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Abstract

In this dissertation, three main contributions are given as; i) a protocol of privacy-
preserving machine learning using network resources, ii) the development of approx-
imate homomorphic encryption that achieves less error and high-precision bootstrap-
ping algorithm without compromising performance and security, iii) the cryptanalysis
and the modification of code-based cryptosystems: cryptanalysis on IKKR cryptosys-
tem and modification of the pqsigRM, a digital signature scheme proposed to the post-
quantum cryptography (PQC) standardization of National Institute of Standards and
Technology (NIST).

The recent development of machine learning, cloud computing, and blockchain
raises a new privacy problem; how can one outsource computation on confidential
data? Moreover, as research on quantum computers shows success, the need for PQC
is also emerging. Multi-party computation (MPC) is the cryptographic protocol that
makes computation on data without revealing it. Since MPC is designed based on
homomorphic encryption (HE) and PQC, research on designing efficient and safe HE
and PQC is actively being conducted.

First, I propose a protocol for privacy-preserving machine learning (PPML) that
replaces bootstrapping of homomorphic encryption with network resources. In gen-
eral, the HE ciphertext has a limited depth of circuit that can be calculated, called the
level of a ciphertext. We call bootstrapping restoring the level of ciphertext that has
exhausted its level through a method such as homomorphic decryption. Bootstrapping
of homomorphic encryption is, in general, very expensive in time and space. How-
ever, when deep computations like deep learning are performed, it is required to do
bootstrapping. In this protocol, both the client’s message and servers’ intermediate
values are kept secure, while the client’s computation and communication complexity

are light.



Second, I propose an improved bootstrapping algorithm for the CKKS scheme and
a method to reduce the error by homomorphic operations in the CKKS scheme. The
Cheon-Kim-Kim-Song (CKKS) scheme (Asiacrypt *17) is one of the highlighted fully
homomorphic encryption (FHE) schemes as it is efficient to deal with encrypted real
numbers, which are the usual data type for many applications such as machine learn-
ing. However, the precision drop due to the error growth is a drawback of the CKKS
scheme for data processing. I propose a method to achieve high-precision approximate
FHE using the following two methods. First, I apply the signal-to-noise ratio (SNR)
concept and propose methods to maximize SNR by reordering homomorphic oper-
ations in the CKKS scheme. For that, the error variance is minimized instead of the
upper bound of error when we deal with the encrypted data. Second, from the same per-
spective of minimizing error variance, I propose a new method to find the approximate
polynomials for the CKKS scheme. The approximation method is especially applied
to the CKKS scheme’s bootstrapping, where we achieve bootstrapping with smaller er-
ror variance compared to the prior arts. In addition to the above variance-minimizing
method, I cast the problem of finding an approximate polynomial for a modulus re-
duction into an L2-norm minimization problem. As a result, I find an approximate
polynomial for the modulus reduction without using the sine function, which is the
upper bound for the polynomial approximation of the modulus reduction. By using the
proposed method, the constraint of ¢ = O(m?®?) is relaxed as O(m), and thus the
level loss in bootstrapping can be reduced. The performance improvement by the pro-
posed methods is verified by implementation over HE libraries, that is, HEAAN and
SEAL. The implementation shows that by reordering homomorphic operations and
using the proposed polynomial approximation, the reliability of the CKKS scheme is
improved. Therefore, the quality of services of various applications using the proposed
CKKS scheme, such as PPML, can be improved without compromising performance

and security.
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Finally, I propose an improved code-based signature scheme and cryptanalysis of
code-based cryptosystems. A novel code-based signature scheme with small parame-
ters and an attack algorithm on recent code-based cryptosystems are presented in this
dissertation. This scheme is based on a modified Reed-Muller (RM) code, which re-
duces the signing complexity and key size compared with existing code-based sig-
nature schemes. The proposed scheme has the advantage of the pqsigRM decoder
and uses public codes that are more difficult to distinguish from random codes. I use
(U,U + V)-codes with the high-dimensional hull to overcome the disadvantages of
code-based schemes. The proposed a decoder which efficiently samples from coset
elements with small Hamming weight for any given syndrome. The proposed signa-
ture scheme resists various known attacks on RM code-based cryptography. For 128
bits of classical security, the signature size is 4096 bits, and the public key size is less
than 1 MB. Recently, Ivanov, Kabatiansky, Krouk, and Rumenko (IKKR) proposed
three new variants of the McEliece cryptosystem (CBCrypto 2020, affiliated with Eu-
rocrypt 2020). This dissertation shows that one of the IKKR cryptosystems is equal to
the McEliece cryptosystem. Furthermore, a polynomial-time attack algorithm for the
other two IKKR cryptosystems is proposed. The proposed attack algorithm utilizes the
linearity of IKKR cryptosystems. Also, an implementation of the IKKR cryptosystems
and the proposed attack is given. The proposed attack algorithm finds the plaintext

within 0.2 sec, which is faster than the elapsed time for legitimate decryption.
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Chapter 1

Introduction

The recent development of machine learning, cloud computing, and blockchain raises
a new privacy problem; how can one write a smart contract on a public blockchain or
outsource computation such as machine learning for confidential data? The need for
cryptographic primitives for such scenarios has been exploded, and there have been
extensive studies. Multi-party computation (MPC) is an encryption protocol that al-
lows various users to collaborate to perform computations without revealing confi-
dential data while hostile users exist. Privacy-preserving machine learning (PPML) is
the most promising of these and is very useful in many applications, such as health-
care and finance, to perform machine learning algorithms on confidential data. MPC
is built upon various cryptographic primitives, such as homomorphic encryption (HE)
and public-key cryptography [2].

The cryptographic primitives should resist attacks using quantum computers as
well as classical computers. However, polynomial-time quantum algorithms for prime
factorization and the discrete logarithm problem have been proposed [3]]. Hence, clas-
sical public-key algorithms such as RSA and elliptic curve cryptosystems will no
longer be used after the advent of quantum computing. It is PQC that the public-key
cryptography resists attacks using quantum computers. The lattice-based and code-

based cryptography is the most promising candidate of PQC. Hence, the cryptographic



primitives in this dissertation are based on hard problems of lattice and coding theory.

In this dissertation, three main contributions are given as; i) a protocol of privacy-
preserving machine learning using network resources, ii) the development of approx-
imate homomorphic encryption that achieves less error and high-precision bootstrap-
ping algorithm without compromising performance and security, and iii) the crypt-
analysis and the modification of code-based cryptosystems: cryptanalysis on Ivanov-
Kabatiansky-Krouk-Rumenko (IKKR) cryptosystem and modification of the pqsi-
gRM. The pqsigRM is a digital signature scheme proposed for the post-quantum cryp-
tography (PQC) standardization of the NIST.

First, I propose an efficient protocol that dismisses the most time-consuming op-
eration of PPML using HE, bootstrapping, by using communication resources. Homo-
morphic encryption enables the computation of encrypted data, but one of its draw-
backs is computational complexity. Usually, the complexity of basic operations of
homomorphic encryption is O(I%), where [ is the level of a ciphertext, which is the
maximum depth of operation that can be performed using the ciphertext. However, for
the accuracy of machine learning, depth is important, which inevitably increases the
amount of computation. The bootstrapping initializes the level of the ciphertext; the
complexity of the homomorphic operation can be maintained at any depth. However,
bootstrapping is an expensive operation. In this dissertation, I propose a method of
PPML without bootstrapping using communication resources. In other words, it re-
places bootstrapping with a procedure that induces a small amount of communication
between participants.

Next, I propose methods of improving the approximate HE using variance-
minimizing and convex optimizations. The Cheon-Kim-Kim-Song (CKKS) scheme
is one of the highlighted fully homomorphic encryption (FHE) schemes as it is ef-
ficient to deal with encrypted complex(real) numbers, which are the usual data type
for many applications such as machine learning [4]]. In this dissertation, I propose

a generally applicable method to achieve high-precision approximate FHE using the



following two techniques. First, I apply the concept of SNR and propose a method
of maximizing SNR of encrypted data by reordering homomorphic operations in the
CKKS scheme. For that, the variance of error of encrypted data is minimized instead
of the upper bound of error when we deal with the ciphertext. Second, from the same
perspective of minimizing error variance, I propose a new method of finding the ap-
proximate polynomials for the CKKS scheme. The approximation method is especially
applied to the bootstrapping of the CKKS scheme, where I achieve a smaller error vari-
ance in the bootstrapping compared to the prior arts. The performance improvement
of the proposed methods for the CKKS scheme is verified by implementation over HE
libraries, HEAAN, and SEAL. The implementation results show that by reordering
homomorphic operations and using the proposed polynomial approximation, the mes-
sage precision of the CKKS scheme is improved. Specifically, the proposed method
uses only depth 8, although the bootstrapping error for the CKKS method is less than
the error obtained using depth 11 of the previous method. I also suggest a loose lower
bound for bootstrapping error in the CKKS scheme and show that the error by the pro-
posed method is only 2.8 bits on average larger than the lower bound. Therefore, the
quality of services of various applications using the proposed CKKS scheme, such as
privacy-preserving machine learning, can be improved without compromising perfor-
mance and security.

Finally, I propose an efficient code-based signature scheme and cryptanalysis of
code-based cryptosystems. Especially, the pqsigRM, a first-round candidate of PQC
standardization by NIST and its modification, are included. By using the proposed
modified RM codes and their decoding, one can find a small-Hamming-weight er-
ror vector for any given received vector. Hence, it reduces the required iteration in
code-based signature schemes, such as the signature scheme proposed by CFS. The
proposed signature scheme has a small parameter size. In addition, I propose here that
one of the IKKR cryptosystems is equivalent to the McEliece cryptosystem and crypt-

analysis for the other two. The implementation results show that the proposed attack



algorithm is efficient so that it performs faster than the legitimate decryption.

1.1 Homomorphic Encryption and Privacy-Preserving Ma-

chine Learning

Homomorphic encryption enables outsourcing arbitrary computation over encrypted
data, and this privacy-preserving property is attractive for outsourcing of machine
learning, called machine learning as a service. After Gentry’s blueprint [2f], it has
been widely studied and several HE schemes have been proposed [4-H12]]. As HE can
handle encrypted data without decryption, it is suitable for data-rich applications that
require privacy. Particularly, since Cheon et al. proposed a HE scheme for complex
numbers [4]], called the CKKS scheme, the utilization of HE in deep learning methods
has become easier for privacy-preserving applications [[13H18]].

Another important observation by Gentry is that encryption contains noise and
the noise level grows as operations are performed on the ciphertext. It is necessary
to deal with noise to avoid overwhelming the data, and there are two types of HE
schemes for this purpose. The first is somewhat homomorphic encryption (SHE), in
which the ciphertext size and computation increase at least linearly with the depth
of the circuit. SHE is an appropriate choice for low-depth circuits; however, it has
a scaling problem. The other method is an FHE. Gentry proposed the bootstrapping
technique to refresh the noise, and thus, the parameter size and computation could
be fixed regardless of circuit depth. However, in general, the bootstrapping of FHE
schemes requires a considerable amount of computation.

The leveled HE (LHE) has a limitation of the depth of the circuit that can be per-
formed, that is, the level of ciphertext. A larger parameter should be used to increase
the level of a ciphertext. In order to perform a circuit that is deeper than the level of
ciphertext, the bootstrapping should be done. Thus, the deep neural network requires

significant computational time due to the bootstrapping or a large parameter in order to



avoid bootstrapping. So far, privacy-preserving machine learning has used the limited
depth of the neural network.

In this dissertation, a novel method to evaluate deep neural networks over en-
crypted data without bootstrapping. The bootstrapping is replaced by communication
resources; the data of the sender is protected by homomorphic encryption, and the
intermediate values are protected by information-theoretic secrecy. Unlike the hybrid
methods using MPC and HE, this method optimizes the computation and communi-
cation of the client. I provide the success probability of the proposed method with the
CKKS scheme as it is not straightforward and show that a protocol with less level loss
and less error is achieved with a negligible failure probability. Besides, it is required
to use the sparse packing method in the CKKS scheme when bootstrapping is required
as the bootstrapping error is proportional to the square of slot size. With the proposed
method, the full slots can be utilized without additional error growth, which results in a
significant reduction in computation time and communication of both server and client
in the amortized manner. Compared to the hybrid methods, the proposed technique
enables the simpler structure of the client, which might reduce the size of hardware

while securing the structure of the model, which is an asset of the service provider.

1.2 High-Precision CKKS Scheme and Its Bootstrapping

The CKKS scheme is an approximated homomorphic encryption scheme [4] using
ring-learning with error (RLWE). The CKKS scheme [4]] is one of the highlighted FHE
schemes as it is efficient to deal with real (or complex) numbers, which is the usual
data type for many applications such as deep learning and regression. When we deal
with arbitrary precision real numbers using other FHE schemes such as (Brakerski)-
Fan-Vercauteren (B)FV) [7,8,/11] and Brakerski-Gentry-Vaikuntanathan (BGV) [9]]
schemes, the size of ciphertext has an exponential growth rate according to the level,

where the level of ciphertext is defined by the maximum depth of operation that can be



homomorphically evaluated without bootstrapping. However, the ciphertext size has a
polynomial growth rate according to the level in the CKKS scheme.

Bootstrapping for the CKKS scheme was first proposed by Cheon et al. [[19]. Sub-
sequently, several studies have been conducted to improve bootstrapping for CKKS
schemes [20H22f], and they commonly perform modulus reduction homomorphically
by approximating it to a scaled sine function. The CKKS scheme is promising and
used widely; however, the improvement of bootstrapping is crucial as most machine
learning methods require operations of significant depth.

Homomorphic evaluation of the modulus reduction is the key part of the boot-
strapping of the CKKS scheme. As only addition and multiplication can be evaluated
homomorphically, and modulus reduction cannot be represented by addition and mul-
tiplication, a polynomial approximation for modulus reduction is required.

In most bootstrapping methods studied so far, the scaled sine function (or shifted to
the cosine function) is deemed to approximate the modulus reduction [[19521]]. This is
because the sine function is a periodic function that is close to a first-order polynomial
near the origin, and polynomial approximations to trigonometric functions have been
studied a lot. Thus, a polynomial approximation for the scaled sine function is used to
evaluate the modulus reduction homomorphically. In [[19]], the sine function was ap-
proximated by Taylor expansion of an exponential function using e’ = cos @ + i sin @
and the double angle formula ¢’ = (¢%)2. The Chebyshev interpolation method im-
proves the polynomial approximation of the sine function [21]]. Based on the fact that

the size of a message is significantly less than the ciphertext modulus, better nodes for

Chebyshev interpolation was selected, and the approximation was refined [20].
1.2.1 Near-Optimal Bootstrapping of the CKKS Scheme Using Least

Squares Method

In this dissertation, instead of approximating the sine function, I propose to cast the

problem of finding approximate polynomials for a modulus reduction into the L2-norm



minimization problem for which an optimal solution can be directly computed. Thus,
the fundamental error caused by the use of trigonometric functions can be conquered.
An approximation by the minimax polynomial for the modulus reduction is desirable;
however, the shape of the modulus reduction function makes it difficult to find the
minimax polynomial. Thus, instead, I propose a discretized optimization method that
can be solved efficiently with a unique solution. Through the solution of the modified
discretized problem, I can reduce the degree of the approximate polynomial for the
modulus reduction while achieving a low margin of error. Consequently, operations
required for the homomorphic modulus reduction are reduced compared with the best-
known method [20], where the double angle formula is excluded.

When conventional methods are used, the sine function dominates the approxima-
tion error; in other words, the approximation error cannot be less than the difference
between the sine function and modulus reduction. Therefore, the message size is lim-
ited to m < ¢%/3, and thus plaintext precision is also limited, where g denotes a value
of the ciphertext modulus. However, the proposed method does not use the sine func-
tion, and thus I can obtain a precise approximate polynomial or utilize a message that is
larger in size. For example, when m/q < 270, the proposed method finds an approx-
imate polynomial with a maximum error of less than 2~° with only a circuit depth of
7, whereas the best-known modified Chebyshev interpolation method cannot because
the error saturates to 2~27. Therefore, the proposed method is essential for applica-
tions that require precise calculations. Moreover, accurate approximate polynomials
for modulus reductions of larger messages can be found. For example, I achieve 2729
error for m/q ~ 276 with only a depth of 7, whereas conventional methods cannot be
used with the message m/q ~ 279 because the error saturates to 2715,

This means that a user can handle a large, accurate number, and the selection of
parameters for the CKKS scheme can be expanded using the proposed method. Thus,
the proposed method using the L2-norm minimization makes it possible to take a trade-

off between the computational complexity (the degree of approximate polynomial) and



the approximation error for the CKKS scheme. By using the proposed method, the
constraint of ¢ = O(m3/?) is relaxed as O(m), and thus the level loss in bootstrapping

can be reduced.

1.2.2 Variance-Minimizing and Optimal Bootstrapping of the CKKS

Scheme

The CKKS scheme provides the trade-off between the efficiency and precision of mes-
sages, where messages in the CKKS scheme contain errors, and the errors are accu-
mulated during homomorphic operations. To our best knowledge, research to the date
has provided high-probability upper bounds for errors in encrypted data [4,[19L23]]. As
the processing of messages in the CKKS scheme proceeds, the upper bound of errors
in encrypted data is increased, and thus it becomes a loose and useless bound.

In previous studies on the error of the CKKS scheme, the probabilistic concept
has been used to some extent. Error control in the CKKS scheme so far provided the
high-probability upper bounds of error [4}/19] or average precision of message [21]].
The high-probability upper bounds are derived from the distribution of error, and the
average precision of the message is about the average error, which is a probabilistic
term. The CKKS scheme is considered as an erroneous channel, and thus methodolo-
gies from communication theory can be adopted, which are the power ratio of a signal
(message) and errors. The signal power can be controlled by the scaling factor of the
message, and I show how to minimize the noise power during approximate homomor-
phic operations in the CKKS scheme. Since the errors in the CKKS system are addi-
tive, the central limit theorem can be used to treat the error as a Gaussian distribution.
Therefore, it is better to control the variance of errors rather than the high probability
upper bound of errors and keep them as tagged information for the ciphertext.

Since a drawback of the CKKS scheme is that errors are accumulated, many stud-
ies have been conducted to reduce errors. Recently, Kim et al. proposed a new method

to reduce errors in encrypted data of the CKKS scheme and its residue number system



(RNS) variants using lazy rescaling and different scaling factors at each level [23]]. Al-
though the error was reduced in their paper, the high-probability upper bound was still
used as a measure of error. Especially, error amplification during the bootstrapping in
the CKKS scheme has been studied in a lot of research. After the first bootstrapping
method was proposed in [19], the Chebyshev interpolation method has been applied to
the homomorphic evaluation of modulus reduction [20], a method for direct approx-
imation was proposed in [24]], and the algorithm for finding minimax approximate
polynomial and inverse sine method was proposed in [[25].

In this dissertation, I propose a method of managing the variance of errors to max-
imize the signal-to-noise ratio (SNR) of the messages in the CKKS scheme rather than
minimizing the high-probability upper bounds. First, to minimize the error variance of
the message, a criterion for optimizing the order of homomorphic operations is pro-
posed. In the proposed method, the error variance of the CKKS scheme is treated as
a value to be controlled rather than the upper bound of error. This method can im-
prove the stability of various applications that use approximate homomorphic encryp-
tion by reordering homomorphic operations, and it can also improve the accuracy of
the resultant message. The second contribution is the optimization of the approximate
polynomials in terms of the error variance of the message for the CKKS scheme. The
method is the first method to find the optimal approximation polynomial that mini-
mizes not only the approximation error but also the error in polynomial basis that is
amplified by coefficients. I improve the bootstrapping algorithm of the CKKS scheme
using the proposed polynomial approximation method, where bootstrapping is imple-
mented with smaller errors and less depth consumption. It is shown in this dissertation
that the proposed method reduces the magnitude of bootstrapping error compared to
the previous work [25]]. Moreover, the proposed method resolves the problem that the
approximate polynomials have large coefficients, which could only be solved by using
the double angle formula in the previous work. However, the proposed method makes

it possible to use a direct approximation for the modulus reduction. The comparison



with the previous methods shows that by using the proposed method, I can improve
the message precision after bootstrapping while reducing the level consumption for
bootstrapping. Specifically, the proposed method uses only depth 8, although the boot-
strapping error for the CKKS method is less than the error obtained using depth 11 of

the previous method.

1.3 Efficient Code-Based Signature Scheme and Cryptanal-
ysis of the Ivanov-Kabatiansky-Krouk-Rumenko Cryp-

tosystems

Recently, code-based cryptographic algorithms have been extensively studied in PQC.
Code-based cryptography is based on the syndrome decoding problem and its vari-
ants. The syndrome decoding problem is to find a vector e satisfying He” = s’ and
wt(e) < w, where H is a parity check matrix of a random (n, k) code, s is a random
syndrome vector, w is a small value, and wt(e) denotes the Hamming weight of a vec-
tor e. The code-based cryptosystems and signature schemes are based on the hardness
of the decoding problem [26].

Berlekamp and McEliece first proved the hardness of the syndrome decoding prob-
lem [26]] and McEliece proposed a cryptosystem based on Goppa codes [27]]. Thus, an
adversary has to solve the decoding problem or distinguish a permuted Goppa code,
while the legitimate users can still properly decode. Although lots of variants of the
McEliece cryptosystem have been proposed using different codes, for some of them,
key distinguishing attacks have been discovered in [28-30].

After McEliece first introduced a code-based cryptosystem (called the McEliece
cryptosystem) [27]], many variants of it have been proposed. There are several code-
based public-key encryptions and key-establishment algorithms in the second round
of the PQC standardization by NIST [31]]. In addition to the code-based public-key

encryption schemes, code-based signature schemes are also proposed [32]— [33]] and
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[34]. I present a novel code-based signature scheme called modified pqsigRM. Also,
I provide a polynomial-time attack algorithm for one of the IKKR cryptosystems that
is a recently proposed code-based cryptosystem. Moreover, it is shown that the other
two IKKR cryptosystems are equivalent to the McEliece cryptosystem, so it is not an

improvement of the McEliece cryptosystem.

1.3.1 Modified pqsigRM: An Efficient Code-Based Signature Scheme

The modified pqsigRM is based on a modified Reed—Muller (RM) code [34-36],
which reduces the signing complexity and key size compared with existing code-
based signature schemes. In fact, it strengthens pqsigRM submitted to NIST for post-
quantum cryptography standardization [37]]. The proposed scheme has the advantage
of the pgsigRM decoder and uses public codes that are more difficult to distinguish
from random codes. T use (U, U + V')-codes with the high-dimensional hull to over-
come the disadvantages of code-based schemes. The proposed decoder samples from
coset elements with small Hamming weight for any given syndrome and efficiently
finds such an element. With the modified RM code, the proposed signature scheme re-
sists various known attacks on RM-code-based cryptography. For 128 bits of classical
security, the signature size is 4096 bits, and the public key size is less than 1 MB.
Courtois, Finiasz, and Sendrier proposed the CFS signature scheme [38]], which
is a code-based signature scheme using a full-domain hash (FDH) approach. In this
scheme, ¢! hashes and decoding are required on average to sign a message when an

(n, k) Goppa code with error correction capability ¢ is used. It is proposed to use high-

n—k
logn>

rate Goppa codes, which have relatively small error correction capability { = to
reduce the signing time. Therefore, it has a large signing complexity and certain draw-
backs in terms of parameter scaling. Moreover, it has been shown in [29] that high-rate
Goppa codes can be distinguished from random codes. This falsifies the assumption of

existential unforgeability under a chosen message attack (EUF-CMA) security proof

in [39]], which is based on the indistinguishability of Goppa codes. Although Moro-
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zov et al. proved the strong EUF-CMA security of the CFS signature scheme without
the indistinguishability of Goppa codes [40], the large key size and expensive signing
remain as drawbacks.

There are several variants of the CFS signature scheme, such as signature schemes
using LDGM codes [41]] and block wise-triangular secret key [42]]. To find a signature
with a small Hamming weight, the scheme in [41]] uses a sparse coset element added
to a codeword with a small Hamming weight. Even though this is efficient and has a
small key size, an attack algorithm was presented in [43]]. An attack algorithm for the
signature scheme using a blockwise-triangular secret key was also proposed [44]].

The Kabatianskii-Krouk-Smeets (KKS) signature scheme [45]] and its variants [46,
4'7|] take a different approach than CFS signature scheme. However, owing to the attack
proposed in [48]], these are considered (at best) to be one-time signature schemes.
Moreover, from the attacks in [49], it is known that the parameters in the KKS scheme
and its variants should be carefully chosen.

SUREF is a variant of CFS signature scheme using (U, U + V')-codes [50]. SURF
uses (n,ky + ky) binary codes defined by {(u|u + v)|u € U,v € V}, where U
and V are (n/2, ky) and (n/2, ky) random binary codes, respectively. A variant of
the Prange decoder is applied to SUREF to find an error vector with a small Hamming
weight. The security of SURF is based on the decoding-one-out-of-many (DOOM)
problem, in which a solution for the syndrome decoding problem is sought in the pres-
ence of several syndromes. Unfortunately, as it has been demonstrated that the hull of
any (U,U + V')-code is highly probable to be a two-repetition code when U and V'
are random binary codes [50], the hull of the public key can be used for key attacks on
SUREF. In the recently proposed signature scheme, Wave [32], the generalized ternary
(U,U + V)-codes are used instead of binary codes as they efficiently resist the hull
attack in [50]]. Moreover, finding errors with large Hamming weight for the given syn-
drome allows small parameters. A tighter security reduction using rejection sampling

and preimage samplable functions [51]] was proved in [32].
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In this dissertation, a new code-based signature scheme using binary codes with
a (U,U + V)-code as its subcode is proposed. For two linear codes C; and Ca, Co
is called a subcode of C; if all codewords in Cs are in Cy. The subcode used in the
proposed signature scheme is a binary (U, U + V')-code, where U and V' are obtained
by modifying the RM codes. I design V and U~ to have a sufficient number of common
codewords, where U denotes the dual code of U. By the relationships between U and
V, it is shown that the proposed signature scheme resists the attack for (U, U + V)-
codes in [50]. Further, an efficient and randomized decoding algorithm is proposed.
This algorithm makes it possible to reduce the key size and signature length. As the
codes in the proposed signature scheme are a modification of RM codes, the decoding
algorithm makes use of the recursive structure. The proposed signature scheme is an
improvement of pgsigRM [37]] submitted to NIST for PQC standardization, and it
resolves the weaknesses of early versions of pqsigRM by modifying the public code.
Moreover, I ensure the distinguishability of the public code of the proposed signature

scheme.

1.3.2 Ivanov-Kabatiansky-Krouk-Rumenko Cryptosystems and Its
Equality

Recently, Ivanov, Kabatiansky, Krouk, and Rumenko proposed new variants of the
McEliece cryptosystem at CBCrypto 2020, affiliated with Eurocrypt 2020 [52]. The
IKKR cryptosystems use structured error vectors with arbitrary Hamming weight
rather than a random error vector with Hamming weight less than or equal to . The
goal of IKKR cryptosystems is to make information set decoding harder by adding
an error vector with a larger Hamming weight. There are three algorithms proposed
in [52]], which are prototype, modified version of prototype, and upgraded IKKR cryp-
tosystems.

In this dissertation, I propose cryptanalysis of the modified version of the proto-

type and the upgraded IKKR cryptosystems. The linearity of encryption of the IKKR
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cryptosystems is used for the proposed cryptanalysis. In other words, I construct a
system of linear equations to find plaintext with public-key and the corresponding
ciphertext. By solving the system of linear equations, a polynomial-time attack algo-
rithm is performed against the IKKR cryptosystems. I also prove that the prototype
IKKR cryptosystem is equal to the McEliece cryptosystem. Besides, I present a proof-
of-concept implementation of the IKKR cryptosystems and the proposed attack algo-
rithm. It turns out that the proposed attack finds the plaintext corresponding to a given
ciphertext within 0.2s in a desktop computer, which is even faster than the proposed

legitimate decryption.

1.4 Organization of the Dissertation

The remainder of the dissertation is organized as follows. In Chapter [2} the prelimi-
naries for PPML, HE, and code-based cryptography are given. I propose a protocol for
PPML such that the bootstrapping is replaced by a communication network resource in
Chapter [3|and thus, an accurate PPML is possible with less error and higher through-
put. The method of minimizing error variance in approximate HE is given in Chapter
M] It is also proposed the theoretical bound-achieving bootstrapping algorithm in the
same chapter. I show the efficient code-based signature scheme in Chaptefd] as well
as the cryptanalysis and equivalence of the IKKR cryptosystem. Finally, I conclude in

Chapter [6] with remarks.
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Chapter 2

Preliminaries

2.1 Basic Notation

Vectors are denoted in boldface such as « and every vector is a column vector. Matrices
are denoted by boldfaced capital letters, for example, A. I denote the inner product of
two vectors by (-, -) or simply -. Let u x v denote the component-wise multiplication of
two vectors u and v. Matrix multiplication is denoted by - or can be omitted when it is
unnecessary. ¢ < D denotes the sampling x according to a distribution D. When a set
is used instead of distribution, it means that x is sampled uniformly at random among
the set elements. Random variables are denoted by capital letters such as X. F[X]
and Var[X] denote the mean and variance of random variable X, respectively. Some
capital letters may represent something other than a random variable such as a constant,
but this is context-sensitive. Lp-norm of a vector is denoted by x|, = (3, z[i]?)F,
where x[i] denotes the i-th element of vector x.

(zo|x1) denotes the concatenation of two vectors xg and ;. For example, h(m|r)
means the hash function /& with input (m|r), where (m/|r) represents the concatenation
of binary representation of vector m and a random value r. £ denotes that a vector
@ is permuted by a permutation o, for example, x° = (x1, 3, T2, (), Where & =

(xo,x1,x2,23) and o0 = (1, 3,2,0).
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A 7 denotes the matrix which contains only columns with indices in J of A,
where 7 is a set of indices. The notation [ A |B] refers the augmented matrix given the

matrices A and B.

2.2 Privacy-Preserving Machine Learning and Security

Terms

2.2.1 Privacy-Preserving Machine Learning and Security Terms

Privacy-preserving machine learning is the protocol composed of two participants:
sender and receiver. The receiver has restricted computation ability, and the sender
has powerful computation ability and a trained model. Another name for privacy-
preserving machine learning is secure machine learning as a service (MLaaS). Unlike
ordinary machine learning as a service, a security issue is considered in the privacy-
preserving machine learning, which means that the input of the receiver is kept secure
in the procedure.

Privacy-preserving is a sort of secure two-party computation (2PC). 2PC is firstly
proposed by Yao [53]], Goldreich, Micali, and Wigderson [54]. Protocols for 2PC allow
two parties to compute any function f of their private inputs x and 6 without revealing
anything more than the output f(z, 8) of the function. When there are two or more than
two parties, it is called secure MPC. In this section, I introduce some requirements that

correspond to 2PC.

Non-Interactivity

Each player sends just a single message in 2PC in a setting with a non-interactivity
requirement. The first player, the receiver, computes some message m; based on his
input x and sends m; to the second player, the sender. The sender then computes a
response mo based on its input 6 and the message mq, and then sends it back to the

receiver. After receiving meo, the receiver can finally compute and output f(z,6). In a
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setting with a non-interactivity requirement, it is required that only the receiver obtains
the output f(x, #); otherwise, the sender can choose arbitrary 6 of his choice, and then

obtain f(z,6) as many as possible. This leaks information of x.

Succinctness

Protocols for a succinct non-interactive secure 2PC allows both the communication
complexity and receiver running time of an honest receiver is essentially independent
of the running time of f. Gentry’s breakthrough result on FHE yields a succinct non-
interactive secure 2PC [2]. Assuming an FHE scenario, the receiver encrypts = by
FHE and his own key, then the ciphertext Enc(z) and the public key pk are sent to
the sender. The sender evaluates f homomorphically using his own input §. During
the homomorphic encryption, the sender cannot obtain information of x. After the
homomorphic evaluation, Enc(f(z,y)) is given to the sender; finally, the sender sends
it to the receiver. As only the receiver can decrypt, the receiver can figure out f(z,y).
It is noted here that the communication complexity is two ciphertexts, and all the
computation required to the receiver is one encryption and one decryption; therefore,

it is succinct.

2.2.2 Privacy-Preserving Machine Learning

The capability of HE performing multiplication and addition enables secure evalu-
ation of machine learning whose core operations are generalized matrix multiplica-
tions, such as convolution. It is preferable to use a pre-trained network without mod-
ification as access to training data is not always guaranteed, and it is advantageous
to utilize many of the fruitful results of machine learning in plaintext. However, the
non-polynomial operations, such as activation and pooling, are not supported by HE
schemes. Thus, it is required to re-design a HE-friendly network or perform non-

polynomial operations with approximation polynomials.
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HE-Friendly Neural Networks

In order to use HE efficiently, the network is modified so that it fits HE algorithms.
For example, the comparison operation is quite tricky in HE, and thus max pooling is
replaced by mean pooling [|15]]. The ReL.U function is replaced by several polynomial
activation functions [[16]]. The depth of the neural network can also be adjusted so that

it does not require a large ciphertext [55].

Pre-Trained Neural Networks

When we use the HE-friendly neural network, the network should be re-trained. Hence,
it is required to full access to the training data, which is quite expensive. Moreover,
there is some restriction on activation, pooling, and depth, the performance of the
algorithm drops.

In contrast, the use of pre-trained networks does not require full access to the train-
ing data nor accuracy drop. HE schemes do not support modern activation functions
and pooling in general, and thus there exist two approaches: approximation with 1)
FHE method and ii) the hybrid method with MPC. In the FHE approach, the non-
polynomial layers are replaced by approximate polynomials, and in the hybrid ap-

proach, the non-polynomial layers are performed by MPC protocols.

2.3 The CKKS Scheme and Its Bootstrapping

2.3.1 The CKKS Scheme

This section briefly introduces the CKKS scheme [4] and its RNS variant, the RNS-
CKKS scheme [20,56]. For a positive integer M, let ®,,(X) be the M -th cyclotomic
polynomial of degree N, where M is a power of two, M = 2N, and ®;(X) = XV +
1.Let R = Z/ (P (X)) be the ring of integers of a number field S = Q/ (P (X)),

where Q is the set of rational numbers and I write R, = R/qR.
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The CKKS scheme [4]] and its RNS variants [[20}23,56] provide homomorphic op-
erations on encrypted real number data with errors. This is done by canonical embed-
ding and its inverse. Recall that canonical embedding Emb of a(X) € Q/ (®/(X))
into CV is the vector of the evaluation values a at the roots of ®,,(X) and Emb~!
is its inverse. Let 7 denote a natural projection from H = {(zj);cz+ : 2 = Zz—j}
to CN/2, where Zy, is the multiplicative group of integer modulo M. The encoding

(CN/2 - R) and decoding are defined as follows.

» Ecd(z; A): For an (/N /2)-dimensional vector z, the encoding procedure returns

m(X) = Emb™ ([A Y(2)] ) eR,

Emb(R)

where A is the scaling factor and [7r_1 (z)] denotes the discretization of

Emb(R)
7~1(2) into an element of Emb(R).

* Dcd(m; A): For an input polynomial m(X) € R, output a vector
z =m(A™" - Emb(m)) e CV/?,

where its entry of index j is given as z; = A1 - m(({w) for j € T, where (s
is the M -th root of unity and 7" is a multiplicative subgroup of Z}, satisfying
Z%;/T = {£1}. This can be basically represented by multiplication by an N /2 x

N matrix U whose entries are U;; = ¢/, where (; := ¢

The infinity norm of Emb(a) for a(X) € R is called the canonical embedding norm
of a, denoted by ||a|8" = |[Emb(a)| . Refer [4] for the property of the canonical
embedding norm.

Adopting notations in [4] and [_2], I define three distributions as follows. For a
real number o > 0, DG(o?) denotes the distribution of vectors in Z, whose en-
tries are sampled independently from the discrete Gaussian distribution of variance
0. HWT (h) is the set of signed binary vectors in {0, +1}" with Hamming weight

h and ZO(p) denotes the distribution of vectors from {0, +1}* with probability p/2
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for each of +1 and probability of being zero 1 — p. Suppose that we have ciphertexts
of level [ for 0 < [ < L, where level [ means the maximum number of possible multi-
plications before bootstrapping. For convenience, I fix a power-of-two base p > 0 and
a power-of-two modulus ¢ and let ¢; = ¢ - p’. The base integer p is usually equivalent
to the scaling factor A.

The CKKS scheme is defined with the following key generation, encryption, de-

cryption, and the corresponding homomorphic operations.
» KeyGen(1*):

— Given the security parameter )\, we choose a power-of-two M, an integer
h, an integer P, a real number ¢, and a maximum ciphertext modulus @),

such that Q) > qr.

— Sample the following values:
s — HWT(h),a < Ry, ,e < DG(a?).
— Set the secret key and the public key as

sk := (1,s),pk := (b,a) € R?

qr’
respectively, where
b= —as+e(modqr).
» KSGeng(s'):
Sample a’ < Rp,, and ¢’ < DG(a?). Output the switching key
swk := (V/,a) € Rp,, ,

where b/ = —a’s + € + Ps’ (mod Pqr,).

— Set the evaluation key as evk := KSGeng(s?).
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Encpk(m):

Sample v < ZO(0.5) and e, e; < DG(c?).
Output ¢ = v - pK + (m + eg, e1) (mod qr,).
Decg(c):

Output m = (¢, sk).

Add(cy, ¢2):

2

For ¢1,c¢s € qu,

output

Cagd = €1 + ¢2 (mod q;) .

Multeyk(c1, €2):
For c; = (bl,al) and ¢y = (bg, ag) € Rgl, let

(do, dl, dg) = (blbg,albg + CLle, alag) (HlOd ql) .

Output
emutt = (do, d1) + KSew((0, d2)),

where || denotes the rounding operation.

cAdd(cy,a; A):

For a aCN/? and a scaling factor A, output

Ccadd < ¢ + (Ecd(a; A),0).

cMult(cy, a; A):

For a aC™/2 and a scaling factor A, output

cemuit < Ecd(a; A) - e
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° RSZHZ’ (C) :

2
For ¢ € R, output

CRs = {qllcl (mod gy) .
q

The subscript is omitted when I’ = [ — 1.

* KSguk(c):

For ¢ = (co, ¢1) € R, output

ks = (c0,0) + [ P71 - ¢1 - swk]| (mod ¢;) .

I note that ey = (do, d1) + KSgyk (0, d2). The key switching techniques are used to
provide various operations such as complex conjugate and rotation.

There are computationally more efficient variants of the CKKS scheme, namely
the RNS-CKKS scheme in [20] and [56], and the basic operations supported therein
are similar. Hence, it is worth noting that the proposed methods in this dissertation aim

for all the variants of the CKKS scheme as well as the original CKKS scheme.

2.3.2 CKKS Scheme in RNS

The RNS-CKKS scheme performs all operations in RNS. In other words, the power-
of-two modulus ¢; = ¢ - p' is replaced with Hé:o pi, where p;’s are chosen as primes
that satisfy p; = 1 (mod 2N) to support efficient number theoretic transform (NTT).
These prime numbers are also chosen such that p/p; is in the range (1 — 27,1 + 27),
where 7 is kept small, for a scaling factor p. I note that gy = pg is much greater than p
as the coefficients of final message should not be greater than the ciphertext modulus
q0-

The RNS-CKKS scheme differs from the original CKKS scheme in the rescaling
and key switching. To take advantage of RNS, I use hybrid key switching technique

proposed in [20]. First, for predefined dnum, a small integer such as 4, T define partial
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- _ (J+D) o }
products {QJ}o<j<dnum = {Hz —ja 0<j<dnum’

level [ and dnum’ = [(I + 1)/a], I define [20]

WD,(a) = ([aqo] o {aqdnum/_l} ) e RIUM’
U 4o £ Jdnum’ —1
PW,(a) = [a?l} R [aﬂ] € Rgl”“ml.
q0 1q, Qdnum’—1 1,

Then, for any (a,b) € R?u’ we have

, where o = (L + 1)/dnum. For

(WDy(a), PWi(b)) = a-b(mod q) .

Then, the rescaling and key switching in the RNS-CKKS scheme are defined as fol-

lows:

« KSGeng(s'): For auxiliary modulus P = [[¥*_, p/ ~ max; g;, sample a}, «

Rpg, and €}, < DG(c?). Output the switching key

swk :=(swk, swkl)
Y R € R
where b}, = —ajs + €}, + P - PW(s')i, (mod Pqr,).
— Set the evaluation key as evk := KSGeng(s?).
* RS(c¢):
Force Rgl, output
crs = |p; e (mod gi_1) .
* KSquk(c):

For ¢ = (cp,c1) € RZI and swk := (swkp, SwkK; ), output

cs — (co + l<wpl(c113), swkgq |

[ <WDl(c]13), swk) }

) (mod ¢q;) .
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To remove the approximation error introduced by approximate rescaling, one can use
different scaling factor for each level as given in [23]].

I note that FullRNS-HEAAN library is (dnum = 1)-case and SEAL is (dnum =
L+ 1)-case. It is also noted that the key switching method using WD and PD can also
be applied to the original CKKS scheme, and thus the main differences between the
original CKKS scheme and the RNS-CKKS scheme are their modulus and rescaling
algorithm. However, since I use HEAAN as the library of the original CKKS scheme
and SEAL as the library of the RNS-CKKS scheme, I provide a description for each.

2.3.3 Bootstrapping of the CKKS Scheme

There are several studies for bootstrapping of the CKKS scheme [19-21] 24 25].
The bootstrapping consists of the following four steps: MODRAISE, COEFFTOSLOT,

EvALMOD, and SLOTTOCOEFEF.

Modulus Raising (MODRAISE)

MODRAISE is the procedure to change the modulus of a ciphertext to a larger mod-
ulus. Let ¢ be the ciphertext satisfying m(X) = [(c,SK)]s. It can be seen that
t(X) = (c,sk) (mod X* + 1) is of the form t(X) = gI(X) + m(X) for I(X) e R
with a bound [I(X)| < K, where K is upper bounded by O(+/h). The following
procedure aims to compute the remainder of the coefficients of ¢(X') when it is divided
by ¢, homomorphically. In other words, we homomorphically calculate the modulus
reduction function, [-], for the coefficients of ¢(X ). However, as the modulus reduction
is not an arithmetic operation, it should be evaluated by an approximate polynomial
and thus, the crucial point of bootstrapping is to find a polynomial approximating the

modulus reduction function.
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Homomorphic Evaluation of Encoding (COEFFTOSLOT)

Approximate homomorphic operations are performed in plaintext slots. Thus, to deal
with ¢(X), we have to put polynomial coefficients in plaintext slots. In COEFFTOSLOT
step, Embtonlis performed homomorphically using matrix multiplication [19] or

FFT-like operations or a hybrid method of both [21]]. Then, we have two ciphertexts

encrypting 2, = (to,...,tx_;)and 2] = (tn,...,ty—1) (or combined using imagi-
2 2
nary, e.g., (to +i-tn,...,tx_, +i-ty_1)), where ¢; denotes the j-th coefficient of
2 2
t(X).

Evaluation of the Approximate Modulus Reduction (EVALMOD)

In the EVALMOD step, an approximate evaluation of modulus reduction function of
t;’s is performed. As the modulus reduction function is not represented by additions
and multiplications, an approximate polynomial for this function is used, instead. For
approximation, it is desirable to control the size of the message so that we can ensure
m; < € - g for a small €, where m; is a coefficient of the message polynomial m(X).
At first, Cheon et al. approximated the modulus reduction function as 5L sin (%)
and used an approximate polynomial for sine function using Taylor series expansion
of exponential function in [[19]. Hence there exists a fundamental error between the

approximate polynomial and modulus reduction function, that is, the difference of sine

function and modulus reduction function, which is upper bounded by

q . m q 1 (2xm|\*®
m——sin| 27— || < — - = )
21 q 2r 3! q

where t(X) = ¢I(X) + m(X). Then, a Taylor series expansion and the double angle

formula were adopted as the approximate polynomial of the sine function.

After that, the method of improving polynomial approximation using Chebyshev
interpolation was proposed [21]. By selecting optimized nodes for Chebyshev interpo-
lation, Han et al. significantly improved the performance of the approximation in the

bootstrapping of the CKKS scheme [20]. However, in both approaches, the sine func-
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tion is used, and thus there is still the fundamental approximation error. Then, a direct
approximation method using a discretization of the target function and the least square
method is proposed in [24]. A composition with inverse sine function is proposed
in [25] to remove the fundamental approximation error between the sine function and
the modulus reduction. In [25]], an approximation algorithm that finds the minimax

approximate polynomial, namely the modified Remez algorithm, is used.

Homomorphic Evaluation of Decoding (SLOTTOCOEFF)

SLOTTOCOEFF is the inverse operation of COEFFTOSLOT.

2.3.4 Statistical Characteristics of Modulus Reduction and Failure Prob-

ability of Bootstrapping of the CKKS Scheme

After MODRAISE, the plaintext in the ciphertext ¢ = (¢, ¢1) is given as

HX)=q - I(X)+m(X)

= (c, sk) (mod XN+ 1).

As sk is sampled from the distribution H)AVT (h), it has a small Hamming weight h.
Each coefficient of a ciphertext (cy, ¢) is an element of Z, and thus, each coefficient of
(€,8K) = co+cisis considered as a sum of (h+ 1) elements in Z,. Therefore, I(X) =
H (c, Sk)] is upper bounded by %(h + 1). In practice, a heuristic assumption is used
and a high-probability upper bound K = O(+/h) for | I|| is used. For example, it is
usual to use h = 64 and then it is assumed that ||, < K = 12.

As (co, c1) is ciphertext, each coefficient of ¢ and ¢; can be considered as dis-
tributed uniformly at random by the RLWE assumption. Hence, each coefficient of ¢
is the sum of i + 1 independent uniform random variables; in other words, it follows a
distribution similar to the well-known Irwin—Hall distribution. The approximate poly-
nomial for modulus reduction is designed under the assumption that |||, < K. The

high-probability upper bound K is acceptable, but it outputs a useless value when the
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input is not in the desired domain, and this results in the bootstrapping failure. Thus, by
using the high-probability upper bound, the bootstrapping becomes efficient, but it has
a certain failure probability. For example, the probability that | I, > K is 272496,
when h = 64 and K = 12.

As we know the distribution of I, the probability distribution of each coefficient
can be obtained. I note here that a probabilistic approach is already used in the error
estimation and bootstrapping of the CKKS scheme, and thus it is reasonable to reduce
the error of the CKKS scheme in a probabilistic manner. This approach can be ap-

plied in all of the homomorphic computation and polynomial approximation using the

CKKS scheme.

2.4 Approximate Polynomial and Signal-to-Noise Perspec-

tive for Approximate Homomorphic Encryption

2.4.1 Chebyshev Polynomials

The Chebyshev interpolation is a well-known polynomial interpolation method that
uses the Chebyshev polynomials as a basis of the interpolation polynomial. The
Chebyshev polynomial of the first kind, in short, the Chebyshev polynomial is defined

by the recursive relation [|57]]

S
8
~—
l
—_

T1 (l‘)

I
8

Thii1(x) = 22T (x) — Th—1 ().

The Chebyshev polynomial of degree n has n distinct roots in the interval [—1,1]
and all its extrema are also in [—1, 1]. Moreover, W%Tn(l‘) is the polynomial, whose
maximal absolute value is minimal among monic polynomials of degree n and the ab-

solute value is 2n1,1 . In addition to the above, the Chebyshev polynomial has desirable

properties as a basis for an approximate polynomial.
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In Chebyshev interpolation, the n-th degree polynomial p,, (x) is represented as a

sum of the Chebyshev polynomials of the form
n
pn(x) = Z ¢iTi(x).
i=0

pn(z) is an approximate polynomial for f(z) by interpolating n + 1 points

{xo,21,...,2,} , Where
9 &
= ’;)f(xk)Ti(ﬂ?k)-
Selecting points {xg, x1, ..., Z,} is key for a good approximation.

2.4.2 Signal-to-Noise Perspective of the CKKS Scheme

In the field of communications, there has been extensive research on noisy media such
as wireless communication or data storage. In this perspective, the CKKS scheme is
one of the noisy media; encryption and decryption correspond to transmission and
reception, respectively. The message in the ciphertext is the signal, and as the final
output has an additive error due to RLWE security, rounding, and approximation, the
CKKS scheme itself can be considered as a noisy media.

The SNR is the most widely used measure of signal quality, which is defined as

the ratio of the signal power to the noise power as

_ Ps  E[S?]
SN By T BT

where S and N denote the signal (message) and noise (error), respectively. The power
of a signal S is defined by Ps = limy_,o 5~ ET S(t)2dt. As the signal and noise
must be measured at the same or equivalent points in a system, the ratio of power
is equivalent to the ratio of energy (or the second moment), % As shown in the
definition, the larger SNR, the better the signal quality.

The energy of noise should be minimized to maximize the SNR of the encrypted

data because it is expensive to increase the energy of the message. An easy way to
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increase SNR is to increase the signal power, but in a real system, it is not easy due
to regulation or physical constraints. This is the same for the CKKS scheme. The
message can be multiplied by the larger scaling factor to increase the power of the
message. However, if one uses a larger scaling factor, the level of the ciphertext de-
creases or larger parameters should be used to keep the encryption secure under the
RLWE problem. In addition, usually in the RNS-CKKS scheme, the scaling factor is
limited to 64 bits for efficient implementation. Hence, to increase SNR, it is important
to reduce the power of noise in the CKKS scheme rather than to increase the power of
the signal.

The CKKS scheme trades off the efficiency of computation and precision of the
message, and improving the precision will make the CKKS scheme more reliable. Er-
ror estimation of the CKKS scheme so far has been focused on the high-probability
upper bound of the error, and the upper bound was tracked by using the upper bound
of the message [4}/19]. As the homomorphic operation continues, the error bound be-
comes quite loose, and its statistical significance may fade. In this dissertation, I pro-
pose methods to reduce the power (or energy) of error in encrypted data during ho-
momorphic computation over ciphertext. I note that when the mean of error is zero,
the energy of error is the same as its variance. Therefore, hereinafter, the energy and

variance of errors are abused if its mean is zero.

2.5 Preliminary for Code-Based Cryptography

2.5.1 The McEliece Cryptosystem

Let G be the generator matrix of a g-ary (n, k) Goppa code with error correction capa-
bility ¢, where ¢ is a prime power. Then, the key generation, encryption, and decryption

of the McEliece cryptosystem are given as follows:

» KeyGen(\)
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Given parameter A\, choose code length n, code dimension k, and error

correction capability .

— Build the generator matrix G of an (n, k) Goppa code with error correction

capability t.

— Let S be a k£ x k random nonsingular matrix and P be an n x n permutation

matrix.

— Set the public key and the secret key as
pk = (Gpub = SGP) and sk = (S, G, P).

* Encpk(m)

- Return ¢ such that ¢ = mTGy,;, + €7, where e is an error vector with

Hamming weight £.
* Deck(c)

— Compute ¢'T = TP~ 1.
— By decoding ¢/, one then computes m/.

— Return m™ = m/TS—1L.

2.5.2 CFS Signature Scheme

CFS signature scheme is an algorithm that applies the FDH methodology to the Nieder-
reiter cryptosystem. The CFS signature scheme is based on Goppa codes, as McEliece
cryptosystem. A summary of the CFS signature scheme is given in Algorithm I]

As described in Algorithm |1} the signing process iterates until a decodable syn-
drome is obtained. The probability that a given random syndrome can be decoded is
Zg%,g) ~ % Hence, the error correction capability ¢t = % should be sufficiently

small to reduce the number of iterations. Thus, the high-rate Goppa codes should be
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used. Regarding the key size, the complexity of the decoding attack on the CFS sig-
nature scheme is known to be a small power of the key size, namely, ~ keysizet/ 2,
Hence, the key size should be fairly large to meet a certain security level. In summary,

the CFS signature scheme is insecure and inefficient owing to the use of Goppa codes.

2.5.3 Reed-Muller Codes and Recursive Decoding

RM codes were introduced by Muller and Reed [35,/36] and its decoding algorithm,
so-called recursive decoding, was proposed in [58]]. There are various definitions of
RM codes, but I adopt a recursive definition here as recursive decoding is defined by
using this structure. An RM code RM.,,) is a linear binary (n = 2",k = 7 ("))
code, where r and m are integers. RM(,. ,,) is defined as RM ;) := {(u|u + v)|u €
RM(,. p—1),v € RM(_1 m—1)}, where RM(g ) = {(0,...,0),(1,...,1)} with
code length 2™ and RM,;, 1, 1= F%m. This is the well-known Plotkin’s construction,

and its generator matrix is given by

G( = G(r,mfl) G(r,mfl)
7 0 G(T—l,m—l)

where Gy;.,,) is the generator matrix of RM(,. ,,,).

Recursive decoding is a soft-decision decoding algorithm that depends on the re-
cursive structure of the RM codes; it is described in detail in Algorithrn where y'-y”
denotes the component-wise multiplication of the vectors y’ and y”. In recursive de-
coding, a binary symbol a € {0, 1} is mapped onto (—1)%, and it is assumed that all
codewords belong to {—1,1}".

First, y” (the second half of the received vector y) is component-wisely multiplied
by 9y’ (the first half of the received vector). Then, a codeword from RMm—1) (e,
u) is removed from y” as it is both in y’ and ¥”, and then only v and the error vector
remain. This is regarded as a codeword of RM(,._1 ,,,_1) added to an error vector and
is referred to as ©. Using ¥, we can remove the codeword of RM, _y ,,,_1) from the

second half of the received vector. ' is then added to 4" - ¥, and the sum is divided

31



Algorithm 1 CFS signature scheme [38|]
Key generation:

H is the parity check matrix of an (n, k) Goppa code

. eqe . _k
The error correction capability ¢ is [ an

S and Q are an (n — k) x (n — k) scrambler matrix and n x n permutation matrix,

respectively
Secret key: H, S, and Q
Public key: H «— SHQ
Signing:
m is a message to be signed
i1
Do
t— i+1
Find syndrome s < h(h(m)|i)

Compute s’ < S~ 1s
Until a decodable syndrome s’ is found
Find an error vector satisfying He'”' «— s’
* Compute e’ <« Q~'e/”, and then the signature is (m, e, i)
Verification:
Check wt(e) < t and H'e” = h(h(m)|i)

If True, then return ACCEPT; else, return REJECT
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by 2. This is regarded as a codeword of RM,.,,_1) added to the error vector, and
then decoding is performed. Recursively, the received vector is further divided into
sub-vectors of length n/4, n/8, etc. Finally, we reach RM, ;) or RM(q ,), then
the division terminates and the minimum distance (MD) decoding of RM,, ,,,) or
RM(0,mm), which is trivial, is performed. The decoding for the entire code is performed

by reconstructing these results into (U, U + V') form.

Algorithm 2 Recursive decoding of RM code [58]]
function RECURSIVEDECODING(y, 7, m)

if = 0 then
Perform MD decoding on RM(0, m)
else if = m then
Perform MD decoding on RM(7, 1)
else
W'ly") <y
y =y -y
© < RECURSIVEDECODING(y?,r — 1,m — 1)
Yyt — (Y +y"9)/2
4 «<— RECURSIVEDECODING(y"*,r,m — 1)
Output (@@ - D)
end if

end function

2.5.4 IKKR Cryptosystems

Recently, Ivanov et al. proposed variants of the McEliece cryptosystem such as pro-
totype, modified version of prototype, and the upgraded IKKR cryptosystems whose
Hamming weights of error vectors are arbitrary value rather than ¢ [[52f]. The prototype

IKKR cryptosystem is composed of the following procedures.
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» KeyGen()\)

— Given parameter A, choose code length n, code dimension k, and error
correction capability .

- Build a k£ x n generator matrix G of an (n, k, t) linear code C.

— Construct an arbitrary nonsingular n x n matrix M and an n x n permu-
tation matrix P. Let G be a matrix whose rows are n codewords of code

C.

— Set secret key and public key as pk := (G', G}) = (GM, (Go — P)M)
and sk := (G, M, P), respectively.

* Encp(m)

— Generate an arbitrary vector e with Hamming weight at most .

— For given plaintext m, return ¢ such that
c"=m'G' +e'G).

* Decek(c)

-yl = ML

— Decode y by applying decoding algorithm for C and recover eTP. Then,
find eT = eTPP L.

- Find and return m from m'G =y — eT(Go — P).
The upgraded IKKR cryptosystem is composed of the following procedures.
» KeyGen(\)

— Given parameter A, choose code length n, code dimension k, and error

correction capability ¢.

— Build a k£ x n generator matrix G of an (n, k, t) linear code C.
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— Construct n x n matrices Q and T such that QT has rank n — k and has

k zero columns at indices in J, where J is an information set of C.

— Generate M and Gy as in the prototype IKKR cryptosystem.

— Set secret key and public key as pk := (G', G}) = (GM, Q(Go+ T)M)
and sk := (G, M, T, Q, Gy, J ), respectively.

* Encpk(m)
— Generate a g-ary random vector e with arbitrary Hamming weight.
— For given plaintext m, return ¢ such that ¢T = mTG’ + eTGY),.

* Decs(c)

— yT = CTMfl.

el =yT— y}G}lG.

Calculate e] = e] T 1Gy.

Find and return m from m'G = yT —e] — el.

It is noted that when c is a properly encrypted ciphertext by using Enc(m),

el = e™QT and el = eTQG; thus, m = m.

The process to construct Q and T is given in Algorithm |3} As it will be detailed

later, the success probability of the attack is 1 because of the construction of Q and T.

In the modified version of prototype IKKR cryptosystem, G} = WD(Gy—P)M
is used instead of G, where W is a random n x n nonsingular matrix and D is a
randomly chosen n x n diagonal matrix with ¢ non-zero elements on the diagonal. I
refer the readers to [52] for more details on the modified version of prototype IKKR

cryptosystem.
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Algorithm 3 Construction of Q and T [52]
Output: Matrices Q and T such that QT has rank n — k and k zero columns at

indices in J.
1: T « an n x n random nonsingular matrix.
2: L < ann x (n — k) arbitrary full-rank matrix.
3: H s <« a parity check matrix of code generated by T ;.
4 Q<—LH.

5: return Q and T.

36



Chapter 3

Privacy-Preserving Machine Learning via FHE With-
out Bootstrapping

3.1 Introduction

In this chapter, I propose an efficient protocol that dismisses the most time-consuming
operation of PPML using HE, bootstrapping, by using communication resources. Ho-
momorphic encryption enables the computation of encrypted data, but one of its draw-
backs is computational complexity. Usually, the complexity of basic operations of
homomorphic encryption is O(I?), where [ is the level of a ciphertext, which is the
maximum depth of operation that can be performed using the ciphertext. However, for
the accuracy of machine learning, depth is important, which inevitably increases the
amount of computation. The bootstrapping initializes the level of the ciphertext; the
complexity of the homomorphic operation can be maintained at any depth. However,
bootstrapping is an expensive operation. In this dissertation, I propose a method of
PPML without bootstrapping using communication resources. In other words, it re-
places bootstrapping with a procedure that induces a small amount of communication

between participants.
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3.2 Information Theoretic Secrecy and HE for Privacy-

Preserving Machine Learning

In this chapter, the use of information-theoretic secrecy to replace the bootstrapping in
PPML is presented. The basic scenario of PPML via HE is a secure two-party compu-
tation protocol, which is composed of receiver and sender, the data owner, and compu-
tation participants, respectively. This dissertation aims at the inference scenario only.
The receiver has data for inference, and the sender has a massive computation resource
and the trained model.

The sender and receiver both have to keep their inputs secure while the final output
of the computation is presented only to the receiver. In a secure two-party computation
protocol, the receiver and the sender evaluate the neural network, f(z,6) while keep-
ing = and 6 kept secure to the opposite, where x is a confidential data of receiver and
0 is the trained weights of the sender.

However, when f is a deep circuit, bootstrapping is necessary, and it is an expen-
sive operation. One may come up with the idea that sends back the intermediate value
to the receiver and let the receiver decrypt and re-encrypt it and then send it back to
the sender [59]. As a result, the sender could get the fresh ciphertext for the same
message. There were several studies to avoid the bootstrapping using communication
resources [355,59]; however, a naive approach reveals the intermediate values to the
receiver, and it leaks the information of the parameters of the neural network. More-
over, assigning some operation to the receiver using MPC techniques such as garbled
circuit [55] might occur unnecessary communication resources, and the performance
learn upon the computational ability of the receiver. A receiver can be a device with
very limited computing power, such as an IoT device. Hence, computation and com-
munication assigned to the receiver should be minimized to guarantee the quality of
service.

The receiver’s data is secured with homomorphic encryption, but how can one
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homomorphically encrypt and decrypt the intermediate values? The sender’s condi-
tions differ from the assumptions in a usual cryptosystem. The negative part is that
the sender can only perform simple operations like addition and multiplication with
low depth. However, on the positive side, the subject of encryption coincides with
the subject of decryption. This means that no key setting is required, and thus he can
use one-time keys. A one-time pad (OTP) is the encryption that the sender performs
homomorphically to secure his data.

In the proposed protocol, when bootstrapping is required, the sender homomorphi-
cally encrypts the intermediate value by OTP with his own key and sends the cipher-
text to the receiver; then, the receiver decrypts the given ciphertext, and he gets the
encrypted intermediate value by OTP. Finally, the receiver re-encrypts the intermedi-
ate value with HE and sends it to the sender; the sender can decrypt the intermediate
value by OTP, and then it is a fresh ciphertext for the intermediate value. All the op-
erations the receiver should do is the encryption and decryption, which is the same as
the succinct scenario with FHE. In other words, the proposed protocol does not require
any additional hardware and software for additional work for MPC, such as symmetric
key encryption and decryption, as in hybrid protocols.

In this dissertation, I mainly utilize the CKKS scheme as it is very useful for the
machine learning application, but it has not been widely adopted because its bootstrap-
ping is quite expensive and noisy. However, it is straightforward to adopt the proposed
protocol to other HE scheme such as BGV [9]], (B)FV [7,/8.[11]]. Moreover, it is shown
that even the average amount of computation and the number of communication can

be reduced.

3.2.1 The Failure Probability of Ordinary CKKS Bootstrapping

The bootstrapping of the CKKS scheme has a certain probability of failure. In the
CKKS bootstrapping proposed so far, the fact that the ciphertext is sparse and has small

values is used [[19]]. Specifically, the Hamming weight of coefficients of s is h = 64
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and it has 1 for its non-zero component. The result of decryption of a ciphertext,

ct = (b, a) with the modulus ¢ is given as

m = (ct, sk) (mod q)

= ((b,a), (1, 5)) (mod q)

=b+ as(mod q).

As ct is a ciphertext, it is reasonable to assume that the coefficients of a and b are
independent uniformly random elements in Z, following the LWE assumption. Thus,
each coefficient of ¢ = b + as follows the distribution of the sum of A + 1 random
uniform distribution in [—¢/2, ¢/2). An heuristic approximation that |¢|,, < K is used
in the bootstrapping so far [[19]]. Of course |¢|o, = K occurs very rarely, but is probable,
and its probability is approximated as

Pr(]t]oo>K-q)%2<I—<I)<K_O>>,

g

where o0 = (h + 1)/12. I note that
Pr(|t| = K - q) ~ 272406,

when h = 64 and K = 12. As the whole 2/ coefficients must be less than K, the
CKKS bootstrapping fails with the probability 2 - 2 (1 — @ (£=2)), where  is num-
ber of slots. As a modulus reduction is made by the approximate polynomial, the input
outside the domain approximate polynomial results in a huge value. However, enlarg-
ing the approximate domain will require a huge degree of the approximate polynomial.

The proposed protocol follows the scenario of privacy-preserving machine learn-
ing using FHE: the sender receives the encrypted input message from the receiver and
perform all the operations homomorphically, and then returns the result to the receiver.
Thus the activation function such as ReLU can be the polynomial approximation of a
conventional activation function or an activation designed for HE as in [[15/16]. The

difference is that this protocol replaces bootstrapping with network communication.
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When the bootstrapping is required during the homomorphic computation, the sender
encrypts the intermediate value via OTP, and transfer to the sender. Then, the sender
decrypts the received ciphertext, re-encrypt it, and sends it to the sender. However, un-
like the approaches using the garbled circuit, the receiver only performs the encryption
and decryption. Thus, the ability of computation of the sender remains the same as the
FHE scenario.

Table 3.T]illustrates how the proposed scheme replaces the bootstrapping with net-
work communication. Let Enc;(m) denote the ciphertext of the message m, where
the level of the ciphertext is [. As I focus on the CKKS scheme, the level means the
number of possible multiplications, likewise some other HE schemes. As shown in
Table when the ciphertext reaches level 0, the sender samples r < R, and add
to Ency(m) which results in Ency(m + r) by OTP. Then Ency(m + r) is sent to the
receiver. The receiver then gets (m + r) by the decryption of Enco(m + r). (m + )
does not leak information of m or r as it satisfies the perfect secrecy when m and r is
in finite additive group of the integers. Then the receiver generates a fresh ciphertext
that encrypts m + r with the maximum level L, Ency(m + r). When Ency(m + r) is
transferred to the sender, the sender can find Ency,(m) using r.

I note here that the random key is generated as r < R, not CN/2. In the case of
other word-wise encryption schemes, such as BGV and (B)FV schemes, the plaintext
slots are finite values in Z;. Hence, the proposed scheme is straightforward and is
performed without failure. In that case, sender chooses a random N-tuple r — Z,
then encode it, and add to the intermediate Ency(m + r). As the slot values are values
in a finite field, the information-theoretic secrecy is naturally satisfied. However, in the
CKKS scheme, the slot values are complex numbers. Hence, the information-theoretic
secrecy should be considered in the coefficients, not slot values. Moreover, we should
consider if m and Dec(Ency(m) + r) — r are the same, as the decryption includes
modulus reduction of coefficients by the ciphertext modulus g. There are two solutions

for that: allowing failure or use restricted 7.
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Allowing Failure of Ciphertext Refreshing

The failure probability of refreshing the ciphertext in the proposed protocol is less
than m/q, which can easily be lessened to 2, where 2* is the desired security level.
For example, when the best-known attack algorithm requires at least A = 128 basic
operations on average, it is called that the cryptosystem satisfies 128-bit security. In
that case, we can ignore a probability of 27 as it is very low as the probability that an
attack on the cryptosystem succeeds.

Hence, following the security parameter, we can say that the protocol does not fail.
Instead, the criterion can be relaxed to allow for some probability of failure, say pg and

letg = m - po.

Usage of Restricted r

The perfect secrecy is satisfied when
I(m;c) = 0.

The receiver has ¢ = r + m. In the case of r € [0, q), it offers perfect secrecy as it is
a well-known OTP. However, there exists decryption failure.

The receiver and sender cannot figure out the failure until the termination of the
protocol. However, it is the same in the ordinary bootstrapping of the CKKS scheme.
In case of r € (0, ¢ — p], it can be shown that I(m; ) < ﬁ p~ g. As g >> p, it
is a small value. Since knowing m = m + e is considered as decryption of m, where
e is a small error, we could say that an information less than H (m/|m) is actually no

information in CKKS setup (approximate arithmetic).
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3.3 Comparison With Existing Methods

3.3.1 Comparison With the Hybrid Method

In the hybrid methods [55}59], the linear layer is calculated homomorphically, and
the non-linear layers, such as pooling and activation layers, are performed using MPC
techniques. The garbled circuit is the most widely-used [60] 2PC technique, which can
perform arbitrary binary circuit securely. As comparison is represented by a simple
binary circuit, the garbled circuit is effective to evaluate activate functions and pooling
layers such as ReLU and max pooling. However, there exist two drawbacks using the
hybrid method: first, it reveals part of the network structure, and second, it requires
much communication and computation resources of the receiver.

Not only the trained weights but also the structure of the network itself, such as
how many layers it has, what activations and poolings it uses, etc., are the assets of
the sender. Hence, the sender wants to keep such values secure, but such information
is revealed by using the hybrid method. The receiver can guess the structure of the
sender’s model. This might be crucial in security because, once the structure of the
model is known, it becomes much easier to attack or reproduce the model. Moreover,
if the model is composed of simple comparisons, such as random forest, most of the
operations are done by garbled circuits, and it reveals the structure.

A garbled circuit requires network communication between sender and receiver
that is proportional to the depth of the circuit, and the basic building block of a gar-
bled circuit is a symmetric-key cryptosystem such as AES. It requires a number of ci-
phertexts to perform a binary gate. Hence, it requires much communication resources
to the receiver. Moreover, the receiver needs to do the encryption and decryption of
AES, which requires additional hardware or computational ability. It is clear that ho-
momorphic encryption and decryption of the hybrid method should be performed as
frequently as the proposed method.

The advantage of the hybrid method over the proposed method is that the oper-
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ation is accurate. The modern activation and pooling are composed of comparison
operations, and it is not a polynomial operation. Hence, an approximate polynomial is
used to perform the activation and pooling, and thus such layers cannot be performed
exactly. This might affect the accuracy of the machine learning algorithm.

In summary, the proposed method is more suitable to secure the sender’s informa-
tion as well as it requires less communication and computation to the receiver. How-
ever, it requires more computation to the sender, and it might drop the precision of

output, and thus a larger scaling factor should be used.

3.3.2 Comparison With FHE Method

In order to use the FHE method, bootstrapping should be performed. The bootstrap-
ping of the CKKS scheme consumes certain ciphertext level, for example 10 [61]] to
15 [19-21125]. Hence, the parameter size should large enough. Table[3.2]shows the pa-
rameter size for the CKKS scheme with 128-bit security, where the non-sparse key is
used. Recently, an attack algorithm for the CKKS scheme that uses the sparsity of the
secret key is proposed [62]], and thus, the security parameters for the sparse-key CKKS
scheme should be adjusted. However, as the attack itself is not a critical threat of the
CKKS scheme, and it is out of the scope of this paper, we use the parameters in Table
[3.2] for the reference of the comparison of the proposed method and FHE method. It
is noted that the max coefficient might be smaller than that of Table to guarantee
128-bit security. A larger coefficient modulus P - g7, implies more rescaling budget,
and thus more encrypted computation capabilities. However, an upper bound for the
total bit-length of the coefficient modulus is determined by the polynomial degree /V.

Assuming that one uses the p = 240 for enough precision, the bootstrapping
roughly consumes the coefficient modulus from 500 to 750. Hence, it is required to
use N > 216 for the existing methods [19-21,25] and N > 2' for the proposed
bootstrapping in this dissertation [[61]].

A larger parameter requirement of the bootstrapping is not desirable to the receiver.
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One might argue that the use of a large parameter does not have a significant difference
in single instruction multiple data (SIMD) manner as we have more slots than that of
the smaller parameter. However, there are several reasons why the use of the larger
parameter is not preferable. First of all, following the parameter size, the key sizes
become larger, and it requires more number of key-switching keys. To perform boot-
strapping, at least log( V) rotation keys are required, and the size of each rotation key
is O(N?). Hence, it requires O(N?-logN') memories and computations to the receiver
for key generation. Second, on the sender’s side, the operations become complex when
the slot size is larger. When the operations between slot elements are required, the op-
erations should be done by rotation; in other words, an arbitrary permutation is quite
inefficient as it is composed of several rotations and plaintext multiplications. Hence, it
is desirable to use fewer slots. Finally, the error in the CKKS scheme is affected by the
slot size. Especially, the variance of bootstrapping error is proportional to the square
of slot size, and other errors are proportional to the slot size. This means that to use a
larger parameter, one should consider using a larger scaling factor or the use of sparse
slots. The former results in less level, and the latter results in a throughput drop.

It is worth noting that the receiver is assumed to have very limited computation
resources, such as IoT devices. It would be unreasonable to let such a small device

perform key generation, encryption, and decryption of the CKKS scheme with N =
216,

3.4 Comparison for Evaluating Neural Network

Use of sparse slot is usual since the bootstrapping for full-slot ciphertext takes a long
time, and the bootstrapping error is proportional to the square of slot size [[19-21].
However, the use of a spare slot results in a throughput drop. In other words, there
exists a trade-off between throughput and accuracy of results in the FHE approach.

In contrast, the proposed method does not occur any additional error to refresh
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the ciphertext, and thus it is always beneficial to utilize the full slots. Therefore, the
proposed algorithm has a gain in throughput. It can be seen that the proposed method
allows more data to be transmitted in one ciphertext, and thus the number of operations
and communication per data is reduced compared to the FHE method.

The comparison of the proposed method and the FHE method in evaluating VGG-
16 [1]] is shown in Table[3.3] The activation function is ReLU in VGG, and max pooling
is used. The depth of operation is computed in the table by assuming that the approxi-
mated ReLU and the max-pooling have depth 4 and 12, respectively [63]]. One level is
consumed to compute the convolution layer or fully-connected layer.

In the method of rescaling after encryption proposed in [23]], the bottleneck of
error is the rescaling error, not the encryption error. In case bootstrapping is done,
the bottleneck of error is bootstrapping error, and it has been reduced by using the
method proposed in [[61]], and it consumes 10 levels. For bootstrapping, enough levels
are required, and thus, the N = 216 s used for the FHE method. The variance of

rescaling error when N = 214 jg 21643

, and the variance of bootstrapping error when
N = 2% and [ = 214 is 24291 Tt is assumed that the Hamming weight of the secret
key is 64. Therefore, for the same precision of encrypted message, the scaling factor
27 and 40 is used for the proposed method and FHE method, respectively, in order to
maintain the precision of 16 bits below the decimal point.

For bootstrapping, N rotation keys are required, but by using only rotation keys
for power-of-two indices, any rotation can be done within log (/N') homomorphic rota-
tions. Hence, it is assumed that the receiver generates only log (V) rotation keys in the
table. Table[3.3|is for the RNS-CKKS scheme, and it is assumed that the key-switching
in the SEAL library is used. Each integer element is assumed to be 64-bits.

Not to mention the reduction in computation on the sender side, it can be seen
that the proposed method requires about ten times less communication because it uses

smaller parameters and utilizes its entire slot. Rotation keys make up most of the cal-

culations and communications. By omitting the bootstrapping, we can reduce the size
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of rotation and evaluation keys, and overall communication is reduced despite some
communication being induced to refresh the ciphertext. The downside of the proposed
method is that the sender and receiver have to communicate with each other until the
operation is complete. However, since the reduction in computation and communica-
tion is very large, it can be endured enough. Most importantly, the proposed method

can reduce the amount of communication by about 1/8 of the FHE method.

47



(Wnseip)099q = Unseiy

J[nsa1 193 pue 1dK100p

J[NSAI [RUY ) PUSS

(Mnsaiy) gy = Wnsely

_ (Mnsai) Ipyg = Hnsely
suonerado A anunuod (*oMhu) Toug = Usedo

.4 30e1qNs 4 — Bwu — ysalyy

dio, — | (44 Wu)Toug = 9% A+ oWy yoeq puds pue 1dA1oud
L+ oWty diog ydK1oop
.. ppe pue ojerouasd Ajwopuel & L 4 43y — dioy N dioy
0 [9A9] 1@ QE:_;Evcocm — Jeluy
suonerado N wogred
2 — (w)Toug =2 L a3essow ndur oy 1dL10U0
uonerdQ FEXAEIN anqng anqng JEXREIN uonerdQ

[GEYRERENNIENN

(JURIP) IIAIRIY

Surddensijooq noyiim TN 103 poypew pasodoid ayy Jo ammpadoid :1°¢ 9[qe],

48



sparse key is used

Table 3.2: Parameter size for the CKKS scheme with 128-bit security, where non-

Polynomial degree (V) | Max coefficient modulus (Pqr,)
913 9218
9l4 9438
915 9881
916 21770
917 93540

proposed method and the FHE method

Table 3.3: Parameters and number of communications to evaluate VGG-16 [1]] in the

Proposed | FHE method
polynomial degree (V) 214 216
slot size (1) 214 214
depth 129 129
variance of error 21643 24291
scaling factor (A) 27 40
levels (after bootstrapping) 14 41 (29)
size of a ciphertext 2.63 MB 42 MB
size of evaluation keys 108.75 MB 1.76 GB
number of refreshing/bootstrapping 9 3
size of log (V) rotation keys 1.48 GB 28.16 GB
total amount of communication 3.86 GB 29.92 GB
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Chapter 4

High-Precision Approximate Homomorphic Encryp-
tion and Its Bootstrapping by Error Variance Mini-

mization and Convex Optimization

4.1 Introduction

In this chapter, I propose methods of improving the approximate HE using variance-
minimizing and convex optimizations. The CKKS scheme is one of the highlighted
FHE schemes as it is efficient to deal with encrypted complex(real) numbers, which
are the usual data type for many applications such as machine learning [4]. In this
dissertation, I propose a generally applicable method to achieve high-precision ap-
proximate FHE using the following two techniques. First, I apply the concept of SNR
and propose a method of maximizing SNR of encrypted data by reordering homo-
morphic operations in the CKKS scheme. For that, the variance of error of encrypted
data is minimized instead of the upper bound of error when we deal with the cipher-
text. Second, from the same perspective of minimizing error variance, I propose a new
method of finding the approximate polynomials for the CKKS scheme. The approxi-
mation method is especially applied to the bootstrapping of the CKKS scheme, where

I achieve a smaller error variance in the bootstrapping compared to the prior arts. The
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performance improvement of the proposed methods for the CKKS scheme is verified
by implementation over HE libraries, HEAAN, and SEAL. The implementation results
show that by reordering homomorphic operations and using the proposed polynomial
approximation, the message precision of the CKKS scheme is improved. Specifically,
the proposed method uses only depth 8, although the bootstrapping error for the CKKS
method is less than the error obtained using depth 11 of the previous method. I also
suggest a loose lower bound for bootstrapping error in the CKKS scheme and show
that the error by the proposed method is only 2.8 bits on average larger than the lower
bound. Therefore, the quality of services of various applications using the proposed
CKKS scheme, such as privacy-preserving machine learning, can be improved with-

out compromising performance and security.

4.2 Optimization of Error Variance in the Encrypted Data

This section provides a new criterion of qualifying encrypted data of the CKKS
scheme, that is, SNR. It is worth noting that the proposed method is popularly used
in the communication theory. Measuring the quality of the signal by SNR is the main
idea, which is natural and widely used in communication systems.

We can assume the following statements:
1. The mean of error is zero.
2. The message and error are statistically independent.

The first assumption is straightforward and clear. If the mean of error is not zero, one
can simply subtract the mean value to reduce the error. In general, the second one
is also true. When we deal with approximate polynomial, the approximation error is
dependent on the message. However, the approximation error is usually small com-
pared to the message, and the covariance is negligible. From these two assumptions,

the variance of error introduced by multiplication can be obtained. Moreover, from the
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central limit theorem, the sum of independent random variables can be approximated
to a Gaussian distribution. Now, since the power of noise and the variance of error are

the same, I focus on error variance.

4.2.1 Tagged Information for Ciphertext

I propose new tagged information for the full ciphertext of the CKKS scheme to tightly
manage the errors in encrypted data. The tagged information for ciphertext is intro-
duced in [4], and it is used to estimate the magnitude of the error. The tagged informa-
tion is composed of a level [, where 0 < | < L, an upper bound v € R of the message,
and a high-probability upper bound B € R of error. The upper bound is informative
when there are few homomorphic operations. However, as the homomorphic operation
continues, the upper bound becomes exponentially loose and thus useless.

I take a simple example of how the upper bound becomes loose. In [4]], 60 is used
as the high-probability upper bound of the error that follows Gaussian distribution with
variance 2. The probability that Pr(|X| > 60) is 2727, Previously, the error upper
bound of a ciphertext, which was the sum of two ciphertexts with error upper bounds
B and Bo, was specified as By + Bs [4}23]. Assume that there are 100 distinct fresh
ciphertexts and let o2 be the error variance. Then the previous tagged information
states that the upper bound of error is 60,. Hence, the upper bound of the error in
the encrypted data, which is the sum of the hundred ciphertexts, is 6000,. However,
the ciphertexts are independent, and its error follows the Gaussian distribution with
a variance of 10002, Therefore, the probability of the given upper bound, 6000,, is
Pr(|e| > 6000,) ~ 2726021 'which is quite loose, where ¢ is the summation of error.
The previous upper bound is too loose to obtain useful information on the error. A real
application such as deep learning requires a lot more computation than this, and thus
the high-probability upper bound of error becomes looser than this example. In other
words, managing the upper limit of errors is practically futile.

Instead of using these upper bounds, I propose to use the variance of mes-
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sages and errors for tagged information. To manage the variance of error, the en-
ergy of message E[z?] is required. However, to tightly manage the error vari-
ance after multiplication, it is better to have the mean and variance of the mes-
sage. In other words, three tuples are the tagged information, which are tu-
ple of message mean, {E[m(Emb(m))]};—0....n/2—1, tuple of message variance,
{Var[r(Emb(m))i]}i—o,..n/2—1, and tuple, {Var[r(Emb(e));]};—,..n/2—1, de-
noted by p, € CV/2 and vy, ve € RY/2, respectively, where Decgc(c) = m + e.
If each slot value follows the identical distribution, the tagged information can be re-
placed as scalar values um € C and vm, ve € R. Hence, the full ciphertext is given

as

(C, l7 Av Hmv 'Uma ’Ue),

where [ and A are the level and scaling factor of ciphertext, respectively.

The distribution of messages and errors after homomorphic operations varies de-
pending on the actual distribution of messages and the dependency between messages.
However, it is difficult to know the exact correlation of the messages, and their dis-
tribution after several homomorphic operations is quite complicated. Therefore, while
managing the mean and variance values, the message and error can be roughly treated
as independent Gaussian distribution. It is shown through the implementation in Sec-

tion [4.7] that errors in the encrypted data can strictly be managed in this way too.

4.2.2 Worst—Case Assumption

One might argue that an upper bound, and minimax approximation should be used
as it is not appropriate to assume that someone other than the data owner knows the
mean and variance of the message, 1, and vm. However, it is entirely reasonable to
assume that someone other than the data owner knows minimal information about the
distribution of the message, the mean and variance, for the following reasons. First,
the previously used measure of error, the high-probability upper bound, is also related

to the distribution. Second, in many applications such as deep learning, control of the
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distributions of intermediate node values is crucial. For example, the input is usually
normalized or standardized, and many methods to normalize the intermediate values
are widely used [64]- [[65]], which is crucial for the accuracy and speed up the train-
ing of neural networks. Finally, some information about the message distribution is
known regardless of security, such as the message distribution after MODRAISE in
bootstrapping.

If one does not even want to provide the mean and variance of the message, the
server can assume the worst-case that the coefficients of message m(X) are distributed
uniformly at random in [—B, B]. As the message is in R, which is discrete, the uni-
form distribution maximizes the entropy, and then it is obviously the worst case. Sim-
ilarly, it can also be assumed that the slot values z € Z"~ /2 follow centered Gaussian
distribution with the variance that the coefficients of its encoded value are in [— B, B]
with high-probability, which maximizes the differential entropy. In the experimental
results in Section even though the worst-case scenario is used, it is shown that the

error value in the proposed method is smaller than that of the previous methods.

4.2.3 Error in Homomorphic Operations of the CKKS Scheme

The error analysis in each operation, such as encoding, encryption, addition, multi-
plication, and key switching, is shown in this subsection. It should be noted that the
proposed error variance minimization method can be applied for all the variants of the
CKKS scheme, such as the original CKKS scheme [4]], RNS variants [20,/56], and the
reduced-error variants [23]]. The only difference for the above variants is the variance
of errors.

The following lemmas are basically based on the lemmas in [4,/19,23|]. The differ-
ence is that the lemmas so far have focused on high-probability upper bounds of errors,
but in the proposed method, I focus on the variance of errors in encrypted data because
the upper bounds become loose after successive homomorphic operations. Error vari-

ances in encrypted data for the original CKKS scheme and the RNS-CKKS scheme
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are given in the following lemmas. In the RNS-CKKS scheme, the rescaling factors
g;’s are different for each level, and thus the errors in rescaling are different from that

of the original CKKS scheme.

Lemma 4.1 (Encoding and encryption). Given a secret key Sk with Hamming weight

h, we have the following variance of encryption noise in the CKKS scheme:

1
§U2N2 +o?(h + 1)N.

Proof. Since a(Cﬂ/[) is the inner product of coefficient vector of a polynomial a(X)

and the fixed vector (1, C]]Q, ce ]jéN_l)) with |C]]\/[| = 1, the random variable a(C]]{/[)

has variance 02N, where o is the variance of each coefficient of a. Therefore,
a(d/‘,) has the variances ¢?N/12,02N, pN, and h, when a(X) is sampled from
U(Ry), DG(a?), ZO(p), and HWT (h), respectively.

v and eg, e; are chosen from Z((0.5) and DG(c?), respectively. We have a ci-

phertext ¢ < v - pk + (m + eq, e1) with error given by
(c,sk) —m (mod qr) =v-e+ey+eg-s.
As v, e, eg, e1, and s are independent, its variance is given as
N/2-0%N + 0?N + ¢*N - h = %J2N2 +0%(h+1)N.
O O

Lemma 4.2 (Rescaling). Let (¢,l, A, py,, Vm, ve) be an encryption of the encoded

message m(X) € R of z € CN/2, where L is its level. Then

<CF{87 llvp(l 0. Aap(l . Nmapz(l . ”mapz(l 0. Ve + 'Uscale)

is a valid encryption of the rescaled message p*' = -m(X) for cgs — RS,y (c) and

vsca/e == T12<h + I)N.
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Proof. The rescaled ciphertext crg <« [%’01 satisfies (crs, SK) =

% (m+e)+escales
where egcale = (7, SK) and 7 = (79, 71) is the rounding error vector. We can assume
that the coefficients of polynomials 79 and 7 are distributed uniformly at random on
%qu /g @nd thus the variance of 7 + 71 - s is N /12+hN /12. Therefore, the variance

of egcqle 1S given as %(h + 1)N. O] O

Lemma 4.3 (Addition and multiplication). Let (¢;, 1, Aj, ftp i, Vi, Ve,i) be two inde-

pendent encryptions of the encoded messages m;(X ) of values z; € CV 2 fori=1,2,

and let
Cadd < Add(c1, c2) and ey — Mult(cy, c2).
Then,
(Cadar 1, A1, 1 + Bma: Vm1 + Vm2, Ve + Ve1)
and

(Cmuits s A1, Py X o, Um1 X Um2
,(Vma + \N%v,ﬂ) X Vg2 + (Uma2 + ’N?n,?’) X Vg1 + Vel X Ve2 + Vmuit)

are valid encryptions of m1(X) + ma(X) and m1(X) - ma(X), respectively, where

2 _ .
Vit = (%) ks + Vscale » Vs = %N202, and |pu?| refers p x . For addition,

A1 = Asg should be satisfied.
Proof. Addition is trivial. The ciphertext of m(X) - ma(X)
emutt < (do,di) + [ P! - da - evk] (mod ;)

contains additional error ¢/ = P~! - dye’ and the error by scaling. As dy = a;as and
from RLWE assumption, we can assume that ds is distributed uniformly at random on
R Thus, the variance of Pe” is derived as g7 N/12 - 02N = & ¢?0?N?. The total
error is given as

"
miez + moeq + e1€3 + € + Egcale
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and as the means of e; and e are zero and m; and mgy are independent, the variance

of mies + moey + ejes is given as

(vm1 + |N?n,1|) X Vg2 + (Vma + |Hﬁ1,2|) X Ve,1 + Ve,1 X Ve,2-
O O

Lemma 4.4 (Key-switching). Let (¢,l, A, o, Vm, Ve) be a ciphertext with respect to

a secret key SK = (1,s) and let swk < KSGeng(s'), where sk = (1, s). Then

q\2
(C/; LA, g, vm, ve + (ﬁ) Vks + Uscale)

is a valid ciphertext with respect to a secret key SK for the same message, where ¢’ <

KSswk(c).
Proof. The proof is similar to that of Lemmal4.3]and thus, it is omitted. O O

Lemma 4.5 (Addition and multiplication by constant). Let (¢, [, A, p,, Vm, ve) be an
encryption of the encoded message m(X) of z € CV /2. For a constant tuple a € CN/2,
let

Ceadd < CAdd(cy,a; A) and comyy < cMult(cy, a; A'),
where Ccagg and cemy correspond to the constant multiplication and addition with
constant a, scaled by /', respectively. Then,

(Ccadda lv Av Km+ ACL, Um, ’Ue)

and
2 2
(Ccmulb l7 AA/G/ X Um, A/ 0/2 X Um, A/ CL2 X Ue>

are valid encryptions of Aa + z and A'a x z, respectively, where a®> = a x a.

Proof. The rounding during encoding, introduces a rounding error. However, we could
assume that the scaling factor is large enough so that there are no errors. Then, it is

self-evident. O O
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The following two lemmas are slightly modified from the original lemmas in [20].
It is noted that in the RNS rescaling, the error introduced by approximate scaling factor

is eliminated by managing the exact scaling factor after rescaling, A /p;.

Lemma 4.6 (RNS rescaling). For the RNS-CKKS scheme, let (c,l, A, p,, Vm, ve) be

an encryption of the encoded message m(X) € R of z € CV /2. Then

(CRSal - 1ap[_1 : Aapl_l : l'l'mapl_z : vm7p[_2 " Ve + 'Uscale)

is a valid encryption of the rescaled message pl_1 -m(X) for cgs — RS(c) and

Vscale = 15(h + 1)N. Thus, the scaling factor of cgg is p; * - A.

Proof. The proof is the same as that of the original CKKS scheme except for the
scaling factor. In RNS-CKKS, the scaling factor is slightly different depending on the
operations done to the ciphertext, and thus when adding different ciphertexts, an error
occurs according to the ratio of p; and p in the process of forcibly treating the scaling

factor as p. The methods to remove such error was proposed in [23}/62]]. 0 O

Lemma 4.7 (RNS key-switching). For the RNS-CKKS scheme, let

(Cv la Av Nma Um, ’Ue)

be a ciphertext with respect to a secret key SK = (1,5) and let swk — KSGeng(s'),
where Sk = (1, s). Then (c’, LA, g, Vm, Ve + %’Uksms + ’Usca/e) is a valid cipher-
text with respect to a secret key SK for the same message, where ¢’ — KSgyx(c) and

dnum-p®
Vksrns = 19 oN.

Proof. The key switching noise comes from the rounding terms 7 as in Lemma 4.2]
and from the error terms e?c in SWKq. The variance of error from 7 is vggqle. The other

error is given as

WDy (c1), {6;6}0<k:<dnum—1>
P

It can be assumed that the i-th component of WD (c;) follows uniform distribution in

. 4.1)

g Then, its variance is {5 and the variance of each coefficient of e}, is o?. Thus, the
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variance of error in (.1)) is derived as

2 dnum/ . p()z

N.
12 7

—92 (jz o~ D—
pP2. 2 E(;J\uP

0<i<dnum’—1

U U

When the sparse packing method [[19] is applied, N in the above lemmas can be

replaced by 2n when there are n slots.

4.2.4 Reordering Homomorphic Operations

As the proposed method enables tight management of errors in encrypted data, homo-
morphic operations can be effectively reordered to reduce errors. The main advantage
of reordering homomorphic operations is that the errors in the encrypted data are re-
duced without compromising security and performance. Using Lemmas[.T|to[4.7] one
can reorder homomorphic operations to minimize the error variance. In this subsection,
I show some operations patterns that can be reordered to reduce the error in encrypted
data. Considering that the error increases cumulatively in the CKKS scheme, the small
differences in the following examples greatly affect the error variance as the depth
of operations advances. It is worth noting that the most beneficial application of the
CKKS scheme, deep learning has a deep of operations, too.

In addition to the below examples, there are many methods to reorder homomor-
phic operations corresponding to the inputs and the operations themselves. Thus the
reordering of homomorphic operations can be done in an on-the-fly manner. In the field
of optimizing compilers, there have been many sequences of research on instruction

reordering [66], and I leave the adoption of compiler techniques as future work.

Polynomial Basis With Smaller Magnitude of Error

In this subsection, I propose a way to reduce the error in the encrypted polynomial

basis by reordering homomorphic operations. The error in each encrypted polynomial
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basis depends on the order of homomorphic operations obtaining it. Polynomials are
frequently evaluated not only for bootstrapping [[19]]- [25]] but also in various appli-
cations using HE [13}|14]]- [[18]] as all the homomorphic operations are polynomial
operations, except for the rotation and conjugation.

In general, it is beneficial to find a polynomial basis first and then evaluate the
polynomial. Doing so consumes less level of ciphertext, and obtaining a polynomial
basis is necessary for efficient evaluation algorithms such as the baby-step giant-step
algorithm or the Paterson-Stockmeyer algorithm. Hence, it is essential to reduce error
in the encrypted polynomial basis.

As the Chebyshev polynomial basis will be used in the later sections for polyno-
mial approximation in bootstrapping, I use here the Chebyshev polynomial basis as
an example. However, I note that the method in this subsection can also be applied to

other polynomial bases. T}, () is usually obtained by the following recursive equation

To(x) = 2Tk (z) - T,

n_2k - T2k+1

—n»

where k is the greatest integer satisfying 2° < n. This is beneficial in terms of depth
and simplicity; Tox(z) is the maximum degree term that can be obtained within the
depth k and by using just Ty, (x) and T;(z)’s for 0 < i < 2*, we can obtain all
Ti(X)’s for 28 < 4 < 2F+1,

Let ¢; be the ciphertext of message T;(z) with scaling factor A fori = 0,...,n.
Considering that ¢; contains error e;, the error in ¢, obtained by T, (x) = 2T} (x) -
T, o (x) = Tors1_,,(x) is (2T5k (z)€y_ok + 2T, ok (x)eqr ) A + 2e9k€,, ok — €gkr1_,
by Lemma [.3] if we ignore the key-switching error for brevity. When the ciphertext

is rescaled by A, the error becomes
2Tk (z)e,_on + 2T, gk (T)en + escalers + (26016, ok — €gh1_y,) /A,

where egcgle rs 18 another scaling error as described in Lemma It is noted that A is

large enough so that (2ex€,,_ox — €9x+1_,,)/A can be ignored. Roughly, as T}, o« ()
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Table 4.1: Mean, variance, and second moment of 7;(x) when z follows the Gaussian
distribution with zero mean and variance o for o = 1/6 and 1/24, so that the input is

highly probable to be in [—1, 1].

. o=1/6 o=1/24

| BT@) verlne) B | BG@) Verlhe)] BT
0 1.000 0.000 1.000 1.000 0.000 1.000

1 0.000 0.028 0.028 0.000 0.002 0.002
2 || -0.944 0.006 0.898 -0.997 0.000 0.993
3 0.000 0.200 0.200 0.000 0.015 0.0154
4 0.796 0.070 0.704 0.986 0.0004 0.973
5 0.000 0.376 0.376 0.000 0.042 0.042
6 || -0.601 0.208 0.569 -0.970 0.002 0.941
7 0.000 0.465 0.465 0.000 0.078 0.078

and ey are independent and E[eyx | is zero, the variance of error T, ok (z)eqr is given

as

Var[T, on(z)eqr] = Var|[T,_on(2)]Var[eq] + E[T,_or (2)]*Var[eq]

n

4.2)
= E[T,,_ox(x)*|Var[eq].

Since T;’s are not independent variables, calculating the exact error distribution
in encrypted 7;’s is not straightforward, but roughly according to and Table
we can see that the error multiplied by the even term tends to remain and the error
multiplied by the odd term tends to decrease. In Table it is shown that E[T}(x)?]
is close to one when i is an even number. Meanwhile, E[T;(z)] is zero and Var[T;(z)]
is a small value when ¢ is an odd number. That is, since even degree terms have a large
mean of squares, the error is large when multiplication of even terms is used when
calculating the Chebyshev basis.

Therefore, when n is even, T}, should be calculated by T),(z) = 2THx_;(x) -

T, 1ok — Thks1_,_o rather than T,,(z) = 2Tk (x) - T), _ox — Thr+1_,,. The power-of-
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two degree terms 75 can only be found by the product of T5x-1, to consume the least
level. Thus, the power-of-two degree terms have a large error, and it is also shown in
implementation in Subsection Now, it is clear that it is better to avoid using the
power-of-two degree terms as possible as we can when evaluating polynomials.

As a simple example, it is assumed in Table {.1]that the input messages follow the
Gaussian distribution with zero means. It is common to normalize or standardize the
input value in deep learning [64,65,/67,|68]], which is the most attractive application
of HE. Thus, I am interested in inputs that follow Gaussian distribution. Besides, z
should be in [—1, 1] to use Chebyshev polynomials, and thus the input is concentrated
in the center (zero). Table [.1] shows that the smaller the order of the messages and
more centered, the larger the even terms and the smaller the odd terms.

There are several reasons why this property is essential. In practice, errors in lower
degree terms are essential in homomorphic polynomial evaluation because the eval-
uation algorithms such as the baby-step giant-step algorithm mostly utilize the lower
degree terms. Most importantly, as the higher degree terms are obtained from lower
degree terms, and the error is accumulated, minimizing error in lower degree terms
is crucial. Finally, in the case of bootstrapping, the input distribution is much more
concentrated in the center compared to the case of examples in Table [d.T|and thus, the
proposed reordering method is quite efficient in bootstrapping.

In Subsection the implementation shows that the error in encrypted polyno-
mial basis can be reduced by reordering homomorphic operations. For example, the
error variance for the proposed method becomes smaller by 1/1973 compared to the
case without minimization for 774. I can also conclude that the modified baby-step
giant-step algorithm in [25] is advantageous in terms of error because the baby-step

giant-step algorithm proposed in [20]] utilizes power-of-two degree terms.
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Lazy Rescaling

I generalize the technique to treat rescaling as a part of multiplication, which is pro-
posed in [62] to do rescaling as lazy as possible. In the method suggested by Kim
et al. [23], the scaling factor of the ciphertext is a value around A?, and scaling is
performed right before a multiplication, not after a multiplication. It was shown that
error could be reduced, and especially, the encryption error can be removed by this
method [23]]. I generalize this so that the ciphertext can have any scaling factor such
as ~ A3 or A%, and the rescaling is done as lazy as possible.

As shown in Lemma [4.2] error in encrypted data is divided by the scaling factor,
and rounding error is added when the ciphertext is rescaled. The critical point is that
the rescaling has a distributive property, and thus, rescaling can be reordered to reduce
errors. In other words, since the rounding errors occur through rescaling in general, it
should be done as lazy as possible. For example, as suggested in [23]], ciphertexts can
be rescaled right before a multiplication. This method prevents further amplification
of rescaling errors by addition as well as reduces the number of required rescalings.
Moreover, this method reduces the number of rescaling, and thus the more additions
out of the total operation, the better the effect.

To reduce the error, rescaling can also be reordered with constant multiplications
as well as additions. For example, when one calculating encryption of az® by using c,
which is the encryption of x with scaling factor ~ A2, previously, the calculation was

as follows [23]]
c2 — Mult(RS(c), RS(c))
¢4 — Mult(RS(c2), RS(e2))
4.3)
cs — Mult(RS(c4),RS(es))

Coutput < CMUlt(RS(Cg), a; A),
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and it consumes four levels. However, we can reorder the operation as

ca — CMUlt(RS (c),a'/®; A)
€24 — Mult(RS(c,), RS(cy))
(4.4)
c4q < MUlt(RS(c2q), RS(e24))

csq — Mult(RS(c4q), RS(c4q))-

When ax® is obtained using (#.3), the error introduced by rescaling is amplified by
a unlike (@.4). However, when a is an integer, it is not necessary to consume level;
in other words, a is not scaled by A, and thus may be advantageous in terms
of depth. In that case, unless a is a prime number, depth and error can be reduced
simultaneously by multiplying the factors of a in advance.

Equation (4.4)) can be improved further by replacing the first line in (4.4)) as
¢, — RS (cMult(c,a1/8; A)) .

Let us compare the error in ¢, and c,,. Let ¢ be a ciphertext whose the full ciphertext

is expressed as
2
(07 l7 A y Bm> Um;, Ue) .

Then, from Lemma [4.2] the full ciphertext of RS(c) is expressed as
(RS(e),1—1,A, Ay, A2, A %ve + scae)
and thus, the full ciphertext of ¢, is obtained as
(ca,l —1,A? al/Sum, a1/4'vm, a'*ve + a1/4A2'vsca|e) .
However, the full ciphertext of cMult(c, a'/%; A) is obtained as
(CMult(c,al/s; A),l—1,A3 al/SAum, a1/4A211m,a1/4A2'ue)
and thus, the full ciphertext of ¢, is given derived as

(Cfl,l -1, AQ, al/gﬂm7 al/4vm7 a1/4ve + 'Uscale) .
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1

C2

C14

C1s

(a) Multiply in order of magnitude of messages (b) Multiply the larger and smaller ones first

with error variance 2444 with error variance 22!+°

Figure 4.1: Two different methods of obtaining H,}io ci.

I note that vggie is negligible but a'/*A2vgggie is not. In #@.4), the rescaling error
introduced by RS(c¢) is amplified by a, but we can even rule out this by lazy rescaling.

This technique is quite powerful when evaluating high-degree polynomials, such
as approximate modulus reduction in bootstrapping. If rescaling is done before mul-
tiplying coefficients, the rounding error is amplified by the coefficients and added by

the number of terms, but if rescaling is done as late as possible, it is added only once.

Successive Multiplication of Ciphertexts With Distinct Magnitudes of Messages

When multiplying many ciphertexts, it is not difficult to see that the error can be re-
duced by pairing the large and small values and multiplying the largest and smallest
values first. Let us give an example of how to reduce errors while the calculation time

is maintained. There are 16 ciphertexts with level [ as
(Ci7 lv Av 07 252+i7 230)7

fori = 0,...,15, where A = 230 and N = 2'4. I compare two ways to obtain the
e . 15 . . . .

multiplication [ ;2 ¢; in Fig. The results and computation time are the same.

However, the variances of errors are 244 for the operation in Fig. 4.1(a)|and 22! for
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the other.
In summary, I propose three methods of reordering the homomorphic operations

to minimize the errors as follows:

1. Mean and variance of the message should be considered when I find the poly-

nomial basis.
2. Resizing should be done as lazy as possible.

3. The error can be reduced by pairing the large and small values and multiplying

the largest and smallest values first when successively multiplying ciphertexts.

Aside from the given examples in this dissertation, there must exist tons of optimiza-
tion methods. It is expected that techniques in optimizing compilers can be adopted to
reduce error in approximate homomorphic encryption without compromising perfor-

mance.

4.3 Near-Optimal Polynomial for Modulus Reduction

By scaling the modulus reduction function by %, I define [t], as t — k for t € I,
where I}, = [k — €,k + €] and k is an integer |k| < K. Here, € denotes the rate of the
maximum coefficient of the message polynomial and the ciphertext modulus, that is,
m|

Y7 < € The domain of [t], is given by U£(=7—1K+1 Ij.. In other words, q - [é]q ~m

fort =¢q- I+ m.

4.3.1 Approximate Polynomial Using L.2-Norm optimization

Here, I propose how to find an approximate polynomial p,(t) of [t], without using an
intermediate approximation, such as a sine or cosine function. The proposed method
uses the well-known least-squares method or L2-norm optimization. The objective is
to find a set of coefficients ¢ = (co, c1,. .., ¢,) to minimize ||[t]; — p(t)]w. Where

a polynomial of degree n is defined by p(t) = >, ,¢; - t*. Such a polynomial is
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referred to as the minimax polynomial. It is worth noting that p(¢) is equivalent to the
inner product of cand T = (1,¢!,...,t").

Here, t;’s are sampled uniformly at intervals of § « ¢ in each I, namely, &k —
e,k—e+9,...,k+¢e— 6,k + €. There are % + 1 samples in I, and thus we have
Niot = (2K — 1)(% + 1) samples. With N;,; samples of ¢;, one can build a vector of
the powers of ¢;, thatis, T; = (1,#;,t7,...,t7) for 1 <i < Nyt

The object function to be minimized is given as

max |[ti]q _p(ti)’ = H ([to]q —p(to), T [tNtot]q - p(tNtot>) HOO

)

=y =T |,

where T is an Nyt x (n + 1) matrix such that T[i, j] = tg and y is a vector such that
y[i] = [ti]4- Instead of the L-infinity norm, I replace the above objective function by a
loss function using the L2-norm. Then, the optimal solution for L2-norm minimization
can be efficiently computed. The L2-norm minimization was used in [[14] to find an
approximate polynomial of logistic function. In this dissertation, I apply discrete L2-
norm minimization to find the approximate polynomial of modulus reduction in an
efficient way. Let L. denote the L2-norm with the coefficient ¢. Then, we can find c

that minimizes the following

Le =y —T:c|2

=@y-T-¢) (y—T-c).

Unfortunately, the entries of T become considerably big or small values close to zero,
as the degree of the polynomial, n, is high.

Thus, I utilize the Chebyshev polynomials as the basis of the polynomial instead
of the power basis. In other words, I redefine the Ny, x (n + 1) matrix T with entries
T[i, 7] = Tj (%). Ast; € Up_ s Ir, we have | 1| < 1. Hence, the entries of T are
well-distributed in [—1, 1] rather than considerably big values or small values around

0.
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Then, the optimal coefficient vector ¢* is given as
c¢* = argmin,Le.

As the loss is a convex function, the optimum solution ¢* lies at the gradient zero. The

gradient of the loss function L. is given by
VLi.=—2y"T + 2" TTT.
Setting the gradient to zero produces the optimum coefficient, as follows:
Vi =0
— ¢ = (T7T) "' T7y.

To sum up, the modulus reduction function can be approximated by

1~ polt) = X071 (£):

1=0

where t € Uii:lKH 1.

Maximum Error of Samples and the Approximation Error

Theorem 4.8. The approximation error is bounded by the multiplication of the maxi-

mum error of the sampled points and O(1 + N?ot )-

Proof. Fort e Iy, let us define the approximation error as the absolute value of fol-

lowing

E(t) = (t = k) = po(t).

Note that £(?) is a polynomial for the domain ¢ € Ij.. Denote E(t) = };; ¢jx?. 1 have

optimized | E(t;)| for discrete points ¢;’s.
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Consider |E(t)| for ¢ in small intervals of [¢;,¢; + J). Then, we have |E(t)| <
|E(t;)| + |E(t) — E(t;)| and |E(t) — E(t;)| is bounded as follows

B() = B(t)| = 126 (6 + Ay =]
J
L (At
~1 St (55|
'\Zéjtf\

<

)
n
t;

where At =t —t; fort € [t;,t; + J). As At < 0 << t;, the linear approximation
(1+ %_t)j ~ (1+ j%t) is applied. Moreover, we have %_t < % = O(ﬁ), where
t; > e. Otherwise, at least we can always make t% < 1.

Hence, it is concluded that

max [ty = po(t)] = max ([t:]g —po(t:)) - O + &
telUp—_ ko1 1k g tot

In summary, with fine sampling, the maximum error of the sampled points is close
to the global maximum of approximation error. Moreover, as the domain of the objec-
tive function is in the real numbers with errors in the CKKS scheme, it is reasonable

to handle the sampled values.

L2-norm Instead of L-infinity Norm

Clearly, we can bound the L-infinity norm by the L2-norm:

1
V Ntot

Thus, minimizing the L2-norm reduces the L-infinity norm. As it is not a tight bound,

[zl2 < [®]oo < [[2]2-

we have room for optimization using a higher norm. However, the solution of the

L2-norm is clear and can be computed effortlessly. It is difficult to apply minimax
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polynomial approximation algorithms to the modulus reduction function because it is
not a continuous function, and the domain is not a closed interval. However, through
the L2-norm optimization problem, it is possible to find a near-optimal solution of the
minimax polynomial in a considerably efficient manner without iteration. The next
section shows that it is possible to find polynomials with fewer errors than with the

currently best-known methods.

Time Complexity for Finding c*

Considering N;,x > n, the matrix inversion (TTT) ! is the dominant computation.
Hence, the time complexity is O(N27) when the Coppersmith-Winograd algorithm
is used. This is acceptable because ¢* is pre-computed and stored as coefficients for the
baby-step giant-step algorithm to be explained later or also, the Paterson-Stockmeyer

algorithm in [21]].

4.3.2 Efficient Homomorphic Evaluation of the Approximate Polynomial

The difference between the proposed and conventional methods in [20] are the coeffi-
cients of the approximate polynomial, which is more optimized with the same polyno-
mial basis, the Chebyshev polynomial. Hence, the baby-step giant-step algorithm [[20]]
and modified Paterson-Stockmeyer algorithm [21] can be applied for an efficient ho-
momorphic evaluation of the proposed polynomial. Using Algorithm 4] we can evalu-
ate p, (t) homomorphically with at most 2! +2™~! 4+ m —[ — 3 nonscalar multiplication
while consuming m depth, where 2" is greater than the degree n.

I revisit Algorithm @] and the number of operations per step is given in Table
When the Chebyshev polynomials are evaluated, 715, = QTg —Tpand Th, 11 =
2T, T +1 — 11 are used and the multiplication of 2 can be replaced by an addition.
Hence, one nonscalar multiplication and two additions are required.

In the baby-step, polynomials of degree 2/ — 1 are evaluated and there are at most

2 /2! such polynomials. However, when 2™ > n + 1, there are polynomials with all-
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Algorithm 4 Baby-step giant-step algorithm [20]

Instance: A ciphertext for ¢, a polynomial of degree n, p(t) = >/, ¢;T;(t).
Output: A ciphertext encrypting p(t).
1: Let m be the smallest integer satisfying 2™ > n and [ ~ m/2.
2: Evaluate T5(t), T3(t), ..., Ty (t) inductively.
3: Evaluate Toiv1(t), Toir2(t), . .., Tom—1(t) inductively.
4: Find polynomials of degree < 2™~! which satisfy p = r + ¢Tym—1 in forms of
linear combinations of the Chebyshev basis.
5: Evaluate ¢(t) and r(¢) recursively.

6: Evaluate p(t) using Tym-1(t), q(t), and r(t).

zero coefficients. By ignoring them, there are [(n + 1)/2'| polynomials with degree
at most 2! — 1 in the baby-step. In other words, as 2" and n + 1 differ, there are
2m=L —[(n + 1)/2"] zero polynomials, thatis, 0- To(t) +0- Ty (t) + - - - + 0 Tyi-1(t),
in Algorithm 4] Hence, we could ignore these zero polynomials and in the recursive
structure, exactly 27! — [(n +1)/ 2l] nonscalar multiplications are ignored in the

giant-step. Hence, taking 2™ > n > 2™'~1, we have
N(n)=Nn—-2""Y+NE2" 1 —1)+1,
which yields
N(n) = [(n + 1)/21] _,
where N (k), k > 2!, is the number of nonscalar multiplications in the giant-step and
N(k) = 0 for k < 2!. Thus, the number of nonscalar multiplications is given as
[(n+1)/2’] 142 1em—l -1

As shown in Table the number of scalar multiplications is (n + 1) —
[(n + 1)/2'] and the number of addition is n + 2(2" + m — { — 2). Note that the depth
and number of nonscalar multiplications can be minimized when m is the smallest

integer satisfying 2" > n and | ~ m/2.
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4.4 Optimal Approximate Polynomial and Bootstrapping of
the CKKS Scheme

Usually, HE schemes support addition and multiplication, and thus only polynomials
can be evaluated. However, non-polynomial functions such as ReLU, min/max func-
tion, multiplicative inverse, and modulus reduction are frequently required in their
applications [69]. Hence, approximate polynomials are used to replace those non-
polynomial functions in real-world applications [16]. This subsection proposes a new
method to find the optimal approximate polynomial for the CKKS scheme using the

generalized least mean square method.

4.4.1 Polynomial Basis Error and Polynomial Evaluation in the CKKS

Scheme

Rounding of ciphertexts introduces an additional error during rescaling and key
switching in the CKKS scheme. Also, these errors and encryption errors are ampli-
fied through homomorphic operations. Generalized polynomial basis of degree n is
denoted by {¢o(t), $1(t), ..., n(t)}. For instance, monomial basis {1, x, z2, ..., 2"}
and Chebyshev polynomial basis {Ty(x), T1(x), . . ., T, (x)} are polynomial bases. We
can assume that each polynomial basis has independent errors due to rounding and en-
cryption errors, namely, the basis errors.

When a polynomial f(x) = > c;¢;(x) is evaluated homomorphically, it is ex-
pected that the result is f(z) + e for a given input x and small error e. However,
in the CKKS scheme, there exists an error in encrypted data and thus, each basis of

polynomial, ¢;(x) contains independent basis error ey, ;. Hence, the output is given as

Zci(¢i($) + €p,i) = Z cipi(x) + Z Ci€p.i
= f(z) + Zcieb,i~

As ep; is a small value, the error ) c;ep; is small in general. However, when |¢;|
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is much larger than |f(z)|s such as a high-degree polynomial for bootstrapping,
Y. ciep,; might overwhelm f(x).

High-degree approximate polynomials have large coefficients in general. The out-
puts of the approximate polynomial for modulus reduction, which is essential for the
bootstrapping of the CKKS scheme, are in [—¢, €], where € = %. There have been
series of studies in approximate polynomials in the CKKS scheme [4]]- [25]], but the
error amplified by coefficients were not considered in the previous studies. The mag-
nitude of coefficients of approximate polynomial should be controlled when we find
the approximate polynomial of any non-polynomial functions, as well as the modu-
lus reduction, which deteriorates message precision by the successive homomorphic

operations.

4.4.2 Variance-Minimizing Polynomial Approximation

In the encrypted data of the CKKS scheme, errors include errors added for security,
rounding errors, approximation errors, and errors added during homomorphic oper-
ations. Therefore, from the central limit theorem, the basis errors can be considered
Gaussian random variables with zero means. The approximate polynomial can be op-
timized by minimizing the variance of the approximation error, rather than using min-
imax approximate polynomial [25].

As shown in Subsection[d.4.1] basis error is amplified by coefficients of the approx-
imate polynomial. Thus, the magnitude of its coefficients should not be large values
and using the generalized least squares method, the optimal coefficients vector ¢* of

the approximate polynomial is obtained as
c¢* = argmin, <Va7“[eaprx] + Z wm?) 4.5)

for weight constants w;, where w;’s are determined by basis error and egpry is the
approximation error. I call the proposed approximate polynomial obtained by (&.3)

as the error variance-minimizing approximate polynomial, and there exists an analytic
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solution. It is noted that when w;’s are all zero, the approximate polynomial minimizes
the variance of approximation error only.

Especially, error variance-minimizing approximate polynomial is more efficient
and suitable for the bootstrapping of the CKKS scheme as it reduces the bootstrapping
error compared to the minimax approximate polynomial. Considering SlotToCoeff,
the error in the j-th slot is given as e(C]jV[) = Zf\i _01 e ﬁ, which is an addition of
independent and identically distributed random variables, e; - ij\f[ Hence, the minimax
approximate polynomial does not minimize the variance of errors, which are the actual
errors in the encrypted data in bootstrapping. Instead, minimizing the error variance
of each coefficient minimizes errors in slot values after bootstrapping. This implies
that minimizing the variance of the approximate polynomial error is optimal to reduce
the error during the bootstrapping of the CKKS scheme compared to the minimax

approximation. The error variance-minimizing approximate polynomial is described

in detail by taking bootstrapping as a specific example in the next subsection.

4.4.3 Optimal Approximate Polynomial for Bootstrapping and Magni-
tude of Its Coefficients

The key part of the bootstrapping of the CKKS scheme is the homomorphic evaluation
of the modulus reduction. In [19]], the modulus reduction is approximated by the sine
function, and the approximate polynomial for the sine function is homomorphically
evaluated using a Taylor series expansion and the double-angle formula. Moreover,
with optimized nodes for the Chebyshev interpolation, the polynomial approximation
is significantly improved [20]. The least-square method to find a better approximate
polynomial without trigonometric functions is proposed in [[24] and the method to find
minimax approximate polynomial is also proposed in [[25].

In [25], the modulus reduction function, ¢ (mod ¢) is considered as

q . . ( 27Tt>
— arcsinosin| —
27 q
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and the approximate polynomials for arcsin(-) and sin(-) are evaluated sequentially.
This dissertation focuses on the direct-approximation of modulus reduction rather than
trigonometric function approximation to minimize the bootstrapping error and depth.
However, as the proposed error variance-minimizing method can be applied to any
function, the composite method and double-angle formula for faster evaluation in [20}
25|] can also be applied to the proposed method.

By scaling the modulus reduction function by %, I define fmog(t) =t —iift €
I — i, that is, fmoq : Ufi:%H I; — [—¢,€], where I; = [i —€,i+ €] and 7 is an
integer such that |i| < K. Here, e denotes the ratio of the maximum coefficient of the

message polynomial and the ciphertext modulus, that is,

m;|/q < €, where m; denotes
a coefficient of message polynomial m(X).

Let T be the random variable of input ¢ of fimoq(t). Then, T' = R + I, where R is
the random variable of r, the rational part of ¢ and [ is the random variable of i, for
t € I;. It should be noted that Pry (t) = Pry (i) - Prg (r) is satisfied for ¢t = r + i as
and r are independent and | J; I; = [—€,€] x {0, %1, ..., £(K —1)}, where Prr, Pry,
and Prp are probability mass functions or probability density functions of 7', I, and
R, respectively.

The approximation error in ¢ is given as

€aprx (t) = p(t) — fmoa(t)

= p(t) — (t =),

where p(t) is the approximate polynomial of fimoq(t). Then the variance of eaprx is

given as

Vc”"[eaer] = E[egprx] - E[eaer]2
=E [egprx]

= J eaprx (t)Z . PrT (t) dt,
t
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where the mean of eapry is zero by Lemma This gives us the following equation

Var[Eapr] = ZJ eaprx(t)? - Prg (1) - Pry (i) dt

1+€
=S Pry (3) f caprx(t)? - Prr (t — i) dt.
i t=1—e

It is noted that the integral can be directly calculated or replaced by the sum of dis-

cretized values as in [[24]).

Lemma 4.9. Let p(t) be an approximate polynomial that minimizes Var| f(t) — p(t)]
for a function f. Then, E[f(t) — p(t)] = 0 is satisfied.

Proof. Assume that E[f(t) — p(t)] = p # 0. Then, we can see that it is always

satisfied that

Var[f(t) = (p(t) + )] = E[(f(t) — p(t))*] — p*

which is a contradiction.

O O

Let {¢po(t), p1(t), ..., dn(t)} be a generalized polynomial basis. Then, I represent
the approximate polynomial by p(t) = > 1, cx¢r(t), where ¢;’s are coefficients. In
this dissertation, polynomial approximation aims to find the coefficients that minimize
Var [eaprx]. However, it should be noted that the approximation of the modulus re-
duction, fmoq(t),t € Ufi ilK +1 i, is required to be very accurate, especially for the
bootstrapping and thus, a high dimensional approximate polynomial should be used.
The problem is that high-degree approximate polynomials usually have large coef-
ficients. Generally, it is not a problem, but in the case of the CKKS scheme, large
coefficients amplify the errors on the polynomial basis. Therefore, a high-degree ap-
proximate polynomial with small coefficients is required. Hence, we find ¢* such that

c* = argmin, (Var[eaprx] + Z wm?) , (4.6)

=0
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and the solution satisfies

V (Va?" eaprx 2 w;C > = 7

where ¢ = (cp,c1,...,¢,) and w = (wp,ws, ..., wy) are coefficient and weight
constant vectors, respectively.

It is noted that the variance of error in each ¢;(¢) may be different. For example,
when the ciphertext of % is obtained by multiplying the ciphertext of x2, while the
ciphertext of 22 contains a rounding error €rnd,2- Then, the ciphertext of z* has error

2€rng, 922 +e2 9+ €rnd 4. In general, we can say that a high-degree term of polynomial

rnd,

basis causes a larger error. Hence, a precise adjustment of the magnitude of polynomial

coefficients can also be made using multiple weight constants, w;’s.

Theorem 4.10. There exists a polynomial-time algorithm that finds ¢ = (cq, ..., cp)
satisfying

n
arg min, <Var[eaprx] + Z wm?) :

i=0
Proof. From Lemma we can assume that Elegprx] = 0. Then, we have the fol-
lowing equation
Var[eaprx] = E [egprx] —F [eaper]2
=FE [eaprx]

E[fmod(t)z]zE[fmod<t> p(t)] + E[p(t)Q]-

By substituting p(t) = >.;'_, ckPx(t), we have
a n
%Vﬂr[eaprx] = _QE[fmod(t)¢j(t>] + 2 Z Ck - E[Gbk(t)ﬁbg(t)]
J k=0

The solution of the following system of linear equations, ¢* satisfies

n
c¢* = argmin, <Var[eaprx] + Z ’wz‘C?) :

=0

T-c=y, 4.7
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where

[ Elgodo] +wo  Eloor] .. Elgosn]
T Elp1¢0]  Elg191] +wn :
E[¢néo] Elgn¢r] ... Elondn] + wn |

and

| Elfmoa(t)d0(t)] |

y _ | EUmes)6n(0)

| Elfmoa(t)én ()] |
As E[¢i¢p;] and E| frmod(t)¢i(t)] are integral of polynomials, these are easy to calcu-
late. O O

Theorem states that the approximate polynomial for p(t) is found efficiently.
In other words, the computation time of solving this system of linear equations is the
same as that of finding an interpolation polynomial for given points, which is faster

than the modified Remez algorithm [25].

4.44 Reducing Complexity and Error Using Odd Function

When the approximate polynomial is an odd function, one can save time to find and
homomorphically evaluate the approximate polynomial. Using the fact that fioq(?) is
an odd function and the minimax approximate polynomial of an odd function is also
an odd function, the approximate polynomial for fmoq(t) with only odd degree terms
was derived [24,25]]. Moreover, the number of operations to evaluate the approximate
polynomial can also be reduced by omitting even-order terms. Besides, the amplified
basis error is also reduced as there are only half of the terms to be added when the
approximate polynomial is an odd function. Theorem [4.11] it is shown that when the

target function of polynomial approximation such as fimoq () is odd and the probability
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density function is even, the error variance-minimizing approximate polynomial is also
an odd function from the following theorem. In the following section, odd approximate

polynomials are obtained and implemented based on the following theorem.

Theorem 4.11. When Pry (t) is an even function and f(t) is an odd function, the

error variance-minimizing approximate polynomial for f(t) is an odd function.

Proof. Existence and uniqueness: The error variance-minimizing approximate poly-
nomial minimizes Var[eapprx] + Y, w;c?, which is a quadratic polynomial for the co-
efficients c. Hence, there exists the one and only solution.

Oddness: Let P,;, denote the subspace of the polynomial function of degree at most
m and f,,,(t) denote the unique element of P, that is closest to f(¢) in the variance of
difference. Then, Var[—f(—t) —p(t)] + . w;c? is minimized when p(t) = — f,,,(—t),
because

Var[=f(=t) = p(t)] = J(—f(—t) —p(t)* - Pr(t)dt

t

~ |~ + p-w)? Pr(-u)du
- [ () = p-w))? - Prwdu

is satisfied and the squares of coefficients of f,,(t) and — f,,,(—t) are the same. As the
error variance-minimizing approximate polynomial is unique, I conclude that f,,(t) =
_f m ( _t) :

0 0

4.4.5 Generalization of Weight Constants and Numerical Method

Earlier it is noted that the weight constant vector w provides the trade-off between
the magnitude of coefficients and variance of polynomial approximation error. In this
subsection, I generalize the amplified basis error term ", w; cg and find the optimal
approximate polynomial for baby-step giant-step algorithm. The numerical method to

select the weight-constant vector w is also proposed.
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Algorithm 5 Generalized odd baby-step giant-step algorithm [25]]

Instance: A ciphertext for ¢, a polynomial of degree n, p(t) = >/, ¢;T;(t).
Output: A ciphertext encrypting p(t).

1: Let [ be the smallest integer satisfying 2'k > n for an even number k.

2: Evaluate T5(t), T5(t), ..., Tk(t) inductively, but even degree polynomials other
than T} (¢) are not necessary to be obtained unless it is used to obtain other poly-
nomials.

3: Evaluate Toi(t), Th2,(t), - . ., Toi-1;(t) inductively.

4: Find polynomials r(t),q(t) of degree < 2!~'k, which satisfy p(t) = r(t) +
q(t)T5-14(t) in forms of linear combinations of the Chebyshev polynomial ba-
sis.

5: Evaluate () and r () recursively, by using the quotient and remainder polynomi-
als when those are divided by T2, (¢).

6: Evaluate p(t) using Thi—1,(t), q(t), and r(t).

The basis error can be found using the method proposed in Subsection {4.2.4 or
numerically. Let vy, ; be the variance of basis error in a slot of ciphertext which is an
encryption of T;(z). Then, the basis errors are multiplied by ¢; and the amplified error
is given as >, C?Ubﬂ‘. Considering the approximation error, it should be noted that
a large scaling factor Apg = O(q) is multiplied to the result of EVALMOD [19,24].
For brevity of description, I let Apg = g; it is proper, because there are coefficients of
m(X), m;’s in the slots after COEFFTOSLOT, and by letting its scaling factor ¢, the
slot values become m;/q with scaling value ¢. Hence, the approximation error is given
as ¢* - Var|[eaprx]. Therefore, it is optimal when w; has the value vy ; /2.

However, in practice, fast evaluation algorithms such as the baby-step giant-step
and the Paterson-Stockmeyer algorithms are used to evaluate the polynomial effi-
ciently. Thus, the coefficients are changed and the errors are not simply added.

The generalized baby-step giant-step algorithm for an odd degree polynomial
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is given in Algorithm [5| The basic blocks of the baby-step giant-step algorithm
are polynomials of degree less than k, so-called baby-step polynomials, p;(t) =
Dije(13, . k—1} dijTj(t) fori = 0,1,..., 2! — 1. Then, it can easily be seen that p(t)

consists of p;(t)’s and Ty (t), ..., Toi—1,(t). For example, when [ = 2, we have

p(t) = (p3()Tk(t) + p2(t))Tor (t) + p1(t)Tk(t) + po(t). 4.8)

Hence, when p(t) is evaluated, the coefficients of p;(¢)’s amplify the basis error, and
thus, minimizing the basis error of basis elements with a degree less than k is crucial.

Let E, be a function of d, which is the variance of basis error amplified by coef-
ficients d = (do,1,do3; - - -, do_1 —1)- A heuristic assumption that 7;’s are indepen-
dent and the encryptions of T (t), .. ., Tyi—1;,(t) have small error simplifies F,. Let T
be the product of all T5;,’s multiplied by p;, for example, Ty = 1 and Ty = T}, Thy in
(#.8). Considering the error multiplied by d; ;, €; .T; is the dominant term as 7} has zero
mean and very small variance. Thus, it can be said that E, = >, > ; 7 jE[Tf]vbJ,
which is a quadratic function of d. In other words, we have £, = d"Hd, where H is

a diagonal matrix that

Hyiyjkivj = B[T]vp.
Thus, (4.6) is generalized as
c* = argmin, (Var[q - eapx] + Ep) -
Since ¢ and d have linearity, V.E, can easily be calculated. Specifically, we have

c=Ld

Ao 0
_ [A . ] 2=k -d, (4.9)
2k 0 A2172k

where

| PPN P

0 %Im_
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I;o is the k/2 x k/2 identity matrix, and Jy» is the k/2 x k/2 exchange matrix.
Equation (#9) is derived from T, (2)T(2) = 5 (Tinsn(z) + Tip—n|(z)). Then, we

have V.E, = 2L~ '"HL!c. Hence, the optimal coefficient c* satisfies
(T+L'THL ) ¢* = y.

Instead of finding £, a simple numerical method can also be used. Actually, the
value of TZ is close to one, and moreover, the numerical method shows good error
performance in the implementation in Subsection 4.7.2] I let w; = w for all 4 and find
the value using the numerical method for brevity. When w increases, the coefficients ¢
decreases, and Var[eaprx] increases, and thus its sum is a convex function of w. Thus,
the optimal polynomial is found by using numerical methods by finding the optimal
w. ¢ is uniquely determined by w, and using c, the coefficients for the baby-step giant-
step algorithm or the Paterson-Stockmeyer algorithm can be calculated. The magnitude
of the basis errors that are amplified by coefficients is similar to the rounding error

N(

whose variance is %1) After multiplying | L~ c| with the variance, it is added to

- Var|eaprx]. In other words, we adjust w to minimize

wo
Var[eaprx] + 2 IL~"e|3,

N(h+1)

where w is close to 1

The proposed method is efficient when an accurate approximation is required.
In [62], a bootstrapping for the CKKS scheme with a non-sparse key was proposed; in
other words, the secret key has Hamming weight A ~ N /2. In that case, K is a con-
siderable value, so that a high-degree approximate polynomial is required. Therefore,
if the method proposed in this dissertation is applied to the non-sparse key case, its

impact on bootstrapping error reduction will be significant.
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4.5 Comparison and Implementation

I conduct an experiment to compare the proposed method with previous work in [20],
which, to our knowledge, is the best current method. Maximum errors between [t],
and the approximate polynomials are numerically computed and compared. Note that
we can analytically obtain the maximum error once the polynomial is known and that
the approximate error is an absolute value of a polynomial. However, the numerically
computed maximum error is sufficient as it is approximately equal to the real value,
and we are dealing with approximate arithmetic here. For example, we can see that the
numerically computed maximum error for the polynomial is almost the same as the
error bound presented in [20].

In Fig. I plot the maximum error in log scale, log, (|[t], — po(t)|), while fix-
ing n and varying e or fixing ¢ = 277, 2719 and varying n. It is noteworthy that the
proposed method gives an approximation (error below 272!) for a large € (= 277)
with the depth of 7, whereas the previous method cannot achieve this even when using
polynomials of a higher degree. This is because the sine function is not a suitable ap-
proximation for the modulus reduction when ¢ is large. As the proposed method does
not depend on the sine function, even large-sized messages that could not be handled
by the previous method can be handled by low-degree polynomials in the proposed
method.

A staircase shape is shown in Fig. [4.2(b), in other words, the maximum approx-
imation errors are similar when the degrees are 2n — 1 and 2n. This is because the
target of the approximation, the modulus reduction function [t],, is an odd function.
The following proposition shows that the minimax polynomial for an odd function is

an odd function.

Proposition 4.1. If f(t) is an odd function, the best approximation among the polyno-

mials of degree n is also odd.

Proof. Let P,, denote the subspace of the polynomial function of a degree of at most
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m and fp,(t) denote the unique element of P, that is closest to f(¢) in the supreme
norm. I define p(t) € Py, by p(t) = 5 (fin(t) — fn(—t)). Then, for all u in the domain
of f(t), we have

[f(u) = pw)] = |f(u) = 5 (fm(u) = fm(=w))

1
2

1 1

1 1
= L1 — Flw)] 4 215 () — Fn(u)
< sgp lf(t) — fm(t)].

If p(t) # fm(t), it contradicts that f,,(¢) is the closest to f(¢). Hence, f,,(t) = p(t) =
3(fm(t) — fin(—t)) and this is an odd function. O

From the polynomial coefficients of the proposed method, it can be observed that
the coefficient of an even-order term has a significantly small value close to zero in
Po(t). This is evidence for the fact that the proposed method finds a polynomial near
the minimax polynomial because the modulus reduction function is an odd function. It
can be seen that the even-order terms are rather a handicap for finding an approximate
polynomial. Therefore, approximating using only odd-order Chebyshev polynomials
yields a more accurate approximate polynomial.

It is one of the advantages of the proposed method that the nature of the odd func-
tion can be utilized. In contrast, the previous method [20] cannot make use of odd
function because their cosine function in the constrained domain is not an odd func-
tion nor even function. Using the fact that the odd functions are symmetric with respect
to the origin, we can solve the L2-norm minimization only with samples whose value
is greater than zero. Thus, the number of rows and columns of the matrix T is reduced
by half each. As a result, the time complexity of matrix inversion is reduced to about
1/8. Also, some operations on even-order terms may be ignored during evaluation.

In Table I compare previous results from [20L21]] and the results of the pro-

posed method for € = 2710, The criterion is the maximum value of the approximation
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error. As shown in Table I reduce the approximation error from 2726-42 to 272718
while also reducing the degree from 74 to 73. Note that due to the method of selecting
nodes, the method of [20] is restricted in the degree of an approximate polynomial. It
is evident that the difference is greater when a more precise approximation is needed;
moreover, in some cases, the number of nonscalar multiplications, scalar multiplica-
tions, and additions are reduced by reducing the degree of an approximate polynomial.
Moreover, notice that the maximum error of the proposed method is always smaller
than the previous state-of-the-art results even with the same degree polynomial.

It can be seen that the proposed method provides a trade-off between approxima-
tion error and the degree of the approximate polynomial. When a polynomial of degree
127 is used, the proposed method provides an approximation error below 274, How-
ever, when the previous method is used, the error cannot be reduced below 272728 45 it
is bounded by the error between sine function and [¢], as in Table 4.3|and Fig. b).
Table and Fig. d.2|b) show that that increasing the degree of the polynomial does
not lower the approximation error to some extent when using the previous methods.

A comparison of the minimum degrees necessary to achieve the desired error
bounds is given in Table For ¢ = 276, it is shown that the proposed method
achieves an approximation error of less than 272 with only a depth of 7. When a

polynomial p.,s(t) approximates a sine or cosine function as in [[19-21], the approxi-

mate error is bounded by the sine function. In other words, it is bounded by

w2y )
m — —sin| 27—
27 q

max |[t]q — Dcos (t)| = max
¢ me[—eq,eq]
3
~ L1 (zzm] (4.10)
2w 3! q ’ .

which is small when %' is small. However, as @ increases, the bound increases in the

third order. For e = 210,279 278 and 277, the bounds are given as 2727, 2724 2721,
and 278, Table shows that the approximation error of a polynomial found by the
method in [20] is above those bounds. Therefore, for applications that require a more

accurate approximation than this range, the proposed method should be used.
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Table 4.4: Comparison of minimum degree of approximate polynomials to achieve

desired error bound

I1t], - p(0)] < 272 Ity - po)] <272
Proposed Method in [20] Proposed Method in [20]
€ Deg Deg Deg Deg
2~ 11 69 70 63 63
210 73 74 65 65
279 75 converge to 71 72
2—24
28 119 converge to 73 76
2—21
27 127 converge to 121 converge to
2718 2718
26 137 converge to 127 converge
9- 15 to2~ 15
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The proposed method is implemented in SageMath 9.0. It requires 1.01 s in
averageon Intel Core 17-6700k (4.0 GHz) to find the optimal coefficients with
32 samples for each I, the degree n = 73, and € = 2710 Note that most of the results
in Table and Fig. [4.2) are driven by 32 samples for each Ij,. This implies that
massive samples are not required for good approximations. Instead, with only ~ 300
samples (depends on the degree of polynomial), the proposed method surpasses the

best-known method [20].

4.6 Reduction of Level Loss in Bootstrapping

By using the proposed method, better parameters that reduce the loss of level during
the bootstrapping can be selected. As discussed in the previous section, the proposed
method finds a more accurate approximate polynomial for relatively large e than the
previous best method. This section explains how such property leads to better param-
eters.

I will make use of the following lemmas from [4}/19] for noise estimation.

Lemma 4.12 ( [4], Lemma 2). Let ¢ «— RS;_y/(c) for a ciphertext ¢ € R . Then
(c,sk) = % (e, sk)y + e (mod qy) for some e € R satisfying |e|53" < Bys for
B,s =+/N/3-(3+8Vh).

Lemma 4.13 ([19], Lemma 4). Let c € Rg be a ciphertext with respect to a secret key
sk! = (1,5") and let swk «— KSGeng(s'). Then ¢’ « KSg,i(c) satisfies (¢, sk) =
(e, sk') + exs (mod q) for some exs € R with |lexs||S3" < P~Y-q - Bys + Bs for
Bys = 80N /+/3.

A sufficiently large scaling factor Ay = O(q) is multiplied during the Co-
EFFTOSLOT step in order to keep the precision of values in slots. Note that Ay differs
from the scaling factor of the message A. From Lemma [4.13] the total error in the

COEFFTOSLOT step is O(Bys) when a sufficiently large P is chosen [4]].
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Figure 4.2: Maximum value of the error logy(|[t], — po(t)|) for the proposed method
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In the EVALMOD step, each component of the corresponding plaintext slot con-
tains t; + e; for some small error e; such that |e;| < O(B.s). An approximate poly-

nomial p,(t;) is evaluated with scaling factor Ay, and thus the approximate error is

t; t; +ej
i, )
714 q

|:7f]} {tj+6j:| [tj+ej] (tj+ej>
RN B I 2 —p, (L2
q 1y q q q q q

;]

< Aps - " + Absm?x‘[t]q —po(t)‘.

given as

Abs

< Abs + Aps

In order to bound the error in the EVALMOD step to O(Bys), it should be guaranteed

that

leal
q

When the error in the EVALMOD step is bounded to O(B,s ), we have the error bound

after the SLOTTOCOEFF step as O(\/N - Bys) [19].

m?x\[t]q —po(t)] < 4.11)

Note that from Lemma [4.12] the error in bootstrapping is independent from the
scaling factor of message A and bounded to O(N+/h). Thus, the plaintext precision
is proportional to log A, where A determines |m|. Combining and @.11), g
is restricted to be greater than O(m??) in all the methods proposed so far [19-21].
Considering that a scaling factor Ap; = O(q) is used in the bootstrapping, the level
consumption is given as O(m3/ 2). Thus, the previous methods do not scale well for
applications that require accurate computations.

However, by using the proposed method, the upper bound from does not
exist. Hence, the level loss in bootstrapping is roughly proportional to O(m) rather
than O (m?/?). This is one of the advantages of the proposed method, and it overcomes
the limitations of the existing methods. The more precise calculations are required, the
greater the gain we have.

Various factors, such as the number of slots, affect plaintext precision. Hence, the

plaintext precision is obtained using the numerical methods, and it can be used to
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Table 4.5: Probability mass function of I.

) Pry (7) i Pry (7)

0 03343019 | £6 0.00342346
+1 0.13919181 | +7  0.00091685
+2  0.09646158 | £8 0.00020066
+3  0.05556329 | +9  0.00003567
+4 0.02655144 | £10 0.00000511
+5 0.01049854 | £11 0.00000059

determine the parameters as in [[19,[21]]. Using the proposed method, relatively small ¢

can be used, and thus in some cases, it may leave more levels after bootstrapping.

4.7 Implementation of the Proposed Method and Perfor-

mance Comparison

The proposed method of minimizing error variance is implemented on HEAAN and
SEAL, which can be widely applied to many different applications. I compare the ex-
perimental error of the Chebyshev polynomial of the first kind in the case of applying
the reordering method proposed in the dissertation and not. Finding error variance-
minimizing approximate polynomial is implemented by SageMath. Recently, I imple-
mented the bootstrapping algorithm for SEAL, which will be released soon. The boot-
strapping using the proposed approximate polynomial is implemented by modifying
HEAAN and SEAL. In this section, several implementation results and comparisons

for the bootstrapping algorithms of the state-of-the-art methods are also presented.

4.7.1 Error Variance Minimization

In this subsection, I show how to find the Chebyshev polynomial basis with smaller

errors in HEAAN and SEAL. The input for bootstrapping is t = r + ¢, and for the
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worst-case assumption, I assume that r follows the uniform distribution [—e, €], where
¢ = 2710, The probability mass function of I is given in Table

As the domain of Chebyshev polynomial is [—1, 1], {T;(¢/K) }o<i<n is used as the
polynomial basis, and it can be seen that the distribution of the input ¢/K is concen-
trated at zero. As shown in Subsection multiplication between two even degree
terms should be avoided when we calculate the even degree terms. Fig. [4.3] shows
the variance of error in 7;(¢) for even i’s. It can be seen that error in encrypted data
can be greatly reduced by only changing the order of calculating T;(t). In particular,
for T74(t), the variance of error for the proposed method becomes smaller by 1/1973

compared to that without minimization.

4.7.2 Weight Constant and Minimum Error Variance

In Subsection {.4.5] T discussed analytic solution and numerical method for optimal
approximate polynomial. In this subsection, the above methods are implemented and
verified, together with the theoretical values of approximation error and the amplified
basis error. Besides, I confirm that although the numerical method finds a polynomial
that is very close to the value obtained through Subsection (4.4.5)), it has a slightly
larger error than this.

The approximate polynomial minimizing V ar[eaprx] +w - | ¢|3 can be found for a
given weight constant w. For the scaling factor Apg = ¢ of bootstrapping, the variance

of approximation error in the slot after EVALMOD is given as
- Var|eaprx]-
The variance of amplified basis errors by coefficients are given as
E, = (L7'¢)"H(L '¢).

Finally, in the SLOTTOCOEFF step, the plaintext vectors are multiplied with the first

half of the encoding matrix U and their diagonal vectors have the magnitude of one.

3 ey I ]
.':l'-\._i "':'.- TH &l
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Figure 4.3: Variance of error in 7;(t) for even i using HEAAN and SEAL with various

parameters.
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Hence, the variance of the approximation error is multiplied by the number of slots n.

In summary, the total errors by bootstrapping are given as
n- (q2 -Var([eapn] + Ep) )

The experimental results, the theoretical variance of the approximate error, and the
basis error are shown in Fig. The default parameters in HEAAN library are used
for the experiment: N = 216 1, = 64,0 = 3.2 and the number of slots is n = 23.
The experimental result is averaged over 256 experiments, where the scaling factors
are A = 40, 45, the number of slots / is 8 and ¢ = 270 in this experiment. Therefore,
q = 50,55 for A = 40, 45, respectively.

The blue lines with triangular legend show the error by polynomial approximation
as

n- q2 - Var|eapr].-

The green lines with x mark legend show the amplified basis errors as
n - b,

and the red lines with square legend are for the mean square of errors obtained by ex-
periments. The gray dot line is the variance of bootstrapping error achieved by using
the error variance-minimizing approximate polynomial of the same degree. For the
worst-case assumption, we assume that m is distributed uniformly at random. How-
ever, we use m that is not uniformly distributed. Therefore, the total error can further
be reduced when the distribution of m is known.

In Fig. 4.4 the sum of blue lines with triangular legend and green lines with x
mark legend meets the red lines with the square legend. Thus, it shows that the theo-
retical derivation and experimental results are agreed upon. It can also be seen that it
is possible to obtain an approximate polynomial with a small error even by using the
numerical method, but the error is slightly larger than that of an accurately calculated

approximate polynomial. It is noted that the variance of the rescaling error is %

I ey 1
":l"\-_i _'-;.- ok 11
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(h+2)2n

5T N 264 because each element of Chebyshev

and the optimal w is close to

polynomials has error mainly introduced by rescaling.

4.7.3 Comparison of the Proposed Method With the Previous Methods

Minimized Error Variance by the Proposed Method and Error Variance of Min-

imax Polynomial

The best-known approximation method for the CKKS bootstrapping so far is the mod-
ified Remez algorithm [25]]. The modified Remez algorithm is an iterative method that
finds the minimax approximate polynomial for piece-wise continuous functions such
as fmod(t). Using the modified Remez algorithm, the minimax approximate polyno-
mial for fyeg(t) can be found. The minimax approach is reasonable when the input
distribution is unknown. However, in the CKKS bootstrapping, the input distribution
is partially known; the probability mass function of I follows a distribution similar to
the Irwin—Hall distribution. I use the worst-case assumption that r is uniformly dis-
tributed when I derive the variance-minimizing approximate polynomial. However, in
the experiment of finding the variance of approximate error for the given approximate
polynomials for both methods, I let r follow the Gaussian distribution, not the uniform
distribution, because the message polynomial is assumed to be the resultant value of
compound operations and summations. In other words, by assuming the distribution of
the message polynomial differently for finding the variance-minimizing approximate
polynomial and actually calculating the variance, the experiment is conducted in an
unfavorable environment to the proposed method. It is noteworthy that a lower error
variance than minimax polynomial is achieved when using the proposed method, de-
spite the worst-case assumption. It is shown that the distribution of I has a dominant
effect on the error.

It is shown in Fig. {f.5|that the variance of approximation error is smaller when the
error variance-minimizing polynomial is used, as expected. This means that the pro-

posed method reduces the approximation error during bootstrapping. As the magnitude
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of the coefficients of the approximate polynomial cannot be controlled in the modified
Remez algorithm, the approximate polynomials for both methods are compared with-
out controlling the magnitude of coefficients in Fig. £.5] It is noted here that the vari-
ance of approximation errors shown in Fig. .3]is not practical in the CKKS scheme
due to the basis error and the enormous coefficients of the approximate polynomials.
However, it is possible to reduce the magnitude of the coefficients of the approximate
polynomial in the proposed method with slightly increased error variance. In contrast,
the previous methods cannot control the magnitude of its coefficients, and thus the use
of the double-angle formula is essential, which results in a large error variance and

more depth.

Experimental Result of Bootstrapping Error

The experimental result of bootstrapping errors with practical approximate polynomi-
als using various methods are compared in Tables {.6|and [4.7|for HEAAN and SEAL,
respectively. In those tables, the proposed variance-minimizing polynomial directly
approximates fmoq(t) and the lazy rescaling proposed in this dissertation is applied to
the proposed method. The polynomials of previous methods approximate the scaled
sine function, and the double-angle formula is used. For a very low error achieved by
a method in [25]], the composite function method is applied, and the composition of
% arcsin (t) consumes at least two more depth. The scale-invariant evaluation [23,(62]
is applied to the previous methods implemented in SEAL.

In Table the additional error introduced by the bootstrapping implemented in
HEAAN is presented, including SUBSUM, COEFFTOSLOT, EVALMOD, and SLOT-
TOCOEFF. In the table, it is shown that the proposed method achieves the average
precision of 29.87 bits with only modulus consumption of 400, while the previous
method in [25]] achieves 29.18 bits with modulus consumption of 550, where modu-

lus consumption is defined as log,(q) times depth. Therefore, the proposed method

restores about 4 more levels with less error through bootstrapping, compared to the
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Table 4.6: Comparison of the minimum variance of bootstrapping error of the pro-
posed variance-minimizing polynomial and prior arts. It is noted that the depth for
modulus reduction is displayed only; depth for COEFFTOSLOT and SLOTTOCOEFF is
not counted. The variance of the error is obtained by 256 samples of experiments im-
plemented in HEAAN. I try several trials for each method and display the polynomial

with the least error in this table.

Modulus Deg. of polynomial Variance of | Average
Algorithm logy p | logy € | depth
consumption # of double .| bootstrapping | precision
deg. cos deg. arcsin

angle formula error (bits)
-8 8 384 239 221:51 29.57
7 350 111 241.06 19.79

-10
Proposed 40 8 400 239 220.91 29.87
7 364 111 23311 23.77

-12
8 416 223 220:55 30.05
Taylor [19] 40 -10 11 594 7 8 - 214.38 18.13
-8 8 384 61 2 - 245.94 17.36
Han et al. [20] 40 -10 8 400 63 2 - 23727 21.69
-16 7 392 63 1 - 22856 26.05
8 400 63 2 1 240.24 20.20
40 -10 10 500 63 2 3 222:55 29.05

Method in [25] .

11 550 63 2 5 222.29 29.18

previous methods. The default parameters of HEAAN, N = 26, 1, = 64, and 0 = 3.2
are used and the number of slots is n = 23.

In Table the additional error introduced by the bootstrapping implemented in
SEAL is presented. It is shown in this table that the proposed method achieves the
average precision of X X.X X with modulus consumption of 440 while the previous
method achieves X X.X X with modulus consumption of 550. By modifying SEAL,
the same parameters as HEAAN are used.

In conclusion, we can see that the proposed method achieves the least error with
the least modulus consumption from the implementation results. As a result of the
experiment, it is shown that only depth eight is required to achieve the error that could

have been achieved using the previous method with depth 11 [25]]. Alternatively, when
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Table 4.7: Comparison of the minimum variance of bootstrapping error of the pro-
posed variance-minimizing polynomial and prior arts. It is noted that the depth for
modulus reduction is displayed only; depth for COEFFTOSLOT and SLOTTOCOEFF
is not counted. The variance of the error is obtained by 256 samples of experiments
implemented in SEAL. I try several trials for each method and display the polynomial

with the least error in this table.

Modulus Deg. of polynomial .
Algorithm logy p | logy e | depth logy g2 - Var(eapr] | 10gy Elleaprx|]/p
consumption # of double .
deg. cos deg. arcsin
angle formula
-10 7 385 111 48.80 -20.92
-10 8 440 239 17.19 -36.73
Proposed 45
-8 8 424 239 16.87 -36.89
-6 8 408 239 21.58 -34.53
-8 8 424 55 2 - 55.25 -17.70
Han et al. [20] 45 -10 8 440 55 2 - 56.94 -16.86
-12 8 456 55 2 - 57.09 -16.78
8 440 55 2 1 56.75 -16.88
-10
45 10 550 55 2 3 56.89 -16.95
Method in [25
-3 12 576 55 2 13 56.62 -17.02
57 -3 12 720 55 2 13 56.39 -29.13
3 hy i
1 i 11
w | = - 1 I
T 11
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using the same depth of 8, the average precision of the proposed method is much higher
than that of the previous methods [[19}[25].

The use of the double-angle formula and the composite function method is for the
magnitude of the coefficients and the fast evaluation. It is worth noting that all the
previous techniques, such as the double-angle formula and composition method for
efficient evaluation, can also be applied to the proposed method; these techniques are
not for just minimax approximate polynomials. It is evident that the use of the pro-
posed error variance-minimizing polynomial for sine function and inverse sine func-
tion will also reduce the error compared to the minimax approach in [25]]. One might
argue that the bootstrapping algorithm of the proposed method may fail because the
approximation error is too large where the probability is very low. In fact, it is not; by
experiments, I check that the maximum approximation error is also small for the error

variance-minimizing polynomial.

Fundamental Error of Baby-Step Giant-Step Algorithm

This subsection discusses a very loose lower bound of bootstrapping error, which is the
constant term of bootstrapping error, and shows that the proposed method is very close
to the lower bound. As the lazy rescaling method is applied, the rescaling is performed
after a baby-step polynomial is obtained. In other words, we have ciphertext c;’s with
scaling factor close to A2, which are encryptions of T;(t)’s. Then, the rescaling is not

performed to ¢; and coefficients are multiplied as
C;- «— CMUIt(Cj, di,j; A)

Then, c}’s are added up and rescaled by one level. Let ¢, denote the summation of
c; and then it is an encryption of p;(t), where c,, includes amplified basis error and
additional basis error.

Then the giant-step such as

MUIt(RS(c,,), RS(e1)) + e,
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is performed. Of course, RS(c,,), RS(c;), and ¢, , have independent rounding er-
rors, whose variances are W Although E[p;(t)?] is usually greater than one, but
for a very loose bound, I let E[p;(t)?] = E[T}(t)?] < 1, and then the rounding errors
are maintained and added. It is noted that the number of rescaling cannot further be
reduced by the commutative property since the level and a scaling factor of ¢, and cj,
are the same; these errors are independent of the coefficients d, in other words, it is
the constant term of modulus reduction error. There are 2! — 1 such operations in the
giant-step.

The error in MODRAIAS is further amplified by SLOTTOCOEFF. During SLOTTO-
COEFF, key switching makes the 2n shifted copy of the ciphertext (introduces round-
ing error), and the slot values are multiplied by Cg ’s, whose magnitudes are one, and
added up.

There are 3 x (2! — 1) independent rounding errors that occur during the baby-step
giant-step algorithm, and one more rounding error occurs during key switching. There
are n copies of such ciphertexts, and they are all added up. Roughly, the variance of
error introduced by such rounding is given as

<(h+1)-2n

5 x (3x(28=1)+ 1)> x 2n ~ 2149,

where n = 23 and [ = 3 in the experiment. I note that this is a very loose lower bound
of error, but the proposed method achieves an error of only 2.8 bits greater than this

lower bound on average.
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Figure 4.4: Theoretical energy of approximation error, amplified basis error, and en-
ergy of experimental results, implemented in HEAAN. A polynomial of degree 81 is
used. The gray dot line is the variance of bootstrapping error that is achieved by using
the polynomial with coefficients that ¢* = argmin, (Var[q - eaprx| + Ep) , which is
the lower bound of bootstrapping error.
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Chapter 5

Efficient Code-Based Signature Scheme and Cryptanal-
ysis of Code-Based Cryptosystems

5.1 Introduction

In this chapter, I propose an efficient code-based signature scheme and cryptanaly-
sis of code-based cryptosystems. Especially, the pqsigRM, a first-round candidate of
PQC standardization by NIST and its modification, are included. By using the pro-
posed modified RM codes and their decoding, one can find a small-Hamming-weight
error vector for any given received vector. Hence, it reduces the required iteration in
code-based signature schemes, such as the signature scheme proposed by Courtois,
Finiasz, and Sendrier (CFS). The proposed signature scheme has a small parameter
size. In addition, I propose here that one of the IKKR cryptosystems is equivalent to
the McEliece cryptosystem and cryptanalysis for the other two. The implementation
results show that the proposed attack algorithm is efficient so that it performs faster

than the legitimate decryption.
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5.2 Modified Reed—Muller Codes and Proposed Signature

Scheme

In this section, I propose new codes, their decoder, and a signature scheme that uses
these codes and decoders. The proposed code essentially has a (U, U + V')-code as its
subcode, and recursively, U and V are also (U, U + V')-codes. This recursive structure
allows the decoding of any given vector in F3. Then, we can find an error vector
with a small Hamming weight for any given syndrome corresponding to the received
vector. Starting from (U, U + V')-codes, we replace certain rows and append random
rows on the generator matrix of (U, U + V')-codes. Thus, these codes are no longer
(U,U + V')-codes. However, they have a (U, U + V')-subcode and can use the decoder
for (U,U + V')-codes.

5.2.1 Partial Permutation of Generator Matrix and Modified Reed-
Muller Codes

New codes named modified RM codes are defined in this section. I first present the
core of the proposed codes, which is a (U, U + V)-code. Subsequently, I describe
which rows are replaced or appended to the generator matrix. The rationale for these
operations is provided in Section [5.4]

For a code C, I define its hull by the intersection of the code and its dual, in other
words, hull(C) = C n C*. The proposed (U, U + V)-code is designed to have a high-
dimensional hull, where alim(UL n V'), dimenstion of ULt nV,is large. In general,
for a (U,U + V)-code C, a codeword (u|u + v) € hull(C) satisfies v = u' and
u +v = v', where uw € U and v € V. Hence, when U+ n V' = {0}, hull(C) has
only (u|u) codewords, and this may reveal the secret key. To avoid this, the proposed
code is designed so that dim(U+ n V) is large.

For convenience, 1 focus on the generator matrix. First, I construct the generator

matrix Gy, ,,,) of an RM code and then permute its submatrices. An example is shown
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op op op op
G(r,m—z) G(r,m—z) G(r,m—z) G(r,m—z)
0 G(r—l,m—z) 0 G(r—l,m—z)
0 0 G(r—l,m—z) G(r—l,m—z)
0 0 0 ¢
(r-2,m-2)

Figure 5.1: Generator matrix of partially permuted RM code with parameter (7, m).

in Figure where azl, and 012, denote two independent partial permutations that ran-
domly permute only p out of n/4 columns. As will be explained in Section [5.5.2} p
is related to the decoding performance. To generate a; and ‘7;%’ p column indices are
randomly selected from the index set {0,1,...,n/4 — 1}, and the selected indices are
randomly permuted, whereas the others are not. Then, a; is used to permute the subma-
trices corresponding to Gy,.,,,—2)’s in the first dim(RM(r,m_Q)) rows, and ag is used
to permute the submatrix corresponding to G, _g ,,—2) in the last dim(RM(r_Qﬁm_Q))
rows, as shown in Figure [5.1] The codes generated by the generator matrix in Fig-
ure [5.1] are called partially permuted RM codes. It should be noted that, unlike in the
case of code-based cryptographic algorithms, we permute submatrices of the generator
matrix rather than the entire matrix here. It is noted that the entire matrix should also
be permuted to design a signature scheme. This will be discussed on the key generation

in Section[5.2.3

dim(U+ ~ V) is large for the following reasons. Let Gy and Gy denote the
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generator matrices of U and V/, respectively:

G(rfl,me) G(T’*l,Tﬂ*Q)

o2
0 G(:fQ,me) ]

Gy =

Then, the generator matrix of the dual code of U is

_ Lol _
Gé — G(Tf:il'*z) 0
Gt Gt
| T (r—1,m—2) (r—-1,m—2) |

Thus, UL ~ V has a subcode that is the intersection of the code-
words generated by [G(T_l m—2) G.(T_1 m_2)] and the code-

GL ] Its dimension is

words  generated by [Gi o tme2) "

r—1,m—2
min(dim(RM_1 5,2, dim(RI\(/I(m_r_g?m_Q))), as the dual of RM,.,) is equal to
RMp,—y—1,m) and RM (s 1,y © RM;. ), Where 7’ < 7.

With the partially permuted RM codes, the received vector and the syndrome have
the same parity, causing the signature leak. Thus, the generator matrix in Figure
should be further modified. That is, some rows are replaced with repetitions of random
codewords and random rows are appended to the generator matrix. Considering Gy, it
is also an (U, U +V')-code, which can similarly be divided into (permuted) (U, U +V')-
codes. By repeating this process 27" times, the rows of the partially permuted RM
code consist of the 2" repeated generator matrices of RM,.,.y, which are 2" x 2"
identity matrices. Then, RM,. ..y is replaced by a repeated random (2", kyep) code such
that its dual code has at least one non-zero codeword with odd Hamming weight.

We now append random independent rows to the generator matrix. One row to be
appended is a random codeword of the dual code. This should be independent of the
existing rows; i.e., it should not belong to the hull of the code. Furthermore, it should

be verified that the hull has codewords with Hamming weight that is not a multiple

of four as a result of appending this row. The others are k,;, random independent

107



1 1 1 1

kapp { Random independent rows

% : generator matrix of random (Zr,krep) code replacing RM. )

Figure 5.2: Generator matrix of modified RM code.

vectors, including at least one vector of odd Hamming weight. These £, vectors are
independent of the partially permuted RM codes and independent of each other.
After all these modifications, the resulting code is called a modified RM code. An

example of its generator matrix is given in Figure[5.2]

5.2.2 Decoding of Modified Reed—-Muller Codes

Unlike the Niederreiter cryptosystem and THE CFS signature scheme, it is required to
find an error vector whose Hamming weight is greater than the error correction capa-
bility. Hence, there may exist several solutions e satisfying He” = s and wt(e) < w
for a given syndrome s. Such decoding can be achieved by the modified Prange de-
coder using the (U, U + V') structure, as in the signature schemes in [32}50]. However,
in this section, a new decoder is proposed that uses the recursive structure of the sub-
code of modified RM codes, and it achieves better performance than the modified
Prange decoder. In other words, it finds error vectors whose Hamming weights are less

than the result in [50]. This results in the smaller parameters, considering attacks as

.":r'\'\.—-'! - l‘.I-.\:l T 1_-] i ...‘.l ]
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in [70].

In addition to the decoding performance, a major difference between the proposed
decoder and the modified Prange decoder is their input. The input of the modified
Prange decoder used in [32] and [50] is a syndrome vector. In contrast, the input of
the proposed decoder is an n dimensional vector r satisfying Hr” = s, which is
called received vector in coding theory, and the decoder outputs codewords close to
the received vector. An error vector with a small Hamming weight is obtained by
subtracting the output from the received vector. Even if two different received vectors
in the same coset are given, the proposed decoder can return different outputs. Besides,
as the input of the decoder is the received random vector, decoding can be performed
even if random rows are appended to the generator matrix.

As stated in the previous section, random rows (one from the dual code and the
others being k,;, independent random vectors) are appended to the generator matrix
of the partially permuted RM codes. Let C,y,, be the code spanned by the added £, +1
rows. The number of codewords increases by 2¢e»r*1 times when rows are appended
by adding codewords of Cyy), to each (U, U + V')-codeword. Choosing a codeword of
Capp (including 0), subtracting it from the received vector r, decoding it, and adding
the subtracted codewords back is the decoding process when rows are appended. Thus,
the code is decodable even if arbitrary random codes are appended to its generator
matrix.

Hence, it suffices to explain the decoding algorithm for the (U, U + V')-subcode
of a modified RM code. This decoding basically follows the recursive decoding
of RM codes [58]. The difference is the partial permutation and the replacement
of RM, ). Considering the decoding proposed in [58], we have ¢ = (u|u +
v) forall c € RM, ), where u € RM,.,,,_1y and v € RM(;_1 ,—1)- RM(; 551
and RM(,_; ,,,_1) are also (U, U + V')-codes, except for r = 0 or r = m. Here, if the
code corresponding to u or v is replaced with a code other than the RM code and the

decoding of the replaced code can be performed appropriately, the entire code ¢ can
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also be decoded [71]].

When the subcode of the RM code is replaced with its permutation, the entire code
can also be decoded by slightly modifying the recursive decoding. Moreover, no de-
coding failure occurs because the recursion eventually reaches RM g .1y, RM ;v 1.y, or
the (2", kyep) code to replace RM,. ;) and there exists polynomial-time MD decoder
for these codes. Even the (2", k;¢;) random code is MD decodable in constant time
because it is a small code. To handle partial permutations, when the code is decod-
able, it uses the fact that the permutation is always decodable if the permutation is
known. Depermutation and decoding followed by permutation is the decoding process
for permuted codes.

In general, the output distribution of decoding is crucial for security. Thus, I also
propose a randomized decoding method, the output of which is almost uniformly dis-
tributed. With the algorithm described above, a random decoder can easily be designed.
Algorithm [ summarizes the randomized decoding. It is easy to find a received vector
(regardless of its Hamming weight) for any given syndrome; a coset element corre-
sponding to the syndrome is randomly selected. This is given to the decoder as input.
Finally, the decoder finds a different error vector with a small Hamming weight for

different inputs.

5.2.3 Proposed Signature Scheme

Herein, the proposed modified pgsigRM signature scheme using the codes in the pre-

vious section is presented. Its decoding algorithm is presented in Section[5.2.2]

Key Generation

Let G be the generator matrix of a modified (n, k) RM code, and H be the parity
check matrix. Let S be an (n — k) x (n — k) random non-singular matrix and Q be an
n x n random permutation matrix. Then, the public key is H = SHQ, and the secret

keys are H, S, and Q.
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Signing

To sign a given message m, we randomly select a coin 4 from {0, 1}°. A binary vector
s = h(h(m|H')|7) is calculated, where h : {0,1}* — {0,1}" % is a cryptographic
hash function. Our goal is to find the error vector e satisfying H'e” = SHQe” = s.
Let s’ = S™!m.

Performing the decoding as in Algorithm @, we find an error vector €’ satisfying
He'l = s'. If wt(e) < w, we compute e’ = Q~'e/?, and the signature is then given

as (m,e,1).

Verification

If wt(e) < wand H'e” = h(h(m|H’)|7), we return ACCEPT; otherwise, we return

REJECT.

The key generation, signing, and verification processes are summarized in Algo-
rithm For simplicity, let H represent all the secrets such as partial permutations 011,
and ag, appended rows, and replaced codes. It should be noted that in the signing pro-
cess, we choose a random coset element and perform MODDEC(:). As MODDEC(-)
returns different outputs for different inputs even in the same coset, we can achieve

randomized decoding. The output distribution of this randomized decoding output is

analyzed in Section We add a salt \( to obtain a tight security proof.

5.3 Security Analysis of Modified pqsigRM

In this section, the security of the proposed modified pqsigRM will be analyzed. I will
consider the best-known algorithms for solving DOOM. Thereafter, I will discuss the
resistance of the proposed signature scheme against key substitution attacks. Finally,

it will be proved that the modified pqsigRM is EUF-CMA secure.
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As the public key of the proposed signature scheme is a modification of an
RM code, one may consider key recovery attacks on RM codes, such as Minder—
Shokrollahi [72]] and Chizhov—Borodin [73] attacks, as well as square code attacks
[74]]. However, owing to the partial permutation as well as the appending and replace-
ment of codewords in the generator matrix, these attacks cannot be adopted here. Ta-
ble[5.1] shows the comparison between the proposed modified pqsigRM and the origi-
nal pqsigRM.

Table 5.1: Comparison of the proposed modified pqsigRM and the original pqsigRM

Modified pgsigRM | Original pgsigRM [37]]

partial permutation,
Key generation column puncturing
row appending
method and insertion
and replacement

Randomized
yes no
decoding
finding puncturin
Attack none &p &

with hull

5.3.1 Decoding One Out of Many

Information set decoding is a brute-force attack method that finds an error vector e
such that He” = s and wt(e) < w, where Stern improved the attack complexity
in [75]. It has been extensively studied, and Dumer’s algorithm [[76] as well as more
involved variants in [[77,(78]] have been proposed.

In the variants of the CFS signature scheme, there are several hash queries. There-
fore, to launch a forgery attack, it suffices to find an error vector with a small Hamming
weight for any of the syndromes. Hence, the decoding problem DOOM given below

is adequate for a tight security proof. The usual FDH proof for existential forgery us-
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ing syndrome decoding would require a work factor > ¢y - 2%, where gy < 27 is
the number of hash queries. However, with DOOM, the work factor is required to be
> 2*. Although the work factor of DOOM is greater than that of syndrome decoding,

it provides tighter bounds for security.

Problem 5.1. (DOOM)

Instance: A parity check matrix H € an_k)xn of an (n, k) linear code, syndromes

81,82, ,84 € Fg“k, and an integer w.
Output: (e,i) € F} x [1, q] such that wt(e) < w and He” = s!.

We consider the case in which the adversary has ¢ instances and M =
max (1, (Z) /2"~F) solutions for each instance. Of course, in our case, w is not small,
and thus M is (') /2"~". In [70], the work factor of solving DOOM is given as

n
w
Cqy(p,1
WF(ZIW = min <q(p, ) > ,
k+l1
k+1\ a(®)) k1
e (o 3. ) = (1)
is the complexity of solving the DOOM problem using Dumer’s algorithm, and
—k—1\ (k+l\ \ M
(ump ) (5)
(i)
w

is the success probability. This work factor is the reference for choosing the parameters

where

P(IM(p’l) =1- (1

of the signature scheme. Although advanced algorithms for information set decoding
can be adapted to DOOM to reduce complexity, this has not yet been conducted. The
proposed signature scheme is designed to use codes with a high-dimensional hull.
Hence, the attacker can exploit this. However, to our knowledge, there is no algorithm

for information set decoding or DOOM that considers this.
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5.3.2 Security Against Key Substitution Attacks

In a key substitution attack, the adversary attempts to find a valid key that is different
from the correct key and can be used for signature verification. If the adversary knows
the secret key and the public key corresponding to a message—signature pair, we have
a weak-key substitution attack, whereas if the adversary knows only the public key,
we have a strong-key substitution attack. Both polynomial-time weak- and strong-key
substitution attacks on the CFS signature scheme were proposed in [79]. A modifi-
cation of the CFS scheme that resists such attacks was also proposed in [79]]. In this
modification, the syndrome s is generated by hashing the message, counter, and public
key, rather than hashing only the message and counter. It has been demonstrated that
this modified CFS signature scheme is secure against key substitution attacks [40]]. In
the modified pqsigRM, the syndrome is given as s = h(h(m|H')|7), and thus it is

also secure against key substitution attacks.

5.3.3 EUF-CMA Security

Here, I prove the EUF-CMA security of the modified pgsigRM. The methods pre-
sented below are adapted from the EUF-CMA security proof of SURF and Wave
[32,/50]. It should be noted that although a key attack for SURF is presented in [S0],
its proof technique is valid and generally applicable. The proof is essentially the same

except for the code used for the key and the decoding algorithm for signing.

Basic Techniques for EUF-CMA Security Proof

EUF-CMA is a widely used attack model against signature schemes. In the secu-
rity reduction task, EUF-CMA is viewed as a game played between an adversary
and a challenger. The public key PK, hash oracle H, and signing oracle 3 are
given to a (¢, gy, qx, €)-adversary A, where A can query at most gz hash values
and ¢y, signatures for inputs of its own choice. Within a maximum computation time

t, A attempts to find a valid message—signature pair (m*, o*). A wins the game if
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Verifying(m™*, o*, PK) = 1 and o* has not been provided by 3J; otherwise, the chal-
lenger wins the game. The winning probability of the (¢, g3, g5, €)-adversary is at least

€.
Definition 5.1. (EUF-CMA Security)
Let S be a signature scheme. I define the EUF-CMA success probability against S as

Succ%UF*CMA (t, qu, q) = max(e|3(¢, g3, g, €)-adversary).

The signature scheme S is called (t, g3, qx)-secure in EUF-CMA if the above success

probability is a negligible function of the security parameter \.
I use the statistical and computational distance as basic metrics.

Definition 5.2. (Statistical distance)
The statistical distance between two discrete probability distributions D° and D' over
the same space £ is defined as

p(D°, D) = 2 3 [D(x) ~ D' ()]

ze€f
Proposition 5.1. [50] Let (DY, ..., DY) and (D1, ..., D}) be two n-tuples of discrete

probability distributions over the same space. For alln = 0, we have

p(P® - @D, DI®---®@D,) < Y, p(DY,D}).
i=1

Definition 5.3. (Computational distance and indistinguishability)

The computational distance between two distributions D° and D" in time t is

1 0 1
0 ply._ = DY D
pe(D°, D) := ‘Iﬁg (Adv (A)) ,

where |A| denotes the running time of A, and AdvP"P" s the advantage of distin-

guisher A, which returns b € {0, 1} against D° and D*:

AdvP" P = P po(A(E) outputs 1)

— Peop1 (A(E) outputs 1).
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The EUF-CMA security of the modified pgqsigRM is reduced to the modified RM
code distinguishing problem and DOOM with high-dimensional hull, which are de-

fined as follows.

Problem 5.2. (Modified RM code distinguishing problem)

Instance: A code C with high-dimensional hull.

Output: A bitb € {0,1}, where b = 1 if C is a permutation of the modified RM code;

otherwise, b = 0.

Problem 5.3. (DOOM with high-dimensional hull)

Instance: A parity check matrix H' € anik)xn of an (n,k) code with high-
dimensional hull, syndromes 81,82, ,84 € F%n_k), and an integer w.

Output: (e,i) € F} x [1, q] such that wt(e) < w and He® = s!.

Definition 5.4. (One-wayness of DOOM with high-dimensional hull)
I define the success of an algorithm A against DOOM with high-dimensional hull and

parameters n, k, q,w as

Succ™PPU(A) = P(AH, s1,. .., 8,)

is a solution of Problem[5.3)),

where H is chosen uniformly from the parity check matrix of (n, k) codes with a high-
dimensional hull, s; is chosen uniformly in Fg‘_k, and the probability is taken over
these choices and the internal coin of algorithm A. The computational success of

breaking DOOM with a high-dimensional hull in time t is defined by

Succ%g’qO%Huu(t) = ITEFLX (Succn’k’q’w(/t)) :
<t

We assume here that the probability is negligible (as a function of \) for the parameters
given in Table
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I will discuss these problems in greater detail in Section It is worth noting that

there are sufficiently many codes with high-dimensional hull for the parameters given

in Tables[5.2] and [5.4] [80].

EUF-CMA Security Proof

Let Spysigrar denote the proposed modified pgsigRM. The following definitions as

well as the theorem and its proof are adopted from those in [32}[50].

Definition 5.5. (Challenger procedures in the EUF-CMA game)
The challenger procedures in the EUF-CMA game corresponding to SpqsigrM are

defined as follows:

proc Init(A) proc Hash(m, )
(PK,SK) « Gen(1) return h(m,1)

H < PK

(H,S,Q) « SK

return H’

proc Sign(m) proc Finalize(m,e,1)
i« {0,1}% § « Hash(m,1)

s <« Hash(m,1) return

e < DECODE(S™'s”; H) He® = ST A wt(e) = w

return (eQ, 1)

It is noted that the procedures in Definition [5.5]simplify Algorithm[7] We can now
modify the security reduction in [32,|50] and prove the EUF-CMA security of the
modified pqsigRM as follows.

Theorem 5.1. (Security reduction)

Let S uccgUF,_CMA
pgsig RM

(t, g1, qx) be the success probability of the EUF-CMA game cor-

responding to SpqsigrM for time t when the number of queries to the hash oracle (resp.
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signing oracle) is qy; (resp. qx). Then, in the random oracle model, we have for all t

SUCCEUFfCMA
SpqsigRM

(tv qH, QZ) <
7k7 k) !
2Succhobn mran(te) + anBEar (p(Dg ,L{S))

1
+ QEP(Dwauw) + pc(Dpuba Drand)(tc) + 27)\1

where t. = t + O(qy - n2), DX is the distribution of the syndromes H'e™ when e
is drawn uniformly from the binary vectors of weight w, Us is the uniform distribu-
tion over Fgfk, D, is the distribution of the decoding result of Algorithm |§] Uy is
the uniform distribution over the binary vectors of weight w, Dy.qnq is the uniform dis-
tribution over the random codes with high-dimensional hull, and Dy, is the uniform

distribution over the public keys of modified pgsigRM.

Proof. Let Abea (t, gy, qs, €)-adversary against Spqsigrar, and let (Ho, s1, ..., 84,,)
be a random instance of DOOM with high-dimensional hull for the parameters

n, k,qy, and w. I stress that s1,..., sy, are random independent vectors of Fg_k.

H
Let P(.S;) denote the probability that A wins Game 1.

Game 0 is the EUF-CMA game for Sp,gsigrns-

Game 1 is the same as Game 0 except for the following failure event F': There is

a collision in a signature query. From the difference lemma in [81]], we have
]P’(Sl) < IP(S()) +P(F). 5.1

The following lemma is from [32]].
Lemma 5.2. For \g = A + 2log,(qy), we have P(F) < 1.

Game 2 is obtained from Game 1 by changing Hash and Sign as follows, where
Sy denotes the set of vectors with Hamming weight w in F3: Index j is initialized to
0 in the Init procedure. I introduce the list L,,,, which contains g random elements

of IF;‘D for each message m. The list is sufficiently large so that all queries are satisfied.
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proc Hash(m, ?) proc Sign(m)
ifi1e Ly, 2 «— L,,.next ()
em,i — Su s <« Hash(m,1)
return H’efn,i e — DECODE(S™!s”; H)
else return (eQ, 1)
je—g+1
return §;

The Hash procedure returns H’ e%,r if and only if 2 € L,;,; otherwise, it returns s;.
The Sign process is unchanged unless ¢ € L.

The statistical distance between the syndromes generated by matrix H’ and the
uniform distribution over Fg_k is p(Dgl, Us). This is the difference between Hash in
Game 1 and Game 2 when ¢ € L,,. There are at most ¢z, such instances. Thus, by

Proposition it follows that
P(S2) < P(S1) + auEw (p(DH',U)) (5:2)

Game 3 is obtained from Game 2 by replacing DECODE with e, ; in Sign pro-

cedure as follows: e is drawn according to the proposed decoding algorithm DECODE

Game 3 Game 5

proc Sign(m)

proc Finalize(m,e,1)

1 < Ly,.next ()
§ « Hash(m,1)

S «— HaSh(m7 7') b« HeT =8T A Wt(e) =w

€ < €em,

returnb A (¢ ¢ L)

return (e, 1)

in Game 2, whereas it is now drawn according to the uniform distribution £,,. By

Proposition we have

P(SZS) < P(S2) + qu(Dwauw)- (53)
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Game 4 is the game in which H' is replaced with Hy. This implies that the ad-
versary is forced to construct a solution for DOOM with the high-dimensional hull.
Here, if a difference between Game 3 and Game 4 is detected, then this yields a dis-
tinguisher between D), and D,.y,q. According to [S0], the cost to call Hash does not
exceed O(n?), and thus the running time of the challenger is t. = t + O(qy - n?).

Therefore, we have
IP)(54) < P(SIS) + pc(Dpuba Drand)(tc)' (54)

Game 5 is modified in Finalize. The success of Game 5 implies ¢ ¢ L., and
the success of Game 4. A valid forgery m™ has never been queried by Sign, and the

adversary has never accessed L,,,=. As there are gy, signing queries, we have
P(S5) = (1 — 2)‘0)‘121?(54).

Moreover, (1 —2%)%= > 1 because we assumed A\g = A + 2logy(gx). Thus, this can
be simplified to

P(S5) > %P(S@. 55)

P(S5) is the probability that A returns a solution for DOOM with high-dimensional
hull, which yields

P(Sy) < 2SuccyEdy o (te). (5.6)

Combining (3.1))—(5.6) concludes the proof. O

5.4 Indistinguishability of the Public Code and Signature

It is challenging to prove the hardness of distinguishing a public code of a code-based
cryptographic algorithm from a random code. As it is difficult to prove the hardness of
distinguishing the public code from a random code, several cryptographic algorithms
are designed by assuming it. In this section, I will consider possible attack algorithms
and consider the difficulty of distinguishing the public code and signatures. Moreover,

the difficulty of distinguishing signatures from random errors is also analyzed.
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5.4.1 Modifications of Public Code

For successful decoding of any received vector, a (U, U + V')-code should be used in
the modified RM codes. To resist the attack on (U, U +V')-codes proposed in [50], I de-
sign a code with a high-dimensional hull. Generally, the expected dimension of the hull
of a random code is O(1), which is smaller than d with probability = 1 — O(d) [[80].
This is a difference between random and public codes. However, there is currently no
algorithm for solving the syndrome decoding problem by taking advantage of the hull.
We consider that a high-dimensional hull is not a significant drawback unless the hull
has a certain structure that may reveal the secret. Moreover, in [80], it is demonstrated
that there are a large number of codes with the high-dimensional hull. Hence, we can
expect the one-wayness of DOOM with the high-dimensional hull as in Definition [5.4]

Cryptanalysis using hulls is widely used in code-based cryptography. However,
this is valid if the hull has a specific structure that allows information leakage about
the secret key. Therefore, using only the fact that the dimension of the hull is large,
it is difficult to distinguish whether the code is public or random code with the high-
dimensional hull.

The EUF-CMA security proof requires the indistinguishability between public and
random codes, i.e., pc(Dpub, Prand) (tc) should be negligible. I will discuss the design
methodology and how these modifications can ensure indistinguishability.

Considering the key recovery attack in [50], a (U, U + V')-code used in code-based
crypto-algorithms should have a high-dimensional hull for security. Even though the
public code of the proposed signature scheme is not a (U,U + V')-code, it should
contain a (U, U + V') subcode for efficient decoding.

The attack on SURF in [50] uses the fact that for any (U, U + V')-code, the hull
of the public code is highly probable to have a (u|u) structure when UL A V' = {0},
dim(U) = dim(V'). This (u|u) reveals information about the secret permutation )
and enables the attacker to locate the U and U + V codes. To avoid this, we should

maintain the high dimension of U+ ~n V, implying that the public code should have a
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high-dimensional hull. Hence, I define DOOM with high-dimensional hull and assume
that the public code of pqsigRM is indistinguishable from a random code with a hull
of the same dimension as that of the public code, rather than any random linear code.

Moreover, kqyp, random rows are appended to the generator matrix, and 2" rows of
the generator matrix, that is the repeated RM,. ..y, are replaced by k., random rows;
furthermore, a codeword from the dual code is appended to the generator matrix. These
modifications are equivalent to increasing the dimension of the code itself, the hull,
and the dual of the code, respectively, by appending random codewords. Moreover,
by adding random codewords, the code is no longer a (U,U + V')-code, and thus
distinguishing attacks are more difficult to perform.

I now explain the rationale for the aforementioned modifications, which are applied

in addition to partial permutation.

Appending k,,, Random Rows to the Generator Matrix

The Hamming weights of a random code are distributed. However, the partially per-
muted RM code has only codewords with even Hamming weight. This is because the

Hamming weights of codewords of RM,. .,y are even numbers, and partial permuta-

rm
tions do not affect parity.

By appending a random row with odd Hamming weight to the generator matrix,
the Hamming weights of the public code become distributed binomially. The problem
is that if only one row with an odd Hamming weight is appended, it can easily be ex-
tracted. This can be resolved by appending more than one codeword. Hence, I append

Kapp random rows such that at least one has an odd Hamming weight. By the nature of

the decoding process, it is still possible to decode the resulting code.

Appending a Random Codeword of the Dual Code to the Generator Matrix

The Hamming weights of the codewords in the hull of the partially permuted RM code

are only multiples of four. However, the Hamming weight of the codewords in the hull
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of a random code may be an arbitrary even number, not only a multiple of four. As in
the previous modification, a random codeword is appended to the hull. Thereby, I force
the codewords of the hull of the public code to have arbitrary even Hamming weights.
As a randomly appended row to the generator matrix is unlikely to be appended to
its hull, appending a codeword to the hull is more complicated. The following is the
process for appending a random codeword to the hull.

Let hull(C) be the hull of a code C. I define C’ and C” by C = hull(C) + C’
and C* = hull(C) + C”, where hull(C), C', and C" are linearly independent. We can
then generate a code with a hull with dimension dim(hull(C)) + 1 by the following

procedure:

i) Find a codeword cg,q; € C” such that ¢g,q; - C4uar = 0. This is easy because a

codeword with even Hamming weight satisfies it.
ii) LetCine = C + {Cdual} = (hull(C) + {cdual}) +C

iii) As Cayai - (hull(C) + {cdual}) = {0} and Cgyqi - C' = {0}7 we have cgyqr € Cz#zc’

where for a vector x and a set of vectors A, x - A is the set of all inner products

of z and elements of A.

iv) It can be seen that Cj,. N Ci- . = (hull(C) + {Cquar}). Hence, C;y. is a code that

wmc

has a hull of which dimension is dim(hull(C)) + 1.
If the Hamming weights of the codewords of the hull are only multiples of 4, then
another cg,,4; 1s selected, and the above process is repeated.
Replacing Repeated RM, ,) With Random (2", k;..;,) Codes

It is noted that by replacing repeated RM,. .y by random (2", krep) codes, the dimen-
sion of the code is reduced by 2" — k,..,; this is equivalent to appending 2" — k;.¢;, rows
to the parity check matrix. The codewords of the dual code of the partially permuted

RM code have only codewords of even Hamming weight owing to a subcode of the
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partially permuted RM code. This can be resolved by replacing this subcode with an-
other random code such that its MD decoder exists. The partially permuted RM code
includes (RM.,)| . . . [RM,.,-)), and the dual code of this has only codewords of even
Hamming weight by the proposition below. It is easy to verify that the dual code of
the partially permuted RM code is a subset of the dual code of (RM,. | . .. [RM,. ).
That is, (RM,.,y|...|RM(., ) causes the dual code of the partially permuted RM

code to have only codewords of even Hamming weight.

Proposition 5.2. Let C be a code such that its dual code has only codewords of even
Hamming weight. Then, the dual of the concatenated code, {(c|c)|c € C}, has only

codewords of even Hamming weight.

Proof. Leth € (C|C)*, where C is an (n, k) code and C|C is a concatenated code given
as {(c|c)|c € C}. I define vectors h; and hs of length n so that b = (h,|hz2). Clearly,
if hy € Ct, then hy € C+. If hy ¢ CLt,wehave hi-c+hy-c=0,ie,hi-c=hsy-c
This implies that h; = hg. Hence, wt(h) is even. O

By replacing the repeated RM, .y with a random code such that its dual code has
codewords of odd Hamming weight, we can force the dual of the public code to have
codewords with odd Hamming weight.

Clearly, the dual code of RMy,. .y is {0}. I replace RM,. .y with a random (2", k;.p,)
code. It is noted that the dual code of this (2", ky¢p) code must have codewords with
odd Hamming weight. The generator matrix is modified in this manner, rather than by

appending rows to the parity check matrix, to ensure that the entire code is decodable.

5.4.2 Public Code Indistinguishability

In the EUF-CMA security proof, p.(Dpub, Drand) is required to be negligible; that is,
the modified RM code distinguishing problem should be hard. As it is challenging to
find the computational distance between public and random codes, in this section, we

study the randomness of the public code and consider possible attacks.

124



Public Code is Not a (U, U + V')-Code

After random rows have been appended to the generator matrix of a (U, U + V')-code,
the resulting code is unlikely to be a (U,U + V)-code. Considering the following
proposition, it can be seen that with probability O(2*v="/2), a (U, U + V')-code re-

mains a (U, U + V')-code after a row has been appended to its generator matrix.

Proposition 5.3. Let C be a (U,U + V)-code. Then, for all codewords (c|c”") €
C,(0lc — ") ecC.

It is expected that attacking the modified RM code is difficult because the appended
codewords change the algebraic structure of the code (i.e., the (U, U + V) structure),

there is considerable randomness, and there is currently no recovery algorithm.

Distinguishing Using Hull

When a random row is appended to the generator matrix, it is unlikely to be included
in the hull. The appended row should be a codeword of the dual code to achieve this,
and its square should be zero. Hence, we append a codeword from the dual code to the
generator matrix.

The appended row can be omitted when the attacker collects several independent
codewords with Hamming weight four from the hull. However, for any random code
with a high-dimensional hull, the same process can be applied, and finally, there only
remain codewords of which the Hamming weight is a multiple of 4. Hence, this is not
a valid distinguishing attack.

The hull of a random (U, U +V')-code is {0} when ky < ky and is highly probable
to have codewords of (u|u) form when ki > ky . However, the hull of an RM code
is also an RM code, and in our case, the partial permutation randomizes its hull and
retains its large dimension. As shown in Section[5.5] the hull is neither a subcode of
the RM code nor a (U, U + V')-code. Moreover, most of the hull depends on the secret

. . 1 2
partial permutations o, and ;.
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5.4.3 Signature Leaks

In the EUF-CMA security proof, it is required that p(D,,,U,,) is a negligible function
of the security parameter . If this is true, then the signature does not leak information.
In several signature schemes, such as Durandal, SURF, and Wave, this is achieved and
proved. In SURF and Wave, the rejection sampling method is applied to render D,,
indistinguishable.

To apply rejection sampling, the distribution of the decoding output should be
known. In SURF and Wave, a simple and efficient decoding algorithm is used, and
thus it is easy to find the distribution of the decoding output. However, in our case, the
decoding output exhibits a high degree of randomness, and the structure of the decoder
is complex. Therefore, it is difficult to analyze the distribution of the decoding output.
Instead, I conduct a proof-of-concept implementation of the modified pqsigRM using
SageMath. Then, I perform statistical randomness tests under NIST SP 800-22 [[82] on
the decoding output, and I compare the results with random errors in [F; with Hamming
weight w. No significant difference is observed. However, it should be noted that the
success of a statistical randomness test does not imply indistinguishability. Thus, the

indistinguishability of the signature should be rigorously studied as future work.

5.5 Parameter Selection

5.5.1 Parameter Sets

The constraint here is that n is a power of two. We can numerically find the feasible
ranges of w once n and k are determined. If the security level A is achieved in this
range, the value is accepted; otherwise, we increase n. Considering DOOM, a smaller
value of w implies higher security. If w is so small that a large number of decoding
iterations are required, we could reduce the partial permutation parameter p. p is at
most n/4, and the characteristics of the codes are retained by lowering p to a certain

degree. The method for obtaining the minimum values is described in the following
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Table 5.2: Parameters for each security level

A (security) 80 128 | 256

(r,m) (5.11) | (6,12) | (6,13)

n 2048 | 4096 | 8192

1025 | 2511 | 4097

w 325 | 495 | 1370
Krep 30 62 62
Kapp 2 2 2

p (recommended) =130 | =386 | =562

Signature length (bits) || 2048 | 4096 | 8192
Public key size (MB) | 0.249 | 0.773 | 3.99

logy WF 80 128 256

subsection. The discussed state-of-the-art algorithm for DOOM is used as a basis for
the parameters proposed in Table I set kqpp = 2 (the minimum value) and k¢, =
2" — 2 (the maximum value).

Regarding the key size, the public key is a parity check matrix given in the system-
atic form and requires (n—k)n bits. The secret key does not include a scrambler matrix
S because it can be obtained from H’, Q, and H. Moreover H can be represented by
a%, aﬁ, replacing code, and appending rows.

The comparison of parameter sets is given in Table The key size of the pro-
posed modified pqsigRM is small compared to other algorithms. It is noted that it is
for reference only, and the actual parameter size is given variously along with trade-off
with signing complexity, etc. The security level in parallel-CFS is based on the gener-

alized birthday algorithm [[84]], and the distinguisher for high-rate Goppa code [29] is

not considered. For detailed information, see [83]] and [32].
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Table 5.3: Comparison of parameter sets of several code-based signature schemes for

given security.

A Proposed | Wave [[32]] | Parallel-CFS [83]

pk size 0.249 1.214 20.0
80

sgn. len. 2048 8234 294

pk size 0.773 3.108 2.7 x 10°
128

sgn. len. 4096 13174 474

pk size 3.99 12.432 9.4 x 10
256

sgn. len. 8192 26347 1242

5.5.2 Statistical Analysis for Determining Number of Partial Permuta-

tions

If w is excessively small, there is a low probability of finding an error vector with
Hamming weight less than equal to w. I present two solutions. One is iterating until
an appropriate error vector is obtained, and the other is improving the decoder. The
number p of columns permuted in the partial permutation varies from 0 to n/4. From
the numerical analysis, it is demonstrated that small values of p result in low Hamming
weight of the decoding output. However, it should be noted that when p = 0, the
(U,U + V) part of the modified RM codes becomes identical to the RM code except

that RM ;. .y is replaced. Hence, I propose the lower bound of p that does not affect the

T
randomness of the hull.

Regarding the modified RM code, its hull overlaps with (but is not a subset of)
the original RM code. If the hull is a subset of the original RM code, and its dimen-
sion is large, the codeword of minimum Hamming weight of the original RM code

may be included in the hull. Then, attacks such as the Minder—Shokrollahi attack may

be applied using codewords with minimum Hamming weight. Therefore, to prevent
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attacks, the hull of the public code should not be a subset of the original RM code,
and hull(Cpup) ~ (RM;. ,,) permuted by Q) should occupy a large portion of the hull,
where C,,;, denotes the public code, and . denotes the relative complement.

As the permutation () is not important for determining the parameter p, we ignore
it in this subsection, and the term permutation refers to the partial permutations UZI, and
0. When p = n/4, which implies that o, and o, are full permutations, the average di-
mension of the hull and the dimension of hull(Cpyp) RM(;. ) are given in Table
The values may slightly change according to the permutation.

If p is small, the Hamming weight of the errors decreases. Hence, the signing
time can be reduced by using partial permutation with p rather than full permutation.
The aim is to find a smaller value for p maintaining the dimension of hull(Cpyp)
RM(;.,m) as large as that by the full permutation. It can be seen that the average of
the dimension of hull(Cpuy) ~ RM, ,) tends to increase as p increases, and it is
saturated when p is above a certain value, as in Figure[5.3] Specifically, the dimension
of hull(Cpup) ~ RM(;. ) is saturated when p is approximately equal to the average

dimension of hull(Cpyp) RM(;. 1) with full permutation. Hence, I determine p as

130, 386, and 562 in Table[5.2]

Table 5.4: Average dimension of hull(Cpyp) and hull(Cpup) ~ RM;. n,) with p = n/4

(r,m) || (5,11) | (6,12) | (6,13)
n || 2048 | 4096 | 8192
k|| 1025 | 2511 | 4097

dim(hull(Cpp)) || 766 | 1236 | 2974
dim(hull (Cpup) ~ RM(ppmy) | 130 | 386 | 562
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Figure 5.3: Dimension of hull(Cpyp) RMg,12) for 128-bit security parameters.
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5.6 Equivalence of the Prototype IKKR and the McEliece

Cryptosystems

The IKKR cryptosystems are not designed for indistinguishability or non-malleability;
they do not even satisfy the indistinguishability under chosen-plaintext attack (IND-
CPA). Thus, for a fair comparison, the equivalence of the prototype IKKR and the
McEliece cryptosystems for one-wayness (OW) is shown in this section. All matrices
regarding keys for the prototype IKKR and the McEliece cryptosystems are already
defined in Sections 2.3 Tland 2.5.4

A fair comparison of the prototype IKKR and the McEliece cryptosystems dictates
that both of them are based on the same error-correcting (n, k) linear code C with error
correction capability ¢. Let G and H denote the generator matrix and the parity check
matrix of C, respectively.

It is proved that the prototype IKKR cryptosystem is not more secure than the

ordinary McEliece cryptosystem in [52]. In other words, we have following lemma.

Lemma 5.3. (Prototype IKKR < McEliece [52]) If there exists an efficient adversary
that decrypts the ciphertext of the McEliece cryptosystem, then there exists an efficient

adversary that decrypts the ciphertext of the prototype IKKR cryptosystem.

It is proved in the following lemma that the McEliece cryptosystem is also reduced

to the prototype IKKR cryptosystem.

Lemma 5.4. (Prototype IKKR > MckEliece) If there exists an efficient adversary that
decrypts the ciphertext of the prototype IKKR cryptosystem, then there exists an effi-

cient adversary that decrypts the ciphertext of the McEliece cryptosystem.

Proof. 1define Advikkr(G’, G, ¢) an adversary for the prototype IKKR cryptosys-
tem that returns m if there exists such m satisfying ¢T = mTG’ + TG/, and
returns L, otherwise. The adversary AduvnicEliece(Gpub,€) can find e and m satis-

fying ¢ = mTGp,, + €T using Advikkr from the following procedure, where
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Gpub = GPT for a permutation matrix P.

1. Key translation from McEliece to prototype IKKR

(a) The adversary chooses a random nonsingular matrix M’. Let G” be a ma-

trix whose rows are n distinct codewords from G, p,.

(b) Then, the adversary can make a public key for the prototype IKKR cryp-
tosystem by
(G',G)) = (GpuuM/, (G" —T)M).

(c) This is because by letting M = PTM’ (even if P is unknown), G’ = GM
and G| = (Go— P)M are satisfied, where Gy is a matrix whose rows are

n codewords from G (even if Gg is unknown).
2. Ciphertext translation from McEliece to prototype IKKR

(a) For a ciphertext cT = mTGyp,,, + €T, the following equation is satisfied as
™' = m'Gp M’ + e™™/
=mTG' + e™PM
=m'TG' — eTG)
for some m/'.

(b) Thus, Advikkr(G’, G|, M'Tc) finds m’ and Advicrtiece(Gpub, €) can

find e and m using m/.
O

If an adversary is provided a decryption oracle, both the cryptosystems are OW-
insecure, and thus the decryption oracle is not considered. Although it was not involved
in the above, it is easy to see that the above two reductions are similarly applied to
the key-recovery attack. The following theorem appears directly from the above two

lemmas.

Theorem 5.5. The prototype IKKR and the McEliece cryptosystems are equivalent.
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5.7 Cryptanalysis of the IKKR Cryptosystems

5.7.1 Linearity of Two Variants of IKKR Cryptosystems

In the proposed attack algorithm, I mainly utilize the linearity of encryption of IKKR
cryptosystems and the fact that there exist a small number of possible solutions for
the system of linear equations. I remark that the encryption of the upgraded IKKR
cryptosystem is given as

c" =mTG' + eTG),. 5.7

As the rank of G, is (n — k), there exists €’ satisfying
TG = eTGY, (5.8)

where G/ is a matrix formed by (n — k) linearly independent rows of GY,. Thus, (5.7)
can be rewritten as

c"=m"G + €7GS.

Considering an augmented matrix, the encryption is given as the following linear trans-

formation

c=[amay]- |7 (5.9)
e

Similarly, the linearity can be found as in (5.9) for the modified version of prototype
IKKR cryptosystem as
c=[GT|G]T]- ”? , (5.10)
e
where G consists of ¢ linearly independent rows of G| as the rank of G/ is ¢.
(3.9) and (5.10) depict the linearity of encryption. The following section describes
a polynomial-time attack algorithm for the two variants of IKKR cryptosystems using

this linearity.
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5.7.2 The Attack Algorithm

When [G'T|G,] is a nonsingular matrix, the plaintext is found from only the public

key and ciphertext as

- [aTlGyT] e
e/

In fact, as in the following theorem, [G’ T|G/2/T] is always a nonsingular matrix when

Q and T are constructed according to Algorithm 3]

Theorem 5.6. [G' T|G'/2,T] is a nonsingular matrix when Q and T are constructed

according to Algorithm

Proof. The row spaces of G and G/, are equivalent. Thus, it is sufficient to show that
the rank of [G'T|G7' | is n. Using the fact that [G'T|G4 | = MT [GT|(Q(Go + T))T]
and M is nonsingular, we omit M when discussing the rank of [G’ T ]GIQT].

Without loss of generality, we assume that 7 = {1,2, ..., k}. Let Gl = [Ix|G)]

be a systematic form of G’. Let T = [T 7|T 7¢] and then QT = [0|LH 7T 7c]. It is
noted that LH 7T 7¢ is an n x (n — k) full rank matrix. Given G}, = Q(Go + T), we

have
G’ G’
WE = By . (5.11)
G5 QG + QT

As the rows of QG are codewords of C, QG can be eliminated by some linear

combinations of rows in G .. Thus, the rank of the matrix (5.11) is the same as

sys*
G| |uw G,
QT 0 LH/,T

Applying Gaussian elimination on the (k+1)-th to (n+k)-th rows of the above matrix,

we have
I, G,
0 In—k
0 0
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Hence, the rank of
G/

Sys

Gy

is n and thus [G/ T|G'2/T] is a nonsingular matrix. O

Therefore, the proposed attack algorithm always succeeds.
In the modified version of prototype IKKR cryptosystem, G| = WD(Gy—P)M
is used instead of GY, and the rank of G/ is ¢ < (n — k). Similarly, [G'T|G]T] is a

full-rank n x (k + t) matrix from the following theorem.

Theorem 5.7. The rank of [G'T|GY ] is (k + t), where G| = WD(Go — P)M, W
is an n x n nonsingular matrix, and D is an n x n diagonal matrix with t non-zero

elements on the diagonal.

Proof. As in the proof of Theorem[5.6] we omit M. The rank of matrix

a| Go
;| |wDG,-WDP
is equal to
Go
WDP

as the rows of WDGy are codewords generated by G. The Hamming weight of the
rows of WDP is at most ¢ while the minimum distance of the code generated by Gg
is larger than 2¢. Hence, every row of WDP is independent of the rows of G while

the rank of WDP is ¢. This implies that the rank of [G/'T|G ] is (k + t). O

Therefore, (5.10) also has a unique solution.

5.7.3 Implementation

I have done a proof-of-concept implementation of the upgraded IKKR cryptosystem

and the attack algorithm in Section using SageMath9. Oﬂ It is noted that the

'Source code: https://github.com/Yongwoo-Lee—ccl/crypt_ikkr
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Table 5.5: Average execution time for each step with 100 trials when ¢ = 2, n = 1024,
and k = 524.

KeyGen | Enc Dec | Proposed attack

597s 161 ms | 513 ms 188 ms

decryption does not utilize the decoding of the code C and thus I could consider C as
a random code rather than a well-designed code with efficient decoding such as the
Goppa codes. Table [5.5] shows the execution time on average for 100 trials running in
Intel Core 17-6700k (4.0 GHz). It can be seen that the proposed attack algo-
rithm finds the plaintext corresponding to a given ciphertext within 0.2s in a stock PC
that is faster than the elapsed time for legitimate decryption. During the 100 trials of

cryptanalysis with different keys, the attack algorithm always succeeds.
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Algorithm 6 Decoding for modified RM code

1: function DECODE(s; H)

2: r < PRANGE(H, s)

3: while True do

4: T <« r+ random codeword
5: ¢ — MODDEC(r, r, m)

6: if wt(r + ¢) < w then

7: Output r + ¢

8: end if

9: end while

10: end function

11: function MODDEC(y, r, m)
122 yeyl

13: if r = 0 then

14: Output MD decoding on RM(0, m)
15: else if » = m then

16: Output MD decoding on RM(r, ') or replaced (2", kyp) code
17: else

18: W'y") <y

19: Y=y -y

20: ¥ «— MODDEC(y”,r —1,m — 1)
21: Yt — (Y +y"9)/2

22: 4 «— MODDEC(y",r,m — 1)

23: y « (a|a - d)

24: end if

25: Output y°
26: end function

*0 is a; or O'I% for permuted block and identity, otherwise.

137



Algorithm 7 Modified pqsigRM signature scheme

Key Generation:
Using 011) and 012), generate a partially permuted generator matrix G
Generate H from G
Generate S and Q
Compute H «— SHQ
Secret key: H, S, Q
Public key: H’
Signing:
m is a message to be signed
i« {0,1}%
Find syndrome s < h(h(m|H’)|?)
T  §g—1gT
Perform decoding €’ < DECODE(s; H)
* Compute e’ « Q~'e'T, and then the signature is (m, e, 1)
Verification:
Check wt(e) < w A H'e? = h(h(m|H')|7)

If True, then return ACCEPT; else, return REJECT
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Chapter 6

Conclusion

In this dissertation, three main contributions are given as; i) a protocol of privacy-
preserving machine learning using network resources, ii) the development of approx-
imate homomorphic encryption that achieves less error and high-precision bootstrap-
ping algorithm without compromising performance and security, iii) the cryptanalysis
and the modification of code-based cryptosystems: cryptanalysis on IKKR cryptosys-
tem and modification of the pqsigRM, a digital signature scheme proposed to the PQC

standardization of NIST.

6.1 Privacy-Preserving Machine Learning Without Boot-

strapping

Iintroduced a method of privacy-preserving machine learning using the CKKS scheme
without bootstrapping. In the proposed method, bootstrapping is replaced by network
communication. The ciphertext of intermediate value is sent to the receiver, and the
receiver decrypts and re-encrypts the ciphertext and sends the message back. The
information-theoretic secrecy is adopted to secure the intermediate values during this
process.

This protocol is effective in the CKKS scheme. A deep neural network is impracti-
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cal in the CKKS scheme because of the expensive computation as well as error. Hence,
a larger scaling factor should be used for high precision. In this protocol, unlike boot-
strapping, the refreshing of ciphertext does not introduce additional error, and thus
the more level can be used. Moreover, full slots can be utilized, and thus the through-
put is much larger than the method with bootstrapping. In conclusion, following the

application might require the receiver less computation and less communication.

6.2 Variance-Minimization in the CKKS Scheme

I introduced two novel methods to improve the precision of the CKKS scheme. First,
SNR, a widely-used measure of performance when we deal with erroneous media such
as communication systems, was adopted for the error variance minimization of the
CKKS scheme. To maximize the SNR of encrypted data, I proposed a method to min-
imize the variance of errors. To do this, I replaced the high-probability upper bound
that has been in the tagged information so far with the variance of errors. As a result,
I could tightly manage the error, and the homomorphic operations were effectively
reordered to minimize the error variance. Second, I proposed a method to find the op-
timal approximate polynomial for the CKKS scheme in the same aspect of minimizing
the error variance. Especially, the newly proposed operation reordering and approxi-
mate polynomial were applied to the bootstrapping of the CKKS scheme, and thus,
the error performance of the bootstrapping of the CKKS scheme was improved. To
our best knowledge, this is the first bootstrapping algorithm that contemplates various
parameters, slot size, the error characteristics of the CKKS scheme, and the polynomial
evaluation algorithm. From its implementation on HEAAN and SEAL, it was shown
that the proposed bootstrapping algorithm achieves less variance of error in encrypted
data while consuming less level, compared to the previous works.

From the proposed method, now there are two criteria to reorder homomorphic

operations when I use the CKKS scheme: error variance reduction and computation
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time reduction. In addition to the proposed three examples in this dissertation, there
are various methodologies to reorder homomorphic operations to minimize the error,
and it will affect the error performance of the CKKS scheme significantly as the op-
eration becomes deep. Since a lot of studies to adjust the order of operations for a
general-purpose have been done in the field of compilers, applying the results of these
researches will lead to significant improvement in many applications using the CKKS
scheme. I leave application-specific reordering of homomorphic operations with com-

piler techniques as further work.

6.3 L2-Norm Minimization for the Bootstrapping of the
CKKS Scheme

I determined the near-optimal approximate polynomial of a modulus reduction func-
tion for bootstrapping of the CKKS scheme. I cast the problem of finding approximate
polynomials for a modulus reduction into an L2-norm minimization problem for which
the solution can be directly found without intermediates, such as a sine function. As the
approximation error in the proposed method is not subject to the sine function, it ap-
proximates the modulus reduction better than the best-known method [20]]. Using the
Chebyshev polynomials as a basis, I achieved a lower approximation error even with
a lower degree compared with the best-known method. Moreover, the proposed poly-
nomial can utilize the baby-step giant-step algorithm [20] and Paterson-Stockmeyer
algorithm [21]]. I re-investigated the number of nonscalar multiplications, scalar mul-
tiplications, and additions needed for the baby-step giant-step algorithm and showed
that the proposed polynomial reduces the required number of operations for the homo-
morphic approximate modulus reduction.

By casting the problem into a simple L2-norm optimization problem, I free the
approximation problem from the sine function. The proposed method can offer a boot-

strapping with fewer errors, particularly when a large scaling factor is selected. Thus,
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one can say that the choice of parameters has been expanded. Most importantly, the
proposed method is essential for applications that require accurate approximation be-
cause the approximation error cannot be lowered when previous methods are used.
In contrast, as the proposed method does not have such a lower bound, a better pa-
rameter can be selected. Consequently, bootstrapping consumes fewer levels when the
proposed method is used.

I proposed loose upper and lower bounds, which were far from the numerical re-
sult. The challenge of a tighter bound or a better method for finding the minimax
polynomial can be addressed in future work. In [20]], the number of operations is re-
duced by using the double angle formula of the cosine function, but it is challenging to
apply to the proposed method. A double angle formula-like approach for the proposed

method also requires further study.

6.4 Modified pgsigRM: RM Code-Based Signature Scheme

I introduced a new signature scheme, called modified pqsigRM, based on modified
RM codes with partial permutation as well as row appending and replacement in the
generator matrix. For any given syndrome, an error vector with a small Hamming
weight can be obtained. Moreover, the decoding method achieves indistinguishability
to some degree because it is collision-resistant. The proposed signature scheme resists
all known attacks against cryptosystems based on the original RM codes. The partially
permuted RM code improves the signature success condition in previous signature
schemes such as the CFS signature scheme and can improve signing time and key
size.

I further modified the RM code using row appending/replacement. The resulting
code is expected to be indistinguishable from random codes with the same hull dimen-
sion; moreover, the decoding of the partially permuted RM code is maintained. As-

suming indistinguishability and the hardness of DOOM with a high-dimensional hull,

142



I proved the EUF-CMA security of the proposed signature scheme. The challenge of

rigorously verifying these two assumptions will be addressed in the future.

6.5 Cryptanalysis of the IKKR Cryptosystem

It was shown that the prototype IKKR cryptosystem is equal to the McEliece cryp-
tosystem. The linearity of encryption allows the proposed cryptanalysis on the other
two IKKR cryptosystems. The proposed attack algorithm runs in polynomial-time; fur-
ther, although it depends on the implementation, it turns out that the attack algorithm
is even faster than the decryption in [52]. It is worth noting that the error vectors in
the McEliece-type cryptosystem should not have a certain structure; instead, it is de-
sirable to use random error vectors. When designing or using variants of the McEliece
cryptosystem, careful attention should be paid to the attacks using the structure error
structure in addition to the key distinguishing attacks.

As the proposed attack algorithm finds the plaintext corresponding to the given
ciphertext in polynomial-time only with the public key, even if conversion techniques
such as the one in [85] is used, the modified version of prototype and the upgraded

IKKR cryptosystems are vulnerable.
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