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Abstract 

 

Production behaviors in channel reservoirs are highly affected by 

characteristics of channels. Hence, reservoir model calibration by matching its 

production data has often implemented. However, when this inversion method 

is applied to channel reservoirs, there are several critical issues, such as 

geological information loss and high dependency of results to initial models. 

Therefore, in this research, a model regeneration scheme is introduced for 

reliable uncertainty quantification on channel reservoir models without a 

conventional model inversion method. It is composed of three parts: feature 

extraction, model selection, and model generation. In the feature extraction, 

drainage area localization and discrete cosine transform are utilized to extract 

channel features of near-wellbore area. In the model selection, K-means 

clustering and an ensemble ranking method are implemented to select models 

similar to a true reservoir. In the model generation, generative adversarial 

networks (GAN) and transfer learning are adopted to generate new models. 

The proposed method is to, first, select good models from an initial 

ensemble by the feature extraction and comparing production data. New models 

are generated with the selected models by GAN. The feature extraction and 

model selection process are repeated to select final models from the selected 

and generated models. The final models are utilized to quantify its uncertainty 

by predicting future productions.  

The proposed method is analyzed with 3 different 2D channel reservoir 

cases. The analysis shows that it allows to obtain reliable models for production 

forecasts with reduced uncertainty. This is by effectively characterizing 

connectivity of channels and permeability distribution of near-wellbore and by 

increasing a probability of existence of models similar to the true model.  
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1. Introduction 

 

Petroleum is a naturally occurring hydrocarbon mixture existing in a phase of 

gas, liquid, and semi-solid depending on temperature, pressure, and 

composition of hydrocarbons (Choe, 2017). Petroleum is typically contained in 

subsurface porous and permeable rock formations, called reservoirs. 

Characteristics of reservoirs have great impacts on production behaviors of 

petroleum fluids. Hence, characterizing a reservoir is crucial for petroleum field 

development. 

Reservoir characterization is often implemented by reservoir modeling. It 

allows to obtain a reservoir model that reflects features of a reservoir of interest 

using geological information such as core sample data. When available 

geological information is limited, reservoir modeling becomes challenging. A 

model generated with limited data contains high uncertainty. Therefore, 

uncertainty quantification of a reservoir is necessary in order to obtain a reliable 

reservoir model under this circumstance. This can help estimating future 

production effectively, which leads to successful decision making.   

However, having a reliable reservoir model is difficult to achieve in regard 

to very heterogeneous reservoirs such as channel reservoirs. Uncertainty 

significantly increases in channel reservoirs due to their unique characteristics. 

A channel reservoir consists of permeable sand formations in a channel shape 

and impermeable shale formations existing outside of channels in the reservoir. 

Due to vivid separation of sand and shale formations, petroleum fluid 

mostly flows through channels. Hence, the connections and patterns of channels 

need to be properly characterized to understand production behaviors in 
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channel reservoirs. Under circumstances of limited geological information and 

high heterogeneity, it is desirable to perform uncertainty quantification using 

an ensemble of equi-probable model realizations for channel reservoirs (Choe, 

2013). 

Many researchers have performed channel reservoir characterization in a 

stochastic manner by utilizing an ensemble of model realizations to consider 

uncertainty (Jung and Choe, 2010; Kang and Choe, 2017; Lee et al., 2017; Jung 

et al., 2018). They conducted stochastic history matching, which is calibrating 

statistic properties of reservoir models, such as permeability, by matching their 

production data to observed data of a true model. This method is also known as 

model inversion. However, a possibility of geological information loss is an 

inevitable issue of history matching (Chang et al., 2016; Kim et al., 2016). 

When it is applied to channel reservoirs, history matching results in neglecting 

key channel characteristics such as connectivity and continuity (Jo et al., 2017).  

To overcome this issue, many researchers have studied to effectively 

extract main characteristics of channel reservoirs. One approach is localizing 

drainage area (Jung and Choe, 2012; Yeo et al., 2014; Jung et al., 2017a). They 

conducted uncertainty quantification by utilizing production responses with 

corresponding effective zones. This scheme improved the prediction of future 

productions. Another approach is applying discrete cosine transform (DCT) to 

reservoir models. Jafarpour and McLaughlin (2007) first introduced DCT 

application for characterizing channel reservoirs. The ability of DCT capturing 

connectivity and continuity of channel reservoirs is verified in many studies 

(Kim et al., 2016; Jung et al., 2017b).  

Another issue of the stochastic history matching is that its results are 
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highly affected by initial reservoir models. Therefore, numerous methods of 

selecting proper models from an initial ensemble have been studied (Lee et al., 

2016; Jung et al., 2018; Lee et al., 2018). Kang et al. (2019) classified models 

into groups by K-means clustering and selected models similar to the true 

reservoir. They improved the history matching results by using the selected 

models as the initial models. Ranking reservoir models is another powerful 

method for organizing and selecting models. Jung et al. (2017a) ranked the 

models by calculating similarity of production data to the true response and 

selected the top ranked models to perform uncertainty quantification.  

However, in case of channel reservoirs with high uncertainty, probability 

of proper models existing in an initial ensemble is very low. Under this 

circumstance, selecting models from the initial ensemble for the history 

matching does not improve its results. To increase the probability of existence 

of models similar to a true reservoir, Lee et al. (2017) suggested re-static 

modeling. They applied a distance-based clustering and selected a group of the 

models that have the most similar production responses to the true responses. 

The selected models were utilized to generate new reservoir models. With them, 

they performed a selection scheme to estimate uncertainty in production 

forecasts. 

In addition, Kang et al. (2020) proposed a method of generating new 

reservoir models with deep convolutional generative adversarial networks 

(DCGAN). They selected models similar to the true model by applying 

principal component analysis (PCA) and K-means clustering. They trained 

DCGAN with the selected models as input and generated new models. They 

performed their selection scheme again to select final models for uncertain 
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quantification.        

DCGAN was proposed by Radford et al. (2015), and it is now one of the 

successful network designs of generative adversarial networks (GAN). 

However, under limited data and resources, training DCGAN becomes very 

challenging due to its vast number of parameters (Wang et al., 2018). One 

profound technique that allows to overcome this issue is transfer learning 

(Yoshinski et al., 2014; Wang et al., 2019; Noguchi and Harada, 2019). It is to 

transfer knowledge obtained from a pre-trained network to a new network to be 

trained with a different dataset. 

This study introduces a model regeneration scheme for reliable uncertainty 

quantification in channel reservoirs without a conventional model inversion 

method. This scheme consists of three parts: feature extraction, model selection, 

and model generation. In the feature extraction part, drainage area localization 

and DCT are applied to reservoir models. In the model selection part, the 

models are classified by k-means clustering with the extracted feature 

information. They are ranked based on the classification results by an ensemble 

ranking method. In the model generation part, DCGAN is trained with selected 

top-ranked ensemble models as input data. To successfully train DCGAN, 

transfer learning is implemented.  

Theoretical backgrounds of the techniques adopted for this research are 

explained in Chapter 2. In Chapter 3, the proposed method with the model 

regeneration scheme is described. Chapter 4 presents results of analyzing the 

proposed method with 3 channel reservoir cases. In the last chapter, Chapter 5, 

summarizations and conclusions of the study are discussed.   
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2. Theoretical backgrounds 

  

2.1  Feature extraction 

 

2.1.1  Drainage area localization 

Drainage area localization is assigning near-wellbore data of every reservoir 

model realization to each production well. The main goal in reservoir 

characterization is to obtain models that have similar characteristics to a true 

reservoir model. In order to meet this goal without a model inversion method, 

proper model selection needs to be performed from an ensemble generated to 

cover geological uncertainty of a reservoir in interest. Model selection requires 

response data of reservoir models and a true observed data. Models that have 

similar response data to the true observed data are more probable to have similar 

reservoir characteristics.  

During the selection process, utilizing field total production data is not 

desirable. Figure 2.1 demonstrates a possibility of two different reservoir 

models having the same field total production data because they are perfectly 

symmetrical. To prevent this issue, production data of each well need to be used 

for proper model selection. It is more effective to use near-wellbore features 

when comparing production data of each well due to their significant impacts 

on production data of a well. Therefore, assigning near-wellbore data of every 

reservoir model to individual well is necessary.  

For the drainage area localization process, models are, first, divided into 

smaller sections as many as the number of wells. The sections are identical in 
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size for every model. The divided sections are then assigned to corresponding 

wells. This process can be shown in Figure 2.2 and Figure 2.3.  

 

 

 

Figure 2.1 Two different models that have the same field total production 

behaviors 

 

 

 

Figure 2.2 An example of dividing models into smaller sections  
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Figure 2.3 An example of assigning near-wellbore data to a production well 
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2.1.2  Discrete cosine transform 

DCT is transforming data in terms of a sum of cosine functions oscillating at 

different frequencies. It is a widely used transformation technique in signal 

processing and data compression. DCT for one dimension (1D) is defined by 

the following equations: 

  

𝑣(𝑘) = 𝛼(𝑘) ∑ 𝑢(𝑛) cos [
𝜋(2𝑛 + 1)𝑘

2𝑁
] , 0 ≤ 𝑘 ≤ 𝑁 − 1

𝑁−1

𝑛=0

 (2.1) 

 

𝛼(𝑘) = {
√2/𝑁,          𝑘 = 0

√1/𝑁,    1 ≤ 𝑘 ≤ 𝑁 − 1
 

(2.2) 

 

where, 𝑢(𝑛) is an input data sequence, and 𝑣(𝑘) is kth DCT coefficients. N 

is the size of data. In Equation (2.1), data are converted to coefficients of cosine 

functions.  

DCT for 2D data can be performed by applying 1D DCT in two 

perpendicular directions. 2D DCT is often utilized for image compression. 

Because low frequency components of DCT contain general information of an 

image, main characteristics of an image can be gained by only utilizing the 

components of low frequency. As shown in Figure 2.4, low frequency 

components exist on the upper-left region. A frequency of cosine functions 

decreases towards the up and left direction.       

 DCT is applicable for characterization of channel reservoirs due to 

distinct patterns of channels. With low frequency components of DCT, channel 

reservoir models can be reduced in dimensionality without losing information 
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of their main channel trends. In this study, they are utilized to project reservoir 

models and to differentiate them in a reduced dimension space. Figure 2.5 

shows transforming near-wellbore data, obtained by drainage area localization, 

to DCT coefficients.  

 

 

 

Figure 2.4 Discrete cosine transform based for 8 by 8 image representation 

 

 

Figure 2.5 An example of applying DCT to assigned near-wellbore data 
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2.2  Model selection 

 

2.2.1  K-means clustering 

K-means clustering is one effective technique for classifying a dataset into 

groups. It is well-known for its simplicity and fast calculation. It groups a 

dataset into a pre-determined amount of clusters by minimizing the objective 

function J as Equation (2.3). 

 

        𝐽 = ∑ ∑ ‖𝑥𝑛
(𝑘)

− 𝑐𝑘‖
2

𝑁

𝑛=1

𝐾

𝑘=1

 (2.3) 

 

where, 𝑥𝑛
(𝑘)

  is data in cluster k, and 𝑐𝑘  is a centroid of cluster k. When 

grouping N data points into K clusters, k-means clustering finds a location of 

centroids, which has minimum distance between centroids and their data.  

The process of k-means clustering is as follows. First, centroids are 

assigned at random locations in data space. These locations are assumed to be 

a center of clusters, and data close to these centers are included into 

corresponding clusters. Then, with the classified data, a new center of the 

clusters is calculated. The data are classified again depending on their locations 

relative to the new centers. These steps are repeated until the objective function 

converges. Figure 2.6 shows an example of 400 data points classified into 10 

groups.      

In this study, reservoir models are classified into groups by using DCT 

coefficients of near-wellbore data for every section assigned to a production 

well. During this classification, Silhouette method is implemented. It is to 
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optimize the number of clusters by calculating silhouette values which are 

defined as Equation (2.4). 

 

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max {𝑎(𝑖), 𝑏(𝑖)}
 (2.4) 

 

where, 𝑎(𝑖)  represents data cohesion in a cluster, and 𝑏(𝑖)  represents 

separation between clusters. For a data point, 𝑖 , 𝑎(𝑖)  is calculated by 

averaging distance between 𝑖 and other data points within a cluster. 𝑏(𝑖) is 

calculated by averaging distance between 𝑖  and data points in a neighbor 

cluster closest to 𝑖.  

 

 

(a) Dataset of 400 points      (b) Dataset classified into 10 clusters  

 

Figure 2.6 An example of k-means clustering with 10 clusters 
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2.2.2  Ensemble ranking method 

Ensemble ranking method is a technique for organizing reservoir models in a 

ranking manner depending on their response data. This method is based on 

clustering results. After reservoir models are classified into clusters by k-means 

clustering, a reservoir model closest to a center of a cluster in a reduced 

dimension space is chosen for every cluster. These chosen models are 

representative models for the clusters. Production responses of the 

representative models are computed by a forward simulation. With the 

production responses, root mean square error (RMSE) are calculated with true 

observed data by using Equation (2.5).  

 

𝑅𝑀𝑆𝐸 = √
1

𝑁𝑜𝑏
∑(𝑝𝑖 − 𝑝𝑖̂)

𝑁𝑜𝑏

𝑖=1

 (2.5) 

 

where, 𝑝 is production data of a well from a representative model, and 𝑝̂ is 

the true observed data of a well. 𝑁𝑜𝑏 is the number of observation data.  

Using calculated production error values, a score is calculated for each 

cluster by using Equation (2.6).  

 

𝑠𝑐𝑜𝑟𝑒𝑘 =
 

1
𝑅𝑀𝑆𝐸𝑚𝑖𝑛

 

1
𝑅𝑀𝑆𝐸𝑘

 (2.6) 

 

where, k is a cluster index. Figure 2.7 shows the scoring process described 

above for one production well. For the visualization purpose, reservoir models 
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are projected in a 3D space using 3 DCT coefficients. 

This scoring procedure is performed for every well. Therefore, every 

reservoir model has as many scores as the number of production wells. Models 

are ranked by the sum of their scores in descending order. A certain amount of 

reservoir models from the highest scored are selected. 

 

 

Figure 2.7 An example of calculating scores for reservoir models 
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2.3  Model generation 

 

2.3.1  Generative adversarial network 

GAN is a popular deep learning algorithm for data generation. It was proposed 

by Goodfellow et al. (2014). The main goal of GAN is to learn a distribution of 

data and generate new data that follows the distribution. Unlike other neural 

networks, GAN is composed of two networks: a generator and a discriminator. 

A typical structure of GAN is shown in Figure 2.8.  

In GAN, a generator and a discriminator are trained in an adversarial 

manner for its own objective. The objective of a generator is to fool a 

discriminator by producing fake data that are indistinguishable from real data, 

while a discriminator tries to identify if data are fake or real. With a generator 

of well-trained GAN, it is possible to generate new data very similar to data 

used for training. The loss function of GAN is defined as Equation (2.7).    

 

min
G

max
D

V(D, G) = Ex[logD(x)] + Ez [log (1 − D(G(z)))]    (2.7) 

 

where, x is real data used for training, and z is latent variables.  

When a discriminator receives real data, it aims for D(x) to be 1. When the 

discriminator receives generated data by a generator, it aims for D(G(z)) to be 

0, whereas a generator tries to make D(G(z)) to be 1. Therefore, the loss 

function of a discriminator is max [
D

logD(x) + log (1 − D(G(z)))] , and the 

loss function of a generator is min
G

[log (1 − D(G(z)))]. 

 In this study, among variants of GAN, deep convolutional generative 
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adversarial network (DCGAN) is adopted to generate new reservoir models by 

using selected models as input. DCGAN was proposed by Radford et al. (2015), 

and it is known to be a successful GAN design for handling image data (Guo et 

al., 2019; Liu et al., 2019). The main difference of GAN and DCGAN is the 

architecture. DCGAN replaces fully connected layers with convolutional layers, 

as shown in Figure 2.9. The structure of DCGAN used for this study is based 

on the guideline by Radford et al. (2015). 

 

 

Figure 2.8 Structure of GAN 

 

 

Figure 2.9 Structure of a generator in DCGAN (Radford et al., 2015) 
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2.3.2  Transfer learning 

Transfer learning is a useful technique for deep learning to solve tasks 

efficiently. It is to train a new network with new data by utilizing knowledge 

from a network which has been pre-trained for a related task. Transfer learning 

is performed by transferring parameters from a pre-trained network. It uses the 

parameters as initial parameters for training with new data rather than starting 

from scratch. Despite of numerous ways of re-training in transfer learning, fine-

tuning is the most intuitive and effective strategy (Wang et al., 2018; Mo et al., 

2020). It allows all transferred parameters to be updated during training instead 

of freezing some of the parameters (Oquab et al., 2014).  

In this study, fine-tuning is applied to enhance performance of training 

DCGAN with selected reservoir models. When training DCGAN with only 

selected models from scratch, it results in poor training due to its vast number 

of parameters and limited data. This issue is overcome by pre-training DCGAN 

with every reservoir model and updating it with selected models. With this fine-

tuned DCGAN, new models that are similar to the selected ones can be stably 

generated. 
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3. Model regeneration scheme 

 

The proposed method is to perform reliable uncertainty quantification of 

channel reservoirs without a model inversion method by a model regeneration 

scheme. The model regeneration scheme consists of 3 parts: feature extraction, 

model selection, and model regeneration. These parts are denoted as red, blue, 

and green respectively in Figure 3.1 which shows the procedure of the proposed 

method.   

The first part of the model regeneration scheme is to extract features of 

near-wellbore areas of production wells in channel reservoir models. Drainage 

area localization is, first, performed to an ensemble of 400 initial reservoir 

models. The reservoir models are divided into smaller sections as many as the 

number of production wells. The sections represent near-wellbore areas. 

Permeability values of the models within each section are assigned to a 

corresponding production well.  

DCT is then applied to compress assigned near-wellbore data without 

losing its features. Among coefficients obtained from DCT, 6 coefficients of the 

lowest frequency cosine functions are used to project the models in a reduced 

dimension space. This allows to differentiate the models by features of a near-

wellbore area.     

The second part of the model regeneration scheme is to select reservoir 

models similar to a true model by organizing them in ranking. In the reduced 

dimension space, the reservoir models are classified by k-means clustering. A 

model closest to a center of a cluster is decided to be a representative model for 

the cluster.  



 

18 

 

Representative models are then computed by a forward simulator, Eclipse 

from Schlumberger, and production responses of the models are gained. RMSE 

values are calculated with the production responses and true observed data. 

Based on the RMSE value of the representative models, a score for each cluster 

is calculated. This scoring process is implement for every production well, and 

the reservoir models are ranked by the sum of their scores in descending order. 

Top 50 reservoir models are selected, which are the most similar models to the 

true model. 

The last part of the model regeneration scheme is to train DCGAN in order 

to generate new channel reservoir models. DCGAN is pre-trained with the 400 

reservoir models. The parameters from the pre-trained DCGAN are then set to 

be initial parameters and fine-tuned with the selected 50 models. After the train, 

50 new reservoir models are generated.  

Details of the structure of DCGAN used in this study can be found in Table 

3.1. Adam optimizer is adopted for DCGAN training, and learning parameters 

are set to 0.0002, 0.5 and 0.999 for learning rate, beta1, and beta2, respectively 

(Kingma and Ba, 2014). Also, training epoch is 300, and one epoch iterates 8 

times of training. Due to faster convergence of a discriminator when training 

DCGAN with channel reservoir models (Kang and Choe, 2020), training ratio 

of the generator and the discriminator is set to be 8:1. 

With this structure of DCGAN, pre-training with 400 models is performed. 

The same structure is utilized for transfer learning. However, when fine-tuning 

transferred parameters, it trains for only 30 epochs. Tensorflow 1.14 is 

implemented for DCGAN, and specification of the machine used for this study 

is as follows: Intel i5-4670 CPU 3.40 GHz, 16 RAM, and GTX 1660 6 GB.   
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 In the proposed method, after new reservoir models are generated, the 

first and second part of the model regeneration scheme are repeated with the 

selected 50 initial models and generated new 50 models. Final 10 models are 

selected to predict future production responses with reduced uncertainty.  
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Table 3.1 Structure of DCGAN for this study 

Generator Discriminator 

Layer Remarks Layer Remarks 

Input layer (1, 1, 100) Input layer (64, 64, 1) 

1st hidden layer 

(4, 4, 1024) 

kernel size: 4 

strides: 1 

1st hidden layer 

(32, 32, 128) 

kernel size: 4 

strides: 2 

2nd hidden layer   

(8, 8, 512) 

kernel size: 4 

strides: 2 

2nd hidden layer   

(16, 16, 256) 

kernel size: 4 

strides: 2 

3rd hidden layer 

(16, 16, 256) 

kernel size: 4 

strides: 2 

3rd hidden layer 

(8, 8, 512) 

kernel size: 4 

strides: 2 

4th hidden layer 

(32, 32, 128) 

kernel size: 4 

strides: 2 

4th hidden layer 

(4, 4, 1024) 

kernel size: 4 

strides: 2 

Output layer 

(64, 64, 1)  

kernel size: 4 

strides: 2 

Output layer 

(1, 1, 1) 

kernel size: 4 

strides: 1 
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4. Uncertainty quantification of channel reservoirs 

 

The proposed method is applied to 3 cases of a 2D synthetic channel field. To 

validate the proposed method, the 3 cases are different in size, channel trend, 

and design of waterflooding which is often conducted at an early stage of field 

development in channel fields to acknowledge connectivity of channels.  

 

4.1  Case 1 

 

401 channel reservoir models are generated by using SNESIM (single normal 

equation simulation) module in SGeMS. The size of the models is 21 by 21 by 

1, and each grid is a cubic of 50ft. Figure 4.1 shows the training image (TI) and 

9 core sample data used for generating the models. An average permeability of 

the models is 1000 md for sand and 1 md for shale. Other petrophysical 

parameters of the models can be found in Table 4.1. 

One of the 401 reservoir models is assumed to be the reference model, in 

Figure 4.2. The other 400 models are assumed to be initial models of an 

ensemble. The average permeability distribution of the 400 models in Figure 

4.2 implies that the models have different trends of channels. 

There are 8 production wells and 1 injection well in a waterflooding 

pattern of inverted nine-spot. Figure 4.3 shows oil production rates and 

watercuts of the 400 initial models in the 8 producers for 1500 days. The 

production responses are very high in uncertainty. The average oil rates and 

watercuts in the majority of the wells are far different from the reference model.     
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(a) Training image 

 

(b) Core sample data 

 

Figure 4.1 Geological information for model generation for Case 1 
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Table 4.1 Petrophysical parameters for the simulation 

Parameters Values 

Initial reservoir pressure, psia 2,000 

Initial water saturation, fraction 0.25 

Initial porosity, fraction 0.2 

Rock compressibility, 1/psi 3.00E-05 at 2,000 psia 

Formation volume factor, rb/STB 
Oil 

1.012 at 0 psia 

1.011 at 1,000 psia 

 1.010 at 2,000 psia 

Water 1 at 2,000 psia 

Fluid compressibility, 1/psi 
Oil 1.00E-06 

Water 5.00E-07 

Fluid viscosity, cp 
Oil 3 

Water 1 

Fluid density, lb/ft3 
Oil 48.62 

Water 62.31 
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(a) Reference model 

 

(b) 400 initial models 

 

Figure 4.2 Reference model and the mean of permeability values for Case 1
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(a) Oil rates 

 

 

(b) Watercuts 

 

Figure 4.3 Production responses of the 400 initial models for Case 1 
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The feature extraction and model selection of the model regeneration 

scheme are performed by utilizing production of 500 days. The bottomhole 

pressure limit for the producers and the injection rate for the injector are set to 

be 400 psia and 200 STB/day for production simulation. Figure 4.4 shows the 

result of ranking the 400 models.  

By comparing the average permeability distribution of rank 1-100, 101-

200, 201-300, and 301-400, it is certain that the top ranked reservoir models 

have very similar trends of channels to the reference model. The top 50 ranked 

models are selected and used for future prediction of production for 1000 days. 

In Figure 4.5, the 50 selected models predict future production similar to the 

production of the reference with reduced uncertainty. These 50 models are 

utilized as input data for DCGAN.  

Figure 4.6 and 4.7 demonstrate necessity of transfer learning. When 

training DCGAN with the 50 selected models from scratch, the generator and 

discriminator do not converge. This leads to poor quality of output data, as 

shown in Figure 4.6. On the other hand, the both networks stably converge as 

training epoch increases with the 400 models. The generator from this training 

can output desirable data.  
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Figure 4.4 The result of ranking models for Case 1 

High score 

 Low score 

(a) Reference 

(b) Rank 1-100 

(c) Rank 101-200 

(d) Rank 201-300 

(e) Rank 301-400 
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(a) Oil rates 

 

 

(b) Watercuts 

 

Figure 4.5 Production responses of the top 50 models for Case 1 
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(a) Training result 

 

 

 
(b) 25 generated models 

 
Figure 4.6 The result of DCGAN training with the 50 models  

without transfer learning 
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(a) Training result 

 

 

 
(b) 25 generated models 

 

 
Figure 4.7 The result of DCGAN training with the 400 models 
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After training DCGAN with the 400 initial models, the pre-trained 

DCGAN is fine-tuned with the 50 selected models. The average of the 50 

selected models and new 50 generated models can be found in Figure 4.8. These 

100 models are ranked, and top 10 ranked models are selected by repeating the 

feature extraction and model selection method.  

The result of the proposed method, Case 1a, is compared to 2 other 

methods: Case 1b and Case 1c. Case 1b selects top 10 ranked models from the 

400 initial models as final models. Case 1c selects 10 models by using the 

information of the whole permeability fields.  

In Case 1c, the permeability values of the models are reduced by principal 

component analysis. 2 principal components are used to project the models in 

a reduced dimension space. K-means clustering is then performed to classify 

them, and a representative model of clusters is computed by ECLIPSE. After 

calculating RMSE of the representative models, the cluster of the represent 

model that has the lowest RMSE is decided to be the cluster that the models 

similar to the reference model. The closest models from the center of the cluster 

are selected as final 10 models. 

Figure 4.9 shows the average permeability distribution of the final 10 

models for Case 1a, 1b, and 1c. Although the final models for the all 3 cases 

have similar channel patterns to the reference model, the result of Case 1a has 

the strongest connection of the main channels. As shown in Table 4.2, every 

selected model in Case 1a has the correct channel connection. However, in Case 

1b, 5 of the models have the connection of the main channels, and only 1 model 

has it in Case 1c.     
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(a) 50 selected models 

 

 
(b) 50 generated models 

 

 
Figure 4.8 The mean of permeability values of the selected and generated 

models for Case 1  
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(a) reference model      (b) 400 initial models 

 

 

 
 

(c) Case 1a         (d) Case 1b          (e) Case 1c 

 

 

 
Figure 4.9 The mean of permeability values of the final 10 models for Case 1  
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Table 4.2 Permeability field of the final 10 models for Case 1 

Reference  10 selected reservoir models 
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Future prediction of production for 1000 days with the final models are 

analyzed for Case 1a, 1b, and 1c in Figure 4.10, 4.11, and 4.12. Figure 4.10 

shows that Case 1a results in reliable forecasts with a reduced uncertainty range. 

In Figure 4.11, an uncertain range of the final models in Case 1b covers the 

production of the reference model. However, the difference between the 

reference production curves and the average production curves of the models 

shows large uncertainty, especially in P1 and P2. Figure 4.12 shows further 

increase in the uncertainty with the final modes in Case 1c.  

 

 

 

 

 

 

 

 

 

 



 

37 

 

 
(a) Oil rates 

 

 

 
(b) Watercuts 

 

 

Figure 4.10 Production responses of the final 10 models in Case 1a 
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(a) Oil rates 

 

 
(b) Watercuts 

 

 

Figure 4.11 Production responses of the final 10 models in Case 1b 
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(a) Oil rates 

 

 
(b) Watercuts 

 

 

Figure 4.12 Production responses of the final 10 models in Case 1c 
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4.2  Case 2 

 

The proposed method is tested with another ensemble of channel reservoir 

models that have the size of 36 by 36 by 1. 401 models are generated by using 

SNESIM and geological information shown in Figure 4.13. The other 

petrophysical parameters of the models are the same as Case 1. Figure 4.14 

shows the reference model and the average permeability distribution of the 400 

models. There are 8 production wells and 8 injection wells in a waterflooding 

pattern of staggered line drive.  

The feature extraction and model selection procedure are implemented by 

utilizing production of 500 days. The bottomhole pressure limit for production 

and the water injection rate for are set to be 400 psia and 200 STB/day for 

reservoir simulation. Figure 4.15 shows the result of ranking the 400 models. 

By comparing the average permeability distribution of the ranked models, the 

connection of the channels gets weaker as the score of the models goes down.  

After fine-tuning DCGAN with the 50 selected models by utilizing the 

parameters of the pre-trained DCGAN, 50 new reservoir models are generated. 

The average permeability values of the 50 selected models and 50 generated 

models are shown in Figure 4.16. The feature extraction and model selection 

are repeated with the 100 models to organize them in a ranking manner. Top 10 

ranked models are then selected for production forecasts. 
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(a) Training image

 

  (b) Core sample data 

 

Figure 4.13 Geological information for model generation for Case 2 
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(a) Reference model 

 

(b) 400 initial models 

 

Figure 4.14 Reference model and the mean of permeability values for Case 2 
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Figure 4.15 The result of ranking models for Case 2 

High score 

 Low score 

(a) Reference 

(b) Rank 1-100 

(c) Rank 101-200 

(d) Rank 201-300 

(e) Rank 301-400 
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(a) 50 selected models 

 

 
(b) 50 generated models 

 

 
Figure 4.16 The mean of permeability values of the selected and generated 

models for Case 2  
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The final selected models by the proposed method, Case 2a, is compared 

to final models selected by 2 other methods: Case 2b and Case 2c. The model 

selection methods for Case 2b and Case 2c are identical to Case 1b and Case 

1c. Figure 4.17 represents the average permeability distribution of the final 10 

models for Case 2a, 2b, and 2c. While overall patterns of the channels are 

characterized for the 3 case, the connection between the two parallel channels 

seems to be very week in Case 2c. Furthermore, Figure 4.17 shows that this 

connection appears more vividly in Cases 2a compared to Case 2b. 

This observation can be supported by the permeability fields of the final 

models for the 3 case, in Table 4.3. In Case 2b and 2c, less than half of the 

models contain correct information of the channel patterns, whereas in Case 2a, 

the majority of the final models very similar channel patterns to the reference 

model. Using these fields, production forecasts are also compared for the 3 

cases. 

In Figure 4.18, future production responses of 1000 days are predicted for 

Case 2a. It is certain that the final 10 models in Case 2a allows to forecast the 

production reliably with reduced uncertainty range. In P2, water breakthrough 

does not occur before 500 days of production, which is the data used for the 

model selection. Nonetheless, Figure 4.18 shows that using the final models, 

the watercut behavior in P2 can be effectively predicted. 

This cannot be found in Case 2b and Case 2c. In Case 2b, Figure 4.19 

indicates that not only the uncertainty range in P2 is greater, but also there is a 

model that predicts water breakthrough in P1, which is incorrect. In Figure 4.20, 

significant increase in uncertainty of production forecasts with the final model 

in Case 2c can be found.    
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(a) reference model      (b) 400 initial models 

 

 

 
 

(c) Case 2a          (d) Case 2b         (e) Case 2c 

 

 

 
Figure 4.17 The mean of permeability values of the final 10 models for Case 2  
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Table 4.3 Permeability field of the final 10 models for Case 2 

Reference  10 selected reservoir models 
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(a) Oil rates 

 

 

 
(b) Watercuts 

 

 

Figure 4.18 Production responses of the final 10 models in Case 2a 
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(a) Oil rates 

 

 
(b) Watercuts 

 

 

Figure 4.19 Production responses of the final 10 models in Case 2b 
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(a) Oil rates 

 

 
(b) Watercuts 

 

 

Figure 4.20 Production responses of the final 10 models in Case 2c 
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4.3  Case 3 

 

The proposed method is performed with more complicated channel reservoir 

models with line drive wateringflooding. SNESIM and geological information 

shown in Figure 4.21 are utilized for generating 401 models, and the size of the 

models is 55 by 55 by 1. The petrophysical parameters of the models are the 

same as Case 1 and 2. The reference model and the average permeability 

distribution of the 400 models can be found in Figure 4.22. There are 15 

production wells and 10 injection wells in a waterflooding pattern of direct line 

drive.  

The feature extraction and model selection of the model regeneration 

schem are implemented with production of 500 days obtained by ECLIPSE. 

The production wells are operated under a constraint of 400 psia for the 

bottomhole pressure limit. The injection wells are operated under a constraint 

of 300 STB/day for the water injection rate. The result of ranking the 400 

models is analyzed in Figure 4.23. As shown in this figure, there is a tendency 

of the models with lower scores to have different connections of the channels 

compared to the reference model.  

50 new reservoir models are generated by the fine-tuned DCGAN with the 

50 selected models. Figure 4.24 represents the average permeability values of 

the 50 selected models and 50 generated models. After the feature extraction 

and model selection are repeated to rank these 100 models, top 10 ranked 

models are selected and utilized for predicting future production. 
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(a) Training image 

 

  (b) Core sample data 

 

Figure 4.21 Geological information for model generation for Case 3 
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(a) Reference model 

 

(b) 400 initial models 

 

Figure 4.22 Reference model and the mean of permeability values for Case 3 



 

54 

 

  

 

  

 

  

 

  

 

 

Figure 4.23 The result of ranking models for Case 3 

High score 

 Low score 

(a) Reference 

(b) Rank 1-100 

(c) Rank 101-200 

(d) Rank 201-300 

(e) Rank 301-400 
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(a) 50 selected models 

 

 
(b) 50 generated models 

 

 
Figure 4.24 The mean of permeability values of the selected and generated 

models for Case 3  
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Identical to Case 1 and 2, permeability fields and production forecasts of 

the final models selected by the proposed method, Case 3a, are compared to the 

results of 2 other methods: Case 3b and Case 3c. The method for these are the 

same as the previous cases. According Figure 4.25, the final models in Case 3c 

have the very different trend of the channels, compare to the reference model. 

The average permeability distribution of the final models in Case 3a has a 

correct overall patterns of the channels located in the north west region of the 

reservoir. The connections of the other channels seem to be weak. 

In Table 4.4, the permeability fields of the final models for the 3 cases can 

be found. Among the final selected models in Case 3c, none of the model has 

similar channel trends to the reference, whereas in Case 3b, there is 1 model 

that matches with the reference. Although Figure 4.25 shows that the final 

models with relatively correct channel characteristic are selected in Case 3a, 

only 2 of the models has a strong similarity in channel patterns with the 

reference, as shown in Table 4.4.  

Future production responses of 1000 days with the final models for the 3 

cases are analyzed in Figure 4.26, 4.27, and 4.28. Production data of only 6 

wells are presented in these 3 figures. The 6 production wells are the ones with 

production rates above 100 STB/day. By comparing Figure 4.27 and 4.28, the 

uncertainty range of the future production seems to be smaller when the method 

for Case 3b is applied, especially in P2 and P4. Figure 4.26 shows that there is 

reduction in the overall uncertainty in Case 3a, compared to Case 3b. However, 

the decrease in the uncertainty is insignificant. Therefore, further analysis is 

performed. 
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(a) reference model      (b) 400 initial models 

 

 

 
 

(c) Case 3a          (d) Case 3b         (e) Case 3c 

 

 

 
Figure 4.25 The mean of permeability values of the final 10 models  

for Case 3a, 3b, 3c  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

58 

 

Table 4.4 Permeability field of the final 10 models for Case 3a, 3b, 3c 

Reference  10 selected reservoir models 
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(a) Oil rates 

 

 

 
(b) Watercuts 

 

 

Figure 4.26 Production responses of the final 10 models in Case 3a 
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(a) Oil rates 

 

 
(b) Watercuts 

 

 

Figure 4.27 Production responses of the final 10 models in Case 3b 
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(a) Oil rates 

 

 
(b) Watercuts 

 

 

Figure 4.28 Production responses of the final 10 models in Case 3c 
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Having only 1 reservoir model that matches with the reference model for 

Case 3b and 2 models for Case 3a infers that there are very few models that 

have similar channel characteristics in an ensemble of the initial models. To 

understand the effectiveness of generating new reservoir models by DCGAN, 

2 additional cases are created: Case 3d and Case 3e. They are identical to Case 

3a, expect the number of new generated models. In Case 3d, 10 final models 

are selected from 50 selected and 100 generated models while in case 3e, 10 

final models are selected from 50 selects and 150 generated models.  

Figure 4.29 shows that as the number of the new generated models are 

increased, the average permeability distribution of the final models becomes 

stronger in the correct channel connections. This observation is also found in 

Table 4.5. The more reservoir models are generated by DCGAN, the more 

models that are very similar to the reference model are selected. While there 

are 2 models that match with the reference model in Case 3a, there are 3 models 

and 5 models like them in Case 3d and 3e, respectively. When generating more 

models by DCGAN, not only the number of the models that match with the 

reference increases, but also the models with greater similarity of the channel 

characteristics to the reference model are created.  

Figure 4.30 and 4.31 show the future forecasts of 1000 days for Case 3d 

and 3e. Comparing Figure 4.26 and 4.30 allows to identify the effectiveness of 

increasing the number of new generated models for reducing in uncertainty. 

The uncertainty range in the majority wells are significantly decreased in Case 

3d, compared to 3a. Figure 4.31 demonstrates further reduction in the 

uncertainty range in Case 3e, which leads to reliable future forecasts. 
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(a) reference model      (b) 400 initial models 

 

 

   
 

(c) Case 3a           (d) Case 3d          (e) Case 3e 

 

 

 
Figure 4.29 The mean of permeability values of the final 10 models  

for Case 3a, 3d, 3e  
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Table 4.5 Permeability field of the final 10 models for Case 3a, 3d, 3e 

Reference  10 selected reservoir models 

 

 

 

 

C
as

e 
3

a 

 

C
as

e 
3

d
 

 

C
as

e 
3
e 

 
 

 

 

 

 

 

 

 

 

 

 



 

65 

 

  
(a) Oil rates 

 

 

 
(b) Watercuts 

 

 

Figure 4.30 Production responses of the final 10 models in Case 3d 
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(a) Oil rates 

 

 
(b) Watercuts 

 

 

Figure 4.31 Production responses of the final 10 models in Case 3e 
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5. Conclusions 

 

This research introduces a model regeneration scheme for reliable uncertainty 

quantification of channel reservoirs. The scheme is to effectively extract 

features of channels in near-wellbore area, to select reservoir models from an 

ensemble, and to regenerate new models. In the feature extraction process, 

drainage area localization is implemented on the reservoir models to gain near-

wellbore data. A geological 2D reservoir is divided into smaller sections as 

many as the number of production wells in the reservoir. Features of the 

obtained near-wellbore data are extracted by using DCT. With coefficients of 

DCT, the models are differentiated for every near-wellbore area of the 

production wells. 

In the model selection process, K-means clustering is performed to 

classify them into clusters with the extracted information of the features. 

Based on production responses of a representative model of each cluster, a 

score is calculated and assigned to reservoir models within the cluster. By 

implementing this process for every production well, the reservoir models are 

organized in ranking by the sum of their scores in descending order. The top 

ranked reservoir models are selected,  

In the model generation process, DCGAN is trained with the selected 

models to generated reservoir models that do not previously exist. To increase 

the performance of DCGAN training, transfer learning is applied by fine-

tuning a pre-trained DCGAN. Pre-training DCGAN is performed with the all 

initial models in the ensemble.  

After the model generation process, the feature extraction and model 
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selection process are repeated with the selected and generated models. By 

applying the proposed method with the model regeneration scheme to 3 

different 2D channel reservoirs, the following conclusions are drawn.    

 

1. Utilizing information of main trends of channels in near-wellbores 

improves characterization of local channel connectivity and patterns. 

By comparing several cases in this study, it is certain that selecting 

models with near-wellbore data allows better local channel 

characterization and improves the performance of the production 

forecasts.  

 

2. Evaluating models for production wells individually allows to 

organize the models by degree of similarity to a true model. The 

model ranking result shows a vivid trend of the channel characteristic 

change depending on their ranking. While the highest ranked models 

have the most proper characteristics, its similarity decreases as the 

ranking goes down. 

 

 

3. Under the circumstance of high uncertainty in channel reservoirs, 

generating new models with selected models increases probability of 

the existence of models similar to a true model. As the number of the 

generated models increases, the characterization results are improved 

with the decreased uncertainty in the production forecasts. More 

proper models are selected as final models (Case 3). 
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In this study, the proposed method is analyzed by using the 2D channel 

reservoir models with waterflooding patterns. For channel reservoirs in which 

wells are not evenly distributed, the method can be improved with streamline 

simulation. Tracing streamlines can be able to help reasonable decision of 

drainage area for the wells. Furthermore, the proposed method can be 

developed for reliable uncertainty quantification of 3D channel reservoirs. By 

increasing the dimension of DCT, it can extract features of 3D channels. Also, 

replacing the convolution layers used in DCGAN to 3D convolution layers 

can allow to generate 3D reservoir models.    
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국문초록 

 

딥러닝 기반 모델 재생성 기법을 이용한 채널저류층의 

불확실성 평가 

 

불균질성이 높은 채널저류층에서의 생산거동은 채널의 특징에 큰 

영향을 받는다. 기존에는 생산자료를 매칭하는 역산기법을 통해 저

류층 모델을 교정하였다. 하지만 이 기법은 채널저류층에 적용할 경

우 지질학적 특징 손실과 초기모델에 큰 영향을 받는 한계가 있다. 

따라서 본 연구에서는 생산자료를 매칭하는 전통적인 역산과정 

없이 효과적으로 채널저류층의 불확실성을 평가할 수 있는 모델 재

생성 기법을 제안한다. 모델 재생성 기법은 특징추출, 모델선정, 모

델생성으로 구성되어 있다. 특징추출에서는 배수구역 지역화와 이산

코사인변환법을 적용하여 유정 인근지역의 채널의 특징을 추출한다. 

모델선정에서는 K-평균 군집법과 앙상블순위 기법으로 참조모델과 

유사한 모델들을 선정한다. 모델생성에서는 생성적 적대 신경망과 

전이학습을 통해 새로운 모델을 생성한다. 

제안방법은 특징추출과 모델선정으로 참조모델과 유사한 모델

들을 선정하고 이들을 사용하여 새로운 모델을 생성한다. 특징추출

과 모델선정을 반복하여 선정한 모델과 생성한 모델로부터 최종 모

델을 선정한고 미래 생산량을 예측하여 그 불확실성을 평가한다. 제

안방법을 세 개의 2차원 케이스에 적용하였다. 적용 결과, 제안방법

은 효과적으로 채널과 유정 인근지역의 특징을 파악할 수 있는 것

을 확인하였다. 이를 통해 참조모델과 유사한 모델들을 생성함으로

써 미래 생산량 예측성능을 향샹시킬 수 있는 것을 확인하였다.  
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주요어: 채널저류층, 불확실성 평가, 영상처리, 군집화,  

생성적 적대 신경망(GAN), 전이학습(transfer learning) 
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