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Abstract

Integer programming models and exact
methods for the two-dimensional
two-staged knapsack problem

Suho Kang
Department of Industrial Engineering

The Graduate School

Seoul National University

In this thesis, we study integer programming models and exact algorithms for the
two-dimensional two-staged knapsack problems, which maximizes the profit by cut-
ting a single rectangular plate into smaller rectangular items by two-staged guillotine
cuts. We first introduce various integer programming models, including the strip-
packing model, the staged-pattern model, the level-packing model, and the arc-flow
model for the problem. Then, a hierarchy of the strength of the upper bounds pro-
vided by the LP-relaxations of the models is established based on theoretical analysis.
We also show that there exists a polynomial-size model that has not been proven
yet as far as we know. Exact methods, including branch-and-price algorithms using
the strip-packing model and the staged-pattern model, are also devised. Computa-
tional experiments on benchmark instances are conducted to examine the strength
of upper bounds obtained by the LP-relaxations of the models and evaluate the per-

formance of exact methods. The results show that the staged-pattern model gives a



competitive theoretical and computational performance.
Keywords: Integer Programming, Two-dimensional two-staged knapsack problem,

Dantzig-Wolfe decomposition, Branch-and-price algorithm

Student Number: 2019-26644
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Chapter 1

Introduction

The two-dimensional two-staged knapsack problem (2TDK) [18], which is also known
as the two-dimensional two-staged cutting problem [2], maximizes a profit by cutting
smaller rectangular items on a single rectangular plate without conflicts. It is a
variant of the two-dimensional knapsack problem [5] with additional constraints
for cutting. Conventionally, a two-dimensional knapsack problem assumes that the
items have to be cut in the orthogonal style: if an item is cut from the large plate,
the vertical side and the horizontal side of the item must be parallel to the vertical
side and the horizontal side of the large plate, respectively. There is an additional
constraint related to the guillotine cut: the plate must divide into two rectangles
when being cut. Furthermore, two-staged guillotine cuts refer to the constraint that
the first-stage cuts and the second-stage cuts are orthogonal. For example, in this
thesis, vertical cuts can be made after all horizontal cuts are carried out.

We refer to the separate plates produced after the first-stage cuts as strips or
levels. Among items in each strip, there is always the highest one. This item, which
we refer to as a strip-defining item in the thesis, determines the height of the strip.
There is no need for strips to be higher than their strip-defining items. Therefore, we

assume that the height of the strip-defining item of each strip determines the height



of the strip. Once a strip is fixed, one should cut it vertically to produce items. We
consider the inexact case, i.e., allowing trimming after the second-stage of guillotine
cuts. These assumptions are practically meaningful in various industries that use
sheets of material such as glass, paper, wood, and metal [10].

A simple example of two-staged guillotine cutting is represented in Figure [I.1
Both parts of Figure are feasible two-dimensional orthogonal cuttings. On the
other hand, only the right part of Figure[I.1]is a feasible two-staged two-dimensional
guillotine cutting. The first-stage cuts, the second-stage cuts, and trimming are

illustrated as red, blue, and green dashed lines, respectively.

(a) An infeasible case. (b) A feasible case.

Figure 1.1: An example of two-staged two-dimensional guillotine cutting.

1.1 Problem Description

Formally, the problem is defined as the following. Consider a large rectangular plate
S with height H and width W. There are n different types of small rectangular items.
For any natural number m, let I, = {1,...,m}. Then, for each i € I,, = {1,...,n},
an item of type ¢ has height h; which is less than H, a width w; which is less than
W, a profit p;, and an upper bound (i.e., demand) d; which denotes the maximum

number of usage of item type i. We assume that all the values are integers.



If some d; are lower than Lhﬁj Lwﬂj, we call the problem is constrained. If all
components of d are not smaller than Lhﬁj waj, we call the problem is unconstrained

[13]. Also, one should separate smaller rectangles from a larger one by two-stage
guillotine cuts. Our objective is to maximize the profit that can be obtained from S.
For simplicity, we assume that the first-stage cut is performed horizontally, and the
second-stage cut is performed vertically. Furthermore, we do not allow rotations of
smaller rectangles and assume that H > hy > ho > ... > h,,. We denote an instance
of the 2TDK by a tuple (n, H, W, h,w,d, p) in this thesis.

If the problem is unconstrained, each strip used in the optimal solution has the
highest profit among strips with the same height. Therefore, it can be reduced to
a two-stage knapsack problem: determine the most valuable strips defined by each
item, and then pack them along the vertical side within the overall height of H.

In the case of the constrained 2TDK, there exists a simple reduction from the
3-PARTITION problem to the problem. The 3-PARTITION problem, which is well-
known to be NP-hard in the strong sense [11], consists of a positive integer m, a
set S = Igy,, a bound B € Z4, and a value k; € Z, for each i € S such that
B/4 < ki < B/2 and Z k; = mB. The problem is to determine whether there exists
a partition of § comffoied of m disjoint sets Si,..., Sy, such that for 1 < 57 < m,

> ki= B and |S;| = 3.
1€S;

Proposition 1.1. The constrained 2TDK is NP-hard in the strong sense.

Proof. For a given instance of the 3-PARTITION problem, there exists a partition
of S whose each subset has three components and their sum is B, if and only if the
2TDK instance (3m,m, B, h,w,d,p) with (w;, h;, p;,d;) = (ki, 1,1,1) for all i € I3,

has an optimal value of 3m. ]



1.2 Literature Review

The 2TDXK has been researched since Gilmore and Gomory [12] suggested the pattern-
based formulations for two-dimensional cutting stock problems (2D2SP) [25]. To be
more specific, the 2TDK emerges as the slave (pricing) problem of the 2D2SP, im-
plying that they share a similar structure [10]. In this respect, solving the 2TDK is
a relevant issue of solving the 2D2SP, while extending the state-of-the-art from the
2D2SP to the 2TDK has been scarce. With this necessity, we start this section by
reviewing studies on the 2D2SP.

After the seminar work of Gilmore and Gomory [12], a few research suggested
various integer linear programming models for the 2D2SP. Macedo et al. [20], for
example, introduced the so-called arc-flow formulation, which is originated from the
one-dimensional cutting stock problem. The arc-flow model requires some graphs
along the vertical or horizontal side of the large plate and represents the usage of
items as a feasible flow. Mrad et al. [22] proposed the pattern-based formulation for
the 2D2SP, which includes both width patterns and height patterns. Silva et al. [23]
suggests the one-cut model, and the close relationship between the one-cut model
and the arc-flow model is well described in [21]. Lastly, for a contemporary review
of mathematical models for the 2D2SP, we refer readers to Kwon et al. [17], which
also settled the theoretical hierarchy between the LP-relaxation values of previous
models.

However, unlike the 2D2SP, few models have been proposed for the 2TDK.
Gilmore and Gomory [12] developed a strip packing formulation, while two inte-
ger linear programming models based on a concept of level packing are devised by

Lodi and Monaci [I8]. Lodi and Monaci [I8] solved their models by adding valid



inequalities to break symmetry and compared their LP-relaxation values with the
strip packing model computationally, which was solved by the column generation
technique. Yet, the analysis of its computational results was insufficient, and the
theoretical relationship between a strip packing formulation and a level packing
model has been hardly addressed.

Several exact methods have been proposed to solve problems to optimality. Hifi
[13] categorized two-dimensional knapsack problems and solved the unconstrained
2TDK by dynamic programming. Belov and Scheithauer [2] implemented a branch-
and-cut-and-price algorithm using Chvatal-Gomory and Gomory mixed-integer cuts,
based on the strip packing formulation. The work of Belov and Scheithauer [2]
seems effective in the sense that its algorithm could guarantee optimality within
considerable time, but it failed to solve all instances proposed by Hifi and Roucaircol
[15] to optimality. In addition, even though previous research tested their models
computationally, more elaborate experiments are required for investigating the pros
and cons of each method.

In the aspect of heuristic algorithms for the 2TDK, Hifi and M’Hallah [14]
suggested strip generation algorithms based on the greedy algorithm and the hill-
climbing algorithm. Conducting computational experiments to evaluate the effective-
ness of their models, it verified that its algorithm could find near-optimal solutions
in a relatively short time. Alvarez-Valdes et al. [I] developed heuristic algorithms
with bottom-left procedures and path relinking methods. It was a time-efficient
algorithm, even finding a better solution to the instance that the branch-and-cut-
and-price algorithm failed to find the optimal solution within a relatively longer

time [2]. However, no theoretical guarantees have been made for the effectiveness of



heuristics.

Despite sharing the two-staged guillotine cutting constraint, extending models
from the 2D2SP to the 2TDK have not been proposed much yet. Even for the existing
models and methods, their strengths and weakness have not been fully investigated
both computationally and theoretically. We, therefore, have tried to overcome the

limitation and fill the unanswered gap from previous studies.



1.3

Contributions

In this study, questions which have been discussed insufficiently from the perspective

of the 2TDK are analyzed thoroughly. Our contributions can be summarized as

follows:

(a)

We extend some existing models for the 2D2SP to the 2T DK and add a set of
valid inequalities to the level-packing model proposed by Lodi and Monaci [1§].
The added inequalities enhance the LP-relaxation value and ease analyzing the

relationship between other models.

In addition, the LP-relaxation values of models are analyzed theoretically. We
derive that the LP-relaxation values of some models satisfy a specific inequality

and prove that there is a tight example.

Furthermore, we propose a novel polynomial-size formulation for the first time,

using a result provided by Eisenbrand and Shmonin [§].

Finally, we propose exact algorithms for the 2TDK. We construct branch-and-
price algorithms for the pattern-based models and present a branch-and-cut
algorithm for the modified level-packing model. Various computation experi-
ments are conducted to analyze the characteristics of each model in their real

usage.



1.4 Organization of the Thesis

This thesis is organized as follows. In Chapter 2] we shortly derive the complexity
of solving the 2TDK and introduce various integer linear programming models for
the 2TDK. The relationship between the LP-relaxation values among them is dis-
cussed in Chapter [3] We also suggest a polynomial-size model for the 2TDK for the
first time. Then, We propose exact algorithms for some models in Chapter [ In
Chapter 5, we compare the LP-relaxation values computationally and analyze their
performance of solving problems to optimality. This thesis ends up with the main

conclusion in Chapter [6]



Chapter 2

Integer Programming Models for the 2TDK

2.1 Pattern-based Model

We start this section by introducing the staged-pattern model from Mrad et al. [22]
and Kwon et al. [I7]. The main idea of this formulation is to utilize the concept
of a width pattern and a height pattern. We represent a width pattern ¢ as an n-
dimensional nonnegative integer vector aq = (aq1, ..., agn), Where aq; is the number
of pieces of ith item type for each i € I, in a width pattern ¢. For a given n-
dimensional vector u, we define Py (u) as a set of width patterns ¢ satisfying the

following;:

Py (u) = {q] Y wiag < W,a, < u}.

1€l

Likewise, we represent a height pattern r as an n-dimensional nonnegative integer
vector b, = (by1,...,br,) where by; is the number of pieces of ith item type used
for each i € I,, in a height pattern r. For a given n-dimensional vector v, we define

Pr(v) as a set of height patterns r satisfying the following:

Py(v) = {r| > hib.i < H, b, < v}.

i€ln



As a special case, we define Py (00) and Py (o0) as the following:

Py (o0) = {q| Zwiaqi < W},

1€ln

and

Py(00) ={r| > hibyi < H}.
1€lp

Note that Py (oc0) and Pp(co) corresponds to the unconstrained case. In addition,
for a given n-dimensional vector u and a width pattern ¢ € Py (u), let ¢(¢) denote
the minimum index which is in a support of a,. For a strip corresponding to the
width pattern ¢, the strip-defining item is an item of type t(q). Also, the height of
the strip corresponds to fy(g).

In the example of Figure 2.1 and Figure 2:2] the left part of Figure [2.1] shows
that two first-stage cuts divide the large plate into three strips. The right part of
Figure [2.1] illustrates second-stage cuts and trimming to each strip. Then, the first-
stage cuts are equivalent to a single height pattern, and second-stage cuts including

trimming are equivalent to a single width pattern. The result of cuts is the same as

Figure [2.2]
N E—
1
T
1 A

Figure 2.1: An illustration of two-stage guillotine cutting.

10
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L

Figure 2.2: An illustration of the large plate.

Utilizing these concepts, we represent the staged-pattern model for the 2TDK

as follows:

SM(u,v) :

maximize

subject to

Z Z PiGgqiZq

g€ Py (u) i€ln

> agimg < di, Vi€ Iy, (2.1)
qEPW(u)

Z briyr > Z Tq, Vi € I, (22)
r€Py (v) q€Pw (u),t(q)=1

> ow <, (2.3)
ré Py (v)

zq € Ly, VYq€ Py(u),

yr € Z, Vr e Py(v). (2.4)

A decision variable x, denotes how much width pattern ¢ has been used, and a

decision variable g, represents the amount of height pattern r having been used.

Constraints (2.1)) limit the maximum usage of each item type to its demand, and

a constraint (2.2)) indicates that usage of a width pattern is only available when a

chosen height pattern allows the usage of the corresponding strip-defining item.

On the other hand, the strip packing model originated from Gilmore and Gomory

[12] only exploits the concept of the width pattern. We propose the mathematical

11



formulation of the strip packing model as follows:

PM(u) : maximize Z Zpiaqi:cq

qGPW(u) i€ly,

subject to Y agrg < di, Vi€ I, (2.5)
q€Pw (u)

> hyge < H, (2.6)
q€ Py (u)

zg € Ly, Vq€ Py(u).

A decision variable z, has the same meaning as z, in SM(u,v). Constraints
describe the demand constraint, and a constraint indicates that the total height
cannot exceed H. Note that PM(u) becomes a valid formulation for the 2TDK when
u > d. Similarly, SM(u,v) becomes a valid formulation when v > d and v > d.
Besides, because the number of components is exponentially many in a pattern set
Py (u) (resp. Py (v)) asu > d (resp. v > d), PM(u) and SM(u, v) are not polynomial-
size formulations.

Then, for a given 2TDK instance (n, H, W, h,w, d, p), let z* be the optimal objec-

O

tive value of any valid formulation for the 2TDK and 2{%¢%! he the optimal objective

value of the LP-relaxation of the corresponding model of the 2TDK. For example,
z;l;/[ ) is the optimal objective value of the LP-relaxation value of PM(u). With

these symbols, the following proposition hold:

M( PM(d) SM(d,d)
P

Proposition 2.1. z* < zgp dd) <z p and 2] < 55M(o0,00)

> Zpp

Proof. For any feasible solution (z,y) in the LP-relaxation of SM(u, v), z is a feasible

solution in the LP-relaxation of PM(u). Also, since Py (d) C Py (o0) and Py (d) C

12



Py (00), zil}\:{(d’d) < zill\j/[(oo’oo) holds. ]

SM(00,00) .

Interestingly, 2; p is not always less than zlljp @ We verify this through

some benchmark instances in Chapter |5, which refute zEM(m’m) < 2511;/[ @,

Proposition 2.2. SM(d, d) is still a valid formulation when constraints are

relaxed.

Proof. Let a feasible solution (x*,y*) of SM(d, d) with constraints (2.4)) relaxed. We

will prove that z* is a feasible solution of PM(d). Note that the following holds:

Yo b= m( Y <Y > hibuy;

g€ Py (d) wnly, g€ Pw (d),t(q)=i i€ln 1€ Py (d)

Since > hiby; < H forallr € Py(d)and ) y* <1, the next inequality satisfies:
i€ln r€ Py (d)

M>oo> D hibuyr < > yr(d hibu) <> Hyf < H.

i€ln TGPH(d) TGPH(d) 1€ln TGPH(d)

Therefore, z* satisfies all constraints in PM(d).
Then, for any feasible solution z* in PM(d), (b7,...,b},) defined as follows is in

Py (d):

b; = > zh, Vi€ I,
qEPW(u)vt(Q):i

Let by = (b7,...,0). Then, let y,» = 1 and y, = 0 for other r € Py(d). It is clear

that (z*,y) is a feasible solution of SM(d, d) with constraints (2.4]) relaxed. O

In the aspect of simplicity, when it comes to height patterns, we can corpo-

13
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rate item types with the same height into a single item type. To elaborate, let
{h@),---shem)} be the minimal representation of a height set {hi,...,hy}. Then,
redefine a height pattern y as a height pattern vector (by1,...,bym) € Z'}' satisfying
> hayby < H and by; < > d; for i € Ip,. Let the height pattern set be

i€lm J€In,hj=h;
PEI(d). Then, the similar staged-pattern model SM-HA is represented as following;:

SM-HA : maximize Z Z DilgiTq
qGPW d) el

subject to Y agwg <d;, Vi€, (2.7)
q€Pw (d)
> by = > xg, Vi€, (28)
r€PE(d) a€Pw (u),hi(q)=h()
reP%(d)

zg € Ly, Vq€ Py(d),

yr € Z, Yre Py(d).

Note that SM-HA is a valid formulation, and the following proposition holds:

Proposition 2.3. zfg(d o <z SM HA < f]ﬁ/[(d).

Proof. Any feasible solution of the LP-relaxation of SM(d, d) is a feasible solution to
the LP-relaxation of SM-HA. Also, a constraint (2.9) forces = in the LP-relaxation

of SM-HA to satisfy the constraint . Therefore, zEM HA < z (d) holds. O

14
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2.2 Arc-flow Model

With some modifications of the network model suggested by Macedo et al. [20],
similar networks can be designed for the 2TDK. For each instance of the 2TDK, the
arc-flow model generates n+1 directed acyclic graphs: G° = (V?, A%), G! = (V'1, A),
.., G" = (V", A™). A graph G° represents how much each item has been used as
a strip-defining item, and the other graphs represent strips that are characterized
by the item type of corresponding indices. Graph G° is given by the set of nodes
VY = {0,1,...,H} and the set of arcs A° = {(a,b,k)|0 < a < b < H,b—a =
hi,k € In} U Np, where Ny = {(i,i + 1,0)|s € {0,...,H — 1}}. Note that Ny
represents empty space. Likewise, for j € I,,, graph G7 is given by the set of nodes
Vi =1{0,...,W} and the set of arcs A7 = {(a,b,i)|0 <a <b< W,b—a=w;,ic
{j,...,n}} UN?,, where Ngv ={(,i+1,0)]i € {0,...,W — 1}}. A profit of each
arc (a,b,i) in GJ, which we denote by 7T€(l7b7i), is p; for i € I,. For the other arcs,
they have zero profits. Decision variables are the amount of flows in each arc, and
the overall mathematical representation of an arc-flow model for the 2TDK is as

follows:

15



. B J J
AF : maximize E E Tabi) (a,bsi)
JELn (a,b,i)e A

(2.10)

-1 ifb=0
subject to > 2l = D Them =30 ifb=1,... H—1:
(a,b,i)e A0 (b,c,k)e A0
{ 1 ifb=H
(2.11)
Z $?c,c+hj,k) - Zj = 07 \V/] € Ina (212)
(c,c+hj,k)eAO
J J
Z ded) Z Lle, k)
(d.ezi)eAJ (e,f,k)€Al
(
s ife =
z ife=0 (2.13)
=40 ife=1,..., W—1, Yj€ln
2 ife=W
j .
Yoo > @y Sdi Vi, (2.14)

J&€In (f.f4wii)€AI

All variables are nonnegative integers.

The objective function (2.10])) describes the overall profit. Constraints (2.11), (2.12]),
and (2.13)) determine how much flow can run in each graph. Lastly, constraints (2.14])

represent demand constraints. Note that the size of AF is pseudo-polynomial since

it depends on numeric values of H and W. For some arc-reduction techniques and

motivations, see Martinovic et al. [21].

16
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2.3 Level Packing Model

Lodi and Monaci [I8] regarded items of the same type as separate item types which
all have a unit demand and share the same sizes and profit. If the demand for each
item is a unit amount, all strip-defining items are characterized by their types. In
this view, Lodi and Monaci [I8] suggested two formulations which divide d; items
of i type into d; different types for all i € {1,...,n}. These new d; types of items
share the same height, width, profit, and demand value as (h;, w;, p;, 1).

Then, each 2TDK instance I = (n, H, W, h, w, d, p) transforms into new instance
I with the number of item types N = >oi di. In detail, we define o = 25:1 d; for
any j € I, and By = min{t : 1 <t < n,a > k} for any k € In. Then, we express

the transformed instance I as the following:

where hy, = hg, , W = wg, , d, =1, and Pr = pg, for any k € Iy. The level-packing

formulation LM that was proposed in Lodi and Monaci [I8] is as follows:
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LM : maximize Zpgkz%k (2.15)
j=1

subject to <1, Vjed{l,...,N} (2.16)

T

k=1

N

Z wg, i < (W —wg, )zpr, Vhe{l,...,N} (2.17)
=k+

N

> hgaw < H, (2.18)
k=1

zj, € {0,1}, Vke{l,...,N}, Vje{k,...,N}. (2.19)

In this formulation, a decision variable x;; represents the usage of jth item in a strip
that is defined by stip-defining item of kth original type.

Against previous research including Belov and Scheithauer [2], we claim that the
above model LM is a pseudo-polynomial-size model since the number of variables
depends on a numeric value of the sum of demands, not the input size of it. We also
add a set of constraints that restricts the formulation to properly allocate
items in any fractional used strip. These inequalities not only improve the quality
of the LP-relaxation value but also ease comparing the structure of the formulation
to other models. This modified model is named as ML, stands for modified level

packing. The mathematical formulation of ML is as follows:
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ML : maximize (2.15))

subject to  (2.15)), (2.16)), (2.17)), (2.18), and (2.20)

Tk < Tik, VkE{l,...,N}, Vje{k+1,...,N}. (2.21)

Note that each of the constraints (2.21]) is a valid inequality that sets the strip-

defining item to the most used item in its corresponding strip.
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Chapter 3

Theoretical Analysis of Integer Programming
Models

In Section and we focus on four different types of models: a strip pack-
ing model, a staged-pattern model, an arc-flow model, and a modified level pack-
ing model. We thoroughly analyze the hierarchical relationship between the LP-
relaxation of each model. In Section we propose the polynomial-size formulation

for the first time.

3.1 Upper Bounds of AF and SM (o0, c0)

We summarize the equivalence between the upper bounds provided by the LP-
relaxation of AF and SM(oo, 00) as the following proposition:

Proposition 3.1. 210 = zfﬂg(oo’oo)

Proof. As all graphs in the arc-flow model are acyclic, any feasible flow in Gy, ..., G,
is decomposed into the simple paths from the start node to the end node. Since a
possible simple path in Gg is corresponding to a height-pattern in P (co) and a
possible simple path in Gi,...,G,, is corresponding to a width-pattern in Py (c0).
In addition, each pattern corresponds to some simple paths of a corresponding graph.

Therefore, solutions to the LP-relaxations of AF and SM(co, 00) are convertible. [
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3.2 Upper Bounds of ML, PM(d), and SM(d, d)

To directly compare instance I and instance i, define a set of width pattern vectors

Qw and a set of height pattern vectors Qg as follows:

Qw ={ag €2 g€ Py(d)} ={acZ| Z wia; < W,a < d},
i€ly,
and
Qu ={by € Z|r € Py(d)} ={b€ Z1| > hib; < H,b < d}.

i€ln

Also, define a set of width pattern vectors Qu and a set of height pattern vectors

Q g in the aspect of instance I:

Qw ={aeBY| > wga <W}={a',....a"},
keln
and

Qu={beBN| > hgb, <H}={b' ... 0"}
kely

where My, and My correspond to |QW] and |QH|, respectively.
Note that an element of QW is an "extended version" of an element of Q. To

elaborate their relationship, we define an onto function f : QW — Qw as follows:

f@y= Y a;Viel,VaeQw.

JE€IN,Bj=1
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For any i € Iy, , there exists a width pattern ¢ € Py (d) such that f(a') = a,, and
let ¢; be the value of hy(,). Indeed, ¢; is the height of the strip-defining item with the
respect of the instance I. Then, the following formulation PM2 is a valid formulation

for the 2TDK:

Mw N

PM2: maximize Z Zpgkd};xi
i=1 k=1
Mw
subject to Z d};xi <1, Vkely,
i=1

Mw

Z ¢ivy < H,

i=1

z € BMw,
To help understand, define an instance Iy = (2,3,3,h,w,d,p) with h = (2,1),
w = (2,1), d = (1,2), and p = (4,1). Then, the corresponding I, is defined as

(3,3,3, h,,d,p) with b = (2,1,1), & = (2,1,1), d = (1,1,1), and p = (4,1,1).

Then, Qw and Qu are as follows:

Qw = {(L 0)7 (17 1)7 (07 1)7 (07 2)}1

and

Qw = {(1,0,0), (1,1,0),(1,0,1),(0,1,0), (0,0, 1), (0,1, 1)}.
Note that for any j € I, if (a1,...,Ga;_1+1,---,Ga;,---,aN) € Qw, then so does
(G1,...,G8,  415---5 085, GN), where (a5 41,...,03,) is any permutation of

22
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(Ga;_1+15 -+ -5 Ga;). We introduce some nontrivial properties related to PM(d).

Proposition 3.2. zM? = ny(d)

Proof. For each ¢ € Pw(d), let P(q) = {i € I, |f(a’) = a4} The conversion
from the feasible solution z"M(?®) of the LP-relaxation of PM(d) to the feasible so-
lution 2PM2 of the LP-relaxation of PM2 can be easily shown by setting x}DM2 =

PM(d) . P ~j My ~ i _PM?2
xzq " /|P(q)|, for j € Ing, and q € Py (d) satisfying f(a’) = aq. Then, 231 ag'x;
=

=( X aqﬁkxqu(d))/dgk < 1, for all k € In. The other direction is easily shown
q€ Py (d)

by setting CL‘qPM(d) = > M2 O
1€P(q)

s1s PM2 ML
Proposition 3.3. z;5° < 275

Proof. For each i € I, let #(i) denote the minimum index which is in the support
of a*. Also, let the support of @ be S;. Then, given the feasible solution 2¥M2 of the
LP-relaxation of PM2, we can construct a feasible solution zM" to the LP-relaxation

of ML defined as follows:

o = > aP™M2 0 wke{1,....N}, Vje{k,...,N}.
i€ Inry, H(i)=k,kES;

O]
Then, for each k € Iy, let yx = (g, - .., zNk). Define Py as follows:
N
Pe={ye € [0,V F Y wgaie < (W — wg, ),
j=k+1

Tk < Tik, VjE{k‘—l—l,...,N},

vk €[0,1], Vje{k... N}}
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Proposition 3.4. Extreme points in Py, which satisfy N —k+1 linearly independent
inequalities as equality, can be represented as the form of sy, where s € [0,1] is a

scalar and elements of y € [0, 11N =F+1 are all binary except at most one component.

Proof. We show that if there exists 7, j such that 7 # j, x; # Tpr, Tir # 0, Tj # Tir,
and xj; # 0, then corresponding g, cannot be an extreme point in FPj. Due to the
assumption, none of x;;, = Tpk, Tjx = Tik, Tik = 0, Tj = 0, v = 1, or T, = 1
is satisfied. Therefore, even though g: W, Tjk = (W — wg, )xyy satisfies, at most

j=k+1
N — k linearly independent constraints can be satisfied in equality. ]

Proposition 3.5. zﬁ/[PL < 2zfy2.

Proof. To prove the proposition, it is sufficient to describe the procedure to construct
a feasible solution of the LP-relaxation of PM2 from a feasible solution of the LP-
relaxation of ML with at least half of its original value. Since any point in a polytope
is a linear combination of its extreme points, we focus on converting extreme points
of P into width patterns.

By Proposition [3.4] extreme points in Py can be represented as the form of sy,

where s € [0,1] is a scalar and elements of y € [0, 1]V —*+1

are all binary except at
most one component. Also, there always exist s and y such that the first element of
y is unit amount. If there is a fractional element in y, setting it to zero and adding

k — 1 zeros at the foremost of y transforms y into a feasible width pattern vector of

the instance I (i.e., an element of QW) Note that P, corresponds to the constraints

(2.17), (2.21), and (2.19) for fixed k € I .

For any sy¢ € P, whose components of y¢ are all binary except at most one

component, let the corresponding width pattern vector of y¢ by dropping the frac-
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tional component and adding k — 1 zeros at the foremost be a¢ € QW. If there is no
fractional component in ¢, then adding k& — 1 zeros in the foremost of y makes the
vector exactly same as a€. If there is a fractional component in y¢, let the fractional
. . N

index(starts from k) be e and its value be y¢. If Zl:k,l;ée gyl < pg.Ys, then one
may use width-pattern of only using the item e(corresponding to the eth unit vector
in RY) instead of 3¢ if one can double the profit, because le\ik#e Py + Pa.ye <
2pg.ye < 2pg,, and h, < hy. Otherwise, one may use width-pattern vector a¢ if one

can double the profit, because Zf\ik 1£e PBYL T PB.YE <2 Zl]\ik 12¢ P Y[ - Therefore,

the above procedure constructs a desirable feasible solution in PM2. O
Applying similar analysis to PM2, define ng as following;:

Mw

Q ={y €0, &y < H}.
=1

Note that unlike Q H, each element in QEIV describes the amounts of width patterns
with total height equal or less than H. Also, an extreme point of Q}/{V has at most one
fractional support. Let R = {#!,...,7#MR} denote the set of extreme points of Qg/
For each j € Iy, 7 is an Myy-dimensional vector. Let V € RMW*XMr he a matrix
which each of its column is corresponding to the element of R and U € BY*Mw
be a matrix which each of its column is corresponding to the vector in Py The

LP-relaxation of PM2 is equivalent to the following model PM3:
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PM3: maximize p'UVz

subject to UVzx < J,

J€lmpy,

l‘jZO, VjEIMR.

Then, let SM2 be the formulation of PM3 with rounding down the components in

V. Note that for any j € In,, [#/] is a "extended version" of the height pattern.

SM2: maximize p'U|V ]z

subject to  U[V ]z < d,

J€lmy

szo, VjGIMR.

Let the optimal objective value of PM3 (resp. SM2) be 2PM3 (resp. 25M2). Then, the
following properties hold:

M2 __ SM(d.d)
=Zrp

Proposition 3.6. 2°
Proof. The proof is similar to the case of Proposition [3.2] To elaborate in detail,
let RYW = {|#],..., [#MR|}. Note that an element in RY corresponds to a column
vector of |V ] and RY € R. For eachi € I, and j € Ipyg,, | 7] is a My-dimensional
vector, and |7 | represents how much jth width pattern vector in QW is used within

J

height H. For each ¢ € Iy, , let ¢; be the width pattern such that f (@) = ag,. Define
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the onto function g : R?I/ — Qp as follows:

g(lFe= > I#], Vi eRy.
JE€ My 5t(q5)=k
The meaning of the transformation g is that, the transformed vector from R}/{V de-
scribes how strip-defining items of width pattern vectors are ordered vertically within
height H. Also, since it is possible to pack only a single item in each strip, it is clear

that ¢ is an onto function. Lastly, for each r € Py(d), define P(r) as the following:

P(r) = {[7] € Ry |g(|7]) = b }.

We then suggest the conversion from the feasible solution (zSM(®4) 4SM(d:d)) of the
LP-relaxation of SM(d,d) to the feasible solution 252 of SM2 and vice versa. For

SM(d,d)

given M2 the following (x ,ySM(d:d)) ig g feasible solution of the LP-relaxation

of SM(d, d) with the same objective value:

SM dd) o Z l’SMQ, N c PH(d),
ZEP( )

and

aMdd = N (V]a™M), Vg e Py

i€, 0 € P(q)

Also, it can be verified that z5M2 > zigl(dd)

since equally distributing the corre-
sponding height and width patterns in instance I to the patterns in I makes the

feasible solution of SM2. O
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Proposition 3.7. zf]]y'g = PM3 < 9,5M2

Proof. The proof is similar to the proof of Proposition Either a fractional com-
ponent or the rest components of any element # € R has equal or more than half
of the profits generated by 7. Given a feasible solution in PM3, choosing the more
profitable part of each element in R constructs a feasible solution in SM2 with equal

or more than half of the original objective value. O

SM(d,d

Theorem 3.8. 2* < 27, PM(d)

PMU) < ZML < 9, PM() < 4, SM(d.d)

) <,

Proof. With the results of Proposition and the following inequality is

valid:
< SN o PN@
Also, Proposition [3.5] [3.6] and [3.7] prove the rest of the theorem. O

PM(d) < 4ziy(d’d) is easily constructed: let the

The tight example of zM- < 2z
large plate has a (width, height) pair of (2M, 2M) and assume that there are only

4 different types of items sharing the same (width, height) pair (M + 1, M + 1)

PM(d)

with unit profit and unit demand. When M — oo, then zLP — 4, z1p  — 2, and
SMED _ vy
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3.3 Polynomial-size Model

Since all the previous models are not polynomial-size models, verifying the existence
of a polynomial-size model for the 2TDK is needed. With the result from Eisenbrand
and Shmonin [8] and the structure of PM(u), it is possible to construct a polynomial-
size model. Eisenbrand and Shmonin [§] provides the upper bound on numbers of

nonzero components in the optimal solution in integer linear programming problems.

Lemma 3.9. Let min{c’y|Ay < b,y € Z'} be an integer program, where A € ZiX”
and b € Z'. If this integer program has a finite optimum value with vy, then there
erists an optimal value y* € Z'\ with the number of nonzero components of y* at

most Y1 loga(bi + 1) + loga(y + 1).

Proof. As min{c’y|Ay < b,y € Z"} = min{c'y|Ay + 2 = b,y € Z",z € Z"'}, the

proof ends by the result of [§]. O
With this lemma, the following proposition holds:

Proposition 3.10. Let ppge and dpgs indicate the maximum value of components
in given p and d, respectively. Then, there exists an optimal solution in PM(d) with at

most M = [loga(n)+1092(Pmaz) + (n+1)l0g2(dmaz ) +10g2(H)| nonzero components.

Proof. Using Lemma there exists an optimal solution in PM(d) with at most

[nloga(dmaz) + loga(H) + loga(ndmazPmaz)| = M nonzero components. d

Therefore, there exists an optimal solution constructed by a polynomial number
of width patterns and a polynomial-size NP certificate. Furthermore, with at most

M patterns considered, a nonlinear polynomial-size model for the 2TDK is easily
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found:

maximize Z Z (pjsij)x (3.1)

i€ly jeIn
subject to Y wisi; <dj, Vj € I, (3.2)
i€l
Z w;Si; < W, Viely, (33)
J€ln
i€l
Sij < djzij, Vi € Iy, g € I, (3.5)
l; > hjzij, Vi e IM,j S In, (3.6)
zezY 1ezY, sezl* e BM (3.7)
A tuple of decision variables (s;1,...,S;,) corresponds to the ith auxiliary width

pattern, a decision variable [; denotes the height of the ith auxiliary width pattern,
and a decision variable z;; represents the sign of s;;. Then, a decision variable z;
shows how much ith auxiliary width pattern has been used. With these decision
variables, constraints represent the nonlinear objective function, and a set of
constraints corresponds to the demand constraint which is nonlinear. Con-
straints and indicate that each pattern defined as the variables s; should
be the feasible width pattern, Constraints determine the height of the strip,
and constraints describe the height constraint. Lastly, groups of constraints
(3.7) restrain the variables to be integer.

Note that for i € Ip, s; = (Si1,...,Sin) corresponds to the temporary width

pattern and I; corresponds to the height of its strip-defining item. In addition, since
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sij, x; are bounded by d,u., and [; is bounded by H, one can represent integer
variables as the weighted sum of polynomial-size numbers of binary variables. For

example, integer variable s;; can be expressed as the following:

”092 (dmazﬂ

k1
Sij = § 2% Sk

k=1

where each s;;;, is a binary variable. Furthermore, if x and y are two binary variables,
then xy can be expressed as the new binary variable k;, satisfying the following

inequality:

r+y—1< k:cy7 ka:y <z, kxy <y. (38)

After converting all the integer variables into the weighted sum of binary variables,
we can apply procedure for all the nonlinear forms in , , and .
Despite its complex structure, this transformation leads to the polynomial-size inte-
ger linear formulation. For convenience, let D = [loga(dmaz)] and H = [logs(H)].
The explicit version of polynomial-size formulation is as follows (for convenience, we

do not explicitly mention the range of indices):
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3

D
POLY : maximize Z =2 Sikmi

=1

s
I
—

M M=

subject to 22 < diy Vi

=1

M- 1

@
I
-

Qk_lwiqu < W Vm,

I+t—2
2 + T'mlt < H7

M= M= IMe 1=

=

1t=1

NERINE
T

ok=lgm < d;z", Vi, m,

B
Il
—

m .
z, Vi, k,m,

2 H, . > hiz", Yi,m,

M= £
A

t=1

Sikml = (j:};b +xm—1, Vi, k,m,l,
Sikml < cﬂz, Vi,k,m,l,

Sikml S Tl W,k,m,l,

Pttt > Tl + Hie — 1, Y, 1, t,
Tlt < Tty YM1L L,

Pt < Hmg,  Ym, 1Lt

all variables s, g, H,r, z are binary.

Although it yields a polynomial-size model, the real usage of this model is not

recommended. Detailed results are covered in Chapter [5
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Chapter 4

Exact Methods

Models except POLY are either exponential-size or pseudo-polynomial-size formu-
lations. Pattern-based formulations have an exponential number of patterns, and
an arc-flow formulation has variables corresponding to the height and width of the
large plate explicitly. Lastly, the size of a level-packing model increases exponentially
proportional to the size of the demands of items.

There have been various approaches to deal with large-scale formulations. For
example, we usually choose to generate needed columns in each stage in respect of
pattern-based formulations. Using column generation technique, Belov and Schei-
thauer [2] derived a branch-and-cut-and-price algorithm for the 2TDK based on
the formulation PM(d). Also, as not all of constraints may be needed, the
branch-and-cut approach may be effective. See [6] for general information of solving
large-scale mixed integer programs.

In addition, there have been some research which focus on reducing the size of
formulations. For instance, Martinovic et al. [2I] suggests some techniques to avoid
unnecessary variables in one-dimensional cutting stock problems. In this thesis, we

focus on the implementation of each exact method.

33 1



4.1 Branch-and-price Algorithm for the Strip Packing Model

Based on column generation techniques for solving the LP-relaxation, research in-
cluding [19] summarizes the general methodology and some technical issues about
branch-and-price algorithms. Also, Belov and Scheithauer [2] and Lodi and Monaci
[18] illustrate the column-generation procedure for the strip packing model.

The main idea of this approach for solving PM(d) is that we only solve the
problem with the restricted set of width patterns, named Py instead of solving
PM(d) with all width patterns in Py (d). Therefore, in column generation approach,

we solve the following relaxed problem RPM(Py):

RPM(Pw): maximize Z Zpiaqixq (4.1)
a€ Py €1,
subject to Z agixg < d;i, Vi€ I, (4.2)
q€Pw
> hygrg < H, (4.3)
q€Pw
2, >0, Vg€ Py. (4.4)

Note that constraints (4.1)), (4.2), and (4.3) only involve width patterns in Py .

Also, as we solve the linear program, a set of constraints replaces the integer
constraints. To check whether additional width patterns are needed, a slave problem
has to be solved. Let 1 € R™ be the dual variables of the demand constraints (4.2])
and v be the dual variable of the height constraint . If the optimal objective

value of the following subproblem SPM(j, i) is above v x h; for some j € I,,, create
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the new width pattern defined by the optimal values of a in SPM(j, i1).

SPM(j, ) :  max Z:(pZ — [i)a; (4.5)
i€ly

subject to a; < d;, Vi€ I, (4.6)

> wia; <W, (4.7)
i€ly

a; =0, Vie Ij_l, (48)

7] > 1, (49)

a; € Zy, Viel,. (4.10)

The objective function (4.5)) represents reduced costs, a set of constraints (4.6]) re-
stricts the pattern to satisfy the demand constraint, a constraint makes the
pattern to meet the width constraint, constraints and indicate that the
subproblem is correlated with finding the width pattern with strip-defining item type
j, and constraints (4.10]) restrain the pattern vector to be integral. Then, whenever
the optimal objective value of SPM(yj, 1) is above v * h;, add the corresponding
width pattern to Pyy. Until there is no additional width pattern to be generated,
solve RPM( Py ) and SPM(j, 1) iteratively. After this procedure, it is convinced that
the optimal objective value of RPM( Py ) becomes the LP-relaxation value of PM(d).

Combining the column generation procedure with a branch-and-bound method-
ology yields a branch-and-price algorithm. After solving RPM(Py) completely (i.e.,
no additional patterns are needed), if optimal solution z* € R!Pwl is integral, it
becomes the optimal solution of PM(d). However, if there exists any g € Py such

that z7, has a fractional value, then we need to branch the node into two child nodes:
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a left child with additional constraint that z,, < |z7,] and a right child with ad-
ditional constraint that zq, > |z7, | + 1. See Figure for a simple illustration of

branching procedure.

Figure 4.1: Branching strategy (variable dichotomy).

Then, an additional constraint that excludes the width pattern qr to be gener-
ated again when solving the subproblem should be added to a left child node and
child nodes of the left child node. Then, the following constraint should be added to

SPM(t(qr), i) of a left child node and child nodes of it:

a # agp- (4.11)

To express a constraint (4.11]) as a linear constraint, we choose to transform each

variable a; in SPM(j, ) for any 4, j € I,, into the weighted sum of binary variables

aﬁ,...,aﬁﬁ so that a; = > 2]‘3_1a5i. Then, the subproblem SPM(j, 1) can be
k’GID

represented as the following problem SP(j, u):
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SP(j, ) : maximize Z:(pZ — pi)a;
i€l,

subject to a; < d;, Vi€ I,

Zwiai <W,

i€ln

a; =0, ViGIj_l,

CL]‘ 2 1,
ai= Y 2"aff, Viel,
kEID

al €B, Viel, Vkelp.

For qr € Qw, there exists a unique binary vector afF = (anFll’ .. ,af n[)) such
F
that ag.;i = Y, 2k_1anFik. Then, (4.11)) corresponds to the following inequality:
kEID
— B B B B
NG(gr) = Z (agpik — Qix) + Z (air, — agpir) = 1.
i€ln kel p .0l ;=1 i€ln k€l a0 ;=0

(4.12)

Note that inequality (4.12]) changes the structure of the problem. Both SP(j, u)
and SPM(j, ) are knapsack problems, but adding inequality (4.12) complexes the

problem.

We solve the subproblem by a solver offered by Xpress [9], and the best-bound
strategy is selected as a search strategy. Also, we initialize Py as the standard basis

of R"™. As a way to obtain decent lower bounds, we devise a simple heuristic that
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solves an instance to optimality only using width patterns generated in the root node
by the branch-and-bound method: i.e., solving RPM(Py) to optimality. Besides, we
make an effort to improve the lower bound by rounding down the fractional solution

at each node. The overall procedure is summarized in Algorithm

Algorithm 1 A branch-and-price algorithm for PM(d).
Input: An instance of the 2TDK
Initialize Pyy;
Solve RPM(Py) by the column generation method and get the optimal solution
z* and its optimal objective value U B;
if * is integral then
return UB;
else
Split the root node into two child nodes by the fractional component of x*;
Solve RPM(Pyy) to optimality and save the optimal objective value as LB;
nd + 2;
while LB+ 1> UB or nd =0 do
Select the unsolved node whose parent node has a value of U B;
Solve the selected node.
if The selected node is feasible then
Get the optimal solution x%; and its objective value UBy of the node;
if 27 is integral then
if LB < UBy then

LB + UBjpy.
end if
else
Split the selected node into two child nodes;
nd < nd + 2;
Update LB with rounding down the incumbent solution if possible;
end if
end if
Update UB from the branch-and-bound tree;
nd < nd — 1;
end while
return LB;

end if
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4.2 Branch-and-price Algorithm for the Staged-pattern
Model

The overall structure of the branch-and-price scheme based on SM(d, d) is similar
to that of PM(d) except for height pattern generation. To bolster the lower bound,
we use the same heuristic devised for solving PM(d). Note that, for staged-pattern
models, it is uncertain that all height patterns are generated at the root node. There-
fore, even for staged-pattern models, we only utilize width patterns to construct
RPM(Py) and solve it through the branch-and-bound procedure. We propose two
branch-and-price algorithms for the staged-pattern formulation: the standard scheme

and the height-aggregated scheme.

4.2.1 The Standard Scheme

With restricted pattern set Py € Py (d) and Py € Py(d), let u© € R™ be the dual
variable corresponding to the constraints , v € R" be the dual variable of the
constraints , and v be the dual variable of the constraint , respectively.
To determine whether we need either additional height pattern or width pattern,
we need to solve the n 4+ 1 subproblems SPM(j, 1) for all j € I, and a subproblem

HPM(p), which is defined as follows:
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HPM(v) : max Z%’bz‘ (4.13)

i€l

subject to b; < d;, Vi€ I, (4.14)
> hibi < H, (4.15)
i€l
b €eZy, Viel,. (4.16)

Note that (4.13), (4.14), (4.15), and (4.16) makes the formulation as the bounded

knapsack problem. If the objective value of SPM(j, i) is above v(j) for some j €
I,,, add the corresponding width pattern to Py . If the objective value of HPM(v)
is above v, add the corresponding height pattern to Pgy. If any width pattern or
height pattern is no more generated, it is convinced that we solve the LP-relaxation
of SM(d,d). Let z* and y* be the optimal solution after this column generation
procedure. If z* is integral, then it is convinced that we solve SM(d, d) exactly as a
set of constraints can be relaxed.

If there exists gr € P such that z7 is fractional, we branch the problem as
shown in Figure For the left child node, inequality NG(qr) should be added to

the subproblem SP(t(qr), pt).

4.2.2 The Height-aggregated Scheme

In this scheme, we take advantage of SM-HA, which uses a minimal representa-

tion of height patterns. Denote the dual variable corresponding to the constraints

, , and by p € R™ v € RM, and v € R, respectively. To solve the
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LP-relaxation of SM-HA by the column-generation procedure, m + 1 subproblems
SPM2(j, ) for j € I,,, and HPM2(v) have to be solved to determine whether an

additional width or height pattern is needed. SPM2(7j, 1) and HPM2(v) are defined

as follows:

SPM2(j, ) : maximize Z(pl — 1i)a;
i€ln

subject to a; <d;, Vi€ l,,

Zwiai <W,

i€ln

a; =0, Vié& I, such that h; > h(j),

Z aiZL

iEInJli:h(j)

a; €Ly, Viel,,

and

HPM2(v) : maximize sz‘bz‘

1€1m

subject to b; < Z dj, Vi€ Iy,
G€EIn,hj=h;

Z hbi < H,

1€1m

b;€Zy, Viel,.

In the aspect of the branch-and-price algorithm, it is similar to the case of the

standard scheme that we branch the nodes by the fractional part of width pattern

41
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usage, and is added to the subproblem of the left child node. Although its
LP-relaxation value is weaker than the LP-relaxation value of SM(d, d), it requires
solving m + 1 subproblems at each iteration, and there is more freedom on selecting
height pattern.

Furthermore, since the subproblem HPM(v) is a knapsack problem, for i; and
i2 € I, such that h;; = h;,, the solution does not tend to choose both b;, and
bi,. Therefore, some height-patterns that include various item types are relatively
difficult to be generated. However, this phenomenon does not happen to the case
of HPM2(v) since we only need to consider the summation of b;, + b;,. Therefore,
we expect computational efficiency for the branch-and-price algorithm for SM-HA,
which we discuss in Chapter [5

We end up this subsection with the overall branch-and-price procedure for the
staged-pattern models, as summarized in Algorithm [2] We present a pseudocode for

the standard scheme since the two proposed schemes share a similar structure.
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Algorithm 2 A branch-and-price algorithm for the staged-pattern models.
Input: An instance of the 2TDK
Initialize Py and Pg;
Solve the LP-relaxation of the restricted master problem by the column generation
method and get the optimal solution (z*,y*) and its optimal objective value U B;
if «* is integral then
return UB;
else
Split the root node into two child nodes by the fractional component of x*;
Construct RPM(Py) with width patterns at the root node;
Solve RPM(Pyy) to optimality, and save the optimal objective value as L B;
nd < 2;
while LB+ 1> UB or nd =0 do
Select the unsolved node whose parent node has a value of U B;
Solve the selected node.
if The selected node is feasible then
Get the optimal solution x%; and its objective value UBy of the node;
if 2}y is integral then
if LB < UBy then

LB <+ UBy.
end if
else
Split the selected node into two child nodes;
nd <+ nd + 2;
Update LB with rounding down the incumbent solution if possible;
end if
end if
Update UB from the branch-and-bound tree;
nd < nd — 1;
end while
return LB;

end if
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4.3 Branch-and-cut Algorithm for the Modified Level Pack-

ing Model

Although general solvers such as Xpress [9] can handle both LM and ML for in-
stances with small IV, more elaborate implementation should be considered for in-
stances with large N. Furthermore, the number of inequalities that we add
to the formulation LM is about O(N?), which can be computationally burdensome.
Therefore, we devise a branch-and-cut algorithm (i.e., delayed constraint genera-
tion) for ML since not all inequalities may be needed to solve the problem exactly.
To elaborate in detail, with a basic branch-and-bound scheme applied to LM, when-
ever we solve the LP-relaxation of each node, we check whether there exist some
ke lyandje{k+1,...,N} such that z;; > zy;. Then, we add violated inequali-
ties 2, < x to the formulation until we end up the branch-and-bound procedure.
Only for solving the root node, we solve the node iteratively until no violated in-
equalities are found. For other nodes, we add violated inequalities only for once. The
overall branch-and-cut procedure is summarized in Algorithm [3]

We also add groups of valid inequalities of LM suggested by Lodi and Monaci
[18] to reduce symmetry when solving the problem. In this thesis, computational

experiments for ML are implemented using the branch-and-cut algorithm.
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Algorithm 3 A branch-and-cut algorithm for the modified-level packing model.

Input: An instance of the 2TDK
Solve the LP-relaxation of LM in each node and get the optimal solution z*;
if the node is the root node then
while z* does not violate any of inequalities do
For all k € Iy and j € {k+1,..., N}, search all x;k such that x5 > p;
Add corresponding inequalities x;, < xy to the formulation;
Repeat solving the root node;
end while
else
if there remains unsolved nodes or x* is not integral then
For all k € Iy and j € {k+1,..., N}, search all m;k such that x5, > zp;
Add corresponding inequalities x;, < xys to the formulation;
Branch the node by the fractional variable if possible;
Solve the next node.
else
Terminate the branch-and-bound procedure.
end if
end if
return the optimal objective value;
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Chapter 5

Computational Experiments

We conduct computational experiments to observe the undiscovered tendency of
each model in its real usage. In this thesis, we conduct experiments using the solvers
offered by Xpress 8.9 [9] with Intel(R) Core(TM) i7-4770 CPU @ 3.10GHz and 16GB

of RAM. The running time for solving an instance was limited to 600 s.

5.1 Instances

We divide the well-known instance set proposed by Hifi and Roucairol [I5] into two
groups: a group of (relatively) small instances and a group of large instances. A group
of small instances consists of 16 instances, and a group of large instances is composed
of 20 instances. Each of the group is summarized in Table [5.1] and respectively.
In Table and the headings wmin and wmax are defined as min;ey, w; and
max;e s, Wi, respectively. hpyin (Amax) and dmin (dmax) are defined in the same way.
The known optimal objective value of each instance is presented with the heading
OPT. Optimal objective values of instances that we failed to solve to optimality in

this thesis are obtained from the computational result of Alvarez-Valdes et al. [1].
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Table 5.1: Summary of small instances.

Name n W H Wmin  Wmax hmin hmax dmin dmax OPT
2 10 40 70 9 31 7 35 1 3 2,535

2s 10 40 70 9 31 7 35 1 3 2,430

3 20 40 70 9 33 11 43 1 4 1,720

3s 20 40 70 9 33 11 43 1 4 2,599
Als 20 50 60 9 33 11 43 1 4 2,950
A2s 20 60 60 12 33 14 42 1 4 3,423
A3 20 70 80 15 35 14 43 1 4 5,380
A4 20 90 70 9 33 11 43 1 3 5,885
A5 20 132 100 13 69 12 63 1 5 12,553

CHL1 30 132 100 13 69 12 63 1 5 8,360
CHL1s 30 132 100 13 69 12 63 1 5 13,036

CHL2 10 62 55 11 31 9 31 1 3 2,235
CHL2s 10 62 55 11 31 9 31 1 3 3,162

CHL5 10 20 20 1 20 2 14 1 3 363

CHL6 30 130 130 18 69 12 63 1 5 16,572

CHL7 35 130 130 19 57 18 54 1 5 16,728

Table 5.2: Summary of large instances.

Name n W H Wmin  Wmax hmin hmax dmin dmax OPT
ATP30 38 927 152 57 360 7 58 1 9 140,168
ATP31 51 856 964 44 331 50 380 1 9 820,260
ATP32 56 307 124 16 120 6 46 1 9 37,880
ATP33 44 241 983 15 90 52 390 1 9 235,580
ATP34 27 795 456 46 308 22 173 1 9 356,159
ATP35 29 960 649 50 363 34 248 1 9 614,429
ATP36 28 537 244 30 209 20 91 1 9 129,262
ATP37 43 440 881 23 175 51 350 1 9 384,478
ATP38 40 731 358 41 289 19 140 1 9 259,070
ATP39 33 538 501 28 214 48 192 1 9 266,135
ATP40 56 683 138 34 270 6 54 1 9 63,945
ATP41 36 837 367 43 326 32 144 1 9 202,305
ATP42 59 167 291 8 65 21 114 1 9 32,589
ATP43 49 362 917 19 143 46 362 1 9 208,998
ATP44 39 223 496 11 88 29 193 1 9 70,940
ATP45 33 188 578 9 74 49 228 1 9 74,205
ATP46 42 416 514 23 157 40 204 1 9 146,402
ATP47 43 393 554 25 156 32 215 1 9 144,317
ATP48 34 931 254 47 355 18 99 1 9 165,428
ATP49 25 759 449 42 301 23 157 1 9 206,965
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One of the classes of artificial instances proposed by Berkey and Wang (1987) [3]
is also used to check the performance of each model when d,,x changes. We focus
on Class 5 whose instance is defined as (n, 100, 100, h, w, d, p) with n taking a value
among {20, 40,60, 80,100}, w; ~ U(1,100), h; ~ U(1,100), d; = 1, and p; = h; * w;
for ¢ € I,, where U describes the discrete uniform distribution. We generated 10
instances per each n € {20, 40, 60, 80, 100}.

Then, we changed demands of instances in Class 5 and analyze the impact on the
overall performance of each model. For a given instance, we set the demand for each
item the value A (i.e., d; = A for all ¢ € I,). Four different values of A are used:
1, 3, 5, and 7. As other information such as heights and widths is unchanged, an
increase in A affects solving the instance to optimality in two ways: the first effect
is that the problem becomes easier in a sense that the problem is getting similar to
the unconstrained case, and the second effect is that the problem gets difficult as

there are much more options for items to choose.
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5.2 Upper Bounds Comparison

The objectives of this section are to reveal the answers to the following questions:

(a) How much the LP-relaxation values of models follow the Theorem [3.8/in a real

situation?
(b) How are the qualities of the LP-relaxation values for various models?

(c) How effective is the only polynomial-size model POLY in the aspect of finding

a solution?

5.2.1 A Group of Small Instances

The LP-relaxation values and time (seconds) consumed for solving the LP-relaxation
of models in Chapter [2are reported in Table[5.3] The headings for the LP-relaxation
values and time are LP and tgp, respectively. We also compute the LP gap defined

as the follows:

(LP-relaxation value) — (Optimal objective value)

LP gap = x 100(%).

(Optimal objective value)

Optimal objective values for a group of small instances are obtained from the result
of subsection . We summarize LP gaps in Table [5.4] and Figure 5.1} We exclude the
average LP gap of POLY in since it shows the average LP gap of over 500 (%).

In figures in this chapter, PM and SM stand for PM(d) and SM(d, d), respectively.
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Table 5.4: LP gaps for small instances.

Instance AF POLY LM ML PM(d) SM(d,d) SM-HA

2 8.126 75.503 13.531 12966  4.889 4.590 7.473

2s 8.354 78.765 15.226 14.016  5.101 4.788 6.409

3 5.930 1,122.093 16.590 16.590 10.093 5.482 7.993

3s 1.735 1,612.197 7.734 7.734  2.677 1.135 1.135

Als 0.000 1,408.475 1.695 1.695 1.394 0.000 0.000
A2s 0.000 911.540  5.171  5.171 1.499 0.000 0.000
A3 0.583 545.985  4.089  4.089  4.005 0.000 0.000

A4 4.880 301.240  7.052 6.183  3.666 1.461 1.461

A5 1.917 278.850  5.154 5.154  5.017 0.000 0.000
CHL1 5.313 348983 9.111 6.710  4.885 0.239 0.239
CHL1s 0.676 397.077  1.258  1.258  1.211 0.000 0.000
CHL2 6.700 113.378 10.678  7.615  1.663 0.112 0.112
CHL2s 5.988 125.079  7.843  7.524  4.582 3.700 4.527
CHL5 4.486 168.320 10.193 10.193  4.408 0.000 0.970
CHL6 1.331 383.364 1979 1979  1.961 0.487 0.487
CHL7 0.577 408.800  1.028 1.028  0.510 0.000 0.000
Average 3.537 017478  7.396  6.869  3.598 1.375 1.925
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Figure 5.1: Average LP gaps for small instances.

M(d)

. . P . :
Interestingly, zflf is less than 2z, ' in some instances such as 3, 3s, and Als,

. . .. . . . SM(oo0, SM( oo,
while the relationship is reversed in other instances. Since zf}g = 21p (o0 OO), 2 p (00,00)

M(d)

P .
and z;p  are incomparable.
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Although POLY costs the largest amount of time to compute the LP-relaxation
values, its LP gaps are the worst. Then, AF seems to spend more time when H and
W of an instance are relatively large. For level packing models, LM shows the fastest
speed to compute the LP-relaxation values, and ML could enhance the LP-relaxation
values with a small sacrifice on time. Pattern-based models generally require more
time and level packing models for computing the LP-relaxation values, but LP gaps
of pattern-based models are impressive. Especially, staged-pattern models sometimes
offer the exact solution by solving only the root node.

To verify sizes of formulations, we summarize the numbers of variables and con-
straints of AF, POLY, and level packing models in Table For pattern-based
models, as we implement them by column generation, numbers of generated width
patterns and height patterns (WP _Root for width patterns and HP _Root for
height patterns) are reported in Table As shown in Table AF and POLY
show relatively large sizes of formulations. The compactness of level packing models
is remarkable since POLY is a polynomial-size model, whereas level packing models

are not.
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Table 5.6: The number of generated patterns for small instances.

PM(d) SM(d, d) SM-HA
Instance  'WP_Root WP_ Root HP Root WP _ Root HP_ Root
2 20 27 23 21 16
2s 19 25 19 20 16
3 34 39 47 40 45
3s 32 33 47 33 48
Als 40 41 44 41 43
A2s 40 46 49 43 38
A3 39 51 46 54 38
A4 40 57 37 54 40
A5 42 52 52 48 30
CHL1 66 96 76 95 58
CHLI1s 60 83 80 85 60
CHL2 20 22 20 22 20
CHL2s 20 23 21 24 23
CHL5 15 19 18 16 17
CHL6 60 96 76 79 51
CHL7 71 104 92 99 55

Also, except for the instance A4, staged-pattern models generate more width
patterns than a strip packing model. Because staged-pattern models can generate at
most one height pattern at each iteration, it is plausible that they need much more
time to compute the LP-relaxation values than the strip packing model.

Lastly, we compare the ratio of the LP-relaxation values of ML, PM(d), and

SM(d,d). In Chapter we theoretically proved that the ratio of M/ ZEII;\,/I @ (%)

and zME/ zigl(d’d) (%) can be at most 2 and 4, respectively. For each instance in

this set of instances, we summarize the ratios in Table[5.7 We verify that the ratios
are far from the theoretical result in Theorem [3.8] Therefore, the LP-relaxations

values of ML, PM(d), and SM(d, d) are much closer than we expected theoretically.
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Table 5.7: The LP-relaxation values ratio for small instances.

ML ML

PM(d)  SM(d,d)
2 1.077  1.080

2s 1.085  1.088

3 1.059  1.105

3s  1.049  1.065

Als 1.003 1.017
A2s  1.036 1.052

A3 1.001  1.041

A4 1.024  1.047

A5 1.001 1.052
CHL1 1.017  1.065
CHL1s 1.000 1.013
CHL2 1.059  1.075
CHL2s 1.028  1.037
CHL5 1.055 1.102
CHL6 1.000 1.015
CHL7 1.005  1.010
Average 1.031 1.054

Instance

5.2.2 A Group of Large Instances

As in the previous subsection, we report the LP-relaxation values, time consumed
for solving the LP-relaxation of each model, and LP gaps. Using a simplex method
to solve the LP-relaxation of POLY did not succeed in any case within 600 s. On the
other hand, solving the LP-relaxation of AF worked for some instances. Since the
sizes of both LP relaxations of AF and POLY are too large and sparse, we applied
the barrier method to solve them. The overall result of AF and POLY is reported

in Table We denote the case that exceeds the time limit by TL.
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Since the number of variables and constraints of POLY is plentiful, even solving
the LP-relaxation of POLY by the barrier method took a large amount of time.
Also, the upper bounds provided by the LP-relaxation of POLY is meaningless.
Therefore, albeit its theoretical polynomial-size formulation, solving problems using
POLY is not preferable. On the other hand, AF shows a better result when using
the barrier method. Although the number of variables is large, the sparsity of the
overall structure may be favorable to the barrier method.

The general performance of each model is reported in Table and the average
LP gaps are illustrated in Figure[5.2] In the case of level packing models, sizes of their
formulations are much smaller than them of AF and POLY, which leads to fewer
time costs for solving their LP relaxations. The number of variables and constraints
of level packing models are summarized in Table [5.10] Solving the LP relaxation
of LM was the fastest on average, and its compact formulation may contribute to
this result. Besides, although ML could provide a better quality of lower bounds,
overhead from adding violated inequalities seems not negligible. As shown in Table
[5.10, hundreds of cuts were found and added to its formulation.

Generally, ML was dominated by the outcome of PM(d) since the average time
cost and LP gap of PM(d) outweigh them of ML. PM(d) shows the fastest com-
putational cost among pattern-based models, but staged-pattern models are more
favorable for their strengths of upper bounds as they sometimes guarantee the opti-
mal objective values. Also, SM-HA proved to improve the column generation process

for staged-pattern models with little sacrifice on the LP-relaxation values.
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Table 5.10: The number of variables and constraints of level packing models for large

instances.

LP Gap(%)

Figure 5.2: Average LP gaps for large instances.
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ML AF PM SM SM-HA

LM ML
Instance Variables Constraints Variables Constraints
ATP30 18,528 655 18,528 821
ATP31 33,411 883 33,411 1,086
ATP32 31,125 834 31,125 1,002
ATP33 25,200 767 25,200 944
ATP34 8,515 442 8,515 592
ATP35 11,781 527 11,781 688
ATP36 11,781 529 11,781 692
ATP37 24,753 761 24,753 887
ATP38 20,503 689 20,503 836
ATP39 13,366 556 13,366 636
ATP40 42,195 994 42,195 1,044
ATP41 15,753 602 15,753 654
ATP42 52,975 1,127 52,975 1,242
ATP43 33,670 892 33,670 923
ATP44 19,306 674 19,306 718
ATP45 12,246 527 12,246 625
ATP46 19,503 664 19,503 702
ATP47 20,910 693 20,910 728
ATP48 14,028 568 14,028 621
ATP49 7,140 403 7,140 459
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Then, we compare the numbers of generated patterns when solving the LP-
relaxations of pattern-based models in Table SM(d, d) generated 45 (%) more
width patterns than PM(d) in average. SM-HA could reduce its computational time
by less generating height patterns. As LP gaps of SM and SM-HA are almost the

same, SM-HA seems to produce height patterns more efficiently.

Table 5.11: The number of generated patterns for large instances.

PM(d) SM(d, d) SM-HA
Instance  WP_Root WP_Root HP Root WP _ Root HP_ Root
ATP30 78 111 113 89 93
ATP31 102 136 159 134 142
ATP32 111 172 234 148 119
ATP33 88 102 143 106 143
ATP34 55 83 79 77 89
ATP35 59 80 85 79 76
ATP36 56 64 71 69 61
ATP37 86 119 152 116 117
ATP38 80 116 139 109 95
ATP39 65 81 100 72 78
ATP40 110 167 179 157 106
ATP41 73 92 128 92 124
ATP42 121 201 257 175 168
ATP43 98 148 184 143 156
ATP44 78 107 112 107 112
ATP45 65 101 87 102 135
ATP46 83 155 163 155 125
ATP47 86 141 134 129 131
ATP48 68 95 107 94 81
ATP49 52 70 67 71 74

Lastly, we compute the relative ratios of the LP-relaxation values between ML,
PM(d), and SM(d, d). The result is in Table As shown in Table and

the result from Theorem [B.8] seems rather theoretical.
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Table 5.12: The LP-relaxation values ratio for large instances.

ML ML

PM(d)  SM(d,d)
ATP30 1.001 1.005
ATP31 1.001 1.005
ATP32 1.004 1.005
ATP33 1.005  1.006
ATP34 1.014 1.016
ATP35 1.009  1.010
ATP36 1.007  1.012
ATP37 1.005  1.008
ATP38 1.009  1.009
ATP39 1.003 1.011
ATP40 1.057  1.064
ATP41 1.042  1.058
ATP42 1.023  1.028
ATP43 1.032 1.043
ATP44 1.033  1.061
ATP45 1.043  1.044
ATP46 1.040  1.056
ATP47 1.044  1.087
ATP48 1.039 1.046
ATP49 1.067  1.078

Average 1.024 1.033

Instance

To conclude, level packing models can solve their LP-relaxation models quickly,
but the LP-relaxation values are more credible in the case of pattern-based models.
More elaborate algorithms should be constructed in order to utilize AF or POLY

computationally.

5.2.3 Class 5 Instances

In this subsection, we analyze how the performances of various models would change
when the overall demand changes. Since we could get all the optimal values of this
set of instances using SM-HA, LP gaps could be computed. The average time and

the average LP gap are reported in Table
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In this set of instances, because the profit of each item is set to be the area
of the item, we get the trivial upper bound W x H = 10000. It is interesting that
except for the case of A =1 and n = 20, all the LP-relaxation values of LM were
equal to 10000. LP gaps of level packing models are relatively high, and the effect
of additional inequalities (2.21]) was minute. Also, we were able to solve the LP-
relaxation of AF by the simplex method due to small H and W, and the result
shows that LP-relaxation values of AF and pattern-based models are much credible
than level packing models. Especially, in the case of A = 1 and n = 80, the LP-

relaxation values of SM(d, d) were all as same as optimal objective values.

Table 5.14: The number of variables and constraints for Class 5.

AF LM ML
A n Variables Constraints Variables Constraints Variables Constraints
1 20 14,228 2,161 210 39 210 39
1 40 48,061 4,221 820 79 820 79
1 60 100,613 6,281 1,830 119 1,830 119
1 80 168,856 8,341 3,240 159 3,240 159
1 100 271,346 10,401 5,050 199 5,050 199
3 20 14,053 2,161 1,830 119 1,830 119
3 40 48,061 4,221 7,260 239 7,260 239
3 60 100,613 6,281 16,290 359 16,290 359
3 80 168,856 8,341 28,920 479 28,920 479
3 100 271,346 10,401 45,150 599 45,150 599
5 20 14,053 2,161 5,050 199 5,050 199
5 40 48,061 4,221 20,100 399 20,100 399
5 60 100,613 6,281 45,150 599 45,150 599
5 80 168,856 8,341 80,200 799 80,200 799
5 100 271,346 10,401 125,250 999 125,250 999
7 20 14,053 2,161 9,870 279 9,870 279
7 40 48,061 4,221 39,340 559 39,340 559
7 60 100,613 6,281 88,410 839 88,410 839
7 80 168,856 8,341 157,080 1,119 157,080 1,119
7 100 271,346 10,401 245,350 1,399 245,350 1,399

Even though AF does not use a column generation method, the amount of time
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to obtain the LP-relaxation values of AF was most demanding. In order to delineate
this phenomenon, we suspect that the size of AF may yield this result. This doubt
turns out to be valid, as shown in Table

Level packing models seem very compact when A is low, but the number of their
variables becomes closer to the number of variables in AF when A increases. There-
fore, the time cost of level packing models cannot but exceed the time cost for the
strip packing model for large A. On the other hand, the time costs for pattern-based
models show dependency on n, rather than A. To bolster this opinion, we summa-
rized the number of patterns generated at the root node of pattern-based models at

Table Note that the numbers of generated patterns are also dependent on n.

Table 5.15: The number of patterns generated at the root node for Class 5.

PM(d) SM(d, d) SM-HA
A n WP Root WP _ Root HP Root WP _ Root HP_ Root
1 20 27.9 35.2 35.4 33.7 31.2
1 40 55.4 77.0 74.7 71.0 59.1
1 60 68.0 107.5 115.0 102.6 89.4
1 80 93.8 140.1 157.9 128.9 117.3
1 100 112.2 174.6 206.9 169.2 147.4
3 20 25.3 34.0 42.9 33.7 36.9
3 40 49.4 67.8 102.8 66.5 79.8
3 60 68.2 100.0 177.3 93.0 126.8
3 80 93.2 127.8 218.7 121.7 147.1
3 100 114.4 160.0 285.9 149.2 172.3
5 20 25.9 33.2 48.3 32.3 40.3
5 40 50.5 66.1 113.6 62.6 79.7
5 60 69.9 91.2 162.4 89.5 118.0
5 80 92.5 122.6 211.1 115.2 133.1
5 100 113.0 153.1 266.0 148.4 169.0
7 20 26.4 31.8 46.8 31.7 40.4
7 40 50.9 63.3 105.5 61.5 79.3
7 60 70.4 88.8 162.7 86.5 120.0
7 80 92.1 119.1 217.5 112.3 144.3
7 100 113.6 147.6 259.1 140.3 165.2
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5.3 Solving Instances to Optimality

The purpose of this section is to address issues when solving problems using com-
mercial solvers and to verify the effectiveness of exact methods provided in Chapter

The running time for each instance was limited to 600 s per instance.

5.3.1 A Group of Small Instances

The best lower bound obtained by the feasible solution within the time limit is
recorded as Sol. Time (seconds) consumed for solving the instance exactly (Time),
and the number of nodes in a branching tree are reported for each model in Table
and We denote the case that exceeds the time limit by TL. For pattern-
based models, the numbers of generated width patterns and height patterns are
reported as WP and HP, respectively.

Although adding yields the tighter LP-relaxation bounds, the total run-
ning time of it does not prove effectiveness. The overhead of adding inequalities
seems to outweigh its gain on exactitude. It is also interesting that sometimes ML
requires a larger number of nodes than LM in spite of its additional inequalities.
However, both level packing models show excellence solving problems of small sizes.

AF seems to be unstable in respect of time costs and nodes so that it is difficult
to certain whether it will solve a problem quickly. Fortunately, the best lower bounds
of AF are all as same as the optimal objective values, whereas the best lower bounds
of PM(d) are not always equivalent to the optimal objective values.

A trial to solve problems using POLY is not recommendable since it failed to solve
any small instance to optimality within 600 s. Even with computing lots of nodes,

its best lower bounds are approximately 10 percent lower than optimal objective
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values.

For pattern-based models, it was not sufficient for the height-aggregated scheme
to prove its efficiency in time costs and nodes. Instead, in the aspect of the num-
bers of generated height patterns and width patterns, SM-HA shows outstanding
performance. Generally, staged-pattern models produced smaller numbers of width
patterns than the strip packing model, which is opposite to the result at the root

node.
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5.3.2 A Group of Large Instances

As Table indicates that solving instances to optimality using AF and POLY
seems reckless for large instances, we only provide results of level packing models
and pattern-based models in Table and respectively.

Almost all of the instances were not solved to optimality by level packing models
within 600 s. Comparing the number of nodes solved by LM and ML, ML failed to
solve as many nodes as LM did since the overhead for checking violated inequalities
was not minute.

Table 5.18: Summary of the result of level packing models for large instances.

LM ML
Instance Sol Time Nodes Sol Time Nodes
ATP30 139,022 TL 791,397 136,502 TL 110,824
ATP31 817,795 TL 473,289 818,512 TL 54,174
ATP32 37,302 TL 583,166 37,141 TL 57,298
ATP33 233,855 TL 761,325 230,520 TL 69,519
ATP34 356,159 TL 2,047,102 355,451 TL 292,519
ATP35 612,904 TL 1,375,546 610,494 TL 196,026
ATP36 129,020 TL 1,503,956 128,651 TL 184,037
ATP37 384,266 TL 646,773 381,205 TL 81,408
ATP38 256,316 TL 758,317 254,329 TL 98,429
ATP39 265,853 TL 1,280,827 265,306 TL 155,431
ATP40 63,945 TL 461,083 63,686 TL 30,128
ATP41 202,305  25.983 47,365 202,305 186.409 28,070
ATP42 32,589 TL 311,425 32,589 TL 24,900
ATP43 208,998 TL 364,905 208,998 TL 35,623
ATP44 70,901 TL 856,106 70,541 TL 87,400
ATP45 74,205 TL 1,322,409 74,205 TL 220,750
ATP46 146,402 208.547 283,797 146,402 TL 87,531
ATP47 144,317 TL 935,946 144,317 TL 82,320
ATP48 165,428 TL 1,212,566 165,428 TL 121,872
ATP49 206,965 TL 1,898,748 206,884 TL 273,430
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As shown in Table staged-pattern models seem to be the most eminent ap-
proach to solve large instances than any other models. However, there exist some in-
stances that even staged-pattern models failed to solve to optimality. Within staged-
pattern models, SM-HA is superior than SM(d, d) in the aspect of time costs. SM-HA
can solve 30 percent more quickly than SM(d,d) for instances that were solved to
optimality. The smaller number of generated height patterns may contribute to this
result.

In the respect of height patterns, the number of width patterns generated in
the strip packing model outweighed it in the staged-pattern models. Although the
performance of PM(d) is dominated by the performance of staged-pattern models,
it is comparable to the performance of level packing models. We could conclude that
there is a certain type of instance that is favorable to level packing models but not to
the strip packing model since instances which LM solved to optimality were different
from instances which PM(d) solved to optimality.

To compare the quality of the best solution found within the time limit, we define

the IP gap as follows:

(Optimal objective value) — (Best Lower Bound)

IP gap = x 100(%).

(Optimal objective value)

IP gaps for each model are summarized in Table[5.20] Although LM and ML seem to
guarantee the decent quality of best solutions found, almost all of the best solutions
found by pattern-based models offered the same values as the optimal objective
values. This outcome shows the strength of pattern-based models in solving large

instances.
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Table 5.20:

IP gaps for large instances.

Instance LM ML PM(d) SM(d,d) SM-HA
ATP30 0.818 2.615  0.000 0.000 0.000
ATP31 0.301 0.213  0.000 0.000 0.000
ATP32 1.526 1.951 0.000 0.000 0.000
ATP33 0.732 2.148  0.000 0.000 0.000
ATP34 0.000 0.199  0.000 0.000 0.000
ATP35 0.248 0.640  0.000 0.000 0.000
ATP36 0.187 0.473  0.000 0.000 0.000
ATP37 0.055 0.851 0.000 0.000 0.000
ATP38 1.063 1.830  0.000 0.000 0.000
ATP39 0.106 0.311 0.000 0.000 0.000
ATP40 0.000 0.405  0.000 0.000 0.000
ATP41 0.000 0.000  0.000 0.000 0.000
ATP42 0.000 0.000  0.000 0.000 0.000
ATP43 0.000 0.000  0.000 0.000 0.000
ATP44 0.055 0.562  0.055 0.055 0.055
ATP45 0.000 0.000  0.000 0.000 0.000
ATP46 0.000 0.000  0.000 0.000 0.000
ATP47 0.000 0.000  0.000 0.000 0.000
ATP48 0.000 0.000  0.000 0.000 0.000
ATP49 0.000 0.039  0.000 0.000 0.000

Average 0.255 0.612  0.003 0.003 0.003

5.3.3 Class 5 Instances

The number of instances solved to optimality by level packing models within the
time limit of 600 s are recorded in Figure [5.3] and As N increases, the number
of solved instances by level packing models decreases. Although ML requires some
overheads to solve the problem, sometimes it could prove optimality better than

LM. However, both level packing models seem to be substantially affected by the

increase of A.
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Figure 5.3: The number of solved instances by LM for Class 5.
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Figure 5.4: The number of solved instances by ML for Class 5.

Then, we report the result of AF and PM(d) in Figure and respectively.
The result of AF was unexpected since the time cost for solving its LP-relaxation for
other benchmark instances used to be relatively large. Even without an elaborate
variable reduction technique or the branching strategy, AF could prove its effec-
tiveness in solving a fixed, small size of instances. However, PM(d), which requires
the cheapest time cost for solving the LP-relaxation among pattern-based models,

sometimes failed to solve instances to optimality even for small N. Although PM(d)
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did not completely solve all instances to optimality, its performance was robust to
A. Instead, PM(d) shows more dependence on n. Another characteristic of the result
of PM(d) is that the graph seems to have a V-formation pattern for fixed A. One
hypothesis to explain this tendency is that PM(d) may be effective in solving the
unconstrained instances that resemble instances with large A. On the other hand,

no such tendency has been found in Figure
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Figure 5.5: The number of solved instances by AF for Class 5.
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Figure 5.6: The number of solved instances by PM(d) for Class 5.

In the aspect of staged-pattern models, they were able to solve all instances
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within 600 s. With analyzing the average time for computation illustrated in Fig-
ure and staged-pattern models seem to need more time to solve problems
to optimality when n increases. Besides, higher A does not always lead to more

computational burdensome.
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Figure 5.7: Average time costs of SM(d, d) for Class 5.
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Figure 5.8: Average time costs of SM-HA for Class 5.

SM-HA proved to be the most eminent model, especially when the number of
item types is substantial. When n is above a certain threshold, m will not change

a lot as more items will share the same height. Therefore, it shows a more robust

o 2 A2 ety

e



graph than SM(d, d) shows.

To conclude, all models seem to be affected by the change of A, but the impacts
were different from each other. Although level packing models offer very compact
formulations for small n and A, their effectiveness as an exact method was countered
when A increased. Also, we find that AF could perform well when W and H are
relatively small. In the aspect of pattern-based models, their performances were
rather robust than those of level packing models. The strip packing model shows
a unique characteristic that favors instances with relatively large n. Other staged-
pattern models show outstanding effectiveness in solving problems to optimality,

which seems to depend on n, rather than A.
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Chapter 6

Conclusion

In this thesis, we propose several integer linear programming models based on the
previous studies on the 2TDK and the 2D2SP. One of the models, POLY, is the
unique polynomial-size model for the 2TDXK so far. We also suggest valid inequalities
for the well-known level packing model, which not only enhance its LP-relaxation
value but also make its structure easier to be analyzed. Then, this study establishes
a nontrivial theoretical hierarchy between the modified level packing model and the
pattern-based models in the aspect of their LP-relaxation values.

Utilizing these formulations to solve problems to optimality requires some tech-
niques such as branch-and-price and branch-and-cut algorithms. For the modified
level packing model, we construct a branch-and-cut algorithm. It checks whether the
current solution satisfies all valid inequalities at every node. As pattern-based models
have exponentially many width patterns or height patterns, several branch-and-price
algorithms are devised.

To illustrate the properties of these models in their real usage, this thesis in-
volves computational experiments of both well-known instances and artificial in-
stances. Generally, a gap between the LP-relaxation values of level packing models

and pattern-based models was far less than we had expected theoretically.
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We then checked the efficiency of each exact method. For relatively small in-
stances, level packing models outperformed other models. However, in solving larger
instances, staged-pattern models proved their effectiveness. Although all pattern-
based models generally provided almost near-optimal objective values within the
time limit, solving instances to optimality was better achieved by staged-pattern
models. Tightened upper bounds by height patterns may contribute to this result.
In the aspect of demand sensitivity, level packing models had difficulty in solving
instances with many duplicated items. The performance of AF and POLY in general
was so poor that they may need more elaborate modifications for their real usage.

To conclude, this study extends the options for solving the 2TDK based on
analysis in various situations. Theoretically, we develop an arc-flow model, staged-
pattern models, and a novel polynomial-size model and prove that the upper bound
provided by the staged-pattern model is nearest to the optimal objective value.
Computationally, we verify that staged-pattern models implemented with branch-
and-price algorithms are eminent.

For future works, the theoretical relationship between AF and ML is still un-
known. In addition, as we focus on revealing some unknown properties of proposed
models, more elaborate algorithms and heuristics can be devised based on our results.
For example, tightening upper bounds in the branch-and-price procedure for pattern-
based models may improve its performance dramatically. A direct relationship be-
tween the obtained upper bound and the objective value or approximation ratios
of algorithms may also be established as Steinberg [24] did for the two-dimensional
packing problem. Lastly, finding a polynomial-size formulation with a decent quality

of upper bounds provided by its LP-relaxation is an intriguing issue.
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