 0.0 0.0 0.0
105 5,279.2 20.3 0.0 0.0 0.0
90 5,595.3 17.8 0.0 0.0 0.0
75 5,898.8 15.9 0.0 0.0 0.0
60 6,392.1 12.8 0.0 0.0 0.0
45 6,646.2 10.6 0.0 0.0 0.0
30 7,066.9 7.6 0.2 0.2 0.7
15 7,279.0 5.2 0.5 0.5 3.3
0 7,587.3 3.4 3.0 4.4 66.0

0.5 120 5,033.0 21.8 0.0 0.0 0.0
105 5,279.2 20.3 0.0 0.0 0.0
90 5,595.3 17.8 0.0 0.0 0.0
75 5,898.8 15.9 0.0 0.0 0.0
60 6,392.1 12.8 0.2 0.2 3.1
45 6,646.2 10.6 0.3 0.3 5.8
30 7,066.9 7.6 1.1 1.1 16.4
15 7,279.0 5.2 2.1 2.7 45.2
0 7,587.3 3.4 4.1 6.1 130.3

1 120 5,033.0 21.8 0.0 0.0 0.0
105 5,279.2 20.3 0.0 0.0 0.0
90 5,595.3 17.8 0.0 0.0 0.0
75 5,898.8 15.9 0.0 0.0 0.0
60 6,392.1 12.8 0.5 0.5 7.6
45 6,646.2 10.6 1.5 1.5 22.2
30 7,066.9 7.6 2.6 2.8 70.0
15 7,279.0 5.2 2.7 3.7 82.5
0 7,587.3 3.4 4.3 7.8 202.5

1.5 120 5,033.0 21.8 0.0 0.0 0.0
105 5,279.2 20.3 0.0 0.0 0.0
90 5,595.3 17.8 0.2 0.2 8.4
75 5,898.8 15.9 0.5 0.5 6.3
60 6,392.1 12.8 1.8 1.8 47.3
45 6,646.2 10.6 1.4 1.5 35.0
30 7,066.9 7.6 3.0 4.0 98.0
15 7,279.0 5.2 3.7 5.7 163.2
0 7,587.3 3.4 4.0 7.7 244.3

2 120 5,033.0 21.8 0.1 0.1 1.5
105 5,279.2 20.3 0.3 0.3 14.3
90 5,595.3 17.8 0.4 0.4 13.3
75 5,898.8 15.9 0.7 0.8 17.2
60 6,392.1 12.8 1.4 1.7 50.5
45 6,646.2 10.6 1.9 2.1 57.7
30 7,066.9 7.6 3.4 4.3 133.7
15 7,279.0 5.2 4.2 6.2 183.9
0 7,587.3 3.4 4.1 8.6 329.1
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overlap probabilities are not reflected in the model. With smaller buffer time,

AGAP gives schedules with larger Obj and smaller #RG, while #OG, #OF

and OD becomes larger.

To test the effectiveness of OCAGAP in a harsh condition, we give a fur-

ther comparison of the gate assignment schedule obtained from OCAGAP to

the schedule obtained from BAGAP when k = 2. Figure 5.6 shows the av-

erage #OG and Obj of the schedules obtained from OCAGAP and BAGAP.

For OCAGAP, ε ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.6, 0.75, 1}, and

for AGAP, 2b ∈ {75, 70, 65, 60, 55, 50, 45, 40, 35, 30, 15, 0}. Like in Figure 5.1,

the schedules obtained from OCAGAP give smaller #OG than the schedules

obtained from BAGAP when Obj are similar in general. Likewise, in Figure

5.7 and Figure 5.8, the results show that the schedules obtained from OCA-

GAP generally give smaller #OF and OD than the schedules obtained from

BAGAP when Obj are similar. The average #OG and #RG of the schedules

obtained from OCAGAP and BAGAP are shown in Figure 5.9. It shows that

#OG is generally smaller in the schedules obtained from OCAGAP when #RG

is smaller. However, there are several points out of the tendency. Unlike the ex-

periment in Section 5.3.1, in this experiment, we did not use the flight or airline

information to predict uncertainty separately, so the difference of the effective-

ness between OCAGAP and BAGAP is not more significant than in Section

5.3.1. However, the overall results show that OCAGAP is generally effective

even when the uncertainty of flight schedules is larger.
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Figure 5.6: Comparison of average Obj and #OG when k=2

Figure 5.7: Comparison of average Obj and #OF when k=2
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Figure 5.8: Comparison of average Obj and OD when k=2

Figure 5.9: Comparison of average #RG and #OG when k=2
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Chapter 6

Conclusion

In the thesis, we studied the airport gate assignment problem considering

overlaps between flights caused by the uncertainty in arrival and departure

times of flights. We propose an integer programming model with chance con-

straints which restrict the probability of an overlap occurrence in each gate, and

strengthen the model using flight assignment patterns. To apply these models in

practice, a non-parametric prediction method based on empirical survival func-

tion is proposed to predict overlap probabilities between flights using historical

data. Also, we devised a branch-and-price algorithm to solve the strengthened

model. Computational experiments are conducted on real instances of Incheon

International Airport in 2019 and artificial instances based on the real data.

The computational performances of the branch-and-price algorithm and the

commercial solver were dependent on the choice of the objective. Moreover, the

results show that the schedules obtained from these models give gate assign-

ment schedules with smaller number of gates with overlaps, overlapping flights,

and total overlap duration when the numbers of passengers assigned to contact

gates are similar compared to the schedules obtained from the deterministic

AGAP model considering buffer time between flights.
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For further studies, the prediction method for the overlap probability should

be improved to support these models. Also, in the branch-and-price algorithm,

we solved the sub-problems to generate profitable flight assignment pattern

with a commercial MIP solver. However, these sub-problems are special cases

of resource constrained shortest path problem [25] and they may be solved more

efficiently with other algorithms based on a dynamic programming. The com-

putational performance of the branch-and-price algorithm should also be ana-

lyzed more delicately considering the factors such as number of gates, number

of flights, choice of objective, etc. Furthermore, an AGAP model that includes

both overlap probability chance constraints and the buffer times should be ana-

lyzed with regard to the effectiveness of the gate assignment schedules obtained

from the model.
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국문초록

본 논문은 불확실성하의 공항 게이트 할당 문제를 다룬다. 항공기 출/도착 시각의

불확실성은 수립된 공항 게이트 할당 계획 실행 시에 같은 게이트 내의 항공기 스

케줄간의 중첩을 야기하며, 이는 항공기의 지연, 게이트 할당 계획 재수립과 같은

차질을 유발한다. 따라서 본 논문은 실제 항공 데이터를 활용하여 두 항공기 간

중첩이일어날확률을예측하는방법을제안하고,이를이용하여각게이트에서항

공기 스케줄 간 중첩이 발생할 확률을 정량적으로 제한하는 수리모형을 제시한다.

또한 항공기 할당 패턴을 이용하여 강화된 정수최적화 모형을 제시하고 분지평가

알고리즘을 해법으로 제안한다. 인천국제공항의 2019년 실제 데이터를 기반으로

한 실험을 통하여 본 논문에서 제시한 알고리즘의 효율성과 도출된 게이트 할당

계획의 효과성을 확인하였다.

주요어: 공항 게이트 할당 문제, 항공기 지연, 정수최적화, 확률 제약, 분지평가

알고리즘

학번: 2019-28381
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