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Abstract

Airport Gate Assignment Problem
under Uncertainty

Byungju Goo
Department of Industrial Engineering

The Graduate School

Seoul National University

In this thesis, we study the airport gate assignment problem under uncertainty
in arrival and departure times of flights which may cause overlaps between
flights assigned to the same gate. In this respect, we establish a gate assignment
schedule where overlaps between flights are prevented with probabilistic guar-
antees, while maximizing the sum of preference values of flights for gates. We
propose a network-based integer programming model with chance constraints
that limit the probability of an overlap occurrence in each gate less than a
given threshold value, for which the probability that a pair of flights overlaps
is predicted based on historical data. We also propose a strengthened integer
programming model for the problem based on the concept of flight assignment
patterns, and devise a branch-and-price algorithm to solve the model. Compu-
tational experiments are conducted with real and artificial instances which are

based on the real data of Incheon International Airport in 2019. The results



show the efficiency of the proposed algorithm as well as the robustness of the

derived schedules compared to the existing approaches.

Keywords: Airport gate assignment, Flight delay, Integer programming, Net-
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Chapter 1

Introduction

1.1 Background

The airport gate assignment problem (AGAP) is one of the major decision
problems in the airport industry that has been studied by researchers in the field
of optimization [I]. In each gate in airports, each arrival or departure flight needs
a ground service time for cleaning, maintenance, embarking or disembarking,
etc. Therefore, in AGAP, flights are assigned to airport gates under certain
constraints or objectives. It establishes a gate assignment schedule for given
start and end times of ground service schedule of each flight, as illustrated
in Figure While the demand for air transport is large and growing, gates
are valuable resources that are quite time-consuming and costly to build more.

Therefore, a clever and efficient use of existing gates is required.

Flight 1 N Gate1 | _ Fiight1 | [ Flightd |
Flight 2 A — S
Ui Fights ] i Gate2 | | il Fightd |: il Flight6 |
P Flight 4 i N N T N I I N
' : Flight 5 Gateml |' A T e
, : ght2 | | [ Fights | |
| ' [ Fiight6 L= : : :
R T T S T s s S S S T S S
0 time 0 time

Figure 1.1: Illustration of AGAP



There have been various objectives and constraints considered in AGAP.
For example, maximizing the sum of preference values of flights for gates [2] [3,
4], minimizing total passenger walking distance [5 [6l [7, 8] or minimizing the
number of towing operations [2] 3] [7] have been considered as objectives. For
constraints, flight-gate compatibility [3| [7, @] which is caused by aircraft size
or flight requirements keeps flights from being assigned to inappropriate gates.
Adjacency constraints [3], 10} [I1] prevent two large aircraft from being assigned
to adjacent gates at the same time.

Above all, one of the most important issues in AGAP is the uncertainty of
the start and end times of flight schedules. The uncertainty is caused by various
factors such as violent weather conditions, staffing issues, delays in previous
airports, incidents during ground services, etc.

Figure [I.2] illustrates an example that shows how uncertainty happens in
flight schedules and causes overlaps of flight schedules in a gate assignment
schedule. The original gate assignment schedule was made according to the

nominal start and end times of flight schedules. However, on the day of the

Gate 1| [[_Fight 1] [ [ Fiight [ ][I Flight |
Gate 2 Flight | Flight _JI___Fight [
.
Gatem| [ Fign ] [[_Fignt 1] [ Fiat ]
| >
0 time
[ ]: original flight schedules B : overlap of flight schedules

[—": realization of flight schedules

Figure 1.2: Illustration of an overlap in a gate assignment schedule
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operation, the realizations of start and end times of flight schedules are changed
from the nominal times due to the uncertainty, and an overlap of flight schedules
happens in gate 2.

A schedule with overlaps is practically impossible to implement as it is,
since one gate can handle only one flight at a time, and the schedule requires
some real-time remedies for overlaps. For example, the following flight of the
overlapping pair may wait for the assigned gate to be clear, which may cause
a chain of delays for other flights assigned to the same gate. Also, a partial or
complete rescheduling may be required. All these remedies require additional
complex decision making and may have negative impacts on punctuality and
passenger satisfaction as well as airport resources. Therefore, the uncertainty
should be considered in the airport gate assignment in order to prevent overlaps.
In this thesis, we focus on the uncertainty of the start and end times of flight

schedules and the issue of preventing overlaps between flights in AGAP.



1.2 Literature Review

To prevent overlaps in AGAP, several studies modelled the uncertainty of flight
schedules and considered the expectation of some measures associated with
overlaps. Dorndorf et al. [3], Yan and Tang [12], and Seker and Noyan [13] all
assumed that the ground service duration of each flight is fixed whereas its real
start time is random. Dorndorf et al. [3] used independent gamma distributions
to model the uncertainty of real start times of arrival flights. To deal with the
uncertainty, they minimized the expected total number of overlaps. They dis-
cretized the gamma distributions with 1 minute intervals. The expectation is
set to be two minutes early, the median to be six minutes early, and the earliest
to be 30 minutes early. Yan and Tang [12] obtained the empirical distribution
of real start times from real data of CKS Airport in Taiwan. They minimized
the total expected penalty caused by wait times of passengers. About 88 per-
cent of departing flight delays were 0 to 20 minutes, and for arriving flights,
about 76 percent of the delays were -9 (early) to 20 minutes. They used a
scenario-based model to maximize the weighted sum of preference values and
the expected penalty caused by wait times of passengers. Seker and Noyan [13]
used independent triangular distributions to model the uncertainty of real start
times. They used the distribution with parameters -10, 50, and 90 which is
left-skewed to reflect the fact that a delay is more likely than an earliness, and
used a scenario-based model. They set the expected number of total overlaps
as a primary objective to minimize, and compared different indirect measures

as the second objectives to minimize: the expected variance of idle times, the



expected total semi-deviation of idle times, and the expected number of posi-
tive semi-deviation of idle times, where the term idle time indicates the nominal
time interval between the schedules of consecutively assigned flights.

Yu et al. [6] assumed that the uncertainty lies in both start and end times of
the flights. They modelled the uncertainty with independent log-normal distri-
butions, and fitted the overlap probability function to an exponential function
of the idle time. They used the expected total overlap duration as a robustness
measure to minimize.

Lim and Wang [5], Aoun and El Afia [9], Castaing et al. [14], and Kim et al.
[15] assumed that the uncertainty lies in each flight pair, and directly captured
the uncertainty of each flight pair. Lim and Wang [5] and Aoun and El Afia
[9] used estimation functions to estimate the expectation of the probability
that a flight pair overlaps. The estimation functions reflected the fact that the
larger idle time results in the smaller probability of overlap. They minimized
the expected total number of overlaps. Kim et al. [I5] modelled the expected
overlap duration as a function of idle time. They fitted the historical data of
overlap duration to an exponential function and minimized the expected total
overlap duration. Castaing et al. [I4] used historical data of overlaps of each
flight pair to estimate the probability of overlap and the overlap duration. They
used both the expected number of overlaps and the expected overlap duration as
objectives, and additionally proposed minimizing worst case expected overlap
duration.

There have been approaches that did not explicitly involve uncertainty in

their models, but indirectly prevented overlaps in schedules by considering idle



times between flights. Benlic et al. [2] and Kumar and Beirlaire [16] captured
short idle times between flights and penalized them. The idea is that short idle
times are susceptible to small disruptions leading to overlaps, since an idle time
works as a buffer to absorb unexpected changes. In the same sense, Dag [§] used
the variance of idle times as a robustness measure and minimized the variance
to distribute the idle times evenly.

Xu et al. [I7] assumed that the start time of each flight is fixed whereas
its real end time is random, and the distribution of each random end time
is measured by a regression model, where the delay factors are classified into
three classes: common factors, individual predictable factors and unpredictable
factors. Unlike others stated above, where the ways of optimizing expectation
regarding uncertain elements have been proposed, Xu et al. [I7] proposed min-
imizing (1 — a)—quantile of total overlap duration to give a quantitative guar-

antee on the robustness of the schedules.



1.3 Motivations and Contributions

As we introduced in the previous section, most of the studies proposed optimiza-
tion models considering the expectation of measures associated with overlaps.
However, the derived schedules from these approaches may be difficult to imple-
ment in some cases depending on how uncertainty is realized. In other words,
these approaches cannot give a quantitative guarantee on the implementation
of schedules without overlaps. As far as we know, there have been no research
that took into account the quantitative guarantee, except for Xu et al. [17].
However, they solve the model approximately which leads to a conservative
solution. Also, the gate assignment schedules obtained from the model cannot
guarantee the effectiveness of each gate, as the total overlap duration of all
gates is considered. This can lead to an imbalance of overlaps among gates.

In this thesis, we propose a mathematical model that establishes a gate
assignment schedule that gives a quantitative guarantee to the possibility of
implementation, which has not been researched enough in previous studies.
Specifically, we assume that the start and end times of ground service sched-
ule for each flight are uncertain. Based on this assumption, we estimate the
overlap probability of each pair of flights when they are assigned to the same
gate. Based on this estimation, we propose an AGAP model, named overlap
chance-constrained airport gate assignment problem (OCAGAP), with chance
constraints that limit the probability of an overlap occurrence in each gate less
than a given threshold value and maximize the sum of preference values, and

also propose a solution approach based on column generation.



1.4 Organization of the Thesis

The remainder of the thesis is organized as follows. In Chapter [2| we present
a formal description of the problem and propose mathematical models with
chance constraints. In Chapter[3] a non-parametric prediction method of overlap
probabilities based on empirical survival function is presented. In Chapter [,
we give a branch-and-price algorithm to solve the model we proposed. Chapter
is about computational experiments. We proposed detailed examination of
the effectiveness of the model and the efficiency of the algorithm based on
comparison with existing ones. Finally, a summary and concluding remarks

appear in Chapter [6]



Chapter 2

Models for OCAGAP

In this chapter, we formally define OCAGAP that limit the probability of an
overlap occurrence in each gate. Then we give an integer programming (IP)
model for OCAGAP using network flow, and further strengthen the IP model

using flight assignment patterns.

2.1 Problem Definition

The sets for OCAGAP are listed as follows:

e M : the set of normal (contact) gates. A gate m € M is a normal gate

that can handle one flight at a time.

e A remote gate 0 : Unlike contact gates in the set M, the remote gate
is assumed to have unlimited capacity, and more than one flight can be
assigned to the gate simultaneously. Since passengers have to walk or ride
a bus to move between the remote gate and the airport terminal, the

preference value of every flight for the remote gate is set to be 0.

e N : the set of flights. A flight ¢ € N is defined by its nominal start time

5; and nominal end time é; where 5; < ¢;. Without loss of generality, we



assume that the flights are sorted in ascending order of s;.

e N(m) C N, Vm € M : the set of flights that can be assigned to gate m,

according to the compatibility.
Next, the parameters for OCAGAP are listed as follows:

® p;ij, Vi,j € N : overlap probability between flights 7 and j. It indicates
the probability that the schedules of flight ¢ and j overlap given that the

flights are assigned to the same gate.
® Tim,Vm € M,Vi € N(m) : preference value of flight i for gate m.

® ¢y, Ym € M : the maximum limit of the probability that an overlap

occurs in gate m.

In OCAGAP, a normal gate can handle only one flight at a time, so the
inequality €; < 5; holds for flights 7 and j that are assigned sequentially to the
same gate m. Also, the flight-gate compatibility constraints are considered, i.e.,
only the flights that belong to N (m) can be assigned to gate m. The objective is
to maximize the sum of preference values of flights for gates. Let F,, be the set
of consecutively assigned flight pairs (i, ) in gate m. For each (i,j) € F,, let
Y;; be the binary random variable which is equal to 1 if flights ¢ and j overlap.

Then, F}, satisfies the following inequality for all m € M:

Py Y Yij>1p<epn YmeM. (2.1)
(4,3)EFm

10



Constraints are chance constraints that limit the probability of an overlap
in gate m less than the given threshold value €,,. We consider these chance
constraints for all m € M in OCAGAP.

We now show the computational complexity of OCAGAP. It is obvious that
the special case of OCAGAP with €,, = 1 for all m € M is deterministic AGAP
whose objective is to maximize the sum of preference values. This problem is

proven to be NP-hard by Jaehn [4]. Therefore, OCAGAP is NP-hard.

Remark. OCAGAP is NP-hard.

11



2.2 Integer Programming Models for OCAGAP

In this section, we give integer programming models of OCAGAP using the
notation given in Section The constraints and objective can be expressed
on a network flow model by Maharjan and Matis [18§].

The additional inputs for the network representation of gate m are listed as

follows:
e s : start node.

t : end node.

e N'(m) C N, Ym € M : the set of duplicate nodes i’ € N of N(m).

e V' : the set of all nodes that consists of s, ¢, all nodes in N(m), and all

nodes in N'(m).

e A : the set of all arcs that consists of (s,7) for all ¢ € N(m), (i,4) for
all i € N(m) and ¢' = i, (¢, 7) for all ¢/ € N'(m),j € N(m) such that

ey < §j, and (¢/,¢) for all i € N'(m).

Figure illustrates an example of the network. The set of compatible
flights NV (m) is assumed to be {1,2,...,n} here. The network consists of nodes
i corresponding to flights and their duplicated nodes 7. Dummy nodes s and
t are the start and end nodes of a path. Node ¢ is connected to its duplicated
node 7', and node i’ is connected to nodes j of flights that can come right
after the flight 7 in the gate. Node s is connected to all nodes ¢ and node ¢

is connected from all nodes i’. Then, a path from node s to t represents an

12



Figure 2.1: Network representation of an assignment schedule of a gate

assignment schedule of a gate that comprises of the flights that the path passes
by. For instance, the red path in Figure [2.1| represents an assignment schedule
of a gate with flights 1,3, and n.

A gate assignment schedule is thus represented by the set of |M| paths in
which each flight node i € N is passed by at most one path. Flights that are

not assigned to any path are assigned to the remote gate.

13



2.2.1 Compact Model for OCAGAP

Based on the network, OCAGAP without considering uncertainty using chance

constraints is formulated with an integer programming model defined as follows:

maximize Z Z Tim Ty (2.2)

meM ieN(m)
subject to Z xip =1, Vie N, (2.3)
meMU{0}
Y oa=1, VmeM, (2.4)
1€N(m)

Z T = Z afi, ¥Ym e M,Vie N(m)UN'(m), (2.5)

jETH (i) €5 (3)
Y oap=1, VYmeM, (2.6)
1EN(m)

xip €4{0,1}, Vme M,Vi,j € N(m)UN'(m)U{s,t}. (2.7)

m

The decision variables 7

correspond to the arcs from node i to j in the network.
In terms of the gate assignment schedule, x7); = 1 implies that flight 7 is assigned
to gate m and x7; = 1 implies that flight 4 is followed by flight j in gate m.
The objective function is to maximize the sum of preference values of the
schedule. Constraints state that each flight ¢ must be assigned to a gate.
Constraints — are the flow balance constraints for the networks of the

gates.

With the decision variables xg?, the chance constraint 1} can be restated

14



as follows:

P > Yialhi <09 >1—6p, ¥me M.
1,jEN(m)

Also, it is obvious that the following holds:

Pq Y Vil = P {Yya, =0, Vi,j € N(m)}
i,jEN(m)

Note that for consecutive flight pairs (i, j) and (j, k) in F,,, the following rela-

tionship holds:
P{Yij = 0,Yj, = 0} = P{Yj = 0]Yj; = 0} P{Y;; = 0}

We assume that an overlap between flights ¢ and j does not affect the overlap
probability between flights j and k, i.e., Yj; does not affect Y}, as buffer times
in flight schedules can absorb the affect of overlaps. Under the assumption, the

following holds:
P{Yj, = 0]Yj; = 0} = P{Y} = 0}

Generalizing these observations, the chance constraints (2.1)) can be expressed

as follows:

[ Pzl =0} >1-epn,¥me M.
LIEN (m)

15



Since P{Y;; = 0} =1 — p;j, the following holds:
H (1 —pijx%) >1—¢€y,,Ym e M.
i,JEN(m)

Then, the chance constraints (2.1) can be linearized by taking logarithms on

both sides of the inequality above as follows:

Z log (1 — pij) i > log(1 — €,), Vm € M. (2.8)
L, EN(m)

The constraints (2.8)) are what we call the overlap probability chance con-

straints. Then, the compact model for OCAGAP is defined as follows:

C: maximize (2.2) (2.9)
subject to (23) — @), [3). (2.10)
16



2.2.2 Pattern-based Model for OCAGAP

We additionally propose a pattern-based model for OCAGAP. Let a flight as-
signment pattern for gate m be a set of flights that can be assigned together to
gate m by satisfying the overlap probability chance constraints and the com-
patibility constraints. Then for each gate m € M, the set of flight assignment
patterns can be defined as @),,,. Note that each g € (),, can be expressed as an
|N| dimensional binary vector, z¢ = (7, ..., a‘ch‘) where Z! = 1 when ¢ includes
flight i. Note that for any pattern ¢, &; < 5; holds for all ¢« < j € N such that
= 21 = 1. Using this notation, the pattern-based model for OCAGAP is

J

defined as follows:

P : maximize Z Z Z Tim@s | 2, (2.11)

meM qEQm \i€N(m)

subject to Z Z zlzl =1, VieN, (2.12)
mEMU{O} qEQm
d 2 <1, VmeM, (2.13)
q€EQm
zb €{0,1}, VmeM, VqgeQpn. (2.14)

The binary decision variable 2z}, equals to 1 if gate m chooses flight as-
signment pattern gq. The objective function is to maximize the sum of
preference values of the schedule. Constraints imply that each flight ¢ is
assigned to a gate. Constraints state that each gate m chooses at most

one pattern.

17



2.2.3 Comparison of the OCAGAP Models

We close this section by comparing the proposed models for OCAGAP. Since
there exist exponentially many flight assignment patterns, the number of vari-
ables in the pattern-based model is exponential in |N|, whereas the number
of variables in the compact model is polynomial in |M| and |N|. However, the
pattern-based model has an upper bound provided by the linear programming
(LP) relaxation at least as tight as that of the compact model. Let the up-
per bound provided by the LP relaxation of the pattern-based model and the
compact model be Zzp and Z7 p, respectively. Then, the following theorem

holds.
Theorem 2.1. ZV , < Z§ .

Proof. We show that a feasible solution of the pattern-based model can be
transformed into a feasible solution of the compact model. Since each flight
assignment pattern corresponds to a simple path from s to t in the network
representation, the feasible solution of the pattern-based model can be inter-
preted as a linear combination of simple paths. It is clear that this solution is
feasible for the compact model. Therefore, a feasible solution of the pattern-
based model can be transformed into a feasible solution of the compact model,

and Z¥ , < Z§ p. O

18 -



Chapter 3

Prediction of Overlap Probabilities

In this chapter, we study how to determine the overlap probabilities in OCA-
GAP. We first define the overlap probability function, and propose a non-
parametric prediction method with which we predict the overlap probability

of flights using historical data.

3.1 Definition of Overlap Probability Function

We denote the nominal start and end times of flight ¢ by §; and €;, and assume
that the start and end times of flights are uncertain due to the unexpected events
such as violent weather conditions, staffing issues, delays in previous airports,
incidents during ground services, etc. Due to the uncertainty, real start and
end times of the flights deviate from the nominal start and end times, and the
deviations are denoted by §; and é;. Without loss of generality, we assume that
5; and é; are independent random variables for different flights ¢,5 € N. An
overlap occurs between consecutively assigned flights ¢ and j in one gate if the

ground service of flight ¢ ends later than the start time of flight j. The overlap

19 -



probability p;; is then set as follows:

Pij = P{gj —e < é — §j}.

Note that 5; —é¢; is the nominal idle time between flights ¢ and j. Let 5; —¢&; = ¢.
Then the overlap probability when the nominal idle time is ¢ is defined as a
function f(t) = P{t < é; — §;}. We name f(t) an overlap probability function.

Figure illustrates an outline of the graph of f(¢) between departure and
arrival flights, which is drawn from the historical data of flights in Incheon
International Airport in 2019. Specifically, for all days in 2019, we collected
every pair of flights ¢ and j on the same day where ¢ is a departure flight and
j is an arrival flight. For each ¢t € Z, f(t) is is assumed to be the proportion of
flight pairs that would have overlapped if they had been assigned to the same
gate, i.e., 5; — e; < &; — §;, where Z is the set of integers.

Note that f(¢) is similar to a survival function which gives the probability

that some object will survive beyond any specified time [19]. If we regard a

—50 0 50 100 150 200

t

Figure 3.1: An outline of f(¢) between departure and arrival flights estimated
with flight data in 2019

20



random variable é; — 3; as a random lifespan of an object, the survival function
of the object indicates the probability that the object will survive beyond ¢.
The survival function is then defined as P{t < é; — 5;}, which is same with the
definition of f(¢) stated above. Based on this observation, we propose a non-
parametric prediction method based on empirical survival function to predict

f(t) of the target day.

21



3.2 Prediction Method based on Empirical Survival

Function

Suppose that we consider the dataset of flights in d days just before the target
day, and we use the dataset to predict f(t) of the target day. Our speculation
is that the uncertainty of flights is affected as time passes, and the uncertainty
in the latest data reflects current uncertainty better than the older data. Let
the dataset be T,. Each flight ¢ in Ty has (8;, é;) with realized (§;, é;). Then we
can generate samples of é; — 3; by calculating At;; = é; — 3; for each 7,5 € Tj.
Let the number of samples be A. Then the empirical survival function can be

defined as follows:

f/v(t)=% > I(At; > 1)

{ZJ}CTd

where I(At;; > t) is 1 if At;; > t, and 0 otherwise. Note that this estimator
converges to f(t) derived from the population in T, asymptotically [20], i.e.,
sup,cg | fa(t) — f(t)] — 0 for sufficiently large A, where R is the set of real
numbers. However, our purpose is to predict f(¢) derived from the population
in target day. To justify the use of this estimator as a predictor, in the next
section, we conduct a case study for real data of Incheon International Airport
in 2019. In the case study, we measure the accuracy of the predictor and also

give a recommendation of parameter d.
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3.3 Case Study

In this section, we conduct a case study using the real flight data of Incheon
International Airport in 2019. We first categorized the flights into 8 different
types for finer prediction of f(t): 4 different classes of airlines (Korean Air,
Asiana Air, the rest of the Korean airlines, and foreign airlines) for arrival or
departure flights. Flight pairs are classified into a total of 64 types according
to the combination of the types of two flights in a pair, and f(¢) is predicted
separately for each type of the flight pairs. For each flight in the data, we are
provided only with nominal and real start times for arrival flights, and nominal
and real end times for departure flights. Therefore, we assumed that §; = é; for
all 7 € N, and that the ground service duration of each flight is 30 minutes which
is the mean value considered in Yu et al. [6]. Combining these information, we
derived nominal and real start and end times of ground service schedule for each
flight. For example, if flight ¢ is a departure flight and its given nominal and
real end times are 13:00 and 13:20, then the nominal and real start times are
assumed to be 12:30 and 12:50. We disregard flights with $; < —60 or §; > 120
as abnormal situations which account for less than 1% of total data.

To give a recommendation on parameter d and measure the accuracy of
prediction, we conduct predictions on June and July data. With different d, we
computed the predictor fN(t) for each type of the flight pair on each day. For
example, if f(¢) in June 1st is predicted with d = 7, the prediction is based on
the flight data from May 25th to 31st. Since the true form of f(t¢) is not given,

we regard the empirical survival function of target day as the f(¢) from the
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asymptotic convergence property. Since the unit time of §; and é; is 1 minute
in the data and we disregarded flights with §; < —60 or §; > 120, we measure

the root mean squared error (RMSE) of two functions as follows:

RMSE = | = > (fw(t) = f(1)*

Figure shows the boxplots of average RMSE of 64 types of predictions
for each day in June and July for each d. At first, the RMSE tends to decrease as
d increases, but at certain point, the benefit of using larger sample with larger
d is offset by the increase of bias by including more outdated data. As a result,
the minimum average RMSE of 0.02244 and the minimum median RMSE of
0.02108 is obtained when d = 35. Also, the standard deviation is 0.02108, which
is the 4th best value. What we recommend is thus using d around 35 or one

month, and we used d = 35 for the computational experiments.
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Figure 3.2: Boxplots of RMSE for various d
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Chapter 4

Solution Approach for Pattern-based
Model

As we mentioned in Section the pattern-based model has exponentially
many variables while it has an advantage that it has LP relaxation bound at
least as tight as that of the compact model. To take advantage of the pattern-
based model, we devise a branch-and-price algorithm (B&P) based on the col-
umn generation method [21], 22] which is practically useful when solving LP

problems with a large number of variables.

4.1 Column Generation Method for LP Relaxation

The pattern-based model, named master problem, is solved in a branch-and-
bound framework. At each node of the branch-and-bound tree, we solve the LP
relaxation of the master problem using the column generation method. Since
the pattern sets ., have exponentially many patterns, we consider a master
problem where the pattern sets ), are substituted by the restricted pattern
sets Qm C Qp, for all m € M. The problem is called restricted master problem

(RMP) and defined as follows:
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RMP : maximize Z Z Z Tim@y | 28, (4.1)

meM 4e(,, \i€N(m)

subject to Z Z zlzl =1, VieN, (4.2)
meMU{0} gqeQpn
Zzgl<1, Vm € M, (4.3)
qEQm
22 €{0,1}, VmeM, Vg€ Qn. (4.4)

Upon solving the LP relaxation of RMP, we use the dual optimal solutions
u; and v, of the constraints and to solve the sub-problems. A flight
assignment pattern that improves current objective value of RMP can be gen-
erated by solving a sub-problem for each gate. The sub-problem SP(m) for gate

m is defined as follows:

SP(m) : minimize Z(u’ — Tim)Tii — U, (4.5)
ieEN
subject to Z Tsi =1, (4.6)
1€N(m)
Y wy= Y i, Vie Nm)UN'(m), (4.7)
JES(3) J€6~(4)
> aa=1, (4.8)
1€N'(m)
> log(1 — pij)wir; > log(1 — em), (4.9)
1€N(m)

z;j €{0,1}, Vi,j € N(m)UN'(m)U {s,t}. (4.10)
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If the optimal objective value of SP(m) is greater than 0, the corresponding
flight assignment pattern is profitable, and it is added to Qm to improve the
objective value of RMP. The column generation method for master problem is
iterated to solve the LP relaxation of RMP and SP(m) for each m € M until
no flight assignment pattern is added to Qm for all m € M. Then, the optimal

LP relaxation solution of the master problem is obtained.
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4.2 Branching Variable

If the optimal solution of the LP relaxation of the master problem is not integral,
it is not a feasible solution of the master problem, and we need to branch the
node to search for integral solution. Note that a feasible solution Z of the master
problem can be translated into a feasible solution Z of the LP relaxation of the

compact model as follows:

ap =Y x5l Vie N(m), Vme M.

Branching on the variables in the pattern-based model itself may lead to
slow convergence of the algorithm because of the large number of variables.
Therefore, in this branch-and-price algorithm, we branch on the most fractional
variable 27, translated from 2. Flight 7 is assigned to gate m in its left child
node, i.e., z7;; = 1, while the assignment is not allowed in its right child node,

i.e., 27 = 0. Note that this branching rule just fixes some variables z77;

to 0 or
1 in the sub-problems. Therefore, additional constraints are not required in the
sub-problems for each branched node and its successors, and the structure of
the sub-problems is not destroyed.

Further, we have the following proposition that ensures that the branching

rule we choose gives an integer solution with respect to the variables in the

pattern-based model.

Proposition 4.1. If 2%, is fractional, then there exists i € N(m) with fractional
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n’ lml/

Proof. Let F be the set of indices of patterns with fractional 2}, and assume
that there is no fractional ZI7,. We assume that there are at least two patterns
in F since if F = {q}, then &I is fractional for every ¢ such that z! = 1.
Since quQ 21 < 1in , we have quF 2% < 1. Then, quF:): 21 <
quFzgqglforzeN Ifz sz?n—O then z!/ = 0 for all ¢ € F. If
quF :Z‘fégl =1, then :Ef =1 for all ¢ € F'. It means that the patterns in F' are

same, which is a contradiction. ]
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4.3 Initialization

An initial feasible solution gives a lower bound that helps reduce the size of the
branch-and-bound tree. Since RMP is always feasible as gate 0 is a remote gate
that can handle unlimited number of flights simultaneously, a feasible solution
can be derived by solving RMP with any kind of patterns in the restricted
pattern sets. Therefore, we obtain a feasible solution by solving RMP after gen-
erating a number of columns and using them as initial columns. Specifically,
at node 0 of the branch-and-bound tree, an initial LP is solved with the col-
umn generation method, and a number of patterns are generated. Then, before
branching, we apply a typical branch-and-bound algorithm to obtain the op-
timal feasible solution of RMP with the restricted pattern set. It is a feasible
solution of the master problem, and the initial feasible solution gives an initial
lower bound of the optimal solution that helps reduce the size of the search tree.
Finally, the flowchart for the overall branch-and-price algorithm is described in
Figure [I.1], where S denotes the set of active nodes in the branch-and-bound

tree, and (b and ub denote the lower and upper bound respectively.
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Solve the LP relaxation of RMP using col-
umn generation. Obtain the optimal solution
z* and its objective value Z*. ub < Z*.

1

Is z* integral?

Branch-and-bound to optimality to get a
feasible solution. (b <— Z* and S <« {}.

Branch the node to two child
nodes. Add the nodes in S.

Fathom the node.

Is active node set S empty
orlb+1> ub?

b« Z*iflb < Z*.

Select next node with best bound rule
and solve LP relaxation of the node using
column generation. Remove the node from S.

Terminate with the
best feasible solution.
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Figure 4.1: Overall procedure of the branch-and-price algorithm




Chapter 5

Computational Results

Computational tests are performed to evaluate the efficiency of the proposed
algorithm and the effectiveness of the gate assignment schedules obtained from
OCAGAP. We compare the branch-and-price algorithm to a commercial MIP
solver to test the efficiency, and then we compare the gate assignment schedules
obtained from OCAGAP to the schedules obtained an existing AGAP model to
test the effectiveness. Proposed models and algorithm were implemented with
version 8.9 of Xpress [23]. We choose the best-bound rule for node selection in
the branch-and-price algorithm, and also, the sub-problems for all gates were
solved simultaneously using parallel processing. All tests were performed on a
PC with Intel Core 3.60 GHz processors and 32 GB RAM. The computational

time is limited to 600 seconds. Notation of the result tables is given as follows:

e %Gap : the relative gap between the LP relaxation bound Zyp and the
optimal objective value Z*. If no optimal solution is found within the time

limit, the value of the best feasible solution found is used instead.
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Zip—2*
%Gap = LPT x 100

e #Node : the number of nodes in the branch-and-bound tree

e #Col : the number of columns generated in the branch-and-price algo-

rithm

e Time : the computational time until the optimal solution is found. If the

optimality is not achieved within the time limit, then Time = 600.

e #Opt : the number of optimal solutions among 10 instances in the con-

figuration
e Date : the date of the instance in August 2019.
e Obj : the best objective value found

e #R(G : the number of flights assigned to the remote gate in the gate

assignment schedule

e #OG : the number of gates with at least one overlap in the gate assign-

ment schedule obtained

e #OF : the number of overlapping flight pairs in the gate assignment

schedule obtained

e OD : the total overlap duration in minutes in the gate assignment schedule

obtained
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5.1 Implementation Issue of Overlap Probability

Since the logarithms log(1 — p;;) in the linearized chance constraints can
be irrational and numerical errors arise when computing with irrational num-
bers, we need to determine how to deal with the logarithms in the models for
OCAGAP before implementation. We deal with them by slightly overestimat-
ing the overlap probabilities, which is same as underestimating the logarithms,
in order not to compromise the feasibility of the constraints. Specifically, we use
natural logs for the logarithms, and round the logarithms up to three decimal

places. Therefore, the chance constraints (2.8]) are modified as follows:

1000log (1 — p;;
> 11000 log ( pg)Jx?, > log(1 — €m), ¥m e M. (5.1)
N 1000 !

i,jEN(m)

To analyze the errors induced by the changed constraints, let p;; be the over-

estimated overlap probability for p;;. That is,

LlOOO IOg (1 - pij)J

1 1—p;i) = 2
Then, the following holds:
log (1 — ]51]) > log (1 — Pij) — 0.001. (5.3)

Putting both sides of the inequality to the power of the natural constant e

yields the following:
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1 — pij

The inequality is organized in terms of p;; as follows:
_ 1 Pij
pij <1- 0001 60.8]01' (5.5)

Note that 1 — 60% is slightly smaller than 0.001 and ef% < pij. Moreover,
pij < Dij according to the definition of p;;. Thus, the following relationship

holds:
pij < Pij < pij +0.001. (5.6)

The inequality above indicates that the error of the overlap probability caused
by rounding is smaller than 0.001. In other words, each overlap probability is

overestimated by at most 0.001, which is quite small and negligible.
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5.2 Computational Comparison of Proposed Models

To compare the computational performances of proposed models, we generate
artificial instances from real data of Incheon International Airport in August
2019. For each instance, we first choose |M| gates where |M| € {5,10}, and
randomly choose |N| flights where |N| € {60, 80,100,120} that are compatible
with the chosen gates, with their airline types, compatible gates, and the nomi-
nal start and end times in minutes in the real data, and we generate 10 instances
for each combination of |M| and |N|. For each gate, we distinguished whether
or not a given flight is compatible with the gate depending on the airline of the
flight; we regarded the flights of the airlines that have never assigned a flight
to the gate in 2019 as incompatible with the gate.

For each instance, we conducted experiments for each of the three different
types of preference values 7;;,, since computational performances are dependent
on the preference values. For the first type, each preference value is set to be
the average number of passengers carried by the flights of the airline with the
same destination or origin according to the real data in 2019. Therefore, the
objective is to maximize the number of passengers assigned to the contact gates.
The second type is to set every preference value to 1. The objective is thus to
maximize the number of flights assigned to the contact gates. The last type is
to randomly generate the preference values from the set {1,2,3}. Flights can
have various degrees of preferences for the gates depending on the aircraft size,
number of passengers, airline, origin or destination, etc. We assume that the

preference values can be classified into three classes: 1, 2, and 3. We randomly

36 -



give one of the three values for each combination of a flight and a gate. The
objective is thus to maximize the sum of preference values of flights for gates.

For simplicity, we assume that every deviation of start and end times of
the flights is generated from an identical probability distribution. For the prob-
ability distribution, we chose gamma distribution, which is used in Dorndorf
et al. [3] to model the uncertainty of the flight schedules. We specifically used
the deviations of start and end times of all the flights handled in Incheon In-
ternational Airport fitted to the gamma distribution. Before fitting, we disre-
gard flights with §; < —60 or §; > 120 as abnormal situations which account
for less than 1% of total data, and since gamma distributions are defined for
positive numbers, we added 60 to each deviation. The resulting distribution
is I'(12.7,0.18); the shape parameter of the distribution is 12.7, and the rate
parameter is 0.18. We assume that we are provided with the parameters of un-
derlying gamma distribution of the flight delays, so we construct the overlap
probabilities p;; from the convolution of the two independent and identically
distributed gamma distributions.

The pattern-based model is solved by the branch-and-price algorithm we
proposed. The compact model is solved by a branch-and-bound algorithm with
the same variable branching and node selection strategy. The average results of
the 10 instances for each |M| and |N| are given except for the column #Opt.

The results when the objective is to maximize the number of passengers
assigned to the contact gates are reported in Table and Table %Gap
results show that the LP relaxation value of the pattern-based model is not

only tighter than that of the compact model, but also close to the optimal
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objective value. However, in spite of the difference in the LP relaxation bounds,
the pattern-based model spent more computational time in general because
of the column generation procedure. Therefore, the compact model generally
gave optimal solutions in short times compared to the pattern-based model.
Moreover, when |M| = 10, the pattern-based model could not give optimal
solutions for most of the instances compared to the compact model.

The results when the objective is to maximize the number of flights assigned
to the contact gates are reported in Table and Table The overall re-
sults are similar to the results of the first experiment where the objective is
to maximize the number of passengers assigned to the contact gates. %Gap
of the pattern-based model is smaller than that of the compact model, but
the column generation procedure needed a significant amount of computational
time. Therefore, the compact model generally gave optimal solutions in short
times compared to the pattern-based model, but the difference between the two
models were smaller than in the results in Table [5.1] and Table Also, the
numbers of instances that the optimal solutions are found are similar in the two
models.

The results when the preference values are 1, 2, or 3 are presented in Ta-
ble [5.5] and Table [5.6] %Gap results show that the LP relaxation value of the
pattern-based model is far tighter than that of the compact model, and they
are close to the optimal objective value. As a result,the pattern-based model
searched significantly less nodes in the branch-and-bound tree compared to the
compact model, when every instance reached the optimal solution, especially

in large instances when |N| = 100 and |[N| = 120 at both |M]|. Overall, the
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number of nodes in the branch-and-bound tree, the number of columns gener-
ated in the branch-and-price algorithm, and the computation time spent were
significantly less than in the previous experiments. Both models could give op-
timal solutions for almost every instance. In the previous two experiments that
maximized the number of passengers or flights assigned to the contact gates,
any flight has an identical preference value for every contact gate, whereas in
this experiment, a flight is allowed to have different preference values for the
different gates. It means that the preferable flight-gate pairs are more easily dis-
tinguished. Therefore the computations were easier with the preference values
in this experiment.

Since almost every instance reached its optimal solution within the time
limit when the preference values are 1, 2, or 3, an additional experiment is per-
formed for larger instances with |M| = 10 and |N| € {140, 160, 180,200}, and
the results are reported in Table %Gap results show that the LP relaxation
value of the pattern-based model is tighter than that of the compact model
and close to the optimal objective value. Due to the gap, the number of nodes
in the branch-and-bound tree to obtain the optimal solution is significantly
less in the pattern-based model than in the compact model. Compact model
could not converge to the optimal solutions within the time limit in most of
the instances where the pattern-based model gave the optimal solutions. These
results of Time and #Opt are opposite to the results where the objective is to
maximize the number of passengers assigned to the contact gates, which shows
that computational performances are highly dependent on the choice of the

objective function.
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5.3 Effectiveness of Gate Assignment Schedules Ob-
tained from OCAGAP

To evaluate the effectiveness of the gate assignment schedules obtained from
OCAGAP, we compare them to the schedules obtained from deterministic
AGAP model with buffer time (BAGAP). Mangoubi and Mathaisel [24] pro-
posed using a fixed buffer time between two consecutive flights to absorb the
deviations of flight schedules. We put buffer time b in start and end times for
each flight, i.e., each flight’s nominal start and end times 5; and €; are changed
to 5; — b and €; + b respectively. Therefore, the nominal idle time between con-

secutively assigned flights is at least 2b in the schedule obtained from BAGAP.

5.3.1 Tests on Real Instances

In practice, the gates can be classified into several groups according to their
locations. Furthermore, specific airlines can be assigned to each group of gates.
To simulate more realistic situation in the experiment, we select 5 gates in
the western side of the terminal 1 in Incheon International Airport and the
corresponding airlines as an instance for each day from August 1 to August 20.
The set of flights N of the instance is the flights that are handled in the gate
that day. The minimum, maximum, and average size of the flight sets | N| of the
20 instances is 46, 60, and 53.2. We predict f(¢) with the data of the 35 latest
days before each day according to the result in Figure 3.2} For example, for the
instance in August 1, we predict f(¢) with the empirical survival function based

on the dataset of flights from June 27 to July 31. The preference values are set

A7 :



to be the numbers of passengers as in Section [5.2

Table and Table shows Obj, #RG, #0G, #OF and OD obtained
from solving the pattern-based model of OCAGAP. With smaller e, OCAGAP
gives a schedule with less #0G, #0OF and OD while the number of passengers
assigned to the contact gates is decreased and the number of flights assigned to
the remote gate is increased. For each schedule, the expected number of gates
with overlaps is |M|e, which is 5e in the instances, and the average #OG in
the result are similar to the expectations. It indicates that the number of gates
with overlaps is predictable with historical data.

Also, Obj, #RG, #0OG, #OF and OD of the schedules obtained from
BAGAP are reported in Table [5.10] and Table The schedules with buffer
time b = 0 shows the largest objective values, but overlaps take place in a lot
of gates for every instance, and the schedules are impossible to be implemented
as they are because of the overlaps. If the buffer time b is increased, resulting
#0OG, #0OF and OD is decreased, while Obj becomes larger and # RG becomes
smaller.

Figure [5.1] illustrates the average #OG and Obj of the schedules obtained
from OCAGAP and BAGAP. When the Obj are similar, the schedules obtained
from OCAGAP give smaller #0G than the schedules obtained from BAGAP.
For example, compared to the result for BAGAP with b = 60, the result for
OCAGAP with € = 0.25 shows smaller #0G while Obj is slightly larger.

The z-axis of Figure [5.1] is substituted with average #OF and average
OD in Figure 5.2] and Figure [5.3] each. The results show the same tendency;

the schedules obtained from OCAGAP give smaller #0OF or OD than the
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schedules obtained from BAGAP when Obj are similar. Overall, compared to
the schedules obtained from BAGAP, OCAGAP gives schedules with smaller
number of overlapping flights, gates with overlaps, and the total duration of
overlaps when the number of passengers assigned to the normal gates is similar.

Figure shows the average #0G and #RG of the schedules obtained
from solving OCAGAP and BAGAP. In the schedules obtained from OCA-
GAP, #0G is generally smaller even when #RG is smaller. It means that in
OCAGAP, fewer flights are handled in the remote gate and normal gates handle
more flights than AGAP while keeping the number of gates with overlaps small.

To see why these results appeared, we finally made an additional observation
of the obtained schedules. For the instance of August 7, OCAGAP with e = 0.25
and e = 0.3 obtained schedules with more number of passengers assigned to the
contact gates and less number of flights assigned to the remote gate, while the
numbers of gates and flight pairs with overlaps and the total duration of overlaps
are smaller, compared to the schedule obtained from BAGAP with 2b = 60. We
first observed the nominal idle times between flights in in the schedule obtained
from BAGAP with 2b = 60. The minimum and the maximum idle times are 60
and 255 minutes respectively. The variance of the idle times are 1,932. Next,
the idle times of the schedule obtained from OCAGAP with ¢ = 0.25 has
the minimum of 15 minutes, which is smaller than that of BAGAP, and the
maximum of 310 minutes, which is larger than that of BAGAP. Also, variance
is 3,369, which is far larger than that of BAGAP. In the same sense, the idle
times of the schedule obtained from OCAGAP with € = 0.3 have the minimum

of 30 minutes, the maximum of 385 minutes, and the variance 4,344. We can
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see that the idle times obtained in the schedule obtained from OCAGAP are
allocated more flexibly in order to meet the limit of the overlap probability

and assign flights more effectively. This explains why the results in Figure [5.1

Figure 5.2 Figure [5.3] and Figure appeared.
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5.3.2 Tests on Artificial Instances with Various Delay Cases

In Section [5.3.1) we used real data of Incheon International Airport in 2019
including the historical delays of flight schedules to test the effectiveness of
OCAGAP. Since there are various factors that affect the uncertainty of flight
schedules, the data we used cannot reflect some harsh or moderate circum-
stances. For example, if the weather condition around the airport is violent, the
uncertainty of flight schedules may increase. If airlines establish policies that
put more emphasis on punctuality of flight schedules, the uncertainty may de-
crease. The point is that the degree to which flight schedules are uncertain also
varies depending on the situation. Therefore, we evaluated the effectiveness of
OCAGAP on several different delay cases.

In order to model different delay cases, we use the gamma distribution used
in Section We fitted the deviations of start and end times of all the flights
handled in Incheon International Airport to the gamma distribution, and the
resulting distribution is I'(12.7,0.18). Based on the distribution, we consider
5 distributions I'(12.7k, 0.18) for k € {0.25,0.5,1,1.5,2}. Figure illustrates
the probability distributions depending on k. The larger k is, the worse the
uncertainty gets; the variance of the probability distribution goes higher. When
k € {0.25,0.5, 1}, we translated each distribution by 60 in the negative direction
and then limited the domain of the function from -60 to 120. When k& = 1.5,
the distribution is translated by 90 in the negative direction and the domain is
limited from -60 to 120. When k& = 2, the distribution is translated by 120 in

the negative direction and the domain is limited from -60 to 120.
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Figure 5.5: Gamma distributions of 5 different delay cases

We generate 10 instances when |M| = 5 and |N| = 50 in the same way in
Section [5.2] except that we generate 5 cases for each instance with the flight
delays generated from each of the 5 gamma distributions mentioned above.
For each delay case, we assume that we are provided with the parameters of
underlying gamma distribution of the flight delays, and construct the overlap
probabilities p;; from the convolution of the two independent and identically
distributed gamma distributions.

The average Obj, #RG, #0G, #0OF and OD of 10 instances for each k and
€ obtained from solving the pattern-based model of OCAGAP are given in Table
When £ is same, the larger € gives schedules with larger Obj and smaller
#RG, while it gives larger #0G, #OF and OD. When k becomes larger,
the variance of the underlying probability distribution of flight uncertainty is
increased. Thus, #0G, #0OF and OD becomes larger for similar Obj or #RG.

Table shows the average Obj, #RG, #0G, #OF and OD of 10 in-
stances for each k and b obtained from solving BAGAP with various buffer

times. For same b, Obj and #RG are same for all k, because the predicted
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Table 5.12: Test results of OCAGAP for various delays

k € Obj #RG #OG #OF  OD
0.25 0.05 7,080.6 7.1 0.3 03 16
0.1 7,235.1 6.0 0.3 03 1.1
0.15 7,273.5 5.3 0.6 06 3.1
0.2 7,279.0 5.2 0.9 0.9 44
0.25 7,335.1 5.0 0.8 08 8.1
0.3 7,346.7 48 0.7 07 7.1
0.4 7,426.5 4.3 1.6 17 182
0.5 7,445.2 4.2 1.4 1.6 163
0.6 7,546.8 3.8 2.5 25 309
0.5 0.05 6,807.1 9.6 0.8 0.9 128
0.1 7,004.0 8.0 1.4 15 185
0.15 7,093.8 7.0 1.1 11 201
0.2 7,221.0 6.2 1.8 1.9 304
0.25 7,261.0 5.7 1.8 1.9 323
0.3 7,273.5 5.3 1.7 2.1 31.2
0.4 7,336.2 4.8 2.4 2.7 411
0.5 7,419.1 4.4 2.6 3.1 480
0.6 7,521.2 3.9 3.0 3.6 62.0
1 005 6,476.3  12.2 0.6 06 89
0.1 6,646.1  10.7 15 15 349
0.15 6,824.3 9.5 2.0 2.0 421
0.2 6,940.9 8.6 1.7 1.7 33.0
0.25 7,053.8 7.6 2.4 2.8 58.0
0.3 71437 6.6 2.3 2.7 71.9
0.4 7,267.8 5.8 2.8 3.6  86.6
0.5 7,350.5 4.9 3.1 41 98.2
0.6 7,452.1 4.4 3.9 50 155.4
15  0.05 6,161.9  14.3 1.0 1.0 28.7
0.1 6,468.4 125 0.9 1.0 23.0
0.15 6,586.6  11.5 1.1 11 265
0.2 6,754.9  10.2 2.2 24 62.6
0.25 6,867.3 9.2 2.3 24 577
0.3 6,963.3 8.5 2.7 3.0 80.6
0.4 7,143.3 6.8 3.5 45 103.7
0.5 7,279.3 5.6 3.4 4.7 111.3
0.6 7,388.6 4.9 4.3 5.2 1387
2 0.05 59339  16.0 0.7 07 17.3
0.1 6,252.7  13.8 1.0 1.0 264
0.15 6,449.7 126 1.2 1.3 306
0.2 6,565.3  11.7 1.4 1.6 545
0.25 6,608.8  10.9 2.5 2.6 709
0.3 6,814.2  10.1 2.0 2.2 61.6
0.4 7017.7 83 3.4 3.8 946
0.5 7,205.2 6.5 3.6 43 107.8
0.6 7,342.9 5.2 3.5 4.9 1477
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Table 5.13: Test results of BAGAP for various delays

k 2b Obj #RG #OG #OF  OD
0.25 120 5033.0 218 0.0 00 0.0
105 5279.2 203 0.0 00 0.0
90 55953  17.8 0.0 0.0 0.0

75 5898.8  15.9 0.0 00 0.0

60 6,392.1 128 0.0 00 0.0

45 6,646.2  10.6 0.0 0.0 0.0

30 7,066.9 7.6 0.2 0.2 07

15 7,279.0 5.2 0.5 05 3.3

0 7,587.3 3.4 3.0 44 66.0

0.5 120 50330 218 0.0 00 0.0
105 5279.2 203 0.0 00 0.0
90 55953  17.8 0.0 00 0.0

75 5898.8  15.9 0.0 00 0.0

60 6,392.1 128 0.2 02 3.1

45 6,646.2  10.6 0.3 03 58

30 7,066.9 7.6 1.1 11 164

15 7,279.0 5.2 2.1 2.7 452

0 7,587.3 3.4 4.1 6.1 130.3

1 120 50330 218 0.0 00 0.0
105 5279.2  20.3 0.0 0.0 0.0
90 55953 178 0.0 00 0.0

75 5898.8  15.9 0.0 00 0.0

60 6,392.1  12.8 0.5 0.5 7.6

45 6,646.2  10.6 1.5 15 222

30 7,066.9 7.6 2.6 2.8 70.0

15 7,279.0 5.2 2.7 3.7 825

0 7,587.3 3.4 4.3 7.8 2025

1.5 120 50330 218 0.0 00 0.0
105 5279.2  20.3 0.0 00 0.0
90 55953  17.8 0.2 0.2 84

75 5898.8  15.9 0.5 05 6.3

60 6,302.1 128 1.8 1.8 473

45 6,646.2  10.6 1.4 15 350

30 7,066.9 7.6 3.0 40  98.0

15 7,279.0 5.2 3.7 57 163.2

0 7,587.3 3.4 4.0 77 2443

2 120 5033.0  21.8 0.1 0.1 1.5
105 5279.2 203 0.3 0.3 14.3
90 55953  17.8 0.4 04 133

75 58988  15.9 0.7 0.8 17.2

60 6,392.1  12.8 1.4 1.7 505

45 6,646.2  10.6 1.9 2.1 577

30 7,066.9 7.6 3.4 4.3 1337

15 7,279.0 5.2 4.2 6.2 183.9

0 7,587.3 3.4 4.1 8.6 329.1
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overlap probabilities are not reflected in the model. With smaller buffer time,
AGAP gives schedules with larger Obj and smaller #RG, while #0G, #0OF
and OD becomes larger.

To test the effectiveness of OCAGAP in a harsh condition, we give a fur-
ther comparison of the gate assignment schedule obtained from OCAGAP to
the schedule obtained from BAGAP when k& = 2. Figure shows the av-
erage #0G and Obj of the schedules obtained from OCAGAP and BAGAP.
For OCAGAP, € € {0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.6,0.75, 1}, and
for AGAP, 2b € {75,70,65,60,55, 50,45, 40, 35,30, 15,0}. Like in Figure
the schedules obtained from OCAGAP give smaller #0OG than the schedules
obtained from BAGAP when Obj are similar in general. Likewise, in Figure
(.7 and Figure the results show that the schedules obtained from OCA-
GAP generally give smaller #0F and OD than the schedules obtained from
BAGAP when Obj are similar. The average #0G and #RG of the schedules
obtained from OCAGAP and BAGAP are shown in Figure It shows that
#0G is generally smaller in the schedules obtained from OCAGAP when #RG
is smaller. However, there are several points out of the tendency. Unlike the ex-
periment in Section [5.3.1] in this experiment, we did not use the flight or airline
information to predict uncertainty separately, so the difference of the effective-
ness between OCAGAP and BAGAP is not more significant than in Section
(.31} However, the overall results show that OCAGAP is generally effective

even when the uncertainty of flight schedules is larger.
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Figure 5.6: Comparison of average Obj and #OG when k=2
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Figure 5.7: Comparison of average Obj and #OF when k=2
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Figure 5.8: Comparison of average Obj and OD when k=2
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Chapter 6

Conclusion

In the thesis, we studied the airport gate assignment problem considering
overlaps between flights caused by the uncertainty in arrival and departure
times of flights. We propose an integer programming model with chance con-
straints which restrict the probability of an overlap occurrence in each gate, and
strengthen the model using flight assignment patterns. To apply these models in
practice, a non-parametric prediction method based on empirical survival func-
tion is proposed to predict overlap probabilities between flights using historical
data. Also, we devised a branch-and-price algorithm to solve the strengthened
model. Computational experiments are conducted on real instances of Incheon
International Airport in 2019 and artificial instances based on the real data.
The computational performances of the branch-and-price algorithm and the
commercial solver were dependent on the choice of the objective. Moreover, the
results show that the schedules obtained from these models give gate assign-
ment schedules with smaller number of gates with overlaps, overlapping flights,
and total overlap duration when the numbers of passengers assigned to contact
gates are similar compared to the schedules obtained from the deterministic

AGAP model considering buffer time between flights.
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For further studies, the prediction method for the overlap probability should
be improved to support these models. Also, in the branch-and-price algorithm,
we solved the sub-problems to generate profitable flight assignment pattern
with a commercial MIP solver. However, these sub-problems are special cases
of resource constrained shortest path problem [25] and they may be solved more
efficiently with other algorithms based on a dynamic programming. The com-
putational performance of the branch-and-price algorithm should also be ana-
lyzed more delicately considering the factors such as number of gates, number
of flights, choice of objective, etc. Furthermore, an AGAP model that includes
both overlap probability chance constraints and the buffer times should be ana-
lyzed with regard to the effectiveness of the gate assignment schedules obtained

from the model.
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