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Abstract

Production behaviors in channel reservoirs are highly affected by
characteristics of channels. Hence, reservoir model calibration by matching its
production data has often implemented. However, when this inversion method
is applied to channel reservoirs, there are several critical issues, such as
geological information loss and high dependency of results to initial models.

Therefore, in this research, a model regeneration scheme is introduced for
reliable uncertainty quantification on channel reservoir models without a
conventional model inversion method. It is composed of three parts: feature
extraction, model selection, and model generation. In the feature extraction,
drainage area localization and discrete cosine transform are utilized to extract
channel features of near-wellbore area. In the model selection, K-means
clustering and an ensemble ranking method are implemented to select models
similar to a true reservoir. In the model generation, generative adversarial
networks (GAN) and transfer learning are adopted to generate new models.

The proposed method is to, first, select good models from an initial
ensemble by the feature extraction and comparing production data. New models
are generated with the selected models by GAN. The feature extraction and
model selection process are repeated to select final models from the selected
and generated models. The final models are utilized to quantify its uncertainty
by predicting future productions.

The proposed method is analyzed with 3 different 2D channel reservoir
cases. The analysis shows that it allows to obtain reliable models for production
forecasts with reduced uncertainty. This is by effectively characterizing
connectivity of channels and permeability distribution of near-wellbore and by

increasing a probability of existence of models similar to the true model.
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1. Introduction

Petroleum is a naturally occurring hydrocarbon mixture existing in a phase of
gas, liquid, and semi-solid depending on temperature, pressure, and
composition of hydrocarbons (Choe, 2017). Petroleum is typically contained in
subsurface porous and permeable rock formations, called reservoirs.
Characteristics of reservoirs have great impacts on production behaviors of
petroleum fluids. Hence, characterizing a reservoir is crucial for petroleum field
development.

Reservoir characterization is often implemented by reservoir modeling. It
allows to obtain a reservoir model that reflects features of a reservoir of interest
using geological information such as core sample data. When available
geological information is limited, reservoir modeling becomes challenging. A
model generated with limited data contains high uncertainty. Therefore,
uncertainty quantification of a reservoir is necessary in order to obtain a reliable
reservoir model under this circumstance. This can help estimating future
production effectively, which leads to successful decision making.

However, having a reliable reservoir model is difficult to achieve in regard
to very heterogeneous reservoirs such as channel reservoirs. Uncertainty
significantly increases in channel reservoirs due to their unique characteristics.
A channel reservoir consists of permeable sand formations in a channel shape
and impermeable shale formations existing outside of channels in the reservoir.

Due to vivid separation of sand and shale formations, petroleum fluid
mostly flows through channels. Hence, the connections and patterns of channels

need to be properly characterized to understand production behaviors in



channel reservoirs. Under circumstances of limited geological information and
high heterogeneity, it is desirable to perform uncertainty quantification using
an ensemble of equi-probable model realizations for channel reservoirs (Choe,
2013).

Many researchers have performed channel reservoir characterization in a
stochastic manner by utilizing an ensemble of model realizations to consider
uncertainty (Jung and Choe, 2010; Kang and Choe, 2017; Lee et al., 2017; Jung
et al., 2018). They conducted stochastic history matching, which is calibrating
statistic properties of reservoir models, such as permeability, by matching their
production data to observed data of a true model. This method is also known as
model inversion. However, a possibility of geological information loss is an
inevitable issue of history matching (Chang et al., 2016; Kim et al., 2016).
When it is applied to channel reservoirs, history matching results in neglecting
key channel characteristics such as connectivity and continuity (Jo et al., 2017).

To overcome this issue, many researchers have studied to effectively
extract main characteristics of channel reservoirs. One approach is localizing
drainage area (Jung and Choe, 2012; Yeo et al., 2014; Jung et al., 2017a). They
conducted uncertainty quantification by utilizing production responses with
corresponding effective zones. This scheme improved the prediction of future
productions. Another approach is applying discrete cosine transform (DCT) to
reservoir models. Jafarpour and McLaughlin (2007) first introduced DCT
application for characterizing channel reservoirs. The ability of DCT capturing
connectivity and continuity of channel reservoirs is verified in many studies
(Kim et al., 2016; Jung et al., 2017b).

Another issue of the stochastic history matching is that its results are



highly affected by initial reservoir models. Therefore, numerous methods of
selecting proper models from an initial ensemble have been studied (Lee et al.,
2016; Jung et al., 2018; Lee et al., 2018). Kang et al. (2019) classified models
into groups by K-means clustering and selected models similar to the true
reservoir. They improved the history matching results by using the selected
models as the initial models. Ranking reservoir models is another powerful
method for organizing and selecting models. Jung et al. (2017a) ranked the
models by calculating similarity of production data to the true response and
selected the top ranked models to perform uncertainty quantification.

However, in case of channel reservoirs with high uncertainty, probability
of proper models existing in an initial ensemble is very low. Under this
circumstance, selecting models from the initial ensemble for the history
matching does not improve its results. To increase the probability of existence
of models similar to a true reservoir, Lee et al. (2017) suggested re-static
modeling. They applied a distance-based clustering and selected a group of the
models that have the most similar production responses to the true responses.
The selected models were utilized to generate new reservoir models. With them,
they performed a selection scheme to estimate uncertainty in production
forecasts.

In addition, Kang et al. (2020) proposed a method of generating new
reservoir models with deep convolutional generative adversarial networks
(DCGAN). They selected models similar to the true model by applying
principal component analysis (PCA) and K-means clustering. They trained
DCGAN with the selected models as input and generated new models. They

performed their selection scheme again to select final models for uncertain



quantification.

DCGAN was proposed by Radford et al. (2015), and it is now one of the
successful network designs of generative adversarial networks (GAN).
However, under limited data and resources, training DCGAN becomes very
challenging due to its vast number of parameters (Wang et al., 2018). One
profound technique that allows to overcome this issue is transfer learning
(Yoshinski et al., 2014; Wang et al., 2019; Noguchi and Harada, 2019). It is to
transfer knowledge obtained from a pre-trained network to a new network to be
trained with a different dataset.

This study introduces a model regeneration scheme for reliable uncertainty
quantification in channel reservoirs without a conventional model inversion
method. This scheme consists of three parts: feature extraction, model selection,
and model generation. In the feature extraction part, drainage area localization
and DCT are applied to reservoir models. In the model selection part, the
models are classified by k-means clustering with the extracted feature
information. They are ranked based on the classification results by an ensemble
ranking method. In the model generation part, DCGAN is trained with selected
top-ranked ensemble models as input data. To successfully train DCGAN,
transfer learning is implemented.

Theoretical backgrounds of the techniques adopted for this research are
explained in Chapter 2. In Chapter 3, the proposed method with the model
regeneration scheme is described. Chapter 4 presents results of analyzing the
proposed method with 3 channel reservoir cases. In the last chapter, Chapter 5,

summarizations and conclusions of the study are discussed.



2. Theoretical backgrounds

2.1 Feature extraction

2.1.1 Drainage area localization

Drainage area localization is assigning near-wellbore data of every reservoir
model realization to each production well. The main goal in reservoir
characterization is to obtain models that have similar characteristics to a true
reservoir model. In order to meet this goal without a model inversion method,
proper model selection needs to be performed from an ensemble generated to
cover geological uncertainty of a reservoir in interest. Model selection requires
response data of reservoir models and a true observed data. Models that have
similar response data to the true observed data are more probable to have similar
reservoir characteristics.

During the selection process, utilizing field total production data is not
desirable. Figure 2.1 demonstrates a possibility of two different reservoir
models having the same field total production data because they are perfectly
symmetrical. To prevent this issue, production data of each well need to be used
for proper model selection. It is more effective to use near-wellbore features
when comparing production data of each well due to their significant impacts
on production data of a well. Therefore, assigning near-wellbore data of every
reservoir model to individual well is necessary.

For the drainage area localization process, models are, first, divided into

smaller sections as many as the number of wells. The sections are identical in



size for every model. The divided sections are then assigned to corresponding

wells. This process can be shown in Figure 2.2 and Figure 2.3.

© Production Well

Figure 2.1 Two different models that have the same field total production

behaviors

@ Production well

Figure 2.2 An example of dividing models into smaller sections



@ Production well

..

Figure 2.3 An example of assigning near-wellbore data to a production well



2.1.2 Discrete cosine transform

DCT is transforming data in terms of a sum of cosine functions oscillating at
different frequencies. It is a widely used transformation technique in signal
processing and data compression. DCT for one dimension (1D) is defined by

the following equations:

n(2n+ 1k

<k<N-— 2.1
oN ],O_k_N 1 2.1)

N-1
v(k) = a(k) u(n) cos [

= 2.2
a@):{ J2/N, k=0 (2.2)

1/N, 1<k<N-1

where, u(n) is an input data sequence, and v(k) is kth DCT coefficients. N
is the size of data. In Equation (2.1), data are converted to coefficients of cosine
functions.

DCT for 2D data can be performed by applying 1D DCT in two
perpendicular directions. 2D DCT is often utilized for image compression.
Because low frequency components of DCT contain general information of an
image, main characteristics of an image can be gained by only utilizing the
components of low frequency. As shown in Figure 2.4, low frequency
components exist on the upper-left region. A frequency of cosine functions
decreases towards the up and left direction.

DCT is applicable for characterization of channel reservoirs due to
distinct patterns of channels. With low frequency components of DCT, channel

reservoir models can be reduced in dimensionality without losing information



of their main channel trends. In this study, they are utilized to project reservoir
models and to differentiate them in a reduced dimension space. Figure 2.5
shows transforming near-wellbore data, obtained by drainage area localization,

to DCT coefficients.
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Figure 2.4 Discrete cosine transform based for 8 by 8 image representation

Figure 2.5 An example of applying DCT to assigned near-wellbore data

208



2.2 Model selection

2.2.1 K-means clustering

K-means clustering is one effective technique for classifying a dataset into
groups. It is well-known for its simplicity and fast calculation. It groups a
dataset into a pre-determined amount of clusters by minimizing the objective

function J as Equation (2.3).

K N )
7= > x| 23)

k=1n=1
where, xr(lk) is data in cluster k, and ¢, is a centroid of cluster k. When
grouping N data points into K clusters, k-means clustering finds a location of
centroids, which has minimum distance between centroids and their data.

The process of k-means clustering is as follows. First, centroids are
assigned at random locations in data space. These locations are assumed to be
a center of clusters, and data close to these centers are included into
corresponding clusters. Then, with the classified data, a new center of the
clusters is calculated. The data are classified again depending on their locations
relative to the new centers. These steps are repeated until the objective function
converges. Figure 2.6 shows an example of 400 data points classified into 10
groups.

In this study, reservoir models are classified into groups by using DCT
coefficients of near-wellbore data for every section assigned to a production

well. During this classification, Silhouette method is implemented. It is to
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optimize the number of clusters by calculating silhouette values which are

defined as Equation (2.4).

s(i)

b() — a(i)

~ max{a(i), b(i)}

2.4

where, a(i) represents data cohesion in a cluster, and b(i) represents

separation between clusters. For a data point, i, a(i) is calculated by

averaging distance between i and other data points within a cluster. b(i) is

calculated by averaging distance between i and data points in a neighbor

cluster closest to i.
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Figure 2.6 An example of k-means clustering with 10 clusters
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2.2.2 Ensemble ranking method

Ensemble ranking method is a technique for organizing reservoir models in a
ranking manner depending on their response data. This method is based on
clustering results. After reservoir models are classified into clusters by k-means
clustering, a reservoir model closest to a center of a cluster in a reduced
dimension space is chosen for every cluster. These chosen models are
representative models for the clusters. Production responses of the
representative models are computed by a forward simulation. With the
production responses, root mean square error (RMSE) are calculated with true

observed data by using Equation (2.5).

Nop

1
RMSE = N E (i — D) (2.5)
ob i

where, p is production data of a well from a representative model, and p is
the true observed data of a well. N,; is the number of observation data.
Using calculated production error values, a score is calculated for each

cluster by using Equation (2.6).

1
RMSEmin
_1
RMSE,

scorey, = (2.6)

where, k is a cluster index. Figure 2.7 shows the scoring process described

above for one production well. For the visualization purpose, reservoir models

12 1 O



are projected in a 3D space using 3 DCT coefficients.

This scoring procedure is performed for every well. Therefore, every
reservoir model has as many scores as the number of production wells. Models
are ranked by the sum of their scores in descending order. A certain amount of

reservoir models from the highest scored are selected.

RMSE chrf
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Figure 2.7 An example of calculating scores for reservoir models
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2.3 Model generation

2.3.1 Generative adversarial network

GAN is a popular deep learning algorithm for data generation. It was proposed
by Goodfellow et al. (2014). The main goal of GAN is to learn a distribution of
data and generate new data that follows the distribution. Unlike other neural
networks, GAN is composed of two networks: a generator and a discriminator.
A typical structure of GAN is shown in Figure 2.8.

In GAN, a generator and a discriminator are trained in an adversarial
manner for its own objective. The objective of a generator is to fool a
discriminator by producing fake data that are indistinguishable from real data,
while a discriminator tries to identify if data are fake or real. With a generator
of well-trained GAN, it is possible to generate new data very similar to data

used for training. The loss function of GAN is defined as Equation (2.7).
mGin mSXV(D, G) = E¢[logD(x)] +E, [log (1 - D(G(z)))] 2.7

where, x is real data used for training, and z is latent variables.
When a discriminator receives real data, it aims for D(x) to be 1. When the
discriminator receives generated data by a generator, it aims for D(G(z)) to be

0, whereas a generator tries to make D(G(z)) to be 1. Therefore, the loss

function of a discriminator is max[logD(x) + log (1 - D(G(Z)))], and the
D

loss function of a generator is mcjn[log (1 - D(G(z)))].

In this study, among variants of GAN, deep convolutional generative

14



adversarial network (DCGAN) is adopted to generate new reservoir models by
using selected models as input. DCGAN was proposed by Radford et al. (2015),
and it is known to be a successful GAN design for handling image data (Guo et
al., 2019; Liu et al., 2019). The main difference of GAN and DCGAN is the
architecture. DCGAN replaces fully connected layers with convolutional layers,
as shown in Figure 2.9. The structure of DCGAN used for this study is based
on the guideline by Radford et al. (2015).

Real Data
x) N 0-1
Discriminator (D)
(1: Real, 0: Fake)
Latent Vector(z) Generator (G) Fake Data
(G(2)

Figure 2.8 Structure of GAN

Figure 2.9 Structure of a generator in DCGAN (Radford et al., 2015)
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2.3.2 Transfer learning

Transfer learning is a useful technique for deep learning to solve tasks
efficiently. It is to train a new network with new data by utilizing knowledge
from a network which has been pre-trained for a related task. Transfer learning
is performed by transferring parameters from a pre-trained network. It uses the
parameters as initial parameters for training with new data rather than starting
from scratch. Despite of numerous ways of re-training in transfer learning, fine-
tuning is the most intuitive and effective strategy (Wang et al., 2018; Mo et al.,
2020). It allows all transferred parameters to be updated during training instead
of freezing some of the parameters (Oquab et al., 2014).

In this study, fine-tuning is applied to enhance performance of training
DCGAN with selected reservoir models. When training DCGAN with only
selected models from scratch, it results in poor training due to its vast number
of parameters and limited data. This issue is overcome by pre-training DCGAN
with every reservoir model and updating it with selected models. With this fine-
tuned DCGAN, new models that are similar to the selected ones can be stably

generated.
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3. Model regeneration scheme

The proposed method is to perform reliable uncertainty quantification of
channel reservoirs without a model inversion method by a model regeneration
scheme. The model regeneration scheme consists of 3 parts: feature extraction,
model selection, and model regeneration. These parts are denoted as red, blue,
and green respectively in Figure 3.1 which shows the procedure of the proposed
method.

The first part of the model regeneration scheme is to extract features of
near-wellbore areas of production wells in channel reservoir models. Drainage
area localization is, first, performed to an ensemble of 400 initial reservoir
models. The reservoir models are divided into smaller sections as many as the
number of production wells. The sections represent near-wellbore areas.
Permeability values of the models within each section are assigned to a
corresponding production well.

DCT is then applied to compress assigned near-wellbore data without
losing its features. Among coefficients obtained from DCT, 6 coefficients of the
lowest frequency cosine functions are used to project the models in a reduced
dimension space. This allows to differentiate the models by features of a near-
wellbore area.

The second part of the model regeneration scheme is to select reservoir
models similar to a true model by organizing them in ranking. In the reduced
dimension space, the reservoir models are classified by k-means clustering. A
model closest to a center of a cluster is decided to be a representative model for

the cluster.
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Representative models are then computed by a forward simulator, Eclipse
from Schlumberger, and production responses of the models are gained. RMSE
values are calculated with the production responses and true observed data.
Based on the RMSE value of the representative models, a score for each cluster
is calculated. This scoring process is implement for every production well, and
the reservoir models are ranked by the sum of their scores in descending order.
Top 50 reservoir models are selected, which are the most similar models to the
true model.

The last part of the model regeneration scheme is to train DCGAN in order
to generate new channel reservoir models. DCGAN is pre-trained with the 400
reservoir models. The parameters from the pre-trained DCGAN are then set to
be initial parameters and fine-tuned with the selected 50 models. After the train,
50 new reservoir models are generated.

Details of the structure of DCGAN used in this study can be found in Table
3.1. Adam optimizer is adopted for DCGAN training, and learning parameters
are set to 0.0002, 0.5 and 0.999 for learning rate, betal, and beta2, respectively
(Kingma and Ba, 2014). Also, training epoch is 300, and one epoch iterates 8
times of training. Due to faster convergence of a discriminator when training
DCGAN with channel reservoir models (Kang and Choe, 2020), training ratio
of the generator and the discriminator is set to be 8:1.

With this structure of DCGAN, pre-training with 400 models is performed.
The same structure is utilized for transfer learning. However, when fine-tuning
transferred parameters, it trains for only 30 epochs. Tensorflow 1.14 is
implemented for DCGAN, and specification of the machine used for this study

is as follows: Intel 15-4670 CPU 3.40 GHz, 16 RAM, and GTX 1660 6 GB.
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In the proposed method, after new reservoir models are generated, the
first and second part of the model regeneration scheme are repeated with the
selected 50 initial models and generated new 50 models. Final 10 models are

selected to predict future production responses with reduced uncertainty.
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Table 3.1 Structure of DCGAN for this study

Generator Discriminator

Layer Remarks Layer Remarks
Input layer (1, 1, 100) Input layer (64, 64, 1)

(4, 4,1024) (32,32, 128)

1t hidden layer kernel size: 4 1% hidden layer  kernel size: 4
strides: 1 strides: 2

(8, 8,512) (16, 16, 256)

2" hidden layer kernel size: 4 2" hidden layer  kernel size: 4
strides: 2 strides: 2
(16, 16, 256) (8, 8,512)

3 hidden layer kernel size: 4 3 hidden layer  kernel size: 4
strides: 2 strides: 2

(32, 32, 128) (4, 4, 1024)

4™ hidden layer kernel size: 4 4™ hidden layer  kernel size: 4
strides: 2 strides: 2
(64, 64, 1) (1,1,1)

Output layer kernel size: 4 Output layer kernel size: 4
strides: 2 strides: 1
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4. Uncertainty quantification of channel reservoirs

The proposed method is applied to 3 cases of a 2D synthetic channel field. To
validate the proposed method, the 3 cases are different in size, channel trend,
and design of waterflooding which is often conducted at an early stage of field

development in channel fields to acknowledge connectivity of channels.

4.1 Casel

401 channel reservoir models are generated by using SNESIM (single normal
equation simulation) module in SGeMS. The size of the models is 21 by 21 by
1, and each grid is a cubic of 50ft. Figure 4.1 shows the training image (TI) and
9 core sample data used for generating the models. An average permeability of
the models is 1000 md for sand and 1 md for shale. Other petrophysical
parameters of the models can be found in Table 4.1.

One of the 401 reservoir models is assumed to be the reference model, in
Figure 4.2. The other 400 models are assumed to be initial models of an
ensemble. The average permeability distribution of the 400 models in Figure
4.2 implies that the models have different trends of channels.

There are 8 production wells and 1 injection well in a waterflooding
pattern of inverted nine-spot. Figure 4.3 shows oil production rates and
watercuts of the 400 initial models in the 8 producers for 1500 days. The
production responses are very high in uncertainty. The average oil rates and

watercuts in the majority of the wells are far different from the reference model.
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Figure 4.1 Geological information for model generation for Case 1
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Table 4.1 Petrophysical parameters for the simulation

Parameters Values

Initial reservoir pressure, psia 2,000
Initial water saturation, fraction 0.25
Initial porosity, fraction 0.2

Rock compressibility, 1/psi

3.00E-05 at 2,000 psia

1.012 at 0 psia

) Qil 1.011 at 1,000 psia
Formation volume factor, rb/STB 1.010 at 2,000 psia
Water 1 at 2,000 psia
) o ) QOil 1.00E-06
Fluid compressibility, 1/psi
Water 5.00E-07
S QOil 3
Fluid viscosity, cp
Water 1
QOil 48.62
Fluid density, 1b/ft3
Water 62.31
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The feature extraction and model selection of the model regeneration
scheme are performed by utilizing production of 500 days. The bottomhole
pressure limit for the producers and the injection rate for the injector are set to
be 400 psia and 200 STB/day for production simulation. Figure 4.4 shows the
result of ranking the 400 models.

By comparing the average permeability distribution of rank 1-100, 101-
200, 201-300, and 301-400, it is certain that the top ranked reservoir models
have very similar trends of channels to the reference model. The top 50 ranked
models are selected and used for future prediction of production for 1000 days.
In Figure 4.5, the 50 selected models predict future production similar to the
production of the reference with reduced uncertainty. These 50 models are
utilized as input data for DCGAN.

Figure 4.6 and 4.7 demonstrate necessity of transfer learning. When
training DCGAN with the 50 selected models from scratch, the generator and
discriminator do not converge. This leads to poor quality of output data, as
shown in Figure 4.6. On the other hand, the both networks stably converge as
training epoch increases with the 400 models. The generator from this training

can output desirable data.
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After training DCGAN with the 400 initial models, the pre-trained
DCGAN is fine-tuned with the 50 selected models. The average of the 50
selected models and new 50 generated models can be found in Figure 4.8. These
100 models are ranked, and top 10 ranked models are selected by repeating the
feature extraction and model selection method.

The result of the proposed method, Case la, is compared to 2 other
methods: Case 1b and Case 1c. Case 1b selects top 10 ranked models from the
400 initial models as final models. Case 1c selects 10 models by using the
information of the whole permeability fields.

In Case Ic, the permeability values of the models are reduced by principal
component analysis. 2 principal components are used to project the models in
a reduced dimension space. K-means clustering is then performed to classify
them, and a representative model of clusters is computed by ECLIPSE. After
calculating RMSE of the representative models, the cluster of the represent
model that has the lowest RMSE is decided to be the cluster that the models
similar to the reference model. The closest models from the center of the cluster
are selected as final 10 models.

Figure 4.9 shows the average permeability distribution of the final 10
models for Case la, 1b, and 1c. Although the final models for the all 3 cases
have similar channel patterns to the reference model, the result of Case 1a has
the strongest connection of the main channels. As shown in Table 4.2, every
selected model in Case 1a has the correct channel connection. However, in Case
1b, 5 of the models have the connection of the main channels, and only 1 model

has it in Case lc.
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Table 4.2 Permeability field of the final 10 models for Case 1

Reference

10 selected reservoir models
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Future prediction of production for 1000 days with the final models are
analyzed for Case la, 1b, and 1c in Figure 4.10, 4.11, and 4.12. Figure 4.10
shows that Case 1a results in reliable forecasts with a reduced uncertainty range.
In Figure 4.11, an uncertain range of the final models in Case 1b covers the
production of the reference model. However, the difference between the
reference production curves and the average production curves of the models
shows large uncertainty, especially in P1 and P2. Figure 4.12 shows further

increase in the uncertainty with the final modes in Case 1c.
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Figure 4.10 Production responses of the final 10 models in Case 1a
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Figure 4.11 Production responses of the final 10 models in Case 1b
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4.2 Case?2

The proposed method is tested with another ensemble of channel reservoir
models that have the size of 36 by 36 by 1. 401 models are generated by using
SNESIM and geological information shown in Figure 4.13. The other
petrophysical parameters of the models are the same as Case 1. Figure 4.14
shows the reference model and the average permeability distribution of the 400
models. There are 8 production wells and 8 injection wells in a waterflooding
pattern of staggered line drive.

The feature extraction and model selection procedure are implemented by
utilizing production of 500 days. The bottomhole pressure limit for production
and the water injection rate for are set to be 400 psia and 200 STB/day for
reservoir simulation. Figure 4.15 shows the result of ranking the 400 models.
By comparing the average permeability distribution of the ranked models, the
connection of the channels gets weaker as the score of the models goes down.

After fine-tuning DCGAN with the 50 selected models by utilizing the
parameters of the pre-trained DCGAN, 50 new reservoir models are generated.
The average permeability values of the 50 selected models and 50 generated
models are shown in Figure 4.16. The feature extraction and model selection
are repeated with the 100 models to organize them in a ranking manner. Top 10

ranked models are then selected for production forecasts.
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The final selected models by the proposed method, Case 2a, is compared
to final models selected by 2 other methods: Case 2b and Case 2¢. The model
selection methods for Case 2b and Case 2c are identical to Case 1b and Case
1c. Figure 4.17 represents the average permeability distribution of the final 10
models for Case 2a, 2b, and 2¢c. While overall patterns of the channels are
characterized for the 3 case, the connection between the two parallel channels
seems to be very week in Case 2c. Furthermore, Figure 4.17 shows that this
connection appears more vividly in Cases 2a compared to Case 2b.

This observation can be supported by the permeability fields of the final
models for the 3 case, in Table 4.3. In Case 2b and 2c, less than half of the
models contain correct information of the channel patterns, whereas in Case 2a,
the majority of the final models very similar channel patterns to the reference
model. Using these fields, production forecasts are also compared for the 3
cases.

In Figure 4.18, future production responses of 1000 days are predicted for
Case 2a. It is certain that the final 10 models in Case 2a allows to forecast the
production reliably with reduced uncertainty range. In P2, water breakthrough
does not occur before 500 days of production, which is the data used for the
model selection. Nonetheless, Figure 4.18 shows that using the final models,
the watercut behavior in P2 can be effectively predicted.

This cannot be found in Case 2b and Case 2c. In Case 2b, Figure 4.19
indicates that not only the uncertainty range in P2 is greater, but also there is a
model that predicts water breakthrough in P1, which is incorrect. In Figure 4.20,
significant increase in uncertainty of production forecasts with the final model

in Case 2c¢ can be found.
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Table 4.3 Permeability field of the final 10 models for Case 2

Reference

10 selected reservoir models
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Figure 4.18 Production responses of the final 10 models in Case 2a
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Figure 4.19 Production responses of the final 10 models in Case 2b
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Figure 4.20 Production responses of the final 10 models in Case 2¢
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4.3 Case3

The proposed method is performed with more complicated channel reservoir
models with line drive wateringflooding. SNESIM and geological information
shown in Figure 4.21 are utilized for generating 401 models, and the size of the
models is 55 by 55 by 1. The petrophysical parameters of the models are the
same as Case 1 and 2. The reference model and the average permeability
distribution of the 400 models can be found in Figure 4.22. There are 15
production wells and 10 injection wells in a waterflooding pattern of direct line
drive.

The feature extraction and model selection of the model regeneration
schem are implemented with production of 500 days obtained by ECLIPSE.
The production wells are operated under a constraint of 400 psia for the
bottomhole pressure limit. The injection wells are operated under a constraint
of 300 STB/day for the water injection rate. The result of ranking the 400
models is analyzed in Figure 4.23. As shown in this figure, there is a tendency
of the models with lower scores to have different connections of the channels
compared to the reference model.

50 new reservoir models are generated by the fine-tuned DCGAN with the
50 selected models. Figure 4.24 represents the average permeability values of
the 50 selected models and 50 generated models. After the feature extraction
and model selection are repeated to rank these 100 models, top 10 ranked

models are selected and utilized for predicting future production.
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Identical to Case 1 and 2, permeability fields and production forecasts of
the final models selected by the proposed method, Case 3a, are compared to the
results of 2 other methods: Case 3b and Case 3c. The method for these are the
same as the previous cases. According Figure 4.25, the final models in Case 3c
have the very different trend of the channels, compare to the reference model.
The average permeability distribution of the final models in Case 3a has a
correct overall patterns of the channels located in the north west region of the
reservoir. The connections of the other channels seem to be weak.

In Table 4.4, the permeability fields of the final models for the 3 cases can
be found. Among the final selected models in Case 3c, none of the model has
similar channel trends to the reference, whereas in Case 3b, there is 1 model
that matches with the reference. Although Figure 4.25 shows that the final
models with relatively correct channel characteristic are selected in Case 3a,
only 2 of the models has a strong similarity in channel patterns with the
reference, as shown in Table 4.4.

Future production responses of 1000 days with the final models for the 3
cases are analyzed in Figure 4.26, 4.27, and 4.28. Production data of only 6
wells are presented in these 3 figures. The 6 production wells are the ones with
production rates above 100 STB/day. By comparing Figure 4.27 and 4.28, the
uncertainty range of the future production seems to be smaller when the method
for Case 3b is applied, especially in P2 and P4. Figure 4.26 shows that there is
reduction in the overall uncertainty in Case 3a, compared to Case 3b. However,
the decrease in the uncertainty is insignificant. Therefore, further analysis is

performed.
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Table 4.4 Permeability field of the final 10 models for Case 3a, 3b, 3¢

Reference

10 selected reservoir models

©
™
@
[72]
o
™
[<5]
[22]
o
™
[<5]
[22]
o
@)

” ¢ g



P2 P4 P7
1000 | 1000 | 1500 |
800 | predict 800 I I
I I 1000 I
T 600 | T 600 | T o1
kel kel hel
@ [ @ | @ |
=400 | £ 400 | B 500 |
O | 200[:\1\“ I
0 L= 0 | 0 |
0 500 1500 0 500 1500 0 500 1500
yr yr yr
P9 P12 P14
1500 | 1000 | 1000 |
| 800 | 800 |
| | |
1000
§‘ N §‘ 600 | §‘ 600 |
R A @ | o |
0 500N | o 400 | o 400 |
| | |
- 2ook 200
~
ol oL == |
0 500 1500 0 500 1500 0 500 1500
yr yr yr

0
500 1500 0

0
1500 0

0
1500 0

0
1500 0

(b) Watercuts

500

P14

yr

yr

1500

1500

10 selected

Reference

Figure 4.26 Production responses of the final 10 models in Case 3a
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Having only 1 reservoir model that matches with the reference model for
Case 3b and 2 models for Case 3a infers that there are very few models that
have similar channel characteristics in an ensemble of the initial models. To
understand the effectiveness of generating new reservoir models by DCGAN,
2 additional cases are created: Case 3d and Case 3e. They are identical to Case
3a, expect the number of new generated models. In Case 3d, 10 final models
are selected from 50 selected and 100 generated models while in case 3e, 10
final models are selected from 50 selects and 150 generated models.

Figure 4.29 shows that as the number of the new generated models are
increased, the average permeability distribution of the final models becomes
stronger in the correct channel connections. This observation is also found in
Table 4.5. The more reservoir models are generated by DCGAN, the more
models that are very similar to the reference model are selected. While there
are 2 models that match with the reference model in Case 3a, there are 3 models
and 5 models like them in Case 3d and 3e, respectively. When generating more
models by DCGAN, not only the number of the models that match with the
reference increases, but also the models with greater similarity of the channel
characteristics to the reference model are created.

Figure 4.30 and 4.31 show the future forecasts of 1000 days for Case 3d
and 3e. Comparing Figure 4.26 and 4.30 allows to identify the effectiveness of
increasing the number of new generated models for reducing in uncertainty.
The uncertainty range in the majority wells are significantly decreased in Case
3d, compared to 3a. Figure 4.31 demonstrates further reduction in the

uncertainty range in Case 3e, which leads to reliable future forecasts.
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Table 4.5 Permeability field of the final 10 models for Case 3a, 3d, 3e
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10 selected reservoir models
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Figure 4.31 Production responses of the final 10 models in Case 3e
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5. Conclusions

This research introduces a model regeneration scheme for reliable uncertainty
quantification of channel reservoirs. The scheme is to effectively extract
features of channels in near-wellbore area, to select reservoir models from an
ensemble, and to regenerate new models. In the feature extraction process,
drainage area localization is implemented on the reservoir models to gain near-
wellbore data. A geological 2D reservoir is divided into smaller sections as
many as the number of production wells in the reservoir. Features of the
obtained near-wellbore data are extracted by using DCT. With coefficients of
DCT, the models are differentiated for every near-wellbore area of the
production wells.

In the model selection process, K-means clustering is performed to
classify them into clusters with the extracted information of the features.
Based on production responses of a representative model of each cluster, a
score is calculated and assigned to reservoir models within the cluster. By
implementing this process for every production well, the reservoir models are
organized in ranking by the sum of their scores in descending order. The top
ranked reservoir models are selected,

In the model generation process, DCGAN is trained with the selected
models to generated reservoir models that do not previously exist. To increase
the performance of DCGAN training, transfer learning is applied by fine-
tuning a pre-trained DCGAN. Pre-training DCGAN is performed with the all
initial models in the ensemble.

After the model generation process, the feature extraction and model
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selection process are repeated with the selected and generated models. By
applying the proposed method with the model regeneration scheme to 3

different 2D channel reservoirs, the following conclusions are drawn.

1. Utilizing information of main trends of channels in near-wellbores
improves characterization of local channel connectivity and patterns.
By comparing several cases in this study, it is certain that selecting
models with near-wellbore data allows better local channel
characterization and improves the performance of the production

forecasts.

2. Evaluating models for production wells individually allows to
organize the models by degree of similarity to a true model. The
model ranking result shows a vivid trend of the channel characteristic
change depending on their ranking. While the highest ranked models
have the most proper characteristics, its similarity decreases as the

ranking goes down.

3. Under the circumstance of high uncertainty in channel reservoirs,
generating new models with selected models increases probability of
the existence of models similar to a true model. As the number of the
generated models increases, the characterization results are improved
with the decreased uncertainty in the production forecasts. More

proper models are selected as final models (Case 3).
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In this study, the proposed method is analyzed by using the 2D channel
reservoir models with waterflooding patterns. For channel reservoirs in which
wells are not evenly distributed, the method can be improved with streamline
simulation. Tracing streamlines can be able to help reasonable decision of
drainage area for the wells. Furthermore, the proposed method can be
developed for reliable uncertainty quantification of 3D channel reservoirs. By
increasing the dimension of DCT, it can extract features of 3D channels. Also,
replacing the convolution layers used in DCGAN to 3D convolution layers

can allow to generate 3D reservoir models.
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