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ABSTRACT

Consensus of Linear Time Invariant
Multi-agent Systems over Multilayer Network

by

Seungjoon Lee

Department of Electrical and Computer Engineering

College of Engineering

Seoul National University

February 2021

Traditionally, the consensus of multi-agent systems is often studied by assum-

ing that there is a single network consisting of a single type of interaction. Re-

cently, such an assumption is being challenged due to its limitation in representing

more complex interactions. In this thesis, we consider the case where each agent

is interacting using multiple, different types of output information. In order to

model such interactions, the concept of a multilayer graph is employed. A novel

necessary and sufficient condition is proposed for the existence of a dynamic cou-

pling law to achieve state consensus for a multi-agent system over an undirected

network. Specifically, the proposed condition couples graph theoretic conditions

with system theoretic conditions and highlights the interplay between the commu-

nication network and information exchange between agents. Furthermore, based

on the proposed condition, an observer-based dynamic controller is designed to

achieve state consensus over an undirected network.
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The main results are then extended to output consensus problem over a di-

rected network. Unfortunately, the proposed conditions are no longer necessary

and sufficient and the challenge is illustrated through various examples. Never-

theless, additional assumptions are made on the dynamics of the agent to recover

the equivalence for output consensus over the undirected multilayer network. A

sufficient condition is also given for output consensus problem over the directed

network and the corresponding controller design is presented.

The effectiveness of the work is shown by a series of applications of the main

results. First, the distributed state estimation problem is formulated into a con-

sensus problem over a multilayer network. The proposed approach allowed us

to develop a novel design for a distributed observer that communicates less in-

formation with its neighbors compared to existing designs. Secondly, the main

results are applied to the formation control problem. Specifically, we consider

the case when the desired formation is given by a combination of relative po-

sitional constraint and bearing constraint. Using the proposed approach, a dy-

namic controller is designed to achieve the desired formation while organically

scaling the overall size of the formation. Finally, a multilayer network is also

applied to the distributed optimization problem. Through multilayer networks,

a communication-efficient algorithm is proposed which only communicates a part

of the decision vector at each time instant.

Keywords: consensus, linear homogeneous multi-agent systems, multilayer net-

work, formation control, distributed estimation, distributed optimization

Student Number: 2014–22571
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Ñ3 = {5, 6}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Example of a multilayer graph G and proj (G). . . . . . . . . . . . . 24

2.6 Example of functions satisfying PL inequality and strong convexity. 28

4.1 Relationships between various conditions for output consensus prob-

lem over directed graph and corresponding counterexamples. . . . 73

4.2 Relation for directed multilayer network. . . . . . . . . . . . . . . . 87

4.3 Relation for undirected multilayer network. . . . . . . . . . . . . . 88

5.1 An example of the multilayer graph for the distributed estimation

problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Graph structure used for the simulation. Each mode is switched

every 2 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3 Simulation result for distributed state estimation. Dashed line de-

note the state of the plant and solid lines denote the estimate of

each agent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

vii



5.4 Plot of estimation error
∑4

i=2 |ρ̂i(t)− ρ(t)|. . . . . . . . . . . . . . 113

6.1 Illustration of relative position and Pb∗ij (pj − pi). . . . . . . . . . . 116

6.2 Structure of the desired formation and corresponding multilayer

graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3 Trajectories of agents forming the desired formation. . . . . . . . . 122

6.4 Plot of relative position error
∑

(i,j)∈Ep |(pj−pi)−p∗ji|2 and bearing

error
∑

(i,j)∈Eb |Pb∗ij (pi − pj)|2. . . . . . . . . . . . . . . . . . . . . . 122

6.5 Desired formation and constraints for 3-D formation. Solid lines

denote the relative position constraint and dashed lines denote the

bearing constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.6 Corresponding multilayer graph for 3-D formation problem. Over-

all constraints can be represented using 5 layers. . . . . . . . . . . 125

6.7 Simulation result for formation control in 3-D. Figure shows agents

shrinks and expands scale of the formation. . . . . . . . . . . . . . 126

7.1 Graph of the values of the Lyapunov function V (t). Red marks

the value of V given by (7.3.22) and black circle denotes the value

of V (t) given by (7.3.23). Blue dash dotted line gives the upper

bound of the V (t) over all time. . . . . . . . . . . . . . . . . . . . . 157

7.2 Simulation result for PI algorithm with varying gains. . . . . . . . 171

7.3 Performance of the algorithms with various parameters when κ = 750.174

A.1 Multilayer graphs for different formulations. . . . . . . . . . . . . . 186

viii



A.2 Graphical representation of the communication structure for the

system (A.2.6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

List of Tables

4.1 Summary of controller designs. . . . . . . . . . . . . . . . . . . . . 86

7.1 Table comparing various distributed algorithms and the required

assumptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

ix



x



Symbols and Acronyms

R field of real numbers

C field of complex numbers

N0 set of natural numbers including 0

Rn Euclidean space of dimension n

Rm×n space of m× n matrices with real entries

R>0 set of positive real numbers

R≥0 set of non-negative real numbers

Re (s) real part of complex number s

Im (s) imaginary part of complex number s

1n n× 1 column vector of all ones

In n× n identity matrix

0n n× 1 column vector having all elements equal to 0

0m×n m× n matrix having all elements equal to 0

A−1 inverse of the nonsingular matrix A

A⊤ transpose of the matrix A

diag(A1, . . . , Ak) block diagonal matrix whose i-th block diagonal is Ai

[A1; · · · ;AN ] stack of matrices Ai

A⊗B Kronecker product of matrices A and B

xi



∑n
i=m xi summation of the sequence xi; i.e., xm + xm+1 + · · ·+ xn if

m < n, xm if m = n, and 0 if m > n

[a, b] interval of real numbers a and b; i.e., {x ∈ R : a ≤ x ≤ b}

|X| cardinal number of the set X

max{a1, . . . , an} maximum value among a1, a2, . . . , an

min{a1, . . . , an} minimum value among a1, a2, . . . , an

|x| Euclidean norm of the vector x ∈ Rn

|x|∞ maximum norm of the vector x ∈ Rn

|A| induced norm of the matrix A ∈ Rm×n

|A|∞ induced maximum norm of the matrix A ∈ Rm×n

imA image space of the matrix A ∈ Rm×n

kerA kernel of the matrix A ∈ Rm×n

dimX dimension of vector space X

λmin(A) the eigenvalue of A with the minimum real value

λmax(A) the eigenvalue of A with the maximum real value

σmin(A) the minimum singular value of A

σmax(A) the maximum singular value of A

Xλ(A) generalized eigenspace of matrix A corresponding to eigen-

value λ
X u(A) unstable generalized eigenspace of matrix A

X s(A) stable generalized eigenspace of matrix A

A > 0 (A ≥ 0) symmetric matrix A is positive definite (positive semidefi-

nite)

|x|Ξ distance from a point x to a set Ξ; i.e., infy∈Ξ ∥x− y∥

f : A→ B f is a function on the set A into the set B

∇f gradient of function f

xii



∇2f Hessian of function f

Ci i-th times continuously differentiable

⌊x⌋ floor of a real number x

x mod y remainder of x divided by y

:= defined as

⇒ implies

∀ for all

♢ end of theorems, lemmas, propositions, assumptions, re-

marks, and so on
□ end of proof

• A square matrix A is said to be Hurwitz (matrix) if every eigenvalue λ of A

has strictly negative real parts, i.e., Re (λ) < 0 or equivalently λmax(A) < 0.

• For any state variable x(t), its initial condition will be denoted by x(0).

• For simplicity, we often use In, 0n, and 0m×n without subscripts if their

dimensions are obvious from the context.

Acronyms

ARE Algebraic Riccati equation

DEP Distributed state estimation problem

LTI Linear time-invariant

MAS Multi-agent system

xiii





Chapter 1

Introduction

1.1 Research Background

Consensus and synchronization of multi-agent systems have been studied ex-

tensively for past decades and found a wide range of applications. In particu-

lar, application of consensus includes formation control (e.g., [OPA15, ZZ17]),

distributed state estimation (e.g., [KLS20, MS18]) and distributed optimization

problem (e.g., [NO09, LS19]) to name a few. (More details can be found in

[RBA07, OSM04, Wie10] and references therein.) As consensus of multi-agent

systems has been essential in many of the applications, various studies are done

in the literature. Most of the results developed for the consensus of multi-agent

systems can be categorized based on the following characteristics:

1. Model: Complexity of the model for each agent. Is it homogeneous or

heterogeneous? Is it linear or nonlinear? Is it continuous or discrete?

2. Communication Network: Structure of the communication network. Is

it directed or undirected? Is it connected or disconnected? Does communi-

cation have a delay or only happens at discrete times?

3. Information: Details on how and what information is exchanged. Do

agents communicate absolute or relative information? Is it the output or

state information of each agent? Is there any additional information com-

municated among agents?

1



2 Chap. 1. Introduction

Before moving further into the details of each topic and related literature, let

us briefly discuss and emphasize a particularly important aspect of the consensus

problem for the multi-agent systems (which is not only limited to the consensus

problem over multilayer network) that is assumed throughout this dissertation.

Throughout this dissertation, we suppose that only the relative output informa-

tion (as opposed to absolute output information) is available to each agent for

control. This is motivated by the physical limitations in practical scenarios. For

instance, consider the consensus problem of drones. Then, it is easy to measure

and obtain a relative position between drones but much harder to obtain an ab-

solute position of itself. Hence, there is a need for a control algorithm which

only utilizes the relative information (which is easily available) to achieve its goal.

Due to this reason, the majority of the literature on the consensus problem of

multi-agent systems only utilize the relative output information, which we will

follow as well. If the absolute output information is available to each agent, then

the consensus problem becomes less challenging as the problem becomes how each

agent control itself, which is similar to the classical problems in the control theory.

Additionally, the control using the absolute information is also less challenging in

the sense that the same technique developed for the consensus using relative infor-

mation can be used directly since relative information can be easily obtained from

absolute information. Nonetheless, there are few works which use absolute infor-

mation for consensus problem and we refer to works such as [KKB+16, YSSG11]

for more details.

Now, a brief overview of the various studies done for the consensus is given.

As the consensus problem of multi-agent systems received a considerable amount

of attention from various research communities, numerous aspects of the consen-

sus problem have been studied. Among those, the consensus of linear, homoge-

neous agents is a particularly well-studied problem due to rich results from lin-

ear system theory. As mentioned above, the result for the linear homogeneous

agents can be further classified based on communication networks and informa-

tion. Early studies for the consensus problem were done for agents of integrator

(e.g., [RB05]) or double-integrators (e.g., [RB08]), while the early survey can be

found in [RBA05]. Then the consensus problem is solved for more general lin-
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ear systems. For instance, the LQR-based approach is used in [Tun08] to solve

consensus problems using static diffusive state coupling over undirected networks

and LMI-based approach is proposed in [WKA11] for directed graphs. Dynamic

controllers are studied in [SS09] for switching networks and observer-based con-

trollers are proposed in [ZLD11, WLH09]. The aforementioned observer-based

controllers are often required to communicate additional information (on top of

relative output information) such as the state of the dynamic controller (e.g., the

estimate of observers). This challenge has been first resolved by [SSB09] using

the low-gain based controllers which do not require any additional information

other than the relative output information. Improvements to the low-gain based

controllers are made in the following works such as [WSS+13] which applied a

similar approach under communication delay. Finally, the aforementioned works

can be viewed as finding a sufficient condition (and the corresponding controller

design) to achieve consensus. Conversely, studies are also done to find a necessary

condition for the existence of such controllers. For instance, necessary conditions

for the continuous-time multi-agent system are discussed in [MZ10] and a similar

result is also studied in the discrete-time domain [GML12, YX11].

The consensus problem is also extensively studied for systems with more com-

plex models such as nonlinear systems. However, the details are not discussed as a

nonlinear system is not the main focus of the dissertation. For the interested read-

ers, refer to works such as [Kim16, Lee19, PL17, WSA11, MBA15, KSS11, LYS18]

and references therein.

The majority of the studies mentioned so far were focused on models and com-

munication network aspect of the multi-agent system. Consequently, less work in-

vestigated more complex structure for information. In particular, previous works

often assume agents are interacting with only a single type of output informa-

tion over a single network. However, this paradigm has been challenged in recent

years due to the limitation of a single network to represent more complex types of

interactions and relationships. For example, consider the multi-agent system of

cyber-physical systems where agents may have physical interaction as well as cy-

ber interaction (e.g., wireless communication) with other agents [WCL17]. Most

importantly, since physical and cyber interactions have different characteristics,
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each agent may have different neighbors for each type of interaction. For instance,

an agent may communicate with other agents despite having no direct physical

interactions or an agent may not communicate with other agents, yet still have

physical interactions.

In light of this, multilayer network1, a more general and complex model of

the network is studied in various fields [BBC+14, DDSRC+13]. A multilayer

network is a collection of multiple layers of graphs, each sharing the same node

set but with a different edge set (with formal definition to be given in the following

chapters). Specifically, each layer of the graph is used to represent a single type

of interaction. The possibility of multiple layers of graphs and different edge sets

for each layer allows more complex interactions among agents.

Additional complexity provided by the multilayer network is shown to be es-

sential in various fields especially when studying and modeling the dynamical sys-

tems [DDGPA16]. For example, in opinion dynamics, people may interact with

others in various methods such as physical contact or through online services

[SLT10, ZSL17]. In biological systems, neurons have both electrical coupling and

chemical coupling, each having different characteristic [APD11]. Schooling of fish

also has multiple layers of interaction including vision and lateral line with dif-

ferent neighbors for each interaction [PP80]. In the study of epidemic spreading,

authors of [GGA13, ZWL+14] employed the multilayer network to model various

interactions including transmission among different communities and awareness

of the disease. The transportation system is a classic example that can be rep-

resented using the multilayer graph, with each layer modeling different means of

transportation such as automobile, train, or plane [CGGZ+13]. The electrical

power network can also be described as a consensus problem with both physical

couplings by transmission lines and cyber coupling through wireless communi-

cation [WCL17, MDP17]. In all of the examples mentioned so far, each agent

interacts with others through multiple types of interaction. Therefore, it is chal-

lenging to model and analyze the dynamics of such a system using conventional

1The exact definition of the multilayer network varies from work to work and other vocabu-
laries such as multiplex network is also used to denote the similar structure (e.g., see [BBC+14]
for details). In this dissertation, the term multilayer network is used for consistency, and its
exact definition is presented in Chapter 2
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4 3 2 1

(a) Communication network. Solid lines denote relative position measure-
ment and dashed lines denote relative velocity measurement.

Velocity

Position

1234

1234

(b) Multilayer graph representing the communication network.

Figure 1.1: Example of multilayer network for the platooning problem. Ar-
rows denote the flow of information.

approaches. However, the multilayer network can be used to conveniently model

the aforementioned examples with each layer representing a specific type of inter-

action.

For a more concrete example, the vehicle platooning problem is given to mo-

tivate the usefulness of the multilayer graphs. Suppose that the dynamics of each

vehicle is described by

ẋi = vi, v̇i = ui, ∀i = 1, . . . , 4,

where xi is the position, vi is the velocity and ui is the acceleration of the vehicle.

The goal of the platooning problem is to control the vehicles to maintain the

distance d∗ > 0 and to travel at the same velocity, i.e., xi(t)−xi+1(t) → d∗ for all

i = 1, . . . , 3 and vj(t)− vi(t) → 0 for all i, j ∈ {1, 2, 3, 4} as t→ ∞. Suppose that

each vehicle has different measurement capabilities. Specifically, vehicles may

either measure relative position or relative velocity with its neighbors as shown

in Fig. 1.1(a).

For instance, vehicle 2 has a sensor at the back and vehicle 4 has a sensor at

the front to measure the relative distance to vehicle 3 (note that the arrows in

Fig. 1.1 represent the flow of information). On the other hand, vehicles 2 and 3

receive velocity of vehicle 1 via wireless communication while vehicle 2 is capable
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of transmitting its velocity back to the vehicle 1. This allows vehicles to obtain

relative velocity. Then, the vehicle platooning problem can be formulated into

a consensus problem with multiple different interactions, where the interactions

can be represented as shown in Fig. 1.1(b). Let d∗i = (i − 1) · d∗ be the desired

distance from vehicle 1 and let ei := xi+ d
∗
i for i = 1, . . . , 4. Then, it follows that

ėi = vi, v̇i = ui, ∀i = 1, . . . , 4.

Hence, it is easily verified that achieving consensus of the state [ei(t) vi(t)]
⊤

implies xi(t) − xi+1(t) → d∗ for all i = 1, . . . , 3 and vi(t) − vj(t) → 0 for all

1 ≤ i, j ≤ 4.

Despite the flexibility of the multilayer graphs for modeling the multi-agent

systems, there are only a few works studying such a system to the best of the au-

thor’s knowledge. For example, distributed proportional-integral-derivative (PID)

control is studied in [LDB16] where proportional and integral actions are repre-

sented as separate layers. However, the difference between the layer is only on the

mean to compute the action (e.g., proportional versus integral) and the same out-

put information is used on each layer. In [HCH+17, Sor12], a consensus problem

over the multilayer network is studied where the diffusive coupling is used with

different output on each layer and [FDLR18] studied a similar problem for double

integrators. However, these works often consider a multilayer network with 2 lay-

ers and assume simultaneous diagonalization (or triangularization) of Laplacian

matrices of each layer, which is a restrictive assumption. Authors of [WCL17]

study consensus problem for two layers with non-commuting Laplacian matrices,

but full state information is used and assumed connectivity of the corresponding

layer. Master stability function is employed in [GGGBB16] to study nonlinear

systems, but only numerical results are obtained. Moreover, most of the works

mentioned only provide sufficient conditions for achieving consensus.

More recent works done by the control community include [PLSJ19] which

studies the observability of dynamical systems with a multilayer structure and

[ZSL17] which applied multilayer network to linear threshold model. However,

these works studied the structural properties of the system and not the consensus



1.2. Contributions and Outline of Dissertation 7

problem in particular.

The line of work that is perhaps closest to the results of the dissertation is the

works such as [Tun16, Tun17, Tun19, Tun20, TNLA18]. The authors proposed a

concept of matrix weighted Laplacian and analyzed various properties relating to

detectability while also proposing controllers to achieve consensus (e.g., dynamic

controller in [Tun16] and static controllers in [Tun19, Tun20, TNLA18]). In fact,

it can be shown that the multilayer framework proposed in the dissertation is

equivalent to the framework using the matrix weighted Laplacian as in [Tun17]

(e.g., see Appendix A.2 more discussion). However, the work of [Tun16, Tun17,

Tun19, Tun20, TNLA18] are limited to undirected and state consensus problem.

Additionally, it only provides a sufficient condition to design a dynamic controller

in the discrete-time domain while using a continuous-time operation at each time

step. Hence, it is not known if the similar design can be implemented in the

continuous-time domain. The main contribution of the dissertation compared to

these works include proposing a sufficient condition and designing a controller

purely in the continuous-time domain. Moreover, we also consider the multilayer

network for more complex problems such as output consensus, directed graphs,

or switching networks. Finally, various nontrivial applications of the multilayer

network are also presented using the proposed approach.

1.2 Contributions and Outline of Dissertation

In this section, an outline of the dissertation is presented and the main con-

tributions are summarized.

Chapter 2. Preliminaries on Graph Theory and Convex Optimization

In this chapter, we review the basics of algebraic graph theory and convex

optimization. The concept of multilayer graphs is also presented and related

concepts are developed. The main contributions of this chapter are:

• We formerly define multilayer graph and present related concepts from al-

gebraic graph theoretical.
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• Preliminary results from algebraic graph theory and convex optimization

are summarized.

Chapter 3. Consensus Problem over the Multilayer Network

In this chapter, we formulate the consensus problem over a multilayer net-

work, where each agent exchanges various different output information over dif-

ferent communication network. We start by first addressing the state consensus

problem over an undirected multilayer network. Using an intuitive understanding

of the consensus problem, a novel necessary condition is proposed. Specifically,

the proposed condition involves both graph theoretical concepts such as connec-

tivity along with system theoretical concepts such as detectability. It is also illus-

trated through simple examples that such a combination is necessary to achieve

consensus over a multilayer network.

Based on the necessary condition, a novel dynamic controller is proposed to

achieve consensus. In particular, the proposed design is motivated by observer-

based approaches for the single-layer network, but with an additional component

to overcome challenges faced in the multilayer network. From the proposed design,

it is also established that the proposed condition is necessary and sufficient for

state consensus over an undirected network. Contents of this chapter are mainly

based on [LS20d]. The main contributions can be listed as below:

• We give a novel necessary and sufficient condition for state consensus prob-

lem over multilayer network.

• Various equivalent conditions for the proposed necessary condition are made

and interpretations are given relating to the traditional concept of de-

tectability and connectedness.

• An observer-based controller is proposed to achieve the state consensus over

an undirected multilayer network.

Chapter 4. Extension to Output Consensus over Directed Network

In this chapter, the problem of consensus over the multilayer network is ex-

tended to output consensus over a directed network. Unfortunately, the proposed
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conditions from Chapter 3 is no longer necessary and sufficient and challenges are

illustrated through various examples (and counterexamples). Nonetheless, addi-

tional assumptions are made to recover equivalence for output consensus problem

over the undirected network and sufficient condition is given for output consensus

problem over the directed network.

• Results developed for state consensus over undirected multilayer network are

extended to output consensus problem over directed multilayer network.

• Counterexamples are given to illustrate challenges for finding necessary and

sufficient conditions.

• Additional assumptions are made which recover equivalence for output con-

sensus problem over the undirected network.

• A sufficient condition for output consensus problem over the directed net-

work is proposed and an intuitive explanation is given.

Chapter 5. Application to the Distributed State Estimation Problem

In this chapter, we apply the main results developed to the distributed state

estimation problem. The distributed state estimation problem is where a number

of agents wishes to estimate the state of the plant only using local measurement

and communication with neighbor agents. It is supposed that no single agent may

recover the state of the plant by itself and hence communication with neighboring

agents is necessary.

We show that the distributed state estimation problem can be formulated

into a consensus problem over a multilayer network. Consequently, the proposed

necessary and sufficient conditions apply. In particular, a novel design is pro-

posed for observers that communicate less information compared to existing de-

signs. Furthermore, results are extended to switching networks such that the

communication among observers as well as local measurement may be exposed to

communication losses. Contents of this chapter are based on [LS20e]. The main

contributions of this chapter are:



10 Chap. 1. Introduction

• We formulate the distributed state estimation problem into the consensus

problem over a multilayer network.

• A novel design for the observer is proposed for a marginally stable plant.

• It is shown that the proposed design exchanges less communication com-

pared with existing designs and in fact, exchanges the minimum amount of

information.

• Analysis is extended to show that the proposed distributed observer design

achieves state estimation under the switching network.

Chapter 6. Application to the Formation Control Problem

In this chapter, we present the application of consensus over a multilayer net-

work to the formation control problem. Specifically, we consider the problem

where the desired formation is given by a combination of relative positional con-

straints and bearing constraints. Similar to the previous chapter, it is shown that

the formation control problem can be formulated into a consensus problem over

a multilayer network. Consequently, a dynamic controller is designed to achieve

the desired formation. The efficacy of the proposed approach is shown by easily

scaling the overall size of the formation in a distributed manner. Contents of this

chapter are discussed in [LS20d]. The main contribution can be listed as follows:

• We formulate the formation control problem into a consensus problem over

a multilayer network. Specifically, we consider the scenario where the con-

straints are given both by relative position and bearing.

• Dynamic controller is designed to achieve the desired formation.

Chapter 7. Application to the Distributed Optimization Problem

In this chapter, we present application of the multilayer network to the dis-

tributed optimization problem. Traditional consensus algorithms from single-layer

networks are recently applied to solve the distributed optimization problem. Con-

sequently, theories developed for the consensus over the multilayer network can

be similarly applied to the distributed optimization problem. In particular, by
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considering the switching multilayer network, communication-efficient algorithms

are developed which only communicate part of the decision variable at each time

instant. This chapter also contains the analysis and construction of continuous-

time distributed algorithms using the blended dynamics approach motivated by

[LS20b]. The contents of this chapter are based on [LS20c]. The main contribu-

tions of this chapter are:

• We apply the switching multilayer networks to the distributed optimization

algorithm to propose a communication-efficient algorithm.

• A general tool is proposed to achieve asymptotic consensus of heterogeneous

multi-agent systems.

• The proposed approach is used to analyze and construct novel algorithms

which combine consensus algorithm with accelerated methods such as dis-

tributed heavy-ball method.





Chapter 2

Preliminaries on Graph Theory and
Convex Optimization

This chapter provides a brief introduction to graph theory and convex optimiza-

tion theory used throughout the dissertation.

2.1 Graph Theory and Consensus Problem

For the modeling of the interactions between multi-agent systems, graph the-

ory is used extensively. In this section, graph theory and relevant definitions are

summarized. For more details, refer to textbooks such as [GR01].

2.1.1 Basic Definitions

Definition 2.1.1. A time-varying graph is a tripleG(t) = (N , E(t),A(t)) consist-

ing of a nonempty finite set of nodes N = {1, . . . , N}, an edge set of ordered pairs

of nodes E(t) ⊆ N×N , and a weighted adjacency matrix A(t) = [αij(t)] ∈ RN×N
≥0 ,

where t ∈ R represents time, satisfying the following properties:

1. The graph contains no self-loops, i.e., (i, i) ̸∈ E(t) and αii(t) = 0 for all

t ∈ R and i ∈ N .

2. Each element of the weighted adjacency matrix αij : R → R≥0 are non-

negative, piecewise continuous, and bounded functions of time.

13
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i j

Figure 2.1: Node i and j with the edge (j, i).

3. An edge (j, i) ∈ E(t) at time t if and only if αij(t) > ω for some fixed

threshold ω > 0 and αij(t) = 0 otherwise. ♢

An edge (j, i) ∈ E is represented by an arrow tailed at the node j and headed

towards the node i and it is related with the adjacency matrix A(t) by the rule

that αij(t) > ω if and only if (j, i) ∈ E(t) and αij(t) = 0 otherwise. The edge

(j, i) ∈ E(t) indicates that information of agent j is passed to agent i at time

t, which is shown in Fig. 2.1. From the definition of time-varying graphs, the

following special cases can be derived.

Definition 2.1.2. We define the following special cases.

1. A graph G(t) is fixed (or time-invariant) if it does not change over time t.

In this case, one can simply write G = (N , E ,A).

2. A graph G(t) is undirected if αij(t) = αji(t) for all t ≥ 0 and i, j ∈ N .

3. A graph G(t) is unweighted if αij(t) ∈ {0, 1} for all t ≥ 0 and i, j ∈ N . In

this case, one can simply write G = (N , E(t)). ♢

For each definition, a graph that is not fixed, not undirected, or not unweighted

is defined as time-varying, directed, and weighted, respectively. Note that each of

the special case is independent of each other, e.g., a graph can be time-invariant,

undirected, and weighted all at once.

2.1.2 Connectedness of the Graph

One of the most important properties of the graph is its connectedness. Recall

that the flow of the information is represented by the graph. Hence, it is intuitively

clear that information must propagate throughout edges and reach all agents in

order to reach consensus. The concept of the connectedness of a graph and related

concepts are defined formally as follows.
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Definition 2.1.3. Consider a time-varying graph G(t) = (N , E(t),A(t)) and

some fixed time t.

1. A sequence of edges (v1, v2), . . . , (vl, vl+1) is a directed path if (vj , vj+1) ∈
E(t), and a weak path if (vj , vj+1) ∈ E(t) or (vj+1, vj) ∈ E(t) for all j =

1, . . . , l.

2. In-neighbors of node i is a set defined as N in
i (t) := {j ∈ N | (j, i) ∈ E(t)}

and out-neighbors of node i is a set defined as N out
i (t) := {j ∈ N | (i, j) ∈

E(t)}.

3. In-degree and out-degree of node i ∈ N is defined as dini (t) := |N in
i (t)| and

douti := |N out
i (t)|.

4. Graph is strongly connected (weakly connected) if any two distinct nodes can

be joined by a directed path (weak path) [GR01].

5. Graph contains a rooted spanning tree if there exists a node i ∈ N denoted

as the root such that there exists a path from node i to node j for all

j ∈ N\{i}. ♢

For undirected graphs, the graph is denoted simply as connected (at time t) if

there exists a path1 between any two nodes i ̸= j ∈ N . Also, we drop dependence

of time t if the graph is time-invariant.

Concepts of the connectedness introduced in Definition 2.1.3 deal with con-

nectivity at a specific time t. However, connectedness can be also defined while

considering the evolution of the graph over time. For this, define T -averaged ad-

jacency matrix as

ĀT (t) = [ᾱij(t)] :=
1

T

∫ t+T

t
A(τ)dτ,

where T > 0 is a given time horizon. Similarly, define ĒT (t) such that (j, i) ∈ ĒT (t)
if and only if ᾱij(t) > ω. Then the graph ḠT (t) := (N , ĒT (t), ĀT (t)) can be

1Notice that for undirected graphs, directed and weak path is equivalent and is simply denoted
as path.
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1 2

34

(a) Strongly connected graph

1 2

34

(b) Having a rooted spanning tree with
node 1 being the only root

1 2

34

(c) Weakly connected graph

1 2

34

(d) Connected graph

Figure 2.2: Examples of various time-invariant graphs and the corresponding
connectedness.

defined as the union graph of intervals of length T . Then the following definition

is proposed in [Mor04, Lin06].

Definition 2.1.4. A time-varying graph G(t) is uniformly connected (strongly

connected, weakly connected, contains a rooted spanning tree) if there exists T > 0

such that ḠT (t) is connected (strongly connected, weakly connected, contains a

rooted spanning tree) for all time t, respectively. ♢

Uniform connectedness in Definition 2.1.4 extends the concept of connectedness

to time-varying graphs.

Examples of the various concepts of connected graphs for time-invariant graphs

are shown in Fig. 2.2 and time-varying graphs are shown in Fig. 2.3. We would

like to remark that the concept of uniform connectedness is weaker than the con-

cept of connectedness. In particular, uniformly connected graphs may not be

connected at any time instance t. For example, consider the graph given by Fig.

2.3(a). At any time instance, only two edges are present in the graph, e.g., only

the solid arrows or only the dashed arrows. Therefore, the graph is not strongly
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1 2

34

(a) Uniformly strongly connected graph

1 2

34

(b) Having a rooted spanning tree uni-
formly with node 1 being the root

1 2

34

(c) Uniformly weakly connected graph

1 2

34

(d) Uniformly connected graph

Figure 2.3: Examples of various time-varying graphs and the corresponding
uniform connectedness with T = 2. An edge (j, i) denoted as
solid lines are the ones with αij(t) = 1 for t mod 2 ∈ [0, 1) and
edge (j, i) denoted with dashed lines are the ones with αij(t) = 1
for t mod 2 ∈ [1, 2).

connected for any time instance. However, with T = 2, it can be checked that the

union graph ḠT (t) is time-invariant and has the same structure as the graph in

Fig. 2.2(a). Since ḠT (t) is a time-invariant graph that is strongly connected, G(t)

is uniformly strongly connected despite not being connected at any time instance.

2.1.3 Laplacian Matrix and Its Properties

Given a time-invariant graph G, define the Laplacian matrix of the graph G

as follows.

Definition 2.1.5. Laplacian matrix L ∈ RN×N of a graph G is defined as L :=

Din − A. ♢

The eigenvalues of the Laplacian matrix have a special property related to the

structure of the graph. First, it is well-known that eigenvalues have positive real
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parts as stated below.

Lemma 2.1.1. Eigenvalues of the Laplacian matrix L lie on closed right half

plane, i.e., Re (λi(L)) ≥ 0 for all i = 1, . . . , N . ♢

Proof. Proof follows directly from applying Geršgorin disc theorem [RAH19, Thm.

6.1.1]. □

The locations of the eigenvalues are characterized in Lemma 2.1.1. In addition

to this, the following property connecting the algebraic property of the Laplacian

matrix with the connectivity of the graph is well-known, whose proof can be found

in, for instance, at [RBM04].

Lemma 2.1.2. The graph G contains a rooted spanning tree if and only if

Re (λ2(L)) > 0. ♢

For the undirected graphs, λ2(L) is known as the algebraic connectivity (or

also as the Fiedler eigenvalue) of the graph [Fie73]. It characterizes how well the

graph is connected and it is related to other concepts of connectivity such as the

diameter of the graph [Moh91]2. In particular, it can be shown (for instance by

using Weyl’s inequality) that algebraic connectivity is a non-decreasing function

of weights or the addition of edges, i.e., more edges in the graph imply larger

algebraic connectivity. This does not necessarily hold for directed graphs and

more discussion can be found in [Wie10, Ch. 2].

In order to introduce the main technical lemma, let us first define the concept

of unweighted induced subgraphs, whose definition is taken from [Wie10].

Definition 2.1.6. Given a graph G(t) = (N , E ,A(t)), consider a subset Ñ ⊆ N
of the nodes of G(t). Then the graph G̃(t) = (Ñ , Ẽ) is the induced graph of G(t)

by Ñ where Ẽ(t) := {(v, w) ∈ E(t) | v, w ∈ Ñ}. ♢

The induced graph G̃(t) can be simply obtained by removing all the nodes in

N\Ñ along with edges starting or ending at the removed nodes. With induced

subgraphs, we can find connected component of a graph as follows.
2Specifically, it is shown in [Moh91, Thm 4.2] that λ2(L) ≥ 4/(N · diam(L)), where N is the

number of nodes in a graph and diag(L) is the diameter.
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1 2 3

4 5 6

Figure 2.4: An example of a graph. Connected components of the graph are
given by subgraphs induced by Ñ1 = {1, 2, 4}, Ñ2 = {3}, and
Ñ3 = {5, 6}.

Definition 2.1.7. Consider a time-invariant and undirected graph G. Then a

connected component of the graph G is an induced subgraph G̃ = (Ñ , Ẽ) which is

maximal, subject to being connected. That is, G̃ is connected and the unweighted

graph induced by any set Ñ ⊆ N̂ ⊆ N is connected if and only if N̂ = Ñ . ♢

From the definition of a connected component, a graph G can always be de-

composed as a set of connected components whose node sets are distinct and hav-

ing no edges between any two connected components. An example of connected

components of a graph is shown in Fig. 2.4. It is also easy to show that if a

graph is connected, then it only has a single connected component. Finally, a

well known result relating the algebraic property of the Laplacian matrix with

the connectivity is given below [GR01, Lem. 13.1.1].

Lemma 2.1.3. Let L ∈ RN×N be a Laplacian matrix for an undirected graph G

with c connected components. Then, it holds that rank(L) = N − c. ♢

From Lemma 2.1.3, it follows that the kernel of the Laplacian matrix has

a dimension of c, i.e., the dimension of the kernel characterize the number of

connected components of the graph. Using this fact, a useful transformation can

be found, which extends the result of [KYS+16].

Theorem 2.1.4. Let L ∈ RN×N be a Laplacian matrix of an undirected graph

with c ≥ 1 connected components G′
i = (N ′

i , E ′
i). Then, there exists a nonsingular

matrix W ∈ RN×N such that

WLW−1 =

[
0c×c 0

0 Λ

]
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where Λ = diag(λc+1(L), . . . , λN (L)) ∈ R(N−c)×(N−c). In particular, the matrices

W and W−1 can be written as

W =

[
v⊤

R⊤

]
, W−1 =

[
p R

]
,

where v, p ∈ RN×c are defined as

p = [pij ] :=

1 if i ∈ N ′
j

0 if i ̸∈ N ′
j

, v := p ·


1

|N ′
1|

. . .
1

|N ′
c|


and R ∈ RN×(N−c) are real matrix with following properties:

1. R⊤R = IN−c and |R| = 1

2. R⊤p = 0, v⊤R = 0

3. R⊤L = ΛR⊤, LR = RΛ

4. RR⊤ = IN − pv⊤. ♢

Proof. The proof extends the argument of [Kim16, Thm. 2.2.4]. Using the Schur

decomposition and the fact that L is symmetric, there exists an orthonormal

matrix U ∈ RN×N such that

L = U

[
0c×c

Λ

]
U⊤.

Without loss of generality, first c rows of U can be written as
1√
|N ′

1|
. . .

1√
|N ′
c|

 · p⊤
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such that it spans kerL. Define the matrix W as

W :=



1√
|N ′

1|
. . .

1√
|N ′
c|

IN−c

U.

Then it follows that

W =

[
v⊤

R⊤

]
, W−1 = U⊤ ·


√

|N ′
1|

. . . √
|N ′

c|
IN−c

 =
[
p R

]
,

where R is a real matrix of the size N × (N − c). Since U is unitary, it is easy to

verify that the rest of the properties hold. □

For the connected graphs, we only have a single connected component. Hence,

it follows that

W =

[
1
N 1⊤N

R⊤

]
, W−1 =

[
1N R

]
,

which is often used for the analysis.

Although the Laplacian matrix is the most common matrix used for the anal-

ysis of a multi-agent system, its decomposition using the concept of incidence

matrix is also useful. For this, let G = (N , E ,A) be an undirected graph where

the edge set is labeled3 as E = {e1, . . . , eM} with M := |E|. Then the incidence

matrix is defined as follows (e.g., see [KP17, GR01] ).

Definition 2.1.8. Incidence matrix B = [big] ∈ RN×M of a graph G = (N , E ,A)

3Since we are only considering the undirected graphs, we only count the edge (i, j) with
i > j and do not count (j, i) with i ≤ j. This coincides with the notation typically used in the
literature.
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is defined by

big =


−√

αij , if eg = (i, j),

√
αij , if eg = (j, i),

0 otherwise.

Using the incidence matrix, the Laplacian matrix can be decomposed as stated

below [GR01, Lemma 8.3.2].

Proposition 2.1.5. Suppose G is an undirected graph. Then, it holds that

L = BB⊤. ♢

Proposition 2.1.5 states that for undirected graphs, the Laplacian matrix can

be decomposed into the product of incidence matrix B and its transpose. This

property is useful when dealing with quantity for each edge, instead of each node,

as done by the Laplacian matrix. To the best of the author’s knowledge, no

similar decomposition exists for the directed graphs.

2.2 Multilayer Graph Theory

A brief introduction to the multilayer graph is presented in this section.

For an extensive overview and usage of multilayer graphs, see [BBC+14] and

[DDSRC+13].

Definition 2.2.1. Time-varying multilayer graph with N nodes and L layers is

defined as

G(t) :=
(
N , {E l(t)}l∈L, {Al(t)}l∈L

)
,

where N = {1, 2, . . . , N} and E l(t) ⊆ N × N for each l ∈ L := {1, . . . , L}. The

graph Gl(t) := (N , E l(t),Al(t)) is assumed to satisfy the properties of Definition

2.1.1 and we denote Gl(t) as the l-th layer of G and E l(t) the edge set of the l-th

layer of G. ♢

The main feature of a multilayer graph is the existence of multiple layers of

the edge sets denoted as E l(t). In fact, a multilayer graph can be visualized as
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graphs stacked on top of each other as shown in Fig. 2.5(a). In particular, if

L = 1, a multilayer graph is identical to the conventional definition of a graph,

and we call it the single-layer graph. Many properties of the graph can be easily

generalized to the multilayer graphs by considering each property in a layer-wise

fashion. For example, common graph theoretical concepts are extended as follows.

Definition 2.2.2. Consider a multilayer graph G(t).

1. Adjacency matrices of G(t) are given by a set of matrices A1(t), . . . ,AL(t)

where Al(t) is the adjacency matrix of the graph Gl(t).

2. Similarly, Laplacian matrices of G(t) are given by a set of matrices L1(t), . . . ,

LL(t) where Ll(t) is the Laplacian matrix of the graph Gl(t).

3. Multilayer graph G(t) is undirected if Gl(t) is an undirected graph for all

l ∈ L and directed otherwise.

4. In-neighbors of agent i on layer l is defined as N l
i (t) := {j ∈ N | (j, i) ∈

E l(t)}. ♢

Finally, a useful concept for the multilayer graph [BBC+14, Section 2.1.1] is

defined below.

Definition 2.2.3. Projection graph of a multilayer graph G(t) is defined as

proj (G)(t) := (N , Ep(t),Ap(t)) ,

where Ep(t) :=
⋃
l∈L E l(t) and Ap(t) = [αp

ij(t)] :=
∑L

l=1A
l(t). ♢

Note that the projection graph is a single-layer graph. An example of a

multilayer graph with N = 4 and L = 2 is shown in Fig. 2.5(a) and its projection

graph is shown in Fig. 2.5(b).

Remark 2.2.1. Multilayer graph defined in this section can be further general-

ized as in [BBC+14] to contain edges connecting nodes between layers. However,

for our purposes, nodes from different layers represent the same agent. Hence,

the physical meaning of such edge is less clear and thus not investigated in this

dissertation. ♢
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(a) Multilayer graph G with N = 4 and L = 2.
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(b) Projection graph of G.

Figure 2.5: Example of a multilayer graph G and proj (G).

2.3 Convex Optimization

In this section, preliminary convex analysis and convex optimization are dis-

cussed. Basic definitions of the convex function as well as useful properties used

for the main results are presented. We also discuss the continuous-time algo-

rithms to minimize the convex function and analyze its convergence rates. For

example, heavy-ball algorithms are introduced which have accelerated conver-

gence rate. Only a selection of results directly related to the contents of the dis-

sertation is presented. For a more general overview, refer to textbooks such as

[Ber03, Ber16, Nes04, SPB19]

2.3.1 Convex Functions and Useful Properties

Basic definitions and fundamental properties are summarized from [Ber16].
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Definition 2.3.1. A differentiable function f : Rn → R is convex if

f(y) ≥ f(x) + (y − x)⊤∇f(x)

for all x, y ∈ Rn and strictly convex if the above inequality is strict whenever

y ̸= x. ♢

For convex functions, the following proposition lists useful relations.

Proposition 2.3.1. Let f be a convex function. For a scalar L > 0, the following

properties are equivalent:

1. Globally Lipschitz gradient (or equivalently L-Smoothness):

|∇f(x)−∇f(y)| ≤ L|x− y|

for all x, y ∈ Rn.

2. f(x) +∇f(x)⊤(y − x) + 1
2L |∇f(x)−∇f(y)|2 ≤ f(y), for all x, y ∈ Rn.

3. Co-coercivity:

(∇f(x)−∇f(y))⊤(x− y) ≥ 1

L
|∇f(x)−∇f(y)|2

for all x, y ∈ Rn.

4. Quadratic Upper Bound:

f(y) ≤ f(x) +∇f(x)⊤(y − x) +
L

2
|y − x|2

for all x, y ∈ Rn. ♢

Proof. See [Ber16, Proposition B.3]. □

The first condition of Proposition 2.3.1 supposes the global Lipschitzness of the

gradient of the function f , which is often assumed for the optimization problem.

Properties listed in Proposition 2.3.1 can be simplified further for specific points
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in consideration. For instance, by letting x = x∗ where x∗ is the optimal point of

function f , condition 4 becomes

f(y)− f(x∗) ≤ L

2
|y − x∗|2 (2.3.1)

where we used ∇f(x∗) = 0. This implies that the distance between the value of

the function can be bounded by the distance between solutions.

Definition 2.3.2. A function f : Rn → R is α–strongly convex if

f(y) ≥ f(x) +∇f(x)⊤(y − x) +
α

2
|x− y|2 (2.3.2)

for all x, y ∈ Rn. ♢

Note that if α = 0, then the definition is equivalent to convex function. In

addition, by substituting x∗ into x in (2.3.2), we obtain

α

2
|y − x∗|2 ≤ f(y)− f(x∗), ∀y ∈ Rn. (2.3.3)

Combining (2.3.3) with (2.3.1), it follows that for L–smooth and α–strongly con-

vex function, distance in the value of function is equivalent to the distance in the

values. (It is also evident that α ≤ L must hold.)

Similar to that of convex function, strongly convex function satisfies the fol-

lowing properties.

Proposition 2.3.2. Let f be a α–strongly convex function. Then

(∇f(x)−∇f(y))⊤(x− y) ≥ α|x− y|2, ∀x, y ∈ Rn. ♢

Proof. Since f is α–strongly convex, it follows from (2.3.2) that

f(y) ≥ f(x) +∇f(x)⊤(y − x) +
α

2
|x− y|2

f(x) ≥ f(y) +∇f(y)⊤(x− y) +
α

2
|y − x|2.

Adding two inequalities and using |x− y|2 = |y − x|2, the result follows. □
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Next, we introduce Polyak-Łojasiewicz inequality (PL inequality) first pro-

posed in [Pol63, Thm. 4].

Definition 2.3.3. The function f satisfies PL inequality with µ > 0 if

1

2
|∇f(x)|2 ≥ µ(f(x)− f∗)

where f∗ := minx∈Rn f(x). ♢

PL condition is strictly weaker than strong convexity as shown below.

Proposition 2.3.3. Suppose f is α–strongly convex. Then f satisfies

1

2
|∇f(x)|2 ≥ α(f(x)− f∗)

where f∗ := minx∈Rn f(x). ♢

Proof. Proof follows by taking minimum with respect to y the both sides of the

inequality (2.3.2). First, the left-hand side becomes f∗. On the other hand, since

the right-hand side is quadratic in y, it holds that the minimum value happens

when

∇f(x) + α(x− y) · −1 = 0.

Thus, the right-hand side of (2.3.2) takes the minimum value when y = x −
(1/α)∇f(x). Substituting this results in

f∗ ≥ f(x) +∇f(x) ·
(
x− 1

α
∇f(x)− x

)
+
α

2

(
x− x+

1

α
∇f(x)

)2

= f(x)− 1

α
|∇f(x)|2 + 1

2α
|∇f(x)|2

= f(x)− 1

2α
|∇f(x)|2.

Therefore, it follows immediately that f satisfies PL inequality. □

As shown in Proposition 2.3.3, PL condition is weaker than strong convexity.

In fact, function may not even be convex even if it satisfies the PL inequality. Ex-

amples of function satisfying PL condition (but not convex) and strongly convex

function are shown in Fig. 2.6.
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Figure 2.6: (a) An example of function satisfying PL inequality but not con-
vex. (b) An example of a strongly convex function.

2.3.2 Optimization Algorithms

In this subsection, continuous-time optimization algorithms and their conver-

gence properties are discussed. Throughout the discussion, suppose that f is a

convex function and x∗ be an optimal point with the value f∗ := f(x∗).

2.3.2.1 Continuous-time Gradient Descent Algorithm

The most basic continuous-time gradient descent is given by

ẋ = −γ∇f(x), (2.3.4)

where γ > 0 is a gain. Its convergence properties are presented in following result.

Lemma 2.3.4. Consider the gradient descent algorithm given by (2.3.4). If f is

convex and L-smooth, then it holds that

f(x(t))− f∗ ≤ 1

t
· 1

2γ
|x(0)− x∗|2.

If f ∈ C1 and satisfies PL inequality with µ instead, then

f(x(t))− f∗ ≤ e−2γµt|f(0)− f∗|.
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Hence, exponential convergence is achieved if f satisfies PL inequality. ♢

Proof. Proof is taken from [WSC16] and presented here for completeness. For the

convergence when f is convex and L-smooth, consider the functional

E(t) := γt(f(x)− f(x∗)) +
1

2
|x− x∗|2.

Then, its time-derivative along (2.3.4) becomes

Ė(t) = γ(f(x)− f(x∗)) + γt∇f(x)⊤ · ẋ+ (x− x∗)⊤ẋ

= γ(f(x)− f(x∗))− γ2t∇f(x)⊤∇f(x)− γ(x− x∗)⊤∇f(x)
= γ(f(x)− f(x∗)−∇f(x)⊤(x− x∗))− γ2t∇f(x)⊤∇f(x)
≤ −γ2t∇f(x)⊤∇f(x)
≤ 0,

that is, E(t) is non-increasing. Since |x− x∗|2 ≥ 0, we obtain

γt(f(x)− f(x∗)) ≤ E(t) ≤ E(0) =
1

2
|x(0)− x∗|2,

which implies

f(x(t))− f(x∗) ≤ 1

t
· 1

2γ
|x(0)− x∗|2.

In case when f satisfies the PL inequality with µ, consider the function V (x) =

f(x)− f∗. Then the time-derivative of V along (2.3.4) becomes

V̇ = ∇f(x)⊤ · −γ∇f(x)
≤ −2γµ(f(x)− f∗)

= −2γµV,

where we used the definition of the PL inequality. This results in

f(x(t))− f∗ ≤ e−2γµt(f(x(0))− f∗). □
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Result of Lemma 2.3.4 establishes the convergence rate of gradient descent

algorithm. Note that the convergence rate is defined in terms of the value of the

function f(x)− f∗ and how fast it decays. For the general convex function, this

does not necessarily translate into the convergence rate of the optimal solution,

i.e., x− x∗. However, if the function is α–strongly convex, then the under bound

(2.3.3) can be used to obtain the convergence rate in terms of |x − x∗|. For

instance, using Proposition 2.3.3 and Lemma 2.3.4, it is easy to see that

α

2
|x(t)− x∗|2 ≤ f(x(t))− f∗ ≤ L

2
e−2γαt|x(0)− x∗|2,

which implies

|x(t)− x∗| ≤ L

α
e−γαt|x(0)− x∗|. (2.3.5)

Remark 2.3.1. Seeing (2.3.5) from nonlinear system theory perspective, we may

say that x(t) converges to x∗ exponentially with rate γα with the gain L/α [CG98].

Now imagine the convergence rate as α → 0. It is natural that the convergence

rate gets slower (in fact linearly since we are using gradient descent method).

Meanwhile, we also see that the gain L/α increases as α → 0. This means that

the upper bound provided by (2.3.5) gets worse for small time t. For general

nonlinear system, this is a typical phenomena, that is as we accurately model

convergence rate, the gain gets larger (see [CG98] for more discussion). However,

for simple gradient descent method, by using V (x−x∗) = (1/2)(x−x∗)⊤(x−x∗)
as the Lyapunov function, it is easy to show

|x(t)− x∗| ≤ e−γαt|x(0)− x∗|.

However, such a tight upper bound is hard to obtain for more complex algo-

rithms. ♢

2.3.2.2 Heavy-ball Method

As seen from Lemma 2.3.4, the convergence rate for general convex function

is in order of 1/t and exponential with the rate of α for α–strongly convex func-
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tion. However, it has been proven that the convergence rate for L-smooth and α–

strongly convex function using discrete-time algorithm can be improved and the

corresponding algorithms achieving the optimal rate have been developed [Nes04].

Such algorithms achieving the optimal rate are often called accelerated gradient

methods and the main technique used for improving the convergence rate is often

termed as momentum. The most well-known algorithms for achieving the accel-

erated convergence rate are Nesterov’s gradient descent and Polyak’s heavy-ball

method. These algorithms are conventionally studied in the discrete-time domain

with the corresponding analysis for their convergence rates. In this dissertation,

the continuous-time heavy-ball method is mainly used for the development and

hence the rest of the section focuses on the continuous-time version of the heavy-

ball method.

For an α–strongly convex function, the continuous-time heavy-ball method

can be written [Qia99] as

[
ẋ

ż

]
=

[
P1z

−P2z − P3∇f(x)

]
, (2.3.6)

where P1, P2, P3 > 0 are symmetric positive definite matrices. Then, the following

convergence result can be shown.

Proposition 2.3.5. (Asymptotic convergence of the general heavy-ball

algorithm) Consider the heavy-ball method (2.3.6). Suppose that f is convex

and the sub-level sets of f are compact. Then the solution of (2.3.6) converges to

(x∗, 0) if there exists Φ > 0 such that

ΦP3 = P1, ΦP2 + P2Φ > 0 (2.3.7)

holds. ♢

Proof. Let the Lyapunov function be

V (x, z) = f(x)− f∗ +
1

2
z⊤Φz.
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Then, its time-derivative along (2.3.6) becomes

V̇ = ∇f(x)⊤ · P1z −
1

2
z⊤(ΦP2 + P2Φ)z − z⊤ΦP3∇f(x)

= −1

2
z⊤(ΦP2 + P2Φ)z

≤ 0,

where we used (2.3.7). Hence, the solution is bounded. Applying LaSalle’s invari-

ance principle [Kha02, Thm. 4.4], it follows that the solution converges to the set

E := {(x, z) | z⊤(ΦP2 + P2Φ)z = 0}.

Since ΦP2 + P2Φ > 0, it follows that z = 0 and consequently implies ż = 0 and

ẋ = 0 within E. However, this implies

0 = −P2z − P3∇f(x) =⇒ ∇f(x) = 0.

Thus x converges to an optimal point. □

Remark 2.3.2. The condition (2.3.7) includes a few common cases for heavy-

ball method. For example, P3 = P1 and Q = In satisfies (2.3.7) which results in

[
ẋ

ż

]
=

[
P1z

−P2z − P1∇f(x)

]
.

On the other hand, if P2 = P3 = In and Q = P1 results in[
ẋ

ż

]
=

[
P1z

−z −∇f(x)

]
. ♢

Result of Proposition 2.3.5 proves the asymptotic convergence for the gen-

eral heavy-ball algorithm under mild condition on the function f . However, the

convergence rate cannot be characterized due to the usage of LaSalle’s principle.

For the strongly convex functions, accelerated convergence can be shown for a

particular choice of P1, P2 and P3.
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Theorem 2.3.6. (Accelerated convergence for heavy-ball method) Sup-

pose that f : Rn → R is α–strongly convex, L–smooth and consider the heavy-ball

algorithm (2.3.6) with P1 = P3 = In and P2 = 2
√
αIn, i.e.,

[
ẋ

ż

]
=

[
z

−2
√
αz −∇f(x)

]
. (2.3.8)

Then the solution of (2.3.8) converges to (x∗, 0) exponentially fast. In particular,

with ψ := [x− x∗; z], it holds that

|ψ(t)| ≤Me−
√
α
2
t|ψ(0)|

where the constant M > 0 is defined as

M :=

√
1

λmin(Q)
·max

(
3L

2
, 1

)
, Q :=

[
α

√
α
2√

α
2

1
2

]

and λmin(Q) = 1
2

(
α+ 1

2 −
√
α2 + 1

4

)
. ♢

Proof. Proof is based on [Sie19, Thm. 2.2] (also see [WRJ16]) and here we extend

the analysis to the case when z(0) ̸= 0. Consider the Lyapunov function

V (x, z) := f(x(t))− f(x∗) +
1

2

∣∣√α(x(t)− x∗) + z(t)
∣∣2.

It is easy to see that V (x, z) is positive definite. Consequently, quadratic upper

and lower bound for V (x, z) can also be found. For the upper bound, we have

V (x, z) ≤ L

2
|x− x∗|2 + 1

2
α|x− x∗|2 + 1

2
|z|2 +√

α|x− x∗||z|

≤
(
L+ α

2

)
|x− x∗|2 + 1

2
|z|2 + α

2
|x− x∗|2 + 1

2
|z|2

=

(
L+ 2α

2

)
|x− x∗|2 + |z|2

≤ max

(
3L

2
, 1

)
·
∣∣∣∣∣
[
x− x∗

z

]∣∣∣∣∣
2

,
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where we used quadratic upper bound property for L–smooth function (2.3.3),

α ≤ L and Young’s inequality4. On the other hand, we can obtain the under

bound of V (x, z) as

V (x, z) ≥ α

2
|x− x∗|2 + 1

2

∣∣√α(x− x∗) + z
∣∣2

=

[
x− x∗

z

][
α

√
α
2√

α
2

1
2

][
x− x∗

z

]
=: ψ⊤Qψ,

where we used the quadratic under bound property for strongly convex functions

(2.3.3). Applying Schur’s complement to the matrix Q, it holds that

1

2
− α

4
· 1
α

=
1

2
− 1

4
> 0.

Hence, Q > 0 and V (x, z) has an quadratic under bound. Moreover, the eigen-

values of Q are given by

λmin(Q) =
1

2

(
α+

1

2
−
√
α2 +

1

4

)
, λmax(Q) =

1

2

(
α+

1

2
+

√
α2 +

1

4

)
.

The time-derivative of V (x, z) along (2.3.8) becomes

V̇ = ∇f(x)⊤ · z + (−√
αz −∇f(x))⊤ · (√α(x− x∗) + z)

= −√
α∇f(x)⊤(x− x∗)− αz⊤(x− x∗)−√

αz⊤z

Here we use definition of strong convexity (2.3.2) with y = x∗ to obtain

−∇f(x)⊤(x− x∗) ≤ −1 ·
(
f(x)− f∗ +

α

2
|x− x∗|2

)
.

Therefore, we obtain

V̇ = −√
α
(
f(x)− f∗ +

α

2
|x− x∗|2

)
− αz⊤(x− x∗)−√

αz⊤z

4Here we use the version of Young’s inequality which states that for any a, b ≥ 0 and ε ≥ 0,
ab ≤ 1

2ε
|a|2 + ε

2
|b|2 holds.
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= −√
α

(
f(x)− f∗ +

α

2
|x− x∗|2 +√

αz⊤(x− x∗) +
1

2
z⊤z +

1

2
z⊤z

)
= −√

α

(
f(x)− f∗ +

1

2

∣∣√α(x− x∗) + z
∣∣2)−

√
α

2
z⊤z

≤ −√
αV.

Hence, it follows that V (t) ≤ e−
√
αtV (0). From the upper and lower bounds of

V (x, z), we obtain

λmin(Q)|ψ(t)|2 ≤ ψ(t)⊤Qψ(t) ≤ V (t) ≤ e−
√
αtV (0)

≤ max

(
3L

2
, 1

)
e−

√
αt|ψ(0)|2.

This implies

|ψ(t)| ≤
√

1

λmin(Q)
·max

(
3L

2
, 1

)
e−

√
α
2
t|ψ(0)|,

which completes the proof. □

Although both gradient descent algorithm (2.3.4) and heavy-ball method

(2.3.8) achieve exponential convergence for strongly convex functions, their con-

vergence rates are different. Specifically, the gradient descent method converges

with a rate of α whereas the heavy-ball method achieves the rate of
√
α/2. In

fact, it is observed in the practice that gradient descent achieves a faster conver-

gence rate when α is high (i.e., when α > 1/2). However, if α is low (i.e., when

0 < α < 1/2), then Theorem 2.3.6 states that the heavy-ball method converges

faster. The following example illustrates this for a simple function.

Example 2.3.1. Consider f(x) = (1/2)ax2 which is a–strongly convex. Consider

the gradient descent algorithm given by

ẋ = −∇f(x) = −ax (2.3.9)
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and the heavy-ball method given by

ẋ = z

ż = −2
√
az − ax.

(2.3.10)

Since both gradient descent and heavy-ball method are linear systems, conver-

gence rates can be computed easily by investigating its eigenvalues. Specifically,

eigenvalue of the system (2.3.9) is given by −a, where as the eigenvalues of the

system (2.3.10) are given by {−√
a,−√

a}. Hence, the heavy-ball method con-

verges faster for 0 < a < 1 and the gradient descent method converges faster for

a > 1. ♢

Remark 2.3.3. By applying state transformation to (2.3.8), exponential conver-

gence can be shown for the slightly modified dynamics. Specifically, consider the

state transformation given by[
ξ

x

]
=

[
A1 A2

0 I

][
z

x

]
,

[
z

x

]
=

[
A−1

1 A−1
1 A2

0 I

][
ξ

x

]
.

where A1 is an invertible matrix. Then we have

ξ̇ = A1ż +A2ẋ

= A1(−2
√
αz −∇f(x)) +A2z

= A1(−2
√
α(A−1

1 ξ +A−1
1 A2x))−A1∇f(x) +A2(A

−1
1 ξ +A−1

1 A2x)

=
[
−2

√
αI +A2A

−1
1

]
ξ +

[
A2 +A2A

−1
1 A2

]
x−A1∇f(x)

ẋ = z

= A−1
1 ξ +A−1

1 A2x.

The transformed dynamics seems much more complex, but exponential conver-

gence is conserved since the transformation is linear. ♢

Theorem 2.3.6 studied the exponential convergence for a specific set of pa-

rameters. A more general convergence result is shown in the following theorem.
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Theorem 2.3.7. (Exponential convergence of the general heavy-ball al-

gorithm) Consider the general heavy-ball algorithm (2.3.6) where P1, P2, P3 > 0.

Then the solution converges exponentially if P1P
−1
3 is a symmetric matrix and

P1P
−1
3 > 0, Ψ := (P1P

−1
3 )P2 + P2(P1P

−1
3 ) > 0 (2.3.11)

are satisfied. ♢

Proof. Let the Lyapunov function be

V (x, z) := γ (f(x(t))− f∗) +

[
x− x∗

z

]⊤
Q

[
x− x∗

z

]
,

where the matrix Q > 0 is in form of

Q :=

[
Q1 Q2

Q2 Q3

]

where each element Qi is to be determined. Note that using (2.3.3) and (2.3.1),

it is easy to verify

min(γ, λmin(Q))|ψ|2 ≤ min(γ, λmin(Q))
[
(f − f∗) + |ψ|2

]
≤ V (x, z)

≤ max(γ, λmax(Q))
[
f − f∗ + |ψ|2

]
≤
(
λmax(Q) +

γL

2

)
|ψ|2,

where ψ := [x; z] and let α1 := min(γ, λmin(Q)), α2 := max(γ, λmax(Q)).

Taking time-derivative of V along (2.3.6), it follows that

V̇ = γ∇f(x)⊤P1z + 2(x− x∗)⊤Q1P1z

+ z⊤(−Q3P2 − P2Q3)z − 2z⊤Q3P3∇f(x)
−2(x− x∗)⊤Q2P2z − 2(x− x∗)⊤Q2P3∇f(x) + 2z⊤P1Q2z

= z⊤ (γP1 − 2Q3P3)∇f(x) + (x− x∗)⊤ (2Q1P1 − 2Q2P2) z

+ z⊤ (−Q3P2 − P2Q3 + 2P1Q2) z + (x− x∗)⊤ · −2Q2P3∇f(x). (2.3.12)
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Now, for further analysis we let

Q3 =
γ

2
P1P

−1
3 , Q2 =

1

2
P−1
3 (2.3.13)

where P1P
−1
3 is symmetric positive definite matrix due to assumption. Then, the

first and last term of (2.3.12) satisfies

γP1 − 2Q3P3 = γP1 − 2
1

2
P1P

−1
3 P3 = 0, 2Q2P3 = I.

Then, (2.3.12) becomes

V̇ = (x− x∗)⊤
(
2Q1P1 − P−1

3 P2

)
z + z⊤

(
−Q3P2 − P2Q3 + P1P

−1
3

)
z

− (x− x∗)⊤∇f(x).

Recall from (2.3.2) that

−(x− x∗)⊤∇f(x) ≤ −1 ·
(
f(x)− f∗ +

α

2
|x− x∗|2

)
.

Hence, we obtain

V̇ ≤ (x− x∗)⊤
(
2Q1P1 − P−1

3 P2

)
z +

(
−γ
2
λmin(Ψ) + λmax(P1P

−1
3 )
)
z⊤z

−
(
f(x)− f∗ +

α

2
|x− x∗|2

)
= −(f(x)− f∗)

+

[
x− x∗

z

]⊤ [
−α

2 Q1P1 − 1
2P

−1
3 P2

P1Q1 − 1
2P2P

−1
3 (−γ

2λmin(Ψ) + λmax(P1P
−1
3 ))I

][
x− x∗

z

]
=: −(f(x)− f∗)− ψ⊤∆ψ

From Schur’s complement, it holds that −∆ < 0 if

−γ
2
λmin(Ψ) + λmax(P1P

−1
3 ) + (P1Q1 −

1

2
P2P

−1
3 ) · α

2
· (Q1P1 −

1

2
P−1
3 P2) < 0.
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Hence let γ1 > 0 be sufficiently large such that

2

λmin(Ψ)
·
[
I + (P1Q1 −

1

2
P2P

−1
1 ) · α

2
· (Q1P1 −

1

2
P−1
1 P2)

]
< γ1.

Then, it holds that

V̇ ≤ −(f(x)− f∗)− λmin(∆)|ψ|2 ≤ −λmin(∆)|ψ|2.

Next, from (2.3.13), matrix Q used in the definition of V becomes

Q =

[
Q1

1
2P

−1
3

1
2P

−1
3

γ
2P1P

−1
3

]
.

Hence Q > 0 if and only if

γ

2
P1P

−1
3 − 1

4
P−1
3 Q−1

1 P−1
3 > 0.

Thus, let γ2 > 0 such that

γ2 >
1

2

λmax(P
−1
3 Q−1

1 P−1
3 )

λmin(P1P
−1
3 )

.

Finally, choose γ > max(γ1, γ2) such that V is positive definite while its time-

derivative is negative definite. Specifically, the Lyapunov function V (x, z) satisfies

min(γ, λmin(Q))|ψ(t)|2 ≤ V (x(t), z(t)) ≤ V (x(0), x(0)) · e−λmin(∆)t

≤
(
λmax(Q) +

γL

2

)
|ψ(0)|2 · e−λmin(∆)t.

In conclusion,

|ψ(t)|2 ≤ λmax(Q) + γL
2

min(γ, λmin(Q))
|ψ(0)|2 · e−λmin(∆)t,

which completes the proof. □

Remark 2.3.4. It can be easily seen that the condition (2.3.11) is equivalent to

the condition (2.3.7) used for asymptotic convergence. In order for P1, P2 and
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P3 to satisfy the condition (2.3.11), P1 and P3 must commute so that P1P
−1
3 is

a symmetric matrix. This is easily done if either P1 = P3, or either P1 or P3 is

identity matrix. If P1 = P3, then we obtain Ψ = P2 + P2 > 0. Instead, if P3 = I,

we get Ψ = P1P2 + P2P1. Thus, Ψ > 0 easily holds if P2 = I and P1 > 0. ♢

Remark 2.3.5. From the proof of Theorem 2.3.7, it can be checked that the

convergence rate for f(x(t))−f∗ is linear in α. This is in contrast to Theorem 2.3.6

which had convergence rate of
√
α. Hence, although the exponential convergence

is proven for general parameters, it does not prove acceleration. ♢

Despite the long history of the optimization theory and various algorithms,

most discussions are done in the discrete-time domain due to its practicality.

Analysis of the corresponding continuous-time algorithms are only started gain-

ing attention again in recent years. For continuous-time algorithms with strongly

convex functions, Theorem 2.3.7 proves global exponential convergence of the

heavy-ball method. However, it did not show an accelerated convergence rate.

Accelerated convergence rate can be seen in Theorem 2.3.6 for specific set of pa-

rameters which is shown recently in [Sie19, WRJ16]. For general convex func-

tions, non-ergodic rate of O(1/t) is shown in [SYL+19] under additional con-

straint that |ẍ(t)| = |ż(t)| ≤ θ|z(t)| for some θ > 0. On the other hand, the

continuous-time Nesterov’s gradient method received more attention and it has

been proved to achieve convergence rate proportional to 1/t2 for general convex

functions [WSC16] and exponential convergence with the rate proportional to
√
α

for strongly convex functions [SDSJ19, SDJS18]. Accelerated convergence rate of
√
α is particularly impactful in the machine learning context as α depends on the

inverse of the sample size [Bub15, Sec. 3.6].



Chapter 3

Consensus Problem over the Multilayer
Network

This chapter presents the main results on the consensus of MAS over the multi-

layer network.

3.1 Problem Formulation

Consider the multi-agent system with N agents and the time-invariant multi-

layer graph G with L layers. We suppose that the dynamics of each agent is given

by
ẋi = Axi +Bui,

yli = C lxi,

ζi = Rxi, i ∈ N , l ∈ L,

(3.1.1)

where xi ∈ Rn, yli ∈ Rql and ui ∈ Rp are state, output and input respectively.

The common output ζi ∈ Rq is the signal to be synchronized among agents. We

also suppose throughout the dissertation that (A,B) is stabilizable.

Note that each agent has L different outputs over L layers, and the output

matrix corresponding to each layer is denoted as C l. Thus, the output of agent i

on layer l is defined as1 yli = C lxi (which is null if yli is not available to agent i).

1Throughout the chapter, the superscript (subscript) is often used to denote the index of a
layer (agent) respectively.

41
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Furthermore, we suppose that the communication among agents is described

by the multilayer graph G. Specifically, each agent only has access to the relative

output information δi over L layers which is defined as

δi :=


δ1i

...

δLi

 =


∑

j∈N 1
i
(y1j − y1i )

...∑
j∈NL

i
(yLj − yLi )

 ∈ Rq̄,

where N l
i := {j ∈ N | (j, i) ∈ E l} denotes the set of neighbors of agent i on layer l

and q̄ :=
∑L

l=1 q
l. Finally, we assume that each agent is equipped with a dynamic

controller of the form
ξ̇i = fc,i

(
δi, χi

)
,

ui = hc,i
(
δi, χi

)
,

(3.1.2)

where ξi ∈ Rν is the state of the controllers and χi represents the communication

of ξi between controllers. In particular, we consider the following cases for χi:

1. Long-range communication of controller state, i.e., χi is a stack of ξk for

k ∈ Pp
i ∪ {i}, where Pp

i is the set of nodes having a directed path to node

i on proj (G). This is used when we derive a necessary condition to achieve

consensus under a general form of controller.

2. Local communication of controller state, i.e., χi is stack of ξk for k ∈ N p
i ∪

{i}, where N p
i := {j ∈ N | (j, i) ∈ Ep}. This is used for the construction of

dynamic controller.

3. No communication between controllers, i.e., χi = ξi. Controller of this form

is presented in Section 4.4.

Regardless of the exact definition of χi, each agent combines available infor-

mation (e.g., δi and χi) to compute the control input ui. The functions fc,i and

hc,i are assumed to be locally Lipschitz functions satisfying fc,i(0, 0) = 0 and

hc,i(0, 0) = 0. Moreover, it is supposed that the solution of the overall system

(3.1.1)–(3.1.2) is well defined for all t ≥ 0 from any initial condition.
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Remark 3.1.1. If the communication structure is given by a single-layer graph,

i.e., L = 1, then the dynamic controller (3.1.2) includes distributed, linear con-

trollers proposed in the literature to solve the classical consensus problem. For

example, if hc,i(δi, χi) = hc,i(δi), i.e., each control input only depends on δi, then

(3.1.2) represents static diffusive output controller which is studied in [ZLD11,

MZ10, YRWS11]. If hc,i(δi, χi) = hc,i(δi, ξi) and fc,i(δi, χi) = fc,i(δi, ξi), then

(3.1.2) becomes a dynamic controller only using relative output information as in

[SSB09, WSS+13]. If hc,i(δi, χi) = hc,i(δi, {ξj}j∈Ni∪{i}) and fc,i(δi, χi) = fc,i(δi,

{ξj}j∈Ni∪{i}), then states of the controllers are received from its neighbors which

include observer-based controllers proposed in [ZLD11, WLH09]. ♢

In this dissertation, necessary conditions to achieve consensus for the multi-

agent systems over the multilayer network is studied. To be precise, the notion

of the consensusability is defined as follows.

Definition 3.1.1. System (3.1.1) is output consensusable with an (nonzero) out-

put matrix R ∈ Rq×n, if there exists a controller of the form (3.1.2) such that for

all initial conditions xi(0) and ξi(0), it holds that

lim
t→∞

|ζi(t)− ζj(t)| = 0, ∀i, j ∈ N .

In addition, the system (3.1.1) is state consensusable if R = In. ♢

If the matrix A in (3.1.1) is Hurwitz, then the system (3.1.1) is trivially con-

sensusable. Thus, this case is excluded in the study and the following assumption

is made.

Assumption 3.1.1. The system (3.1.1) satisfies X u(A) ̸⊆ ⟨kerR | A⟩. ♢

If Assumption 3.1.1 does not hold, i.e., X u(A) ⊆ ⟨kerR |A⟩, then it can be verified

that letting ui(t) = 0 for all t ≥ 0 results in limt→∞ |ζi(t) − ζj(t)| = 0 from any

initial condition. Hence, (3.1.1) is trivially output consensusable.

For the analysis of the multi-agent systems, detectability decomposition is

used extensively. Consider the dynamics of an agent given by (3.1.1) and let yli as
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the output of the system. Then, there exists an invertible matrix (T l)−1 ∈ Rn×n

in form of

T l :=
[
Y l U l

]
, (T l)−1 =

[
(Z l)⊤

(W l)⊤

]
(3.1.3)

such that

(T l)−1AT l =

[
(Z l)⊤AY l 0

⋆ (W l)⊤AU l

]
=:

[
Ald 0

⋆ Al
d̄

]
,

and

C lT l =
[
C lY l 0

]
=:
[
C ld 0

]
for each l ∈ L, where the pair Ald ∈ R(n−νl)×(n−νl) and C ld ∈ Rql×(n−νl) are such

that (C ld, A
l
d) is detectable and the asterisk denotes the elements that are not of our

interest. Specifically, it holds that Y l ∈ Rn×(n−νl), U l ∈ Rn×νl , Z l ∈ Rn×(n−νl)

and W l ∈ Rn×νl . Also recall that ker (Z l)⊤ is the undetectable subspace of the

pair (C l, A), i.e., ker (Z l)⊤ = ⟨kerC l |A⟩ ∩ X u(A) [TSH12, Thm. 5.15], and

that νl = dimker(Z l)⊤ is the dimension of undetectable subspace. Similarly,

define ZR ∈ Rn×(n−νR) such that ker (ZR)
⊤ = ⟨kerR |A⟩ ∩ X u(A) where νR :=

dimkerZ⊤
R and YR accordingly.

Remark 3.1.2. The consensus problem over multilayer network defined on this

section strictly generalizes the classical consensus problem over single-layer net-

work. Namely, multilayer network may represent the single-layer network, but

the converse cannot be done. Furthermore, even if one uses heterogeneous agents

over the single-layer network (which is more general compared to the homoge-

neous single-layer network), it still cannot represent the consensus problem over

multilayer network. On the other hand, it is possible to adopt the concept of the

matrix-weighted graphs proposed recently in [Tun17] to arrive at the equivalent

formulation for the problem. More detailed discussions and comparisons of dif-

ferent approaches are described in Appendix A.2. ♢
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3.2 A Necessary and Sufficient Condition for State Con-

sensus over Undirected Network

From the study of the multi-agent systems with a single-layer network, it is

well known that system theoretic conditions as well as graph theoretic conditions

are involved. Specifically, stabilizability, detectability, and connectedness of the

communication network are necessary conditions for state consensusability (e.g.,

see [MZ10]). Therefore, it is natural to suspect that necessary conditions for the

consensusability over multilayer networks are also related to the system theoretic

and graph theoretic conditions. As a motivating example, consider the state con-

sensusability of the multi-agent systems over a multilayer network. As a candi-

date for a necessary condition, suppose that (C l, A) is detectable for each l ∈ L
and that every layer contains a rooted spanning tree. Then, the problem becomes

trivial and degenerates into the classical state consensus problem as any single

layer is sufficient to design a controller (e.g., use results of [SSB09, ZLD11]). On

the other hand, suppose that (C,A) is detectable where C := [C1; . . . ;CL] and

that the projection graph contains a rooted spanning tree. Then, the following

example presents a case where the system is trivially not state consensusable.

Example 3.2.1. Consider the system with 2 layers such that E1 = ∅ and E2 is

the edge set of the complete graph, while C1 = In and C2 = 0. Then (C,A)

is detectable and the projection graph contains a rooted spanning tree, yet it

is trivial to see that no information is exchanged among agents. Hence, state

consensus cannot be achieved. ♢

The discussion so far suggests that if graph theoretic properties and system

theoretic properties are considered separately, then the resulting conditions are

either too strong or too weak for consensusability. Motivated by this, we will

couple these conditions to develop an appropriate necessary condition. For nota-

tional purpose, let A := IN ⊗A and define K̄ ⊆ RNn as

K̄ :=
L⋂
l=1

kerLl ⊗ (Z l)⊤,
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where L1, . . . ,Ll are Laplacian matrices of G.

The following theorem proposes a necessary and sufficient condition for the

state consensusability of the system (3.1.1) over an undirected network, whose

proof is presented in the following sections.

Theorem 3.2.1. Suppose that Assumption 3.1.1 holds and that G is undirected.

Then the following statements are equivalent.

1. System (3.1.1) is state consensusable.

2. The detectability-like condition

L⋂
l=1

⟨ker (Ll ⊗ C l) |A⟩ ∩ X u(A) ⊆ SNn ∩ X u(A). (3.2.1)

3. The geometric condition

L⋂
l=1

kerLl ⊗ (Z l)⊤ = SNn . (3.2.2)

4. The algebraic condition given by

λn+1

(
L∑
l=1

Ll ⊗ (Z l)(Z l)⊤

)
> 0. (3.2.3)

♢

Theorem 3.2.1 states that the three conditions (3.2.1)–(3.2.3) are equivalent

and that they are necessary and sufficient condition for state consensusability of

the system over a multilayer network. Detailed discussions and proof of necessity

and sufficiency of three conditions with state consensusability are deferred to

Section 3.3 and Section 3.4. Instead, let us investigate (3.2.1)–(3.2.3) and how

these three statements are related to each other and to the consensus problem

over the multilayer network.

Proof of the equivalence among (3.2.1), (3.2.2) and (3.2.3)

((3.2.2) ⇒ (3.2.1)) Suppose that (3.2.2) holds and let x = [x1; · · · ;xN ] ∈ RNn
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be such that

x ∈ ⟨ker (Ll ⊗ C l) |A⟩ ∩ X u(A), ∀l ∈ L.

Then, it follows from the definition of unobservable subspace and the properties

of the Kronecker product that

x ∈
Nn−1⋂
k=0

ker (Ll ⊗ C l)(IN ⊗A)k =

Nn−1⋂
k=0

ker (IN ⊗ C lAk)(Ll ⊗ In).

Hence, it follows that

(Ll ⊗ In)x ∈
Nn−1⋂
k=1

ker(IN ⊗ C lAk), ∀l ∈ L.

Since xi ∈ X u(A), we obtain
∑

j∈N l
i
(xj − xi) ∈ ⟨kerC l |A⟩ ∩ X u(A) = ker (Z l)⊤

for all l ∈ L. Thus,

x ∈
L⋂
l=1

kerLl ⊗ (Z l)⊤ = SNn

holds from (3.2.2). Since x ∈ SNn and x ∈ X u(A), the result holds.

((3.2.2) ⇐ (3.2.1)) Conversely, suppose that (3.2.1) holds and let

x = [x1; · · · ;xN ] ∈
L⋂
l=1

kerLl ⊗ (Z l)⊤.

Decompose xi as xi = xui + xsi , where xui ∈ X u(A), xsi ∈ X s(A) and define

xu := [xu1 ; · · · ;xuN ], xs := [xs1; · · · ;xsN ]. Then, for all l ∈ L, it holds that

∑
j∈N l

i

(xuj − xui )+
∑
j∈N l

i

(xsj − xsi )∈⟨kerC l |A⟩∩X u(A). (3.2.4)

Hence, we obtain (Ll ⊗ In)x
u ∈ ⟨ker (IN ⊗ C l) |A⟩ for all l ∈ L. Then, it can be
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verified that

xu ∈
L⋂
l=1

⟨kerLl ⊗ C l |A⟩ ∩ X u(A) ⊆ SNn .

On the other hand, (3.2.4) also implies that (Ll ⊗ In)x
s = 0 for all l ∈ L.

Now, we claim the projection graph contains a rooted spanning tree so that

∩Ll=1kerL
l ⊗ In = SNn . Suppose that the projection graph does not contain a

rooted spanning tree. Let x∗ := s∗ ⊗w∗, where s∗ ∈ RN is such that Lls∗ = 0 for

all l ∈ L and s∗ ̸∈ SN1 , while w∗ ∈ Rn is such that w∗ ∈ X u(A) and w∗ ̸= 0. Then,

x∗ ∈ ∩Ll=1⟨ker (Ll ⊗ C l) |A⟩ ∩ X u(A) but x∗ ̸∈ SNn ∩ X u(A), which contradicts

since (3.2.1) is assumed. Hence the claim is proven. In conclusion, it follows that

xs ∈
L⋂
l=1

ker (Ll ⊗ In) = SNn .

This completes the proof.

((3.2.2) ⇔ (3.2.3)) We end the proof by showing (3.2.2) is equivalent to (3.2.3).

Equivalence of (3.2.2) and the state consensusability of (3.1.1) is presented in the

next section.

Since Ll is symmetric,
∑L

l=1 L
l⊗(Z l)(Z l)⊤ is symmetric and positive semidef-

inite matrix. In addition, it is trivial to see that SNn ⊆ ker (
∑L

l=1 L
l⊗ (Z l)(Z l)⊤).

Hence, (3.2.3) is equivalent to

ker

(
L∑
l=1

Ll ⊗ (Z l)(Z l)⊤

)
= SNn .

On the other hand, by defining Q := [(B1)⊤ ⊗ (Z1)⊤; · · · ; (BL)⊤ ⊗ (ZL)⊤] and

K̄ = ∩Ll=1L
l ⊗ (Z l)⊤, it follows from Ll = Bl(Bl)⊤ that

ker

(
L∑
l=1

Ll ⊗ (Z l)(Z l)⊤

)
= kerQ⊤Q = kerQ = K̄.

Therefore, it follows that (3.2.2) is equivalent to (3.2.3). □

First, notice that the condition (3.2.1) resembles the detectability of the pair
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(C,A). Specifically, recall that the detectability of the pair (C,A) can be written

[TSH12, Thm. 5.16] as

⟨kerC |A⟩ ∩ X u(A) ⊆ {0}

and that the set ⟨kerC |A⟩ ∩ X u(A) represents the undetectable subspace of the

pair (C,A). Moreover, the undetectability subspace is a set where the output

converges to zero, while the state does not. Hence, the detectability condition is

stating that if output converges to zero, then so does the state.

With the meaning of detectability condition in mind, it can be seen that the

set on the left of (3.2.1) denotes the intersection of undetectable subspace of

the pair (Ll ⊗ C l,A) for all layers l ∈ L. Hence, the condition (3.2.1) can be

interpreted as saying that if
∑

j∈N l
i
(ylj(t) − yli(t)) → 0, then the corresponding

state x(t) must be in the synchronization space SNn . Such a perspective of the

multi-agent system is also investigated in [Tun17] and more detailed discussion is

present in Appendix A.3.

The condition (3.2.2) also has a similar interpretation as (3.2.1). It is trivial

to see that

SNn ⊆
L⋂
l=1

kerLl ⊗ (Z l)⊤.

Therefore, condition (3.2.2) is in fact requiring
⋂L
l=1 kerL

l ⊗ (Z l)⊤ ⊆ SNn . The

set on the left of (3.2.2) characterize the set of states where

∑
j∈N l

i

(Z l)⊤(xj(t)− xi(t)) ≡ 0, ∀i ∈ N , l ∈ L.

Hence, if the above condition holds, then x(t) must be in the synchronization

space. It is natural to suspect that the above is a necessary condition for con-

sensusability since the controller primarily uses the relative output information.

Thus, if relative output information is identically zero, then there is no additional

information to utilize to achieve consensus, implying that the state consensus

should have been achieved already.
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The conditions (3.2.1) and (3.2.2) are not easy check computationally and

it must compare relations between the sets. Instead, (3.2.3) gives an equivalent

algebraic condition to check (3.2.2), which can be easily checked numerically.

Notice that (3.2.3) resembles the necessary conditions used for the single-layer

network. For instance, if L = 1, then (3.2.3) becomes λn+1(L
1⊗ (Z1)(Z1)⊤) > 0,

which holds if only if algebraic connectivity of L1 is strictly positive and (C1, A)

is detectable. These are exactly the conditions for the single-layer network and

hence (3.2.3) can be seen as a natural generalization of this fact to multilayer

graphs.

As evident from (3.2.1)–(3.2.3), we would like to emphasize that the proposed

conditions involve both the graph theoretic as well as system theoretic concepts

and combine these into a single statement. This is in contrast to the consensus

problem over a single-layer graph whose conditions are independent of each other

as discussed at the start of this section. Specifically, it can be shown that (3.2.2)

implies the following decoupled conditions.

Proposition 3.2.2. Suppose that G is undirected and let C := [C1; · · · ;CL]. If

the necessary condition (3.2.2) holds, then the followings hold.

1. proj (G) is connected.

2. X u(A) ∩ ⟨kerC |A⟩ = {0}, i.e., (C,A) is detectable. ♢

Proof. For a proof by contradiction, first suppose that the projection graph is

not connected. Then, without loss of generality, nodes can be relabeled such

that Ll = diag(Ll1,L
l
2) for all l ∈ L, where Lli ∈ RNi×Ni for i = 1, 2 are the

Laplacian matrices with suitable size. Choose any nonzero vector x′ ̸= 0. Let

x∗ := [1N1 ⊗ x′;−1N2 ⊗ x′] ∈ RNn. Then, x∗ ∈ K̄ follows from the construction.

However, it can be checked that x∗ ̸∈ SNn . Thus, K̄ ̸⊆ SNn which leads to a

contradiction.

Next, suppose X u(A) ∩ ⟨kerC |A⟩ ̸⊆ {0}. Then there exists a nonzero vec-

tor h∗ ∈ Rn such that h∗ ∈ X u(A) ∩ ⟨kerC | A⟩ but h∗ ̸= 0. Let x′ :=

[α1h
∗; · · · ;αNh∗] ∈ RNn where αk ̸= 0 are distinct scalars. By construction,
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it follows that x′ ̸∈ SNn . However,

h∗ ∈ ⟨kerC | A⟩ ∩ X u(A) ⊂ ⟨kerC l |A⟩ ∩ X u(A) = ker (Z l)⊤

for all l ∈ L. Therefore, this implies (IN⊗(Z l)⊤)x′ = 0. Hence, we obtain x′ ∈ K̄,

while x′ /∈ SNn . This leads to a contradiction which completes the proof. □

The decoupled conditions are also sufficient in case of the single-layer network,

but they are not sufficient for multilayer network.

Remark 3.2.1. We may match each statement of Theorem 3.2.1 to common

conditions for the observability of linear system. For example, consider the linear

system given by

ẋ = Ax

y = Cx,

and let O := [C;CA; · · · ;CAn−1]. Then , recall that the following statements are

equivalent for linear system.

1. (C,A) is observable

2. ⟨kerC |A⟩ = {0}

3. kerO = {0}

4. λ1
(
O⊤O

)
> 0

Each condition stated above for the observability corresponds to the conditions

stated in Theorem 3.2.1. In fact, the results of Theorem 3.2.1 extend these con-

cepts to the consensus problem by combining with the graph theoretical con-

cepts. ♢

3.3 Proof of Necessity

Before presenting the proof of Theorem 3.2.1, the following lemma presents a

few properties of K̄.
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Lemma 3.3.1. The following properties hold for K̄ = ∩Ll=1L
l ⊗ (Z l)⊤.

1. K̄ is A-invariant.

2. If x ∈ K̄, then δli = 0 for all i ∈ N and l ∈ L. ♢

Proof. For A-invariance of K̄, let x′ ∈ K̄ and notice that

(Ll ⊗ (Z l)⊤)Ax′ = (IN ⊗Ald)(L
l ⊗ (Z l)⊤)x′ = 0,

where we used properties of Kronecker product and the fact that (Z l)⊤A =

Ald(Z
l)⊤. Therefore, K̄ is A-invariant.

For the second statement, Let x := [x1; · · · ;xN ] ∈ K̄. By definition, it holds

that ∑
j∈N l

i

αlij(Z
l)⊤(xj − xi) = 0, ∀i ∈ N , l ∈ L.

Then, it follows from the definition of δli and detectability decomposition that

δli = C ld
∑
j∈N l

i

αlij(Z
l)⊤(xj − xi) = 0,

which completes the proof. □

Now, we show (3.2.2) holds if the system (3.1.1) is state consensusable. Let

X e := RNn+Nν be the extended state space and denote xe ∈ X e as xe = [x; ξ] ∈
RNn+Nν where x = [x1; · · · ;xN ] ∈ RNn and ξ = [ξ1; · · · ; ξN ] ∈ RNν . Further-

more, let

V := {xe ∈ X e | x ∈ K̄, ξ = 0}. (3.3.1)

Then, V ⊆ X e is invariant under the dynamics (3.1.1)–(3.1.2). In fact, if the

initial condition satisfies xe(0) ∈ V, we obtain

ẋi = Axi +Bhc,i
(
0, 0
)
= Axi,

ξ̇i = fc,i
(
0, 0
)
= 0,

(3.3.2)
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where we used Lemma 3.3.1 with the properties of hc,i and fc,i. Since K̄ is A-

invariant, it follows that x(t) ∈ K̄ and ξ(t) = 0 for all t ≥ 0 and that V is invariant.

The set V defined in (3.3.1) represents the states of the multi-agent system where

no input is applied to the agents. In particular, x(t) ∈ K̄ implies that the relative

output information satisfies δli(t) = 0. Thus, combined with ξi(t) = 0, this implies

ui(t) = 0.

We first claim that the projection graph of G is connected. For a contradiction,

suppose that proj (G) is not connected. Then, without loss of generality, agents

can be relabeled such that the Laplacian matrices are given by

Ll =


Ll1

. . .

Llc

 , ∀l ∈ L,

where c ≥ 2 is the number of connected component of proj (G). Specifically,

Llk ∈ RNk×Nk is the Laplacian matrix for k = 1, . . . , c where Nk ≥ 1 [Wie10,

Section 2.2.2]. Let p′ ∈ Rn be a nonzero vector such that p′ ∈ X u(A) whose

existence follows from Assumption 3.1.1. Define p∗ ∈ RNn as

p∗ :=
[
α1(1N1 ⊗ p′); · · · αc(1Nc ⊗ p′)

]
,

where αk ̸= 0 are distinct scalars. Consider the solution of (3.1.1) from the initial

condition given by x(0) = p∗ and ξ(0) = 0. Since [x(0); ξ(0)] ∈ V, invariance of V
implies

ẋi = Axi, ξ̇i = 0, ∀i ∈ N .

Define e(t) := xk1(t) − xk2(t) where k1 ∈ N is the index of a node from the

first connected component, and k2 ∈ N is the index of a node from the second

connected component. Then, e(0) = (α1 − α2)p
′ ∈ X u(A). Hence, it follows that

ė = Ae.

By the definition of e(0), it holds that |e(t)| ̸→ 0 as t → ∞. This implies that
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the consensus is not achieved. Since it was assumed that the system (3.1.1) is

consensusable, this leads to a contradiction. Therefore, proj (G) is connected.

Now, it will be shown that (3.2.2) holds if (3.1.1) is state consensusable. For

a contradiction, suppose that (3.2.2) does not hold. Then, it is left to show there

exists an initial condition such that consensus is not achieved.

Let x∗ := [x∗1; · · · ;x∗N ] ∈ RNn be a vector such that x∗ ∈ K̄ but x∗ ̸∈ SNn .

Suppose that the initial condition of the system (3.1.1)–(3.1.2) is given by x(0) =

x∗ and ξ(0) = 0. Since [x∗; 0] ∈ V, it follows from invariance of V that ξ(t) = 0

and x(t) ∈ K̄ for t ≥ 0.

In addition, we claim that there exist indices i∗ ∈ N and l∗ ∈ L such that∑
j∈N l∗

i∗
αl

∗
i∗j(x

∗
j − x∗i∗) ̸= 0. To see this, suppose that

∑
j∈N l

i
αlij(x

∗
j − x∗i ) = 0 for

all i ∈ N and l ∈ L. Then, it follows that(
L∑
l=1

Ll ⊗ In

)
x∗ = 0.

Since the projection graph is connected,
∑L

l=1 L
l is a Laplacian matrix of a con-

nected graph. Therefore, it follows that x∗ ∈ SNn which leads to a contradiction

since x∗ ̸∈ SNn . Hence the claim is proven.

Finally, define the error variable as e′ :=
∑

j∈N l∗
i∗
αl

∗
i∗j(xj − xi∗) where e′(0) =∑

j∈N l∗
i∗
αl

∗
i∗j(x

∗
j − x∗i∗) ̸= 0 by definition of i∗ and l∗. Recall that due to the

invariance of V, it holds that ui(t) = 0 for all t ≥ 0. Thus, the dynamics of e′ can

be written as

ė′ = Ae′.

Moreover, it follows from x∗ ∈ K̄ that x∗ ∈ kerLl
∗ ⊗ (Z l

∗
)⊤. Hence, we obtain

e′(0) ∈ ker (Z l
∗
)⊤ ⊆ X u(A), i.e., e′(0) ∈ X u(A) and e′(0) ̸= 0. Therefore, we

obtain |e′(t)| ̸→ 0 as t → ∞ and consensus is not achieved when x(0) = x∗ and

ξ(0) = 0. This leads to a contradiction since it is assumed that the system is

consensusable. This completes the proof that (3.2.2) is a necessary condition for

achieving state consensus. □

It can be deduced from the proof of Theorem 3.2.1 that K̄ = ∩Ll=1L
l⊗(Z l)⊤ is



3.3. Proof of Necessity 55

related to an invariant set where no control input is applied. Intuitively speaking,

the condition (3.2.2) can be interpreted as stating that the consensus is achieved

within an invariant set.

Remark 3.3.1. Necessary condition for consensusability of the system and in-

variance of the set V in the proof can be related to the similar concepts in

[WWA13]. The work of [WWA13] studied necessary conditions for achieving

consensus of heterogeneous nonlinear multi-agent systems over a single-layer net-

work. In words, the necessary condition can be interpreted as requiring that an

invariant set must be contained within the synchronization space. The same con-

cept arises naturally for multilayer network as well through statements such as

the invariance of V and K̄ = SNn . ♢

Finally, we end the discussion regrading the necessary conditions with yet

another interpretation of (3.2.2). For the statement, denotem distinct eigenvalues

of A as λdi (A) such that

Re
(
λd1(A)

)
≤ . . . ≤ Re

(
λdm(A)

)
.

Also define ms be the number of stable eigenvalues. Then the following result

states that the condition (3.2.2) can be decomposed into each mode of the system.

Proposition 3.3.2. Let K̄k :=
⋂L
l=1 kerL

l⊗(Z lk)
⊤ where Z lk is defined such that

ker (Z lk)
⊤ = ⟨kerC l |A⟩∩Xλdk(A) for all k = 1, . . . ,m. Then, the condition (3.2.2)

holds if and only if the set K̄k satisfies

K̄k ⊆ SNn , ∀k = ms + 1, . . . ,m. (3.3.3)
♢

Proof. (3.2.2) ⇒ (3.3.3) : Let x∗ = [x∗1; · · · ;x∗N ] ∈ K̄k for some k such that

ms+1 ≤ k ≤ m. From the definition of K̄k, it follows that
∑

j∈N l
i
αlij(x

∗
j − x∗i ) ∈

ker (Z lk)
⊤ for all l ∈ L and i ∈ N . Since Xλk(A) ⊆ X u(A), this implies that

∑
j∈N l

i

αlij(x
∗
j − x∗i ) ∈ ⟨kerC l |A⟩ ∩ Xλdk(A) ⊆ ker (Z l)⊤
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for all i ∈ N and l ∈ L. Hence, x∗ ∈ K̄ = SNn which completes the proof.

(3.3.3) ⇒ (3.2.2) : Recalling from Lemma 3.3.1 that K̄ is A-invariant, it

follows from [Won74, Prop. 0.4] that

K̄=
(
K̄ ∩ Xλd1 (A)

)
⊕ · · · ⊕

(
K̄ ∩ Xλdm(A)

)
,

where ⊕ denotes the direct sum between vector spaces. Therefore x∗ ∈ K̄ can be

written as x∗ =
∑m

k′=1 x
k′ , where xk′ := [xk

′
1 ; · · · ;xk

′
N ] ∈ K̄ ∩Xλd

k′
(A). Hence, it is

sufficient to show xk
′ ∈ SNn for all k′ = 1, . . . ,m. From the definitions, it follows

that for each k′ = 1, . . . ,m,

∑
j∈N l

i

αlij(x
k′
j − xk

′
i ) ∈ ⟨kerC l |A⟩ ∩ X u(A) ∩ Xλd

k′
(A) (3.3.4)

for all i ∈ N and l ∈ L. For all k′ = ms+1, . . . ,m, we obtain X u(A)∩Xλd
k′
(A) =

Xλd
k′
(A). Hence, this implies xk′ ∈ K̄k ⊆ SNn .

On the other hand, X u(A) ∩ Xλd
k′
(A) = {0} for k′ = 1, . . . ,m′

s. Thus, it

follows from (3.3.4) that xk′ ∈ ⋂L
l=1 kerL

l ⊗ In for all k′ = 1, . . . ,m′
s. However,

this implies xk′ ∈ K̄k ⊆ SNn for any k ∈ {ms+1, . . . ,m} and for all k′ = 1, . . . ,m′
s.

Thus, we obtain xk′ ∈ SNn for k′ = 1, . . . ,m and this completes the proof. □

Following corollary provides a physical interpretation of the necessary con-

dition (4.1.1) and connects graph theoretic condition to each eigenvalue of the

system.

Corollary 3.3.3. For the system (3.1.1), suppose that the multilayer graph G is

undirected and that the geometric multiplicity of λk(A) is 1. Define an index set

Iλk ⊆ L as

Iλk :=

{
l ∈ L

∣∣∣ rank(A− λk(A)In

C l

)
= n

}
. (3.3.5)

If the system (3.1.1) is state consensusable, then for all unstable eigenvalues of A

(i.e., λk(A), the projection graph of Gλk := (N , {E l}l∈Iλk ) is connected. ♢
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Proof. For the proof by contrapositive, suppose that there exists an index k∗ such

that Re (λk∗(A)) ≥ 0, but the proj (Gλk∗ ) is not connected. Then, without loss of

generality, it holds that

Ll = diag(Ll1,L
l
2), ∀l ∈ Iλk∗ ,

where Lli ∈ RNi×Ni for i = 1, 2 are Laplacian matrices. Let v ∈ Xλk∗ (A) be a

nonzero vector, and define x∗ := [1N1 ⊗v;−1N2 ⊗v]. Then, it can be verified that

x∗ /∈ SNn . Now, it will be proved that x∗ ∈ K̄k∗ . For l ∈ Iλk∗ , we obtain

(Ll ⊗ (Z lk)
⊤)x∗ =

[
(Ll1 · 1N1)⊗ (Z lk)

⊤v

(Ll2 · −1N2)⊗ (Z lk)
⊤v

]
= 0.

On the other hand, for all l ∈ L \ Iλk∗ ,

rank

(
A− λk∗(A)In

C l

)
< n.

Since geometric multiplicity of λk∗(A) is 1 by the assumption, this implies C lv = 0.

Thus, it follows that v ∈ ⟨kerC l |A⟩ ∩ Xλk∗ (A) = ker (Z lk∗)
⊤ for all l ∈ L \ Iλk∗ .

Therefore, it is easy to see that for all l ∈ L \ Iλk∗ ,

(Ll ⊗ (Z lk∗)
⊤x∗ = (Ll ⊗ In)(IN ⊗ (Z lk∗)

⊤)x∗ = 0.

Hence, it holds that x∗ ∈ K̄k∗ while x∗ /∈ SNn . This proves the negation of (3.3.3)

and completes the proof. □

Note that the condition used in (3.3.5) is exactly the PBH test for λk(A)

with the output matrix C l. Therefore, the set Iλk represents indices of all layers

where λk(A) is an observable eigenvalue by the corresponding output matrix C l.

Thus the necessary condition (3.2.2) can be interpreted as follows. For each

unstable eigenvalue λk∗(A), the projection graph constructed among layers having

λk∗(A) as an observable eigenvalue must be connected. In other words, unstable

eigenvalues must be connected, in a sense that its projection graph corresponding

to the multilayer graph Gλk∗ = (N , {E l}l∈Iλk∗ ) is connected. This also recovers
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our previous result [LS17]. Although the discussion is done for the state consensus

problem over undirected multilayer networks, interpretation provided by Corollary

3.3.3 extends to the output consensus problem over directed multilayer networks.

Detailed discussions on this topic can be found in Chapter 4.

3.4 Proof of Sufficiency

In this section, sufficiency of the condition (3.2.2) is proved by constructing

a dynamic controller of the form (3.1.2) with χi being the stack of ξk for k ∈
N p
i ∪ {i}. Recall from the consensus of multi-agent systems over a single-layer

network that a common approach for solving the consensus problem is to use

the observer-based dynamic controller. Specifically, a dynamics is constructed to

estimate the relative state information (e.g.,
∑

j∈Ni αij(xj − xi)), which is then

used to compute suitable control action. However, for the multilayer network,

relative state information cannot be estimated directly as each layer contains

much less information. For instance, each layer may not be detectable or even

connected. Hence, information from each layer must be appropriately combined

to compute control input. In order to achieve this, we propose a hierarchical

structure which first estimates the partial information from each layer and then

combines partial information over multiple layers to obtain the desired result.

First, we propose a dynamics given by

ξ̇li = Aldξ
l
i +Gl

[ ∑
j∈N l

i

αlijC
l
d(ξ

l
j − ξli)− αlij(y

l
j − yli)

]
+ (Z l)⊤Bui, (3.4.1)

for all i ∈ N , l ∈ L, where ξli ∈ Rn−νl . Then the following result holds.

Lemma 3.4.1. Consider the dynamics given by (3.1.1) and (3.4.1). Then for

each l ∈ L, there exists Gl such that

ξlj(t)− ξli(t) → (Z l)⊤(xj(t)− xi(t)) (3.4.2)

as t → ∞ for all nodes i and j belonging to the same connected component of

Gl. ♢
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Proof. Proof follows by applying Lemma A.1.3 of the Appendix to detectable

part of the system (3.1.1) via C l and the fact that Ll = Bl(Bl)⊤, where Bl is the

incidence matrix of Gl. (For instance, ẑi of Lemma A.1.3 is ξli and εi(t) = 0.) □

Result of Lemma 3.4.1 states that the proposed dynamics (3.4.1) acts like a

partial observer. The state ξli is an estimate by agent i on layer l and recovers

as much partial relative state information possible from l-th layer. In particular,

by computing the difference of ξli with its neighboring agents on l-th layer, an

agent may obtain the partial relative state information. However, since each layer

is not necessarily detectable nor connected, (3.4.1) only recovers the detectable

part of the state and the convergence only holds for the agents within the same

connected component of Gl. Such a challenge was not present in case of single

layer network as connectivity and detectability is assumed.

Nonetheless, by using ξli for all l ∈ L, relative state difference can be obtained.

For this, we propose an additional estimator given by

˙̂xi=Ax̂i +Bui + γ
L∑
l=1

∑
j∈N l

i

[
αlij(Z

l)(Z l)⊤(x̂j − x̂i)− αlij(Z
l)(ξlj − ξli)

]
, (3.4.3)

where γ > 0 is a gain to be designed. Then, the following lemma states that

(3.4.3) recovers the relative state difference.

Lemma 3.4.2. Consider the dynamics (3.4.3) and suppose that the necessary

condition (3.2.2) holds. Then there exists γ∗ > 0 such that for all γ > γ∗,

x̂j(t)− x̂i(t) → xj(t)− xi(t), ∀i, j ∈ N ,

as t→ ∞. ♢

Proof. Let ei := x̂i−xi, e := [e1; · · · ; eN ], x := [x1; · · · ;xN ] and ξl := [ξl1; · · · ; ξlN ].
Then, the dynamics of x̂ becomes

˙̂x = (IN ⊗A)x̂+ (IN ⊗B)u− γ
L∑
l=1

Ll ⊗ (Z l)(Z l)⊤x̂+ γ
L∑
l=1

(Ll ⊗ Z l)ξl.
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Hence, it follows that

ė = ˙̂x− ẋ±
L∑
l=1

Ll ⊗ (Z l)(Z l)⊤x

=

[
(IN ⊗A)− γ

L∑
l=1

Ll ⊗ Z l(Z l)⊤

]
e+ γ∆(t), (3.4.4)

where ∆(t) :=
∑L

l=1

(
Ll ⊗ (Z l)

) (
ξl − (IN ⊗ (Z l)⊤)x

)
.

Let W = [(1/N)1⊤N ;R
⊤] ∈ RN×N be an orthogonal matrix given by Theorem

2.1.4 applied to a connected Laplacian matrix. Apply the state transformation

given by [ē; ẽ] := (W ⊗ In)e, where ē ∈ Rn and ẽ ∈ R(N−1)n. Then, (3.4.4) can

be written as

˙̄e = Aē,

˙̃e =

[
(IN−1 ⊗A)− γ

L∑
l=1

R⊤LlR⊗ (Z l)(Z l)⊤

]
ẽ+ γ(R⊤ ⊗ In)∆(t).

Since im (R) = (SN1 )⊥, it follows from the algebraic condition (3.2.3) that

L∑
l=1

R⊤LlR⊗ (Z l)(Z l)⊤ > 0.

Hence, γ can be chosen sufficiently large such that

(IN−1 ⊗A)− γ

L∑
l=1

R⊤LlR⊗ (Z l)(Z l)⊤

is Hurwitz. In particular, let γ > 0 such that

γ∗ :=
λn(A+A⊤)

2λ1
(∑L

l=1R
⊤LlR⊗ (Z l)(Z l)⊤

) < γ.

In addition, ∆(t) is exponentially decaying by Lemma 3.4.1. Hence, it holds that

ẽ(t) → 0, i.e., ej(t)− ei(t) → 0. Thus, x̂j(t)− x̂i(t) → xj(t)−xi(t) for all i, j ∈ N
which completes the proof. □



3.4. Proof of Sufficiency 61

The proposed dynamics (3.4.3) with (3.4.1) estimates the relative state differ-

ence between any two agents in the network by appropriately combining partial

information from each layer. Using such an estimate, control inputs have been

designed for the single-layer network which can be analogously used for the mul-

tilayer network. For the multilayer network, two designs are presented.

1. Design using x̂j − x̂i

Let Lp be the Laplacian matrix of Gp = proj (G) and design the control input

(e.g., see [WLH09]) as

ui = B⊤P
∑
j∈Np

i

αp
ij(x̂j − x̂i), (3.4.5)

where P > 0 is the unique solution of

A⊤P + PA− λ2(L
p)PBB⊤P = −In. (3.4.6)

Then the overall system can be written as

ẋ = Ax− (IN ⊗B)(Lp ⊗B⊤P )x̂.

Apply the transformation [ē; ẽ] := (U ⊗ In)x where W is defined as in Theo-

rem 2.1.4 applied to Lp such that WLpW⊤ = diag(0, λ2(L
p), . . . , λN (L

p)) =:

diag(0,Λp). Then, it follows that

˙̄e = Aē, (3.4.7)

˙̃e =
[
(IN−1 ⊗A)− (Λp ⊗BB⊤P )

]
ẽ+ (R⊤ ⊗BB⊤P )(Lp ⊗ In)(x− x̂),

where x and x̂ are stack of xi and x̂i respectively. Note that (Lp ⊗ In)(x− x̂) is

exponentially decaying due to Lemma 3.4.2 and (IN−1 ⊗ A) − (Λp ⊗ BB⊤P ) is

Hurwitz due to (3.4.6). Therefore, it follows that the consensus is achieved.
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2. Design using x̂i

Alternatively, control input can also be designed as

ui = Kx̂i, (3.4.8)

where K such that A + BK is Hurwitz (e.g., see [LDCH10, ZXD14]). Then the

system (3.1.1) with (3.4.8) can be written as

ẋ = (IN ⊗A)x+ (IN ⊗BK)x̂.

Applying the transformation [ē; ẽ] := (W ⊗ In)x with W from Theorem 2.1.4

applied to Lp such that WLpW⊤ = diag(0,Λp), we obtain

˙̄e = Aē+
1

N
(1⊤N ⊗BK)x̂, (3.4.9)

˙̃e = (IN−1 ⊗ (A+BK))ẽ+ (IN ⊗BK)(R⊤ ⊗ In)(x̂− x).

From Lemma 3.4.2 and the definition of R, it follows that (Lp ⊗ In)(x̂ − x) =

(RΛpR⊤ ⊗ In)(x̂− x) → 0 and that RΛp has full column rank. Hence we obtain

(R⊤⊗In)(x̂−x) → 0. Since A+BK is Hurwitz, this implies ẽ→ 0, i.e., consensus

is achieved.

In conclusion, dynamic controller given by (3.4.1), (3.4.3) with either (3.4.5) or

(3.4.8) achieves consensus from arbitrary initial condition. Note that the crucial

assumption required for the proposed controller to work is the algebraic condition

(3.2.3), which is used to prove Lemma 3.4.2. Since the algebraic condition (3.2.3)

is a necessary condition for consensusability, this completes the proof of Theorem

3.2.1.

Remark 3.4.1. The two designs for the control input each have a different prop-

erty. For instance, the dynamic controller given by (3.4.1), (3.4.3) and (3.4.5)

achieves average consensus. That is, the trajectories satisfy

lim
t→∞

|xi(t)− s(t)| = 0, ∀i ∈ N ,
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where s(t) is the solution of

ṡ = As, s(0) =
1

N

N∑
i=1

xi(0).

(This easily follows from (3.4.7).) Specifically, the converged trajectory only de-

pends on the initial conditions of the plant xi(0) and not on ξli(0) or x̂i(0).

On the other hand, the dynamic controller given by (3.4.1), (3.4.3) and (3.4.8)

does not achieve average consensus as one can verify from (3.4.9). However, (3.4.8)

achieves consensus with (3.4.3) being a stable system. To see this, note that (3.4.3)

becomes

˙̂xi = (A+BK)x̂i + γ

L∑
l=1

∑
j∈N l

i

[
αlij(Z

l)(Z l)⊤(x̂j − x̂i)− αlij(Z
l)(ξlj − ξli)

]
.

Using Lemma 3.4.1 and Lemma 3.4.2, it can be verified that x̂i(t) → 0. ♢

3.4.1 Additional Considerations for the Controllers

For the rest of the chapter, we briefly discuss the performance of the proposed

controllers as well as some design methodologies.

3.4.1.1 Performance of the Proposed Controllers

Performance of the proposed controller can be also easily seen from the anal-

ysis. In particular, by defining el := (IN ⊗ (Z l)⊤)x − ξl and e := x̂ − x, overall

dynamics with (3.4.5) can be written as



ė1

...

ėL

ė

ẋ


=



(IN ⊗A1
d − L1 ⊗G1C1)

. . .

(IN ⊗ALd − LL ⊗GLCL)

γL1 ⊗ (Z1) · · · γLL ⊗ (ZL)

0 0 0
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IN ⊗A− γ
∑L

l=1 L
l ⊗ (Z l)(Z l)⊤ 0

Lp ⊗BK IN ⊗A− Lp ⊗BK





e1

...

eL

e

x


which has a block lower triangular structure. Therefore, it can be easily seen that

the performance depends on the eigenvalue of the matrices (IN ⊗Ald−Ll⊗GlC l)
for all l ∈ L, IN ⊗A− γ

∑L
l=1 L

l ⊗ (Z l)(Z l)⊤, and IN ⊗A− Lp ⊗BK.

If additional assumptions hold, then the convergence rate can be made arbi-

trarily fast. For instance, suppose (A,B) is controllable. Then choose the gain

K = B⊤P , where P > 0 is the solution of

A⊤P + PA− λ2(L
p)PBB⊤P = −θP (3.4.10)

for some θ > −2Re (λmin(A)). It is shown in [ZDL08] that the solution P for

(3.4.10) exists, unique and positive definite. Additionally, we can show that the

real part of eigenvalues of A−λi(Lp)BB⊤ less than −θ for i = 2, . . . , N . For this,

consider the Lyapunov function defined as V (x) = x⊤Px. Then it holds that

d

dt
V (x) = x⊤(A⊤P + PA− λi(L

p)PBB⊤P )x

= x⊤(A⊤P + PA− λ2(L
p)PBB⊤P + (λ2(L

p)− λi(L
p))PBB⊤P )x

= −θx⊤Px+ (λ2(L
p)− λi(L

p))x⊤PBB⊤Px

≤ −θx⊤Px
= −θV (x).

Since V (x) decays at rate θ, real part of eigenvalues of A − λi(L
p)BB⊤P is at

least −θ/2. Thus convergence rate can be assigned arbitrarily by choosing θ > 0

sufficiently large2.

Similarly, we can obtain arbitrarily fast convergence rate for the partial ob-

2If the input is given by (3.4.8), a simple pole placement can be used to obtain the same
conclusion.
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servers using the similar argument. In particular, by using observability decom-

position (instead of detectable decomposition), we can always make (C ld, Ad) an

observable pair. Finally, since
∑L

l=1 L
l⊗(Z l)(Z l)⊤ is positive definite, the desired

eigenvalues of IN ⊗ A − γ
∑L

l=1 L
l ⊗ (Z l)(Z l)⊤ can be made arbitrarily negative

by choosing sufficiently large γ.

3.4.1.2 Design for the Worst-case Scenario

For the single-layer consensus problem, the design parameters can often be

designed a priori to the operation such that it is robust to changes in the network

structure (e.g., with fixed environment such as A,B or number of agents in the

system). In particular, the algebraic connectivity of the graph (i.e., the second

smallest eigenvalue of the Laplacian matrix) plays a crucial role, and the param-

eters such as feedback gain can be designed by considering the smallest possible

algebraic connectivity (e.g., see works such as [Tun08, SSB09] for more details).

Similar result can be obtained for the proposed controller design over a mul-

tilayer network. Recall that the design parameters of the proposed controller are:

1. Gain for the partial observers Gl.

2. Gain for the state observer γ.

3. Gain for the state feedback (i.e., P in (3.4.5) or K in (3.4.8)).

The design procedure of the gainsGl and P are identical to the one from the single-

layer network, and hence these can be designed if the algebraic connectivity of the

network is known. For example, for a fixed number of agents and with unweighted

graphs, the algebraic connectivity is given by 2(1− cos(π/N)), i.e., the algebraic

connectivity of a path graph. The gain K in (3.4.8) can be designed using pole

placement which is independent of the structure of the communication network.

Finally, the γ can be chosen given the value of λ1
(∑L

l=1R
⊤LlR⊗ (Z l)(Z l)⊤

)
>

0. One can find the minimum value by enumerating all possible combinations

of the multilayer network. Existence of a simpler characterization similar to the

algebraic connectivity of a path graph (which is used in the design for the single-
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layer graph) is an open question3.

In conclusion, the design designed prior to the operation such that it is robust

to the changes of the network structure.

3Nonetheless, we conjecture that there exists a constant c, which only depends on the number
of agents N and the number of layers L, such that

λ1

(
L∑
l=1

R⊤LlR⊗ (Zl)(Zl)⊤
)

> c · λ2(L
p).



Chapter 4

Extension to the Output Consensus
Problem over Directed Network

In the previous chapter, the state consensus problem is studied over an undirected

multilayer network. This chapter studies extension of previous results to output

consensus problem over a directed multilayer network.

4.1 Necessary Conditions for the Output Consensus

Problem

In this section, necessary conditions developed for the state consensus prob-

lem are extended to the output consensus problem over a directed multilayer net-

work. Recalling the interpretation that (3.2.2) implies that the invariant set must

be contained in the consensus space (e.g., see Section 3.3 or Remark 3.3.1), an

analogous condition for output consensus problem is proposed as

K̄ ⊆ kerΠ⊗ (ZR)
⊤, (4.1.1)

where K̄ is defined using the Laplacian matrices of directed graphs. In particular,

the set kerΠ⊗(ZR)
⊤ is where the difference of xi belongs to undetectable subspace

of the pair (R,A) when ui(t) ≡ 0.

The following result presents that (4.1.1) indeed a necessary conditions for

the output consensus problem over directed multilayer networks.

67
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Lemma 4.1.1. Suppose that Assumption 3.1.1 holds. If the system (3.1.1) is

output consensusable, then (4.1.1) holds. In addition, (4.1.1) is equivalent to

K̄k ⊆ kerΠ⊗ (ZR)
⊤, ∀k = ms + 1, . . . ,m, (4.1.2)

where K̄k is defined in Corollary 3.3.2. ♢

Proof. Proof of Lemma 4.1.1 closely follows the proof of similar results from The-

orem 3.2.1 (which was presented in Section 3.3). Hence, only the difference is

highlighted and details are omitted.

To show (4.1.1) is a necessary condition for the output consensus problem, we

first claim that the projection graph of G contains a rooted spanning tree. For a

contradiction, suppose that the proj (G) does not contain a rooted spanning tree.

Then, without loss of generality, agents can be relabeled such that the Laplacian

matrices are given by

Ll =


Ll1 0 0

. . .
...

0 Llc 0

∗ · · · ∗ Llc+1

 , ∀l ∈ L,

where c ≥ 2 is the number of independently strongly connected component (iSCC)

of proj (G). Specifically, Llk ∈ RNk×Nk is a Laplacian matrix for k = 1, . . . , c

where Nk ≥ 1 [Wie10, Section 2.2.2]. Let p′ ∈ Rn be a nonzero vector such that

p′ ∈ X u(A) but p′ ̸∈ ⟨kerR |A⟩ whose existence follows from Assumption 3.1.1.

Define p∗ ∈ RNn as

p∗ :=
[
α1(1N1 ⊗ p′); · · · αc(1Nc ⊗ p′); ∗

]
,

where αk ̸= 0 are distinct scalars and the asterisk denotes the elements without

any interest for the result. Consider the initial condition given by x(0) = p∗ and

ξ(0) = 0. Next, restrict the attention to the nodes in the k-th iSCC. Then, using

the similar argument as in the proof of Theorem 3.2.1 and the fact that χi only
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consists of ξk for k ∈ Pp
i ∪ {i}, it can be obtained that

ẋi = Axi, ξ̇i = 0 (4.1.3)

for all nodes i belonging to the k-th iSCC. Define e(t) := xk1(t) − xk2(t) where

k1 is the index of a node from the first iSCC, and k2 is the index of a node from

the second iSCC. Then, e(0) = (α1−α2)p
′ ∈ X u(A) and e(0) ̸∈ ⟨kerR |A⟩. Since

(4.1.3) holds for any iSCC, it follows that

ė = Ae, ψ = Re,

where ψ := ζk1 − ζk2 is the relative output error. By the definition of e(0), it

holds that |ψ(t)| ̸→ 0 as t → ∞. This implies that the output consensus is not

achieved. Since it was assumed that the system (3.1.1) is output consensusable,

this leads to a contradiction. Therefore, proj (G) contains a rooted spanning tree.

Now, let x∗ := [x∗1; · · · ;x∗N ] ∈ K̄ but x∗ ̸∈ kerΠ⊗ (ZR)
⊤. Then, using the fact

that proj (G) has a rooted spanning tree, it can be proven that there exists indices

i∗ ∈ N and l∗ ∈ L such that
∑

j∈N l∗
i∗
αl

∗
i∗j(x

∗
j − x∗i∗) ̸∈ ker (ZR)

⊤. Let x(0) = x∗,

ξ(0) = 0 and define e′ :=
∑

j∈N l∗
i∗
αl

∗
i∗j(xj − xi∗). Then we obtain

ė′ = Ae′, ψ′ = Re′,

where e′(0) ∈ X u(A) and e′(0) ̸∈ ker (ZR)
⊤. Thus, |ψ′(t)| ̸→ 0 and hence output

consensus is not achieved when x(0) = x∗ and ξ(0) = 0. This leads to a contra-

diction since it is assumed that the system is output consensusable.

Proof for the equivalence of (4.1.1) and (4.1.2) can be obtained by following

the proof of Proposition 3.3.2. In particular, the same argument can be applied

by simply replacing SNn with kerΠ⊗ (ZR)
⊤ and hence omitted. □

Lemma 4.1.1 extends the necessary condition (3.2.2) and the results of Propo-

sition 3.3.2 to output consensus over directed graphs. Specifically, (4.1.1) becomes

(3.2.2) and (4.1.2) becomes (3.3.3) since ZR = In for state consensus problem.
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For the algebraic condition (3.2.3), we consider an extension given by

Re

(
λn−νR+1

( L∑
l=1

Ll ⊗ (YR)
⊤(Z l)(Z l)⊤YR

))
> 0, (4.1.4)

where YR is defined in (3.1.3). The proposed condition (4.1.4) is a valid extension

since ZR = YR = In in case of state consensus problem and hence it becomes

(3.2.3) if network is undirected. Relation between the geometric condition (4.1.1)

and the algebraic condition (4.1.4) is stated below.

Lemma 4.1.2. Following statements hold.

1. If G is undirected, then (4.1.1) implies (4.1.4).

2. If R = In, then (4.1.4) implies (4.1.1). ♢

Proof. (4.1.1) ⇒ (4.1.4) : Suppose that G is undirected and (4.1.1) holds. Then

using the fact that Ll = Bl(Bl)⊤, (4.1.1) is equivalent to

((Bl)⊤ ⊗ (Z l)⊤)x = 0, ∀l ∈ L =⇒ (Π⊗ Z⊤
R )x = 0 (4.1.5)

for all x ∈ RNn. Meanwhile, it can be checked that (4.1.4) is equivalent to showing

L⋂
l=1

ker
(
(Bl)⊤ ⊗ ((Z l)⊤YR)

)
⊆ SNn−νR .

Let z ∈ RN(n−νR) be such that

((Bl)⊤ ⊗ (Z l)⊤YR)z = 0, ∀l ∈ L.

However, this means ((Bl)⊤ ⊗ (Z l)⊤)((IN ⊗ YR)z) = 0. Hence, it follows from

(4.1.5) that (Π⊗Z⊤
R )(IN ⊗YR)z = 0. Since Z⊤

RYR = In−νR , we obtain z ∈ SN
n−νR

which completes the proof.

(4.1.4) ⇒ (4.1.1) : Suppose that R = In and (4.1.4) holds. Let x ∈ K̄, i.e.,

(Ll ⊗ (Z l)⊤)x = 0 for all l ∈ L. This implies (Ll ⊗ (Z l)(Z l)⊤)x = 0 and hence∑L
l=1(L

l⊗(Z l)(Z l)⊤)x = 0. However, (4.1.4) implies ker (
∑L

l=1 L
l⊗(Z l)(Z l)⊤) =
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SNn and hence x ∈ SNn . This completes the proof since kerΠ ⊗ (ZR)
⊤ = SNn if

R = In. □

4.2 Challenges for the Output Consensus Problem over

Directed Multilayer Networks

Unfortunately, Lemma 4.1.2 cannot be further extended as in Theorem 3.2.1

to establish the equivalence. For instance, (4.1.1) is not equivalent to (4.1.4)

in general. Furthermore, (4.1.1) is also clearly not sufficient to achieve output

consensus. These are illustrated through the following examples.

Example 4.2.1. Consider the system given by

A =


1 0 0

0 1 1

0 0 1

 , R =
[
0 1 0

]
, C1 =

[
1 1 0

]

with L = 1, N = 3 and G1 being a complete graph. By defining ZR and WR as

ZR =


0 0

1 0

0 1

 , WR =


1

0

0

 ,
while Z1 and W 1 are defined as

Z1 =


1 0

1 0

0 1

 , W 1 =


−1

1

0

 .
Hence the transformation matrix are orthogonal and it follows that YR = ZR and

UR =WR. Then it can be computed that

λ2

(
L1 ⊗ (YR)

⊤(Z l)(Z l)⊤YR

)
= 3.0 > 0,

that is (4.1.4) holds. However, it can be verified that x∗ := [1; 2; 3]⊗ [1;−1; 0] ∈ K̄
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yet x∗ ̸∈ kerΠ⊗ (ZR)
⊤. ♢

Example 4.2.1 depicts a case where the algebraic condition (4.1.4) holds, yet

(4.1.1) does not. In particular, this example illustrates a scenario where the avail-

able information δli are all identically zero, but output consensus is not reached.

Next example shows that the converse is also not true in general, i.e., (4.1.1)

holds yet the algebraic condition (4.1.4) may not.

Example 4.2.2. Let A = 03×3, L = 3, N = 4, n = 3 and suppose that Ll ∈ R4×4

and C l ∈ R2×3 are given by

L1 =


1 0 0 −1

0 0 0 0

0 −1 1 0

0 0 0 0

 , L2 =


0 0 0 0

0 0 0 0

0 0 1 −1

−1 0 0 1

 , L3 =


1 −1 0 0

0 1 −1 0

0 0 0 0

0 0 0 0

 ,

while the output matrices are given by

C1 =

[
1 2 3

1 0 1

]
, C2 =

[
4 2 0

1 0 3

]
, C3 =

[
1 4 2

4 3 4

]
, R = I3.

Then, it can be checked that Z l = (C l)⊤ for all l ∈ L and

Re

(
λ4
( L∑
l=1

Ll ⊗ (Z l)(Z l)⊤
))

= 0,

while K̄ = S4
3 . In particular, we have

Re

(
λ1(

L∑
l=1

Ll ⊗ (Z l)(Z l)⊤)

)
≈ −1.3542 < 0. ♢

Example 4.2.2 highlights a challenge for generalizing the algebraic condition

(3.2.3) to directed graphs. Specifically, Example 4.2.2 shows that the eigenvalues

of
∑L

l=1 L
l ⊗ (Z l)(Z l)⊤ are not necessarily on the closed right-half plane. This

leads to difficulties since algebraic condition (3.2.3) is utilized when constructing

the dynamic controller.
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Re
(
λn−νR+1

(∑L
l=1 L

l ⊗ (YR)
⊤(Zl)(Zl)⊤YR

))
> 0

Output Consensusable

K̄ ⊆ kerΠ⊗ (ZR)
⊤

Lem. 4.1.1
if directed
(Ex. 4.2.3)

if directed
(Ex. 4.2.2)

if undirected
(Lem. 4.1.2)

if R ̸= In

(Ex. 4.2.1)
if R = In

(Lem. 4.1.2)

Figure 4.1: Relationships between various conditions for output consensus
problem over directed graph and corresponding counterexamples.

Finally, the following example reveals that the proposed necessary condition

(4.1.1) is in fact not sufficient for directed multilayer graphs.

Example 4.2.3. Suppose that A = 0, L = 2, N = 3, n = 1 and R = C1 = C2 =

1, where the Laplacian matrices are given by

L1 =


0 0 0

0 0 0

−1 0 1

 , L2 =


0 0 0

0 0 0

0 −1 1

 .
Then, it can be checked that K̄ = S3

1 . However, it follows from the proof of Lemma

4.1.1 that state consensus cannot be achieved since proj (G) does not contain a

rooted spanning tree. ♢

Summary of various conditions discussed so far and its relations are shown in

Fig. 4.1. For the state consensus problem over the undirected network, Theorem

3.2.1 state that all statements in Fig. 4.1 are equivalent. Unfortunately, a similar

result does not hold for the output consensus problem over a directed network.

One of the fundamental limitations of the condition (4.1.1) can be seen from

its physical interpretation. Recall from the detectability interpretation of the

condition that (4.1.1) is saying that if the relative output information
∑

j∈N l
i
ylj−

yli ≡ 0, then the consensus of ζi must be achieved. However, it is possible that

the desired output achieves consensus (i.e., ζi = ζi), while the relative output
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difference over the multilayer network (i.e., ylj − yli) is not zero.

4.3 Controller Design for the Output Consensus Prob-

lem

Discussions so far illustrated the difficulties of extending the previous results

to the output consensus problem over directed multilayer networks. Nevertheless,

this section designs a dynamic controller to achieve output consensus by imposing

additional assumptions on the system. From Chapter 3, we have seen that the

algebraic condition (3.2.3) is integral to designing a dynamic controller. Similarly,

a dynamic controller will be designed using algebraic condition (4.1.4) to achieve

output consensus. However, notice from Fig. 4.1 that even if G is undirected,

algebraic condition (4.1.4) alone is clearly not sufficient (as it contradicts with

Example 4.2.1 if (4.1.4) implies output consensus). Therefore, we make additional

assumptions such that the dynamic controller can be designed.

4.3.1 Controller Design under System Theoretic Constraint

In order to design a dynamic controller for a directed multilayer network, we

make the following assumption (which is discussed in [LS20b] for unobservable

subspaces) to design a dynamic controller.

Assumption 4.3.1. There exists a basis {v1, . . . , vn} of Rn such that every unde-

tectable subspace ⟨kerC1 |A⟩∩X u(A), . . . , ⟨kerCL |A⟩∩X u(A) and ⟨kerR |A⟩∩
X u(A) is a span of a subset of the basis. ♢

Assumption 4.3.1 holds if the characteristic polynomial of A is same as the

minimal polynomial of A, or if each distinct unstable eigenvalue only has a single

Jordan block. For example, suppose that A consists of a single Jordan block with

a real unstable eigenvalue. Then ⟨kerC l |A⟩ ∩ X u(A) = {0} if the first column of

C l is nonzero. If the first q columns of C l are zero, then ⟨kerC l |A⟩ ∩ X u(A) =

span{e1, . . . , eq}. Hence, Assumption 4.3.1 holds with vk = ek for k = 1, . . . , n.

There are cases when Assumption 4.3.1 holds even when an eigenvalue has more

than a single block. For more details, we refer to [LS20b, Appendix B].
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Before proceeding further, few notations and intermediate results are intro-

duced. Under Assumption 4.3.1, let the indicator slk ∈ {0, 1} be

slk =

1, if vk ̸∈ ker (Z l)⊤ = ⟨kerC l |A⟩ ∩ X u(A),

0, if vk ∈ ker (Z l)⊤ = ⟨kerC l |A⟩ ∩ X u(A)

for all k = 1, . . . , n and l ∈ L, while sRk ∈ {0, 1} is defined similarly. By defining

V := [v1 · · · vn] ∈ Rn×n, there exists hk ∈ Rn such that

H⊤V :=
[
h1 · · · hn

]⊤ [
v1 · · · vn

]
= In,

so that H⊤ = V −1. Now, apply the transformation

ρi = H⊤xi, V ρi = xi, (4.3.1)

where ρi ∈ Rn. Then the following property holds.

Lemma 4.3.1. Suppose that Assumption 4.3.1 holds and consider the system

(3.1.1) under the transformation (4.3.1), which can be written as

ρ̇i = H⊤AV ρi +H⊤Bui,

yli = C lV ρi,

ζi = RV ρi,

(4.3.2)

for all i ∈ N . Then the transformation matrix T l ∈ Rn×n for the detectable

decomposition of (4.3.2) is a permutation matrix for all l ∈ L. ♢

Proof. Let ek ∈ Rn be the elementary vector where k-th element is 1 and the rest

of the elements are zero. Then for each l ∈ L, let (T l)⊤ be a permutation matrix

given by

ρ̌li = (T l)⊤ρi =:
[
Z lo W l

o

]⊤
ρi,

where the columns of Z lo ∈ Rn×(n−νl) are ek for all k such that slk = 1 and the

columns of W l
o ∈ Rn×νl are ek such that slk = 0. Since the columns of V spans

the undetectable subspaces by the definition and H⊤ = V −1, it can be verified
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that the dynamics of ρ̌li is in form of the detectability decomposition. □

In order to improve the clarity, without loss of generality, suppose that vi are

such that sR1 = · · · = sR
n−νR = 1 and sR

n−νR+1
= · · · = sRn = 0. Accordingly,

we have ZR,o = [Ino ; 0νR×no ] ∈ Rn×no and WR,o = [0no×νR ; IνR ] ∈ Rn×νR where

no := n− νR.

Under Assumption 4.3.1, a dynamic controller can be designed to achieve

consensus. For this, we choose Z l,W l, ZR, and WR as

Z l = HZ lo, W
l = HW l

o, ZR = HZR,o, WR = HWR,o. (4.3.3)

Consequently, it can be checked that

Y l = V Z lo, U
l = VW l

o, YR = V ZR,o, UR = VWR,o (4.3.4)

and that these matrices form a transformation which results in undetectable de-

composition.

Overall structure is similar to the controller developed for the state consensus

problem. Specifically, the same partial observer (3.4.1) is used, which is rewritten

as

ξ̇li = Aldξ
l
i +Gl

[ ∑
j∈N l

i

αlijC
l
d(ξ

l
j − ξli)− αlij(y

l
j − yli)

]
+ (Z l)⊤Bui. (4.3.5)

With (4.3.5), relative difference of detectable part by R is estimated via

˙̂ηi = ARd η̂i + γ
L∑
l=1

∑
j∈N l

i

[
αlij(ZR)

⊤V V ⊤(Z l)(Z l)⊤V V ⊤ZR(η̂j − η̂i)

− αlij(ZR)
⊤V V ⊤(Z l)(ξlj − ξli)

]
+BR

d ui, (4.3.6)

where ARd := (ZR)
⊤AYR, BR

d := (ZR)
⊤B and γ > 0. By letting η̂ := [η̂1; · · · ; η̂N ],
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ξl := [ξl1; · · · ξlN ] and u := [u1; · · · ;uN ], we obtain

η̇ = (IN ⊗ARd )η̂ − γ

L∑
l=1

(Ll ⊗ Z⊤
RV V

⊤Z l(Z l)⊤V V ⊤ZR)η̂

+ γ
L∑
l=1

(Ll ⊗ Z⊤
RV V

⊤Z l)ξl + (IN ⊗BR
d )u

(4.3.7)

Then the following result holds.

Lemma 4.3.2. Consider the dynamics given by (3.1.1) and (3.4.1). Then for

each l ∈ L, there exists Gl such that

∑
j∈N l

i

αlij(ξ
l
j(t)− ξli(t)) →

∑
j∈N l

i

αlij(Z
l)⊤(xj(t)− xi(t)), (4.3.8)

for all i ∈ N and l ∈ L as t → ∞. Furthermore, suppose that Assumption 4.3.1

and (4.1.4) holds. Then there exists γ∗ > 0 such that for all γ > γ∗,

η̂j(t)− η̂i(t) → (ZR)
⊤(xj(t)− xi(t)), ∀i, j ∈ N , (4.3.9)

as t→ ∞. ♢

Proof. Proof of (4.3.8) follows directly by applying Lemma A.1.3 to the detectable

part of the system (3.1.1) via C l.

Proof of (4.3.9) is similar to the proof of Lemma 3.4.2. Hence only the

difference is highlighted and details are omitted. Let ei := η̂i − (ZR)
⊤xi, and

e := [e1; · · · ; eN ]. Then, using (4.3.7) and (3.1.1), the dynamics of e is given by

ė = ˙̂η − (IN ⊗ Z⊤
R )ẋ

=

[
(IN ⊗ARd )η̂ − γ

L∑
l=1

(Ll ⊗ Z⊤
RV V

⊤Z l(Z l)⊤V V ⊤ZR)η̂

+ γ

L∑
l=1

(Ll ⊗ Z⊤
RV V

⊤Z l)ξl + (IN ⊗BR
d )u

]
− (IN ⊗ Z⊤

R )

[
(IN ⊗A)x+ (IN ⊗B)u

]
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=

[
(IN ⊗ARd )η̂ − (IN ⊗ Z⊤

RA)x

]
− γ

L∑
l=1

(Ll ⊗ Z⊤
RV V

⊤Z l(Z l)⊤V V ⊤ZR)η̂

+ γ

L∑
l=1

(Ll ⊗ Z⊤
RV V

⊤Z l)ξl

= (IN ⊗ARd )e− γ
L∑
l=1

(Ll ⊗ Z⊤
R,oZ

l
o(Z

l
o)

⊤ZR,o)η̂ + γ
L∑
l=1

(Ll ⊗ Z⊤
R,oZ

l
o)ξ

l,

(4.3.10)

where we used Z⊤
RA = ARd (ZR)

⊤. To proceed further, we use x = URW
⊤
R x +

YRZ
⊤
Rx = VWR,oW

⊤
R x + V ZR,oZ

⊤
Rx and add ±γ∑L

l=1 L
l ⊗ Z⊤

RV V
⊤(Z l)(Z l)⊤x

to (4.3.10). Specifically, we have

− γ
L∑
l=1

(Ll ⊗ Z⊤
RV V

⊤Z l(Z l)⊤V V ⊤ZR)η̂ + γ
L∑
l=1

Ll ⊗ Z⊤
RV V

⊤(Z l)(Z l)⊤x

= − γ

L∑
l=1

(Ll ⊗ Z⊤
R,oZ

l
o(Z

l
o)

⊤ZR,o)η̂

+ γ
L∑
l=1

Ll ⊗ Z⊤
R,o(Z

l
o)(Z

l
o)

⊤H⊤(VWR,oW
⊤
R + V ZR,oZ

⊤
R )x

= − γ

L∑
l=1

(Ll ⊗ Z⊤
R,oZ

l
o(Z

l
o)

⊤ZR,o)e+ γ

L∑
l=1

Ll ⊗ Z⊤
R,o(Z

l
o)(Z

l
o)

⊤WR,oW
⊤
R x

and

γ
L∑
l=1

(Ll ⊗ Z⊤
RV V

⊤Z l)ξl − γ
L∑
l=1

Ll ⊗ Z⊤
RV V

⊤(Z l)(Z l)⊤x

= γ

L∑
l=1

(Ll ⊗ Z⊤
R,oZ

l
o)ξ

l − γ
L∑
l=1

Ll ⊗ Z⊤
R,o(Z

l
o)(Z

l)⊤x

= γ

L∑
l=1

(IN ⊗ Z⊤
R,oZ

l
o)(L

l ⊗ In)
(
ξl − (IN ⊗ (Z l)⊤)x

)
.
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Therefore, the dynamics of e becomes

ė =
[
(IN ⊗ARd )− γ

L∑
l=1

Ll ⊗ (ZR,o)
⊤Z lo(Z

l
o)

⊤ZR,o

]
e

+

L∑
l=1

Ll ⊗ (ZR,o)
⊤Z lo(Z

l
o)

⊤WR,oW
⊤
R x+ γ(IN ⊗ Z⊤

R,o)∆(t),

(4.3.11)

where ∆(t) :=
∑L

l=1

(
Ll ⊗ Z lo

) (
ξl − (IN ⊗ (Z l)⊤)x

)
. From Lemma 3.4.1, it fol-

lows that ∆(t) is exponentially decaying signal. Moreover, due to the particular

choice of transformation matrices,

λn−νR+1

(
L∑
l=1

Ll ⊗ Y ⊤
R Z

l(Z l)⊤YR

)
= λn−νR+1

(
L∑
l=1

Ll ⊗ (ZR,o)
⊤Z lo(Z

l
o)

⊤ZR,o

)
> 0

follows directly from (4.1.4).

Finally, we claim that

(ZR,o)
⊤Z lo(Z

l
o)

⊤WR,o = 0, ∀l ∈ L.

To see this, note that Z lo(Z lo)⊤ is a diagonal matrix and hence

(ZR,o)
⊤Z lo(Z

l
o)

⊤WR,o =
[
Ino 0νR×no

] [⋆ 0

0 ⋆

][
0no×νR

IνR

]
= 0.

Therefore, we obtain

ė =
[
(IN ⊗ARd )− γ

L∑
l=1

Ll ⊗ (ZR,o)
⊤Z lo(Z

l
o)

⊤ZR,o

]
e+ γ(IN ⊗ Z⊤

R,o)∆(t),

Hence, following the similar argument as in the proof of Lemma 3.4.2, there

exists γ∗ such that ej(t) − ei(t) → 0 for all γ > γ∗. This implies η̂j(t) − η̂i(t) →
(ZR)

⊤(xj(t)− xi(t)) which completes the proof. □

With the dynamics constructed as (3.4.1) and (4.3.6), control input can be

designed analogous to the state consensus problem. Specifically, let the control
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input be

ui = (BR
d )

⊤P
∑
j∈Np

i

αp
ij(η̂j − η̂i), (4.3.12)

where P > 0 is the unique solution of

(ARd )
⊤P + P (ARd )− Re (λ2(L

p))P (BR
d )(B

R
d )

⊤P = −In−νR .

In particular, existence of P follows from stabilizability of (ARd , B
R
d ) which holds

due to the stabilizability of (A,B).

Alternatively, input can be also designed as

ui = Kη̂i, (4.3.13)

where K is such that ARd + BR
d K is Hurwitz. Then the following result shows

that the output consensus is achieved.

Theorem 4.3.3. Suppose that Assumptions 3.1.1 and 4.3.1 hold. If the algebraic

condition (4.1.4) holds, then the proposed controllers (4.3.5), (4.3.6) with either

(4.3.12) or (4.3.13) achieve output consensus. ♢

Proof. Proof can be obtained by using Lemma 4.3.2 and similar arguments as

in the proof of Theorem 3.2.1 to the system (3.1.1) obtained via detectability

decomposition using the output matrix R. Hence, the details are omitted. □

Theorem 4.3.3 provides a sufficient condition for the output consensus problem

over a directed multilayer network. In case of undirected graphs, Theorem 4.3.3

recovers the equivalence as below.

Corollary 4.3.4. Suppose that Assumptions 3.1.1 and 4.3.1 hold and that G is

undirected. Then the system (3.1.1) is output consensusable if and only if the

geometric condition for output consensusability (4.1.1) holds. In addition, geo-

metric condition (4.1.1), geometric condition for each mode (4.1.2) and algebraic

condition (4.1.4) are all equivalent. ♢

Proof. Proof follows from Lemma 4.1.1, Lemma 4.1.2 and Theorem 4.3.3. □
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For directed graphs under Assumption 4.3.1, following proposition provides

an intuitive explanation of the sufficient condition.

Proposition 4.3.5. Suppose that the transformation matrices are chosen as (4.3.3)

and (4.3.4). Define the index set Ik := {l ∈ L | slk = 1} and the corresponding

multilayer graph Gk := (N , {E l}l∈Ik , {Al}l∈Ik) for k = 1, . . . , n. Then

λn−νR+1

(
L∑
l=1

Ll ⊗ (ZR,o)
⊤(Z lo)(Z

l
o)

⊤ZR,o

)
> 0

holds if and only if proj (Gk) has a rooted spanning tree for all k = 1, . . . , no. ♢

Proof. Consider the permutation π : {1, . . . , Nno} → {1, . . . , Nno} given by

π(z) = ((z − 1) mod no) ·N + ((z − 1)÷ no) + 1

and permutation matrix M := [e⊤π(1); · · · ; e⊤π(Nno)] ∈ RNno×Nno . Then, noting

that Z⊤
R,oZ

l
o(Z

l
o)

⊤ZR,o = diag(sl1, . . . , s
l
no), it can be checked that

M

( L∑
l=1

Ll ⊗ (ZR,o)
⊤(Z lo)(Z

l
o)

⊤ZR,o

)
M⊤ = diag

( L∑
l=1

Llsl1, . . . ,
L∑
l=1

Llslno

)
.

However,
∑L

l=1 L
lslk =

∑
l∈Ik L

l is the Laplacian matrix of proj (Gk). Therefore,

the result of the theorem follows since Re
(
λ2

(∑L
l=1 L

lslk

))
> 0 if and only if

proj (Gk) has a rooted spanning tree. □

Denoting k-th mode of xi as h⊤k xi, s
l
k = 1 if k-th mode is detectable (i.e., h⊤k xi

can be estimated via C l). Hence, Ik is the index set of layers which can estimate

h⊤k xi. Thus, Proposition 4.3.5 is stating that the algebraic condition (3.2.3) is

equivalent to saying unstable and observable modes via R must be connected, in

a sense that proj (Gk), which only includes the edge set of the detectable layers

of k-th mode, must have a rooted spanning tree. This also extends the result of

Corollary 3.3.3 to the output consensus problem over directed multilayer networks.



82 Chap. 4. Extension to Output Consensus over Directed Network

4.3.2 Controller Design under Information Structural Constraint

Previous section proposed a controller under Assumption 4.3.1, which limits

the class of system based on the matrices relationships among A, C l and R. In

this section, the following assumption is proposed to obtain the convergence.

Assumption 4.3.2. The system satisfies

kerΠ⊗ Z⊤
R ⊆ K̄. ♢

Assumption 4.3.2 recovers the physical interpretation used in the state con-

sensus problem. Specifically, it says that if the desired output is in consensus,

then the relative output information is identically zero. In general, this limits

the what kind of information can be communicated between agents based on the

desired output. Consequently, it can be shown that the same dynamic controller

proposed earlier achieves output consensus. For this, suppose without loss of

generality that the detectability decomposition is given by orthonormal matrices.

Then consider the observers (which is similar to (4.3.5) and (4.3.6)) given by

ξ̇li = Aldξ
l
i +Gl

[ ∑
j∈N l

i

αlijC
l
d(ξ

l
j − ξli)− αlij(y

l
j − yli)

]
+ (Z l)⊤Bui, (4.3.14a)

˙̂ηi = ARd η̂i + γ
L∑
l=1

∑
j∈N l

i

[
αlij(ZR)

⊤(Z l)(Z l)⊤ZR(η̂j − η̂i)

− αlij(ZR)
⊤(Z l)(ξlj − ξli)

]
+BR

d ui.

(4.3.14b)

Also suppose that the control input is given by (4.3.12) or (4.3.13). Then the

consensus is shown in the following result.

Theorem 4.3.6. Consider the overall system given by the system (3.1.1), dy-

namic controller (4.3.14) and control input (4.3.12) or (4.3.13). Suppose that As-

sumptions 3.1.1 and 4.3.2 hold. If the algebraic condition (4.1.4) holds, then the

output consensus is achieved. ♢

Proof. Proof of the convergence is similar to Theorem 4.3.3 presented in Section

4.3.1. The only difference arises in the proof of Lemma 4.3.2 which shows the
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convergence of η̂. Specifically, proof of Lemma 4.3.2 is similar up to (4.3.11).

From there, we claim

L∑
l=1

Ll ⊗ Z⊤
RZ

l(Z l)⊤WRW
⊤
R x = 0, ∀x ∈ RNn.

From the assumption, we have kerΠ⊗ Z⊤
R ⊆ K̄. First, observe that

(Π⊗ Z⊤
R )(IN ⊗WRW

⊤
R )x = (Π⊗ Z⊤

RWRW
⊤
R )x = 0

where we used Z⊤
RWR = 0 which holds since matrices are orthogonal by definition.

Thus,

(IN ⊗WRW
⊤
R )x ∈ kerΠ⊗ Z⊤

R ⊆ K̄.

Then by the definition of K̄,(
L∑
l=1

Ll ⊗ (Z l)(Z l)⊤

)
(IN ⊗WRW

⊤
R )x = 0.

Therefore, the claim holds. The rest of the proof is similar to Lemma 4.3.2 and

hence omitted. □

For undirected multilayer graphs, by supposing Assumption 4.3.2, equivalence

can be recovered as in Corollary 4.3.4 as stated below.

Corollary 4.3.7. Suppose that Assumptions 3.1.1 and 4.3.2 hold and that G is

undirected. Then the system (3.1.1) is output consensusable if and only if the

geometric condition for output consensusability (4.1.1) holds. In addition, geo-

metric condition (4.1.1), geometric condition for each mode (4.1.2) and algebraic

condition (4.1.4) are all equivalent. ♢

Proof. Proof follows from Lemma 4.1.1, Lemma 4.1.2 and Theorem 4.3.6. □
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4.4 Static Output Diffusive Coupling

In previous sections, a dynamic controller motivated by the observer-based

feedback is designed to achieve consensus over a multilayer network. Instead of a

dynamic controller, this section presents a simple static controller to achieve the

output consensus.

In order to design a static controller, we make the following assumption on

the dynamics of each agent and the multilayer network.

Assumption 4.4.1. There exists a positive definite matrix P ∈ Rn×n such that

the system satisfies1 A⊤P + PA ≤ 0, B = In and the multilayer graph is undi-

rected. ♢

The following result proposes a static controller.

Theorem 4.4.1. Suppose that A is not Hurwitz and that Assumption 4.4.1 hold.

Then, the system (3.1.1) is output consensusable if and only if the geometric

condition (4.1.1) holds. In particular, output consensus is achieved with

ui = γiP
−1
i

L∑
l=1

∑
j∈N l

i

αlij(C
l)⊤(ylj − yli),

for any γi > 0 and Pi > 0 such that A⊤Pi + PiA ≤ 0. ♢

Proof. For sufficiency, let x = [x1; . . . ;xN ] ∈ RNn. Then the overall dynamics

can be written as

ẋ = (IN ⊗A)x−QMx,

where M :=
∑L

l=1 L
l ⊗ (C l)⊤C l is a positive semidefinite matrix and Q :=

diag(γ1P
−1
1 , . . . , γNP

−1
N ) is positive definite. Let Lyapunov function be V (x) =

x⊤Q−1x. Then, its time derivative along (3.1.1) becomes

V̇ = x⊤
(
Q−1(IN ⊗A) + (IN ⊗A⊤)Q−1

)
x− 2x⊤Mx

=

N∑
i=1

1

γi
x⊤i (PiA+A⊤Pi)xi − 2x⊤Mx

1Such assumption on A is also known as neutral stability of A.
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≤ 0.

Hence the solution is bounded. Moreover, it follows from LaSalle’s invariance

principle that the state trajectories approach to the largest invariant set contained

in E := {x ∈ RNn | x⊤Mx = 0}. Since ⟨kerC l |A⟩ is A-invariant and Ll is

symmetric, it can be verified that

Ē :=
{
x ∈ RNn

∣∣ x⊤ (∑L
l=1(L

l)⊤Ll ⊗ (Ol)⊤Ol
)
x = 0

}
is the largest invariant set in E where Ol is defined such that kerOl = ⟨kerC l |A⟩.
Let x(t) be the solution that belongs identically to Ē. Then the solution can be

written as x(t) = xu(t)+ xs(t) where xu(t) ∈ Ē ∩X u(A) and xs(t) ∈ Ē ∩X s(A).

In addition, it can be checked that Ē ∩ X u(A) ⊆ K̄. Since K̄ ⊆ kerΠ ⊗ Z⊤
R by

the assumption, output consensus is achieved. □

For the systems satisfying the assumptions of Theorem 4.4.1, it follows that

the proposed necessary condition K̄ ⊆ kerΠ ⊗ Z⊤
R is indeed a necessary and

sufficient condition for achieving output consensus.

Remark 4.4.1. The assumption that A is neutrally stable is a restrictive as-

sumption. Comparing the result of Theorem 4.4.1 to results from the single-layer

consensus problem, it corresponds to the result of [SS09] which considered con-

sensus of MAS when A is marginally stable and B = In. For the single-layer con-

sensus, an extension is made in [Tun08], which used LQR-based gain to achieve

consensus for general plant A. Extension of Theorem 4.4.1 seems challenging as

such technique cannot be applied directly to multilayer networks but it is an in-

teresting direction for future research as one may draw motivations from these

developments. ♢

Although the result of Theorem 4.4.1 is restrictive, its usage will be presented

in Chapter 5 to solve the distributed estimation problem. In fact, an extension

of Theorem 4.4.1 is developed for a class of directed multilayer network with

switching topology.
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Assumptions Controller Type Single-layer Multilayer

A marginally stable, B = In Static [SS09] Thm. 4.4.1

(A,B) stab., C = In Static [Tun08] Not applicable

(A,B,C) stab. and detect. Dyn. w. comm. [WLH09]
Thm. 4.3.3

Thm. 4.3.6

(A,B,C) stab., detect.
Dyn. w.o. comm. [SSB09] Open

and Re (λi(A)) ≤ 0

Table 4.1: Summary of controller designs for the single-layer system and cor-
responding designs for the multilayer network proposed in this
chapter.

4.5 Summary of Results

Before moving onto the next few chapters, which discuss the application of the

consensus problem over multilayer networks, we end this chapter by summarizing

the main results. Similar results from the single-layer consensus problem are also

briefly discussed and compared.

4.5.1 Comparison with Single-layer Consensus Problem

Controller designs developed in Chapters 3 and 4 can be compared with its

corresponding designs for the single-layer system, which is summarized in Table

4.1. The static feedback controller developed in Theorem 4.4.1 is an extension

of the work such as [SS09] which studied a similar problem for the single-layer

network. Both of these controllers use static feedback and assume the marginal

stability of the system matrix. Classical work [Tun08] does not have correspond-

ing work in this dissertation as C = In is not applicable to multilayer networks.

However, observer-based controller developed in works such as [WLH09] are ex-

tended to the multilayer network in Theorem 4.3.3 and Theorem 4.3.6. Notice

that our results not only generalize these results to the multilayer network but

also extends to the output consensus problem over directed networks.
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Re
(
λn−νR+1

(∑L
l=1 L

l ⊗ (YR)
⊤(Zl)(Zl)⊤YR

))
> 0

Output Consensusable

K̄ ⊆ kerΠ⊗ (ZR)
⊤

Lem. 4.1.1
if directed
(Ex. 4.2.3)

if directed
(Ex. 4.2.2)

if R ̸= In

(Ex. 4.2.1)
if R = In

(Lem. 4.1.2)

Thm. 4.3.3
(with Asm. 4.3.1)

OR
Thm. 4.3.6

(with Asm. 4.3.2)

Figure 4.2: Relation for directed multilayer network.

4.5.2 Relation between Necessary and Sufficient Conditions

We end this chapter by showing figures which illustrate the relations between

main results for the design of the controllers.

First, results for the directed multilayer network is shown in Fig. 4.2. It can

be seen that the algebraic condition along with Assumption 4.3.1 or Assumption

4.3.2 implies the output consensus, while the geometric condition is a necessary

condition for output consensusability. Unfortunately, we cannot close the loop

since the geometric condition does not imply the algebraic condition in general.

Relations for undirected multilayer network is shown in Fig. 4.3. Notice that

geometric condition implies the algebraic condition in undirected networks. Hence

necessary and sufficient conditions can be found under additional assumptions.

Specifically, dynamic controller can be designed under Assumption 4.3.1 or As-

sumption 4.3.2 and static controller under Assumption 4.4.1.
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Re
(
λn−νR+1

(∑L
l=1 L

l ⊗ (YR)
⊤(Zl)(Zl)⊤YR

))
> 0

Output Consensusable

K̄ ⊆ kerΠ⊗ (ZR)
⊤

Lem. 4.1.1

Lem. 4.1.2

if R ̸= In

(Ex. 4.2.1)
if R = In

(Lem. 4.1.2)

Thm. 4.3.3
(with Asm. 4.3.1)

OR
Thm. 4.3.6

(with Asm. 4.3.2)
OR

Thm. 4.4.1
(with Asm 4.4.1)

Figure 4.3: Relation for undirected multilayer network.



Chapter 5

Application to the Distributed State
Estimation Problem

In this chapter, results developed for the consensus over the multilayer network is

applied to the distributed state estimation problem (DEP). It is established that

the DEP can be formulated into a consensus problem over a multilayer network.

Through this approach, results from Chapter 3 are applied to obtain a necessary

condition for the solvability of DEP. Moreover, a novel design is proposed which

reduces the communication burden compared with the existing designs in the

literature.

5.1 Problem Formulation

Consider the system in form1 of

ρ̇ = Aρ+Bu(t), (5.1.1a)

ω =


ω2

...

ωN+1

 =


H2

...

HN+1

 ρ =: Hρ, (5.1.1b)

where ρ ∈ Rn is the state of the plant to be estimated, u(t) ∈ Rp is the control

input applied to the plant and A ∈ Rn×n, B ∈ Rn×q are the system matrices. It
1Index of observers start from 2. This is not conventional but used to make notations clear

for the main results.
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is supposed that there are N agents where ωi ∈ Rqi for i = 2, . . . , N + 1 is the

measurement available to agent i and let H1 = 0. The objective of the DEP is for

each agent to estimate the state of the plant ρ(t) only using local measurement ωi,

control input u(t) and communication with its neighbors. Specifically, we consider

the case when (Hi, A) is not necessarily detectable, but (H,A) is detectable. For

a more detailed discussion of the DEP, see [KSC16, MS18].

Recall that the classical centralized state estimation problem can be treated as

a consensus problem between two homogeneous agents, the plant and an observer.

Similarly, the DEP can be viewed as a consensus problem ofN+1 agents consisting

of a single plant and N observers. However, since each observer receives different

output information from the plant (as the measurement), the DEP cannot be

represented as a consensus over a single-layer network. Therefore, we propose to

use the multilayer network to represent each output measurement as a separate

layer. Then, the DEP can be formulated into an equivalent consensus problem

over a multilayer network.

For illustration, consider the DEP consisting of a single plant and 3 agents

with its communication structure shown in Fig. 5.1(a). Specifically, dashed ar-

rows denote the output measurement of each agent and solid arrows denote the

communication between agents. Then, the DEP can be interpreted as a multi-

agent system consisting of 4 agents where the communication structure is given

as in Fig. 5.1(b). In particular, the first layers 2 to N + 1 represent the out-

put measurement of each agent. First layer is added for the sake of consistency

with indices but it does not contain any edge and H1 = 0 (that is, the problem

is equivalent without this layer). Note that each agent uses a different output

matrix Hi to measure the output which corresponds to the output matrix of the

layer. Finally, the last layer represents the cooperation between agents, i.e., com-

munication among neighboring agents.

Therefore, the DEP can be formulated into an equivalent state consensus

problem of the system

ρ̇ = Aρ+Bu(t),

˙̂ρi = Aρ̂i +Bu(t) + hc,i(δi), i = 2, . . . , 4,
(5.1.2)
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2

3 4

1

(a) Communication network for the DEP with agent 1 being the plant. Solid arrows
denote communication among observers, and dashed arrows denote output mea-
surement.

H1

H2

H3

H4

In

1
2

3 4

1
2

3 4

1
2

3 4

1
2

3 4

1
2

3 4

(b) Equivalent multilayer network. Layers 2 to 4 represent output measurement of
each observer, while layer 5 represents the communication among observers.

Figure 5.1: An example of the distributed estimation problem where agent 1
is the plant and nodes 2 to 4 are the observers.
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where ρ̂i ∈ Rn is the state of each observer. Additionally, δi is a stack of relative

information obtained from neighboring agents (and plant) over the multilayer

network and hc,i represents the error injection term.

The dynamics represented by (5.1.2) can be compared with the system (3.1.1)

and the controller (3.1.2) to obtain appropriate relationships between the two

problems. Specifically, (5.1.2) is using static output feedback to achieve state

consensus. In general, the DEP can be seen as solving the consensus problem of

N + 1 agents with L (≥ N + 2) layers using static output feedback. Specifically,

the first N+1 layers represent the output measurement, whereas the layers N+2

to L represent the communication among observers.

Since the DEP is equivalent to a state consensus problem, results from Chapter

3 and 4 can be applied to obtain a necessary condition for solving the DEP.

Moreover, it can be shown that the necessary condition is also sufficient under

additional assumptions.

5.2 Distributed State Estimation with Reduced Com-

munication over Static Network

Before presenting the main results, let us introduce some notations. Suppose

that the multilayer network G = ({1, . . . , N + 1}, {E l}l∈L) with N + 1 nodes

and L layers represents the communication among N observers and the plant.

For l = N + 2, . . . , L, define Globs = ({2, . . . , N + 1}, E lobs) as the single-layer

graph representing the communication among N observers via output C l. For

l = N + 2, . . . , L, define Llobs ∈ RN×N such that

Ll =

[
01 01×N

⋆ Llobs

]
,

where Ll is the Laplacian matrix of Gl. In particular, Llobs is a Laplacian ma-

trix representing the communication among observers (with appropriate indices).

Then, we make the following assumption.

Assumption 5.2.1. Communication among observers are bidirectional, i.e., Llobs
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is undirected for l = N + 2, . . . , L. ♢

We also define Zk as

ker(Zk)⊤ =

⟨kerHk |A⟩ ∩ X u(A), if k = 1, . . . , N + 1

⟨kerCk |A⟩ ∩ X u(A), if k = N + 2, . . . , L,

so that ker (Zk)⊤ is undetectability subspace of the output matrix corresponding

to the l-th layer.

Now, we propose a distributed observer in form of

˙̂ρi = Aρ̂i +Bu(t)

+ γiKi

L∑
l=N+2

∑
j∈N l

i

(C l)⊤(ŷlj − ŷli)︸ ︷︷ ︸
diffusive coupling

+γiαiKiH
⊤
i (wi −Hiρ̂i)

︸ ︷︷ ︸
output injection

, (5.2.1a)

ŷli = C lρ̂i, ∀l = N + 2, . . . , L, i = 2, . . . , N + 1, (5.2.1b)

where γi > 0, Ki ∈ Rn×n are the coupling gains to be designed and αi = 1 if

observer i measures the output of the plant and 0 otherwise. Note that each

observer applies diffusive output coupling using information obtained from its

neighboring observers as well as the output injection term using the local output

measurement.

By defining ρ̂ := [ρ̂2; · · · ; ρ̂N+1] ∈ RNn, it can be verified that the plant (5.1.1)

and the distributed observer (5.2.1) can be written as

ρ̇ = Aρ+Bu(t), (5.2.2a)

˙̂ρ = (IN ⊗A)ρ̂− ΓL∗ρ̂+ ΓG∗((1N ⊗ In)ρ− ρ̂
)
+ (1N ⊗B)u(t), (5.2.2b)

where Γ := diag(γ2K2, . . . , γN+1KN+1) ∈ RNn×Nn and L∗ ∈ RNn×Nn is defined

as

L∗ :=
L∑

l=N+2

Llobs ⊗ (C l)⊤C l
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and G∗ ∈ RNn×Nn is defined as

G∗ := diag
(
α2 · (H2)

⊤H2, . . . , αN+1 · (HN+1)
⊤HN+1

)
.

Note that both L∗ and G∗ are symmetric, positive semidefinite matrix. For the

convergence of the proposed design the following assumption is made.

Assumption 5.2.2. The matrix A is marginally stable, i.e., there exists a posi-

tive definite matrix P ∈ Rn×n such that

A⊤P + PA ≤ 0. ♢

Remark 5.2.1. Marginal stability of Ap allows harmonic oscillators and the sin-

gle integrator. However, double integrators do not satisfy Assumption 5.2.2. ♢

Now, define the set

K̄N+1 :=
L⋂
l=1

kerLl ⊗ (Z l)(Z l)⊤ =
L⋂
l=2

kerLl ⊗ (Z l)(Z l)⊤,

where we use K̄N+1 to emphasize that the set is constructed from N + 1 agents

including the plant. Then the following theorem states the convergence of the

proposed distributed observer.

Theorem 5.2.1. Suppose that A is not Hurwitz and Assumptions 5.2.1 and 5.2.2

hold. Then design observer gain γi to be any positive number for i = 2, . . . , N +1

and let Ki = P−1
i where Pi > 0 is such that

A⊤Pi + PiA ≤ 0,

whose existence follows from Assumption 5.2.2. Then the proposed distributed

observer (5.2.1) solves the DEP, i.e.,

lim
t→∞

|ρ̂i(t)− ρ(t)| = 0, ∀i = 2, . . . , N + 1,
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if and only if

K̄N+1 = SN+1
n . ♢

Proof. Necessity follows directly from Lemma 4.1.1. Specifically, since the estima-

tion problem can be interpreted as the state consensus problem over a (directed)

multilayer network, it follows that

K̄N+1 ⊆ kerΠ⊗ Z⊤
R = SN+1

n .

The converse relation SN+1
n ⊆ K̄N+1 is trivial to show.

For sufficiency, define the estimation error as e := ρ̂ − (1N ⊗ In)ρ ∈ RNn.
Then, its dynamics becomes

ė =
(
(IN ⊗A)− Γ(L∗ +G∗)

)
e, (5.2.3)

where we used the fact that L∗(1N ⊗ In) = 0. Let Lyapunov function be

V (e) = e⊤Γ−1e = e⊤




1
γ2
P2

. . .
1

γN+1
PN+1


 e.

Then it holds that

V̇ (e) = e⊤
(
Γ−1(IN ⊗A) + (IN ⊗A⊤)Γ−1

)
e− 2e⊤(L∗ +G∗)e

= e⊤


1
γ2
(P2A+A⊤P2)

. . .
1

γN+1
(PN+1A+A⊤PN+1)

 e− 2e⊤(L∗ +G∗)e

≤ −2e⊤(L∗ +G∗)e.

Hence, the solution of (5.2.3) is bounded. Applying the LaSalle’s invariance

principle [Kha02, Thm. 4.4], it follows that e(t) converges to the largest invariant

set in E := {e | e⊤(L∗ + G∗)e = 0}. Since Llobs is symmetric, similar arguments
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as in the proof of Theorem 4.4.1 shows that the solution converges to

Ē :=
{
e ∈ RNn | e⊤(L∗

z +G∗
z)e = 0

}
,

where L∗
z :=

∑L
l=N+2(L

l
obs)

⊤Llobs ⊗ (Z l)(Z l)⊤ and

G∗
z := diag

(
a2(Z

2)(Z2)⊤, . . . , aN+1(Z
N+1)(ZN+1)⊤

)
.

Next, it is shown that L∗
z + G∗

z is positive definite if K̄N+1 = SN+1
n . To see

this, recalling that kerLl ⊗ (Z l)(Z l)⊤ = ker (Ll)⊤(Ll) ⊗ (Z l)(Z l)⊤, it holds that

K̄N+1 can be written as

K̄N+1 = ker

( L∑
l=1

(Ll)⊤Ll ⊗ (Z l)(Z l)⊤
)

= ker

[∑N+1
k=2 αk(Z

k)(Zk)⊤ −(1N ⊗ In)
⊤G∗

z

−G∗
z(1N ⊗ In) L∗

z +G∗
z

]
=: ker L̂.

In particular, we have used Ll = el+1e
⊤
l+1 − el+1e

⊤
1 for all l = 1, . . . , N , which

results in

(Ll)⊤Ll =


1 −1

−1 1

 .

Since K̄N+1 = SN+1
n , it follows from Lemma A.1.1 that w⊤L̂w > 0 for all

w ̸∈ SN+1
n . Hence, by letting w := [0n;w

′], it can be shown that L∗
z + G∗

z is

positive definite. In conclusion, we obtain limt→∞ e(t) = 0, i.e., it holds that

limt→∞ |ρ̂i(t)− ρ(t)| = 0. □

Theorem 5.2.1 states that the proposed observer (5.2.1) achieves the dis-

tributed state estimation. Similar to the result of Theorem 4.4.1, it shows that

the necessary condition is also sufficient under additional assumptions.

The major difference of the proposed design compared with typical designs in

the literature (e.g., [KSC16, MS18, WM18]) is the amount of information commu-



5.2. Distributed State Estimation over Static Network 97

nicated between observers. In fact, it is often assumed that the full state estima-

tion ρ̂i is communicated with neighboring agents to achieve the distributed state

estimation. This corresponds to the case when L = N +2 and CL = In. Instead,

the proposed observer (5.2.1) is designed for general multilayer communication

network, and specifically, it allows each observer to communicate part of the state

estimation via output matrix Ck for k = N + 2, . . . , L. The following example

illustrates this feature of the proposed design.

Example 5.2.1. Consider a plant with 3 agents where the system and measure-

ment matrices are given by

Ap =


0 1 0 0

−1 0 0 0

0 0 0 2

0 0 −2 0

 , Bp = 0

H2 =
[
1 0 0 0

]
, H3 =

[
0 0 1 0

]
, H4 =

[
0 0 0 0

]
.

Also, the communication among observers are given by

C5 =
[
1 0 1 0

]
, L5

obs =


1 −1 0

−1 2 −1

0 −1 1

 .
Then, it can be checked that all assumptions of Theorem 5.2.1 hold with P = I4

and that K̄N+1 = SN+1
n . Hence, the observer (5.2.1) is given by

˙̂ρ2 = Apρ̂2 + (C5)⊤(C5ρ̂3 − C5ρ̂2) +H⊤
2 (w2 −H2ρ̂2),

˙̂ρ3 = Apρ̂3 + (C5)⊤
(
(C5ρ̂2 − C5ρ̂3) + (C5ρ̂4 − C5ρ̂3)

)
+H⊤

3 (w3 −H3ρ̂3),

˙̂ρ4 = Apρ̂4 + (C5)⊤(C5ρ̂3 − C5ρ̂4),

where γi = 1 and Pi = I4 are used. Thus, it follows from Theorem 5.2.1 that ρ̂i(t)

recovers the state ρ(t). In this example, note that observers only communicate

the scalar variable C5ρ̂i ∈ R1 with its neighbors instead of the full state estimate.

Nonetheless, state estimation is still achieved. Numerical simulation is presented
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in Section 5.4. ♢

It also follows from Theorem 5.2.1 that the design parameters γi and Pi can

be determined in a completely decentralized manner. Each agent can locally solve

for Pi and choose any positive γi to design its local observer.

We end this section by investigating the proposed condition K̄N+1 = SN+1
n

when observers communicate the full state estimation, i.e., when CN+2 = In and

L = N + 2.

Theorem 5.2.2. Consider the DEP and suppose that L = N+2 and CN+2 = In.

Then, K̄N+1 = SN+1
n if and only if

⋂
i∈Ṽk

ker (Zi)⊤ = {0}, ∀k = 1, . . . , c (5.2.4)

where c ≥ 1 is the number of connected components of the graph GN+1
obs and

Ṽk ⊆ N = {2, . . . , N + 1} is the node set of the k-th connected component. ♢

Proof. ( =⇒ ) Suppose that K̄ = SN+1
n and let x ∈ K̄ where x = [x1; . . . ;xN+1] ∈

R(N+1)n. It follows from the assumption that ZN+2 = In. Therefore, it holds

that

(LN+2 ⊗ In)x = 0, (5.2.5)

where LN+2 = diag(0,LN+2
obs ) ∈ R(N+1)×(N+1). Then it follows from (5.2.5) that

xi = xj , ∀i, j ∈ Ṽk (5.2.6)

for all k = 1, . . . , c. Hence, define ηk as the value of xi belonging to the k-th

connected component.

Now, note that there is a single directed edge from the plant to an individual

agent from layer 2 to N + 1. Therefore, it follows from x ∈ kerLi ⊗ (Zi)⊤ for

i = 2, . . . , N + 1 that

x1 − xi ∈ ker(Zi)⊤, ∀i = 2, . . . , N + 1. (5.2.7)
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In particular, from (5.2.6) and (5.2.7), we obtain

x1 − ηk ∈ ker(Zi)⊤, ∀i ∈ Ṽk

for k = 1, . . . , c. Therefore, it follows that

x1 − ηk ∈
⋂
i∈Ṽk

ker(Zi)⊤, ∀k = 1, . . . , c.

We claim ∩
i∈Ṽk ker(Z

i)⊤ = {0} for all k = 1, . . . , c. For the contradiction,

suppose that there exists k′ ∈ {1, . . . , c} such that

⋂
i∈Ṽk′

ker(Zi)⊤ ̸= {0}.

Then it follows that x1 − ηk′ ̸= 0. (If x0 = ηk′ , then a nonzero constant ∆ ∈
∩
i∈Ṽk′

ker(Zi)⊤ can be added to xi for all i ∈ {1, . . . , N + 1} \ Ṽk′ .) Hence,

x ̸∈ SN+1
n , which leads to a contradiction since x ∈ K̄ ⊆ SN+1

n by the assumption.

Thus, (5.2.4) holds.

( ⇐= ) Let x ∈ K̄ where x := [x1; . . . ;xN+1] ∈ R(N+1)n. Then, following the

arguments of the necessity part of the proof, it holds that

x1 − ηk ∈
⋂
i∈Ṽk

ker(Zi)⊤, ∀k = 1, . . . , c.

Therefore, it follows from (5.2.4) that x1 = η1 = . . . = ηc. Since every node (other

than node 1, i.e., the plant) belongs to a connected component of GN+1
obs , it follows

that x ∈ SN+1
n . □

In fact, the condition (5.2.4) recovers the necessary condition proposed for

the DEP in the literature (e.g., see [KSC16]). For example, it says that the stack

of output matrix (H,A) should be detectable when the communication network

is connected. Moreover, in this particular case, the necessary condition (5.2.4)

is shown to be sufficient for the general plant A. For instance, a static output

controller is proposed in [KSC16, LS20b]. A solution to the DEP is proposed in
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[KSC16] as

˙̂ρi = Aρ̂i +Gi(ωi −Hiρ̂i) + kWiW
⊤
i

∑
j∈Ni

(ρ̂j − ρ̂i)

for i = 2, . . . , N + 1, where Gi and Wi are appropriate gain matrices. It can be

verified that this is exactly in form of (5.1.2).

5.2.1 Design Procedures

A necessary and sufficient condition for solving the distributed estimation

problem is given in the previous section. Specifically, it has been shown that the

state estimation is achieved (along with appropriate assumptions) if and only if

K̄N+1 = SN+1
n ,

while the corresponding gains can be designed in a decentralized manner. Given

a multilayer network describing the distributed observer, the above condition can

be checked by counting the number of 0 eigenvalues of the matrix

L∑
l=1

Ll ⊗ (Z l)(ZL)⊤.

However, one often needs to design the multilayer network (e.g., Globs or C l for

l = N +2, . . . , L) such that the above condition holds. In this section, we present

a few observations that are tailored towards the DEP to assist the design proce-

dure. Additionally, a simple design method is proposed to ensure DEP is solved

while communicating the minimum amount of information. First, the following

sufficient condition is obtained.

Lemma 5.2.3. Let H := [H2; · · · ;HN+1]. If (H,A) is detectable and

K̄N :=

L⋂
l=N+2

Llobs ⊗ (Z l)(Z l)⊤ = SNn ,

then K̄N+1 = SN+1
n , i.e., the DEP can be solved. ♢
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Proof. It is sufficient to show K̄N+1 ⊆ SN+1
n . Let x = [x1;x1; · · · ;xN+1] :=

[x1;xobs] ∈ K̄N+1, i.e.,

x ∈
L⋂
l=1

Ll ⊗ (Z l)(Z l)⊤.

Then it follows from the structure of the multilayer graph that

(Zi)⊤(xi − x1) = 0, ∀i = 2, . . . , N + 1, (5.2.8)

and

Llobs ⊗ (Z l)(Z l)⊤xobs = 0, ∀l = N + 2, . . . , L.

This implies that xobs ∈ K̄N . Since K̄N = SNn by the assumption, it follows that

xobs ∈ SNn . Hence, by letting xobs = (1N ⊗ z), it follows from (5.2.8) that


(Z2)⊤

...

(ZN+1)⊤

 (z − x1) = 0 =⇒ z − x1 ∈ ⟨kerH |A⟩ ∩ X u(A).

Due to te detectability of pair (H,A), it holds that z = x1. Hence, this implies

x ∈ SN+1
n , which completes the proof. □

From the proof of Lemma 5.2.3, it follows easily that detectability (H,A) is a

necessary condition for solving DEP. Once the detectability condition is met, it is

sufficient to design communication between observers can be such that K̄N = SNn .

A simple method to satisfy this condition is to design communication among

observers such that L = N+2 and design CN+2 such that (CN+2, A) is detectable.

This is shown in the following theorem.

Theorem 5.2.4. Consider the DEP and suppose that (H,A) is detectable. Con-

struct the distributed observer of the form (5.2.1) where the multilayer graph with

L = N + 2 and N + 2-th layer is a connected graph with (CN+2, A) being a de-

tectable pair. Then, (5.2.1) solves the DEP. ♢

Proof. Using Lemma 5.2.3, it is sufficient to show K̄N = SNn holds. Due to the
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structure of the communication network, it holds that

K̄N = kerLN+2
obs ⊗ (ZN+2)(ZN+2)⊤.

Since (ZN+2)(ZN+2)⊤ > 0 due to detectability and LN+2
obs is a Laplacian matrix

of a connected graph, it is trivial to check

λn+1

(
LN+2
obs ⊗ (ZN+2)(ZN+2)⊤

)
> 0,

which implies K̄N = SNn . Thus, the result follows. □

Theorem 5.2.4 proposes a design of the distributed observer where each agent

communicate CN+2xi ∈ RqN+2 to its neighbors. Notice that the design procedure

of the proposed design is rather simple. In particular, it only requires detectability

of (H,A), connectedness of the communication network of the observers, and

detectability of (CN+1, A). Specifically, required conditions such as connectivity

and detectability are completely decoupled and hence can be designed separately.

Compared with the existing designs with CN+2 = In, we instead assume

detectability of the pair (CN+2, A). Hence, in order to reduce the communication

load, CN+2 should be designed to minimize qN+2. Given a real matrix A with m

distinct eigenvalues, by investigating its Jordan form [Che99], it can be verified

that the minimum q∗ is given by

q∗ = max
k s.t. Re(µk(A))≥0

µk(A) ≤ n,

where µk(A) is the geometric multiplicity of λk(A). Some examples are given

below.

1. If the system matrix A ∈ Rn×n has n distinct eigenvalues, then

q∗ = max(1, . . . , 1) = 1.

Hence, it is sufficient for observers to only communicate a single dimensional

information.
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2. Similarly, if the system matrix A is chain of integrator given by

A =



0 1

0 1
. . .

0 1

0


.

Then, it can be checked that q∗ = 1 and hence communicating single di-

mensional information is sufficient.

3. On the other hand, if A = 0n, then

q∗ = max(n) = n.

Thus, no improvements can be made as observers must communicate full

n-dimensional information.

Remark 5.2.2. A design with less communicational load may exist for a par-

ticular system. For example, if every observer measures a common mode, then

this information is not required to be communicated to neighboring agents (that

is K̄N = SN+1
n but (CN+1, A) not necessarily detectable). However, such design

depends on global information such as the exact measurement structure of agents

and the structure of the communication network. ♢

5.3 Distributed State Estimation with Reduced Com-

munication over Switching Network

This section presents extension of the results from the previous section to

switching networks. Most of the notations are identical to Section 5.2. Consider

again the distributed estimation problem with the plant

ρ̇ = Aρ+Bu(t), (5.3.1a)
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ω =


ω2

...

ωN+1

 =


α2(t)H2

...

αN+1(t)HN+1

 ρ =: Λ(t)Hρ, (5.3.1b)

where αi(t) ∈ {0, 1} is a piecewise constant signal denoting the switching of

the output matrix and Λ(t) := diag(s2(t), . . . , sN+1(t)). Also recall that the

distributed observer is given by

˙̂ρi = Aρ̂i +Bu(t)

+ γiKi

L∑
l=N+2

∑
j∈N l

i (t)

(C l)⊤(ŷlj − ŷli) + γiαi(t)Ki(Hi)
⊤(wi −Hiρ̂i)

(5.3.2a)

ŷli = C lρ̂i, ∀l = N + 2, . . . , L, i = 2, . . . , N + 1, (5.3.2b)

Define G∗(t) ∈ RNn×Nn and L∗(t) ∈ RNn×Nn as

G∗(t) := diag
(
α2(t)H

⊤
2 H2, . . . , αN+1(t)H

⊤
N+1HN+1

)
and

L∗(t) :=
L∑

l=N+2

Llobs(t)⊗ (C l)⊤C l.

Similarly, define

G∗
z(t) := diag

(
α2(t)Z

2(Z2)⊤, . . . , αN+1(t)Z
N+1(ZN+1)⊤

)
and

L∗
z(t) :=

L∑
l=N+2

Llobs(t)
⊤Llobs(t)⊗ (Z l)(Z l)⊤.

Suppose for simplicity that graphs are piece-wise constant, with switching times

denoted as {tq}q=1,2,.... It is also supposed that the switching signals have dwell

time as stated below.
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Assumption 5.3.1. Signals αi(t) and Laplacian matrices Ll(t) are piece-wise

constant with dwell time δ > 0. ♢

For the analysis of the switched systems, we first introduce the following result

from [SH12, Lem. 1].

Lemma 5.3.1. Given the sequence {tq} with t0 = 0 and tq+1 − tq ≥ δ > 0 for

all q ∈ N0, suppose that V : [0,∞) → R satisfies:

1. limt→∞ V (t) exists.

2. V (t) is twice differentiable2 on each interval [tq, tq+1).

3. There exists a positive constant K such that

sup
tq≤t<tq+1,q∈N0

|V̈ (t)| ≤ K. (5.3.3)

Then, limt→∞ V̇ (t) = 0. ♢

Using the previous lemma, extension of Theorem 5.2.1 to switching networks

is shown below.

Theorem 5.3.2. Suppose that Assumptions 5.2.1, 5.2.2, 5.3.1 hold and consider

the distributed observer (5.3.2) with Ki = P−1
i . Then for any γ > 0, (5.3.2) solves

the distributed estimation problem if and only if C l are chosen such that there

exists ν > 0 and a subsequence {qk} of {q | q ∈ N0} satisfying tqk+1
− tqk < ν such

that

qk+1−qk−1∑
j=0

L∗
z(tqk+j) +G∗

z(tqk+j) > 0 (5.3.4)

for all k ∈ N0. ♢

2With abuse of notation, we use upper Dini derivatives for V (t) at points tq. For more
details, readers are referred to [SH12, Jia09].
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Proof. Following the proof of Theorem 5.2.1, dynamics of the estimation error

becomes

ė =
(
(IN ⊗A)− Γ(L∗(t) +G∗(t))

)
e, (5.3.5)

where Γ = diag(γ2K2, . . . , γN+1KN+1). For the necessity, suppose that (5.3.4)

does not hold. Then for any subsequence {qk} and ν > 0 with tqk+1
− tqk < ν, it

holds that

qk+1−qk−1∑
j=0

L∗
z(tqk+j) +G∗

z(tqk+j)

is positive semidefinite (and not positive definite) for all k ∈ N0. Then by choosing

ν > δ and qk = k, it follows that

ker(L∗
z(tq) +G∗

z(tq)) ̸= {0}, ∀q ∈ N0,

i.e., L∗
z(t) +G∗

z(t) is not positive definite for all t ≥ 0.

Now we claim there exists a nonzero vector e∗ such that

e∗ ∈ ker (L∗
z(t) +G∗

z(t)) , ∀t ≥ 0.

By contradiction, if for all e ∈ RNn, there exists t∗ such that

e ̸∈ ker(L∗
z(t

∗) +G∗
z(t

∗)),

which implies L∗
z(t

∗) +G∗
z(t

∗) is positive definite. However, this contradicts since

L∗
z(t

∗) +G∗
z(t

∗) is not positive definite.

Now, it can be checked that ker (L∗
z(t) +G∗

z(t)) is (IN ⊗A)–invariant for each

time period. Thus, by investigating the system (5.3.5) with e(0) = e∗, it follows

that limt→∞ e(t) ̸→ 0 and the estimation is not achieved. Hence, (5.3.4) is a

necessary condition to achieve the distributed state estimation.

For the sufficiency, we mostly follow the arguments of [SH12, Thm. 1]. Using
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the Lyapunov function V (e) from Theorem 5.2.1, it can be verified that

V̇ ≤ −2γe⊤(L∗(t) +G∗(t))e ≤ 0. (5.3.6)

Hence, V (t) is positive and bounded from above, which implies limt→∞ V (t) exists.

On the other hand, boundedness of e(t) also follows from (5.3.6) and (5.3.5)

implies that V̈ satisfies the last condition Lemma 5.3.1. Therefore, limt→∞ V̇ (t) =

0 by Lemma 5.3.1. Thus, (5.3.6) results in

lim
t→∞

e(t)⊤(L∗(t) +G∗(t))e(t) = 0,

which in turn implies

lim
t→∞

e(t)⊤L∗(t)e(t) = 0, lim
t→∞

e(t)⊤G∗(t)e(t) = 0 (5.3.7)

since L∗(t) and G∗(t) are positive semidefinite matrices.

Next, we claim (5.3.7) implies

lim
t→∞

L∗
z(t)e(t) = 0, lim

t→∞
G∗
z(t)e(t) = 0.

For this, we apply Lemma 5.3.1 to η(t) := L∗(t)e(t). First, since L∗(t) is symmet-

ric, it follows from (5.3.7) that limt→∞ η(t) exists (and equal to 0). Twice differ-

entiability of η(t) on intervals [tq, tq+1) follows from definitions and Assumption

5.3.1. Finally, the last condition of Lemma 5.3.1, i.e., (5.3.3), holds since L∗(t),

G∗(t) and e(t) are all bounded. Thus, we obtain limt→∞ η̇(t) = 0. Therefore, it

follows from (5.3.5) and (5.3.7) that

lim
t→∞

L∗(t)(IN ⊗A)e(t) = lim
t→∞

L∗(t)
(
ė(t) + Γ(L∗(t) +G∗(t))e(t)

)
= lim

t→∞
L∗(t)ė(t) + lim

t→∞
L∗(t) · Γ

(
L∗(t)e(t) +G∗(t)e(t)

)
= lim

t→∞
L∗(t)η̇(t) + lim

t→∞
L∗(t) · Γ

(
L∗(t)e(t) +G∗(t)e(t)

)
= 0.

Now, suppose that limt→∞ L∗(t)(IN ⊗ A)ke(t) = 0. Then, it follows from induc-
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tion that limt→∞ L∗(t)(IN ⊗ A)k+1e(t) = 0. Hence, using the fact that Llobs is

symmetric, it can be verified that

lim
t→∞

e(t)⊤L∗
z(t)e(t) = 0. (5.3.8)

In addition, similar argument can be used to obtain limt→∞ e(t)⊤G∗
z(t)e(t) = 0.

Rest of the proof will now show limt→∞ e(t) = 0. First, recall that

e(t+ T0) = e(IN⊗A)T0e(t) + ∆(t, T0) (5.3.9)

where T0 > 0 is a constant and

∆(t, T0) := Γ

∫ t+T0

t
e(IN⊗A)(t+T0−τ)(−L∗(τ)−G∗(τ))e(τ)dτ.

By letting ∆̄ := maxt∈[0,T0] |e(IN⊗A)t| · |Γ|, it follows that

|∆(t, T0)| ≤ ∆̄

∫ t+T0

t
|(L∗(τ) +G∗(τ))e(τ)|dτ.

Thus, we obtain limt→∞∆(t, T0) = 0 by using (5.3.7). (Also see [SH12, Lem.

5]).)

Next, we claim that for each j = 0, . . . , qk+1 − qk − 1,

lim
k→∞

e(tqk)
⊤L∗

z(tqk+j)e(tqk) = 0. (5.3.10)

Since it follows from (5.3.9) that e(t) = e−(IN⊗A)T0(e(t+T0)−∆(t, T0)), by letting

t = tqk and T0 = tqk+j − tqk , we have

e(tqk) = e−(IN⊗A)T0(e(tqk+j)−∆(tqk , T0)
)

for each j = 0, . . . , qk+1 − qk − 1.

Hence, substituting expression of e(tqk) to (5.3.10), it follows that

e(tqk)
⊤L∗

z(tqk+j)e(tqk)

=
(
e−(IN⊗A)T0(e(tqk+j)−∆(tqk , T0)

))⊤
L∗
z(tqk+j)

(
e−(IN⊗A)T0(e(tqk+j)−∆(tqk , T0)

))
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= e(tqk+j)
⊤e−(IN⊗A⊤)T0L∗

z(tqk+j)e
−(IN⊗A)T0e(tqk+j)

− 2∆(tqk , T0)
⊤L∗

z(tqk+j)e
−(IN⊗A)T0e(tqk+j) + ∆(tqk , T0)

⊤L∗
z(tqk+j)∆(tqk , T0)

=: e(tqk+j)
⊤e−(IN⊗A⊤)T0L∗

z(tqk+j)e
−(IN⊗A)T0e(tqk+j) + g(∆(tqk , T0)),

where limk→∞ g(∆(tqk , T0)) = 0 for some function g : Rn → R. Thus, proving

(5.3.10) is equivalent to showing

lim
k→∞

e(tqk+j)
⊤e−(IN⊗A⊤)T0L∗

z(tqk+j)e
−(IN⊗A)T0e(tqk+j) = 0. (5.3.11)

To prove (5.3.11), first note that (5.3.8) implies

αlji(t)(ej(t)− ei(t)) → ker (Z l)⊤, ∀(i, j) ∈ E lobs, l = N + 2, . . . , L.

Since ker (Z l)⊤ is e−AT0 invariant, it follows that

lim
t→∞

(Z l)⊤e−AT0αlji(t)(ej(t)− ei(t)) = 0, ∀(i, j) ∈ E lobs, l = N + 2, . . . , L.

By stacking, it can be verified that the above implies

lim
t→∞

(
Llobs(t)⊗ (Z l)(Z l)⊤

)
(IN ⊗ e−AT0)e(t)

= lim
t→∞

(
Llobs(t)⊗ (Z l)(Z l)⊤

)
e−(IN⊗A)T0e(t)

= 0.

Thus, (5.3.11) and equivalently (5.3.10) holds.

Now, by summing (5.3.10) for j = 0, 1, . . . , qk+1 − qk − 1, it follows that

lim
k→∞

e(tqk)
⊤

( qk+1−qk−1∑
j=0

L∗
z(tqk+j)

)
e(tqk) = 0. (5.3.12)

Using the similar arguments, we may also obtain (5.3.12) with L∗
z(tqk+j) replaced

with G∗
z(tqk+j). Since

∑qk+1−qk−1
j=0 L∗

z(tqk+j) + G∗
z(tqk+j) > 0 due to assumption,



110 Chap. 5. Application to the Distributed State Estimation Problem

we obtain

lim
k→∞

|e(tqk)| = 0.

Since |e(tqk)| is non-increasing, it follows that limt→∞ |e(t)| = 0. □

As mentioned, Theorem 5.3.2 is extension of Theorem 5.2.2 to switching net-

works. Hence, similar design procedures can be obtained as in the static network.

In particular, by letting L = N + 2, we obtain following condition which extends

results of Theorem 5.2.4.

Corollary 5.3.3. Suppose that (CN+2, A) is detectable, Gobs(t) is uniformly con-

nected and

([
H̄2; · · · ; H̄N+1

]
, A
)

(5.3.13)

is detectable, where H̄i :=
∑tqk+1

−tqk−1

j=0 αi(tqk+j)Hi for all k = 0, 1, . . .. Then

(5.3.4) holds. ♢

Proof. Overall proof is similar to the proof of Theorem 5.2.4, hence only the

difference is highlighted. By direct calculation, it holds that

qk+1−qk−1∑
j=0

L∗
z(tqk+j) +G∗

z(tqk+j) = Q⊤Q, (5.3.14)

where Q := [Q1;Q2] is defined as

Q1 :=


(LN+2)(tqk)⊗ (ZN+2)⊤

...

(LN+2)(tqk+1−1)⊗ (ZN+2)⊤

 ,

Q2 :=


diag

(
α2(tqk)Z

⊤
2 , . . . , αN+1(tqk)Z

⊤
N+1

)
...

diag
(
α2(tqk+1−1)Z

⊤
2 , . . . , αN+1(tqk+1−1)Z

⊤
N+1

)
 .

From uniform connectedness of G(t) and detectability of (CN+2, A), it can be

verified that kerQ1 = SNn . Consequently, it follows from (5.3.13) that Q2(1N ⊗
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x̄) = 0 for all x̄ ∈ Rn. Therefore, ker (Q) = ker (Q⊤Q) = {0}, and hence∑qk+1−qk−1
j=0 L∗

z(tqk+j) + G∗
z(tqk+j) is positive definite. Then, the result follows

from Theorem 5.3.2. □

Similar to the result of Theorem (5.2.4), Corollary 5.3.3 proposes a simple,

decomposed sufficient conditions for the convergence of the proposed distributed

observer. It requires the detectability of the pair H̄, A) (which can be interpreted

as the uniform detectability of (Λ(t)H,A)), uniform connectivity of the communi-

cation network among observers Gobs(t) and detectability of the pair (CN+1, A).

Additionally, similar arguments for reducing the communication load between ob-

servers via CN+2 also applies.

5.4 Simulation Results

Numerical simulation is done to illustrate the effectiveness of the proposed

design. Consider a plant with 3 agents where the system and measurement ma-

trices are given by

A =


0 1 0 0

−1 0 0 0

0 0 0 2

0 0 −2 0

 ,
H1 =

[
0 0 0 0

]
H2 =

[
1 0 0 0

]
H3 =

[
0 0 1 0

]
H4 =

[
0 0 0 0

]
, B = 0.

The switching signal σ(t) for the communication network is given by3

σ(t) =


1 0 ≤ ⌊t⌋ mod 6 < 2,

2 2 ≤ ⌊t⌋ mod 6 < 4,

3 4 ≤ ⌊t⌋ mod 6 < 6,

i.e., σ(t) cycles through each mode every 2 seconds. Corresponding network is

given by switching graph as depicted in Fig. 5.2. In particular, node 1 denotes

3We use ⌊·⌋ to denote floor function and mod to denote the remainder.
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σ(t) = 1 σ(t) = 2

σ(t) = 3

2

3 4

1
2

3 4

1

2

3 4

1

Figure 5.2: Graph structure used for the simulation. Each mode is switched
every 2 seconds.

the plant, arrows from node 1 to node i denote the output measurement of node

i and arrows between agents denote the communication between observers. For

example, α1(t) = α2(t) = 1, α3(t) = 0 and L1 = 0 for t ∈ [0, 2). It can be checked

that s∗ = 1 and hence let C5 ∈ R1×4 be

C5 =
[
1 0 1 0

]
such that (C5, A) is detectable. Then, it can be verified that the conditions of

Corollary 5.3.3 hold.

The proposed observer (5.1.2) becomes

˙̂ρi = Aρ̂i + αi(t)H
⊤
i (yi −Hiρ̂i) + (C5)⊤

∑
j∈Ni(t)

(C5ρ̂j − C5ρ̂i),

where P−1
i = I4 and γi = 1 is used.

Simulation results are shown in Fig. 5.3, which verify the convergence of

the proposed design under the switching network. Estimation errors are also

plotted in Fig. 5.4. Notice that the proposed observers only communicate the

scalar variable Cx̂i ∈ R1 with its neighbors instead of the full state estimate.

Nonetheless, state estimation is still achieved.
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Figure 5.3: Simulation result for distributed state estimation. Dashed line
denote the state of the plant and solid lines denote the estimate
of each agent.

Figure 5.4: Plot of estimation error
∑4

i=2 |ρ̂i(t)− ρ(t)|.





Chapter 6

Application to the Formation Control
Problem

In this section, the formation control problem is formulated into a consensus

problem over a multilayer network. A dynamic controller is developed using the

results from the previous chapter to achieve the desired formation.

6.1 Problem Formulation

Consider a network of N agents where pi ∈ Rn and vi ∈ Rn denote the

position and velocity of each agent in Rn, respectively. The dynamics of each

agent is described by

ṗi = vi, v̇i = ui, i ∈ N , (6.1.1)

where ui ∈ Rn is the control input. Define xi := [pi; vi] ∈ R2n to obtain

ẋi =

[
0n In

0n 0n

]
xi +

[
0n

In

]
ui =: Axi +Bui.

The information flow among agents is given by a graph G = (N , E) and assume

that each agent may measure the relative position to its neighbors, e.g., pj−pi for

all j ∈ Ni. Also suppose that the measurement is bidirectional and that the two

agents measuring the relative position may also communicate with each other.

115
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i

j

pji

b∗ij

Pb∗ij (pj − pi)

Figure 6.1: Illustration of relative position and Pb∗ij (pj − pi).

Objective of the formation control problem is to design a controller such that the

agents form a desired formation.

In order to describe the desired formation, define the bearing as follows.

Definition 6.1.1. The bearing of agent j relative to agent i is defined as

bji :=
pj − pi
|pj − pi|

∈ Rn.

Also let Pbij := In − bijb
⊤
ij ∈ Rn×n as the orthogonal projection matrix onto

im (bij)
⊥. ♢

Note that it follows from the definitions that bij = −bji and Pbij = Pbji . The

bearing contains information about the direction (or angle) between two agents,

but not the distance between two agents. In particular, two agents may be apart

by different distances yet still have the same bearing. An illustration of relative

position and Pb∗ij is shown in Fig. 6.1.

We consider the problem of controlling each agent to form a desired formation,

where the desired formation is given by a combination of desired relative positions

and desired bearings between a pair of agents. Specifically, the desired formation

is given by a set of desired relative positions {p∗ij}(i,j)∈Ep and a set of desired

bearings {b∗ij}(i,j)∈Eb , where p∗ij , b
∗
ij are n-dimensional vectors and Ep, Eb ⊆ E are

the edge sets specifying the pair of agents for each constraint. We say that the

agents achieve the desired formation if the followings hold as t→ ∞:

1. pj(t)− pi(t) → p∗ji for all (i, j) ∈ Ep and

2.
pj(t)− pi(t)

|pj(t)− pi(t)|
→ b∗ji for all (i, j) ∈ Eb.
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It is also our objective to achieve velocity consensus, i.e.,

lim
t→∞

vj(t)− vi(t) = 0, ∀i, j ∈ N .

For more details on the formation control problem, refer to works such as [ZZ17,

OPA15, TNLA18] and references therein.

6.2 Formation Control Problem using Multilayer Net-

work

The formation control problem with the desired formation described only by

the relative position can be easily solved using the consensus protocols [OPA15].

Studies are also done recently to solve the formation control problem with bearing

measurements only. However, the problem becomes more challenging if the desired

formation involves both the relative position and the bearing. Nonetheless, the

formation control problem with relative position and bearing constraints can be

equivalently formulated into a consensus problem over a multilayer network and

dynamic controllers are designed using the previous results.

In order to derive an equivalent consensus problem, the following assumption

is made throughout the section.

Assumption 6.2.1. Given a desired formation {p∗ij}(i,j)∈Ep and {b∗ij}(i,j)∈Eb , there

exists p∗i such that p∗j − p∗i = p∗ji for all (i, j) ∈ Ep and (p∗j − p∗i )/|p∗j − p∗i | = b∗ji

for all (i, j) ∈ Eb. ♢

Remark 6.2.1. Assumption 6.2.1 supposes that a valid formation exists which

satisfies the desired relative position and bearing constraints. The existence and

uniqueness of p∗i is a fundamental question studied in the formation control prob-

lem and it is out of the scope of this dissertation. For more details, we refer to

[OPA15] for a survey and [ZZ17] for bearing-constrained formation. ♢

Under Assumption 6.2.1, let x∗i := [p∗i ; 0] ∈ R2n and define the error as ei :=

xi − x∗i . Then, achieving consensus of ei implies xj − xi = p∗j − p∗i and vi = vj

for all i, j ∈ N . Therefore, it follows from Assumption 6.2.1 that the desired
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formation is achieved with the same velocity. Consequently, rest of the section

focuses on designing a controller such that ei achieves consensus.

For the controller design, recall that agent i is only aware of its local con-

straints. Then, we model relative position and bearing constraints using the mul-

tilayer graph Gf with L := |Eb|+1 layers. Construction of the multilayer network

is as follows.

1. For the relative position constraints, let L1 ∈ RN×N be the Laplacian ma-

trix of the graph G1 = (N , Ep) and let C1 = [In 0n] ∈ Rn×2n be the corre-

sponding output matrix. On layer 1, agents measure the relative position

and will use this information for the local feedback.

2. For the l-th bearing constraint with an edge (i, j) ∈ Eb, let Ll+1 ∈ RN×N be

the Laplacian graph of the graph Gl+1 = (N , {(i, j), (j, i)}) and let C l+1 :=

[Pb∗ij 0] ∈ Rn×2n be the output matrix of l + 1-th layer. On layers 2 to L,

agents compute the bearing error, e.g., Pb∗ji(pj−pi), and use this information

for the control.

Remark 6.2.2. Construction of the multilayer graph used to represent con-

straints required |Eb| + 1 layers. In particular, each bearing constraint is rep-

resented as a separate layer. However, if some bearing constraints are identical,

e.g., Pb∗ij = Pb∗
i′j′

, then (i, j) and (i′, j′) can be represented in the same layer as

two different edges. ♢

Finally, since Ax∗i = 0, the dynamics of ei can be written as

ėi = Aei +Bui,

yli = C lei, ∀i ∈ N , l ∈ L,
(6.2.1)

with the multilayer graph Gf . Then the following result follows directly from

Theorem 3.2.1.

Proposition 6.2.1. Consider the system (6.2.1) with multilayer graph Gf and

suppose that the necessary condition (3.2.2) holds. Then, a dynamic controller

can be constructed such that ei achieves consensus. Equivalently, (6.1.1) achieves

the desired formation and velocity consensus achieved. ♢
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Proof. Consensus of ei follows directly from Theorem 3.2.1 and controller design

in Section 3.4. Since consensus of ei implies xj − xi = p∗j − p∗i and vj − vi, the

result follows. □

6.3 Simulation Results

In this section, we provide simulation results for the formation control prob-

lems. Section 6.3.1 presents a dynamic controller for static formation in 2-D.

Results are also applied to the formation control problem in 3-D in Section 6.3.2

where we also show how the proposed method is capable of easily scaling the

desired formation.

6.3.1 Achieving a Static Formation

For the numerical simulation, consider (6.1.1) with N = 4 and n = 4. The

desired formation is given by p∗12 = p∗34 = −p∗21 = −p∗43 := [0;−1], b∗32 := [1; 0]

and b∗42 := [−1/
√
2;−1/

√
2], while Ep = {(1, 2), (2, 1), (3, 4), (4, 3)} and Eb =

{(2, 3), (3, 2), (2, 4), (4, 2)}. In particular, it can be checked that the square for-

mation with length 1, which is shown in Fig. 6.2(a), is the only formation satis-

fying the constraints. Equivalent multilayer graph Gf with corresponding output

matrices is shown in Fig. 6.2(b), where C l ∈ R2×4 are

C1 =
[
I2 02

]
, C2 =

[
0 0 0 0

0 1 0 0

]
, C3 =

[
0.5 0.5 0 0

0.5 0.5 0 0

]

and the Laplacian matrices Ll ∈ R4×4 are given by

L1 =


1 −1 0 0

−1 1 0 0

0 0 1 −1

0 0 −1 1

 , L2 =


0 0 0 0

0 1 −1 0

0 −1 1 0

0 0 0 0

 , L3 =


0 0 0 0

0 1 0 −1

0 0 0 0

0 −1 0 1

 ,
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Figure 6.2: (a) Desired formation used for the simulation. Solid line denotes
the relative position constraint and dashed line denotes the bear-
ing constraint. (b) Equivalent multilayer network.

For the transformation matrices Z l and W l, we have used

Z1 = I4, Z2 =


0 0

1 0

0 0

0 1

 , Z3 =



√
2
2 0
√
2
2 0

0
√
2
2

0
√
2
2


and

W 1 = null, W 2 =


1 0

0 0

0 1

0 0

 , W 3 =


−

√
2
2 0

√
2
2 0

0 −
√
2
2

0 −
√
2
2

 .

Hence, it follows that ν1 = 0, ν2 = 3 and ν3 = 2. Also, it can be checked that Z l

and W l forms an orthonormal basis for each of the undetectable subspace.

For the controller, first let ψ1
ji := p∗ji and ψ2

ji = ψ3
ji = 0. Then, following the

result of Section 3.4, dynamic controller for each agent can be designed as

ξ̇li = Aldξ
l
i +Gl

[ ∑
j∈N l

i

C ld(ξ
l
j − ξli)− (C ld(xj − xi)− ψlji)

]
+ (Z l)⊤Bui,
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˙̂xi=Ax̂i +Bui + γ
L∑
l=1

∑
j∈N l

i

[
(Z l)(Z l)⊤(x̂j − x̂i)− (Z l)(ξlj − ξli)

]
,

ui = BKx̂i.

Specifically, let τ = 0.5 such that τ is less than nonzero eigenvalues of Ll for all

l ∈ L. Then, Gl = P l(C l)⊤ where P l > 0 is the solution of the ARE given by

(Al)⊤P l + P l(Al)⊤ − τP l(C l)⊤(C l)P l = −In−νl , ∀l ∈ L.

Numeric values for Gl can be computed as

G1 =


1.9566 0

0 1.9566

1.0 0

0 1.0

 , G2 =

[
0 1.9566

0 1.0

]
, G3 =

[
1.3836 1.3836

0.7071 0.7071

]
.

The control gain K is designed as

K = −
[
1.0 0 1.7321 0

0 1.0 0 1.7321

]

such that A+BK is Hurwitz and γ = 5 is used. Moreover, it can be verified that

(3.2.2) holds.

Simulation results are shown in Fig. 6.3, which depicts the trajectories of

agents. Red dots represent the position of each agent at time t = 0, 2, 15, 20. It

can be seen that the desired formation is achieved under the proposed controller.

Agents also achieve velocity consensus and travel in the same direction while

maintaining the desired formation. Relative position error and bearing error are

also plotted in Fig. 6.4.
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Figure 6.3: Trajectories of agents forming the desired formation.
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Figure 6.4: Plot of relative position error
∑

(i,j)∈Ep |(pj−pi)−p∗ji|2 and bear-
ing error

∑
(i,j)∈Eb |Pb∗ij (pi − pj)|2.
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6.3.2 Scaling Formation via Multilayer Network

In this section, we apply the proposed result to agents moving in 3-D with a

single leader agent. The desired formation (given by both bearing and relative

position constraints) is shown in Fig. 6.5. Note that the leader agent is denoted

as agent 0 and its direct neighbors (e.g., agents 1 to 4) have a relative positional

constraint. Agents 1 to 8 have the bearing constraints between them and the

bearing constraints alone define a unique formation up to scaling and translation.

Therefore, combined with the positional constraints, it can be verified that the

desired formation indeed defines a unique formation (up to translation).

y

z

x

0

1

2

3

4

5

6

7

8

Figure 6.5: Desired formation and constraints for 3-D formation. Solid lines
denote the relative position constraint and dashed lines denote
the bearing constraints.

Corresponding multilayer network representing the desired formation can be

constructed as described in the previous section. The multilayer graph is shown
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in Fig. 6.6 where C l are given by

C1 =
[
I3 03

]
, C2 =


1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

 , C3 =


0 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

 ,

C4 =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

 , C5 =


2
3 −1

3
1
3 0 0 0

−1
3

2
3

1
3 0 0 0

1
3

1
3

2
3 0 0 0

 .
Specifically, C1 represent the relative position constraint, C2 is the bearing con-

straint in y-direction, C3 is the bearing constraint in x-direction, C4 is the bearing

constraint in z-direction and finally C5 is the bearing constraint between agent

3 and 5. The dynamic controller is designed similar to the previous section and

hence details are not presented. In particular, (3.4.5) is employed and hence the

control input is designed as

u = (Lp ⊗K)x̂ (6.3.1)

for the appropriate value of K.

For the simulation, we have chosen an initial condition such that the leader

agent travels in y-direction. Moreover, scale of the desired formation changes at

t = 50s and t = 100s. In particular, scaling is done by agents 1 to 4 by scaling

vectors p∗. In practice, the leader agent may send an appropriate signal to its

immediate followers to scale the size of the relative position vector to stay closer to

the leader. This simulates the scenario where agents must stay closer in order to

avoid obstacles. As formation passes through the obstacle, it recovers the original

formation.

Simulation results are shown in Fig. 6.7, which plots the trajectory of the

agents. Red dots depict the position of each agent at a fixed time interval, the

red line denotes the trajectory of the leader, and solid lines denote the trajectory

of followers. Bearing constraints and position constraints are shown in black

dotted and solid lines, respectively. First, notice that the leader agent travels

straight in y-direction. This is consequence of the input (6.3.1), which achieves
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Figure 6.6: Corresponding multilayer graph for 3-D formation problem.
Overall constraints can be represented using 5 layers.
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Figure 6.7: Simulation result for formation control in 3-D. Figure shows
agents shrinks and expands scale of the formation.

(weighted) average consensus. (Specifically, we have a rooted spanning tree with

the leader agent being a root.) Secondly, from the random initial condition, we

see that agents achieve the desired formation around the leader agent. Finally,

as the scale of the desired formation shrinks or expands, followers automatically

converge to a new formation.

Remark 6.3.1. Compared to works such as [ZZ17], the proposed controllers only

require relative position measurement, and information about the velocity is not

required. Moreover, by using directed graphs and a combination of bearing with

position constraints, scaling of the formation is easily done by a single leader

agent. ♢



Chapter 7

Application to the Distributed
Optimization Problem

This chapter studies the distributed optimization problem by formulating it into

an output consensus problem of heterogeneous agents. Additionally, it is sup-

posed that the communication structure between agents is given by a multilayer

network. Specifically, a new type of algorithm is proposed to solve the distributed

optimization problem in a more efficient manner.

7.1 Problem Formulation

We consider the distributed optimization problem of N agents given by

min
w∈Rn

F (w) :=
1

N

N∑
i=1

fi(w), (7.1.1)

where fi : Rn → R is differentiable and F (w) is strongly convex. The main objec-

tive of the distributed optimization problem is to design an algorithm such that

each agent finds the global minimizer of F (w) only using its local cost function fi
and communication with their neighbors. Distributed optimization problem has

received much attention due to various applications such as resource allocation

problem including economic dispatch problem [LS19, YSA19], distributed state

estimation [LS20a] or distributed machine learning.

In order to solve (7.1.1), consider the multi-agent system consisting ofN nodes

127



128 Chap. 7. Application to the Distributed Optimization Problem

where dynamics of each agent is given by

ẋi = hi(xi) + ui

ζi = Exi,

yli = C lpζi = C lpExi,

(7.1.2)

where xi ∈ Rn is state, hi : Rn → Rn is vector field, ui ∈ Rn is input and ζi ∈ Rq

is output of each agent to be synchronized. It is assumed that the output matrix

E ∈ Rq×n has full row rank.

The communication network among agent is given by a multilayer graph Gp,

and the output of i-th agent on l-th layer is given by

yli = C lpζi = C lpExi,

where yli ∈ Rnl denotes the partial information of the output ζi communicated

to its neighbors. Specifically, yli denote the information of agent i on layer l,

where C lp ∈ Rnl×q is the corresponding output matrix1. We suppose that the

communication structure of yli is given by an undirected multilayer graph Gp with

Lp layers. By defining Lp := {1, . . . , Lp}, the multilayer graph is defined as

Gp := (N , {E lp}l∈Lp). Specifically, agent i communicates yli to its neighbors on

l-th layer N l
i .

The main objective of the problem studied in this chapter is to design the

dynamics (7.1.2) (e.g., hi, E and C lp) and input ui(t) (only using ylj − yli) such

that the output of (7.1.2) converges to the optimal solution of (7.1.1), i.e.,

lim
t→∞

ζi(t) = w∗, ∀i ∈ N , (7.1.3)

where w∗ := argminw F (w). Note that output consensus is also achieved since

ζi(t) converges to the same value.

1In this chapter, subscript p is used to denote that a variable is related to proportional
feedback (and not related to the projection graph as in the previous chapters).
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7.2 Distributed PI Algorithm

7.2.1 Distributed PI Algorithm under Static Network

In this section, we propose a PI based algorithm which achieves asymptotic

output consensus for system (7.1.2) under static network. For the control input,

first let ξi ∈ Rq as the integral state with its dynamics given by

ξ̇i = −γK
Lp∑
l=1

(C lp)
⊤

{ ∑
j∈N l

i,p

(
ylj − yli

)}
, (7.2.1)

where N l
i,p := {j ∈ N | (j, i) ∈ E lp} is the neighbors of agent i on layer l of the

multilayer graph Gp with Lp layers. For the control input, ξi is exchanged with

neighboring agents over the communication network given by a multilayer graph

GI with LI layers (which may be different from Gp). Then, the control input of

each agent is designed as

ui = kpE
⊤

[ Lp∑
l=1

(C lp)
⊤
{ ∑
j∈N l

i,p

(
ylj − yli

)}]
+ kIE

⊤

[
LI∑
l=1

(C lI)
⊤
{ ∑
j∈N l

i,I

C lI (ξj − ξi)

}]
,

(7.2.2)

where N l
i,I is defined similarly as N l

i,p. The matrix K ∈ Rq×q in (7.2.1) and the

constants kp, kI, γ are the design parameters of the control input. Meanwhile, we

also consider the control input in from of

ui = kpE
⊤

[ Lp∑
l=1

(C lp)
⊤
{ ∑
j∈N l

i,p

(
ylj − yli

)}]
− kIE

⊤
LI∑
l=1

(C lI)
⊤C lIξi

with
N∑
i=1

ξi(0) = 0.

(7.2.3)

Note from (7.2.1) that ξi can be regarded as the integral of the relative output

error ylj−yli. Therefore, both the input given by (7.2.2) and (7.2.3) are in form of

the proportional-integral (PI) controller. Observe that the control input (7.2.2)

communicate both yli and ξi while (7.2.3) only requires communication of yli.



130 Chap. 7. Application to the Distributed Optimization Problem

However, the control input (7.2.3) requires initial conditions of the integrator

must be such that
∑N

i=1 ξi(0) = 0. In this sense (7.2.1) and (7.2.2) are called

initialization-free and suitable in cases where agents may join or leave the system

during the operation.

Define x ∈ RNn, ζ ∈ RNq and ξ ∈ RNq as the stack of xi, ζi and ξi respectively.

Then the dynamics (7.1.2) with controller (7.2.1) and (7.2.2) can be written as

ẋ = h(x)− kp(IN ⊗ E)⊤Lp(IN ⊗ E)x− kI(IN ⊗ E)⊤DIξ (7.2.4a)

ξ̇ = γ(IN ⊗K)Lp(IN ⊗ E)x, (7.2.4b)

where h(x) := [h1(x1); · · · ;hN (xN )] ∈ RNn. The matrices Lp,DI ∈ RNq×Nq are

defined as

Lp :=

Lp∑
l=1

Llp ⊗ (C lp)
⊤C lp

DI :=


∑LI

l=1 L
l
I ⊗ (C lI)

⊤C lI if (7.2.2) is used∑LI
l=1 IN ⊗ (C lI)

⊤C lI if (7.2.3) is used

where Llp ∈ RN×N and LlI ∈ RN×N are the Laplacian matrices of Gp and GI

respectively.

We make the following assumption which is related to the structure of the

multilayer graph.

Assumption 7.2.1. For Lp and DI, it holds that

1. λq+1(Lp) > 0.

2. λq+1(DI) > 0 if (7.2.2) is used and DI > 0 if (7.2.3) is used. ♢

Recall that for an undirected graph (i.e., a multilayer graph with L = 1)

with L as the Laplacian matrix, the connectivity is equivalent to λ2(L) > 0. In

a similar fashion, the Assumption 7.2.1 can be regarded as a generalization of

this statement to the multilayer graphs. These conditions require that the output

information to be well-connected in some sense, such that the consensus can be
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achieved. Notice that it is similar to the algebraic conditions studied in Chapter

3.

Remark 7.2.1. The proposed controller (7.2.4) includes the classical PI algo-

rithms studied in the literature [HCIL18, LCH19, KCM15, WE10]. Specifically,

if K = C l = E = In, Lp = LI = 1, Gp = GI and (7.2.2) is used, then the overall

system (7.2.4) becomes

ẋ = h(x)− kp(L⊗ In)x− kI(L⊗ In)ξ

ξ̇ = γ(L⊗ In)x,
(7.2.5)

where h(x) := [∇f1(x1); · · · ;∇fN (xN )] and L ∈ RN×N denotes the Laplacian

matrix of the communication network. Then the (7.2.5) is exactly the continuous-

time distributed PI algorithm studied in the literature. ♢

Remark 7.2.2. The dynamics (7.2.5) with (7.2.2) also admit an another in-

terpretation from the optimization theory. Note that the optimization problem

(7.1.1) can be written equivalently as

min
wi∈Rn

F (w1, . . . , wN ) :=
1

N

N∑
i=1

fi(wi),

(L⊗ In)


w1

...

wN

 = 0.

Then the augmented Lagrangian of the optimization problem can be defined as

L(w1, . . . , wN , ξ) =
1

N

N∑
i=1

fi(wi) + kξ⊤Lw̄ + kw̄⊤Lw̄,

where ξ is the dual variable and w̄ := [w1; · · · ;wN ]. Then the primal-dual algo-

rithm [CGC17] is given by

˙̄w = −∇w̄L(w̄, ξ)

= −∇F (w̄)− (L⊗ In)w̄ − (L⊗ In)ξ
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ξ̇ = (L⊗ In)w̄.

It can be checked that the primal-dual algorithm is identical to (7.2.5). However,

such interpretation is no longer valid when only output is communicated or hi is

more complex. ♢

Remark 7.2.3. The main objective of achieving ζi(t) → w∗ for all i ∈ N can

be seen as output consensus of nonlinear, heterogeneous agents. A necessary

condition for consensus of a nonlinear heterogeneous agent is studied in [WWA13],

which states that a common internal model must be present. In this regard,

it can be seen that adding an integrator (7.2.1) introduces a common internal

model such that asymptotic consensus to a constant value can be achieved despite

heterogeneity. ♢

7.2.2 State Transformation for Analysis

In this section, a series of state transformations motivated by [LS20b] are

introduced which is used for the analysis of the proposed algorithm. First, apply

the transformation

zi = Z⊤xi ∈ Rn−q, wi =W⊤xi ∈ Rq, (7.2.6)

where T := [Z W ] ∈ Rn×n is an orthonormal matrix such that im (Z) = ker(E)

and im (W ) = ker(E)⊥ = im (E⊤). Hence, it holds that EZ = 0 and xi = Zzi +

Wwi. Then by defining z := [z1; · · · ; zN ] ∈ RN(n−q) and w := [w1; · · · ;wN ] ∈
RNq, the overall dynamics (7.2.4) becomes

ż = (IN ⊗ Z)⊤h(x)

ẇ = (IN ⊗W )⊤h(x)− kp(IN ⊗ EW )⊤Lp(IN ⊗ EW )w − kI(IN ⊗ EW )⊤DIξ

ξ̇ = γ(IN ⊗K)Lp(IN ⊗ EW )w.

(7.2.7)

Next, let U ∈ RN×N be the matrix for some connected Laplacian matrix given

by Theorem 2.1.4 and let w, ξ be the stack of wi and ξi. Now, apply the state
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transformation to w and ξ as[
w̄

w̃

]
= (U ⊗ Iq)w,

[
ξ̄

ξ̃

]
= (U ⊗ Iq)ξ, (7.2.8)

where w̄, ξ̄ ∈ Rq and w̃, ξ̃ ∈ R(N−1)q. Specifically, we have w = (1N ⊗ Iq)w̄+(R⊗
Iq)w̃, ξ = (1N ⊗ Iq)ξ̄+(R⊗ Iq)ξ̃, and hence x = Z⊗z+(1N ⊗W )w̄+(R⊗W )w̃.

In addition, define Λp,ΛI ∈ R(N−1)q×(N−1)q as

Λp := (R⊗ Iq)
⊤Lp(R⊗ Iq) (7.2.9)

ΛI := (R⊗ Iq)
⊤DI(R⊗ Iq). (7.2.10)

Using Assumption 7.2.1 and the definitions of R, it can be easily verified that Λp

and ΛI are symmetric and positive definite.

Using the transformation (7.2.8), dynamics of ξ̄ and ξ̃ transform into

˙̄ξ = 0

˙̃
ξ = γ(R⊤ ⊗K)Lp(R⊗ EW )w̃.

Meanwhile, the dynamics of w̄ and w̃ becomes

˙̄w =
1

N
(1N ⊗W )⊤h(x)

˙̃w = (R⊗W )⊤h(x)− kp(R⊗ EW )⊤Lp(R⊗ EW )w̃

− kI(R⊗ EW )⊤DI(R⊗ Iq)ξ̃

= (R⊗W )⊤h(x)− kp(IN−1 ⊗ EW )⊤Λp(IN−1 ⊗ EW )w̃ − kI(IN−1 ⊗ EW )⊤ΛIξ̃,

where we used (1N ⊗ Iq)
⊤Lp = 0, (1N ⊗ Iq)

⊤DIξ̄(t) = 0 (regardless of whether

(7.2.2) or (7.2.3) is used), Lp(1N ⊗ Iq) = 0 and (R⊤ ⊗ Iq)DI(1N ⊗ Iq) = 0.

Finally, it follows that the system (7.2.4) becomes

ż = (IN ⊗ Z)⊤h(x) (7.2.11a)

˙̄w =
1

N
(1N ⊗W )⊤h(x) (7.2.11b)
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˙̃w = (R⊗W )⊤h(x)− kp(IN−1 ⊗ EW )⊤Λp(IN−1 ⊗ EW )w̃

− kI(IN−1 ⊗ EW )⊤ΛIξ̃
(7.2.11c)

˙̄ξ = 0 (7.2.11d)
˙̃
ξ = γ(R⊤ ⊗K)Lp(R⊗ EW )w̃. (7.2.11e)

Note that (7.2.11d) shows ξ̄ (i.e., the average of ξi) is constant and hence the

trajectory of ξ̄ is determined by the initial conditions of ξi(0).

Now, we investigate the equilibrium point of the system (7.2.11). For this, we

make the following assumption.

Assumption 7.2.2. The dynamical system

ż = (IN ⊗ Z)⊤h
(
(IN ⊗ Z)z + (1N ⊗W )w̄

)
˙̄w =

1

N
(1N ⊗W )⊤h

(
(IN ⊗ Z)z + (1N ⊗W )w̄

)
,

(7.2.12)

which is exactly the system (7.2.11a) and (7.2.11b) with w̃(t) ≡ 0, has a unique

equilibrium point (z∗, w̄∗) that is globally exponentially stable with the rate µ > 0.

That is, there exists c > 0 such that∣∣∣∣∣
[
z(t)− z∗

w̄(t)− w∗

]∣∣∣∣∣ ≤ c̄e−µt

∣∣∣∣∣
[
z(0)− z∗

w̄(0)− w∗

]∣∣∣∣∣ . ♢

Assumption 7.2.2 only supposes existence of the equilibrium point of the sys-

tem (7.2.12). However, this implies that the overall system (7.2.11) also has an

equilibrium point which is stated below.

Lemma 7.2.1. Suppose that Assumptions 7.2.1 and 7.2.2 hold. Then, the overall

system (7.2.11) has an equilibrium point given by

z∗

w̄∗

w̃∗

ξ̄∗

ξ̃∗


=



z∗

w̄∗

0

1
N

∑N
i=1 ξi(0)

ξ̃∗


.
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Proof. First, we claim that an equilibrium point of (7.2.11) takes the form of

(
z∗, w̄∗, 0,

1

N

N∑
i=1

ξi(0), ξ̃
∗), (7.2.13)

where z∗ and w̄∗ are from Assumption 7.2.2, ξi(0) is the initial condition of ξi and

ξ̃∗ is to be determined. From the definitions, it can be verified that ż = 0, ˙̄w = 0,
˙̄ξ = 0 and ˙̃

ξ = 0 at the proposed equilibrium point (7.2.13). Hence, it is left to

show there exists ξ̃∗ satisfying

(R⊗W )⊤h(x∗)− kI(IN−1 ⊗ EW )⊤ΛIξ̃
∗ = 0 (7.2.14)

so that ˙̃w = 0.

Since ΛI is positive definite and EW is invertible, ξ̃∗ can be written as

ξ̃∗ :=
1

kI

(
(IN−1 ⊗ EW )⊤ΛI

)−1
(R⊗W )⊤h(x∗),

which completes the proof. □

Since Lemma 7.2.1 states the existence of the equilibrium point for the overall

system (7.2.11), apply the final transformation given by δz = z−z∗, δw̄ = w̄−w̄∗,

and δξ̃ = ξ̃ − ξ̃∗. The state x is written as

x = (IN ⊗ Z)(δz + z∗) + (1N ⊗W )(δw̄ + w̄∗) + (R⊗W )w̃

and define x∗ := [x∗1; · · · ;x∗N ] ∈ RNn as

x∗ := (IN ⊗ Z)z∗ + (1N ⊗W )w̄∗. (7.2.15)

Then (7.2.11) becomes

˙δz = (IN ⊗ Z)⊤h(x) (7.2.16a)

˙δw̄ =
1

N
(1N ⊗W )⊤h(x) (7.2.16b)
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˙̃w = (R⊗W )⊤(h(x)− h(x∗))− kp(IN−1 ⊗ EW )⊤Λp(IN−1 ⊗ EW )w̃

− kI(IN−1 ⊗ EW )⊤ΛIδξ̃
(7.2.16c)

˙̄ξ = 0 (7.2.16d)
˙
δξ̃ = γ(R⊤ ⊗K)Lp(R⊗ EW )w̃, (7.2.16e)

where we used the fact that

0 = (R⊗W )⊤h(x∗)− kI(IN−1 ⊗ EW )⊤ΛIξ̃
∗.

For notational purpose, also let e := [δz; δw̄; w̃; δξ̃] ∈ RNn−q.

7.3 Convergence Analysis for the PI Algorithm

In this section, convergence of the system (7.2.4) to the equilibrium point

given by Lemma 7.2.1 is shown. For the proof, additional assumptions are made

either on the dynamics of each agent or on the stability property of the equilibrium

point.

7.3.1 Convergence with Weak Coupling

For the completeness of the results, we first consider the case when each hi

satisfies following assumption.

Assumption 7.3.1. Function hi is locally Lipschitz and satisfies

(x− y)⊤(hi(x)− hi(y)) < 0

for all x ̸= y. ♢

For instance, Assumption 7.3.1 holds if hi(xi) = −∇fi(xi) where fi(xi) is a strictly

convex function.

Theorem 7.3.1. Suppose that Assumptions 7.2.1, 7.2.2 and 7.3.1 hold. In ad-

dition, suppose that Lp = DI and let K = Iq. Then for any kI > 0, γ > 0 and
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kp ≥ 0,

lim
t→∞

xi(t) = x∗i , ∀i ∈ N ,

where x∗i is an equilibrium point defined in (7.2.15). Moreover, it follows that the

output consensus is achieved, i.e.,

lim
t→∞

|ζi(t)− ζj(t)| = 0, ∀i, j ∈ N .

Proof. From the state transformations, it is sufficient to show the stability of

(7.2.16). Define V (δz, δw̄, w̃, δξ̃) as

V =
1

2N
δz⊤δz +

1

2
δw̄⊤δw̄ +

1

2
w̃⊤w̃ +

σ

2
δξ̃⊤δξ̃.

be the Lyapunov function for (7.2.16) where σ := kI/γ > 0. Then the time-

derivative of V along (7.2.16) becomes

V̇ ≤ 1

N
δz⊤(IN ⊗ Z)⊤h(x) +

1

N
δw̄⊤(1N ⊗W )⊤h(x)

+ w̃⊤(R⊗W )⊤(h(x)− h(x∗))− kpw̃
⊤(IN−1 ⊗ EW )⊤Λp(IN−1 ⊗ EW )w̃,

where we used the fact that

kIw̃
⊤(R⊗ EW )⊤DI(R⊗ Iq)δξ̃ = (δξ̃)⊤ · σγ(R⊤ ⊗ I)Lp(R⊗ EW )w̃.

Now, recall from Assumption 7.2.2 that (1N ⊗W )⊤h(x∗) = 0 and (IN ⊗Z)⊤h(x∗)
= 0. Hence, we obtain

V̇ ≤ −kpw̃⊤(IN−1 ⊗ EW )⊤Λp(IN−1 ⊗ EW )w̃

+
1

N

[
(IN ⊗ Z)δz + (1N ⊗W )δw̄ + (R⊗W )w̃

]⊤
(h(x)− h(x∗)). (7.3.1)

However, note it can be checked that

(IN ⊗ Z)δz + (1N ⊗W )δw̄ + (R⊗W )w̃ = x− x∗.



138 Chap. 7. Application to the Distributed Optimization Problem

Hence, (7.3.1) becomes

V̇ ≤ −kpw̃⊤(IN−1 ⊗ EW )⊤Λp(IN−1 ⊗ EW )w̃ +
1

N
(x− x∗)⊤(h(x)− h(x∗)) ≤ 0,

where the last inequality follows from Assumption 7.3.1.

Using the LaSalle’s invariance principle, states converge to the set given by

E = {x ∈ RNn | (x− x∗)⊤(h(x)− h(x∗)) = 0}.

Thus, it follows from Assumption 7.3.1 that limt→∞ x(t) = x∗.

To show output consensus is achieved, recall that x∗ = (IN ⊗ Z)z∗ + (1N ⊗
W )w̄∗. Consequently, we obtain

lim
t→∞

|ζj(t)− ζi(t)| = lim
t→∞

∣∣E(Zz∗i − Zz∗j )
∣∣ = 0, □

since EZ = 0.

Theorem 7.3.1 states that the solution of the proposed algorithm (7.2.4) con-

verges to x∗ as long as kp ≥ 0. Specifically, if kp = 0, control input only uses the

integral coupling and no proportional feedback is applied.

Remark 7.3.1. Similar to how the traditional PI solves the consensus optimiza-

tion problem, the dynamics (7.2.4) in fact solves a output consensus optimization

problem. For instance, consider the scenario where multilayer graph is singlelayer

and hi(xi) = −∇fi(xi) where fi is a strictly convex function. Then, (7.2.4) solves

the optimization problem given by

min
x1,...,xN

N∑
i=1

fi(xi)

s.t. (L⊗ E)x = 0.

It can be easily checked that (7.2.4) is the saddle point dynamics for output

consensus optimization problem. Thus it follows that the solution converges to

an optimal point (e.g., see [CGC17]). However, it will be shown in the following

sections that the proposed dynamics extend further than the output consensus
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optimization problem. ♢

7.3.2 Convergence with Strong Coupling

In the previous section, convergence has been shown when Assumption 7.3.1

holds. Assumption 7.3.1 has been used extensively to establish the synchroniza-

tion of multi-agent systems. For instance, [HCIL18] and [KCM15] supposed hi

satisfies Assumption 7.3.1 where hi = −∇fi where fi is a convex function. Practi-

cal synchronization is also studied with a similar assumption [MBA15]. Instead of

Assumption 7.3.1, this section studies the convergence of the proposed algorithm

by using high proportional gain and exponential stability of the (7.2.12). As a

motivating example, the following example presents a case that does not satisfy

Assumption 7.3.1.

Example 7.3.1. Suppose that the dynamics of an agent is given by[
ẇi

żi

]
=

[
zi

−2
√
αzi −∇fi(wi)

]
=: hi(xi). (7.3.2)

In particular, (7.3.2) is applying the heavy-ball method for each agent. However,

hi(xi) is not incrementally passive. To see this, let xk := [wk; zk] and note we

have

(x1 − x2)⊤(hi(x
1)− hi(x

2))

=

[
w1 − w2

z1 − z2

]⊤ [
z1 − z2

−2
√
αz1 −∇fi(w1) + 2

√
αz2 +∇fi(w2)

]
= (w1 − w2)⊤(z1 − z2) + (z1 − z2)⊤(−2

√
αz1 + 2

√
αz2 −∇fi(w1) +∇fi(w2))

= (w1 − w2)⊤(z1 − z2)− 2
√
α
∣∣z1 − z2

∣∣2 + (z1 − z2)⊤(−∇fi(w1) +∇fi(w2)).

Suppose that zk and wk are scalar. Then by letting ∇fi(w) = Lw, it follows that

(x1 − x2)⊤(hi(x
1)− hi(x

2))

= (w1 − w2)(z1 − z2)− 2
√
α
∣∣z1 − z2

∣∣2 − L(z1 − z2)(w1 − w2)

= (1− L)(w1 − w2)(z1 − z2)− 2
√
α
∣∣z1 − z2

∣∣2 .
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Now, consider the case when z1 − z2 > 0 is fixed, L > 1 and wk are such that

w1 − w2 = −k(z1 − z2), where k > 2
√
α/(L− 1). Then we obtain

(x1 − x2)⊤(hi(x
1)− hi(x

2)) = (1− L)(w1 − w2)(z1 − z2)− 2
√
α
∣∣z1 − z2

∣∣2
=
(
(L− 1)k − 2

√
α
)
(z1 − z2)2

> 0.

Thus, hi does not satisfy Assumption 7.3.1. ♢

Example 7.3.1 illustrates a system where dynamics of each agent is not incre-

mentally passive. Therefore, a different approach is needed to analyze the con-

vergence of such system. For this we first make following assumption.

Assumption 7.3.2. Functions hi are globally Lipschitz with Lipschitz constant

given by Li. ♢

Using the Lipschitzness of hi, Lipschitz constant for h(x) can be found as L̄ :=

maxLi. Following theorem states the exponential convergence of the proposed

algorithm.

Theorem 7.3.2. (Exponential convergence without an explicit rate.) Con-

sider the dynamics given by (7.2.4) and suppose that Assumptions 7.2.1, 7.2.2 and

7.3.2 hold. Let kI, γ > 0 be arbitrary positive scalars and x∗, ξ∗ be given as in

Lemma 7.2.1. Then with

K := EWW⊤E⊤ > 0,

there exists k∗p > 0, such that for all kp > k∗p, the equilibrium point (x∗, ξ∗) is

exponentially stable. ♢

Proof. Consider the system (7.2.4) transformed into (7.2.16). Then, it is sufficient

to prove that the origin of (7.2.16) without (7.2.16d) is exponentially stable.

The first step is to obtain a Lyapunov function for the blended dynamics

(7.2.12) that can characterize the convergence rate of µ. For this purpose, we

employ the converse Lyapunov theorem by [CG98, Thm. 1], which states under
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Assumption 7.2.2 that, for any 0 < υ < µ, there exists c1, c2, c3 > 0 such that

V̄ (δ) satisfies and

c1|δ|2 ≤ V̄ (δ) ≤ c2|δ|2

∂V̄

∂δ

[
(IN ⊗ Z)⊤h ((IN ⊗ Z)z + (1N ⊗W )w̄)

1
N (1N ⊗W )⊤h ((IN ⊗ Z)z + (1N ⊗W )w̄)

]
≤ −2 ·

(
µ− υ

2

)
· V̄ (δ),∥∥∥∥∂V̄∂δ

∥∥∥∥ ≤ c3|δ|.

where δ := [δz; δw̄].

Now, we let Lyapunov function be

V (δz, δw̄, w̃, δξ̃) = ηV̄ (δ) +
1

2

[
w̃

δξ̃

]⊤ [
aX ϵY

ϵY ⊤ bΛI

][
w̃

δξ̃

]
=: ηV̄ (δ) + V2(w̃, δξ̃), (7.3.3)

where

X := (IN−1 ⊗ EW )⊤Λp(IN−1 ⊗ EW )

Y := (IN−1 ⊗W⊤E⊤)ΛI.

The positive scalars a, b, ϵ, and η are to be determined.

First of all, we choose ϵ > 0 such that V2 is positive definite. From Schur’s

complement, V2 is positive definite if and only if

aX − ϵ2

b
Y Λ−1

I Y ⊤ > 0. (7.3.4)

Using the definitions of X and Y , we obtain

aX − ϵ2

b
Y Λ−1

I Y ⊤

= aX − ϵ2

b
(IN ⊗W⊤E⊤)ΛIΛ

−1
I ΛI(IN ⊗ EW )

= aX − ϵ2

b
(IN ⊗W⊤E⊤)ΛI(IN ⊗ EW ).
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Hence the inequality (7.3.4) is satisfied if

ϵ <
√
ab ·

√
λmin(X)

λmax ((IN ⊗W⊤E⊤)ΛI(IN ⊗ EW ))

=
√
ab ·

√
λmin(Λp)

λmax(ΛI)
· σmin(E)

σmax(E)
, (7.3.5)

where we used σi(EW ) = σi(E). Thus, if ϵ < ϵ1, then V is positive definite.

Now we compute the derivative of V along (7.2.16). For the ease of presenta-

tion, each component is done separately.

Derivative of ηV̄ (δ):

First, recalling that x = (IN ⊗Z)(δz+ z∗)+(1N ⊗W )(δw̄+ w̄∗)+(R⊗W )w̃,

the time-derivative of ηV̄ (δ) along (7.2.16) is given by

η ˙̄V (δ) = η
∂V̄

∂δ
· δ̇

= η
∂V̄

∂δ
·
[

(IN ⊗ Z)

1
N (1N ⊗W )

]⊤
h(x)

= η
∂V̄

∂δ
·
[

(IN ⊗ Z)⊤

1
N (1N ⊗W )⊤

]
h(x)± η

∂V̄

∂δ
·
[

(IN ⊗ Z)⊤

1
N (1N ⊗W )⊤

]
h
(
x− (R⊗W )w̃

)
≤ −2(µ− υ)ηV̄ (δ) + η

∥∥∥∥∂V∂δ
∥∥∥∥ ·
∥∥∥∥∥
[

(IN ⊗ Z)

1
N (1N ⊗W )

]∥∥∥∥∥ · L̄ ·
∣∣∣(R⊗W )w̃

∣∣∣
≤ −2

(
µ− υ

2

)
ηV̄ (δ) + ηc3L̄|W ||R| · |δ| · |w̃|

≤ −2 (µ− υ) ηV̄ (δ)− υηc1|δ|2 + ηc3L̄|δ||w̃| (7.3.6)

where we used |Z| = |W | = 1 and |R| = 1.

Derivative of V2(w̃, δξ̃):

For the derivative of V2 along (7.2.16), note that

|h(x)− h(x∗)| ≤ L̄ |(IN ⊗ Z)δz + (1N ⊗W )δw̄ + (R⊗W )w̃|
≤ 2L̄

√
N |δ|+ L|w̃|.
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With this, we first investigate the diagonal terms. The derivative of (a/2)w̃⊤Xw̃

results in

d

dt

(a
2
w̃⊤Xw̃

)
= aw̃⊤X

[
(R⊤ ⊗W⊤)(h(x)− h(x∗))− kpXw̃ − kI(IN−1 ⊗W⊤E⊤)ΛIδξ̃

]
= aw̃⊤X(R⊤ ⊗W⊤)(h(x)− h(x∗))− akpw̃

⊤X2w̃

− akIw̃
⊤X(IN−1 ⊗W⊤E⊤)ΛIδξ̃. (7.3.7)

On the other hand, derivative of (b/2) · (δξ̃)⊤ΛIδξ̃ becomes

d

dt

(
b

2
(δξ̃)⊤ΛIδξ̃

)
= b(δξ̃)⊤ΛI

[
γ(R⊤ ⊗K)Lp(IN ⊗ EW )(R⊗ Iq)w̃

]
. (7.3.8)

However, note that the last term of (7.3.7) and the transpose of (7.3.8) satisfies

− akIw̃
⊤X(IN−1 ⊗W⊤E⊤)ΛIδξ̃ + bγw̃⊤(R⊗ EW )⊤Lp(R⊗K⊤)ΛIδξ̃

= − akIw̃
⊤XY δξ̃ + bγw̃⊤(R⊤ ⊗ EW )⊤Lp(R⊗ EWW⊤E⊤)ΛIδξ̃

= (−akI + bγ)w̃⊤XY δξ̃

In summary, we have

d

dt

(
a

2
w̃⊤Xw̃ +

b

2
(δξ̃)⊤ΛIδξ̃

)
= aw̃⊤X(R⊤ ⊗W⊤)(h(x)− h(x∗))− akpw̃

⊤X2w̃ + (−akI + bγ)w̃⊤XY δξ̃

≤ a|X|
(
2L̄

√
N |δ|+ L̄|w̃|

)
|w̃| − akpw̃

⊤X2w̃ + (−akI + bγ)w̃⊤XY δξ̃

= a2|X|L̄
√
N |δ||w̃|+ a|X|L|w̃|2 − akpw̃

⊤X2w̃ + (−akI + bγ)w̃⊤XY δξ̃, (7.3.9)

Finally, the derivative of w̃⊤ · ϵY · δξ̃ becomes

d

dt

(
w̃⊤ · ϵY · δξ̃

)
=

[
(R⊤ ⊗W⊤) (h(x)− h(x∗))− kpXw̃ − kIY δξ̃

]⊤
ϵY δξ̃ + w̃⊤ϵY γ(IN−1 ⊗ EW )Xw̃

≤
(
2L̄

√
N |δ|+ L̄|w̃|

)
|ϵY ||δξ̃| − kpϵw̃

⊤XY δξ̃ − ϵkIδξ̃
⊤Y ⊤Y δξ̃



144 Chap. 7. Application to the Distributed Optimization Problem

+ ϵγw̃⊤Y (IN−1 ⊗ EW )Xw̃

= 2L̄
√
Nϵ|Y ||δ||δξ̃|+ ϵL̄|Y ||w̃||δξ̃| − kpϵw̃

⊤XY δξ̃ − ϵkIδξ̃
⊤Y ⊤Y δξ̃

+ ϵγw̃⊤Y (IN−1 ⊗ EW )Xw̃. (7.3.10)

Finally, combining (7.3.6), (7.3.9) and (7.3.10), the derivative of V along

(7.2.16) satisfies

V̇ ≤ −2 (µ− υ) ηV̄ (δ)− υηc1|δ|2 +
(
ηc3L̄+ a2|X|L̄

√
N
)
|δ||w̃|

+ a|X|L|w̃|2 − akpw̃
⊤X2w̃ + ϵγw̃⊤Y (IN−1 ⊗ EW )Xw̃

+ 2L̄
√
Nϵ|Y ||δ||δξ̃|+ ϵL̄|Y ||w̃||δξ̃| − ϵkIδξ̃

⊤Y ⊤Y δξ̃

+ (−akI + bγ − kpϵ)w̃
⊤XY δξ̃

= −2 (µ− υ) ηV̄ (δ)− υηc1|δ|2 −
a

2
kpw̃

⊤X2w̃ − 1

2
ϵkIδξ̃

⊤Y ⊤Y δξ̃

+
(
ηc3L̄+ a2|X|L̄

√
N
)
|δ||w̃|+ a|X|L|w̃|2 − a

2
kpw̃

⊤X2w̃

+ ϵγw̃⊤Y (IN−1 ⊗ EW )Xw̃ + 2L̄
√
Nϵ|Y ||δ||δξ̃|+ ϵL̄|Y ||w̃||δξ̃|

− 1

2
ϵkIδξ̃

⊤Y ⊤Y δξ̃ + (−akI + bγ − kpϵ)w̃
⊤XY δξ̃

=: −2 (µ− υ) ηV̄ (δ)− a

2
kpw̃

⊤X2w̃ − 1

2
ϵkIδξ̃

⊤Y ⊤Y δξ̃

− υηc1|δ|2 + F (|δ|, |w̃|, |δξ̃|). (7.3.11)

Now, to show the exponential convergence, rest of the proof will show −υηc1|δ|2+
F (·) ≤ 0 hold. For this, let

ϵ =
bγ

kp

such that −akI+bγ−kpϵ = −akI and notice that applying the Young’s inequality

to the terms of F (·) result in

ηc3L̄|δ||w̃| ≤
υηc1
3

|δ|2 + 3ηc23L̄
2

4υc1
|w̃|2 (7.3.12a)

a2|X|L̄
√
N |δ||w̃| ≤ υηc1

3
|δ|2 + 3a2|X|2L̄2N

υc1η
|w̃|2 (7.3.12b)
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2L̄
√
Nϵ|Y ||δ||δξ̃| ≤ υηc1

3
|δ|2 + 3L̄2Nϵ2|Y |2

υc1η
|δξ̃|2 (7.3.12c)

ϵL̄|Y ||w̃||δξ̃| ≤ ϵkI
1

8
λmin(Y

⊤Y )|δξ̃|2 + 2ϵL̄2|Y |2
kIλmin(Y ⊤Y )

|w̃|2 (7.3.12d)

ϵkp|X||Y ||w̃||δξ̃| ≤ ϵkI
1

8
λmin(Y

⊤Y )|δξ̃|2 +
2ϵk2p|X|2|Y |2
kIλmin(Y ⊤Y )

|w̃|2 (7.3.12e)

Then we obtain

− υηc1|δ|2 + F (|δ|, |w̃|, |δξ̃|)

=

(
3ηc23L̄

2

4υc1
+

3a2|X|2L̄2N

υc1η
+

2bγL̄2|Y |2
kpkIλmin(Y ⊤Y )

+
2bγkp|X|2|Y |2
kIλmin(Y ⊤Y )

+ a|X|L̄
)
|w̃|2

− a

2
kpw̃

⊤X2w̃ + b
γ2

kp
w̃⊤Y (IN−1 ⊗ EW )Xw̃

+
bγ

kp

(
−kI

1

4
λmin(Y

⊤Y ) +
3L̄2Nbγ|Y |2
kpυc1η

)
|δξ̃|2 (7.3.13)

Now, it is easy to see from (7.3.13) that for any given γ and kI, kp can be chosen

sufficiently large such that

−υηc1|δ|2 + F (|δ|, |w̃|, |δξ̃|) ≤ 0,

while ϵ < ϵ1.

In conclusion, we obtain

V̇ ≤ −2 (µ− υ) ηV̄ (δ)− a

2
kpw̃

⊤X2w̃ − bγ

2kp
kIδξ̃

⊤Y ⊤Y δξ̃.

Then, it follows that the system (7.2.16) is exponentially stable, i.e., limt→∞ x(t) =

x∗ and limt→∞ ξ(t) = ξ∗ exponentially. In addition, since x∗ = (IN ⊗Z)z+(1N ⊗
Iq)w̄, it follows that ζi also achieve consensus exponentially. □

Result of Theorem 7.3.2 holds under the assumption that the system (7.2.12)

has exponentially stable equilibrium point. The dynamics (7.2.12) has reduced

dimension of Nq+(n−1) compared with the overall dynamical system in dimen-

sion Nn. Hence, it can be regarded as an emergent behavior, that is it originates

due to the coupling among agents and is different from the dynamics of any indi-
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vidual agent. This also implies that the individual dynamics is less important as

long as the collective behavior is desirable.

Remark 7.3.2. Note from the proof that the dynamics converges for any kI > 0

and γ > 0. In particular, this implies that the integral gain kI only contributes

to the asymptotic convergence of the agents. On the other hand, overall stability

is ensured with the sufficiently high proportional gain kp. ♢

Theorem 7.3.2 shows that the system achieves exponential convergence. The

convergence rate is characterized in the following result.

Theorem 7.3.3. (Exponential convergence with an explicit rate.) Sup-

pose that the assumptions of Theorem 7.3.2 hold and let K := EWW⊤E⊤ > 0

and 0 < υ < µ. Then the following results hold.

1. For any positive kI and γ satisfying 2γ > kI, there exists k∗p,1 such that for

all kp ≥ k∗p,1, the solution is exponentially stable with a rate no less than

2min

(
µ− υ,

a

4ρ2
kpλmin(Λp)

2σmin(E)4,
1

4ρ2

2γ − kI
kp

kIλmin(ΛI)
2σmin(E)2

)
,

where ρ2 = max(aλmax(Λp) · σmax(E)2, bλmax(ΛI)).

2. There exists θ∗ > 0 and k∗p,2 such that for all kp ≥ k∗p,2 and kI = γ = θ∗kp,

the solution converges exponentially fast with a rate µ− υ. ♢

Proof. Proof is similar to the proof of Theorem 7.3.2 and in particular, we will

use the same Lyapunov function V from (7.3.3), but now with

ϵ =
2γ − kI
kp

.

Then, it follows from (7.3.5) that V2 is positive definite if

2γ − kI
kp

<
√
ab ·

√
λmin(Λp)

λmax(ΛI)
· σmin(E)

σmax(E)
=: θ1.
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On the other hand, we can also find an upper and lower bound of the function

V2(w̃, δξ̃). For the upper bound, note

V2(w̃, δξ̃) ≤
(
a

2
λmax(X) +

(2γ − kI)|Y |
2kp

)
|w̃|2 +

(
b

2
λmax(ΛI) +

(2γ − kI)|Y |
2kp

)
|δξ̃|2

≤
(
max

(
a

2
λmax(X),

b

2
λmax(ΛI)

)
+

(2γ − kI)|Y |
2kp

)(
|w̃|2 + |δξ̃|2

)
In order to obtain an upper bound which remains constant with respect to kp,

suppose that

2γ − kI
kp

≤ 2

|Y | max

(
a

2
λmax(X),

b

2
λmax(ΛI)

)
=

1

λmax(ΛI)σmax(E)
·max

(
aλmax(Λp)σmax(E)2, bλmax(ΛI)

)
= max

(
aλmax(Λp)

λmax(ΛI)
σmax(E),

b

σmax(E)

)
=: θ2.

Then V2 is upper bounded by

V2 ≤ max(aλmax(X), bλmax(ΛI))(|w̃|2 + |δξ̃|2)
= max(aλmax(Λp) · σmax(E)2, bλmax(ΛI))(|w̃|2 + |δξ̃|2)
=: ρ2(|w̃|2 + |δξ̃|2). (7.3.14)

Note here that ρ2 is independent of the gains if (2γ − kI)/kp ≤ θ2.

Next, for the lower bounds of V2, we can write V2 as

V2(w̃, δξ̃) =
1

2

[
w̃

δξ̃

]⊤([
aX 0

0 bΛI

]
+ ϵ

[
0 Y

Y ⊤ 0

])[
w̃

δξ̃

]

and notice that diag(aX, bΛI) is a positive definite matrix. Therefore, finding the

lower bound of V2 is equivalent to finding a minimum eigenvalue of the matrix[
aX ϵY

ϵY ⊤ bΛI

]
,

which is a perturbation of diag(aX, bΛI). Using results such as [RAH19, Thm.
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6.3.2], we may obtain2

λmin

([
aX ϵY

ϵY ⊤ bΛI

])
≥ min (aλmin(X), bλmin(ΛI))− κ

([
aX 0

0 bΛI

])
· ϵ
∣∣∣∣∣
[

0 Y

Y ⊤ 0

]∣∣∣∣∣
≥ 1

2
min (aλmin(X), bλmin(ΛI))

=
1

2
min

(
aλmin(Λp) · σmin(E)2, bλmin(ΛI)

)
=: ρ1

for sufficiently small ϵ, where κ(X) := |X−1||X| is the condition number. Specif-

ically, we choose ϵ = (2γ − kI)/kp such that

2γ − kI
kp

≤ 1

2
min (aλmin(X), bλmin(ΛI)) · κ

([
aX 0

0 bΛI

])−1

·
∣∣∣∣∣
[

0 Y

Y ⊤ 0

]∣∣∣∣∣
−1

=
1

2
min (aλmin(X), bλmin(ΛI)) ·

λmax(X)

λmin(X)
· 1

σmax(Y )

=
1

2
min

(
aλmin(Λp)σmin(E)2, bλmin(ΛI)

)
· λmin(Λp)σmin(E)2

λmax(Λp)σmax(E)2
· 1

λmax(ΛI)σmax(E)

=: θ3.

With these in mind, recall from (7.3.11) that

V̇ ≤ −2 (µ− υ) ηV̄ (δ)− a

2
kpw̃

⊤X2w̃ − 1

2
ϵkIδξ̃

⊤Y ⊤Y δξ̃

− υηc1|δ|2 + F (|δ|, |w̃|, |δξ̃|).

Using the fact that −akI + bγ − ϵkp = 0 and inequalities (7.3.12a)–(7.3.12d), it

follows from (7.3.13) that

V̇ ≤ −2 (µ− υ) ηV̄ (δ)− a

2
kpw̃

⊤X2w̃ − 1

2

2γ − kI
kp

kIδξ̃
⊤Y ⊤Y δξ̃

− υηc1|δ|2 + F (|δ|, |w̃|, |δξ̃|)

2One may obtain tighter bounds using the properties of the considered matrices. However,
a general approach is introduced here for simplicity.
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= −2 (µ− υ) ηV̄ (δ)− a

2
kpw̃

⊤X2w̃ − 1

2

2γ − kI
kp

kIδξ̃
⊤Y ⊤Y δξ̃

+

(
−a
4
kpλmin(X

2) +
3ηc23L̄

2

4υc1
+

3a2|X|2L̄2N

υc1η
+

2b(2γ − kI)L̄
2|Y |2

kpkIλmin(Y ⊤Y )
+ a|X|L̄

)
︸ ︷︷ ︸

Term 1

|w̃|2

−a
4
kpw̃

⊤X2w̃ + b
(2γ − kI)γ

kp
w̃⊤Y (IN−1 ⊗ EW )Xw̃︸ ︷︷ ︸

Term 2

+
b(2γ − kI)

kp

(
−kI

3

8
λmin(Y

⊤Y ) +
3L̄2Nb(2γ − kI)|Y |2

kpυc1η

)
︸ ︷︷ ︸

Term 3

|δξ̃|2.

We claim that the terms 1,2, and 3 can be made positive with sufficiently

large kp. First it can be checked that the term 1 is positive if

a

4
k2pλmin(X

2)−
(
3ηc23L̄

2

4υc1
+

3a2|X|2L̄2N

υc1η
+ a|X|L̄

)
kp −

2b(2γ − kI)L̄
2|Y |2

kIλmin(Y ⊤Y )
> 0.

Now, seeing above as the quadratic equation, and using the fact that
√
c2 + d2 ≤

|c|+ |d| for all c, d ∈ R, we obtain that the term 1 is positive if

kp ≥ 4

aλmin(X2)
·
(
3ηc23L̄

2

4υc1
+

3a2|X|2L̄2N

υc1η
+ a|X|L̄

)
+

√
2γ − kI
kI

4bL̄2|Y |2
λmin(Y ⊤Y )

=: κ1.

Secondly, the term 2 is positive if

√
(2γ − kI)γ

kp
≤
√

a

4b

λmin(X)2

|Y ||E||X| =
√

a

4b
· λmin(Λp)√

Λmax(ΛI)λmax(Λp)
· σmin(E)2

σmax(E)2

=: θ4.

Finally, the term 3 is positive if

kp ·
kI

2γ − kI
≥ 8L̄2Nb|Y |2
υc1ηλmin(Y ⊤Y )

=
8L̄2Nb

υc1η

λmax(ΛI)
2

λmin(ΛI)2
σmax(E)2

σmin(E)2
=: κ2.
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Now, for some given gains kI and γ, let

k∗p,1 := max

(
κ1, κ2

2γ − kI
kI

,
2γ − kI
θ1

,
2γ − kI
θ2

,
2γ − kI
θ3

,

√
(2γ − kI)γ

θ4

)
.

Then, for any kp ≥ k∗p,1, the terms 1,2, and 3 are positive and we obtain

V̇ ≤ −2 (µ− υ) ηV̄ (δ)− a

2
kpw̃

⊤X2w̃ − 1

2

2γ − kI
kp

kIδξ̃
⊤Y ⊤Y δξ̃

≤ −2 (µ− υ) ηV̄ (δ)−min

(
a

2
kpλmin(X

2),
1

2

2γ − kI
kp

kIλmin(Y
⊤Y )

)(
|w̃|2 + |δξ̃|2

)
≤ −2 (µ− υ) ηV̄ (δ)− 1

ρ2
min

(
a

2
kpλmin(X

2),
1

2

2γ − kI
kp

kIλmin(Y
⊤Y )

)
V2(w̃, δξ̃)

≤ −min

(
2 (µ− υ) ,

a

2ρ2
kpλmin(X

2),
1

2ρ2

2γ − kI
kp

kIλmin(Y
⊤Y )

)
V,

where ρ2 is defined in (7.3.14). That is, the Lyapunov function V decays with the

rate

min

(
2 (µ− υ) ,

a

2ρ2
kpλmin(X

2),
1

2ρ2

2γ − kI
kp

kIλmin(Y
⊤Y )

)
= min

(
2 (µ− υ) ,

a

2ρ2
kpλmin(Λp)

2σmin(E)4,
1

2ρ2

2γ − kI
kp

kIλmin(ΛI)
2σmin(E)2

)
.

(7.3.15)

In order to recover the convergence rate of µ − υ, let kI = γ and choose kI
such that

kI = θ∗kp,

where θ∗ := min(θ1, θ2, θ3, θ4) and let

k∗p,2 := max

(
κ1, κ2,

4ρ2(µ− υ)

aλmin(X2)
,
4ρ2(θ

∗)2(µ− υ)

λmin(Y ⊤Y )

)
.

Then for any kp ≥ k∗p,2, it follows from the construction that

2(µ− υ) ≤ a

2ρ2
kpλmin(X

2) (7.3.16)
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2(µ− υ) ≤ 1

2ρ2

2γ − kI
kp

kIλmin(Y
⊤Y ) =

1

2ρ2

kp
(θ∗)2

λmin(Y
⊤Y ) (7.3.17)

Additionally, it can be checked that

kp ≥ k∗p,1 = max

(
κ1, κ2,

θ∗

θ1
kp,

θ∗

θ2
kp,

θ∗

θ3
kp,

θ∗

θ4
kp

)
.

Hence, it follows from (7.3.15), (7.3.16) and (7.3.17) that the convergence rate

becomes

min

(
2 (µ− υ) ,

a

2ρ2
kpλmin(X

2),
1

2ρ2

2γ − kI
kp

kIλmin(Y
⊤Y )

)
= 2(µ− υ).

In conclusion, we obtain

V̇ ≤ −2(µ− υ)V,

which means that the solution satisfies∣∣∣∣∣∣∣∣

δ(t)

w̃(t)

δξ̃(t)


∣∣∣∣∣∣∣∣ ≤

√
ρ2
ρ1
e(−µ+υ)t ·

∣∣∣∣∣∣∣∣

δ(0)

w̃(0)

δξ̃(0)


∣∣∣∣∣∣∣∣ , (7.3.18)

i.e., the solution is exponentially stable with the rate µ− υ. □

From Theorem 7.3.3, it holds that the convergence rate can be decomposed

into 3 components: 1) convergence rate of the blended dynamics, 2) convergence

rate related to proportional feedback, and 3) convergence rate related to inte-

gral feedback. Most importantly, with sufficiently large gains, the convergence

rate follows the convergence rate of the blended dynamics. For instance, if the

blended dynamics is the heavy-ball method, then by setting υ = µ/2, the pro-

pose dynamics has the convergence rate proportional to
√
α, exhibiting a faster

convergence rate than the gradient descent based methods.

Additionally, convergence rate that is arbitrarily close to the convergence rate

of the blended dynamics can be obtained by choosing υ sufficiently small. (How-

ever, this requires the corresponding coupling gain kp to be even larger.)

Remark 7.3.3. In order to recover the convergence rate, kI = γ = θ∗kp should
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be used with sufficiently large kp. For the simple cases, the value of θ∗ can be

easily computed. Suppose that σmin(E) = σmax(E) = 1, the input (7.2.2) is

used, Λp = ΛI and that a = 1, b = 2 are used. Then, for θ1, noting the fact

that Y Λ−1
I Y ⊤ = Y Λ−1

p Y ⊤ = X, applying Schur’s complement to V2 implies

we may take θ1 =
√
2 instead. For θ2, it follows from the proof that θ2 = 2.

For θ4, since Y (IN ⊗ EW )X = X2, it can be checked that taking θ4 = 1/2

leads to positivity of the term 2. Finally, one may ignore θ3 when choosing

θ∗ since it is only used in obtaining the constant ρ1, which does not affect the

convergence rate. (In this case, the only difference is that the gain in (7.3.18)

may be larger than the estimation given in the Theorem 7.3.3.) Thus, we obtain

θ∗ = min(
√
2, 2, 1/2) = 1/2. This means that kI (and γ) can be simply chosen as

kI = γ = kp/2. ♢

Remark 7.3.4. The convergence of the proposed algorithm may resemble the

results of [LS20b, Thm. 3]. In particular, define state of each agent can be aug-

mented with the state of the integrator ξi as χi := [xi; ξi] and write it as

χ̇i = Fi(χi) +

[
kpIn kIIn

−γIn 0

] ∑
j∈Ni

(χj − χi) =: Fi(χi) +B
∑
j∈Ni

(χj − χi).

Then, it can be checked Re (λi(B)) > 0. Therefore, one may apply the trans-

formation to diagonalize B such that the coupling matrix becomes a symmetric

positive definite matrix as studied in [LS20b]. Nonetheless, there are some key

differences that prohibit the usage of results from [LS20b] directly. First, the

coupling matrix is not in form of kB, where k is some common coupling gain.

Specifically, each entry of B has different gains, e.g., kp, kI, and γ that can be

controlled independently. More importantly, the classical definition of blended

dynamics (which may be obtained assuming kp = kI = γ = k and require high

integral gain) will be given by

[
ṡx

ṡξ

]
=

[
1
N

∑N
i=1 hi(sx)

0

]
.

Hence, it does not contain a compact invariant set. The set is stable for any value
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of sξ, making it unbounded. This limits the usage of [LS20b] due to technical

reasons. Finally, the work of [LS20b] only provides general sufficient conditions for

asymptotic convergence and did not propose a systematic design method to satisfy

such assumptions. In this sense, it can be seen that we have explicitly constructed

an appropriate controller to achieve asymptotic consensus and characterize its

trajectories. ♢

7.3.3 Convergence under Fast Switching

Previous section studied the convergence when communication topology is

time-invariant. In this section, convergence is established for the switching net-

work. For this, suppose that the dynamics of each agent is given by a time-varying

function hi(t, xi) and the communication network is described by

Lp(t) :=

Lp∑
l=1

Ll(t)⊗ (C lp)
⊤C lp,

while DI(t) is defined similarly (for simplicity, we suppose that the input (7.2.2)

is used). Then, the overall dynamics (7.2.4) can be written as

ẋ = h(t/θ, x)− kp(IN ⊗ E)⊤Lp(t/θ)(IN ⊗ E)x− kI(IN ⊗ E)⊤DI(t/θ)ξ

ξ̇ = γ(IN ⊗ P )Lp(t/θ)(IN ⊗ E)x,

(7.3.19)

where θ > 0 is a small parameter representing the fast switching, i.e., the dynamics

is switched more frequently as θ approaches 0. Note that (7.3.19) is exactly the

(7.2.4) with the additional properties that hi and graphs are time-varying. We

make following assumptions regarding the time-varying nature of the system.

Assumption 7.3.3. The time-varying functions hi(t, xi) and Ll(t) are piecewise
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continuous3 and periodic with period δ > 0. In addition, hi(t, xi) is uniformly

globally Lipschitz. ♢

Since time-varying functions are assumed to be periodic, define the time av-

erage of Lp(t),DI(t) and hi(t, xi) as L̄p := (1/δ)
∫ δ
0

∑Lp

l=1 L
l
p(τ) ⊗ (C lp)

⊤C lpdτ ,

D̄I := (1/δ)
∫ δ
0

∑LI
l=1 L

l
I(τ)⊗ (C lI)

⊤C lIdτ , and h̄i(xi) := (1/δ)
∫ δ
0 hi(τ, xi)dτ .

Then the following assumptions similar to Assumptions 7.2.1 and 7.2.2 are

made for the averaged system.

Assumption 7.3.4. Suppose that λq+1

(
L̄p

)
> 0 and λq+1

(
D̄I

)
> 0. ♢

Assumption 7.3.5. The system given by

ż = (IN ⊗ Z)⊤h̄
(
(IN ⊗ Z)z + (1N ⊗W )w̄

)
,

˙̄w =
1

N
(1N ⊗W )⊤h̄

(
(IN ⊗ Z)z + (1N ⊗W )w̄

)
,

(7.3.20)

where h̄(x) := [h̄1(x1); · · · ; h̄N (xN )], has a unique globally exponentially stable

equilibrium point (z∗, w̄∗). Also, there exists a Lyapunov function V̄ (δ) such that

c1|δ|2 ≤ V̄ (δ) ≤ c2|δ|2,

∂V̄

∂δ
·

 (IN ⊗ Z)⊤h̄
(
(IN ⊗ Z)z + (1N ⊗W )w̄

)
1
N (1N ⊗W )⊤h̄

(
(IN ⊗ Z)z + (1N ⊗W )w̄

) ≤ −ν|δ|2,

for some ν > 0, and ∂V̄/∂δ is globally Lipschitz. Finally, h(t, x∗) = 0 for all t ≥ 0

where x∗ = (IN ⊗ Z)z∗ + (1N ⊗W )w̄∗. ♢

Remark 7.3.5. Assumption 7.3.5 supposes global exponential stability of the

blended dynamics of the averaged system, which is analogous to Assumption

7.2.2 ans its exponential stability. In addition to the stability, Assumption 7.3.5

requires two additional property: 1) x∗ to be an equilibrium point of the time-

varying system and 2) existence of the Lyapunov function and Requiring x∗ to be
3We say a function f(t) is piecewise continuous on an interval [a, b] if there exists a finite

number of points ti satisfying a = t0 < t1 < · · · < tn = b so that 1) f(t) is continuous on
each subinterval (ti−1, ti) for all i = 0, . . . , n and 2) lim

t→t+0
f(t), lim

t→t−n
f(t), lim

t→t−i
f(t) and

lim
t→t+i

f(t) are finite for all i = 1, . . . , n − 1. If f(t) is periodic in addition to this, then f(t)

has a finite dwell time.
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an equilibrium point for the time-varying system is typical assumption used for

the analysis of the averaged system and it is needed to establish asymptotic con-

vergence under switching topology. Existence of the Lyapunov function satisfying

all the conditions is a restrictive assumption. One may use the converse Lyapunov

theorem to obtain the Lyapunov function with quadratic upper/under bounds and

negativity along the dynamics, but such Lyapunov function does not guarantee

∂V̄/∂δ to be globally Lipschitz. (In fact, typical converse Lyapunov theorem only

guarantees |∂V̄/∂δ| ≤ c4|δ|.) Hence, one either need to find a Lyapunov func-

tion where ∂V̄/∂δ is globally Lipschitz, or impose additional assumptions such as

boundedness of partial derivatives of dynamics up to second order which is used

in [AP99, Thm. 3]. Unfortunately, approach of [AP99] only results in semi-global

convergence (even when the required conditions hold globally) which hinders the

development of optimization algorithms. ♢

Then the following proposition stating the convergence under fast switching

easily follows from [AP99].

Proposition 7.3.4. Consider the time-varying dynamics (7.3.19). Suppose that

Assumptions 7.3.3, 7.3.4 and 7.3.5 hold. Then, there exists k∗p > 0 and θ∗ > 0

such that for all kp > k∗p and 0 < θ < θ∗, (7.3.19) converges exponentially. ♢

Proof. For the proof, we follow the arguments of [AP99]. Let the Lyapunov

function be

V (e) := ηV̄ (δ) +
1

2

[
w̃

δξ̃

]⊤ [
aX ϵY

ϵY ⊤ bΛI

][
w̃

δξ̃

]

where V̄ is from the assumption. Also recall that this Lyapunov function is

identical to the one used in Theorem 7.3.2.

Let p := [δz, δw̄; w̃; δξ̃] and ψ such that ṗ = ψ(t, p). Then, we claim that there

exists ν > 0 such that the Lyapunov function satisfies

∂V

∂p
(p) ·

∫ t∗+δ

t∗
ψ (τ, p) dτ ≤ −ν|p|2 (7.3.21)
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for all t∗ ≥ 0 and p ∈ RNn−q. Since we have∫ t∗+δ

t∗
ψ (τ, p) dτ = δ · ψ̄(p),

it follows from the proof of Theorem 7.3.1 that (7.3.21) holds with ν := δλmin(Ξ).

Hence, applying [AP99, Thm. 2], there exists θ∗ such that origin of (7.3.19) is

exponentially stable.

For the convergence rate, we obtain from [AP99, Equation (28)] and the proof

of Theorem 7.3.3 that

V (nθδ)− V ((n− 1)θδ) ≤ −rθδV ((n− 1)θδ)− θδλmin(Ξ)|p|2 + θ2L(θ)|p|2

for all n = 1, 2, . . . , where L(θ) is defined as

L(θ) := 2d1e
d2δθδ2 + d3e

2d4θδθδ3.

for some positive constants di > 0 related to Lipschitz constants of dynamics and

∂V/∂p. Hence, θ∗ can be found such that

V (nθδ) ≤ (1− rθδ)V ((n− 1)θδ) (7.3.22)

for all 0 < θ < θ∗, where 1− rθ∗δ < 1.

On the other hand, since the overall dynamics is globally Lipschitz, we have

V (t) ≤ c̄2|p(t)|2 ≤ c̄2e
2L′θδ|p(0)|2, ∀t ∈ [0, θδ]. (7.3.23)

where L′ is the Lipschitz constant of the overall dynamics and c̄2 is such that

V ≤ c̄2|p|2. Then, combining (7.3.22) and (7.3.23) and referring to Fig. 7.1, we

obtain

V (t) ≤ c̄2e
2L′θδ · 1

1− rθδ
|p(0)|2 · e−r′t
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1
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3

Figure 7.1: Graph of the values of the Lyapunov function V (t). Red marks
the value of V given by (7.3.22) and black circle denotes the value
of V (t) given by (7.3.23). Blue dash dotted line gives the upper
bound of the V (t) over all time.

where the rate r′ > 0 is defined as

e−r
′θδ = 1− rθδ =⇒ r′ = − ln(1− rθδ)

θδ
.

It can be verified that

− ln(1− rθδ)

θδ
≥ r2

2
θδ + r ≥ r.

Hence, we obtain the convergence rate of r for V when θ is sufficiently small. □

Remark 7.3.6. For the estimate of θ∗, let KV and Kψ be the Lipschitz constant

of ∂V (e)/∂e and ψ(t, e) respectively, where KV is independent of kp. Then, it

follows from [AP99, Remark 4] that θ must satisfy

δθeKψTθ ≤ 1

Kψ

(
−1 +

√
1 +

λmin(Ξ)

KVKψδ

)
=: α. (7.3.24)

Taking logarithms on (7.3.24) and using the fact that ln(x) ≥ 1 − (1/x), it can

be shown that (7.3.24) holds if

θ <
ln(α/δ)− 1 +

√
(ln(δ/α) + 1)2 + 4Kψδ

2Kψδ
=: θ̄∗.
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Hence, θ̄∗ is a conservative estimate of θ∗. ♢

Remark 7.3.7. Let r′(r, θδ) = − ln(1 − rθδ)/θδ be the convergence rate of the

switching system. Then for fixed r,

lim
θ·δ→0

r′(r, θδ) = r,

which means that it recovers the convergence rate of the averaged system. Similar

to the time-invariant system, the rate r can be made arbitrarily close to the

convergence rate of the blended dynamics of the time-averaged system. However,

this means λmin(Ξ) is smaller, leading to even smaller θδ for the convergence.

Nonetheless, the desired convergence rate is still obtained. ♢

7.4 Construction of Distributed Algorithms

In this section, we present how results from Section 7.3 can be used to obtain

distributed algorithms to solve (7.1.1) and propose novel distributed algorithms

using the heavy-ball method. For this, suppose throughout this section that

the communication network is given by a connected graph G = (N , E) whose

Laplacian matrix is given by L and F (x) is α-strongly convex.

7.4.1 Distributed Gradient Descent Method

First, recall that the typical PI algorithm is given by

ẋi = −∇fi(xi) + kp
∑
j∈Ni

(xj − xi) + kI
∑
j∈Ni

(ξj − ξi)

ξ̇i = −γ
∑
j∈Ni

(xj − xi).
(7.4.1)

In particular, it can be seen that ζi = xi and hence it follows that E = In,

W = In and Z is null. Then, it can be verified that the blended dynamics of

(7.4.1) becomes

˙̄x = − 1

N

N∑
i=1

∇fi(x̄). (7.4.2)
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Notice that (7.4.2) is the centralized gradient descent algorithm to (7.1.1). There-

fore, if F (x) := (1/N)
∑N

i=1 fi(x) is strongly convex, then the blended dynamics

has an exponentially stable equilibrium point at w∗. In fact, it can be checked

that xi → w∗ follows from Theorem 7.3.2 (with sufficiently high gain kp). Note

that convexity of fi or incremental passivity of hi is not needed, and only the

property of its average is used. The convergence result is stated below.

Corollary 7.4.1. (Distributed Gradient Algorithm) Consider the distributed

PI algorithm based on the gradient descent algorithm (7.4.1) and 0 < υ < α. Sup-

pose that the gains are designed as in Theorem 7.3.3 with kp being sufficiently

large. Then there exists M > 0 and r > 0 such that

lim
t→∞

|xi(t)− w∗| ≤Me−(α−υ)t.

For instance, the rate becomes α/2 if υ = α/2. ♢

Proof. Let Lyapunov function for the blended dynamics (7.4.2) be defined as

V̄ (x̄) =
1

2
(x̄− w∗)⊤(x̄− w∗).

Using V̄ and following the proof of Theorem 7.3.3, it follows that

V̇ ≤ −rV,

where r > 0 is given by

r = min

(
2 (µ− υ) ,

a

2ρ2
kpλmin(Λp)

2σmin(E)4,
1

2ρ2
(θ∗)2kpλmin(ΛI)

2σmin(E)2
)
.

Hence, with sufficiently large kp, convergence rate becomes µ − υ = α − υ

since the blended dynamics (i.e., the gradient descent algorithm) converges with

the rate α, which follows from Lemma 2.3.4.

To compute the constant M , let Ri be the i-th row of R. Then,

|xi(t)− w∗|2 = |x̄+Rix̃− w∗|2 ≤ 2|x̄− w∗|2 + 2|Ri|2|x̃|2

≤ 2
(
|x̄− w∗|2 + |x̃|2

)
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≤ 2

c
V (t)

≤ 2

c
V (0)e−rt,

where c > 0 is such that

c
(
|x̄− w∗|2 + |w̃|2 + |δξ̃|2

)
≤ V.

Hence, M is given by

M :=

√
2

c
V (0). □

7.4.2 Distributed Heavy-ball Method

The argument used to obtain the convergence of (7.4.1) can be done in reverse

to obtain the distributed algorithm from a centralized algorithm. By setting the

blended dynamics as the desired centralized algorithm, Theorem 7.3.2 provides

a constructive method to obtain a distributed algorithm. This approach is not

limited to the gradient descent method. Suppose that we desire a heavy-ball

method to solve (7.1.1) [Sie19], which is given by

˙̄w = −z, ż = −2
√
αz − 1

N

N∑
i=1

∇fi(w̄). (7.4.3)

Since z = (1/N)
∑N

i=1 z, it follows that (7.4.3) is the blended dynamics of

[
ẇi

żi

]
=

[
−zi

−2
√
αzi −∇fi(wi)

]
+ kp

∑
j∈Ni

([
wj

zj

]
−
[
wi

zi

])

+ kI
∑
j∈Ni

(ξj − ξi) (7.4.4a)

ξ̇i = −γ
∑
j∈Ni

([
wj

zj

]
−
[
wi

zi

])
(7.4.4b)
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with E = I2n. Then using the similar argument as in the gradient descent method,

it can be shown that wi(t) and zi(t) of (7.4.4) converges to the equilibrium point

of (7.4.3), i.e., wi(t) → w∗ and zi(t) → 0. In particular, V (w̄, z) = F (w̄) −
F (w∗) + (1/2)|√α(w̄ − w∗) + z|2 is a Lyapunov function for (7.4.3) and satisfies

V̇ ≤ −√
αV [Sie19]. This implies that the convergence rate of the distributed

algorithm (7.4.4) is also proportional to
√
α (instead of being proportional to α

as in (7.4.1)). The convergence result is stated below.

Corollary 7.4.2. (Distributed Heavy-ball Algorithm with State Com-

munication) Consider the distributed algorithm given by (7.4.4) and 0 < υ <
√
α/2. Suppose that the gains are designed as in Theorem 7.3.3 with kp being

sufficiently large. Then there exists M > 0 and r > 0 such that

lim
t→∞

|xi(t)− w∗| ≤Me−(
√
α
2

−υ)t.

For instance, if υ =
√
α/4, then the rate becomes

√
α/4. ♢

Proof. Similar to the proof of Corollary 7.4.1, recall from Theorem 2.3.6 that the

blended dynamics is exponentially stable with rate
√
α/2. Thus, we obtain

V̇ ≤ −rV,

where r > 0 is given by

r = min

(
2 (µ− υ) ,

a

2ρ2
kpλmin(Λp)

2σmin(E)4,
1

2ρ2
(θ∗)2kpλmin(ΛI)

2σmin(E)2
)

= 2(µ− υ),

where the last equality holds for suitably chosen gains kp, kI and γ. Also recall

that the blended dynamics is a centralized heavy-ball method. Hence, µ =
√
α/2

follows from Theorem 2.3.6. Constant M can be computed using similar argu-

ments as in the proof of Corollary 7.4.1. □

The algorithm (7.4.4) achieves state consensus of xi = [wi; zi] since E = I2n.

However, since zi is auxiliary variable added for the performance, communication
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of zi may not be necessary. Motivated by this, let E = [In 0] which results in

[
ẇi

żi

]
=

[
−zi

−2
√
αzi −∇fi(wi)

]
+ kp

[
In

0

] ∑
j∈Ni

(wj − wi) + kI

[
In

0

] ∑
j∈Ni

(ξj − ξi)

(7.4.5a)

ξ̇i = −γ
∑
j∈Ni

(wj − wi) . (7.4.5b)

The algorithm (7.4.5) only communicates ζi = wi (and its integral) and applies

control input only to wi. It can be checked that the blended dynamics of (7.4.5)

becomes

˙̄w = − 1

N

N∑
i=1

zi, żi = −2
√
αzi −∇fi(w̄) (7.4.6)

for all i ∈ N , which is a (N + 1)n-dimensional system. Equilibrium point of

(7.4.6) is given by

(w∗,− 1
2
√
α
∇f1(w∗), . . . ,− 1

2
√
α
∇fN (w∗))

and exponential convergence of the equilibrium point as well as the convergence

rate proportional to
√
α is shown below.

Lemma 7.4.3. (Exponential Convergence of the Reduced System with

Specific Parameters) Consider the system given by

żi = −2
√
αzi −∇fi(w),

ẇ =
1

N

N∑
i=1

zi,
(7.4.7)

where f̄(w) := (1/N)
∑N

i=1 fi(w) is α–strongly convex and fi(w) is L–smooth for

all i = 1, . . . , N . Then the solution of (7.4.7) satisfies

lim
t→∞

zi(t) = − 1

2
√
α
∇fi(w∗), lim

t→∞
w(t) = w∗,

and the convergence is exponentially fast. ♢
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Proof. Let ψ := [w; z1; · · · ; zN ]. Similar to the Theorem 2.3.6, consider the func-

tion

V (ψ) =
1

N

N∑
i=1

(
fi(w)− fi(w

∗)
)
+

1

2

∣∣∣∣∣√α(w − w∗) +
1

N

N∑
i=1

zi

∣∣∣∣∣
2

.

Let z̄ := (1/N)
∑N

i=1 zi. Then the time-derivative of V (ψ) along (7.4.7) becomes

V̇ =
1

N

N∑
i=1

∇fi(w)⊤ · z̄ +
(√
α(w − w∗) + z̄

)⊤ ·
(√
α · z̄ − 2

√
αz̄ −∇f̄(w)

)
= ∇f̄(w)⊤ · z̄ − α(w − w∗)⊤z̄ −√

α(w − w∗)⊤∇f̄(w)−√
αz̄⊤z̄ − z̄⊤∇f̄(w)

= −α(w − w∗)⊤z̄ −√
α(w − w∗)⊤∇f̄(w)−√

αz̄⊤z̄.

Here we use the definition of strong convexity (2.3.2) with y = w∗ to obtain

−√
α∇f̄(w)⊤(w − w∗) ≤ −√

α ·
(
f̄(w)− f̄(w∗) +

α

2
|w − w∗|2

)
.

Substituting this, it follows that

V̇ ≤ −α(w − w∗)⊤z̄ −√
α ·
(
f̄(w)− f̄(w∗) +

α

2
|w − w∗|2

)
−√

αz̄⊤z̄

= −√
α
(
f̄(w)− f̄(w∗) +

α

2
|w − w∗|2 +√

α(w − w∗)⊤z̄ + z̄⊤z̄
)

= −√
α

(
f̄(w)− f̄(w∗) +

1

2

∣∣√α(w − w∗) + z̄
∣∣2 + 1

2
z̄⊤z̄

)
= −√

αV (ψ)−
√
α

2
z̄⊤z̄.

Therefore, we obtain

V (ψ(t)) ≤ e−
√
αtV (ψ(0)).

In fact, regarding V (ψ) as V (w, z̄), its structure is identical to the one used for

the proof of Theorem 2.3.6. Hence, there exists M > 0 such that

∣∣∣∣∣
[
w(t)− w∗

z̄(t)

]∣∣∣∣∣
2

≤Me−
√
αt ·
∣∣∣∣∣
[
w(0)− w∗

z̄(0)

]∣∣∣∣∣
2

(7.4.8)
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Rest of the proof now shows similar convergence property holds for ψ − ψ∗ :=

[w − w∗; z1 − z∗1 ; · · · ; zN − z∗N ].

First note that

|z̄|2 = 1

N2

∣∣∣∣∣
N∑
i=1

zi − z∗i + z∗i

∣∣∣∣∣
2

=
1

N2

∣∣∣∣∣
N∑
i=1

zi − z∗i +
N∑
i=1

z∗i

∣∣∣∣∣
2

≤ 1

N2
·N ·

N∑
i=1

|zi − z∗i |2

=
1

N

N∑
i=1

|zi − z∗i |2

where we used the fact that
∑N

i=1 z
∗
i = −1/(2

√
α) · ∑N

i=1∇fi(w∗) = 0 and

|∑ zi − z∗i |2 ≤ N
∑ |zi − z∗i |2. Therefore, we have

∣∣∣∣∣
[
w − w∗

z̄

]∣∣∣∣∣
2

≤

∣∣∣∣∣∣∣∣∣∣∣


w − w∗

1√
N
(z1 − z∗1)

...
1√
N
(zN − z∗N )



∣∣∣∣∣∣∣∣∣∣∣

2

≤

∣∣∣∣∣∣∣∣∣∣∣


w − w∗

z1 − z∗1
...

zN − z∗N



∣∣∣∣∣∣∣∣∣∣∣

2

, (7.4.9)

where the second inequality holds since N ≥ 1. Combining (7.4.8) with (7.4.9),

|w(t)− w∗|2 ≤
∣∣∣∣∣
[
w(t)− w∗

z̄(t)

]∣∣∣∣∣
2

≤Me−
√
αt · |ψ(0)|2.

Thus, |w(t)− w∗| converges exponentially fast with the rate −√
α/2, while its

coefficient depending on w(0) and zi(0).

Now to show zi converges exponentially, let ei := zi − z∗i . Then, its dynamics

is given by

ėi = −2
√
αzi −∇fi(w)

= −2
√
αe− 2

√
αz∗i −∇fi(w)

= −2
√
αe+∇fi(w∗)−∇fi(w).
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Since fi is L–smooth, it holds that

|∇fi(w(t))−∇fi(w∗)| ≤ L|w(t)− w∗| ≤ L
√
Me−

√
α/2t|ψ(0)|.

Since dynamics of ei is Hurwitz with exponentially decaying input u(t), it follows

from Lemma A.1.2 that e(t) also decays exponentially fast, i.e., zi converges to

z∗i exponentially fast with rate
√
α/2. □

Remark 7.4.1. Similar to that of Theorem 2.3.6, the algorithm given by (7.4.7)

achieves convergence rate proportional to
√
α. This implies that the rate is im-

proved over the traditional centralized gradient descent method when α is small.♢

Since the blended dynamics is exponentially stable, it follows from Theorem

7.3.2 that wi → w∗ holds for (7.4.5). Note that (7.4.5) achieves same convergence

rate as (7.4.4), while only communicating wi and its integral. Its convergence is

stated below.

Corollary 7.4.4. (Distributed Heavy-ball Algorithm with Output Com-

munication) Consider the distributed algorithm given by (7.4.5) and 0 < υ <
√
α/2. Suppose that the gains are designed as in Theorem 7.3.3 with kp being

sufficiently large. Then there exists M > 0 and r > 0 such that

lim
t→∞

|wi(t)− w∗| ≤Me−(
√
α
2

−υ)t.

For instance, if υ =
√
α/4, then the convergence rate becomes

√
α/4. ♢

Proof. Since the blended dynamics of (7.4.5) is exponentially stable with conver-

gence rate
√
α/2 as shown in Lemma 7.4.3, we may follow the proof of Theorem

7.3.3 to obtain

V̇ ≤ −rV,

where r > 0 is given by

r = min

(
2 (µ− υ) ,

a

2ρ2
kpλmin(Λp)

2σmin(E)4,
1

2ρ2
(θ∗)2kpλmin(ΛI)

2σmin(E)2
)
.
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Therefore, we obtain
√
α/2− υ with suitably chosen gains. □

Finally, recall that the algorithm (7.4.5) can be also implemented without

communicating ξi if the specific initialization is used if (7.2.3) is used. In partic-

ular, the algorithm given by[
ẇi

żi

]
=

[
−zi

−2
√
αzi −∇fi(wi)

]
+ kp

[
In

0

] ∑
j∈Ni

(wj − wi)− kI

[
In

0

]
ξi (7.4.10a)

ξ̇i = −γ
∑
j∈Ni

(wj − wi) . (7.4.10b)

If the initial condition satisfies
∑N

i=1 ξi(0) = 0, (7.4.10) achieves the same conver-

gence rate of
√
α/2− υ while communicating n-dimensional information.

7.4.3 Distributed Heavy-ball Method with Cyclic Coordinate De-

scent

Communication load of (7.4.4) can also be reduced by using the cyclic coordi-

nate descent method [Nes12, ST13]. Recall that the centralized cyclic coordinate

descent methods cycle through each coordinate axis update the corresponding

value. This technique can be also applied to distributed algorithms which can be

analyzed using Proposition 7.3.4 and switching network.

For illustration, consider a period δ > 0 let δl > 0 be such that
∑L

l=1 δ
l = δ.

Define the periodic switching signal σ(t) : R → L as σ(t) := π (t− ⌊t/δ⌋ · δ) ,
where ⌊·⌋ is the floor function and π(t) : [0, δ) → L is defined as π(t) := q for

q ∈ {1, . . . , L} such that
∑q−1

l=1 δ
l ≤ t <

∑q
l=1 δ

l. In particular, σ(t) cycles through

1 to L, spending δl amount of time on each mode. Consequently, construct a time-

varying multilayer graph G(t) with L layers, where Laplacian matrices are given

by

Ll(t) :=

L if π(t) = l,

0N×N otherwise.

The corresponding output matrices C l ∈ Rnl×n represents coordinate of [wi; zi]
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and satisfies (1/δ)
∫ δ
0 (C

σ(t))⊤Cσ(t) = I2n. Specifically, we suppose that (C l)⊤(C l)

is a diagonal matrix with positive diagonal entries representing the subset of

coordinate to be updated.

With the communication network constructed as G(t), we propose modifica-

tion of (7.4.5) as

[
ẇi

żi

]
= (Cσ(t/θ))⊤Cσ(t/θ)

[
zi

−2
√
αzi −∇fi(wi)

]

+ kp
∑
l∈L

(C l)⊤
∑

j∈Ni(t/θ)

C l

([
wj

zj

]
−
[
wi

zi

])

+ kI
∑
l∈L

(C l)⊤
∑

j∈Ni(t/θ)

C l(ξj − ξi) (7.4.11a)

ξ̇i = −γ

 L∑
l=1

(C l)⊤
∑

j∈N l
i (t)

(
C l

[
wj

zj

]
− C l

[
wi

zi

]) , (7.4.11b)

where Ni(t) is the set of neighbors of agent i at time t and θ > 0 is a constant.

The blended dynamics (7.3.20) of (7.4.11) is identical to (7.4.6) and it can

be easily verified that Assumptions 7.3.3 to 7.3.5 hold. Therefore, it follows from

Proposition 7.3.4 that the solution of 7.3.4 satisfies wi(t) → w∗ and zi(t) → 0

with sufficiently large kp and sufficiently small θ.

Corollary 7.4.5. (Distributed Heavy-ball Algorithm with State Com-

munication and Cyclic Coordinate Descent) Consider the distributed algo-

rithm given by (7.4.11). Suppose that the gains are designed as Theorem 7.3.3.

Then, there exists θ∗ such that for all 0 < θ < θ∗, it holds that

lim
t→∞

|wi(t)− w∗| ≤Me−(r/2)t,

where M(w(0), z(0), ξ(0), α, kp) and r is proportional to
√
α. ♢

Proof. Proof follows directly from Proposition 7.3.4. □

The proposed algorithm (7.4.11) implements the heavy-ball method as well

as cyclic coordinate descent for each agent and does not require any specific ini-

tial condition. For comparison, typical distributed algorithms are compared in
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Study Type
Require Arbitrary Required Convergence rate

convexity of fi initialization communication (strongly convex)

[WE10] Continuous Yes ✓ 2n Asymptotic

[KCM15] Continuous Yes ✗ n Exponential4

[YLW17] Continuous Yes ✗ n Asymptotic

[HCIL18] Continuous Yes ✓ 2n Asymptotic

[XK19] Discrete Yes ✗ 2n Exponential5 (O([1− C(αL )
5/7]t))

[QL20] Discrete Yes ✗ 3n Exponential6

(7.4.5) Continuous No ✓ 2n Exponential (O(
√
α))

(7.4.10) Continuous No ✗ n Exponential (O(
√
α))

Table 7.1: Table comparing various distributed algorithms and the required assumptions.

4Relation between convergence rate with strongly convexity of the function (i.e., α) is not shown explicitly. However, a simple example is
presented in [KCM15] which shows the rate of O(α) with sufficiently high gains.

5Here, C > 0 is a constant, L is Lipschitz constant of ∇F (x) and t is the discrete time-step. Also note that an appropriate step size is chosen
to achieve the given convergence rate.

6Although the exponential convergence is proved, relation between the convergence rate and the condition number is not shown explicitly.
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Table 7.1. The classical PI algorithms (e.g., [KCM15, YLW17]) communicate

n-dimensional information to its neighbors while requiring a specific initial con-

dition. Algorithms are proposed which does not require a specific initial con-

dition (e.g., [HCIL18, WE10]), but these communicate 2n-dimensional informa-

tion. Additionally, most works only prove asymptotic convergence. Authors of

[KCM15] prove exponential convergence but accelerated methods are not used.

For discrete-time algorithms, the distributed Nesterov method studied in [QL20]

communicates 3n-dimensional information and requires initialization. The dis-

tributed heavy-ball method proposed in [XK19] communicates 2n-dimensional

information but still requires a specific initial condition. Additionally, conver-

gence rates of discrete-time algorithms did not match the rate of the correspond-

ing centralized algorithms.

The proposed algorithm (7.4.5) implements the distributed heavy-ball method

while only communicating 2n-dimensional information and converges from any ar-

bitrary initial condition. We also recover the convergence rate of the centralized

heavy-ball method, i.e., the accelerated rate of
√
α/2. Furthermore, (7.4.10) is also

proposed which achieves the accelerated rate of convergence while only commu-

nicating n-dimensional information with the cost of arbitrary initialization. Fi-

nally, (7.4.11) implements the heavy-ball method as well as the cyclic coordinate

descent. At each time instant, (7.4.11) cycles through different layers and only

communicates 2nl-dimensional information. The nl is a design parameter and in

extreme case, it can be set to 1 by choosing C l = e⊤l ∈ R1×2n for l = 1, . . . , 2n,

where el is an elementary vector whose l-th element is 1 and 0 otherwise. This

leads to an algorithm only communicating 2-dimensional information.

Although the discussion of this section employed the heavy-ball method, the

main results provide a general framework for the construction and analysis of dis-

tributed algorithms. In particular, any continuous-time algorithm satisfying the

required assumptions (e.g., Assumption 7.3.5) may be used to obtain a similar re-

sult. For example, algorithms like accelerated triple momentum algorithm [SGK]

can be employed to obtain new distributed algorithm.

Remark 7.4.2. Coordinate descent algorithm based on (7.4.5) can be also ob-

tained in a similar manner. However, for the analysis, we must show Assumption
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7.3.5 hold. Although the exponential stability is shown in Lemma 7.4.3, it did

not construct the Lyapunov function. Hence, Proposition 7.3.4 cannot be applied.

Nonetheless, such design is simulated in Section 7.5 and shown to converge to the

optimal solution. ♢

7.5 Numerical Experiments

For the numerical simulation, consider the distributed quadratic problem with

N = 12 agents where cost function of each agent is given by fi(x) = x⊤Aix+ b
⊤
i x

where Ai ∈ R6×6 is a symmetric matrix and bi ∈ R6. For instance, fi(x) may

represent squared losses for the linear regression problem. It is supposed that∑N
i=1Ai is positive definite while Ai may be indefinite. The condition number κ

of
∑N

i=1 fi(x) is defined as the ratio of the maximum to the minimum eigenvalue of∑N
i=1Ai. For communication network, a random (connected) graph is generated

using the Erdős-Rényi model with each edge having a probability of 0.2.

7.5.1 Distributed PI Algorithm

The classical PI algorithm given by

ẋi = −∇fi(xi) + kp
∑
j∈Ni

(xj − xi) + kI
∑
j∈Ni

(ξj − ξi)

ξ̇i = −kI
∑
j∈Ni

(xj − xi)

is implemented to illustrate the impact of gains on the performance. Simulation

result is shown in Fig. 7.2 when κ = 1. Solid lines denote the performance with

kp = 1 and dotted lines denote the performance with kI = 1. The performance

of the centralized gradient descent is also plotted with a red dashed line. With

kp = kI = 1 as a basis, observe that as kp is increased, the performance actually

decreases and solution converges slowly. This is consistent with the convergence

rate obtained in Theorem 7.3.3. On the other hand, if kI is increased instead,

we see that the performance is indeed improved. Moreover, performance recovers

that of the blended dynamics (i.e., the CGD) when kI = 2.
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Figure 7.2: Simulation result for PI algorithm with varying gains.

In more detail, it can be seen that performance closely follows that of CGD at

first (and stays closer longer for higher kp) but slows down (and slows down more

for higher kp). This behavior can be explained by the work of [LS20b]. Specifically,

it is known that the trajectory of each agent follows that of blended dynamics up

to finite time for high kp. However, fast convergence to the solution of blended

dynamics degrades the performance in the long run because the integrator must

catch up for asymptotic convergence. For asymptotic convergence, the state of

the integrator must converge to a fixed value, which takes longer now since the

consensus error is relatively small when kp is high. As kI is increased, it speeds

up the convergence rate of the integrators which results in faster convergence for

the overall system. Such behavior is encoded in the convergence rate derived in

Theorem 7.3.3 (although the exact order might be improved).
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7.5.2 Distributed Heavy-ball Algorithm

For distributed heavy-ball algorithm, construct the switching multilayer graph

as described in Section 7.4.3 with L = 2 and C l given by

C1 = 2
[
I3 03×3 I3 03×3

]
, C2 = 2

[
03×3 I3 03×3 I3

]
,

with δl = 2 or 10 for all l ∈ L. The dynamics (7.4.11) is implemented with kp = 1

and kI = 0.1 or 0.01. Specifically, with communication network and switching

matrices defined as above, we have a cyclic coordinate algorithm. Finally, 2
√
α =

0.01 is used for the heavy-ball methods. Note that this is not the exact value

of the minimum eigenvalue of
∑N

i=1Ai. Exact value is approximately 2
√

1/κ =

2
√
1/κ ≈ 0.07. However, finding the exact value is challenging in the practice

and hence we use the value within the same order of magnitude.

Coordinate descent version of (7.4.5) is also implemented whose dynamics is

given by[
ẇi

żi

]
=

[
(C

σ(t/θ)
o )⊤C

σ(t/θ)
o zi

(C
σ(t/θ)
o )⊤C

σ(t/θ)
o (−2

√
αzi −∇fi(wi))

]

+ kp

[
In

0

]∑
l∈L

(C lo)
⊤
∑

j∈Ni(t/θ)

C lo (wj − wi) + kI

[
In

0

]∑
j∈L

(C lo)
⊤
∑

j∈Ni(t/θ)

C lo(ξj − ξi)

(7.5.1a)

ξ̇i = −γ

 L∑
l=1

(C lo)
⊤
∑

j∈N l
i (t)

(
C lowj − C lowi

) , (7.5.1b)

where C lo is the corresponding output matrices.

Results are compared with the following continuous-time algorithms:

1. Centralized gradient descent (CGD)

2. Centralized momentum method (CMM)

3. PI algorithm (PI) [HCIL18]

4. Heavy-ball method with full state communication given in (7.4.4) (HB-
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State)

5. Heavy-ball method with full state and switching communication (HB-State

(Switching)) given in (7.4.11)

6. Heavy-ball method with output communication given in (7.4.5) (HB-Output)

7. Heavy-ball method with output and switching communication (HB-Output

(Switching)) given in (7.5.1)

Simulation results are shown in Fig. 7.3 with varying parameters, where

distance to the optimal value is plotted in vertical axis (i.e., (1/N)
∑N

i=1 |xi(t)−x∗|
for distributed algorithms and |x(t)−x∗| for centralized algorithms) and horizontal

axis is the time t. Simulation is done in the case when the condition number κ

is high to see the effectiveness of the momentum. It can be seen in all cases that

the momentum methods outperforms gradient based methods as expected. The

proposed algorithm (7.4.5) (in solid orange line) even outperforms the centralized

gradient descent algorithm (red dashed line) when κ = 750. This is because

the distributed algorithm follows the trajectory of the centralized momentum

method with sufficiently large gains, and hence achieve similar performance of the

centralized heavy-ball method. In particular, it can be seen from Fig. 7.3(a) that

with sufficiently high kp and kI, both HB-Output and HB-State achieves similar

performance as the centralized momentum method. Additionally, by analyzing

the blended dynamics of respective algorithm, it can be verified that the xi(t)

(the trajectory of the solution) will be identical, which is also reflected on the

simulation results.

For the coordinate descent algorithms shown in Fig. 7.3(b) and Fig. 7.3(c),

only 6-dimensional information (i.e., C lwi ∈ R3 and C lξi ∈ R3) is communicated

at each time instant and only the half elements in vectors wi and zi are updated.

Nonetheless, Fig. 7.3(b) shows that with sufficiently fast switching time, coor-

dinate descent algorithms and regular algorithms have similar performances. In

fact, since the coordinate descent algorithms only require half of the computation

and communicational load when compared with (7.4.5), it can operate at twice

as fast in theory. This means that the coordinate descent algorithms may achieve
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(a) Static network

(b) Switching network with δl = 2

(c) Switching network with δl = 10

Figure 7.3: Performance of the algorithms with various parameters when κ =
750.
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better performance in practice. Finally, Fig. 7.3(c) shows the simulation results

when graph is switched more slowly. We see that the trajectories deviates from

the centralized methods, but still achieve comparable performances.

7.6 Remark on the Study of Continuous-time Algo-

rithms

We end this chapter with a brief discussion on the importance of continuous-

time optimization algorithms. Traditionally, construction and analysis of the op-

timization algorithms are done in the discrete-time domain as algorithms must

be implemented into computing devices. Centralized algorithms such as gradient

descent, proximal operators, Nesterov gradient methods [Ber16, Nes04] are well-

studied and have a long history stemming back to the 1960s. Consequently, dis-

tributed algorithms are also mainly studied in the discrete-time domain. Mean-

while, analysis of the optimization algorithms in the continuous-time domain has

been done (e.g., see [BBB89] and references therein) as well. Such an approach

has a long history, but it is recently gaining increased attention with the work

of [WSC16] and followed with works such as [WRJ16, MJ19, SDSJ19, SDJS18].

These works mainly studied accelerated gradient methods such as Nesterov’s gra-

dient method to provide further insights into the optimization algorithms that are

otherwise too hard to express in the discrete-time domain. Moreover, improve-

ments in the continuous-time domain along with the proper discretization of such

continuous-time algorithms resulted in various versions of the discrete-time algo-

rithm that can be used [SDSJ19].

In the same philosophy, we believe that the studies of continuous-time dis-

tributed algorithms will lead to a similar conclusion, i.e., a better understanding

of algorithms, development of improved algorithms, and simpler theoretical anal-

ysis of discrete-time algorithms. For example, stochastic discrete-time algorithms

can be analyzed by studying its deterministic continuous-time counterpart, which

is often easier to analyze (e.g., see [Bor08]) or work such as [CGC17], which ana-

lyzed continuous-time saddle-point dynamics using rich theory from the analysis

of (continuous-time) nonlinear system.
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Another aspect that the analysis of the continuous-time distributed algorithm

can also contribute is to provide a common framework to categorize and analyze

various discrete-time algorithms. A plethora of discrete-time distributed algo-

rithms is mainly developed independently based on intuition and a combination

of different optimization and consensus algorithms. (See [YYW+19] for a sur-

vey of various algorithms.) Recently, there were attempts to unify these algo-

rithms such as [Jak19, AS20] (using primal-dual interpretation as discussed in

Remark 7.2.2) or [XTSS20] (which uses similar approach along with the oper-

ator splitting). However, since these works approached distributed algorithms

from a discrete-time perspective, there are limited to the class of algorithms these

frameworks can express. These limitations come from the basic update structures

these work suppose, which may not apply to all discrete-time algorithms (e.g., see

[AS20] which discusses combine-then-adapt and adapt-then-combine schemes).

However, using continuous-time algorithms, discrete-time algorithms may be ex-

pressed as a combination of a continuous-time dynamical system with a partic-

ular discretization method. In this sense, we believe that a unified framework

for various distributed algorithms can be developed. Moreover, discretization

schemes other than Euler’s method with different properties and strengths can

be employed to generate new discrete-time algorithms. For example, backward

discretization might be used to promote stability, symplectic discretization devel-

oped for Hamiltonian systems for accuracy, or higher-order methods can be used

to develop different versions of the same continuous-time algorithm. The result

of this dissertation does not explore these possibilities. However, these may give

more value to the analysis of the continuous-time algorithms provided in this dis-

sertation.



Chapter 8

Conclusions and Further Issues

The study of the multi-agent system has been done extensively for the past few

decades, each focusing and extending different aspects of the multi-agent systems.

Numerous studies can be categorized based on i) complexity of dynamics of each

agent, ii) structure of the communication network and iii) details on the infor-

mation exchanged between agents. This dissertation builds upon the study of

the consensus problem and mainly investigates the novel aspects of information

exchange. Specifically, we study the case when different information is exchanged

over multiple different communication networks. From hereafter, we summarize

the main contributions for each chapter.

The most important result of this dissertation is presented in Chapter 3. We

have formulated the consensus problem of multi-agent systems over a multilayer

network and studied various properties of the problem. First, motivated by the

classical definition of undetectable subspace and by identifying invariant subspace

for the consensus problem, we have proposed a novel necessary condition for state

consensus problem over undirected multilayer network. A different interpretation

of the proposed condition is given such as observability aspect, geometric interpre-

tation, and finally the algebraic condition. Each interpretation extends the previ-

ous result for the consensus problem over the single-layer network differently yet

it is shown that these conditions are equivalent. Perhaps most importantly (and

obviously in hindsight), the proposed condition combines both graph theoretical

concepts and system theoretical concepts. Connectivity of the graph, as well as

the detectability, are captured together and the interplay between two aspects of

177
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the consensus problem is elegantly summarized into a single statement.

Furthermore, another main contribution of Chapter 3 is designing a novel dy-

namic controller to achieve state consensus using the proposed condition. The

proposed design is motivated and generalizes existing designs for the single-layer

network. It utilizes a partial observer for each layer and a full-order observer to

combine partial information from each layer to obtain relative state information,

whose convergence is guaranteed by the proposed necessary condition. In conclu-

sion, we have shown that the proposed condition is necessary and sufficient for

the consensusability of the multi-agent systems.

In Chapter 4, results from Chapter 3 is extended to the output consensus

problem over directed multilayer networks. Extensions of various aspects of the

necessary condition are proposed. Unfortunately, the output consensus over a

directed multilayer network is a much more challenging problem. For example,

proposed extensions are no longer equivalent and clearly not sufficient as illus-

trated through various counter-examples. Nonetheless, an appropriate assump-

tion on the dynamics of the agent is proposed to recover equivalence for output

consensus problem over an undirected network. Specifically, we have proposed an

assumption that essentially requires the plant to have different modes. With the

assumption, sufficient condition and controller design is proposed for a directed

multilayer network. The sufficient condition also embodies a nice physical repre-

sentation which can be summarized as each mode of the plant must have a rooted

spanning tree. For an undirected multilayer network, an additional assumption

is also investigated which is motivated by the physical interpretation of the cor-

responding necessary condition obtained from the state consensus problem. The

same dynamic controller designed for a directed network is shown to work under

different assumptions. Regardless of which assumption to use, equivalence is re-

covered for undirected output consensus problems.

From Chapter 5 to Chapter 7, various applications of the consensus over mul-

tilayer network are presented. In Chapter 5, the distributed state estimation

problem is formulated into the consensus problem over a multilayer network. It

is shown that the proposed necessary condition generalizes previous conditions

reported for the estimation problem. Applying a multilayer network also led to
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a novel design for a distributed observer with a reduced communication burden.

Specifically, a static controller is designed and a notion of the minimal communi-

cation burden is proposed and analyzed. Results are further extended to switch-

ing networks and estimation is achieved when the communication network as well

as the output measurements are switching.

In Chapter 6, the formation control problem is viewed as a consensus problem

over a multilayer network. Specifically, we consider a scenario where the desired

formation is given by a combination of bearing and relative positional constraints.

The dynamic controller proposed in Chapter 3 can be directly applied to achieve

the desired formation. The proposed controller is especially useful when the for-

mation wants to scale its overall size and numerical simulations are presented to

illustrate the efficacy.

Chapter 7 investigates a slightly different application of the multilayer net-

work. We consider applying the general concept of a multilayer network to the

distributed optimization problem. In particular, it is shown that the switch-

ing multilayer network may represent the coordinate descent algorithms in the

continuous-time domain and related results are presented. This chapter also de-

velops proportional-integral control applied to nonlinear heterogeneous agents us-

ing the approach of the blended dynamics, which provides a systematical frame-

work for designing a distributed algorithm from a centralized algorithm. In partic-

ular, a novel distributed optimization algorithm based on the centralized heavy-

ball method with cyclic coordinate descent is proposed which recovers the conver-

gence rate of
√
α (when the cost function is α-strongly convex) under appropriate

designs.

So far we have summarized a number of novel concepts and designs for the

consensus problem over the multilayer network as well as various applications.

Surely this does not mean closure, and in fact, opens up many questions for

future research.

First and foremost, further study is certainly needed to fully characterize the

output consensus problem over a directed network. Finding the general statement

without requiring the additional assumptions as well as finding similar intuitive

understanding seems to be a interesting topic. For this, it is natural that we need
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innovations from both the system theoretical side and graph theoretical side of

the problem. From the system theoretical aspect, it is expected that the classical

theory developed for the linear system will be critical for further development.

Innovation from graph theoretical aspect seems more challenging. In order to

fully understand the directed multilayer network, I believe the extension (and ex-

amination) of results such as [LWHF14] may be fruitful. Secondly, the proposed

dynamic controller requires each agent to communicate the state of the controller

on the projection graph. Although a similar requirement was necessary for the

designs under a single-layer communication network, the work of [SSB09] removed

such requirement by using the low-gain approach. The design proposed in [SSB09]

is inherently different compared to the observer-based controller that is used in

this dissertation. Hence, extending such ideas to a multilayer network seems to be

a natural next step (but challenging!). Application to the distributed estimation

problem also calls for further investigation. Specifically, the development of a

static feedback controller for a more general system (other than marginally stable

systems) will directly yield a distributed observer design with reduced communi-

cation for a wider range of systems which is more practical than marginally stable

systems. In particular, an extension to include integrators is an important open

problem.

Additionally, various other aspects of the problem can be improved upon as

the control community did for the consensus problem over a single-layer network.

For instance, frameworks such as event-triggered systems (e.g., see the survey

paper [DHGZ18]), discrete-time systems, or sampled-data systems [YG14] can be

applied to a consensus over a multilayer network. Nonlinear systems or hetero-

geneous agents can also be studied and results of [LS20b, KYS+16] may provide

some insights and guidance. Other considerations including but not limited to

communication delays, disturbances rejection, cooperative tracking, or optimal

control problems are all viable extensions to study the consensus problem over a

multilayer network.

Finally, blended dynamics approach to the distributed optimization problem

studied in Chapter 7 also has interesting topics to work on. For instance, a

systematical analysis of the stability of the blended dynamics needs more work
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especially when agents are coupled via output. In particular, further analysis

may lead to convergence proof for distributed heavy-ball algorithm with output

coupling using coordinate descent method. Extension of the proposed approach

to the larger class of system is also of interest such that the distributed algorithms

and the convergence rates of the corresponding algorithms can be characterized

for convex (but not necessarily strongly convex) problems. In this direction, one

of the most interesting question is whether the approach can describe the Nesterov

gradient method and whether we can develop a distributed Nesterov method.





APPENDIX

A.1 Technical Lemmas

Technical lemmas used throughout the dissertation is presented in this section.

First lemma summarizes properties of a symmetric matrix.

Lemma A.1.1. (Property of Positive Semidefinite Matrix) Let M ∈ Rn×n

be a symmetric matrix. Then the followings are equivalent.

1. M ≥ 0.

2. x⊤Mx > 0, ∀x ̸∈ kerM .

3. x⊤Mx > 0, ∀x ∈ (kerM)⊥.

4. λd+1(M) > 0, where d := dimkerM . ♢

Proof. Proof follows easily from the basic definitions. For more details, see

[RAH19]. □

It is well known that for stable linear system with exponentially decaying

input is stable. For instance, such concept is studied in [Kha02, Chapter 4.9]

as input-to-state stability. Following result reiterates some of these findings but

provides explicit bound for linear systems.

Lemma A.1.2. (Linear System with Vanishing Input) Consider the linear

system given by

ẋ = Ax+Bu(t)

183
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where u(t) is exponentially decaying, i.e., there exists constants Mu, λu > 0 such

that

|u(t)| ≤Mue
−λut|u(0)|

and that A is a Hurwitz matrix. Then, there exists M ∈ R>0 such that

|x(t)| ≤Me−αt,

where α = (1/2)min(λu, λmin(A)). ♢

Proof. Proof can be found in [Wie10, Lem. B. 1.]. Specifically, the statement is

a special case of [Wie10, Lem. B. 1.] when A is Hurwitz. □

Next lemma constructs a dynamics which estimates the relative state differ-

ence.

Lemma A.1.3. (Estimating Relative State Difference) Consider a multi-

agent system given by

żi = Azi +Bui, yi = Czi, ∀i ∈ N ,

where (C,A) is detectable and the communication network consists of c ≥ 1

independently strongly connected component (iSCC) [Wie10]. Suppose that the

dynamics of ẑi is given by

˙̂zi=Aẑi +Bui +G

[ ∑
j∈Ni

aijC(ẑj− ẑi)− aij(yj− yi)

]
+εi(t)

for all i ∈ N where εi(t) is an exponentially decaying signal. Then there exists a

gain G such that

lim
t→∞

∑
j∈Ni

αij(ẑj(t)− ẑi(t))−
∑
j∈Ni

αij(zj(t)− zi(t)) = 0,

for all i ∈ N . ♢

Proof. Let L ∈ RN×N be the Laplacian matrix of the communication network.

Define the columns of Vē ∈ CN×c and Vẽ ∈ CN×(N−c) as the eigenvectors of L
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such that

L[Vē Vẽ] = [Vē Vẽ]diag(0c,Λ),

where Λ := diag(λc+1(L), . . . , λN (L)) ∈ C(N−c)×(N−c). Specifically, columns of

Vē are eigenvectors with eigenvalue of 0. Let ei := ẑi − zi, e := [e1; · · · ; eN ] and

ε(t) := [ε1(t); · · · ; εN (t)]. Then, the dynamics of e become

ė = [(IN ⊗A)− (L⊗GC)] e+ ε(t).

Now, apply the transformation given by[
ē

ẽ

]
=

([
Vē Vẽ

]−1
⊗ In

)
e =:

([
Wē

Wẽ

]
⊗ In

)
e.

Then, we obtain

˙̄e = (Ic ⊗A)ē+Wēε(t)

˙̃e = [(IN−c ⊗A)− Λ⊗GC] ẽ+Wẽε(t)

It follows from [Tun08] that G can be found such that IN−c ⊗ A − Λ ⊗ GC is

Hurwitz. Since ε(t) → 0, this implies ẽ→ 0. Finally, note that

(L⊗ In)e = (LVē ⊗ In)ē+ (LVẽ ⊗ In)ẽ = (LVẽ ⊗ In)ẽ→ 0.

This completes the proof. □

A.2 Comparisons with Existing Consensus Problems

In this section, the consensus problem over multilayer network is compared

with other frameworks. Specifically, it is shown that the classical consensus prob-

lem over multilayer network as well as the consensus problem of heterogeneous

agents over single-layer network cannot represent the consensus problem over mul-

tilayer network (even when the output matrices are modified). A concept of the

matrix weighted network, which is proposed recently in [Tun17], is shown to be

equivalent to the consensus problem over multilayer network.
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(a) Multilayer graph G for Example A.2.1.
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(b) Multilayer graph Gsm representing
the single-layer network.

Figure A.1: Multilayer graphs for different formulations.

Throughout this section, we will use the following example for the multilayer

network.

Example A.2.1. Consider the consensus problem of 3 agents over multilayer

graph G with 3 layers, whose dynamics is given by

ẋi = Axi +Bui,

yli = C lxi, ∀i ∈ N , l ∈ L.

The multilayer graph G is defined as in Fig. A.1(a). ♢

In the following sections, we will investigate whether the system considered in

Example A.2.1 can be represented using the different frameworks.

A.2.1 Consensus Problem of Homogeneous Agents over Single-

layer Network

We will first study whether the classical consensus problem over single-layer

network can represent the consensus problem over multilayer network. For this,
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consider the consensus of 3 agents whose dynamics is given by

ẋi = Axi +Bui

yi = Exi
(A.2.1)

where E is the common output matrix with the single-layer network Gs. In

particular, suppose that Gs is the all-to-all network.

In an attempt to represent the multilayer graph using (A.2.1), let

E :=


C1

C2

C3

 .
Then the resulting consensus problem can be represented using the multilayer

graph Gsm given by Fig. A.1(b). Let αlij be the entries of the adjacency matrices

of Gsm and αij be the entries of the adjacency matrix of Gs. Then, since the

output matrix E is defined as a stack of C l, it can be observed that

α1
ij = α2

ij = α3
ij = 1 ⇐⇒ αij = 1,

α1
ij = α2

ij = α3
ij = 0 ⇐⇒ αij = 0.

Therefore, using single-layer network lacks the flexibility compared with the gen-

eral multilayer network, which may have different values for αlij , e.g., α1
12 = but

α2
13 = α3

13 = 0 as in Fig. A.1(a).

One may try to change the definition of E, to perhaps only be E = [C1;C2].

However, corresponding multilayer graph can be also obtained, and it has an effect

of removing a layer. In conclusion, single-layer network with different definition

of E (including the one using the lifting) cannot represent the multilayer network.

Fundamental limitation of the single-layer network is that the common infor-

mation is transmitted to all neighbors of agent i. On the other hand, agent may

transmit different information to different neighbors, which cannot be described

using a single-layer network.
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A.2.2 Consensus Problem of Heterogeneous Agents over Single-

layer Network

As seen from the previous discussion, if a framework can describe multilayer

network using a single-layer network, one must be able to transmit different in-

formation. Another consensus problem studied in the literature that may achieve

this is to use heterogeneous agents [WSA11]. Consider the following consensus

problem of 3 agents with the same dynamics but with different output matrices

as given by

ẋi = Axi +Bui

yi = Eixi,

where Ei is the output matrix of agent i. In this problem, we suppose that each

agent only use the relative output information Eixi−Ejxj to compute the control

input and that the communication network is given by Gs.

In order to see whether the heterogeneous agents can represent the multi-

layer network, consider the agent 3 on both heterogeneous single-layer network

and multilayer network. On the heterogeneous single-layer network, information

available to agent 3 can be written as

δ3,s =

[
E1x1 − E3x3

E2x2 − E3x3

]
, (A.2.2)

while the information available to agent 3 over multilayer network is given by

δ3,m =

[
C1(x1 − x3)

C2(x2 − x3)

]
. (A.2.3)

Therefore, the question now becomes whether there exists E1 and E3 such that

(A.2.2) is equivalent to (A.2.3), i.e., δ3,s = δ3,m.

As a first attempt, let E1 = E3 = C1 such that E1x1 − E3x3 = C1(x1 − x3).

However, this means that E2x2−C1x3 ̸= C2x2−C2x3. One may try other options
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for Ei, such as E1 = [C1;C2] and E3 = [C1; 0] which results in

E1x1 − E3x3 =

[
C1x1 − C1x3

C2x1 − 0

]
⇍⇒ C1(x1 − x3).

Moreover, information between agent 3 and agent 2 cannot be matched.

To be more precise, the information available to all agents through single-layer

network can be written as

δs :=


δ1,s

δ2,s

δ3,s

 =



E1 0 −E3

E1 −E2 0

−E1 E2 0

0 E2 −E3

−E1 0 E3

0 −E2 E3




x1

x2

x3

 (A.2.4)

while the information available to all agents through multilayer network is given

by

δm :=


δ1,m

δ2,m

δ3,m

 =



C1 0 −C1

C2 −C2 0

−C2 C2 0

0 C3 −C3

−C1 0 C1

0 −C3 C3




x1

x2

x3

 . (A.2.5)

The matrices Ei is q × n matrices, where the size q is larger than ql. If the size

of q is different from ql, then δm may be padded with zero rows such that the

dimension of δs is same as δm. Finally, by comparing the first columns of (A.2.4)

with (A.2.5) that no E1 exists such that δs = δm.

In the discussions so far, we have implicitly assumed that relative information

is available per agent basis, i.e., yj − yi instead of
∑

j∈Ni(yj − yi). If consider the
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summation of relative output information, δs becomes

δs =


2E1 −E2 −E3

−E1 2E2 −E3

−E1 −E2 2E3



x1

x2

x3

 .
Comparing the above with (A.2.5), it can be easily checked that such Ei does not

exists.

In conclusion, even if we use heterogeneous output over single-layer network,

the corresponding system cannot represent the information exchange over the

multilayer network. The same challenge as studied in earlier section still remains.

Namely, each agent transmit same information to all of its neighbors, while in the

multilayer network agent may transmit different information to different neigh-

bors.

Remark A.2.1. Multilayer also cannot represent heterogeneous output matrices.

In particular, one needs to find C l such that

Eixi − Ejxj = C l(xi − xj), ∀i, j ∈ N ,

which does not hold in general. ♢

A.2.3 Consensus Problem over Matrix-weighted Network

A fundamental limitation for single-layer network studied so far is that each

agent cannot transmit different information to each of its neighbors. However,

consider the same dynamics with communication network Gs and the output

structure given by

ẋi = Axi +Bui

yij = Cij(xi − xj),
(A.2.6)

where Cij is the matrix associated with the edge (i, j) and that each agent uses yij
for all j ∈ Ni. This is the problem studied in [Tun17]. A graphical representation

is shown in Fig. A.2. In particular, (A.2.6) can easily represent the multilayer
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1

2

3C13

C23C12

Figure A.2: Graphical representation of the communication structure for the
system (A.2.6).

network considered in (A.2.1). For this suppose Cij = Cji and define output

matrices as

C12 =


0

C2

0

 , C13 =


C1

0

0

 , C23 =


0

0

C3

 .
In general, a multilayer graph G with the corresponding output matrices C l

can be represented using a matrix weighted network. Specifically, let the single-

layer graph Gs = proj (G) and let

Cij =


α1
ijC

1

...

αLijC
L

 .
Then, it can be easily checked that the corresponding system describes the iden-

tical information structure given by the multilayer network.

A.3 Detectability Interpretation of the Necessary Con-

ditions

In this section, we present a detectability interpretation of the necessary con-

dition (3.2.2). Consider the multi-agent system with multilayer network given by

ẋi = Axi,

yli = C lxi,

ζi = Rxi, ∀i ∈ N , l ∈ L,

(A.3.1)
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where xi ∈ Rn, yli ∈ Rql and ζi ∈ Rq is the desired output.

We can prove the following results which resembles the observability (or de-

tectability), which extend the ideas proposed in [Tun17] to output consensus prob-

lem over directed graphs.

Definition A.3.1. The multi-agent system over the multilayer network G is de-

tectable if

ylj(t)− yli(t) ≡ 0 ∀t ≥ 0, ∀(i, j) ∈ E l =⇒ lim
t→∞

|ζj(t)− ζi(t)| = 0, ∀i, j ∈ N ,

and observable if the later holds for all t ≥ 0. ♢

Theorem A.3.1. The system (A.3.1) is detectable if and only if

K̄ ⊆ kerΠ⊗ Z⊤
R . ♢

Proof. ( ⇐= ) Suppose ylj(t) − yli(t) ≡ 0 for all (i, j) ∈ E l and t ≥ 0. By taking

derivative, it holds that 
C l

C lA
...

C lAn−1

 (xj(0)− xi(0)) = 0.

This implies xj(0)−xi(0) ∈ ⟨kerC l |A⟩. Now decompose each state to stable and

unstable part as xi(0) = xi,s(0) + xi,u(0), where xi,s(0) ∈ X s(A) and xi,u(0) ∈
X u(A). Then we have

(xj,s(0)− xi,s(0)) + (xj,u(0)− xi,u(0))

∈ ⟨kerC l |A⟩
= ⟨kerC l |A⟩ ∩ X s(A)⊕ ⟨kerC l |A⟩ ∩ X u(A).

Thus,

(xj,s(0)− xi,s(0)) ∈ ⟨kerC l |A⟩ ∩ X s(A).
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By stacking xj,s and since graphs are undirected, we obtain

xu(0) ∈ K̄ ⊆ kerΠ⊗ ZR
⊤.

Since K̄ is invariant, using the property of the linear system, we get

ζj(t)− ζi(t) = R(xuj (t)− xui (t)) +R(xsj(t)− xsi (t)).

Unstable terms are zero due to assumption and second term decays to zero, which

completes the proof.

( =⇒ ) Proof is similar to the previous case. First break down x(0) into stable

and unstable parts and use property of the linear system to have output in from

of

ζj(t)− ζi(t) = R(xuj (t)− xui (t)) +R(xsj(t)− xsi (t)) → 0.

Notice that stable parts decays to zero, and to have the relative output to converge

to zero, unstable part must satisfy
R

RA
...

RAn−1

 (xuj (0)− xui (0)) = 0.

This implies xj(0) ∈ kerΠ⊗ ZR
⊤. Since xj(0) ∈ K̄, this completes the proof. □

Result of Theorem A.3.1 provides a detectability interpretation of the pro-

posed necessary condition. Also recall that the necessary condition, i.e., the de-

tectability of the MAS over multilayer network, is sufficient for state consensus

problem over undirected graphs. However, as discussed in the Chapter 4, de-

tectability of the MAS is not sufficient to design controller for the output consen-

sus problem over directed graphs.
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국문초록

Consensus of Linear Time Invariant Multi-agent
Systems over Multilayer Network

다층레이어 네트워크 구조를 가지는 선형 시불변 다개체 시스템의 상태일치

전통적으로 다 개체 시스템의 상태 일치 문제는 한 가지의 네트워크 상에서 한

가지의 정보를 주고받는 경우에 대해서 주로 연구가 되었다. 하지만 최근에는 이러한

가정은 보다 복잡한 상호작용을 나타내는 데 한계가 있기 때문에 새로운 접근법이 필

요한 상황이다. 본 논문에서는 각 개체가 서로 다른 정보를 서로 다른 네트워크 상

에서 주고받는 경우를 고려한다. 이러한 관계를 표현하기 위해 다층레이어 네트워크

(multilayer network)라는 개념을 도입하였다. 이때 동적인 제어기로 방향성이 없는

네트워크에서 상태 일치를 이루는 새로운 필요충분조건을 제시한다. 특히 제시한 조

건은 그래프 이론적인 조건과 시스템 이론적인 조건을 결합하였으며, 통신 네트워크와

주고받는 정보의 상호작용을 강조한다. 더 나아가 제시한 조건을 사용하여 방향성이

없는 네트워크상에서 상태 일치를 이루는 관측기 기반 동적 제어기를 제시한다.

주요 결과는 방향성이 있는 네트워크 상에서 출력 일치를 이루는 문제로 확장한다.

아쉽게도 이 상황에서는 제시한 조건은 더 이상 필요충분조건이 되지 못하며 이런 어

려움들을 다양한 예제를 통해서 설명한다. 그럼에도 불구하고, 개체의 동역학에 추가

적인 조건을 가함으로써 방향성이 없는 네트워크에서 필요충분조건을 회복한다. 또한

방향성이 있는 네트워크에서 출력 일치 문제를 푸는 충분조건을 제시하고 이를 이루는

제어기를 제안한다.

본 논문의 효용성은 여러 가지 적용 예제를 통해 보인다. 첫 번째로 분산 관측 문

제를 다층 레이어 네트워크 상의 상태 일치 문제로 표현한다. 제시된 방법을 사용하면

주변 개체와의 통신량을 기존 결과들 보다 줄이는 새로운 분산 관측기를 제시한다. 두

번째로논문의결과를사용해편대제어문제를푼다. 특히,원하는편대의모양이개체

의상대적인위치와상대적인각도로주어진경우를고려한다. 제시한방법을사용하여

원하는 편대를 이루는 동적 제어기를 제시하였고, 편대의 크기를 유기적으로 조절하는

알고리즘을 제시한다. 마지막으로 다층 레이어 네트워크를 분산 최적화 문제에 적용을

한다. 이를 통해 매시간 결정 변수의 일부분만을 통신하는 통신적으로 더 효율적인

알고리즘을 제시한다.
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주요어: 동기화, 선형 다 개체 시스템, 다층레이어 네트워크, 편대 제어, 분산 추정,

분산 최적화

학 번: 2014–22571


	1 Introduction
	1.1 Research Background
	1.2 Contributions and Outline of Dissertation

	2 Preliminaries on Graph Theory and Convex Optimization
	2.1 Graph Theory and Consensus Problem
	2.1.1 Basic Definitions
	2.1.2 Connectedness of the Graph
	2.1.3 Laplacian Matrix and Its Properties

	2.2 Multilayer Graph Theory
	2.3 Convex Optimization
	2.3.1 Convex Functions and Useful Properties
	2.3.2 Optimization Algorithms


	3 Consensus Problem over the Multilayer Network
	3.1 Problem Formulation
	3.2 A Necessary and Sufficient Condition for State Consensus
	3.3 Proof of Necessity
	3.4 Proof of Sufficiency
	3.4.1 Additional Considerations for the Controllers


	4 Extension to Output Consensus over Directed Network
	4.1 Necessary Conditions for the Output Consensus Problem
	4.2 Challenges for the Output Consensus over Directed Networks
	4.3 Controller Design for the Output Consensus Problem
	4.3.1 Controller Design under System Theoretic Constraint
	4.3.2 Controller Design under Information Structural Constraint

	4.4 Static Output Diffusive Coupling
	4.5 Summary of Results
	4.5.1 Comparison with Single-layer Consensus Problem
	4.5.2 Relation between Necessary and Sufficient Conditions


	5 Application to the Distributed State Estimation Problem
	5.1 Problem Formulation
	5.2 Distributed State Estimation over Static Network
	5.2.1 Design Procedures

	5.3 Distributed State Estimation over Switching Network
	5.4 Simulation Results

	6 Application to the Formation Control Problem
	6.1 Problem Formulation
	6.2 Formation Control Problem using Multilayer Network
	6.3 Simulation Results
	6.3.1 Achieving a Static Formation
	6.3.2 Scaling Formation via Multilayer Network


	7 Application to the Distributed Optimization Problem
	7.1 Problem Formulation
	7.2 Distributed PI Algorithm
	7.2.1 Distributed PI Algorithm under Static Network
	7.2.2 State Transformation for Analysis

	7.3 Convergence Analysis for the PI Algorithm
	7.3.1 Convergence with Weak Coupling
	7.3.2 Convergence with Strong Coupling
	7.3.3 Convergence under Fast Switching

	7.4 Construction of Distributed Algorithms
	7.4.1 Distributed Gradient Descent Method
	7.4.2 Distributed Heavy-ball Method
	7.4.3 Distributed Heavy-ball Method with Cyclic Coordinate Descent

	7.5 Numerical Experiments
	7.5.1 Distributed PI Algorithm
	7.5.2 Distributed Heavy-ball Algorithm

	7.6 Remark on the Study of Continuous-time Algorithms

	8 Conclusions and Further Issues
	APPENDIX
	A.1 Technical Lemmas
	A.2 Comparisons with Existing Consensus Problems
	A.2.1 Consensus Problem of Homogeneous Agents over Singlelayer Network
	A.2.2 Consensus Problem of Heterogeneous Agents over Singlelayer Network
	A.2.3 Consensus Problem over Matrix-weighted Network

	A.3 Detectability Interpretation of the Necessary Conditions

	BIBLIOGRAPHY
	국문초록


<startpage>20
1 Introduction 1
 1.1 Research Background 1
 1.2 Contributions and Outline of Dissertation 7
2 Preliminaries on Graph Theory and Convex Optimization 13
 2.1 Graph Theory and Consensus Problem 13
  2.1.1 Basic Definitions 13
  2.1.2 Connectedness of the Graph 14
  2.1.3 Laplacian Matrix and Its Properties 17
 2.2 Multilayer Graph Theory 22
 2.3 Convex Optimization 24
  2.3.1 Convex Functions and Useful Properties 24
  2.3.2 Optimization Algorithms 28
3 Consensus Problem over the Multilayer Network 41
 3.1 Problem Formulation 41
 3.2 A Necessary and Sufficient Condition for State Consensus 45
 3.3 Proof of Necessity 51
 3.4 Proof of Sufficiency 58
  3.4.1 Additional Considerations for the Controllers 63
4 Extension to Output Consensus over Directed Network 67
 4.1 Necessary Conditions for the Output Consensus Problem 67
 4.2 Challenges for the Output Consensus over Directed Networks 71
 4.3 Controller Design for the Output Consensus Problem 74
  4.3.1 Controller Design under System Theoretic Constraint 74
  4.3.2 Controller Design under Information Structural Constraint 82
 4.4 Static Output Diffusive Coupling 84
 4.5 Summary of Results 86
  4.5.1 Comparison with Single-layer Consensus Problem 86
  4.5.2 Relation between Necessary and Sufficient Conditions 87
5 Application to the Distributed State Estimation Problem 89
 5.1 Problem Formulation 89
 5.2 Distributed State Estimation over Static Network 92
  5.2.1 Design Procedures 100
 5.3 Distributed State Estimation over Switching Network 103
 5.4 Simulation Results 111
6 Application to the Formation Control Problem 115
 6.1 Problem Formulation 115
 6.2 Formation Control Problem using Multilayer Network 117
 6.3 Simulation Results 119
  6.3.1 Achieving a Static Formation 119
  6.3.2 Scaling Formation via Multilayer Network 123
7 Application to the Distributed Optimization Problem 127
 7.1 Problem Formulation 127
 7.2 Distributed PI Algorithm 129
  7.2.1 Distributed PI Algorithm under Static Network 129
  7.2.2 State Transformation for Analysis 132
 7.3 Convergence Analysis for the PI Algorithm 136
  7.3.1 Convergence with Weak Coupling 136
  7.3.2 Convergence with Strong Coupling 139
  7.3.3 Convergence under Fast Switching 153
 7.4 Construction of Distributed Algorithms 158
  7.4.1 Distributed Gradient Descent Method 158
  7.4.2 Distributed Heavy-ball Method 160
  7.4.3 Distributed Heavy-ball Method with Cyclic Coordinate Descent 166
 7.5 Numerical Experiments 170
  7.5.1 Distributed PI Algorithm 170
  7.5.2 Distributed Heavy-ball Algorithm 172
 7.6 Remark on the Study of Continuous-time Algorithms 175
8 Conclusions and Further Issues 177
APPENDIX 183
 A.1 Technical Lemmas 183
 A.2 Comparisons with Existing Consensus Problems 185
  A.2.1 Consensus Problem of Homogeneous Agents over Singlelayer Network 186
  A.2.2 Consensus Problem of Heterogeneous Agents over Singlelayer Network 188
  A.2.3 Consensus Problem over Matrix-weighted Network 190
 A.3 Detectability Interpretation of the Necessary Conditions 191
BIBLIOGRAPHY 195
국문초록 209
</body>

