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Abstract

In this dissertation, three main contributions are given as; i) a protocol of privacy-

preserving machine learning using network resources, ii) the development of approx-

imate homomorphic encryption that achieves less error and high-precision bootstrap-

ping algorithm without compromising performance and security, iii) the cryptanalysis

and the modification of code-based cryptosystems: cryptanalysis on IKKR cryptosys-

tem and modification of the pqsigRM, a digital signature scheme proposed to the post-

quantum cryptography (PQC) standardization of National Institute of Standards and

Technology (NIST).

The recent development of machine learning, cloud computing, and blockchain

raises a new privacy problem; how can one outsource computation on confidential

data? Moreover, as research on quantum computers shows success, the need for PQC

is also emerging. Multi-party computation (MPC) is the cryptographic protocol that

makes computation on data without revealing it. Since MPC is designed based on

homomorphic encryption (HE) and PQC, research on designing efficient and safe HE

and PQC is actively being conducted.

First, I propose a protocol for privacy-preserving machine learning (PPML) that

replaces bootstrapping of homomorphic encryption with network resources. In gen-

eral, the HE ciphertext has a limited depth of circuit that can be calculated, called the

level of a ciphertext. We call bootstrapping restoring the level of ciphertext that has

exhausted its level through a method such as homomorphic decryption. Bootstrapping

of homomorphic encryption is, in general, very expensive in time and space. How-

ever, when deep computations like deep learning are performed, it is required to do

bootstrapping. In this protocol, both the client’s message and servers’ intermediate

values are kept secure, while the client’s computation and communication complexity

are light.
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Second, I propose an improved bootstrapping algorithm for the CKKS scheme and

a method to reduce the error by homomorphic operations in the CKKS scheme. The

Cheon-Kim-Kim-Song (CKKS) scheme (Asiacrypt ’17) is one of the highlighted fully

homomorphic encryption (FHE) schemes as it is efficient to deal with encrypted real

numbers, which are the usual data type for many applications such as machine learn-

ing. However, the precision drop due to the error growth is a drawback of the CKKS

scheme for data processing. I propose a method to achieve high-precision approximate

FHE using the following two methods. First, I apply the signal-to-noise ratio (SNR)

concept and propose methods to maximize SNR by reordering homomorphic oper-

ations in the CKKS scheme. For that, the error variance is minimized instead of the

upper bound of error when we deal with the encrypted data. Second, from the same per-

spective of minimizing error variance, I propose a new method to find the approximate

polynomials for the CKKS scheme. The approximation method is especially applied

to the CKKS scheme’s bootstrapping, where we achieve bootstrapping with smaller er-

ror variance compared to the prior arts. In addition to the above variance-minimizing

method, I cast the problem of finding an approximate polynomial for a modulus re-

duction into an L2-norm minimization problem. As a result, I find an approximate

polynomial for the modulus reduction without using the sine function, which is the

upper bound for the polynomial approximation of the modulus reduction. By using the

proposed method, the constraint of q “ Opm3{2q is relaxed as Opmq, and thus the

level loss in bootstrapping can be reduced. The performance improvement by the pro-

posed methods is verified by implementation over HE libraries, that is, HEAAN and

SEAL. The implementation shows that by reordering homomorphic operations and

using the proposed polynomial approximation, the reliability of the CKKS scheme is

improved. Therefore, the quality of services of various applications using the proposed

CKKS scheme, such as PPML, can be improved without compromising performance

and security.
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Finally, I propose an improved code-based signature scheme and cryptanalysis of

code-based cryptosystems. A novel code-based signature scheme with small parame-

ters and an attack algorithm on recent code-based cryptosystems are presented in this

dissertation. This scheme is based on a modified Reed-Muller (RM) code, which re-

duces the signing complexity and key size compared with existing code-based sig-

nature schemes. The proposed scheme has the advantage of the pqsigRM decoder

and uses public codes that are more difficult to distinguish from random codes. I use

pU,U ` V q-codes with the high-dimensional hull to overcome the disadvantages of

code-based schemes. The proposed a decoder which efficiently samples from coset

elements with small Hamming weight for any given syndrome. The proposed signa-

ture scheme resists various known attacks on RM code-based cryptography. For 128

bits of classical security, the signature size is 4096 bits, and the public key size is less

than 1 MB. Recently, Ivanov, Kabatiansky, Krouk, and Rumenko (IKKR) proposed

three new variants of the McEliece cryptosystem (CBCrypto 2020, affiliated with Eu-

rocrypt 2020). This dissertation shows that one of the IKKR cryptosystems is equal to

the McEliece cryptosystem. Furthermore, a polynomial-time attack algorithm for the

other two IKKR cryptosystems is proposed. The proposed attack algorithm utilizes the

linearity of IKKR cryptosystems. Also, an implementation of the IKKR cryptosystems

and the proposed attack is given. The proposed attack algorithm finds the plaintext

within 0.2 sec, which is faster than the elapsed time for legitimate decryption.

keywords: Approximate arithmetic, bootstrapping, Cheon-Kim-Kim-Song (CKKS)

scheme, code-based cryptography, cryptanalysis, cryptography, data privacy, digital

signatures, error correction codes, fully homomorphic encryption (FHE), lattice-based

cryptography, McEliece cryptosystem, polynomial approximation, post-quantum

cryptography (PQC), privacy-preserving machine learning (PPML), public-key

cryptography, Reed-Muller (RM) codes

student number: 2017-34837
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Chapter 1

Introduction

The recent development of machine learning, cloud computing, and blockchain raises

a new privacy problem; how can one write a smart contract on a public blockchain or

outsource computation such as machine learning for confidential data? The need for

cryptographic primitives for such scenarios has been exploded, and there have been

extensive studies. Multi-party computation (MPC) is an encryption protocol that al-

lows various users to collaborate to perform computations without revealing confi-

dential data while hostile users exist. Privacy-preserving machine learning (PPML) is

the most promising of these and is very useful in many applications, such as health-

care and finance, to perform machine learning algorithms on confidential data. MPC

is built upon various cryptographic primitives, such as homomorphic encryption (HE)

and public-key cryptography [2].

The cryptographic primitives should resist attacks using quantum computers as

well as classical computers. However, polynomial-time quantum algorithms for prime

factorization and the discrete logarithm problem have been proposed [3]. Hence, clas-

sical public-key algorithms such as RSA and elliptic curve cryptosystems will no

longer be used after the advent of quantum computing. It is PQC that the public-key

cryptography resists attacks using quantum computers. The lattice-based and code-

based cryptography is the most promising candidate of PQC. Hence, the cryptographic
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primitives in this dissertation are based on hard problems of lattice and coding theory.

In this dissertation, three main contributions are given as; i) a protocol of privacy-

preserving machine learning using network resources, ii) the development of approx-

imate homomorphic encryption that achieves less error and high-precision bootstrap-

ping algorithm without compromising performance and security, and iii) the crypt-

analysis and the modification of code-based cryptosystems: cryptanalysis on Ivanov-

Kabatiansky-Krouk-Rumenko (IKKR) cryptosystem and modification of the pqsi-

gRM. The pqsigRM is a digital signature scheme proposed for the post-quantum cryp-

tography (PQC) standardization of the NIST.

First, I propose an efficient protocol that dismisses the most time-consuming op-

eration of PPML using HE, bootstrapping, by using communication resources. Homo-

morphic encryption enables the computation of encrypted data, but one of its draw-

backs is computational complexity. Usually, the complexity of basic operations of

homomorphic encryption is Opl2q, where l is the level of a ciphertext, which is the

maximum depth of operation that can be performed using the ciphertext. However, for

the accuracy of machine learning, depth is important, which inevitably increases the

amount of computation. The bootstrapping initializes the level of the ciphertext; the

complexity of the homomorphic operation can be maintained at any depth. However,

bootstrapping is an expensive operation. In this dissertation, I propose a method of

PPML without bootstrapping using communication resources. In other words, it re-

places bootstrapping with a procedure that induces a small amount of communication

between participants.

Next, I propose methods of improving the approximate HE using variance-

minimizing and convex optimizations. The Cheon-Kim-Kim-Song (CKKS) scheme

is one of the highlighted fully homomorphic encryption (FHE) schemes as it is ef-

ficient to deal with encrypted complex(real) numbers, which are the usual data type

for many applications such as machine learning [4]. In this dissertation, I propose

a generally applicable method to achieve high-precision approximate FHE using the
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following two techniques. First, I apply the concept of SNR and propose a method

of maximizing SNR of encrypted data by reordering homomorphic operations in the

CKKS scheme. For that, the variance of error of encrypted data is minimized instead

of the upper bound of error when we deal with the ciphertext. Second, from the same

perspective of minimizing error variance, I propose a new method of finding the ap-

proximate polynomials for the CKKS scheme. The approximation method is especially

applied to the bootstrapping of the CKKS scheme, where I achieve a smaller error vari-

ance in the bootstrapping compared to the prior arts. The performance improvement

of the proposed methods for the CKKS scheme is verified by implementation over HE

libraries, HEAAN, and SEAL. The implementation results show that by reordering

homomorphic operations and using the proposed polynomial approximation, the mes-

sage precision of the CKKS scheme is improved. Specifically, the proposed method

uses only depth 8, although the bootstrapping error for the CKKS method is less than

the error obtained using depth 11 of the previous method. I also suggest a loose lower

bound for bootstrapping error in the CKKS scheme and show that the error by the pro-

posed method is only 2.8 bits on average larger than the lower bound. Therefore, the

quality of services of various applications using the proposed CKKS scheme, such as

privacy-preserving machine learning, can be improved without compromising perfor-

mance and security.

Finally, I propose an efficient code-based signature scheme and cryptanalysis of

code-based cryptosystems. Especially, the pqsigRM, a first-round candidate of PQC

standardization by NIST and its modification, are included. By using the proposed

modified RM codes and their decoding, one can find a small-Hamming-weight er-

ror vector for any given received vector. Hence, it reduces the required iteration in

code-based signature schemes, such as the signature scheme proposed by CFS. The

proposed signature scheme has a small parameter size. In addition, I propose here that

one of the IKKR cryptosystems is equivalent to the McEliece cryptosystem and crypt-

analysis for the other two. The implementation results show that the proposed attack

3



algorithm is efficient so that it performs faster than the legitimate decryption.

1.1 Homomorphic Encryption and Privacy-Preserving Ma-

chine Learning

Homomorphic encryption enables outsourcing arbitrary computation over encrypted

data, and this privacy-preserving property is attractive for outsourcing of machine

learning, called machine learning as a service. After Gentry’s blueprint [2], it has

been widely studied and several HE schemes have been proposed [4–12]. As HE can

handle encrypted data without decryption, it is suitable for data-rich applications that

require privacy. Particularly, since Cheon et al. proposed a HE scheme for complex

numbers [4], called the CKKS scheme, the utilization of HE in deep learning methods

has become easier for privacy-preserving applications [13–18].

Another important observation by Gentry is that encryption contains noise and

the noise level grows as operations are performed on the ciphertext. It is necessary

to deal with noise to avoid overwhelming the data, and there are two types of HE

schemes for this purpose. The first is somewhat homomorphic encryption (SHE), in

which the ciphertext size and computation increase at least linearly with the depth

of the circuit. SHE is an appropriate choice for low-depth circuits; however, it has

a scaling problem. The other method is an FHE. Gentry proposed the bootstrapping

technique to refresh the noise, and thus, the parameter size and computation could

be fixed regardless of circuit depth. However, in general, the bootstrapping of FHE

schemes requires a considerable amount of computation.

The leveled HE (LHE) has a limitation of the depth of the circuit that can be per-

formed, that is, the level of ciphertext. A larger parameter should be used to increase

the level of a ciphertext. In order to perform a circuit that is deeper than the level of

ciphertext, the bootstrapping should be done. Thus, the deep neural network requires

significant computational time due to the bootstrapping or a large parameter in order to
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avoid bootstrapping. So far, privacy-preserving machine learning has used the limited

depth of the neural network.

In this dissertation, a novel method to evaluate deep neural networks over en-

crypted data without bootstrapping. The bootstrapping is replaced by communication

resources; the data of the sender is protected by homomorphic encryption, and the

intermediate values are protected by information-theoretic secrecy. Unlike the hybrid

methods using MPC and HE, this method optimizes the computation and communi-

cation of the client. I provide the success probability of the proposed method with the

CKKS scheme as it is not straightforward and show that a protocol with less level loss

and less error is achieved with a negligible failure probability. Besides, it is required

to use the sparse packing method in the CKKS scheme when bootstrapping is required

as the bootstrapping error is proportional to the square of slot size. With the proposed

method, the full slots can be utilized without additional error growth, which results in a

significant reduction in computation time and communication of both server and client

in the amortized manner. Compared to the hybrid methods, the proposed technique

enables the simpler structure of the client, which might reduce the size of hardware

while securing the structure of the model, which is an asset of the service provider.

1.2 High-Precision CKKS Scheme and Its Bootstrapping

The CKKS scheme is an approximated homomorphic encryption scheme [4] using

ring-learning with error (RLWE). The CKKS scheme [4] is one of the highlighted FHE

schemes as it is efficient to deal with real (or complex) numbers, which is the usual

data type for many applications such as deep learning and regression. When we deal

with arbitrary precision real numbers using other FHE schemes such as (Brakerski)-

Fan-Vercauteren ((B)FV) [7, 8, 11] and Brakerski-Gentry-Vaikuntanathan (BGV) [9]

schemes, the size of ciphertext has an exponential growth rate according to the level,

where the level of ciphertext is defined by the maximum depth of operation that can be
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homomorphically evaluated without bootstrapping. However, the ciphertext size has a

polynomial growth rate according to the level in the CKKS scheme.

Bootstrapping for the CKKS scheme was first proposed by Cheon et al. [19]. Sub-

sequently, several studies have been conducted to improve bootstrapping for CKKS

schemes [20–22], and they commonly perform modulus reduction homomorphically

by approximating it to a scaled sine function. The CKKS scheme is promising and

used widely; however, the improvement of bootstrapping is crucial as most machine

learning methods require operations of significant depth.

Homomorphic evaluation of the modulus reduction is the key part of the boot-

strapping of the CKKS scheme. As only addition and multiplication can be evaluated

homomorphically, and modulus reduction cannot be represented by addition and mul-

tiplication, a polynomial approximation for modulus reduction is required.

In most bootstrapping methods studied so far, the scaled sine function (or shifted to

the cosine function) is deemed to approximate the modulus reduction [19–21]. This is

because the sine function is a periodic function that is close to a first-order polynomial

near the origin, and polynomial approximations to trigonometric functions have been

studied a lot. Thus, a polynomial approximation for the scaled sine function is used to

evaluate the modulus reduction homomorphically. In [19], the sine function was ap-

proximated by Taylor expansion of an exponential function using eiθ “ cos θ` i sin θ

and the double angle formula ei2θ “ peiθq2. The Chebyshev interpolation method im-

proves the polynomial approximation of the sine function [21]. Based on the fact that

the size of a message is significantly less than the ciphertext modulus, better nodes for

Chebyshev interpolation was selected, and the approximation was refined [20].

1.2.1 Near-Optimal Bootstrapping of the CKKS Scheme Using Least

Squares Method

In this dissertation, instead of approximating the sine function, I propose to cast the

problem of finding approximate polynomials for a modulus reduction into the L2-norm
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minimization problem for which an optimal solution can be directly computed. Thus,

the fundamental error caused by the use of trigonometric functions can be conquered.

An approximation by the minimax polynomial for the modulus reduction is desirable;

however, the shape of the modulus reduction function makes it difficult to find the

minimax polynomial. Thus, instead, I propose a discretized optimization method that

can be solved efficiently with a unique solution. Through the solution of the modified

discretized problem, I can reduce the degree of the approximate polynomial for the

modulus reduction while achieving a low margin of error. Consequently, operations

required for the homomorphic modulus reduction are reduced compared with the best-

known method [20], where the double angle formula is excluded.

When conventional methods are used, the sine function dominates the approxima-

tion error; in other words, the approximation error cannot be less than the difference

between the sine function and modulus reduction. Therefore, the message size is lim-

ited to m ă q2{3, and thus plaintext precision is also limited, where q denotes a value

of the ciphertext modulus. However, the proposed method does not use the sine func-

tion, and thus I can obtain a precise approximate polynomial or utilize a message that is

larger in size. For example, when m{q ă 2´10, the proposed method finds an approx-

imate polynomial with a maximum error of less than 2´40 with only a circuit depth of

7, whereas the best-known modified Chebyshev interpolation method cannot because

the error saturates to 2´27. Therefore, the proposed method is essential for applica-

tions that require precise calculations. Moreover, accurate approximate polynomials

for modulus reductions of larger messages can be found. For example, I achieve 2´20

error for m{q « 2´6 with only a depth of 7, whereas conventional methods cannot be

used with the message m{q « 2´6 because the error saturates to 2´15.

This means that a user can handle a large, accurate number, and the selection of

parameters for the CKKS scheme can be expanded using the proposed method. Thus,

the proposed method using the L2-norm minimization makes it possible to take a trade-

off between the computational complexity (the degree of approximate polynomial) and
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the approximation error for the CKKS scheme. By using the proposed method, the

constraint of q “ Opm3{2q is relaxed as Opmq, and thus the level loss in bootstrapping

can be reduced.

1.2.2 Variance-Minimizing and Optimal Bootstrapping of the CKKS

Scheme

The CKKS scheme provides the trade-off between the efficiency and precision of mes-

sages, where messages in the CKKS scheme contain errors, and the errors are accu-

mulated during homomorphic operations. To our best knowledge, research to the date

has provided high-probability upper bounds for errors in encrypted data [4,19,23]. As

the processing of messages in the CKKS scheme proceeds, the upper bound of errors

in encrypted data is increased, and thus it becomes a loose and useless bound.

In previous studies on the error of the CKKS scheme, the probabilistic concept

has been used to some extent. Error control in the CKKS scheme so far provided the

high-probability upper bounds of error [4, 19] or average precision of message [21].

The high-probability upper bounds are derived from the distribution of error, and the

average precision of the message is about the average error, which is a probabilistic

term. The CKKS scheme is considered as an erroneous channel, and thus methodolo-

gies from communication theory can be adopted, which are the power ratio of a signal

(message) and errors. The signal power can be controlled by the scaling factor of the

message, and I show how to minimize the noise power during approximate homomor-

phic operations in the CKKS scheme. Since the errors in the CKKS system are addi-

tive, the central limit theorem can be used to treat the error as a Gaussian distribution.

Therefore, it is better to control the variance of errors rather than the high probability

upper bound of errors and keep them as tagged information for the ciphertext.

Since a drawback of the CKKS scheme is that errors are accumulated, many stud-

ies have been conducted to reduce errors. Recently, Kim et al. proposed a new method

to reduce errors in encrypted data of the CKKS scheme and its residue number system
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(RNS) variants using lazy rescaling and different scaling factors at each level [23]. Al-

though the error was reduced in their paper, the high-probability upper bound was still

used as a measure of error. Especially, error amplification during the bootstrapping in

the CKKS scheme has been studied in a lot of research. After the first bootstrapping

method was proposed in [19], the Chebyshev interpolation method has been applied to

the homomorphic evaluation of modulus reduction [20], a method for direct approx-

imation was proposed in [24], and the algorithm for finding minimax approximate

polynomial and inverse sine method was proposed in [25].

In this dissertation, I propose a method of managing the variance of errors to max-

imize the signal-to-noise ratio (SNR) of the messages in the CKKS scheme rather than

minimizing the high-probability upper bounds. First, to minimize the error variance of

the message, a criterion for optimizing the order of homomorphic operations is pro-

posed. In the proposed method, the error variance of the CKKS scheme is treated as

a value to be controlled rather than the upper bound of error. This method can im-

prove the stability of various applications that use approximate homomorphic encryp-

tion by reordering homomorphic operations, and it can also improve the accuracy of

the resultant message. The second contribution is the optimization of the approximate

polynomials in terms of the error variance of the message for the CKKS scheme. The

method is the first method to find the optimal approximation polynomial that mini-

mizes not only the approximation error but also the error in polynomial basis that is

amplified by coefficients. I improve the bootstrapping algorithm of the CKKS scheme

using the proposed polynomial approximation method, where bootstrapping is imple-

mented with smaller errors and less depth consumption. It is shown in this dissertation

that the proposed method reduces the magnitude of bootstrapping error compared to

the previous work [25]. Moreover, the proposed method resolves the problem that the

approximate polynomials have large coefficients, which could only be solved by using

the double angle formula in the previous work. However, the proposed method makes

it possible to use a direct approximation for the modulus reduction. The comparison
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with the previous methods shows that by using the proposed method, I can improve

the message precision after bootstrapping while reducing the level consumption for

bootstrapping. Specifically, the proposed method uses only depth 8, although the boot-

strapping error for the CKKS method is less than the error obtained using depth 11 of

the previous method.

1.3 Efficient Code-Based Signature Scheme and Cryptanal-

ysis of the Ivanov-Kabatiansky-Krouk-Rumenko Cryp-

tosystems

Recently, code-based cryptographic algorithms have been extensively studied in PQC.

Code-based cryptography is based on the syndrome decoding problem and its vari-

ants. The syndrome decoding problem is to find a vector e satisfying HeT “ sT and

wtpeq ď w, where H is a parity check matrix of a random pn, kq code, s is a random

syndrome vector, w is a small value, and wtpeq denotes the Hamming weight of a vec-

tor e. The code-based cryptosystems and signature schemes are based on the hardness

of the decoding problem [26].

Berlekamp and McEliece first proved the hardness of the syndrome decoding prob-

lem [26] and McEliece proposed a cryptosystem based on Goppa codes [27]. Thus, an

adversary has to solve the decoding problem or distinguish a permuted Goppa code,

while the legitimate users can still properly decode. Although lots of variants of the

McEliece cryptosystem have been proposed using different codes, for some of them,

key distinguishing attacks have been discovered in [28–30].

After McEliece first introduced a code-based cryptosystem (called the McEliece

cryptosystem) [27], many variants of it have been proposed. There are several code-

based public-key encryptions and key-establishment algorithms in the second round

of the PQC standardization by NIST [31]. In addition to the code-based public-key

encryption schemes, code-based signature schemes are also proposed [32]– [33] and
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[34]. I present a novel code-based signature scheme called modified pqsigRM. Also,

I provide a polynomial-time attack algorithm for one of the IKKR cryptosystems that

is a recently proposed code-based cryptosystem. Moreover, it is shown that the other

two IKKR cryptosystems are equivalent to the McEliece cryptosystem, so it is not an

improvement of the McEliece cryptosystem.

1.3.1 Modified pqsigRM: An Efficient Code-Based Signature Scheme

The modified pqsigRM is based on a modified Reed–Muller (RM) code [34–36],

which reduces the signing complexity and key size compared with existing code-

based signature schemes. In fact, it strengthens pqsigRM submitted to NIST for post-

quantum cryptography standardization [37]. The proposed scheme has the advantage

of the pqsigRM decoder and uses public codes that are more difficult to distinguish

from random codes. I use pU,U ` V q-codes with the high-dimensional hull to over-

come the disadvantages of code-based schemes. The proposed decoder samples from

coset elements with small Hamming weight for any given syndrome and efficiently

finds such an element. With the modified RM code, the proposed signature scheme re-

sists various known attacks on RM-code-based cryptography. For 128 bits of classical

security, the signature size is 4096 bits, and the public key size is less than 1 MB.

Courtois, Finiasz, and Sendrier proposed the CFS signature scheme [38], which

is a code-based signature scheme using a full-domain hash (FDH) approach. In this

scheme, t! hashes and decoding are required on average to sign a message when an

pn, kq Goppa code with error correction capability t is used. It is proposed to use high-

rate Goppa codes, which have relatively small error correction capability t “ n´k
logn , to

reduce the signing time. Therefore, it has a large signing complexity and certain draw-

backs in terms of parameter scaling. Moreover, it has been shown in [29] that high-rate

Goppa codes can be distinguished from random codes. This falsifies the assumption of

existential unforgeability under a chosen message attack (EUF-CMA) security proof

in [39], which is based on the indistinguishability of Goppa codes. Although Moro-
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zov et al. proved the strong EUF-CMA security of the CFS signature scheme without

the indistinguishability of Goppa codes [40], the large key size and expensive signing

remain as drawbacks.

There are several variants of the CFS signature scheme, such as signature schemes

using LDGM codes [41] and block wise-triangular secret key [42]. To find a signature

with a small Hamming weight, the scheme in [41] uses a sparse coset element added

to a codeword with a small Hamming weight. Even though this is efficient and has a

small key size, an attack algorithm was presented in [43]. An attack algorithm for the

signature scheme using a blockwise-triangular secret key was also proposed [44].

The Kabatianskii-Krouk-Smeets (KKS) signature scheme [45] and its variants [46,

47] take a different approach than CFS signature scheme. However, owing to the attack

proposed in [48], these are considered (at best) to be one-time signature schemes.

Moreover, from the attacks in [49], it is known that the parameters in the KKS scheme

and its variants should be carefully chosen.

SURF is a variant of CFS signature scheme using pU,U ` V q-codes [50]. SURF

uses pn, kU ` kV q binary codes defined by tpu|u ` vq|u P U,v P V u, where U

and V are pn{2, kU q and pn{2, kV q random binary codes, respectively. A variant of

the Prange decoder is applied to SURF to find an error vector with a small Hamming

weight. The security of SURF is based on the decoding-one-out-of-many (DOOM)

problem, in which a solution for the syndrome decoding problem is sought in the pres-

ence of several syndromes. Unfortunately, as it has been demonstrated that the hull of

any pU,U ` V q-code is highly probable to be a two-repetition code when U and V

are random binary codes [50], the hull of the public key can be used for key attacks on

SURF. In the recently proposed signature scheme, Wave [32], the generalized ternary

pU,U ` V q-codes are used instead of binary codes as they efficiently resist the hull

attack in [50]. Moreover, finding errors with large Hamming weight for the given syn-

drome allows small parameters. A tighter security reduction using rejection sampling

and preimage samplable functions [51] was proved in [32].
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In this dissertation, a new code-based signature scheme using binary codes with

a pU,U ` V q-code as its subcode is proposed. For two linear codes C1 and C2, C2

is called a subcode of C1 if all codewords in C2 are in C1. The subcode used in the

proposed signature scheme is a binary pU,U ` V q-code, where U and V are obtained

by modifying the RM codes. I design V andUK to have a sufficient number of common

codewords, where UK denotes the dual code of U . By the relationships between U and

V , it is shown that the proposed signature scheme resists the attack for pU,U ` V q-

codes in [50]. Further, an efficient and randomized decoding algorithm is proposed.

This algorithm makes it possible to reduce the key size and signature length. As the

codes in the proposed signature scheme are a modification of RM codes, the decoding

algorithm makes use of the recursive structure. The proposed signature scheme is an

improvement of pqsigRM [37] submitted to NIST for PQC standardization, and it

resolves the weaknesses of early versions of pqsigRM by modifying the public code.

Moreover, I ensure the distinguishability of the public code of the proposed signature

scheme.

1.3.2 Ivanov-Kabatiansky-Krouk-Rumenko Cryptosystems and Its

Equality

Recently, Ivanov, Kabatiansky, Krouk, and Rumenko proposed new variants of the

McEliece cryptosystem at CBCrypto 2020, affiliated with Eurocrypt 2020 [52]. The

IKKR cryptosystems use structured error vectors with arbitrary Hamming weight

rather than a random error vector with Hamming weight less than or equal to t. The

goal of IKKR cryptosystems is to make information set decoding harder by adding

an error vector with a larger Hamming weight. There are three algorithms proposed

in [52], which are prototype, modified version of prototype, and upgraded IKKR cryp-

tosystems.

In this dissertation, I propose cryptanalysis of the modified version of the proto-

type and the upgraded IKKR cryptosystems. The linearity of encryption of the IKKR

13



cryptosystems is used for the proposed cryptanalysis. In other words, I construct a

system of linear equations to find plaintext with public-key and the corresponding

ciphertext. By solving the system of linear equations, a polynomial-time attack algo-

rithm is performed against the IKKR cryptosystems. I also prove that the prototype

IKKR cryptosystem is equal to the McEliece cryptosystem. Besides, I present a proof-

of-concept implementation of the IKKR cryptosystems and the proposed attack algo-

rithm. It turns out that the proposed attack finds the plaintext corresponding to a given

ciphertext within 0.2s in a desktop computer, which is even faster than the proposed

legitimate decryption.

1.4 Organization of the Dissertation

The remainder of the dissertation is organized as follows. In Chapter 2, the prelimi-

naries for PPML, HE, and code-based cryptography are given. I propose a protocol for

PPML such that the bootstrapping is replaced by a communication network resource in

Chapter 3 and thus, an accurate PPML is possible with less error and higher through-

put. The method of minimizing error variance in approximate HE is given in Chapter

4. It is also proposed the theoretical bound-achieving bootstrapping algorithm in the

same chapter. I show the efficient code-based signature scheme in Chapter5 as well

as the cryptanalysis and equivalence of the IKKR cryptosystem. Finally, I conclude in

Chapter 6 with remarks.
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Chapter 2

Preliminaries

2.1 Basic Notation

Vectors are denoted in boldface such as x and every vector is a column vector. Matrices

are denoted by boldfaced capital letters, for example, A. I denote the inner product of

two vectors by 〈¨, ¨〉 or simply ¨. Letuˆv denote the component-wise multiplication of

two vectors u and v. Matrix multiplication is denoted by ¨ or can be omitted when it is

unnecessary. xÐ D denotes the sampling x according to a distribution D. When a set

is used instead of distribution, it means that x is sampled uniformly at random among

the set elements. Random variables are denoted by capital letters such as X . ErXs

and V arrXs denote the mean and variance of random variable X , respectively. Some

capital letters may represent something other than a random variable such as a constant,

but this is context-sensitive. Lp-norm of a vector is denoted by }x}p “ p
ř

i xris
pq
´p,

where xris denotes the i-th element of vector x.

px0|x1q denotes the concatenation of two vectors x0 and x1. For example, hpm|rq

means the hash function hwith input pm|rq, where pm|rq represents the concatenation

of binary representation of vector m and a random value r. xσ denotes that a vector

x is permuted by a permutation σ, for example, xσ “ px1, x3, x2, x0q, where x “

px0, x1, x2, x3q and σ “ p1, 3, 2, 0q.
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AJ denotes the matrix which contains only columns with indices in J of A,

where J is a set of indices. The notation rA|Bs refers the augmented matrix given the

matrices A and B.

2.2 Privacy-Preserving Machine Learning and Security

Terms

2.2.1 Privacy-Preserving Machine Learning and Security Terms

Privacy-preserving machine learning is the protocol composed of two participants:

sender and receiver. The receiver has restricted computation ability, and the sender

has powerful computation ability and a trained model. Another name for privacy-

preserving machine learning is secure machine learning as a service (MLaaS). Unlike

ordinary machine learning as a service, a security issue is considered in the privacy-

preserving machine learning, which means that the input of the receiver is kept secure

in the procedure.

Privacy-preserving is a sort of secure two-party computation (2PC). 2PC is firstly

proposed by Yao [53], Goldreich, Micali, and Wigderson [54]. Protocols for 2PC allow

two parties to compute any function f of their private inputs x and θ without revealing

anything more than the output fpx, θq of the function. When there are two or more than

two parties, it is called secure MPC. In this section, I introduce some requirements that

correspond to 2PC.

Non-Interactivity

Each player sends just a single message in 2PC in a setting with a non-interactivity

requirement. The first player, the receiver, computes some message m1 based on his

input x and sends m1 to the second player, the sender. The sender then computes a

response m2 based on its input θ and the message m1, and then sends it back to the

receiver. After receiving m2, the receiver can finally compute and output fpx, θq. In a
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setting with a non-interactivity requirement, it is required that only the receiver obtains

the output fpx, θq; otherwise, the sender can choose arbitrary θ of his choice, and then

obtain fpx, θq as many as possible. This leaks information of x.

Succinctness

Protocols for a succinct non-interactive secure 2PC allows both the communication

complexity and receiver running time of an honest receiver is essentially independent

of the running time of f . Gentry’s breakthrough result on FHE yields a succinct non-

interactive secure 2PC [2]. Assuming an FHE scenario, the receiver encrypts x by

FHE and his own key, then the ciphertext Encpxq and the public key pk are sent to

the sender. The sender evaluates f homomorphically using his own input θ. During

the homomorphic encryption, the sender cannot obtain information of x. After the

homomorphic evaluation, Encpfpx, yqq is given to the sender; finally, the sender sends

it to the receiver. As only the receiver can decrypt, the receiver can figure out fpx, yq.

It is noted here that the communication complexity is two ciphertexts, and all the

computation required to the receiver is one encryption and one decryption; therefore,

it is succinct.

2.2.2 Privacy-Preserving Machine Learning

The capability of HE performing multiplication and addition enables secure evalu-

ation of machine learning whose core operations are generalized matrix multiplica-

tions, such as convolution. It is preferable to use a pre-trained network without mod-

ification as access to training data is not always guaranteed, and it is advantageous

to utilize many of the fruitful results of machine learning in plaintext. However, the

non-polynomial operations, such as activation and pooling, are not supported by HE

schemes. Thus, it is required to re-design a HE-friendly network or perform non-

polynomial operations with approximation polynomials.
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HE-Friendly Neural Networks

In order to use HE efficiently, the network is modified so that it fits HE algorithms.

For example, the comparison operation is quite tricky in HE, and thus max pooling is

replaced by mean pooling [15]. The ReLU function is replaced by several polynomial

activation functions [16]. The depth of the neural network can also be adjusted so that

it does not require a large ciphertext [55].

Pre-Trained Neural Networks

When we use the HE-friendly neural network, the network should be re-trained. Hence,

it is required to full access to the training data, which is quite expensive. Moreover,

there is some restriction on activation, pooling, and depth, the performance of the

algorithm drops.

In contrast, the use of pre-trained networks does not require full access to the train-

ing data nor accuracy drop. HE schemes do not support modern activation functions

and pooling in general, and thus there exist two approaches: approximation with i)

FHE method and ii) the hybrid method with MPC. In the FHE approach, the non-

polynomial layers are replaced by approximate polynomials, and in the hybrid ap-

proach, the non-polynomial layers are performed by MPC protocols.

2.3 The CKKS Scheme and Its Bootstrapping

2.3.1 The CKKS Scheme

This section briefly introduces the CKKS scheme [4] and its RNS variant, the RNS-

CKKS scheme [20, 56]. For a positive integer M , let ΦM pXq be the M -th cyclotomic

polynomial of degreeN , whereM is a power of two,M “ 2N , and ΦM pXq “ XN`

1. Let R “ Z{ 〈ΦM pXq〉 be the ring of integers of a number field S “ Q{ 〈ΦM pXq〉 ,

where Q is the set of rational numbers and I write Rq “ R{qR.
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The CKKS scheme [4] and its RNS variants [20,23,56] provide homomorphic op-

erations on encrypted real number data with errors. This is done by canonical embed-

ding and its inverse. Recall that canonical embedding Emb of apXq P Q{ 〈ΦM pXq〉

into CN is the vector of the evaluation values a at the roots of ΦM pXq and Emb´1

is its inverse. Let π denote a natural projection from H “ tpzjqjPZ˚M
: zj “ z´ju

to CN{2, where Z˚M is the multiplicative group of integer modulo M . The encoding

pCN{2 Ñ Rq and decoding are defined as follows.

• Ecdpz; ∆q: For an pN{2q-dimensional vector z, the encoding procedure returns

mpXq “ Emb´1
´

X

∆ ¨ π´1pzq
T

EmbpRq

¯

P R,

where ∆ is the scaling factor and
X

π´1pzq
T

EmbpRq denotes the discretization of

π´1pzq into an element of EmbpRq.

• Dcdpm; ∆q: For an input polynomial mpXq P R, output a vector

z “ πp∆´1 ¨ Embpmqq P CN{2,

where its entry of index j is given as zj “ ∆´1 ¨mpζjM q for j P T , where ζM

is the M -th root of unity and T is a multiplicative subgroup of Z˚M satisfying

Z˚M{T “ t˘1u. This can be basically represented by multiplication by anN{2ˆ

N matrix U whose entries are Uij “ ζji , where ζi :“ ζ5i .

The infinity norm of Embpaq for apXq P R is called the canonical embedding norm

of a, denoted by }a}can
8 “ }Embpaq}8. Refer [4] for the property of the canonical

embedding norm.

Adopting notations in [4] and [2], I define three distributions as follows. For a

real number σ ą 0, DGpσ2q denotes the distribution of vectors in ZN , whose en-

tries are sampled independently from the discrete Gaussian distribution of variance

σ2. HWT phq is the set of signed binary vectors in t0,˘1uN with Hamming weight

h and ZOpρq denotes the distribution of vectors from t0,˘1uN with probability ρ{2
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for each of ˘1 and probability of being zero 1 ´ ρ. Suppose that we have ciphertexts

of level l for 0 ď l ď L, where level l means the maximum number of possible multi-

plications before bootstrapping. For convenience, I fix a power-of-two base p ą 0 and

a power-of-two modulus q and let ql “ q ¨ pl. The base integer p is usually equivalent

to the scaling factor ∆.

The CKKS scheme is defined with the following key generation, encryption, de-

cryption, and the corresponding homomorphic operations.

• KeyGenp1λq:

– Given the security parameter λ, we choose a power-of-two M , an integer

h, an integer P , a real number σ, and a maximum ciphertext modulus Q,

such that Q ě qL.

– Sample the following values:

sÐ HWT phq, aÐ RqL , eÐ DGpσ2q.

– Set the secret key and the public key as

sk :“ p1, sq,pk :“ pb, aq P R2
qL
,

respectively, where

b “ ´as` e pmod qLq .

• KSGenskps
1q:

Sample a1 Ð RPqL and e1 Ð DGpσ2q. Output the switching key

swk :“ pb1, a1q P R2
PqL

,

where b1 “ ´a1s` e1 ` Ps1 pmod PqLq.

– Set the evaluation key as evk :“ KSGenskps
2q.
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• Encpkpmq:

Sample v Ð ZOp0.5q and e0, e1 Ð DGpσ2q.

Output c “ v ¨ pk` pm` e0, e1q pmod qLq.

• Decskpcq:

Output m̄ “ 〈c, sk〉.

• Addpc1, c2q:

For c1, c2 P R2
ql

, output

cadd “ c1 ` c2 pmod qlq .

• Multevkpc1, c2q:

For c1 “ pb1, a1q and c2 “ pb2, a2q P R2
ql

, let

pd0, d1, d2q :“ pb1b2, a1b2 ` a2b1, a1a2q pmod qlq .

Output

cmult “ pd0, d1q ` KSevkpp0, d2qq,

where t¨s denotes the rounding operation.

• cAddpc1,a; ∆q:

For a aCN{2 and a scaling factor ∆, output

ccadd Ð c` pEcdpa; ∆q, 0q.

• cMultpc1,a; ∆q:

For a aCN{2 and a scaling factor ∆, output

ccmult Ð Ecdpa; ∆q ¨ c.
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• RSlÑl1pcq:

For c P R2
ql

, output

cRS “

Z

ql1

ql
c

V

pmod ql1q .

The subscript is omitted when l1 “ l ´ 1.

• KSswkpcq:

For c “ pc0, c1q P R2
ql

, output

cKS “ pc0, 0q `
X

P´1 ¨ c1 ¨ swk
T

pmod qlq .

I note that cmult “ pd0, d1q ` KSevkp0, d2q. The key switching techniques are used to

provide various operations such as complex conjugate and rotation.

There are computationally more efficient variants of the CKKS scheme, namely

the RNS-CKKS scheme in [20] and [56], and the basic operations supported therein

are similar. Hence, it is worth noting that the proposed methods in this dissertation aim

for all the variants of the CKKS scheme as well as the original CKKS scheme.

2.3.2 CKKS Scheme in RNS

The RNS-CKKS scheme performs all operations in RNS. In other words, the power-

of-two modulus ql “ q ¨ pl is replaced with
śl
i“0 pi, where pi’s are chosen as primes

that satisfy pi “ 1 pmod 2Nq to support efficient number theoretic transform (NTT).

These prime numbers are also chosen such that p{pi is in the range p1 ´ 2η, 1 ` 2ηq,

where η is kept small, for a scaling factor p. I note that q0 “ p0 is much greater than p

as the coefficients of final message should not be greater than the ciphertext modulus

q0.

The RNS-CKKS scheme differs from the original CKKS scheme in the rescaling

and key switching. To take advantage of RNS, I use hybrid key switching technique

proposed in [20]. First, for predefined dnum, a small integer such as 4, I define partial
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products tq̃ju0ďjădnum “
!

śpj`1qα´1
i“jα pi

)

0ďjădnum
, where α “ pL` 1q{dnum. For

level l and dnum1
“ rpl ` 1q{αs, I define [20]

WDlpaq “

˜

„

a
q̃0

ql



q̃0

, ¨ ¨ ¨ ,

„

a
q̃dnum1´1

ql



q̃dnum1´1

¸

P Rdnum1 ,

PWlpaq “

˜

„

a
ql
q̃0



ql

, ¨ ¨ ¨ ,

„

a
ql

q̃dnum1´1



ql

¸

P Rdnum1
ql

.

Then, for any pa, bq P R2
ql

, we have

〈WDlpaq,PWlpbq〉 “ a ¨ b pmod qlq .

Then, the rescaling and key switching in the RNS-CKKS scheme are defined as fol-

lows:

• KSGenskps
1q: For auxiliary modulus P “

śk
i“0 p

1
i « maxj q̃j , sample a1k Ð

RPqL and e1k Ð DGpσ2q. Output the switching key

swk :“pswk0, swk1q

“p
 

b1k
(dnum1´1

k“0
,
 

a1k
(dnum1´1

k“0
q P R2ˆdnum1

PqL
,

where b1k “ ´a
1
ks` e

1
k ` P ¨ PWps1qk pmod PqLq.

– Set the evaluation key as evk :“ KSGenskps
2q.

• RSpcq:

For c P R2
ql

, output

cRS “
X

p´1
l c

T

pmod ql´1q .

• KSswkpcq:

For c “ pc0, c1q P R2
ql

and swk :“ pswk0, swk1q, output

cKS “ pc0 `

Z

〈WDlpc1q, swk0〉
P

V

,

Z

〈WDlpc1q, swk1〉
P

V

q pmod qlq .
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To remove the approximation error introduced by approximate rescaling, one can use

different scaling factor for each level as given in [23].

I note that FullRNS-HEAAN library is (dnum “ 1)-case and SEAL is (dnum “

L`1)-case. It is also noted that the key switching method using WD and PD can also

be applied to the original CKKS scheme, and thus the main differences between the

original CKKS scheme and the RNS-CKKS scheme are their modulus and rescaling

algorithm. However, since I use HEAAN as the library of the original CKKS scheme

and SEAL as the library of the RNS-CKKS scheme, I provide a description for each.

2.3.3 Bootstrapping of the CKKS Scheme

There are several studies for bootstrapping of the CKKS scheme [19–21, 24, 25].

The bootstrapping consists of the following four steps: MODRAISE, COEFFTOSLOT,

EVALMOD, and SLOTTOCOEFF.

Modulus Raising (MODRAISE)

MODRAISE is the procedure to change the modulus of a ciphertext to a larger mod-

ulus. Let c be the ciphertext satisfying mpXq “ r〈c, sk〉sq. It can be seen that

tpXq “ 〈c, sk〉
`

mod XN ` 1
˘

is of the form tpXq “ qIpXq `mpXq for IpXq P R

with a bound }IpXq}8 ă K, where K is upper bounded by Op
?
hq. The following

procedure aims to compute the remainder of the coefficients of tpXqwhen it is divided

by q, homomorphically. In other words, we homomorphically calculate the modulus

reduction function, r¨sq for the coefficients of tpXq. However, as the modulus reduction

is not an arithmetic operation, it should be evaluated by an approximate polynomial

and thus, the crucial point of bootstrapping is to find a polynomial approximating the

modulus reduction function.
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Homomorphic Evaluation of Encoding (COEFFTOSLOT)

Approximate homomorphic operations are performed in plaintext slots. Thus, to deal

with tpXq, we have to put polynomial coefficients in plaintext slots. In COEFFTOSLOT

step, Emb´1
˝π´1 is performed homomorphically using matrix multiplication [19] or

FFT-like operations or a hybrid method of both [21]. Then, we have two ciphertexts

encrypting z10 “ pt0, . . . , tN
2
´1q and z11 “ ptN

2
, . . . , tN´1q (or combined using imagi-

nary, e.g., pt0 ` i ¨ tN
2
, . . . , tN

2
´1 ` i ¨ tN´1q), where tj denotes the j-th coefficient of

tpXq.

Evaluation of the Approximate Modulus Reduction (EVALMOD)

In the EVALMOD step, an approximate evaluation of modulus reduction function of

ti’s is performed. As the modulus reduction function is not represented by additions

and multiplications, an approximate polynomial for this function is used, instead. For

approximation, it is desirable to control the size of the message so that we can ensure

mi ď ε ¨ q for a small ε, where mi is a coefficient of the message polynomial mpXq.

At first, Cheon et al. approximated the modulus reduction function as q
2π sin

´

2πt
q

¯

and used an approximate polynomial for sine function using Taylor series expansion

of exponential function in [19]. Hence there exists a fundamental error between the

approximate polynomial and modulus reduction function, that is, the difference of sine

function and modulus reduction function, which is upper bounded by
ˇ

ˇ

ˇ

ˇ

m´
q

2π
sin

ˆ

2π
m

q

˙ˇ

ˇ

ˇ

ˇ

ď
q

2π
¨

1

3!

ˆ

2π|m|

q

˙3

,

where tpXq “ qIpXq `mpXq. Then, a Taylor series expansion and the double angle

formula were adopted as the approximate polynomial of the sine function.

After that, the method of improving polynomial approximation using Chebyshev

interpolation was proposed [21]. By selecting optimized nodes for Chebyshev interpo-

lation, Han et al. significantly improved the performance of the approximation in the

bootstrapping of the CKKS scheme [20]. However, in both approaches, the sine func-
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tion is used, and thus there is still the fundamental approximation error. Then, a direct

approximation method using a discretization of the target function and the least square

method is proposed in [24]. A composition with inverse sine function is proposed

in [25] to remove the fundamental approximation error between the sine function and

the modulus reduction. In [25], an approximation algorithm that finds the minimax

approximate polynomial, namely the modified Remez algorithm, is used.

Homomorphic Evaluation of Decoding (SLOTTOCOEFF)

SLOTTOCOEFF is the inverse operation of COEFFTOSLOT.

2.3.4 Statistical Characteristics of Modulus Reduction and Failure Prob-

ability of Bootstrapping of the CKKS Scheme

After MODRAISE, the plaintext in the ciphertext c “ pc0, c1q is given as

tpXq “ q ¨ IpXq `mpXq

“ 〈c, sk〉
`

mod XN ` 1
˘

.

As sk is sampled from the distribution HWT phq, it has a small Hamming weight h.

Each coefficient of a ciphertext pc0, c1q is an element of Zq and thus, each coefficient of

〈c, sk〉 “ c0`c1s is considered as a sum of ph`1q elements in Zq. Therefore, IpXq “
Y

1
q 〈c, sk〉

U

is upper bounded by 1
2ph ` 1q. In practice, a heuristic assumption is used

and a high-probability upper bound K “ Op
?
hq for }I}8 is used. For example, it is

usual to use h “ 64 and then it is assumed that }I}8 ă K “ 12.

As pc0, c1q is ciphertext, each coefficient of c0 and c1 can be considered as dis-

tributed uniformly at random by the RLWE assumption. Hence, each coefficient of t

is the sum of h` 1 independent uniform random variables; in other words, it follows a

distribution similar to the well-known Irwin–Hall distribution. The approximate poly-

nomial for modulus reduction is designed under the assumption that }I}8 ă K. The

high-probability upper bound K is acceptable, but it outputs a useless value when the
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input is not in the desired domain, and this results in the bootstrapping failure. Thus, by

using the high-probability upper bound, the bootstrapping becomes efficient, but it has

a certain failure probability. For example, the probability that }I}8 ě K is 2´24.06,

when h “ 64 and K “ 12.

As we know the distribution of I , the probability distribution of each coefficient

can be obtained. I note here that a probabilistic approach is already used in the error

estimation and bootstrapping of the CKKS scheme, and thus it is reasonable to reduce

the error of the CKKS scheme in a probabilistic manner. This approach can be ap-

plied in all of the homomorphic computation and polynomial approximation using the

CKKS scheme.

2.4 Approximate Polynomial and Signal-to-Noise Perspec-

tive for Approximate Homomorphic Encryption

2.4.1 Chebyshev Polynomials

The Chebyshev interpolation is a well-known polynomial interpolation method that

uses the Chebyshev polynomials as a basis of the interpolation polynomial. The

Chebyshev polynomial of the first kind, in short, the Chebyshev polynomial is defined

by the recursive relation [57]

T0pxq “ 1

T1pxq “ x

Tn`1pxq “ 2xTnpxq ´ Tn´1pxq.

The Chebyshev polynomial of degree n has n distinct roots in the interval r´1, 1s

and all its extrema are also in r´1, 1s. Moreover, 1
2n´1Tnpxq is the polynomial, whose

maximal absolute value is minimal among monic polynomials of degree n and the ab-

solute value is 1
2n´1 . In addition to the above, the Chebyshev polynomial has desirable

properties as a basis for an approximate polynomial.
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In Chebyshev interpolation, the n-th degree polynomial pnpxq is represented as a

sum of the Chebyshev polynomials of the form

pnpxq “
n
ÿ

i“0

ciTipxq.

pnpxq is an approximate polynomial for fpxq by interpolating n ` 1 points

tx0, x1, . . . , xnu , where

ci “
2

n` 1

n
ÿ

k“0

fpxkqTipxkq.

Selecting points tx0, x1, . . . , xnu is key for a good approximation.

2.4.2 Signal-to-Noise Perspective of the CKKS Scheme

In the field of communications, there has been extensive research on noisy media such

as wireless communication or data storage. In this perspective, the CKKS scheme is

one of the noisy media; encryption and decryption correspond to transmission and

reception, respectively. The message in the ciphertext is the signal, and as the final

output has an additive error due to RLWE security, rounding, and approximation, the

CKKS scheme itself can be considered as a noisy media.

The SNR is the most widely used measure of signal quality, which is defined as

the ratio of the signal power to the noise power as

SNR “
PS
PN

“
ErS2s

ErN2s
,

where S and N denote the signal (message) and noise (error), respectively. The power

of a signal S is defined by PS “ limTÑ8
1

2T

şT
´T Sptq

2dt. As the signal and noise

must be measured at the same or equivalent points in a system, the ratio of power

is equivalent to the ratio of energy (or the second moment), ErS2s

ErN2s
. As shown in the

definition, the larger SNR, the better the signal quality.

The energy of noise should be minimized to maximize the SNR of the encrypted

data because it is expensive to increase the energy of the message. An easy way to
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increase SNR is to increase the signal power, but in a real system, it is not easy due

to regulation or physical constraints. This is the same for the CKKS scheme. The

message can be multiplied by the larger scaling factor to increase the power of the

message. However, if one uses a larger scaling factor, the level of the ciphertext de-

creases or larger parameters should be used to keep the encryption secure under the

RLWE problem. In addition, usually in the RNS-CKKS scheme, the scaling factor is

limited to 64 bits for efficient implementation. Hence, to increase SNR, it is important

to reduce the power of noise in the CKKS scheme rather than to increase the power of

the signal.

The CKKS scheme trades off the efficiency of computation and precision of the

message, and improving the precision will make the CKKS scheme more reliable. Er-

ror estimation of the CKKS scheme so far has been focused on the high-probability

upper bound of the error, and the upper bound was tracked by using the upper bound

of the message [4, 19]. As the homomorphic operation continues, the error bound be-

comes quite loose, and its statistical significance may fade. In this dissertation, I pro-

pose methods to reduce the power (or energy) of error in encrypted data during ho-

momorphic computation over ciphertext. I note that when the mean of error is zero,

the energy of error is the same as its variance. Therefore, hereinafter, the energy and

variance of errors are abused if its mean is zero.

2.5 Preliminary for Code-Based Cryptography

2.5.1 The McEliece Cryptosystem

Let G be the generator matrix of a q-ary pn, kq Goppa code with error correction capa-

bility t, where q is a prime power. Then, the key generation, encryption, and decryption

of the McEliece cryptosystem are given as follows:

• KeyGenpλq

29



– Given parameter λ, choose code length n, code dimension k, and error

correction capability t.

– Build the generator matrix G of an pn, kqGoppa code with error correction

capability t.

– Let S be a kˆk random nonsingular matrix and P be an nˆn permutation

matrix.

– Set the public key and the secret key as

pk “ pGpub “ SGPq and sk “ pS,G,Pq.

• Encpkpmq

– Return c such that cᵀ “ mᵀGpub ` e
ᵀ, where e is an error vector with

Hamming weight t.

• Decskpcq

– Compute c1ᵀ “ cᵀP´1.

– By decoding c1, one then computesm1.

– Return m̂ᵀ
“m1ᵀS´1.

2.5.2 CFS Signature Scheme

CFS signature scheme is an algorithm that applies the FDH methodology to the Nieder-

reiter cryptosystem. The CFS signature scheme is based on Goppa codes, as McEliece

cryptosystem. A summary of the CFS signature scheme is given in Algorithm 1.

As described in Algorithm 1, the signing process iterates until a decodable syn-

drome is obtained. The probability that a given random syndrome can be decoded is
řt
i“0 p

n
iq

2n´k
» 1

t! . Hence, the error correction capability t “ n´k
logn should be sufficiently

small to reduce the number of iterations. Thus, the high-rate Goppa codes should be
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used. Regarding the key size, the complexity of the decoding attack on the CFS sig-

nature scheme is known to be a small power of the key size, namely, « keysizet{2.

Hence, the key size should be fairly large to meet a certain security level. In summary,

the CFS signature scheme is insecure and inefficient owing to the use of Goppa codes.

2.5.3 Reed–Muller Codes and Recursive Decoding

RM codes were introduced by Muller and Reed [35, 36] and its decoding algorithm,

so-called recursive decoding, was proposed in [58]. There are various definitions of

RM codes, but I adopt a recursive definition here as recursive decoding is defined by

using this structure. An RM code RMpr,mq is a linear binary pn “ 2m, k “
řr
i“0

`

m
i

˘

q

code, where r and m are integers. RMpr,mq is defined as RMpr,mq :“ tpu|u` vq|u P

RMpr,m´1q,v P RMpr´1,m´1qu, where RMp0,mq :“ tp0, . . . , 0q, p1, . . . , 1qu with

code length 2m and RMpm,mq :“ F2m
2 . This is the well-known Plotkin’s construction,

and its generator matrix is given by

Gpr,mq “

»

–

Gpr,m´1q Gpr,m´1q

0 Gpr´1,m´1q

fi

fl ,

where Gpr,mq is the generator matrix of RMpr,mq.

Recursive decoding is a soft-decision decoding algorithm that depends on the re-

cursive structure of the RM codes; it is described in detail in Algorithm 2, where y1 ¨y2

denotes the component-wise multiplication of the vectors y1 and y2. In recursive de-

coding, a binary symbol a P t0, 1u is mapped onto p´1qa, and it is assumed that all

codewords belong to t´1, 1un.

First, y2 (the second half of the received vector y) is component-wisely multiplied

by y1 (the first half of the received vector). Then, a codeword from RMpr,m´1q (i.e.,

u) is removed from y2 as it is both in y1 and y2, and then only v and the error vector

remain. This is regarded as a codeword of RMpr´1,m´1q added to an error vector and

is referred to as v̂. Using v̂, we can remove the codeword of RMpr´1,m´1q from the

second half of the received vector. y1 is then added to y2 ¨ v̂, and the sum is divided
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Algorithm 1 CFS signature scheme [38]
Key generation:

H is the parity check matrix of an pn, kq Goppa code

The error correction capability t is n´k
logn

S and Q are an pn´ kq ˆ pn´ kq scrambler matrix and nˆn permutation matrix,

respectively

Secret key: H,S, and Q

Public key: H1 Ð SHQ

Signing:

m is a message to be signed

iÐ 1

Do

iÐ i` 1

Find syndrome sÐ hphpmq|iq

Compute s1 Ð S´1s

Until a decodable syndrome s1 is found

Find an error vector satisfying He1T Ð s1

* Compute eT Ð Q´1e1T , and then the signature is pm, e, iq

Verification:

Check wtpeq ď t and H1eT “ hphpmq|iq

If True, then return ACCEPT; else, return REJECT
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by 2. This is regarded as a codeword of RMpr,m´1q added to the error vector, and

then decoding is performed. Recursively, the received vector is further divided into

sub-vectors of length n{4, n{8, etc. Finally, we reach RMpm,mq or RMp0,mq, then

the division terminates and the minimum distance (MD) decoding of RMpm,mq or

RMp0,mq, which is trivial, is performed. The decoding for the entire code is performed

by reconstructing these results into pU,U ` V q form.

Algorithm 2 Recursive decoding of RM code [58]
function RECURSIVEDECODING(y, r,m)

if r “ 0 then

Perform MD decoding on RMp0,mq

else if r “ m then

Perform MD decoding on RMpr, rq

else

py1|y2q Ð y

yv “ y1 ¨ y2

v̂ Ð RECURSIVEDECODING(yv, r ´ 1,m´ 1)

yu Ð py1 ` y2 ¨ v̂q{2

ûÐ RECURSIVEDECODING(yu, r,m´ 1)

Output pû|û ¨ v̂q

end if

end function

2.5.4 IKKR Cryptosystems

Recently, Ivanov et al. proposed variants of the McEliece cryptosystem such as pro-

totype, modified version of prototype, and the upgraded IKKR cryptosystems whose

Hamming weights of error vectors are arbitrary value rather than t [52]. The prototype

IKKR cryptosystem is composed of the following procedures.
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• KeyGenpλq

– Given parameter λ, choose code length n, code dimension k, and error

correction capability t.

– Build a k ˆ n generator matrix G of an pn, k, tq linear code C.

– Construct an arbitrary nonsingular n ˆ n matrix M and an n ˆ n permu-

tation matrix P. Let G0 be a matrix whose rows are n codewords of code

C.

– Set secret key and public key as pk :“ pG1,G1
1q “ pGM, pG0 ´ PqMq

and sk :“ pG,M,Pq, respectively.

• Encpkpmq

– Generate an arbitrary vector e with Hamming weight at most t.

– For given plaintextm, return c such that

cᵀ “mᵀG1 ` eᵀG1
1.

• Decskpcq

– yᵀ “ cᵀM´1.

– Decode y by applying decoding algorithm for C and recover eᵀP. Then,

find eᵀ “ eᵀPP´1.

– Find and return m̂ from m̂ᵀG “ y ´ eᵀpG0 ´Pq.

The upgraded IKKR cryptosystem is composed of the following procedures.

• KeyGenpλq

– Given parameter λ, choose code length n, code dimension k, and error

correction capability t.

– Build a k ˆ n generator matrix G of an pn, k, tq linear code C.
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– Construct n ˆ n matrices Q and T such that QT has rank n ´ k and has

k zero columns at indices in J , where J is an information set of C.

– Generate M and G0 as in the prototype IKKR cryptosystem.

– Set secret key and public key as pk :“ pG1,G1
2q “ pGM,QpG0`TqMq

and sk :“ pG,M,T,Q,G0,J q, respectively.

• Encpkpmq

– Generate a q-ary random vector e with arbitrary Hamming weight.

– For given plaintextm, return c such that cᵀ “mᵀG1 ` eᵀG1
2.

• Decskpcq

– yᵀ “ cᵀM´1.

– eᵀ1 “ yᵀ ´ y
ᵀ
JG

´1
J G.

– Calculate eᵀ2 “ e
ᵀ
1T

´1G0.

– Find and return m̂ from m̂ᵀG “ yᵀ ´ eᵀ1 ´ e
ᵀ
2.

It is noted that when c is a properly encrypted ciphertext by using Encpmq,

eᵀ1 “ e
ᵀQT and eᵀ2 “ e

ᵀQG0; thus, m̂ “m.

The process to construct Q and T is given in Algorithm 3. As it will be detailed

later, the success probability of the attack is 1 because of the construction of Q and T.

In the modified version of prototype IKKR cryptosystem, G1
1 “WDpG0´PqM

is used instead of G1
2, where W is a random n ˆ n nonsingular matrix and D is a

randomly chosen n ˆ n diagonal matrix with t non-zero elements on the diagonal. I

refer the readers to [52] for more details on the modified version of prototype IKKR

cryptosystem.
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Algorithm 3 Construction of Q and T [52]
Output: Matrices Q and T such that QT has rank n ´ k and k zero columns at

indices in J .

1: TÐ an nˆ n random nonsingular matrix.

2: LÐ an nˆ pn´ kq arbitrary full-rank matrix.

3: HJ Ð a parity check matrix of code generated by TJ .

4: QÐ LHJ .

5: return Q and T.
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Chapter 3

Privacy-Preserving Machine Learning via FHE With-

out Bootstrapping

3.1 Introduction

In this chapter, I propose an efficient protocol that dismisses the most time-consuming

operation of PPML using HE, bootstrapping, by using communication resources. Ho-

momorphic encryption enables the computation of encrypted data, but one of its draw-

backs is computational complexity. Usually, the complexity of basic operations of

homomorphic encryption is Opl2q, where l is the level of a ciphertext, which is the

maximum depth of operation that can be performed using the ciphertext. However, for

the accuracy of machine learning, depth is important, which inevitably increases the

amount of computation. The bootstrapping initializes the level of the ciphertext; the

complexity of the homomorphic operation can be maintained at any depth. However,

bootstrapping is an expensive operation. In this dissertation, I propose a method of

PPML without bootstrapping using communication resources. In other words, it re-

places bootstrapping with a procedure that induces a small amount of communication

between participants.
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3.2 Information Theoretic Secrecy and HE for Privacy-

Preserving Machine Learning

In this chapter, the use of information-theoretic secrecy to replace the bootstrapping in

PPML is presented. The basic scenario of PPML via HE is a secure two-party compu-

tation protocol, which is composed of receiver and sender, the data owner, and compu-

tation participants, respectively. This dissertation aims at the inference scenario only.

The receiver has data for inference, and the sender has a massive computation resource

and the trained model.

The sender and receiver both have to keep their inputs secure while the final output

of the computation is presented only to the receiver. In a secure two-party computation

protocol, the receiver and the sender evaluate the neural network, fpx, θq while keep-

ing x and θ kept secure to the opposite, where x is a confidential data of receiver and

θ is the trained weights of the sender.

However, when f is a deep circuit, bootstrapping is necessary, and it is an expen-

sive operation. One may come up with the idea that sends back the intermediate value

to the receiver and let the receiver decrypt and re-encrypt it and then send it back to

the sender [59]. As a result, the sender could get the fresh ciphertext for the same

message. There were several studies to avoid the bootstrapping using communication

resources [55, 59]; however, a naive approach reveals the intermediate values to the

receiver, and it leaks the information of the parameters of the neural network. More-

over, assigning some operation to the receiver using MPC techniques such as garbled

circuit [55] might occur unnecessary communication resources, and the performance

learn upon the computational ability of the receiver. A receiver can be a device with

very limited computing power, such as an IoT device. Hence, computation and com-

munication assigned to the receiver should be minimized to guarantee the quality of

service.

The receiver’s data is secured with homomorphic encryption, but how can one
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homomorphically encrypt and decrypt the intermediate values? The sender’s condi-

tions differ from the assumptions in a usual cryptosystem. The negative part is that

the sender can only perform simple operations like addition and multiplication with

low depth. However, on the positive side, the subject of encryption coincides with

the subject of decryption. This means that no key setting is required, and thus he can

use one-time keys. A one-time pad (OTP) is the encryption that the sender performs

homomorphically to secure his data.

In the proposed protocol, when bootstrapping is required, the sender homomorphi-

cally encrypts the intermediate value by OTP with his own key and sends the cipher-

text to the receiver; then, the receiver decrypts the given ciphertext, and he gets the

encrypted intermediate value by OTP. Finally, the receiver re-encrypts the intermedi-

ate value with HE and sends it to the sender; the sender can decrypt the intermediate

value by OTP, and then it is a fresh ciphertext for the intermediate value. All the op-

erations the receiver should do is the encryption and decryption, which is the same as

the succinct scenario with FHE. In other words, the proposed protocol does not require

any additional hardware and software for additional work for MPC, such as symmetric

key encryption and decryption, as in hybrid protocols.

In this dissertation, I mainly utilize the CKKS scheme as it is very useful for the

machine learning application, but it has not been widely adopted because its bootstrap-

ping is quite expensive and noisy. However, it is straightforward to adopt the proposed

protocol to other HE scheme such as BGV [9], (B)FV [7,8,11]. Moreover, it is shown

that even the average amount of computation and the number of communication can

be reduced.

3.2.1 The Failure Probability of Ordinary CKKS Bootstrapping

The bootstrapping of the CKKS scheme has a certain probability of failure. In the

CKKS bootstrapping proposed so far, the fact that the ciphertext is sparse and has small

values is used [19]. Specifically, the Hamming weight of coefficients of s is h “ 64
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and it has ˘1 for its non-zero component. The result of decryption of a ciphertext,

ct “ pb, aq with the modulus q is given as

m “ 〈ct, sk〉 pmod qq

“ 〈pb, aq, p1, sq〉 pmod qq

“ b` as pmod qq .

As ct is a ciphertext, it is reasonable to assume that the coefficients of a and b are

independent uniformly random elements in Zq following the LWE assumption. Thus,

each coefficient of t “ b ` as follows the distribution of the sum of h ` 1 random

uniform distribution in r´q{2, q{2q. An heuristic approximation that |t|8 ă K is used

in the bootstrapping so far [19]. Of course |t|8 ě K occurs very rarely, but is probable,

and its probability is approximated as

Prp|t|8 ě K ¨ qq « 2

ˆ

1´ Φ

ˆ

K ´ 0

σ

˙˙

,

where σ “ ph` 1q{12. I note that

Prp|t|8 ě K ¨ qq « 2´24.06,

when h “ 64 and K “ 12. As the whole 2l coefficients must be less than K, the

CKKS bootstrapping fails with the probability 2l ¨ 2
`

1´ Φ
`

K´0
σ

˘˘

, where l is num-

ber of slots. As a modulus reduction is made by the approximate polynomial, the input

outside the domain approximate polynomial results in a huge value. However, enlarg-

ing the approximate domain will require a huge degree of the approximate polynomial.

The proposed protocol follows the scenario of privacy-preserving machine learn-

ing using FHE: the sender receives the encrypted input message from the receiver and

perform all the operations homomorphically, and then returns the result to the receiver.

Thus the activation function such as ReLU can be the polynomial approximation of a

conventional activation function or an activation designed for HE as in [15, 16]. The

difference is that this protocol replaces bootstrapping with network communication.
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When the bootstrapping is required during the homomorphic computation, the sender

encrypts the intermediate value via OTP, and transfer to the sender. Then, the sender

decrypts the received ciphertext, re-encrypt it, and sends it to the sender. However, un-

like the approaches using the garbled circuit, the receiver only performs the encryption

and decryption. Thus, the ability of computation of the sender remains the same as the

FHE scenario.

Table 3.1 illustrates how the proposed scheme replaces the bootstrapping with net-

work communication. Let Enclpmq denote the ciphertext of the message m, where

the level of the ciphertext is l. As I focus on the CKKS scheme, the level means the

number of possible multiplications, likewise some other HE schemes. As shown in

Table 3.1, when the ciphertext reaches level 0, the sender samples r Ð Rq and add

to Enc0pmq which results in Enc0pm ` rq by OTP. Then Enc0pm ` rq is sent to the

receiver. The receiver then gets pm ` rq by the decryption of Enc0pm ` rq. pm ` rq

does not leak information of m or r as it satisfies the perfect secrecy when m and r is

in finite additive group of the integers. Then the receiver generates a fresh ciphertext

that encrypts m` r with the maximum level L, EncLpm` rq. When EncLpm` rq is

transferred to the sender, the sender can find EncLpmq using r.

I note here that the random key is generated as r Ð Rq, not CN{2. In the case of

other word-wise encryption schemes, such as BGV and (B)FV schemes, the plaintext

slots are finite values in Zt. Hence, the proposed scheme is straightforward and is

performed without failure. In that case, sender chooses a random N -tuple r Ñ ZNt ,

then encode it, and add to the intermediate Enc0pm` rq. As the slot values are values

in a finite field, the information-theoretic secrecy is naturally satisfied. However, in the

CKKS scheme, the slot values are complex numbers. Hence, the information-theoretic

secrecy should be considered in the coefficients, not slot values. Moreover, we should

consider if m and DecpEnc0pmq ` rq ´ r are the same, as the decryption includes

modulus reduction of coefficients by the ciphertext modulus q. There are two solutions

for that: allowing failure or use restricted r.
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Allowing Failure of Ciphertext Refreshing

The failure probability of refreshing the ciphertext in the proposed protocol is less

than m{q, which can easily be lessened to 2´λ, where 2λ is the desired security level.

For example, when the best-known attack algorithm requires at least λ “ 128 basic

operations on average, it is called that the cryptosystem satisfies 128-bit security. In

that case, we can ignore a probability of 2´λ as it is very low as the probability that an

attack on the cryptosystem succeeds.

Hence, following the security parameter, we can say that the protocol does not fail.

Instead, the criterion can be relaxed to allow for some probability of failure, say p0 and

let q ě m ¨ p0.

Usage of Restricted r

The perfect secrecy is satisfied when

Ipm; cq “ 0.

The receiver has c1 “ r `m. In the case of r P r0, qq, it offers perfect secrecy as it is

a well-known OTP. However, there exists decryption failure.

The receiver and sender cannot figure out the failure until the termination of the

protocol. However, it is the same in the ordinary bootstrapping of the CKKS scheme.

In case of r P p0, q ´ ps, it can be shown that Ipm; c1q ď 1
q´p ¨ p „

p
q . As q ąą p, it

is a small value. Since knowing m “ m ` e is considered as decryption of m, where

e is a small error, we could say that an information less than Hpm|mq is actually no

information in CKKS setup (approximate arithmetic).
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3.3 Comparison With Existing Methods

3.3.1 Comparison With the Hybrid Method

In the hybrid methods [55, 59], the linear layer is calculated homomorphically, and

the non-linear layers, such as pooling and activation layers, are performed using MPC

techniques. The garbled circuit is the most widely-used [60] 2PC technique, which can

perform arbitrary binary circuit securely. As comparison is represented by a simple

binary circuit, the garbled circuit is effective to evaluate activate functions and pooling

layers such as ReLU and max pooling. However, there exist two drawbacks using the

hybrid method: first, it reveals part of the network structure, and second, it requires

much communication and computation resources of the receiver.

Not only the trained weights but also the structure of the network itself, such as

how many layers it has, what activations and poolings it uses, etc., are the assets of

the sender. Hence, the sender wants to keep such values secure, but such information

is revealed by using the hybrid method. The receiver can guess the structure of the

sender’s model. This might be crucial in security because, once the structure of the

model is known, it becomes much easier to attack or reproduce the model. Moreover,

if the model is composed of simple comparisons, such as random forest, most of the

operations are done by garbled circuits, and it reveals the structure.

A garbled circuit requires network communication between sender and receiver

that is proportional to the depth of the circuit, and the basic building block of a gar-

bled circuit is a symmetric-key cryptosystem such as AES. It requires a number of ci-

phertexts to perform a binary gate. Hence, it requires much communication resources

to the receiver. Moreover, the receiver needs to do the encryption and decryption of

AES, which requires additional hardware or computational ability. It is clear that ho-

momorphic encryption and decryption of the hybrid method should be performed as

frequently as the proposed method.

The advantage of the hybrid method over the proposed method is that the oper-
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ation is accurate. The modern activation and pooling are composed of comparison

operations, and it is not a polynomial operation. Hence, an approximate polynomial is

used to perform the activation and pooling, and thus such layers cannot be performed

exactly. This might affect the accuracy of the machine learning algorithm.

In summary, the proposed method is more suitable to secure the sender’s informa-

tion as well as it requires less communication and computation to the receiver. How-

ever, it requires more computation to the sender, and it might drop the precision of

output, and thus a larger scaling factor should be used.

3.3.2 Comparison With FHE Method

In order to use the FHE method, bootstrapping should be performed. The bootstrap-

ping of the CKKS scheme consumes certain ciphertext level, for example 10 [61] to

15 [19–21,25]. Hence, the parameter size should large enough. Table 3.2 shows the pa-

rameter size for the CKKS scheme with 128-bit security, where the non-sparse key is

used. Recently, an attack algorithm for the CKKS scheme that uses the sparsity of the

secret key is proposed [62], and thus, the security parameters for the sparse-key CKKS

scheme should be adjusted. However, as the attack itself is not a critical threat of the

CKKS scheme, and it is out of the scope of this paper, we use the parameters in Table

3.2 for the reference of the comparison of the proposed method and FHE method. It

is noted that the max coefficient might be smaller than that of Table 3.2 to guarantee

128-bit security. A larger coefficient modulus P ¨ qL implies more rescaling budget,

and thus more encrypted computation capabilities. However, an upper bound for the

total bit-length of the coefficient modulus is determined by the polynomial degree N .

Assuming that one uses the p “ 240 for enough precision, the bootstrapping

roughly consumes the coefficient modulus from 500 to 750. Hence, it is required to

use N ě 216 for the existing methods [19–21, 25] and N ě 215 for the proposed

bootstrapping in this dissertation [61].

A larger parameter requirement of the bootstrapping is not desirable to the receiver.
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One might argue that the use of a large parameter does not have a significant difference

in single instruction multiple data (SIMD) manner as we have more slots than that of

the smaller parameter. However, there are several reasons why the use of the larger

parameter is not preferable. First of all, following the parameter size, the key sizes

become larger, and it requires more number of key-switching keys. To perform boot-

strapping, at least logpNq rotation keys are required, and the size of each rotation key

isOpN2q. Hence, it requiresOpN2 ¨logNqmemories and computations to the receiver

for key generation. Second, on the sender’s side, the operations become complex when

the slot size is larger. When the operations between slot elements are required, the op-

erations should be done by rotation; in other words, an arbitrary permutation is quite

inefficient as it is composed of several rotations and plaintext multiplications. Hence, it

is desirable to use fewer slots. Finally, the error in the CKKS scheme is affected by the

slot size. Especially, the variance of bootstrapping error is proportional to the square

of slot size, and other errors are proportional to the slot size. This means that to use a

larger parameter, one should consider using a larger scaling factor or the use of sparse

slots. The former results in less level, and the latter results in a throughput drop.

It is worth noting that the receiver is assumed to have very limited computation

resources, such as IoT devices. It would be unreasonable to let such a small device

perform key generation, encryption, and decryption of the CKKS scheme with N “

216.

3.4 Comparison for Evaluating Neural Network

Use of sparse slot is usual since the bootstrapping for full-slot ciphertext takes a long

time, and the bootstrapping error is proportional to the square of slot size [19–21].

However, the use of a spare slot results in a throughput drop. In other words, there

exists a trade-off between throughput and accuracy of results in the FHE approach.

In contrast, the proposed method does not occur any additional error to refresh
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the ciphertext, and thus it is always beneficial to utilize the full slots. Therefore, the

proposed algorithm has a gain in throughput. It can be seen that the proposed method

allows more data to be transmitted in one ciphertext, and thus the number of operations

and communication per data is reduced compared to the FHE method.

The comparison of the proposed method and the FHE method in evaluating VGG-

16 [1] is shown in Table 3.3. The activation function is ReLU in VGG, and max pooling

is used. The depth of operation is computed in the table by assuming that the approxi-

mated ReLU and the max-pooling have depth 4 and 12, respectively [63]. One level is

consumed to compute the convolution layer or fully-connected layer.

In the method of rescaling after encryption proposed in [23], the bottleneck of

error is the rescaling error, not the encryption error. In case bootstrapping is done,

the bottleneck of error is bootstrapping error, and it has been reduced by using the

method proposed in [61], and it consumes 10 levels. For bootstrapping, enough levels

are required, and thus, the N “ 216 is used for the FHE method. The variance of

rescaling error when N “ 214 is 216.43, and the variance of bootstrapping error when

N “ 216 and l “ 214 is 242.91. It is assumed that the Hamming weight of the secret

key is 64. Therefore, for the same precision of encrypted message, the scaling factor

27 and 40 is used for the proposed method and FHE method, respectively, in order to

maintain the precision of 16 bits below the decimal point.

For bootstrapping, N rotation keys are required, but by using only rotation keys

for power-of-two indices, any rotation can be done within log pNq homomorphic rota-

tions. Hence, it is assumed that the receiver generates only log pNq rotation keys in the

table. Table 3.3 is for the RNS-CKKS scheme, and it is assumed that the key-switching

in the SEAL library is used. Each integer element is assumed to be 64-bits.

Not to mention the reduction in computation on the sender side, it can be seen

that the proposed method requires about ten times less communication because it uses

smaller parameters and utilizes its entire slot. Rotation keys make up most of the cal-

culations and communications. By omitting the bootstrapping, we can reduce the size
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of rotation and evaluation keys, and overall communication is reduced despite some

communication being induced to refresh the ciphertext. The downside of the proposed

method is that the sender and receiver have to communicate with each other until the

operation is complete. However, since the reduction in computation and communica-

tion is very large, it can be endured enough. Most importantly, the proposed method

can reduce the amount of communication by about 1/8 of the FHE method.
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Table 3.2: Parameter size for the CKKS scheme with 128-bit security, where non-

sparse key is used

Polynomial degree (N ) Max coefficient modulus (PqL)

213 2218

214 2438

215 2881

216 21770

217 23540

Table 3.3: Parameters and number of communications to evaluate VGG-16 [1] in the

proposed method and the FHE method

Proposed FHE method

polynomial degree (N ) 214 216

slot size (l) 214 214

depth 129 129

variance of error 216.43 242.91

scaling factor (∆) 27 40

levels (after bootstrapping) 14 41 (29)

size of a ciphertext 2.63 MB 42 MB

size of evaluation keys 108.75 MB 1.76 GB

number of refreshing/bootstrapping 9 3

size of log pNq rotation keys 1.48 GB 28.16 GB

total amount of communication 3.86 GB 29.92 GB
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Chapter 4

High-Precision Approximate Homomorphic Encryp-

tion and Its Bootstrapping by Error Variance Mini-

mization and Convex Optimization

4.1 Introduction

In this chapter, I propose methods of improving the approximate HE using variance-

minimizing and convex optimizations. The CKKS scheme is one of the highlighted

FHE schemes as it is efficient to deal with encrypted complex(real) numbers, which

are the usual data type for many applications such as machine learning [4]. In this

dissertation, I propose a generally applicable method to achieve high-precision ap-

proximate FHE using the following two techniques. First, I apply the concept of SNR

and propose a method of maximizing SNR of encrypted data by reordering homo-

morphic operations in the CKKS scheme. For that, the variance of error of encrypted

data is minimized instead of the upper bound of error when we deal with the cipher-

text. Second, from the same perspective of minimizing error variance, I propose a new

method of finding the approximate polynomials for the CKKS scheme. The approxi-

mation method is especially applied to the bootstrapping of the CKKS scheme, where

I achieve a smaller error variance in the bootstrapping compared to the prior arts. The
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performance improvement of the proposed methods for the CKKS scheme is verified

by implementation over HE libraries, HEAAN, and SEAL. The implementation results

show that by reordering homomorphic operations and using the proposed polynomial

approximation, the message precision of the CKKS scheme is improved. Specifically,

the proposed method uses only depth 8, although the bootstrapping error for the CKKS

method is less than the error obtained using depth 11 of the previous method. I also

suggest a loose lower bound for bootstrapping error in the CKKS scheme and show

that the error by the proposed method is only 2.8 bits on average larger than the lower

bound. Therefore, the quality of services of various applications using the proposed

CKKS scheme, such as privacy-preserving machine learning, can be improved with-

out compromising performance and security.

4.2 Optimization of Error Variance in the Encrypted Data

This section provides a new criterion of qualifying encrypted data of the CKKS

scheme, that is, SNR. It is worth noting that the proposed method is popularly used

in the communication theory. Measuring the quality of the signal by SNR is the main

idea, which is natural and widely used in communication systems.

We can assume the following statements:

1. The mean of error is zero.

2. The message and error are statistically independent.

The first assumption is straightforward and clear. If the mean of error is not zero, one

can simply subtract the mean value to reduce the error. In general, the second one

is also true. When we deal with approximate polynomial, the approximation error is

dependent on the message. However, the approximation error is usually small com-

pared to the message, and the covariance is negligible. From these two assumptions,

the variance of error introduced by multiplication can be obtained. Moreover, from the
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central limit theorem, the sum of independent random variables can be approximated

to a Gaussian distribution. Now, since the power of noise and the variance of error are

the same, I focus on error variance.

4.2.1 Tagged Information for Ciphertext

I propose new tagged information for the full ciphertext of the CKKS scheme to tightly

manage the errors in encrypted data. The tagged information for ciphertext is intro-

duced in [4], and it is used to estimate the magnitude of the error. The tagged informa-

tion is composed of a level l, where 0 ď l ď L, an upper bound v P R of the message,

and a high-probability upper bound B P R of error. The upper bound is informative

when there are few homomorphic operations. However, as the homomorphic operation

continues, the upper bound becomes exponentially loose and thus useless.

I take a simple example of how the upper bound becomes loose. In [4], 6σ is used

as the high-probability upper bound of the error that follows Gaussian distribution with

variance σ2. The probability that Prp|X| ą 6σq is 2´27.8. Previously, the error upper

bound of a ciphertext, which was the sum of two ciphertexts with error upper bounds

B1 and B2, was specified as B1 `B2 [4, 23]. Assume that there are 100 distinct fresh

ciphertexts and let σ2
o be the error variance. Then the previous tagged information

states that the upper bound of error is 6σo. Hence, the upper bound of the error in

the encrypted data, which is the sum of the hundred ciphertexts, is 600σo. However,

the ciphertexts are independent, and its error follows the Gaussian distribution with

a variance of 100σ2
o . Therefore, the probability of the given upper bound, 600σo, is

Prp|e| ą 600σoq « 2´2602.1, which is quite loose, where e is the summation of error.

The previous upper bound is too loose to obtain useful information on the error. A real

application such as deep learning requires a lot more computation than this, and thus

the high-probability upper bound of error becomes looser than this example. In other

words, managing the upper limit of errors is practically futile.

Instead of using these upper bounds, I propose to use the variance of mes-
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sages and errors for tagged information. To manage the variance of error, the en-

ergy of message Erx2s is required. However, to tightly manage the error vari-

ance after multiplication, it is better to have the mean and variance of the mes-

sage. In other words, three tuples are the tagged information, which are tu-

ple of message mean, tErπpEmbpmqqisui“0,¨¨¨N{2´1, tuple of message variance,

tV arrπpEmbpmqqisui“0,¨¨¨N{2´1, and tuple, tV arrπpEmbpeqqisui“0,¨¨¨N{2´1, de-

noted by µm P CN{2 and vm,ve P RN{2, respectively, where Decskpcq “ m ` e.

If each slot value follows the identical distribution, the tagged information can be re-

placed as scalar values µm P C and vm, ve P R. Hence, the full ciphertext is given

as

pc, l,∆,µm,vm,veq,

where l and ∆ are the level and scaling factor of ciphertext, respectively.

The distribution of messages and errors after homomorphic operations varies de-

pending on the actual distribution of messages and the dependency between messages.

However, it is difficult to know the exact correlation of the messages, and their dis-

tribution after several homomorphic operations is quite complicated. Therefore, while

managing the mean and variance values, the message and error can be roughly treated

as independent Gaussian distribution. It is shown through the implementation in Sec-

tion 4.7 that errors in the encrypted data can strictly be managed in this way too.

4.2.2 Worst–Case Assumption

One might argue that an upper bound, and minimax approximation should be used

as it is not appropriate to assume that someone other than the data owner knows the

mean and variance of the message, µm and vm. However, it is entirely reasonable to

assume that someone other than the data owner knows minimal information about the

distribution of the message, the mean and variance, for the following reasons. First,

the previously used measure of error, the high-probability upper bound, is also related

to the distribution. Second, in many applications such as deep learning, control of the
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distributions of intermediate node values is crucial. For example, the input is usually

normalized or standardized, and many methods to normalize the intermediate values

are widely used [64]- [65], which is crucial for the accuracy and speed up the train-

ing of neural networks. Finally, some information about the message distribution is

known regardless of security, such as the message distribution after MODRAISE in

bootstrapping.

If one does not even want to provide the mean and variance of the message, the

server can assume the worst-case that the coefficients of messagempXq are distributed

uniformly at random in r´B,Bs. As the message is in R, which is discrete, the uni-

form distribution maximizes the entropy, and then it is obviously the worst case. Sim-

ilarly, it can also be assumed that the slot values z P ZN{2 follow centered Gaussian

distribution with the variance that the coefficients of its encoded value are in r´B,Bs

with high-probability, which maximizes the differential entropy. In the experimental

results in Section 4.7, even though the worst-case scenario is used, it is shown that the

error value in the proposed method is smaller than that of the previous methods.

4.2.3 Error in Homomorphic Operations of the CKKS Scheme

The error analysis in each operation, such as encoding, encryption, addition, multi-

plication, and key switching, is shown in this subsection. It should be noted that the

proposed error variance minimization method can be applied for all the variants of the

CKKS scheme, such as the original CKKS scheme [4], RNS variants [20, 56], and the

reduced-error variants [23]. The only difference for the above variants is the variance

of errors.

The following lemmas are basically based on the lemmas in [4,19,23]. The differ-

ence is that the lemmas so far have focused on high-probability upper bounds of errors,

but in the proposed method, I focus on the variance of errors in encrypted data because

the upper bounds become loose after successive homomorphic operations. Error vari-

ances in encrypted data for the original CKKS scheme and the RNS-CKKS scheme
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are given in the following lemmas. In the RNS-CKKS scheme, the rescaling factors

qi’s are different for each level, and thus the errors in rescaling are different from that

of the original CKKS scheme.

Lemma 4.1 (Encoding and encryption). Given a secret key sk with Hamming weight

h, we have the following variance of encryption noise in the CKKS scheme:

1

2
σ2N2 ` σ2ph` 1qN.

Proof. Since apζjM q is the inner product of coefficient vector of a polynomial apXq

and the fixed vector p1, ζjM , . . . , ζ
jpN´1q
M q with |ζjM | “ 1, the random variable apζjM q

has variance σ2N , where σ2 is the variance of each coefficient of a. Therefore,

apζjM q has the variances q2N{12, σ2N, ρN , and h, when apXq is sampled from

UpRqq,DGpσ2q,ZOpρq, and HWT phq, respectively.

v and e0, e1 are chosen from ZOp0.5q and DGpσ2q, respectively. We have a ci-

phertext cÐ v ¨ pk` pm` e0, e1q with error given by

〈c, sk〉´m pmod qLq “ v ¨ e` e0 ` e1 ¨ s.

As v, e, e0, e1, and s are independent, its variance is given as

N{2 ¨ σ2N ` σ2N ` σ2N ¨ h “
1

2
σ2N2 ` σ2ph` 1qN.

Lemma 4.2 (Rescaling). Let pc, l,∆,µm,vm,veq be an encryption of the encoded

message mpXq P R of z P CN{2, where l is its level. Then

´

cRS, l
1, ppl

1´lq ¨∆, ppl
1´lq ¨ µm, p

2pl1´lq ¨ vm, p
2pl1´lq ¨ ve ` vscale

¯

is a valid encryption of the rescaled message ppl
1´lq ¨mpXq for cRS Ð RSlÑl1pcq and

vscale “
1
12ph` 1qN .
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Proof. The rescaled ciphertext cRS Ð
Y

ql1
ql
c
U

satisfies 〈cRS, sk〉 “ ql1
ql
pm`eq`escale,

where escale “ 〈τ , sk〉 and τ “ pτ0, τ1q is the rounding error vector. We can assume

that the coefficients of polynomials τ0 and τ1 are distributed uniformly at random on
ql1
ql
Zql{ql1 , and thus the variance of τ0`τ1 ¨s isN{12`hN{12. Therefore, the variance

of escale is given as 1
12ph` 1qN .

Lemma 4.3 (Addition and multiplication). Let
`

ci, l,∆i,µm,i,vm,i,ve,i
˘

be two inde-

pendent encryptions of the encoded messagesmipXq of values zi P CN{2 for i “ 1, 2,

and let

cadd Ð Addpc1, c2q and cmult Ð Multpc1, c2q.

Then,
`

cadd, l,∆1,µm,1 ` µm,2,vm,1 ` vm,2,ve,1 ` ve,1
˘

and

pcmult, l,∆1∆2,µm,1 ˆ µm,2,vm,1 ˆ vm,2

, pvm,1 ` |µ
2
m,1|q ˆ ve,2 ` pvm,2 ` |µ

2
m,2|q ˆ ve,1 ` ve,1 ˆ ve,2 ` vmultq

are valid encryptions of m1pXq `m2pXq and m1pXq ¨m2pXq, respectively, where

vmult “
`

ql
P

˘2
vks ` vscale , vks “

1
12N

2σ2, and |µ2| refers µ ˆ µ. For addition,

∆1 “ ∆2 should be satisfied.

Proof. Addition is trivial. The ciphertext of m1pXq ¨m2pXq

cmult Ð pd0, d1q `
X

P´1 ¨ d2 ¨ evk
T

pmod qlq

contains additional error e2 “ P´1 ¨ d2e
1 and the error by scaling. As d2 “ a1a2 and

from RLWE assumption, we can assume that d2 is distributed uniformly at random on

Rql . Thus, the variance of Pe2 is derived as q2
lN{12 ¨ σ2N “ 1

12q
2
l σ

2N2. The total

error is given as

m1e2 `m2e1 ` e1e2 ` e
2 ` escale
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and as the means of e1 and e2 are zero and m1 and m2 are independent, the variance

of m1e2 `m2e1 ` e1e2 is given as

pvm,1 ` |µ
2
m,1|q ˆ ve,2 ` pvm,2 ` |µ

2
m,2|q ˆ ve,1 ` ve,1 ˆ ve,2.

Lemma 4.4 (Key-switching). Let pc, l,∆,µm,vm,veq be a ciphertext with respect to

a secret key sk1 “ p1, s1q and let swk Ð KSGenskps
1q, where sk “ p1, sq. Then

ˆ

c1, l,∆,µm,vm,ve `
´ql
P

¯2
vks ` vscale

˙

is a valid ciphertext with respect to a secret key sk for the same message, where c1 Ð

KSswkpcq.

Proof. The proof is similar to that of Lemma 4.3 and thus, it is omitted.

Lemma 4.5 (Addition and multiplication by constant). Let pc, l,∆,µm,vm,veq be an

encryption of the encoded messagempXq of z P CN{2. For a constant tuple a P CN{2,

let

ccadd Ð cAddpc1,a; ∆q and ccmult Ð cMultpc1,a; ∆1q,

where ccadd and ccmult correspond to the constant multiplication and addition with

constant a, scaled by ∆1, respectively. Then,

pccadd, l,∆,µm `∆a,vm,veq

and
´

ccmult, l,∆∆1aˆ µm,∆
12a2 ˆ vm,∆

12a2 ˆ ve

¯

are valid encryptions of ∆a` z and ∆1aˆ z, respectively, where a2 “ aˆ a.

Proof. The rounding during encoding, introduces a rounding error. However, we could

assume that the scaling factor is large enough so that there are no errors. Then, it is

self-evident.
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The following two lemmas are slightly modified from the original lemmas in [20].

It is noted that in the RNS rescaling, the error introduced by approximate scaling factor

is eliminated by managing the exact scaling factor after rescaling, ∆{pl.

Lemma 4.6 (RNS rescaling). For the RNS-CKKS scheme, let pc, l,∆,µm,vm,veq be

an encryption of the encoded message mpXq P R of z P CN{2. Then

`

cRS, l ´ 1, p´1
l ¨∆, p´1

l ¨ µm, p
´2
l ¨ vm, p

´2
l ¨ ve ` vscale

˘

is a valid encryption of the rescaled message p´1
l ¨ mpXq for cRS Ð RSpcq and

vscale “
1
12ph` 1qN . Thus, the scaling factor of cRS is p´1

l ¨∆.

Proof. The proof is the same as that of the original CKKS scheme except for the

scaling factor. In RNS-CKKS, the scaling factor is slightly different depending on the

operations done to the ciphertext, and thus when adding different ciphertexts, an error

occurs according to the ratio of pl and p in the process of forcibly treating the scaling

factor as p. The methods to remove such error was proposed in [23, 62].

Lemma 4.7 (RNS key-switching). For the RNS-CKKS scheme, let

pc, l,∆,µm,vm,veq

be a ciphertext with respect to a secret key sk1 “ p1, s1q and let swk Ð KSGenskps
1q,

where sk “ p1, sq. Then
`

c1, l,∆,µm,vm,ve `
1
P 2vksrns ` vscale

˘

is a valid cipher-

text with respect to a secret key sk for the same message, where c1 Ð KSswkpcq and

vksrns “
dnum¨pα

12 σN .

Proof. The key switching noise comes from the rounding terms τ as in Lemma 4.2

and from the error terms e1k in swk0. The variance of error from τ is vscale. The other

error is given as
〈WDlpc1q, te

1
ku0ďkădnum´1〉
P

. (4.1)

It can be assumed that the i-th component of WDlpc1q follows uniform distribution in

q̃i. Then, its variance is q̃i
12 and the variance of each coefficient of e1k is σ2. Thus, the
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variance of error in (4.1) is derived as

P´2 ¨
ÿ

0ďiădnum1´1

q̃i
12
σN « P´2 ¨

dnum1
¨ pα

12
σN.

When the sparse packing method [19] is applied, N in the above lemmas can be

replaced by 2n when there are n slots.

4.2.4 Reordering Homomorphic Operations

As the proposed method enables tight management of errors in encrypted data, homo-

morphic operations can be effectively reordered to reduce errors. The main advantage

of reordering homomorphic operations is that the errors in the encrypted data are re-

duced without compromising security and performance. Using Lemmas 4.1 to 4.7, one

can reorder homomorphic operations to minimize the error variance. In this subsection,

I show some operations patterns that can be reordered to reduce the error in encrypted

data. Considering that the error increases cumulatively in the CKKS scheme, the small

differences in the following examples greatly affect the error variance as the depth

of operations advances. It is worth noting that the most beneficial application of the

CKKS scheme, deep learning has a deep of operations, too.

In addition to the below examples, there are many methods to reorder homomor-

phic operations corresponding to the inputs and the operations themselves. Thus the

reordering of homomorphic operations can be done in an on-the-fly manner. In the field

of optimizing compilers, there have been many sequences of research on instruction

reordering [66], and I leave the adoption of compiler techniques as future work.

Polynomial Basis With Smaller Magnitude of Error

In this subsection, I propose a way to reduce the error in the encrypted polynomial

basis by reordering homomorphic operations. The error in each encrypted polynomial
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basis depends on the order of homomorphic operations obtaining it. Polynomials are

frequently evaluated not only for bootstrapping [19]- [25] but also in various appli-

cations using HE [13, 14]- [18] as all the homomorphic operations are polynomial

operations, except for the rotation and conjugation.

In general, it is beneficial to find a polynomial basis first and then evaluate the

polynomial. Doing so consumes less level of ciphertext, and obtaining a polynomial

basis is necessary for efficient evaluation algorithms such as the baby-step giant-step

algorithm or the Paterson-Stockmeyer algorithm. Hence, it is essential to reduce error

in the encrypted polynomial basis.

As the Chebyshev polynomial basis will be used in the later sections for polyno-

mial approximation in bootstrapping, I use here the Chebyshev polynomial basis as

an example. However, I note that the method in this subsection can also be applied to

other polynomial bases. Tnpxq is usually obtained by the following recursive equation

Tnpxq “ 2T2kpxq ¨ Tn´2k ´ T2k`1´n,

where k is the greatest integer satisfying 2k ă n. This is beneficial in terms of depth

and simplicity; T2kpxq is the maximum degree term that can be obtained within the

depth k and by using just T2kpxq and Tipxq’s for 0 ď i ď 2k, we can obtain all

TipXq’s for 2k ă i ď 2k`1.

Let ci be the ciphertext of message Tipxq with scaling factor ∆ for i “ 0, . . . , n.

Considering that ci contains error ei, the error in cn obtained by Tnpxq “ 2Tkpxq ¨

Tn´2kpxq´T2k`1´npxq is p2T2kpxqen´2k `2Tn´2kpxqe2kq∆`2e2ken´2k ´e2k`1´n

by Lemma 4.3, if we ignore the key-switching error for brevity. When the ciphertext

is rescaled by ∆, the error becomes

2T2kpxqen´2k ` 2Tn´2kpxqe2k ` escale,rs ` p2e2ken´2k ´ e2k`1´nq{∆,

where escale,rs is another scaling error as described in Lemma 4.2. It is noted that ∆ is

large enough so that p2e2ken´2k ´ e2k`1´nq{∆ can be ignored. Roughly, as Tn´2kpxq
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Table 4.1: Mean, variance, and second moment of Tipxq when x follows the Gaussian

distribution with zero mean and variance σ2 for σ “ 1{6 and 1{24, so that the input is

highly probable to be in r´1, 1s.

i
σ “ 1{6 σ “ 1{24

ErTipxqs V arrTipxqs ErTipxq
2s ErTipxqs V arrTipxqs ErTipxq

2s

0 1.000 0.000 1.000 1.000 0.000 1.000

1 0.000 0.028 0.028 0.000 0.002 0.002

2 -0.944 0.006 0.898 -0.997 0.000 0.993

3 0.000 0.200 0.200 0.000 0.015 0.0154

4 0.796 0.070 0.704 0.986 0.0004 0.973

5 0.000 0.376 0.376 0.000 0.042 0.042

6 -0.601 0.208 0.569 -0.970 0.002 0.941

7 0.000 0.465 0.465 0.000 0.078 0.078

and e2k are independent and Ere2ks is zero, the variance of error Tn´2kpxqe2k is given

as

V arrTn´2kpxqe2ks “ V arrTn´2kpxqsV arre2ks ` ErTn´2kpxqs
2V arre2ks

“ ErTn´2kpxq
2sV arre2ks.

(4.2)

Since Ti’s are not independent variables, calculating the exact error distribution

in encrypted Ti’s is not straightforward, but roughly according to (4.2) and Table 4.1,

we can see that the error multiplied by the even term tends to remain and the error

multiplied by the odd term tends to decrease. In Table 4.1, it is shown that ErTipxq2s

is close to one when i is an even number. Meanwhile,ErTipxqs is zero and V arrTipxqs

is a small value when i is an odd number. That is, since even degree terms have a large

mean of squares, the error is large when multiplication of even terms is used when

calculating the Chebyshev basis.

Therefore, when n is even, Tn should be calculated by Tnpxq “ 2T2k´1pxq ¨

Tn`1´2k´T2k`1´n´2 rather than Tnpxq “ 2T2kpxq ¨Tn´2k´T2k`1´n. The power-of-
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two degree terms T2k can only be found by the product of T2k´1 , to consume the least

level. Thus, the power-of-two degree terms have a large error, and it is also shown in

implementation in Subsection 4.7.1. Now, it is clear that it is better to avoid using the

power-of-two degree terms as possible as we can when evaluating polynomials.

As a simple example, it is assumed in Table 4.1 that the input messages follow the

Gaussian distribution with zero means. It is common to normalize or standardize the

input value in deep learning [64, 65, 67, 68], which is the most attractive application

of HE. Thus, I am interested in inputs that follow Gaussian distribution. Besides, x

should be in r´1, 1s to use Chebyshev polynomials, and thus the input is concentrated

in the center (zero). Table 4.1 shows that the smaller the order of the messages and

more centered, the larger the even terms and the smaller the odd terms.

There are several reasons why this property is essential. In practice, errors in lower

degree terms are essential in homomorphic polynomial evaluation because the eval-

uation algorithms such as the baby-step giant-step algorithm mostly utilize the lower

degree terms. Most importantly, as the higher degree terms are obtained from lower

degree terms, and the error is accumulated, minimizing error in lower degree terms

is crucial. Finally, in the case of bootstrapping, the input distribution is much more

concentrated in the center compared to the case of examples in Table 4.1 and thus, the

proposed reordering method is quite efficient in bootstrapping.

In Subsection 4.7.1, the implementation shows that the error in encrypted polyno-

mial basis can be reduced by reordering homomorphic operations. For example, the

error variance for the proposed method becomes smaller by 1{1973 compared to the

case without minimization for T74. I can also conclude that the modified baby-step

giant-step algorithm in [25] is advantageous in terms of error because the baby-step

giant-step algorithm proposed in [20] utilizes power-of-two degree terms.
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Lazy Rescaling

I generalize the technique to treat rescaling as a part of multiplication, which is pro-

posed in [62] to do rescaling as lazy as possible. In the method suggested by Kim

et al. [23], the scaling factor of the ciphertext is a value around ∆2, and scaling is

performed right before a multiplication, not after a multiplication. It was shown that

error could be reduced, and especially, the encryption error can be removed by this

method [23]. I generalize this so that the ciphertext can have any scaling factor such

as « ∆3 or ∆4, and the rescaling is done as lazy as possible.

As shown in Lemma 4.2, error in encrypted data is divided by the scaling factor,

and rounding error is added when the ciphertext is rescaled. The critical point is that

the rescaling has a distributive property, and thus, rescaling can be reordered to reduce

errors. In other words, since the rounding errors occur through rescaling in general, it

should be done as lazy as possible. For example, as suggested in [23], ciphertexts can

be rescaled right before a multiplication. This method prevents further amplification

of rescaling errors by addition as well as reduces the number of required rescalings.

Moreover, this method reduces the number of rescaling, and thus the more additions

out of the total operation, the better the effect.

To reduce the error, rescaling can also be reordered with constant multiplications

as well as additions. For example, when one calculating encryption of ax8 by using c,

which is the encryption of x with scaling factor « ∆2, previously, the calculation was

as follows [23]

c2 Ð MultpRSpcq,RSpcqq

c4 Ð MultpRSpc2q,RSpc2qq

c8 Ð MultpRSpc4q,RSpc4qq

coutput Ð cMultpRSpc8q, a; ∆q,

(4.3)
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and it consumes four levels. However, we can reorder the operation as

ca Ð cMultpRS pcq , a1{8; ∆q

c2a Ð MultpRSpcaq,RSpcaqq

c4a Ð MultpRSpc2aq,RSpc2aqq

c8a Ð MultpRSpc4aq,RSpc4aqq.

(4.4)

When ax8 is obtained using (4.3), the error introduced by rescaling is amplified by

a unlike (4.4). However, when a is an integer, it is not necessary to consume level;

in other words, a is not scaled by ∆, and thus (4.3) may be advantageous in terms

of depth. In that case, unless a is a prime number, depth and error can be reduced

simultaneously by multiplying the factors of a in advance.

Equation (4.4) can be improved further by replacing the first line in (4.4) as

c1a Ð RS
´

cMultpc, a1{8; ∆q
¯

.

Let us compare the error in ca and c1a. Let c be a ciphertext whose the full ciphertext

is expressed as
`

c, l,∆2,µm,vm,ve
˘

.

Then, from Lemma 4.2, the full ciphertext of RSpcq is expressed as

`

RSpcq, l ´ 1,∆,∆´1µm,∆
´2vm,∆

´2ve ` vscale
˘

and thus, the full ciphertext of ca is obtained as

´

ca, l ´ 1,∆2, a1{8µm, a
1{4vm, a

1{4ve ` a
1{4∆2vscale

¯

.

However, the full ciphertext of cMultpc, a1{8; ∆q is obtained as

´

cMultpc, a1{8; ∆q, l ´ 1,∆3, a1{8∆µm, a
1{4∆2vm, a

1{4∆2ve

¯

and thus, the full ciphertext of c1a is given derived as

´

c1a, l ´ 1,∆2, a1{8µm, a
1{4vm, a

1{4ve ` vscale

¯

.
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𝑐1

𝑐2

𝑐3

𝑐14

𝑐15

…

…

(a) Multiply in order of magnitude of messages

with error variance 244.4

…

𝑐0

𝑐1

𝑐15
…

𝑐2

𝑐14

𝑐3

…

(b) Multiply the larger and smaller ones first

with error variance 221.5

Figure 4.1: Two different methods of obtaining
ś15
i“0 ci.

I note that vscale is negligible but a1{4∆2vscale is not. In (4.4), the rescaling error

introduced by RSpcq is amplified by a, but we can even rule out this by lazy rescaling.

This technique is quite powerful when evaluating high-degree polynomials, such

as approximate modulus reduction in bootstrapping. If rescaling is done before mul-

tiplying coefficients, the rounding error is amplified by the coefficients and added by

the number of terms, but if rescaling is done as late as possible, it is added only once.

Successive Multiplication of Ciphertexts With Distinct Magnitudes of Messages

When multiplying many ciphertexts, it is not difficult to see that the error can be re-

duced by pairing the large and small values and multiplying the largest and smallest

values first. Let us give an example of how to reduce errors while the calculation time

is maintained. There are 16 ciphertexts with level l as

pci, l,∆, 0, 2
52`i, 230q,

for i “ 0, . . . , 15, where ∆ “ 230 and N “ 214. I compare two ways to obtain the

multiplication
ś15
i“0 ci in Fig. 4.1. The results and computation time are the same.

However, the variances of errors are 244.4 for the operation in Fig. 4.1(a) and 221.5 for
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the other.

In summary, I propose three methods of reordering the homomorphic operations

to minimize the errors as follows:

1. Mean and variance of the message should be considered when I find the poly-

nomial basis.

2. Resizing should be done as lazy as possible.

3. The error can be reduced by pairing the large and small values and multiplying

the largest and smallest values first when successively multiplying ciphertexts.

Aside from the given examples in this dissertation, there must exist tons of optimiza-

tion methods. It is expected that techniques in optimizing compilers can be adopted to

reduce error in approximate homomorphic encryption without compromising perfor-

mance.

4.3 Near-Optimal Polynomial for Modulus Reduction

By scaling the modulus reduction function by 1
q , I define rtsq as t ´ k for t P Ik,

where Ik “ rk ´ ε, k ` εs and k is an integer |k| ă K. Here, ε denotes the rate of the

maximum coefficient of the message polynomial and the ciphertext modulus, that is,
|m|
q ă ε. The domain of rtsq is given by

ŤK´1
k“´K`1 Ik. In other words, q ¨

”

t
q

ı

q
« m

for t “ q ¨ I `m.

4.3.1 Approximate Polynomial Using L2-Norm optimization

Here, I propose how to find an approximate polynomial poptq of rtsq without using an

intermediate approximation, such as a sine or cosine function. The proposed method

uses the well-known least-squares method or L2-norm optimization. The objective is

to find a set of coefficients c “ pc0, c1, . . . , cnq to minimize }rtsq ´ pptq}8, where

a polynomial of degree n is defined by pptq “
řn
i“0 ci ¨ t

i. Such a polynomial is
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referred to as the minimax polynomial. It is worth noting that pptq is equivalent to the

inner product of c and T “ p1, t1, . . . , tnq.

Here, ti’s are sampled uniformly at intervals of δ ! ε in each Ik, namely, k ´

ε, k ´ ε ` δ, . . . , k ` ε ´ δ, k ` ε. There are 2ε
δ ` 1 samples in Ik, and thus we have

Ntot “ p2K ´ 1qp2ε
δ ` 1q samples. With Ntot samples of ti, one can build a vector of

the powers of ti, that is, Ti “ p1, ti, t
2
i , . . . , t

n
i q for 1 ď i ď Ntot.

The object function to be minimized is given as

max
i
|rtisq ´ pptiq| “ } prt0sq ´ ppt0q, ¨ ¨ ¨ , rtNtotsq ´ pptNtotqq }8

“ }y ´T ¨ c}8,

where T is an Ntot ˆ pn` 1q matrix such that Tri, js “ tji and y is a vector such that

yris “ rtisq. Instead of the L-infinity norm, I replace the above objective function by a

loss function using the L2-norm. Then, the optimal solution for L2-norm minimization

can be efficiently computed. The L2-norm minimization was used in [14] to find an

approximate polynomial of logistic function. In this dissertation, I apply discrete L2-

norm minimization to find the approximate polynomial of modulus reduction in an

efficient way. Let Lc denote the L2-norm with the coefficient c. Then, we can find c

that minimizes the following

Lc “ }y ´T ¨ c}2

“ py ´T ¨ cqT py ´T ¨ cq .

Unfortunately, the entries of T become considerably big or small values close to zero,

as the degree of the polynomial, n, is high.

Thus, I utilize the Chebyshev polynomials as the basis of the polynomial instead

of the power basis. In other words, I redefine the Ntotˆ pn` 1q matrix T with entries

Tri, js “ Tj
`

ti
K

˘

. As ti P
ŤK´1
k“´K`1 Ik, we have | tiK | ă 1. Hence, the entries of T are

well-distributed in r´1, 1s rather than considerably big values or small values around

0.
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Then, the optimal coefficient vector c˚ is given as

c˚ “ arg mincLc.

As the loss is a convex function, the optimum solution c˚ lies at the gradient zero. The

gradient of the loss function Lc is given by

∇Lc “ ´2yTT` 2cTTTT.

Setting the gradient to zero produces the optimum coefficient, as follows:

∇Lc˚ “ 0

ùñ c˚ “
`

TTT
˘´1

TTy.

To sum up, the modulus reduction function can be approximated by

rtsq « poptq “
n
ÿ

i“0

c˚ris ¨ Ti

ˆ

t

K

˙

,

where t P
ŤK´1
k“´K`1 Ik.

Maximum Error of Samples and the Approximation Error

Theorem 4.8. The approximation error is bounded by the multiplication of the maxi-

mum error of the sampled points and Op1` n
Ntot

q.

Proof. For t P Ik, let us define the approximation error as the absolute value of fol-

lowing

Eptq “ pt´ kq ´ poptq.

Note that Eptq is a polynomial for the domain t P Ik. Denote Eptq “
ř

j ĉjx
j . I have

optimized |Eptiq| for discrete points ti’s.
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Consider |Eptq| for t in small intervals of rti, ti ` δq. Then, we have |Eptq| ď

|Eptiq| ` |Eptq ´ Eptiq| and |Eptq ´ Eptiq| is bounded as follows

|Eptq ´ Eptiq| “ |
ÿ

j

ĉj

´

pti `∆tqj ´ tji

¯

|

« |
ÿ

j

ĉjt
j
i

ˆ

j
∆t

ti

˙

|

ď

ˇ

ˇ

ˇ

ˇ

n
δ

ti

ˇ

ˇ

ˇ

ˇ

¨ |
ÿ

j

ĉjt
j
i |

“ Opn 1

Ntot
q|Eptiq|,

where ∆t “ t ´ ti for t P rti, ti ` δq. As ∆t ă δ ăă ti, the linear approximation

p1 ` ∆t
ti
qj « p1 ` j∆t

ti
q is applied. Moreover, we have ∆t

ti
ď δ

ε “ Op 1
Ntot

q, where

ti ą ε. Otherwise, at least we can always make δ
ti
ă 1.

Hence, it is concluded that

max
tP
ŤK´1
k“´K`1 Ik

|rtsq ´ poptq| “ max
i
prtisq ´ poptiqq ¨Op1`

n

Ntot
q.

In summary, with fine sampling, the maximum error of the sampled points is close

to the global maximum of approximation error. Moreover, as the domain of the objec-

tive function is in the real numbers with errors in the CKKS scheme, it is reasonable

to handle the sampled values.

L2-norm Instead of L-infinity Norm

Clearly, we can bound the L-infinity norm by the L2-norm:

1
?
Ntot

}x}2 ď }x}8 ď }x}2.

Thus, minimizing the L2-norm reduces the L-infinity norm. As it is not a tight bound,

we have room for optimization using a higher norm. However, the solution of the

L2-norm is clear and can be computed effortlessly. It is difficult to apply minimax
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polynomial approximation algorithms to the modulus reduction function because it is

not a continuous function, and the domain is not a closed interval. However, through

the L2-norm optimization problem, it is possible to find a near-optimal solution of the

minimax polynomial in a considerably efficient manner without iteration. The next

section shows that it is possible to find polynomials with fewer errors than with the

currently best-known methods.

Time Complexity for Finding c˚

Considering Ntot ą n, the matrix inversion
`

TTT
˘´1 is the dominant computation.

Hence, the time complexity is OpN2.37
tot q when the Coppersmith–Winograd algorithm

is used. This is acceptable because c˚ is pre-computed and stored as coefficients for the

baby-step giant-step algorithm to be explained later or also, the Paterson-Stockmeyer

algorithm in [21].

4.3.2 Efficient Homomorphic Evaluation of the Approximate Polynomial

The difference between the proposed and conventional methods in [20] are the coeffi-

cients of the approximate polynomial, which is more optimized with the same polyno-

mial basis, the Chebyshev polynomial. Hence, the baby-step giant-step algorithm [20]

and modified Paterson-Stockmeyer algorithm [21] can be applied for an efficient ho-

momorphic evaluation of the proposed polynomial. Using Algorithm 4, we can evalu-

ate poptq homomorphically with at most 2l`2m´l`m´l´3 nonscalar multiplication

while consuming m depth, where 2m is greater than the degree n.

I revisit Algorithm 4, and the number of operations per step is given in Table

4.2. When the Chebyshev polynomials are evaluated, T2n “ 2T 2
n ´ T0 and T2n`1 “

2TnTn`1 ´ T1 are used and the multiplication of 2 can be replaced by an addition.

Hence, one nonscalar multiplication and two additions are required.

In the baby-step, polynomials of degree 2l ´ 1 are evaluated and there are at most

2m{2l such polynomials. However, when 2m ą n` 1, there are polynomials with all-
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Algorithm 4 Baby-step giant-step algorithm [20]
Instance: A ciphertext for t, a polynomial of degree n, pptq “

řn
i“0 ciTiptq.

Output: A ciphertext encrypting pptq.

1: Let m be the smallest integer satisfying 2m ą n and l « m{2.

2: Evaluate T2ptq, T3ptq, . . . , T2lptq inductively.

3: Evaluate T2l`1ptq, T2l`2ptq, . . . , T2m´1ptq inductively.

4: Find polynomials of degree ď 2m´1 which satisfy p “ r ` qT2m´1 in forms of

linear combinations of the Chebyshev basis.

5: Evaluate qptq and rptq recursively.

6: Evaluate pptq using T2m´1ptq, qptq, and rptq.

zero coefficients. By ignoring them, there are
P

pn` 1q{2l
T

polynomials with degree

at most 2l ´ 1 in the baby-step. In other words, as 2m and n ` 1 differ, there are

2m´l´
P

pn` 1q{2l
T

zero polynomials, that is, 0 ¨T0ptq` 0 ¨T1ptq` ¨ ¨ ¨` 0 ¨T2l´1ptq,

in Algorithm 4. Hence, we could ignore these zero polynomials and in the recursive

structure, exactly 2m´l ´
P

pn` 1q{2l
T

nonscalar multiplications are ignored in the

giant-step. Hence, taking 2m
1

ą n ě 2m
1´1, we have

Npnq “ Npn´ 2m
1´1q `Np2m

1´1 ´ 1q ` 1,

which yields

Npnq “
Q

pn` 1q{2l
U

´ 1,

where Npkq, k ě 2l, is the number of nonscalar multiplications in the giant-step and

Npkq “ 0 for k ă 2l. Thus, the number of nonscalar multiplications is given as
Q

pn` 1q{2l
U

´ 1` 2l ´ 1`m´ l ´ 1.

As shown in Table 4.2, the number of scalar multiplications is pn ` 1q ´
P

pn` 1q{2l
T

and the number of addition is n` 2p2l `m´ l´ 2q. Note that the depth

and number of nonscalar multiplications can be minimized when m is the smallest

integer satisfying 2m ą n and l « m{2.
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4.4 Optimal Approximate Polynomial and Bootstrapping of

the CKKS Scheme

Usually, HE schemes support addition and multiplication, and thus only polynomials

can be evaluated. However, non-polynomial functions such as ReLU, min/max func-

tion, multiplicative inverse, and modulus reduction are frequently required in their

applications [69]. Hence, approximate polynomials are used to replace those non-

polynomial functions in real-world applications [16]. This subsection proposes a new

method to find the optimal approximate polynomial for the CKKS scheme using the

generalized least mean square method.

4.4.1 Polynomial Basis Error and Polynomial Evaluation in the CKKS

Scheme

Rounding of ciphertexts introduces an additional error during rescaling and key

switching in the CKKS scheme. Also, these errors and encryption errors are ampli-

fied through homomorphic operations. Generalized polynomial basis of degree n is

denoted by tφ0ptq, φ1ptq, . . . , φnptqu. For instance, monomial basis t1, x, x2, . . . , xnu

and Chebyshev polynomial basis tT0pxq, T1pxq, . . . , Tnpxqu are polynomial bases. We

can assume that each polynomial basis has independent errors due to rounding and en-

cryption errors, namely, the basis errors.

When a polynomial fpxq “
ř

ciφipxq is evaluated homomorphically, it is ex-

pected that the result is fpxq ` e for a given input x and small error e. However,

in the CKKS scheme, there exists an error in encrypted data and thus, each basis of

polynomial, φipxq contains independent basis error eb,i. Hence, the output is given as

ÿ

cipφipxq ` eb,iq “
ÿ

ciφipxq `
ÿ

cieb,i

“ fpxq `
ÿ

cieb,i.

As eb,i is a small value, the error
ř

cieb,i is small in general. However, when |ci|
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is much larger than }fpxq}8 such as a high-degree polynomial for bootstrapping,
ř

cieb,i might overwhelm fpxq.

High-degree approximate polynomials have large coefficients in general. The out-

puts of the approximate polynomial for modulus reduction, which is essential for the

bootstrapping of the CKKS scheme, are in r´ε, εs, where ε “ |m|
q . There have been

series of studies in approximate polynomials in the CKKS scheme [4]– [25], but the

error amplified by coefficients were not considered in the previous studies. The mag-

nitude of coefficients of approximate polynomial should be controlled when we find

the approximate polynomial of any non-polynomial functions, as well as the modu-

lus reduction, which deteriorates message precision by the successive homomorphic

operations.

4.4.2 Variance-Minimizing Polynomial Approximation

In the encrypted data of the CKKS scheme, errors include errors added for security,

rounding errors, approximation errors, and errors added during homomorphic oper-

ations. Therefore, from the central limit theorem, the basis errors can be considered

Gaussian random variables with zero means. The approximate polynomial can be op-

timized by minimizing the variance of the approximation error, rather than using min-

imax approximate polynomial [25].

As shown in Subsection 4.4.1, basis error is amplified by coefficients of the approx-

imate polynomial. Thus, the magnitude of its coefficients should not be large values

and using the generalized least squares method, the optimal coefficients vector c˚ of

the approximate polynomial is obtained as

c˚ “ arg minc

´

V arreaprxs `
ÿ

wic
2
i

¯

(4.5)

for weight constants wi, where wi’s are determined by basis error and eaprx is the

approximation error. I call the proposed approximate polynomial obtained by (4.5)

as the error variance-minimizing approximate polynomial, and there exists an analytic
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solution. It is noted that when wi’s are all zero, the approximate polynomial minimizes

the variance of approximation error only.

Especially, error variance-minimizing approximate polynomial is more efficient

and suitable for the bootstrapping of the CKKS scheme as it reduces the bootstrapping

error compared to the minimax approximate polynomial. Considering SlotToCoeff,

the error in the j-th slot is given as epζjM q “
řN´1
i“0 ei ¨ ζ

ji
M , which is an addition of

independent and identically distributed random variables, ei ¨ ζ
ji
M . Hence, the minimax

approximate polynomial does not minimize the variance of errors, which are the actual

errors in the encrypted data in bootstrapping. Instead, minimizing the error variance

of each coefficient minimizes errors in slot values after bootstrapping. This implies

that minimizing the variance of the approximate polynomial error is optimal to reduce

the error during the bootstrapping of the CKKS scheme compared to the minimax

approximation. The error variance-minimizing approximate polynomial is described

in detail by taking bootstrapping as a specific example in the next subsection.

4.4.3 Optimal Approximate Polynomial for Bootstrapping and Magni-

tude of Its Coefficients

The key part of the bootstrapping of the CKKS scheme is the homomorphic evaluation

of the modulus reduction. In [19], the modulus reduction is approximated by the sine

function, and the approximate polynomial for the sine function is homomorphically

evaluated using a Taylor series expansion and the double-angle formula. Moreover,

with optimized nodes for the Chebyshev interpolation, the polynomial approximation

is significantly improved [20]. The least-square method to find a better approximate

polynomial without trigonometric functions is proposed in [24] and the method to find

minimax approximate polynomial is also proposed in [25].

In [25], the modulus reduction function, t pmod qq is considered as

q

2π
arcsin ˝ sin

ˆ

2πt

q

˙
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and the approximate polynomials for arcsinp¨q and sinp¨q are evaluated sequentially.

This dissertation focuses on the direct-approximation of modulus reduction rather than

trigonometric function approximation to minimize the bootstrapping error and depth.

However, as the proposed error variance-minimizing method can be applied to any

function, the composite method and double-angle formula for faster evaluation in [20,

25] can also be applied to the proposed method.

By scaling the modulus reduction function by 1
q , I define fmodptq “ t ´ i if t P

I ´ i, that is, fmod :
ŤK´1
i“´K`1 Ii Ñ r´ε, εs , where Ii “ ri´ ε, i` εs and i is an

integer such that |i| ă K. Here, ε denotes the ratio of the maximum coefficient of the

message polynomial and the ciphertext modulus, that is, |mi|{q ď ε, wheremi denotes

a coefficient of message polynomial mpXq.

Let T be the random variable of input t of fmodptq. Then, T “ R` I , where R is

the random variable of r, the rational part of t and I is the random variable of i, for

t P Ii. It should be noted that PrT ptq “ PrI piq ¨ PrR prq is satisfied for t “ r ` i as i

and r are independent and
Ť

i Ii “ r´ε, εsˆt0,˘1, . . . ,˘pK´1qu, where PrT ,PrI ,

and PrR are probability mass functions or probability density functions of T, I, and

R, respectively.

The approximation error in t is given as

eaprxptq “ pptq ´ fmodptq

“ pptq ´ pt´ iq,

where pptq is the approximate polynomial of fmodptq. Then the variance of eaprx is

given as

V arreaprxs “ Ere2
aprxs ´ Ereaprxs

2

“ Ere2
aprxs

“

ż

t
eaprxptq

2 ¨ PrT ptq dt,
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where the mean of eaprx is zero by Lemma 4.9. This gives us the following equation

V arrEaprxs “
ÿ

i

ż

m
eaprxptq

2 ¨ PrR prq ¨ PrI piq dt

“
ÿ

i

PrI piq

ż i`ε

t“i´ε
eaprxptq

2 ¨ PrR pt´ iq dt.

It is noted that the integral can be directly calculated or replaced by the sum of dis-

cretized values as in [24].

Lemma 4.9. Let pptq be an approximate polynomial that minimizes V arrfptq ´ pptqs

for a function f . Then, Erfptq ´ pptqs “ 0 is satisfied.

Proof. Assume that Erfptq ´ pptqs “ µ ‰ 0. Then, we can see that it is always

satisfied that

V arrfptq ´ ppptq ` µqs “ Erpfptq ´ pptqq2s ´ µ2

ă V arrfptq ´ pptqs,

which is a contradiction.

Let tφ0ptq, φ1ptq, . . . , φnptqu be a generalized polynomial basis. Then, I represent

the approximate polynomial by pptq “
řn
k“0 ckφkptq, where ck’s are coefficients. In

this dissertation, polynomial approximation aims to find the coefficients that minimize

V arreaprxs. However, it should be noted that the approximation of the modulus re-

duction, fmodptq, t P
ŤK´1
i“´K`1 Ii, is required to be very accurate, especially for the

bootstrapping and thus, a high dimensional approximate polynomial should be used.

The problem is that high-degree approximate polynomials usually have large coef-

ficients. Generally, it is not a problem, but in the case of the CKKS scheme, large

coefficients amplify the errors on the polynomial basis. Therefore, a high-degree ap-

proximate polynomial with small coefficients is required. Hence, we find c˚ such that

c˚ “ arg minc

˜

V arreaprxs `

n
ÿ

i“0

wic
2
i

¸

, (4.6)
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and the solution satisfies

∇c

˜

V arreaprxs `

n
ÿ

i“0

wic
2
i

¸

“ 0,

where c “ pc0, c1, . . . , cnq and w “ pw0, w1, . . . , wnq are coefficient and weight

constant vectors, respectively.

It is noted that the variance of error in each φiptq may be different. For example,

when the ciphertext of x4 is obtained by multiplying the ciphertext of x2, while the

ciphertext of x2 contains a rounding error ernd,2. Then, the ciphertext of x4 has error

2ernd,2x
2`e2

rnd,2`ernd,4. In general, we can say that a high-degree term of polynomial

basis causes a larger error. Hence, a precise adjustment of the magnitude of polynomial

coefficients can also be made using multiple weight constants, wi’s.

Theorem 4.10. There exists a polynomial-time algorithm that finds c “ pc0, . . . , cnq

satisfying

arg minc

˜

V arreaprxs `

n
ÿ

i“0

wic
2
i

¸

.

Proof. From Lemma 4.9, we can assume that Ereaprxs “ 0. Then, we have the fol-

lowing equation

V arreaprxs “ Ere2
aprxs ´ Ereaprxs

2

“ Ere2
aprxs

“ Erfmodptq
2s2Erfmodptq ¨ pptqs ` Erpptq

2s.

By substituting pptq “
řn
k“0 ckφkptq, we have

B

Bcj
V arreaprxs “ ´2Erfmodptqφjptqs ` 2

n
ÿ

k“0

ck ¨ Erφkptqφjptqs.

The solution of the following system of linear equations, c˚ satisfies

c˚ “ arg minc

˜

V arreaprxs `

n
ÿ

i“0

wic
2
i

¸

:

T ¨ c “ y, (4.7)
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where

T “

»

—

—

—

—

—

—

–

Erφ0φ0s ` w0 Erφ0φ1s . . . Erφ0φns

Erφ1φ0s Erφ1φ1s ` w1 . . .
...

...
. . .

...

Erφnφ0s Erφnφ1s . . . Erφnφns ` wn

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and

y “

»

—

—

—

—

—

—

–

Erfmodptqφ0ptqs

Erfmodptqφ1ptqs
...

Erfmodptqφnptqs

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

As Erφiφjs and Erfmodptqφiptqs are integral of polynomials, these are easy to calcu-

late.

Theorem 4.10 states that the approximate polynomial for pptq is found efficiently.

In other words, the computation time of solving this system of linear equations is the

same as that of finding an interpolation polynomial for given points, which is faster

than the modified Remez algorithm [25].

4.4.4 Reducing Complexity and Error Using Odd Function

When the approximate polynomial is an odd function, one can save time to find and

homomorphically evaluate the approximate polynomial. Using the fact that fmodptq is

an odd function and the minimax approximate polynomial of an odd function is also

an odd function, the approximate polynomial for fmodptq with only odd degree terms

was derived [24, 25]. Moreover, the number of operations to evaluate the approximate

polynomial can also be reduced by omitting even-order terms. Besides, the amplified

basis error is also reduced as there are only half of the terms to be added when the

approximate polynomial is an odd function. Theorem 4.11, it is shown that when the

target function of polynomial approximation such as fmodptq is odd and the probability
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density function is even, the error variance-minimizing approximate polynomial is also

an odd function from the following theorem. In the following section, odd approximate

polynomials are obtained and implemented based on the following theorem.

Theorem 4.11. When PrT ptq is an even function and fptq is an odd function, the

error variance-minimizing approximate polynomial for fptq is an odd function.

Proof. Existence and uniqueness: The error variance-minimizing approximate poly-

nomial minimizes V arreapprxs `
ř

wic
2
i , which is a quadratic polynomial for the co-

efficients c. Hence, there exists the one and only solution.

Oddness: Let Pm denote the subspace of the polynomial function of degree at most

m and fmptq denote the unique element of Pm that is closest to fptq in the variance of

difference. Then, V arr´fp´tq´pptqs`
ř

wic
2
i is minimized when pptq “ ´fmp´tq,

because

V ar r´fp´tq ´ pptqs “

ż

t
p´fp´tq ´ pptqq2 ¨ Prptqdt

“

ż

´u
´pfpuq ` pp´uqq2 ¨ Prp´uqdu

“

ż

u
pfpuq ´ p´pp´uqqq2 ¨ Prpuqdu

is satisfied and the squares of coefficients of fmptq and ´fmp´tq are the same. As the

error variance-minimizing approximate polynomial is unique, I conclude that fmptq “

´fmp´tq.

4.4.5 Generalization of Weight Constants and Numerical Method

Earlier it is noted that the weight constant vector w provides the trade-off between

the magnitude of coefficients and variance of polynomial approximation error. In this

subsection, I generalize the amplified basis error term
řn
i“0wic

2
i and find the optimal

approximate polynomial for baby-step giant-step algorithm. The numerical method to

select the weight-constant vector w is also proposed.
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Algorithm 5 Generalized odd baby-step giant-step algorithm [25]
Instance: A ciphertext for t, a polynomial of degree n, pptq “

řn
i“0 ciTiptq.

Output: A ciphertext encrypting pptq.

1: Let l be the smallest integer satisfying 2lk ą n for an even number k.

2: Evaluate T2ptq, T3ptq, . . . , Tkptq inductively, but even degree polynomials other

than Tkptq are not necessary to be obtained unless it is used to obtain other poly-

nomials.

3: Evaluate T2kptq, T22kptq, . . . , T2l´1kptq inductively.

4: Find polynomials rptq, qptq of degree ď 2l´1k, which satisfy pptq “ rptq `

qptqT2l´1kptq in forms of linear combinations of the Chebyshev polynomial ba-

sis.

5: Evaluate qptq and rptq recursively, by using the quotient and remainder polynomi-

als when those are divided by T2l´2kptq.

6: Evaluate pptq using T2l´1kptq, qptq, and rptq.

The basis error can be found using the method proposed in Subsection 4.2.4 or

numerically. Let vb,i be the variance of basis error in a slot of ciphertext which is an

encryption of Tipxq. Then, the basis errors are multiplied by ci and the amplified error

is given as
řn
i“0 c

2
i vb,i. Considering the approximation error, it should be noted that

a large scaling factor ∆bs “ Opqq is multiplied to the result of EVALMOD [19, 24].

For brevity of description, I let ∆bs “ q; it is proper, because there are coefficients of

mpXq, mi’s in the slots after COEFFTOSLOT, and by letting its scaling factor q, the

slot values become mi{q with scaling value q. Hence, the approximation error is given

as q2 ¨ V arreaprxs. Therefore, it is optimal when wi has the value vb,i{q
2.

However, in practice, fast evaluation algorithms such as the baby-step giant-step

and the Paterson-Stockmeyer algorithms are used to evaluate the polynomial effi-

ciently. Thus, the coefficients are changed and the errors are not simply added.

The generalized baby-step giant-step algorithm for an odd degree polynomial
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is given in Algorithm 5. The basic blocks of the baby-step giant-step algorithm

are polynomials of degree less than k, so-called baby-step polynomials, piptq “
ř

jPt1,3,...,k´1u di,jTjptq for i “ 0, 1, . . . , 2l ´ 1. Then, it can easily be seen that pptq

consists of piptq’s and Tkptq, . . . , T2l´1kptq. For example, when l “ 2, we have

pptq “ pp3ptqTkptq ` p2ptqqT2kptq ` p1ptqTkptq ` p0ptq. (4.8)

Hence, when pptq is evaluated, the coefficients of piptq’s amplify the basis error, and

thus, minimizing the basis error of basis elements with a degree less than k is crucial.

Let Ep be a function of d, which is the variance of basis error amplified by coef-

ficients d “ pd0,1, d0,3, . . . , d2l´1,k´1q. A heuristic assumption that Ti’s are indepen-

dent and the encryptions of Tkptq, . . . , T2l´1kptq have small error simplifies Ep. Let T̂i

be the product of all T2jk’s multiplied by pi, for example, T̂0 “ 1 and T̂3 “ TkT2k in

(4.8). Considering the error multiplied by di,j , ej ¨T̂i is the dominant term as Ti has zero

mean and very small variance. Thus, it can be said that Ep “
ř

i

ř

j d
2
i,jErT̂

2
i svb,j ,

which is a quadratic function of d. In other words, we have Ep “ dᵀHd, where H is

a diagonal matrix that

Hki`j,ki`j “ ErT̂ 2
i svb,j .

Thus, (4.6) is generalized as

c˚ “ arg minc pV arrq ¨ eaprxs ` Epq .

Since c and d have linearity, ∇cEp can easily be calculated. Specifically, we have

c “ Ld

“

”

A2l´1k

ı

¨

»

–

A2l´2k 0

0 A2l´2k

fi

fl ¨ ¨ ¨

»

—

—

—

–

Ak

. . .

Ak

fi

ffi

ffi

ffi

fl

¨ d, (4.9)

where

Ak “

»

–

Ik{2
1
2Jk{2

0 1
2Ik{2

fi

fl ,
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Ik{2 is the k{2 ˆ k{2 identity matrix, and Jk{2 is the k{2 ˆ k{2 exchange matrix.

Equation (4.9) is derived from TmpxqTnpxq “
1
2pTm`npxq ` T|m´n|pxqq. Then, we

have ∇cEp “ 2L´1ᵀHL´1c. Hence, the optimal coefficient c˚ satisfies

`

T` L´1ᵀHL´1
˘

c˚ “ y.

Instead of finding Ep, a simple numerical method can also be used. Actually, the

value of T̂i is close to one, and moreover, the numerical method shows good error

performance in the implementation in Subsection 4.7.2. I let wi “ w for all i and find

the value using the numerical method for brevity. When w increases, the coefficients c

decreases, and V arreaprxs increases, and thus its sum is a convex function of w. Thus,

the optimal polynomial is found by using numerical methods by finding the optimal

w. c is uniquely determined by w, and using c, the coefficients for the baby-step giant-

step algorithm or the Paterson-Stockmeyer algorithm can be calculated. The magnitude

of the basis errors that are amplified by coefficients is similar to the rounding error

whose variance is Nph`1q
12 . After multiplying }L´1c}2 with the variance, it is added to

q2 ¨ V arreaprxs. In other words, we adjust w to minimize

V arreaprxs `
w

q2
¨ }L´1c}22,

where w is close to Nph`1q
12 .

The proposed method is efficient when an accurate approximation is required.

In [62], a bootstrapping for the CKKS scheme with a non-sparse key was proposed; in

other words, the secret key has Hamming weight h « N{2. In that case, K is a con-

siderable value, so that a high-degree approximate polynomial is required. Therefore,

if the method proposed in this dissertation is applied to the non-sparse key case, its

impact on bootstrapping error reduction will be significant.
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4.5 Comparison and Implementation

I conduct an experiment to compare the proposed method with previous work in [20],

which, to our knowledge, is the best current method. Maximum errors between rtsq

and the approximate polynomials are numerically computed and compared. Note that

we can analytically obtain the maximum error once the polynomial is known and that

the approximate error is an absolute value of a polynomial. However, the numerically

computed maximum error is sufficient as it is approximately equal to the real value,

and we are dealing with approximate arithmetic here. For example, we can see that the

numerically computed maximum error for the polynomial is almost the same as the

error bound presented in [20].

In Fig. 4.2, I plot the maximum error in log scale, log2p|rtsp ´ poptq|q, while fix-

ing n and varying ε or fixing ε “ 2´7, 2´10 and varying n. It is noteworthy that the

proposed method gives an approximation (error below 2´21) for a large ε (“ 2´7)

with the depth of 7, whereas the previous method cannot achieve this even when using

polynomials of a higher degree. This is because the sine function is not a suitable ap-

proximation for the modulus reduction when ε is large. As the proposed method does

not depend on the sine function, even large-sized messages that could not be handled

by the previous method can be handled by low-degree polynomials in the proposed

method.

A staircase shape is shown in Fig. 4.2(b), in other words, the maximum approx-

imation errors are similar when the degrees are 2n ´ 1 and 2n. This is because the

target of the approximation, the modulus reduction function rtsq, is an odd function.

The following proposition shows that the minimax polynomial for an odd function is

an odd function.

Proposition 4.1. If fptq is an odd function, the best approximation among the polyno-

mials of degree n is also odd.

Proof. Let Pm denote the subspace of the polynomial function of a degree of at most
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m and fmptq denote the unique element of Pm that is closest to fptq in the supreme

norm. I define pptq P Pm by pptq “ 1
2pfmptq´ fmp´tqq. Then, for all u in the domain

of fptq, we have

|fpuq ´ ppuq| “

ˇ

ˇ

ˇ

ˇ

fpuq ´
1

2
pfmpuq ´ fmp´uqq

ˇ

ˇ

ˇ

ˇ

ď
1

2
|fpuq ´ fmpuq| `

1

2
|fpuq ` fmp´uqq|

“
1

2
|fpuq ´ fmpuq| `

1

2
|fp´uq ´ fmp´uqq|

ď sup
t
|fptq ´ fmptq|.

If pptq ‰ fmptq, it contradicts that fmptq is the closest to fptq. Hence, fmptq “ pptq “

1
2pfmptq ´ fmp´tqq and this is an odd function.

From the polynomial coefficients of the proposed method, it can be observed that

the coefficient of an even-order term has a significantly small value close to zero in

poptq. This is evidence for the fact that the proposed method finds a polynomial near

the minimax polynomial because the modulus reduction function is an odd function. It

can be seen that the even-order terms are rather a handicap for finding an approximate

polynomial. Therefore, approximating using only odd-order Chebyshev polynomials

yields a more accurate approximate polynomial.

It is one of the advantages of the proposed method that the nature of the odd func-

tion can be utilized. In contrast, the previous method [20] cannot make use of odd

function because their cosine function in the constrained domain is not an odd func-

tion nor even function. Using the fact that the odd functions are symmetric with respect

to the origin, we can solve the L2-norm minimization only with samples whose value

is greater than zero. Thus, the number of rows and columns of the matrix T is reduced

by half each. As a result, the time complexity of matrix inversion is reduced to about

1/8. Also, some operations on even-order terms may be ignored during evaluation.

In Table 4.3, I compare previous results from [20, 21] and the results of the pro-

posed method for ε “ 2´10. The criterion is the maximum value of the approximation
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error. As shown in Table 4.3, I reduce the approximation error from 2´26.42 to 2´27.18,

while also reducing the degree from 74 to 73. Note that due to the method of selecting

nodes, the method of [20] is restricted in the degree of an approximate polynomial. It

is evident that the difference is greater when a more precise approximation is needed;

moreover, in some cases, the number of nonscalar multiplications, scalar multiplica-

tions, and additions are reduced by reducing the degree of an approximate polynomial.

Moreover, notice that the maximum error of the proposed method is always smaller

than the previous state-of-the-art results even with the same degree polynomial.

It can be seen that the proposed method provides a trade-off between approxima-

tion error and the degree of the approximate polynomial. When a polynomial of degree

127 is used, the proposed method provides an approximation error below 2´40. How-

ever, when the previous method is used, the error cannot be reduced below 2´27.28 as it

is bounded by the error between sine function and rtsq as in Table 4.3 and Fig. 4.2(b).

Table 4.3 and Fig. 4.2(b) show that that increasing the degree of the polynomial does

not lower the approximation error to some extent when using the previous methods.

A comparison of the minimum degrees necessary to achieve the desired error

bounds is given in Table 4.4. For ε “ 2´6, it is shown that the proposed method

achieves an approximation error of less than 2´20 with only a depth of 7. When a

polynomial pcosptq approximates a sine or cosine function as in [19–21], the approxi-

mate error is bounded by the sine function. In other words, it is bounded by

max
t
|rtsq ´ pcosptq| ě max

mPr´εq,εqs

ˇ

ˇ

ˇ

ˇ

m´
1

2π
sin

ˆ

2π
m

q

˙ˇ

ˇ

ˇ

ˇ

«
1

2π
¨

1

3!

ˆ

2π|m|

q

˙3

, (4.10)

which is small when |m|
q is small. However, as |m|q increases, the bound increases in the

third order. For ε “ 2´10, 2´9, 2´8, and 2´7, the bounds are given as 2´27, 2´24, 2´21,

and 2´18. Table 4.4 shows that the approximation error of a polynomial found by the

method in [20] is above those bounds. Therefore, for applications that require a more

accurate approximation than this range, the proposed method should be used.
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Table 4.4: Comparison of minimum degree of approximate polynomials to achieve

desired error bound
}rtsq ´ pptq} ă 2´25 }rtsq ´ pptq} ă 2´21

Proposed Method in [20] Proposed Method in [20]

ε Deg Deg Deg Deg

2´11 69 70 63 63

2´10 73 74 65 65

2´9 75 converge to

2´24

71 72

2´8 119 converge to

2´21

73 76

2´7 127 converge to

2´18

121 converge to

2´18

2´6 137 converge to

2´15

127 converge

to2´15
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The proposed method is implemented in SageMath 9.0. It requires 1.01 s in

average on Intel Core i7-6700k (4.0 GHz) to find the optimal coefficients with

32 samples for each Ik, the degree n “ 73, and ε “ 2´10. Note that most of the results

in Table 4.3, 4.4, and Fig. 4.2 are driven by 32 samples for each Ik. This implies that

massive samples are not required for good approximations. Instead, with only „ 300

samples (depends on the degree of polynomial), the proposed method surpasses the

best-known method [20].

4.6 Reduction of Level Loss in Bootstrapping

By using the proposed method, better parameters that reduce the loss of level during

the bootstrapping can be selected. As discussed in the previous section, the proposed

method finds a more accurate approximate polynomial for relatively large ε than the

previous best method. This section explains how such property leads to better param-

eters.

I will make use of the following lemmas from [4, 19] for noise estimation.

Lemma 4.12 ( [4], Lemma 2). Let c1 Ð RSlÑl1pcq for a ciphertext c P R2
ql

. Then

〈c1, sk〉 “ ql1
ql

〈c, sk〉 ` e pmod ql1q for some e P R satisfying }e}can8 ď Brs for

Brs “
a

N{3 ¨ p3` 8
?
hq.

Lemma 4.13 ( [19], Lemma 4). Let c P R2
q be a ciphertext with respect to a secret key

sk1 “ p1, s1q and let swk Ð KSGenskps
1q. Then c1 Ð KSswkpcq satisfies 〈c1, sk〉 “

〈c, sk1〉 ` eks pmod qq for some eks P R with }eks}can8 ď P´1 ¨ q ¨ Bks ` Brs for

Bks “ 8σN{
?

3.

A sufficiently large scaling factor ∆bs “ Opqq is multiplied during the CO-

EFFTOSLOT step in order to keep the precision of values in slots. Note that ∆bs differs

from the scaling factor of the message ∆. From Lemma 4.13, the total error in the

COEFFTOSLOT step is OpBrsq when a sufficiently large P is chosen [4].
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Figure 4.2: Maximum value of the error log2p|rtsp ´ poptq|q for the proposed method

and previous method pK “ 12q.
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In the EVALMOD step, each component of the corresponding plaintext slot con-

tains tj ` ej for some small error ej such that |ej | ď OpBrsq. An approximate poly-

nomial poptjq is evaluated with scaling factor ∆bs, and thus the approximate error is

given as

∆bs

ˇ

ˇ

ˇ

ˇ

ˇ

„

tj
q



q

´ po

ˆ

tj ` ej
q

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ď ∆bs

ˇ

ˇ

ˇ

ˇ

ˇ

„

tj
q



q

´

„

tj ` ej
q



q

ˇ

ˇ

ˇ

ˇ

ˇ

`∆bs

ˇ

ˇ

ˇ

ˇ

ˇ

„

tj ` ej
q



q

´ po

ˆ

tj ` ej
q

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ď ∆bs ¨
|ej |

q
`∆bs max

t

ˇ

ˇ

ˇ
rtsq ´ poptq

ˇ

ˇ

ˇ
.

In order to bound the error in the EVALMOD step to OpBrsq, it should be guaranteed

that

max
t
|rtsq ´ poptq| ă

|ej |

q
. (4.11)

When the error in the EVALMOD step is bounded to OpBrsq, we have the error bound

after the SLOTTOCOEFF step as Op
?
N ¨Brsq [19].

Note that from Lemma 4.12, the error in bootstrapping is independent from the

scaling factor of message ∆ and bounded to OpN
?
hq. Thus, the plaintext precision

is proportional to log ∆, where ∆ determines |m|. Combining (4.10) and (4.11), q

is restricted to be greater than Opm3{2q in all the methods proposed so far [19–21].

Considering that a scaling factor ∆bs “ Opqq is used in the bootstrapping, the level

consumption is given as Opm3{2q. Thus, the previous methods do not scale well for

applications that require accurate computations.

However, by using the proposed method, the upper bound from (4.10) does not

exist. Hence, the level loss in bootstrapping is roughly proportional to Opmq rather

than Opm3{2q. This is one of the advantages of the proposed method, and it overcomes

the limitations of the existing methods. The more precise calculations are required, the

greater the gain we have.

Various factors, such as the number of slots, affect plaintext precision. Hence, the

plaintext precision is obtained using the numerical methods, and it can be used to
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Table 4.5: Probability mass function of I .

i PrI piq i PrI piq

0 0.3343019 ˘6 0.00342346

˘1 0.13919181 ˘7 0.00091685

˘2 0.09646158 ˘8 0.00020066

˘3 0.05556329 ˘9 0.00003567

˘4 0.02655144 ˘10 0.00000511

˘5 0.01049854 ˘11 0.00000059

determine the parameters as in [19,21]. Using the proposed method, relatively small q

can be used, and thus in some cases, it may leave more levels after bootstrapping.

4.7 Implementation of the Proposed Method and Perfor-

mance Comparison

The proposed method of minimizing error variance is implemented on HEAAN and

SEAL, which can be widely applied to many different applications. I compare the ex-

perimental error of the Chebyshev polynomial of the first kind in the case of applying

the reordering method proposed in the dissertation and not. Finding error variance-

minimizing approximate polynomial is implemented by SageMath. Recently, I imple-

mented the bootstrapping algorithm for SEAL, which will be released soon. The boot-

strapping using the proposed approximate polynomial is implemented by modifying

HEAAN and SEAL. In this section, several implementation results and comparisons

for the bootstrapping algorithms of the state-of-the-art methods are also presented.

4.7.1 Error Variance Minimization

In this subsection, I show how to find the Chebyshev polynomial basis with smaller

errors in HEAAN and SEAL. The input for bootstrapping is t “ r ` i, and for the
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worst-case assumption, I assume that r follows the uniform distribution r´ε, εs, where

ε “ 2´10. The probability mass function of I is given in Table 4.5.

As the domain of Chebyshev polynomial is r´1, 1s, tTipt{Kqu0ďiďn is used as the

polynomial basis, and it can be seen that the distribution of the input t{K is concen-

trated at zero. As shown in Subsection 4.2.4, multiplication between two even degree

terms should be avoided when we calculate the even degree terms. Fig. 4.3 shows

the variance of error in Tiptq for even i’s. It can be seen that error in encrypted data

can be greatly reduced by only changing the order of calculating Tiptq. In particular,

for T74ptq, the variance of error for the proposed method becomes smaller by 1{1973

compared to that without minimization.

4.7.2 Weight Constant and Minimum Error Variance

In Subsection 4.4.5, I discussed analytic solution and numerical method for optimal

approximate polynomial. In this subsection, the above methods are implemented and

verified, together with the theoretical values of approximation error and the amplified

basis error. Besides, I confirm that although the numerical method finds a polynomial

that is very close to the value obtained through Subsection (4.4.5), it has a slightly

larger error than this.

The approximate polynomial minimizing V arreaprxs`w ¨ }c}
2
2 can be found for a

given weight constant w. For the scaling factor ∆bs “ q of bootstrapping, the variance

of approximation error in the slot after EVALMOD is given as

q2 ¨ V arreaprxs.

The variance of amplified basis errors by coefficients are given as

Ep “ pL
´1cq

ᵀ
HpL´1cq.

Finally, in the SLOTTOCOEFF step, the plaintext vectors are multiplied with the first

half of the encoding matrix U and their diagonal vectors have the magnitude of one.
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Proposed
Tn(x) = 2T2k(x) · Tn− 2k − T2k+ 1 −n

(a) Result in HEAAN, where ε “ 2´10 and q “ 240
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(b) Result in SEAL, where ε “ 2´5 and q “ 245

Figure 4.3: Variance of error in Tiptq for even i using HEAAN and SEAL with various

parameters.
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Hence, the variance of the approximation error is multiplied by the number of slots n.

In summary, the total errors by bootstrapping are given as

n ¨
`

q2 ¨ V arreaprxs ` Ep
˘

.

The experimental results, the theoretical variance of the approximate error, and the

basis error are shown in Fig. 4.4. The default parameters in HEAAN library are used

for the experiment: N “ 216, h “ 64, σ “ 3.2 and the number of slots is n “ 23.

The experimental result is averaged over 256 experiments, where the scaling factors

are ∆ “ 40, 45, the number of slots l is 8 and ε “ 2´10 in this experiment. Therefore,

q “ 50, 55 for ∆ “ 40, 45, respectively.

The blue lines with triangular legend show the error by polynomial approximation

as

n ¨ q2 ¨ V arreaprxs.

The green lines with x mark legend show the amplified basis errors as

n ¨ Ep

and the red lines with square legend are for the mean square of errors obtained by ex-

periments. The gray dot line is the variance of bootstrapping error achieved by using

the error variance-minimizing approximate polynomial of the same degree. For the

worst-case assumption, we assume that m is distributed uniformly at random. How-

ever, we use m that is not uniformly distributed. Therefore, the total error can further

be reduced when the distribution of m is known.

In Fig. 4.4, the sum of blue lines with triangular legend and green lines with x

mark legend meets the red lines with the square legend. Thus, it shows that the theo-

retical derivation and experimental results are agreed upon. It can also be seen that it

is possible to obtain an approximate polynomial with a small error even by using the

numerical method, but the error is slightly larger than that of an accurately calculated

approximate polynomial. It is noted that the variance of the rescaling error is ph`2q2n
12
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and the optimal w is close to ph`2q2n
12q2 « 26.4 because each element of Chebyshev

polynomials has error mainly introduced by rescaling.

4.7.3 Comparison of the Proposed Method With the Previous Methods

Minimized Error Variance by the Proposed Method and Error Variance of Min-

imax Polynomial

The best-known approximation method for the CKKS bootstrapping so far is the mod-

ified Remez algorithm [25]. The modified Remez algorithm is an iterative method that

finds the minimax approximate polynomial for piece-wise continuous functions such

as fmodptq. Using the modified Remez algorithm, the minimax approximate polyno-

mial for fmodptq can be found. The minimax approach is reasonable when the input

distribution is unknown. However, in the CKKS bootstrapping, the input distribution

is partially known; the probability mass function of I follows a distribution similar to

the Irwin–Hall distribution. I use the worst-case assumption that r is uniformly dis-

tributed when I derive the variance-minimizing approximate polynomial. However, in

the experiment of finding the variance of approximate error for the given approximate

polynomials for both methods, I let r follow the Gaussian distribution, not the uniform

distribution, because the message polynomial is assumed to be the resultant value of

compound operations and summations. In other words, by assuming the distribution of

the message polynomial differently for finding the variance-minimizing approximate

polynomial and actually calculating the variance, the experiment is conducted in an

unfavorable environment to the proposed method. It is noteworthy that a lower error

variance than minimax polynomial is achieved when using the proposed method, de-

spite the worst-case assumption. It is shown that the distribution of I has a dominant

effect on the error.

It is shown in Fig. 4.5 that the variance of approximation error is smaller when the

error variance-minimizing polynomial is used, as expected. This means that the pro-

posed method reduces the approximation error during bootstrapping. As the magnitude
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of the coefficients of the approximate polynomial cannot be controlled in the modified

Remez algorithm, the approximate polynomials for both methods are compared with-

out controlling the magnitude of coefficients in Fig. 4.5. It is noted here that the vari-

ance of approximation errors shown in Fig. 4.5 is not practical in the CKKS scheme

due to the basis error and the enormous coefficients of the approximate polynomials.

However, it is possible to reduce the magnitude of the coefficients of the approximate

polynomial in the proposed method with slightly increased error variance. In contrast,

the previous methods cannot control the magnitude of its coefficients, and thus the use

of the double-angle formula is essential, which results in a large error variance and

more depth.

Experimental Result of Bootstrapping Error

The experimental result of bootstrapping errors with practical approximate polynomi-

als using various methods are compared in Tables 4.6 and 4.7 for HEAAN and SEAL,

respectively. In those tables, the proposed variance-minimizing polynomial directly

approximates fmodptq and the lazy rescaling proposed in this dissertation is applied to

the proposed method. The polynomials of previous methods approximate the scaled

sine function, and the double-angle formula is used. For a very low error achieved by

a method in [25], the composite function method is applied, and the composition of
1

2π arcsin ptq consumes at least two more depth. The scale-invariant evaluation [23,62]

is applied to the previous methods implemented in SEAL.

In Table 4.6, the additional error introduced by the bootstrapping implemented in

HEAAN is presented, including SUBSUM, COEFFTOSLOT, EVALMOD, and SLOT-

TOCOEFF. In the table, it is shown that the proposed method achieves the average

precision of 29.87 bits with only modulus consumption of 400, while the previous

method in [25] achieves 29.18 bits with modulus consumption of 550, where modu-

lus consumption is defined as log2pqq times depth. Therefore, the proposed method

restores about 4 more levels with less error through bootstrapping, compared to the
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Table 4.6: Comparison of the minimum variance of bootstrapping error of the pro-

posed variance-minimizing polynomial and prior arts. It is noted that the depth for

modulus reduction is displayed only; depth for COEFFTOSLOT and SLOTTOCOEFF is

not counted. The variance of the error is obtained by 256 samples of experiments im-

plemented in HEAAN. I try several trials for each method and display the polynomial

with the least error in this table.

Algorithm log2 p log2 ε depth
Modulus

consumption

Deg. of polynomial Variance of

bootstrapping

error

Average

precision

(bits)
deg. cos

# of double

angle formula
deg. arcsin

Proposed 40

-8 8 384 239 221.51 29.57

-10
7 350 111 241.06 19.79

8 400 239 220.91 29.87

-12
7 364 111 233.11 23.77

8 416 223 220.55 30.05

Taylor [19] 40 -10 11 594 7 8 - 244.38 18.13

Han et al. [20] 40

-8 8 384 61 2 - 245.94 17.36

-10 8 400 63 2 - 237.27 21.69

-16 7 392 63 1 - 228.56 26.05

Method in [25]
40 -10

8 400 63 2 1 240.24 20.20

10 500 63 2 3 222.55 29.05

11 550 63 2 5 222.29 29.18

previous methods. The default parameters of HEAAN, N “ 216, h “ 64, and σ “ 3.2

are used and the number of slots is n “ 23.

In Table 4.7, the additional error introduced by the bootstrapping implemented in

SEAL is presented. It is shown in this table that the proposed method achieves the

average precision of XX.XX with modulus consumption of 440 while the previous

method achieves XX.XX with modulus consumption of 550. By modifying SEAL,

the same parameters as HEAAN are used.

In conclusion, we can see that the proposed method achieves the least error with

the least modulus consumption from the implementation results. As a result of the

experiment, it is shown that only depth eight is required to achieve the error that could

have been achieved using the previous method with depth 11 [25]. Alternatively, when
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Table 4.7: Comparison of the minimum variance of bootstrapping error of the pro-

posed variance-minimizing polynomial and prior arts. It is noted that the depth for

modulus reduction is displayed only; depth for COEFFTOSLOT and SLOTTOCOEFF

is not counted. The variance of the error is obtained by 256 samples of experiments

implemented in SEAL. I try several trials for each method and display the polynomial

with the least error in this table.
Algorithm log2 p log2 ε depth

Modulus

consumption

Deg. of polynomial
log2 q

2 ¨ V arreaprxs log2Er|eaprx|s{p

deg. cos
# of double

angle formula
deg. arcsin

Proposed 45

-10 7 385 111 48.80 -20.92

-10 8 440 239 17.19 -36.73

-8 8 424 239 16.87 -36.89

-6 8 408 239 21.58 -34.53

Han et al. [20] 45

-8 8 424 55 2 - 55.25 -17.70

-10 8 440 55 2 - 56.94 -16.86

-12 8 456 55 2 - 57.09 -16.78

Method in [25]
45

-10
8 440 55 2 1 56.75 -16.88

10 550 55 2 3 56.89 -16.95

-3 12 576 55 2 13 56.62 -17.02

57 -3 12 720 55 2 13 56.39 -29.13
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using the same depth of 8, the average precision of the proposed method is much higher

than that of the previous methods [19, 25].

The use of the double-angle formula and the composite function method is for the

magnitude of the coefficients and the fast evaluation. It is worth noting that all the

previous techniques, such as the double-angle formula and composition method for

efficient evaluation, can also be applied to the proposed method; these techniques are

not for just minimax approximate polynomials. It is evident that the use of the pro-

posed error variance-minimizing polynomial for sine function and inverse sine func-

tion will also reduce the error compared to the minimax approach in [25]. One might

argue that the bootstrapping algorithm of the proposed method may fail because the

approximation error is too large where the probability is very low. In fact, it is not; by

experiments, I check that the maximum approximation error is also small for the error

variance-minimizing polynomial.

Fundamental Error of Baby-Step Giant-Step Algorithm

This subsection discusses a very loose lower bound of bootstrapping error, which is the

constant term of bootstrapping error, and shows that the proposed method is very close

to the lower bound. As the lazy rescaling method is applied, the rescaling is performed

after a baby-step polynomial is obtained. In other words, we have ciphertext cj’s with

scaling factor close to ∆2, which are encryptions of Tjptq’s. Then, the rescaling is not

performed to cj and coefficients are multiplied as

c1j Ð cMultpcj , di,j ; ∆q.

Then, c1j’s are added up and rescaled by one level. Let cpi denote the summation of

c1j and then it is an encryption of piptq, where cpi includes amplified basis error and

additional basis error.

Then the giant-step such as

MultpRSpcpiq,RSpckqq ` cpi`1
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is performed. Of course, RSpcpiq, RSpckq, and cpi`1 have independent rounding er-

rors, whose variances are ph`1q¨2n
12 . Although Erpiptq2s is usually greater than one, but

for a very loose bound, I let Erpiptq2s “ ErTkptq
2s ď 1, and then the rounding errors

are maintained and added. It is noted that the number of rescaling cannot further be

reduced by the commutative property since the level and a scaling factor of cpi and ck

are the same; these errors are independent of the coefficients d, in other words, it is

the constant term of modulus reduction error. There are 2l ´ 1 such operations in the

giant-step.

The error in MODRAIAS is further amplified by SLOTTOCOEFF. During SLOTTO-

COEFF, key switching makes the 2n shifted copy of the ciphertext (introduces round-

ing error), and the slot values are multiplied by ζji ’s, whose magnitudes are one, and

added up.

There are 3ˆp2l´1q independent rounding errors that occur during the baby-step

giant-step algorithm, and one more rounding error occurs during key switching. There

are n copies of such ciphertexts, and they are all added up. Roughly, the variance of

error introduced by such rounding is given as
ˆ

ph` 1q ¨ 2n

12
ˆ p3ˆ p2l ´ 1q ` 1q

˙

ˆ 2n « 214.9,

where n “ 23 and l “ 3 in the experiment. I note that this is a very loose lower bound

of error, but the proposed method achieves an error of only 2.8 bits greater than this

lower bound on average.
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Figure 4.4: Theoretical energy of approximation error, amplified basis error, and en-

ergy of experimental results, implemented in HEAAN. A polynomial of degree 81 is

used. The gray dot line is the variance of bootstrapping error that is achieved by using

the polynomial with coefficients that c˚ “ arg minc pV arrq ¨ eaprxs ` Epq , which is

the lower bound of bootstrapping error.
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controlling of coefficients of both approximate polynomials.
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Chapter 5

Efficient Code-Based Signature Scheme and Cryptanal-

ysis of Code-Based Cryptosystems

5.1 Introduction

In this chapter, I propose an efficient code-based signature scheme and cryptanaly-

sis of code-based cryptosystems. Especially, the pqsigRM, a first-round candidate of

PQC standardization by NIST and its modification, are included. By using the pro-

posed modified RM codes and their decoding, one can find a small-Hamming-weight

error vector for any given received vector. Hence, it reduces the required iteration in

code-based signature schemes, such as the signature scheme proposed by Courtois,

Finiasz, and Sendrier (CFS). The proposed signature scheme has a small parameter

size. In addition, I propose here that one of the IKKR cryptosystems is equivalent to

the McEliece cryptosystem and cryptanalysis for the other two. The implementation

results show that the proposed attack algorithm is efficient so that it performs faster

than the legitimate decryption.
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5.2 Modified Reed–Muller Codes and Proposed Signature

Scheme

In this section, I propose new codes, their decoder, and a signature scheme that uses

these codes and decoders. The proposed code essentially has a pU,U ` V q-code as its

subcode, and recursively, U and V are also pU,U `V q-codes. This recursive structure

allows the decoding of any given vector in Fn2 . Then, we can find an error vector

with a small Hamming weight for any given syndrome corresponding to the received

vector. Starting from pU,U ` V q-codes, we replace certain rows and append random

rows on the generator matrix of pU,U ` V q-codes. Thus, these codes are no longer

pU,U `V q-codes. However, they have a pU,U `V q-subcode and can use the decoder

for pU,U ` V q-codes.

5.2.1 Partial Permutation of Generator Matrix and Modified Reed–

Muller Codes

New codes named modified RM codes are defined in this section. I first present the

core of the proposed codes, which is a pU,U ` V q-code. Subsequently, I describe

which rows are replaced or appended to the generator matrix. The rationale for these

operations is provided in Section 5.4.

For a code C, I define its hull by the intersection of the code and its dual, in other

words, hullpCq “ C X CK. The proposed pU,U ` V q-code is designed to have a high-

dimensional hull, where dimpUK X V q, dimenstion of UK X V , is large. In general,

for a pU,U ` V q-code C, a codeword pu|u ` vq P hullpCq satisfies v “ uK and

u ` v “ vK, where u P U and v P V . Hence, when UK X V “ t0u, hullpCq has

only pu|uq codewords, and this may reveal the secret key. To avoid this, the proposed

code is designed so that dimpUK X V q is large.

For convenience, I focus on the generator matrix. First, I construct the generator

matrix Gpr,mq of an RM code and then permute its submatrices. An example is shown
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0 0 𝐆(𝑟−1,𝑚−2) 𝐆(𝑟−1,𝑚−2)

0 0 0 𝐆
𝑟−2,𝑚−2

𝜎𝑝
2

Figure 5.1: Generator matrix of partially permuted RM code with parameter pr,mq.

in Figure 5.1, where σ1
p and σ2

p denote two independent partial permutations that ran-

domly permute only p out of n{4 columns. As will be explained in Section 5.5.2, p

is related to the decoding performance. To generate σ1
p and σ2

p , p column indices are

randomly selected from the index set t0, 1, . . . , n{4´ 1u, and the selected indices are

randomly permuted, whereas the others are not. Then, σ1
p is used to permute the subma-

trices corresponding to Gpr,m´2q’s in the first dimpRMpr,m´2qq rows, and σ2
p is used

to permute the submatrix corresponding to Gpr´2,m´2q in the last dimpRMpr´2,m´2qq

rows, as shown in Figure 5.1. The codes generated by the generator matrix in Fig-

ure 5.1 are called partially permuted RM codes. It should be noted that, unlike in the

case of code-based cryptographic algorithms, we permute submatrices of the generator

matrix rather than the entire matrix here. It is noted that the entire matrix should also

be permuted to design a signature scheme. This will be discussed on the key generation

in Section 5.2.3.

dimpUK X V q is large for the following reasons. Let GU and GV denote the
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generator matrices of U and V , respectively:

GU “

»

–

G
σ1
p

pr,m´2q G
σ1
p

pr,m´2q

0 Gpr´1,m´2q

fi

fl ,

GV “

»

–

Gpr´1,m´2q Gpr´1,m´2q

0 G
σ2
p

pr´2,m´2q

fi

fl .

Then, the generator matrix of the dual code of U is

GK
U “

»

–

G
Kσ1

p

pr,m´2q 0

GK
pr´1,m´2q GK

pr´1,m´2q

fi

fl .

Thus, UK X V has a subcode that is the intersection of the code-

words generated by
”

Gpr´1,m´2q Gpr´1,m´2q

ı

and the code-

words generated by
”

GK
pr´1,m´2q GK

pr´1,m´2q

ı

. Its dimension is

minpdimpRMpr´1,m´2q, dimpRMpm´r´2,m´2qqq, as the dual of RMpr,mq is equal to

RMpm´r´1,mq and RMpr1,mq Ď RMpr,mq, where r1 ď r.

With the partially permuted RM codes, the received vector and the syndrome have

the same parity, causing the signature leak. Thus, the generator matrix in Figure 5.1

should be further modified. That is, some rows are replaced with repetitions of random

codewords and random rows are appended to the generator matrix. Considering GU , it

is also an pU,U`V q-code, which can similarly be divided into (permuted) pU,U`V q-

codes. By repeating this process 2m´r times, the rows of the partially permuted RM

code consist of the 2m´r repeated generator matrices of RMpr,rq, which are 2r ˆ 2r

identity matrices. Then, RMpr,rq is replaced by a repeated random p2r, krepq code such

that its dual code has at least one non-zero codeword with odd Hamming weight.

We now append random independent rows to the generator matrix. One row to be

appended is a random codeword of the dual code. This should be independent of the

existing rows; i.e., it should not belong to the hull of the code. Furthermore, it should

be verified that the hull has codewords with Hamming weight that is not a multiple

of four as a result of appending this row. The others are kapp random independent
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⋯

𝑘𝑎𝑝𝑝 Random independent rows

⋯⋯ ⋯⋯

: generator matrix of random 2𝑟 , 𝑘𝑟𝑒𝑝 code replacing RM(𝑟,𝑟)

⋯ ⋯ ⋯ ⋯

Figure 5.2: Generator matrix of modified RM code.

vectors, including at least one vector of odd Hamming weight. These kapp vectors are

independent of the partially permuted RM codes and independent of each other.

After all these modifications, the resulting code is called a modified RM code. An

example of its generator matrix is given in Figure 5.2.

5.2.2 Decoding of Modified Reed–Muller Codes

Unlike the Niederreiter cryptosystem and THE CFS signature scheme, it is required to

find an error vector whose Hamming weight is greater than the error correction capa-

bility. Hence, there may exist several solutions e satisfying HeT “ sT and wtpeq ď w

for a given syndrome s. Such decoding can be achieved by the modified Prange de-

coder using the pU,U `V q structure, as in the signature schemes in [32,50]. However,

in this section, a new decoder is proposed that uses the recursive structure of the sub-

code of modified RM codes, and it achieves better performance than the modified

Prange decoder. In other words, it finds error vectors whose Hamming weights are less

than the result in [50]. This results in the smaller parameters, considering attacks as
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in [70].

In addition to the decoding performance, a major difference between the proposed

decoder and the modified Prange decoder is their input. The input of the modified

Prange decoder used in [32] and [50] is a syndrome vector. In contrast, the input of

the proposed decoder is an n dimensional vector r satisfying HrT “ s, which is

called received vector in coding theory, and the decoder outputs codewords close to

the received vector. An error vector with a small Hamming weight is obtained by

subtracting the output from the received vector. Even if two different received vectors

in the same coset are given, the proposed decoder can return different outputs. Besides,

as the input of the decoder is the received random vector, decoding can be performed

even if random rows are appended to the generator matrix.

As stated in the previous section, random rows (one from the dual code and the

others being kapp independent random vectors) are appended to the generator matrix

of the partially permuted RM codes. Let Capp be the code spanned by the added kapp`1

rows. The number of codewords increases by 2kapp`1 times when rows are appended

by adding codewords of Capp to each pU,U ` V q-codeword. Choosing a codeword of

Capp (including 0), subtracting it from the received vector r, decoding it, and adding

the subtracted codewords back is the decoding process when rows are appended. Thus,

the code is decodable even if arbitrary random codes are appended to its generator

matrix.

Hence, it suffices to explain the decoding algorithm for the pU,U ` V q-subcode

of a modified RM code. This decoding basically follows the recursive decoding

of RM codes [58]. The difference is the partial permutation and the replacement

of RMpr,rq. Considering the decoding proposed in [58], we have c “ pu|u `

vq for all c P RMpr,mq, where u P RMpr,m´1q and v P RMpr´1,m´1q. RMpr,m´1q

and RMpr´1,m´1q are also pU,U ` V q-codes, except for r “ 0 or r “ m. Here, if the

code corresponding to u or v is replaced with a code other than the RM code and the

decoding of the replaced code can be performed appropriately, the entire code c can
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also be decoded [71].

When the subcode of the RM code is replaced with its permutation, the entire code

can also be decoded by slightly modifying the recursive decoding. Moreover, no de-

coding failure occurs because the recursion eventually reaches RMp0,m1q, RMpr1,r1q, or

the p2r, krepq code to replace RMpr,rq and there exists polynomial-time MD decoder

for these codes. Even the p2r, krepq random code is MD decodable in constant time

because it is a small code. To handle partial permutations, when the code is decod-

able, it uses the fact that the permutation is always decodable if the permutation is

known. Depermutation and decoding followed by permutation is the decoding process

for permuted codes.

In general, the output distribution of decoding is crucial for security. Thus, I also

propose a randomized decoding method, the output of which is almost uniformly dis-

tributed. With the algorithm described above, a random decoder can easily be designed.

Algorithm 6 summarizes the randomized decoding. It is easy to find a received vector

(regardless of its Hamming weight) for any given syndrome; a coset element corre-

sponding to the syndrome is randomly selected. This is given to the decoder as input.

Finally, the decoder finds a different error vector with a small Hamming weight for

different inputs.

5.2.3 Proposed Signature Scheme

Herein, the proposed modified pqsigRM signature scheme using the codes in the pre-

vious section is presented. Its decoding algorithm is presented in Section 5.2.2.

Key Generation

Let G be the generator matrix of a modified pn, kq RM code, and H be the parity

check matrix. Let S be an pn´ kq ˆ pn´ kq random non-singular matrix and Q be an

nˆ n random permutation matrix. Then, the public key is H1 “ SHQ, and the secret

keys are H, S, and Q.
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Signing

To sign a given messagem, we randomly select a coin i from t0, 1uλ0 . A binary vector

s “ hphpm|H1q|iq is calculated, where h : t0, 1u˚ Ñ t0, 1un´k is a cryptographic

hash function. Our goal is to find the error vector e satisfying H1eT “ SHQeT “ s.

Let s1 “ S´1m.

Performing the decoding as in Algorithm 6, we find an error vector e1 satisfying

He1T “ s1. If wtpe1q ď w, we compute eT “ Q´1e1T , and the signature is then given

as pm, e, iq.

Verification

If wtpeq ď w and H1eT “ hphpm|H1q|iq, we return ACCEPT; otherwise, we return

REJECT.

The key generation, signing, and verification processes are summarized in Algo-

rithm 7. For simplicity, let H represent all the secrets such as partial permutations σ1
p

and σ2
p , appended rows, and replaced codes. It should be noted that in the signing pro-

cess, we choose a random coset element and perform MODDEC(¨). As MODDEC(¨)

returns different outputs for different inputs even in the same coset, we can achieve

randomized decoding. The output distribution of this randomized decoding output is

analyzed in Section 5.4. We add a salt λ0 to obtain a tight security proof.

5.3 Security Analysis of Modified pqsigRM

In this section, the security of the proposed modified pqsigRM will be analyzed. I will

consider the best-known algorithms for solving DOOM. Thereafter, I will discuss the

resistance of the proposed signature scheme against key substitution attacks. Finally,

it will be proved that the modified pqsigRM is EUF-CMA secure.
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As the public key of the proposed signature scheme is a modification of an

RM code, one may consider key recovery attacks on RM codes, such as Minder–

Shokrollahi [72] and Chizhov–Borodin [73] attacks, as well as square code attacks

[74]. However, owing to the partial permutation as well as the appending and replace-

ment of codewords in the generator matrix, these attacks cannot be adopted here. Ta-

ble 5.1 shows the comparison between the proposed modified pqsigRM and the origi-

nal pqsigRM.

Table 5.1: Comparison of the proposed modified pqsigRM and the original pqsigRM

Modified pqsigRM Original pqsigRM [37]

Key generation

method

partial permutation,

row appending

and replacement

column puncturing

and insertion

Randomized

decoding
yes no

Attack none
finding puncturing

with hull

5.3.1 Decoding One Out of Many

Information set decoding is a brute-force attack method that finds an error vector e

such that HeT “ s and wtpeq ď w, where Stern improved the attack complexity

in [75]. It has been extensively studied, and Dumer’s algorithm [76] as well as more

involved variants in [77, 78] have been proposed.

In the variants of the CFS signature scheme, there are several hash queries. There-

fore, to launch a forgery attack, it suffices to find an error vector with a small Hamming

weight for any of the syndromes. Hence, the decoding problem DOOM given below

is adequate for a tight security proof. The usual FDH proof for existential forgery us-
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ing syndrome decoding would require a work factor ě qH ¨ 2λ, where qH ď 2λ is

the number of hash queries. However, with DOOM, the work factor is required to be

ě 2λ. Although the work factor of DOOM is greater than that of syndrome decoding,

it provides tighter bounds for security.

Problem 5.1. (DOOM)

Instance: A parity check matrix H P Fpn´kqˆn2 of an pn, kq linear code, syndromes

s1, s2, ¨ ¨ ¨ , sq P Fn´k2 , and an integer w.

Output: pe, iq P Fn2 ˆ r1, qs such that wtpeq ď w and HeT “ sTi .

We consider the case in which the adversary has q instances and M “

max p1,
`

n
w

˘

{2n´kq solutions for each instance. Of course, in our case, w is not small,

and thus M is
`

n
w

˘

{2n´k. In [70], the work factor of solving DOOM is given as

WFMq “ min
p,l

ˆ

Cqpp, lq

PqM pp, lq

˙

,

where

Cqpp, lq “ max

˜

d

q

ˆ

k ` l

p

˙

,
q
`

k`l
p

˘

2l

¸

, q ď

ˆ

k ` l

p

˙

is the complexity of solving the DOOM problem using Dumer’s algorithm, and

PqM pp, lq “ 1´

˜

1´

`

n´k´l
w´p

˘`

k`l
p

˘

`

n
w

˘

¸qM

is the success probability. This work factor is the reference for choosing the parameters

of the signature scheme. Although advanced algorithms for information set decoding

can be adapted to DOOM to reduce complexity, this has not yet been conducted. The

proposed signature scheme is designed to use codes with a high-dimensional hull.

Hence, the attacker can exploit this. However, to our knowledge, there is no algorithm

for information set decoding or DOOM that considers this.
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5.3.2 Security Against Key Substitution Attacks

In a key substitution attack, the adversary attempts to find a valid key that is different

from the correct key and can be used for signature verification. If the adversary knows

the secret key and the public key corresponding to a message–signature pair, we have

a weak-key substitution attack, whereas if the adversary knows only the public key,

we have a strong-key substitution attack. Both polynomial-time weak- and strong-key

substitution attacks on the CFS signature scheme were proposed in [79]. A modifi-

cation of the CFS scheme that resists such attacks was also proposed in [79]. In this

modification, the syndrome s is generated by hashing the message, counter, and public

key, rather than hashing only the message and counter. It has been demonstrated that

this modified CFS signature scheme is secure against key substitution attacks [40]. In

the modified pqsigRM, the syndrome is given as s “ hphpm|H1q|iq, and thus it is

also secure against key substitution attacks.

5.3.3 EUF–CMA Security

Here, I prove the EUF-CMA security of the modified pqsigRM. The methods pre-

sented below are adapted from the EUF-CMA security proof of SURF and Wave

[32, 50]. It should be noted that although a key attack for SURF is presented in [50],

its proof technique is valid and generally applicable. The proof is essentially the same

except for the code used for the key and the decoding algorithm for signing.

Basic Techniques for EUF-CMA Security Proof

EUF-CMA is a widely used attack model against signature schemes. In the secu-

rity reduction task, EUF-CMA is viewed as a game played between an adversary

and a challenger. The public key PK, hash oracle H, and signing oracle Σ are

given to a pt, qH, qΣ, εq-adversary A, where A can query at most qH hash values

and qΣ signatures for inputs of its own choice. Within a maximum computation time

t, A attempts to find a valid message–signature pair pm˚,σ˚q. A wins the game if
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Verifyingpm˚,σ˚, PKq “ 1 and σ˚ has not been provided by Σ; otherwise, the chal-

lenger wins the game. The winning probability of the pt, qH, qΣ, εq-adversary is at least

ε.

Definition 5.1. (EUF-CMA Security)

Let S be a signature scheme. I define the EUF-CMA success probability against S as

SuccEUF´CMA
S pt, qH, qΣq :“ maxpε|Dpt, qH, qΣ, εq-adversaryq.

The signature scheme S is called pt, qH, qΣq-secure in EUF-CMA if the above success

probability is a negligible function of the security parameter λ.

I use the statistical and computational distance as basic metrics.

Definition 5.2. (Statistical distance)

The statistical distance between two discrete probability distributions D0 and D1 over

the same space E is defined as

ρpD0,D1q :“
1

2

ÿ

xPE
|D0pxq ´D1pxq|.

Proposition 5.1. [50] Let pD0
1, . . . ,D0

nq and pD1
1, . . . ,D1

nq be two n-tuples of discrete

probability distributions over the same space. For all n ě 0, we have

ρpD0
1 b ¨ ¨ ¨ bD0

n,D1
1 b ¨ ¨ ¨ bD1

nq ď

n
ÿ

i“1

ρpD0
i ,D1

i q.

Definition 5.3. (Computational distance and indistinguishability)

The computational distance between two distributions D0 and D1 in time t is

ρcpD0,D1q :“
1

2
max
|A|ďt

´

AdvD
0,D1

pAq
¯

,

where |A| denotes the running time of A, and AdvD
0,D1

is the advantage of distin-

guisher A, which returns b P t0, 1u against D0 and D1:

AdvD
0,D1

:“ Pξ„D0pApξq outputs 1q

´ Pξ„D1pApξq outputs 1q.
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The EUF-CMA security of the modified pqsigRM is reduced to the modified RM

code distinguishing problem and DOOM with high-dimensional hull, which are de-

fined as follows.

Problem 5.2. (Modified RM code distinguishing problem)

Instance: A code C with high-dimensional hull.

Output: A bit b P t0, 1u, where b “ 1 if C is a permutation of the modified RM code;

otherwise, b “ 0.

Problem 5.3. (DOOM with high-dimensional hull)

Instance: A parity check matrix H1 P Fpn´kqˆn2 of an pn, kq code with high-

dimensional hull, syndromes s1, s2, ¨ ¨ ¨ , sq P F
pn´kq
n , and an integer w.

Output: pe, iq P Fn2 ˆ r1, qs such that wtpeq ď w and HeT “ sTi .

Definition 5.4. (One-wayness of DOOM with high-dimensional hull)

I define the success of an algorithm A against DOOM with high-dimensional hull and

parameters n, k, q, w as

Succn,k,q,wpAq “ PpApH, s1, . . . , sqq

is a solution of Problem 5.3q,

where H is chosen uniformly from the parity check matrix of pn, kq codes with a high-

dimensional hull, si is chosen uniformly in Fn´k2 , and the probability is taken over

these choices and the internal coin of algorithm A. The computational success of

breaking DOOM with a high-dimensional hull in time t is defined by

Succn,k,q,wDOOMHullptq “ max
|A|ďt

´

Succn,k,q,wpAq
¯

.

We assume here that the probability is negligible (as a function of λ) for the parameters

given in Table 5.2.

116



I will discuss these problems in greater detail in Section 5.4. It is worth noting that

there are sufficiently many codes with high-dimensional hull for the parameters given

in Tables 5.2 and 5.4 [80].

EUF-CMA Security Proof

Let SpqsigRM denote the proposed modified pqsigRM. The following definitions as

well as the theorem and its proof are adopted from those in [32, 50].

Definition 5.5. (Challenger procedures in the EUF-CMA game)

The challenger procedures in the EUF-CMA game corresponding to SpqsigRM are

defined as follows:

proc Init(λ) proc Hash(m, i)

pPK,SKq Ð Genp1λq

H1 Ð PK

pH,S,Qq Ð SK

returnH1

return hpm, iq

proc Sign(m) proc Finalize(m, e, i)

iÐâ t0, 1uλ0

sÐ Hashpm, iq

eÐ DECODEpS´1sT ;Hq

return peQ, iq

sÐ Hashpm, iq

return

H1eT “ ST ^ wtpeq “ w

It is noted that the procedures in Definition 5.5 simplify Algorithm 7. We can now

modify the security reduction in [32, 50] and prove the EUF-CMA security of the

modified pqsigRM as follows.

Theorem 5.1. (Security reduction)

Let SuccEUF´CMA
SpqsigRM pt, qH, qΣq be the success probability of the EUF-CMA game cor-

responding to SpqsigRM for time t when the number of queries to the hash oracle (resp.
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signing oracle) is qH (resp. qΣ). Then, in the random oracle model, we have for all t

SuccEUF´CMA
SpqsigRM pt, qH, qΣq ď

2Succn,k,q,wDOOMHullptcq ` qHEH1

´

ρpDH1

w ,Usq
¯

` qΣρpDw,Uwq ` ρcpDpub,Drandqptcq `
1

2λ
,

where tc “ t ` OpqH ¨ n
2q, DH1

w is the distribution of the syndromes H1eT when e

is drawn uniformly from the binary vectors of weight w, Us is the uniform distribu-

tion over Fn´k2 , Dw is the distribution of the decoding result of Algorithm 6, Uw is

the uniform distribution over the binary vectors of weight w, Drand is the uniform dis-

tribution over the random codes with high-dimensional hull, and Dpub is the uniform

distribution over the public keys of modified pqsigRM.

Proof. Let A be a pt, qH, qΣ, εq-adversary against SpqsigRM , and let pH0, s1, . . . , sqHq

be a random instance of DOOM with high-dimensional hull for the parameters

n, k, qH, and w. I stress that s1, . . . , sqH are random independent vectors of Fn´k2 .

Let PpSiq denote the probability that A wins Game i.

Game 0 is the EUF-CMA game for SpqsigRM .

Game 1 is the same as Game 0 except for the following failure event F : There is

a collision in a signature query. From the difference lemma in [81], we have

PpS1q ď PpS0q ` PpF q. (5.1)

The following lemma is from [32].

Lemma 5.2. For λ0 “ λ` 2 log2pqHq, we have PpF q ď 1
λ .

Game 2 is obtained from Game 1 by changing Hash and Sign as follows, where

Sw denotes the set of vectors with Hamming weight w in Fn2 : Index j is initialized to

0 in the Init procedure. I introduce the list Lm, which contains qH random elements

of Fλ0
2 for each messagem. The list is sufficiently large so that all queries are satisfied.
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proc Hash(m, i) proc Sign(m)

if i P Lm

em,i Ðâ Sw

returnH1eTm,i

else

j Ð j ` 1

return sj

iÐ Lm.next()

sÐ Hashpm, iq

eÐ DECODEpS´1sT ;Hq

return peQ, iq

The Hash procedure returns H1eTm,r if and only if i P Lm; otherwise, it returns sj .

The Sign process is unchanged unless i P Lm.

The statistical distance between the syndromes generated by matrix H1 and the

uniform distribution over Fn´k2 is ρpDH1
w ,Usq. This is the difference between Hash in

Game 1 and Game 2 when i P Lm. There are at most qH such instances. Thus, by

Proposition 5.1, it follows that

PpS2q ď PpS1q ` qHEH1

´

ρpDH1

w ,Usq
¯

. (5.2)

Game 3 is obtained from Game 2 by replacing DECODE with em,i in Sign pro-

cedure as follows: e is drawn according to the proposed decoding algorithm DECODE

Game 3 Game 5

proc Sign(m)

iÐ Lm.next()

sÐ Hashpm, iq

eÐ em,i

return pe, iq

proc Finalize(m, e, i)

sÐ Hashpm, iq

bÐ H1eT “ ST ^ wtpeq “ w

return b^ pi R Lmq

in Game 2, whereas it is now drawn according to the uniform distribution Uw. By

Proposition 5.1, we have

PpS3q ď PpS2q ` qΣρpDw,Uwq. (5.3)
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Game 4 is the game in which H1 is replaced with H0. This implies that the ad-

versary is forced to construct a solution for DOOM with the high-dimensional hull.

Here, if a difference between Game 3 and Game 4 is detected, then this yields a dis-

tinguisher between Dpub and Drand. According to [50], the cost to call Hash does not

exceed Opn2q, and thus the running time of the challenger is tc “ t ` OpqH ¨ n
2q.

Therefore, we have

PpS4q ď PpS3q ` ρcpDpub,Drandqptcq. (5.4)

Game 5 is modified in Finalize. The success of Game 5 implies i R Lm and

the success of Game 4. A valid forgery m˚ has never been queried by Sign, and the

adversary has never accessed Lm˚ . As there are qΣ signing queries, we have

PpS5q “ p1´ 2λ0qqΣPpS4q.

Moreover, p1´ 2λ0qqΣ ě 1
2 because we assumed λ0 “ λ` 2 log2pqΣq. Thus, this can

be simplified to

PpS5q ě
1

2
PpS4q. (5.5)

PpS5q is the probability that A returns a solution for DOOM with high-dimensional

hull, which yields

PpS4q ď 2Succn,k,q,wDOOMHullptcq. (5.6)

Combining (5.1)–(5.6) concludes the proof.

5.4 Indistinguishability of the Public Code and Signature

It is challenging to prove the hardness of distinguishing a public code of a code-based

cryptographic algorithm from a random code. As it is difficult to prove the hardness of

distinguishing the public code from a random code, several cryptographic algorithms

are designed by assuming it. In this section, I will consider possible attack algorithms

and consider the difficulty of distinguishing the public code and signatures. Moreover,

the difficulty of distinguishing signatures from random errors is also analyzed.
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5.4.1 Modifications of Public Code

For successful decoding of any received vector, a pU,U ` V q-code should be used in

the modified RM codes. To resist the attack on pU,U`V q-codes proposed in [50], I de-

sign a code with a high-dimensional hull. Generally, the expected dimension of the hull

of a random code is Op1q, which is smaller than d with probability ě 1 ´ Opdq [80].

This is a difference between random and public codes. However, there is currently no

algorithm for solving the syndrome decoding problem by taking advantage of the hull.

We consider that a high-dimensional hull is not a significant drawback unless the hull

has a certain structure that may reveal the secret. Moreover, in [80], it is demonstrated

that there are a large number of codes with the high-dimensional hull. Hence, we can

expect the one-wayness of DOOM with the high-dimensional hull as in Definition 5.4.

Cryptanalysis using hulls is widely used in code-based cryptography. However,

this is valid if the hull has a specific structure that allows information leakage about

the secret key. Therefore, using only the fact that the dimension of the hull is large,

it is difficult to distinguish whether the code is public or random code with the high-

dimensional hull.

The EUF-CMA security proof requires the indistinguishability between public and

random codes, i.e., ρcpDpub,Drandqptcq should be negligible. I will discuss the design

methodology and how these modifications can ensure indistinguishability.

Considering the key recovery attack in [50], a pU,U`V q-code used in code-based

crypto-algorithms should have a high-dimensional hull for security. Even though the

public code of the proposed signature scheme is not a pU,U ` V q-code, it should

contain a pU,U ` V q subcode for efficient decoding.

The attack on SURF in [50] uses the fact that for any pU,U ` V q-code, the hull

of the public code is highly probable to have a pu|uq structure when UK X V “ t0u,

dimpUq ě dimpV q. This pu|uq reveals information about the secret permutation Q

and enables the attacker to locate the U and U ` V codes. To avoid this, we should

maintain the high dimension of UK X V , implying that the public code should have a
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high-dimensional hull. Hence, I define DOOM with high-dimensional hull and assume

that the public code of pqsigRM is indistinguishable from a random code with a hull

of the same dimension as that of the public code, rather than any random linear code.

Moreover, kapp random rows are appended to the generator matrix, and 2r rows of

the generator matrix, that is the repeated RMpr,rq, are replaced by krep random rows;

furthermore, a codeword from the dual code is appended to the generator matrix. These

modifications are equivalent to increasing the dimension of the code itself, the hull,

and the dual of the code, respectively, by appending random codewords. Moreover,

by adding random codewords, the code is no longer a pU,U ` V q-code, and thus

distinguishing attacks are more difficult to perform.

I now explain the rationale for the aforementioned modifications, which are applied

in addition to partial permutation.

Appending kapp Random Rows to the Generator Matrix

The Hamming weights of a random code are distributed. However, the partially per-

muted RM code has only codewords with even Hamming weight. This is because the

Hamming weights of codewords of RMpr,mq are even numbers, and partial permuta-

tions do not affect parity.

By appending a random row with odd Hamming weight to the generator matrix,

the Hamming weights of the public code become distributed binomially. The problem

is that if only one row with an odd Hamming weight is appended, it can easily be ex-

tracted. This can be resolved by appending more than one codeword. Hence, I append

kapp random rows such that at least one has an odd Hamming weight. By the nature of

the decoding process, it is still possible to decode the resulting code.

Appending a Random Codeword of the Dual Code to the Generator Matrix

The Hamming weights of the codewords in the hull of the partially permuted RM code

are only multiples of four. However, the Hamming weight of the codewords in the hull
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of a random code may be an arbitrary even number, not only a multiple of four. As in

the previous modification, a random codeword is appended to the hull. Thereby, I force

the codewords of the hull of the public code to have arbitrary even Hamming weights.

As a randomly appended row to the generator matrix is unlikely to be appended to

its hull, appending a codeword to the hull is more complicated. The following is the

process for appending a random codeword to the hull.

Let hullpCq be the hull of a code C. I define C1 and C2 by C “ hullpCq ` C1

and CK “ hullpCq ` C2, where hullpCq, C1, and C2 are linearly independent. We can

then generate a code with a hull with dimension dimphullpCqq ` 1 by the following

procedure:

i) Find a codeword cdual P C2 such that cdual ¨ cdual “ 0. This is easy because a

codeword with even Hamming weight satisfies it.

ii) Let Cinc “ C ` tcdualu “ phullpCq ` tcdualuq ` C1.

iii) As cdual ¨ phullpCq` tcdualuq “ t0u and cdual ¨C1 “ t0u, we have cdual P CKinc,

where for a vector x and a set of vectors A, x ¨ A is the set of all inner products

of x and elements of A.

iv) It can be seen that CincX CKinc “ phullpCq ` tcdualuq. Hence, Cinc is a code that

has a hull of which dimension is dimphullpCqq ` 1.

If the Hamming weights of the codewords of the hull are only multiples of 4, then

another cdual is selected, and the above process is repeated.

Replacing Repeated RMpr,rq With Random p2r, krepq Codes

It is noted that by replacing repeated RMpr,rq by random p2r, krepq codes, the dimen-

sion of the code is reduced by 2r´krep; this is equivalent to appending 2r´krep rows

to the parity check matrix. The codewords of the dual code of the partially permuted

RM code have only codewords of even Hamming weight owing to a subcode of the
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partially permuted RM code. This can be resolved by replacing this subcode with an-

other random code such that its MD decoder exists. The partially permuted RM code

includes pRMpr,rq| . . . |RMpr,rqq, and the dual code of this has only codewords of even

Hamming weight by the proposition below. It is easy to verify that the dual code of

the partially permuted RM code is a subset of the dual code of pRMpr,rq| . . . |RMpr,rqq.

That is, pRMpr,rq| . . . |RMpr,rqq causes the dual code of the partially permuted RM

code to have only codewords of even Hamming weight.

Proposition 5.2. Let C be a code such that its dual code has only codewords of even

Hamming weight. Then, the dual of the concatenated code, tpc|cq|c P Cu, has only

codewords of even Hamming weight.

Proof. Let h P pC|CqK, where C is an pn, kq code and C|C is a concatenated code given

as tpc|cq|c P Cu. I define vectors h1 and h2 of length n so that h “ ph1|h2q. Clearly,

if h1 P CK, then h2 P CK. If h1 R CK, we have h1 ¨ c`h2 ¨ c “ 0, i.e., h1 ¨ c “ h2 ¨ c.

This implies that h1 “ h2. Hence, wtphq is even.

By replacing the repeated RMpr,rq with a random code such that its dual code has

codewords of odd Hamming weight, we can force the dual of the public code to have

codewords with odd Hamming weight.

Clearly, the dual code of RMpr,rq is t0u. I replace RMpr,rq with a random p2r, krepq

code. It is noted that the dual code of this p2r, krepq code must have codewords with

odd Hamming weight. The generator matrix is modified in this manner, rather than by

appending rows to the parity check matrix, to ensure that the entire code is decodable.

5.4.2 Public Code Indistinguishability

In the EUF-CMA security proof, ρcpDpub,Drandq is required to be negligible; that is,

the modified RM code distinguishing problem should be hard. As it is challenging to

find the computational distance between public and random codes, in this section, we

study the randomness of the public code and consider possible attacks.
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Public Code is Not a pU,U ` V q-Code

After random rows have been appended to the generator matrix of a pU,U ` V q-code,

the resulting code is unlikely to be a pU,U ` V q-code. Considering the following

proposition, it can be seen that with probability Op2kU´n{2q, a pU,U ` V q-code re-

mains a pU,U ` V q-code after a row has been appended to its generator matrix.

Proposition 5.3. Let C be a pU,U ` V q-code. Then, for all codewords pc1|c2q P

C, p0|c1 ´ c2q P C.

It is expected that attacking the modified RM code is difficult because the appended

codewords change the algebraic structure of the code (i.e., the pU,U ` V q structure),

there is considerable randomness, and there is currently no recovery algorithm.

Distinguishing Using Hull

When a random row is appended to the generator matrix, it is unlikely to be included

in the hull. The appended row should be a codeword of the dual code to achieve this,

and its square should be zero. Hence, we append a codeword from the dual code to the

generator matrix.

The appended row can be omitted when the attacker collects several independent

codewords with Hamming weight four from the hull. However, for any random code

with a high-dimensional hull, the same process can be applied, and finally, there only

remain codewords of which the Hamming weight is a multiple of 4. Hence, this is not

a valid distinguishing attack.

The hull of a random pU,U`V q-code is t0uwhen kU ă kV and is highly probable

to have codewords of pu|uq form when kU ě kV . However, the hull of an RM code

is also an RM code, and in our case, the partial permutation randomizes its hull and

retains its large dimension. As shown in Section 5.5, the hull is neither a subcode of

the RM code nor a pU,U `V q-code. Moreover, most of the hull depends on the secret

partial permutations σ1
p and σ2

p .
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5.4.3 Signature Leaks

In the EUF-CMA security proof, it is required that ρpDw,Uwq is a negligible function

of the security parameter λ. If this is true, then the signature does not leak information.

In several signature schemes, such as Durandal, SURF, and Wave, this is achieved and

proved. In SURF and Wave, the rejection sampling method is applied to render Dw

indistinguishable.

To apply rejection sampling, the distribution of the decoding output should be

known. In SURF and Wave, a simple and efficient decoding algorithm is used, and

thus it is easy to find the distribution of the decoding output. However, in our case, the

decoding output exhibits a high degree of randomness, and the structure of the decoder

is complex. Therefore, it is difficult to analyze the distribution of the decoding output.

Instead, I conduct a proof-of-concept implementation of the modified pqsigRM using

SageMath. Then, I perform statistical randomness tests under NIST SP 800-22 [82] on

the decoding output, and I compare the results with random errors in Fn2 with Hamming

weight w. No significant difference is observed. However, it should be noted that the

success of a statistical randomness test does not imply indistinguishability. Thus, the

indistinguishability of the signature should be rigorously studied as future work.

5.5 Parameter Selection

5.5.1 Parameter Sets

The constraint here is that n is a power of two. We can numerically find the feasible

ranges of w once n and k are determined. If the security level λ is achieved in this

range, the value is accepted; otherwise, we increase n. Considering DOOM, a smaller

value of w implies higher security. If w is so small that a large number of decoding

iterations are required, we could reduce the partial permutation parameter p. p is at

most n{4, and the characteristics of the codes are retained by lowering p to a certain

degree. The method for obtaining the minimum values is described in the following
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Table 5.2: Parameters for each security level

λ (security) 80 128 256

pr,mq (5,11) (6,12) (6,13)

n 2048 4096 8192

k 1025 2511 4097

w 325 495 1370

krep 30 62 62

kapp 2 2 2

p (recommended) ě130 ě386 ě562

Signature length (bits) 2048 4096 8192

Public key size (MB) 0.249 0.773 3.99

log2 WF 80 128 256

subsection. The discussed state-of-the-art algorithm for DOOM is used as a basis for

the parameters proposed in Table 5.2. I set kapp “ 2 (the minimum value) and krep “

2r ´ 2 (the maximum value).

Regarding the key size, the public key is a parity check matrix given in the system-

atic form and requires pn´kqn bits. The secret key does not include a scrambler matrix

S because it can be obtained from H1, Q, and H. Moreover H can be represented by

σ1
p, σ

2
p, replacing code, and appending rows.

The comparison of parameter sets is given in Table 5.3. The key size of the pro-

posed modified pqsigRM is small compared to other algorithms. It is noted that it is

for reference only, and the actual parameter size is given variously along with trade-off

with signing complexity, etc. The security level in parallel-CFS is based on the gener-

alized birthday algorithm [84], and the distinguisher for high-rate Goppa code [29] is

not considered. For detailed information, see [83] and [32].
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Table 5.3: Comparison of parameter sets of several code-based signature schemes for

given security.

λ Proposed Wave [32] Parallel-CFS [83]

80
pk size 0.249 1.214 20.0

sgn. len. 2048 8234 294

128
pk size 0.773 3.108 2.7ˆ 105

sgn. len. 4096 13174 474

256
pk size 3.99 12.432 9.4ˆ 1015

sgn. len. 8192 26347 1242

5.5.2 Statistical Analysis for Determining Number of Partial Permuta-

tions

If w is excessively small, there is a low probability of finding an error vector with

Hamming weight less than equal to w. I present two solutions. One is iterating until

an appropriate error vector is obtained, and the other is improving the decoder. The

number p of columns permuted in the partial permutation varies from 0 to n{4. From

the numerical analysis, it is demonstrated that small values of p result in low Hamming

weight of the decoding output. However, it should be noted that when p “ 0, the

pU,U ` V q part of the modified RM codes becomes identical to the RM code except

that RMpr,rq is replaced. Hence, I propose the lower bound of p that does not affect the

randomness of the hull.

Regarding the modified RM code, its hull overlaps with (but is not a subset of)

the original RM code. If the hull is a subset of the original RM code, and its dimen-

sion is large, the codeword of minimum Hamming weight of the original RM code

may be included in the hull. Then, attacks such as the Minder–Shokrollahi attack may

be applied using codewords with minimum Hamming weight. Therefore, to prevent
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attacks, the hull of the public code should not be a subset of the original RM code,

and hullpCpubqr pRMpr,mq permuted by Q) should occupy a large portion of the hull,

where Cpub denotes the public code, and r denotes the relative complement.

As the permutation Q is not important for determining the parameter p, we ignore

it in this subsection, and the term permutation refers to the partial permutations σ1
p and

σ2
p . When p “ n{4, which implies that σ1

p and σ2
p are full permutations, the average di-

mension of the hull and the dimension of hullpCpubqrRMpr,mq are given in Table 5.4.

The values may slightly change according to the permutation.

If p is small, the Hamming weight of the errors decreases. Hence, the signing

time can be reduced by using partial permutation with p rather than full permutation.

The aim is to find a smaller value for p maintaining the dimension of hullpCpubq r

RMpr,mq as large as that by the full permutation. It can be seen that the average of

the dimension of hullpCpubq r RMpr,mq tends to increase as p increases, and it is

saturated when p is above a certain value, as in Figure 5.3. Specifically, the dimension

of hullpCpubq r RMpr,mq is saturated when p is approximately equal to the average

dimension of hullpCpubq r RMpr,mq with full permutation. Hence, I determine p as

130, 386, and 562 in Table 5.2.

Table 5.4: Average dimension of hullpCpubq and hullpCpubqr RMpr,mq with p “ n{4

(r,m) (5,11) (6,12) (6,13)

n 2048 4096 8192

k 1025 2511 4097

dimphullpCpubqq 766 1236 2974

dimphullpCpubqr RMpr,mqq 130 386 562
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Figure 5.3: Dimension of hullpCpubqr RMp6,12q for 128-bit security parameters.
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5.6 Equivalence of the Prototype IKKR and the McEliece

Cryptosystems

The IKKR cryptosystems are not designed for indistinguishability or non-malleability;

they do not even satisfy the indistinguishability under chosen-plaintext attack (IND-

CPA). Thus, for a fair comparison, the equivalence of the prototype IKKR and the

McEliece cryptosystems for one-wayness (OW) is shown in this section. All matrices

regarding keys for the prototype IKKR and the McEliece cryptosystems are already

defined in Sections 2.5.1 and 2.5.4.

A fair comparison of the prototype IKKR and the McEliece cryptosystems dictates

that both of them are based on the same error-correcting pn, kq linear code C with error

correction capability t. Let G and H denote the generator matrix and the parity check

matrix of C, respectively.

It is proved that the prototype IKKR cryptosystem is not more secure than the

ordinary McEliece cryptosystem in [52]. In other words, we have following lemma.

Lemma 5.3. (Prototype IKKR ď McEliece [52]) If there exists an efficient adversary

that decrypts the ciphertext of the McEliece cryptosystem, then there exists an efficient

adversary that decrypts the ciphertext of the prototype IKKR cryptosystem.

It is proved in the following lemma that the McEliece cryptosystem is also reduced

to the prototype IKKR cryptosystem.

Lemma 5.4. (Prototype IKKR ě McEliece) If there exists an efficient adversary that

decrypts the ciphertext of the prototype IKKR cryptosystem, then there exists an effi-

cient adversary that decrypts the ciphertext of the McEliece cryptosystem.

Proof. I define AdvIKKRpG
1,G1

1, cq an adversary for the prototype IKKR cryptosys-

tem that returns m if there exists such m satisfying cᵀ “ mᵀG1 ` eᵀG1
1, and

returns K, otherwise. The adversary AdvMcEliecepGpub, cq can find e and m satis-

fying cᵀ “ mᵀGpub ` e
ᵀ using AdvIKKR from the following procedure, where
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Gpub “ GPᵀ for a permutation matrix P.

1. Key translation from McEliece to prototype IKKR

(a) The adversary chooses a random nonsingular matrix M1. Let G2 be a ma-

trix whose rows are n distinct codewords from Gpub.

(b) Then, the adversary can make a public key for the prototype IKKR cryp-

tosystem by

pG1,G1
1q “ pGpubM

1, pG2 ´ IqM1q.

(c) This is because by letting M “ PᵀM1 (even if P is unknown), G1 “ GM

and G1
1 “ pG0´PqM are satisfied, where G0 is a matrix whose rows are

n codewords from G (even if G0 is unknown).

2. Ciphertext translation from McEliece to prototype IKKR

(a) For a ciphertext cᵀ “mᵀGpub`e
ᵀ, the following equation is satisfied as

cᵀM1 “mᵀGpubM
1 ` eᵀM1

“mᵀG1 ` eᵀPM

“m1ᵀG1 ´ eᵀG1
1

for somem1.

(b) Thus, AdvIKKRpG
1,G1

1,M
1ᵀcq finds m1 and AdvMcEliecepGpub, cq can

find e andm usingm1.

If an adversary is provided a decryption oracle, both the cryptosystems are OW-

insecure, and thus the decryption oracle is not considered. Although it was not involved

in the above, it is easy to see that the above two reductions are similarly applied to

the key-recovery attack. The following theorem appears directly from the above two

lemmas.

Theorem 5.5. The prototype IKKR and the McEliece cryptosystems are equivalent.
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5.7 Cryptanalysis of the IKKR Cryptosystems

5.7.1 Linearity of Two Variants of IKKR Cryptosystems

In the proposed attack algorithm, I mainly utilize the linearity of encryption of IKKR

cryptosystems and the fact that there exist a small number of possible solutions for

the system of linear equations. I remark that the encryption of the upgraded IKKR

cryptosystem is given as

cᵀ “mᵀG1 ` eᵀG1
2. (5.7)

As the rank of G1
2 is pn´ kq, there exists e1 satisfying

e1ᵀG2
2 “ e

ᵀG1
2, (5.8)

where G2
2 is a matrix formed by pn´ kq linearly independent rows of G1

2. Thus, (5.7)

can be rewritten as

cᵀ “mᵀG1 ` e1ᵀG2
2.

Considering an augmented matrix, the encryption is given as the following linear trans-

formation

c “
“

G1ᵀ|G2ᵀ
2

‰

¨

»

–

m

e1

fi

fl . (5.9)

Similarly, the linearity can be found as in (5.9) for the modified version of prototype

IKKR cryptosystem as

c “
“

G1ᵀ|G2ᵀ
1

‰

¨

»

–

m

e1

fi

fl , (5.10)

where G2
1 consists of t linearly independent rows of G1

1 as the rank of G1
1 is t.

(5.9) and (5.10) depict the linearity of encryption. The following section describes

a polynomial-time attack algorithm for the two variants of IKKR cryptosystems using

this linearity.
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5.7.2 The Attack Algorithm

When
“

G1ᵀ|G2ᵀ
2

‰

is a nonsingular matrix, the plaintext is found from only the public

key and ciphertext as
»

–

m

e1

fi

fl “
“

G1ᵀ|G2ᵀ
2

‰´1
c.

In fact, as in the following theorem,
“

G1ᵀ|G2ᵀ
2

‰

is always a nonsingular matrix when

Q and T are constructed according to Algorithm 3.

Theorem 5.6.
“

G1ᵀ|G2ᵀ
2

‰

is a nonsingular matrix when Q and T are constructed

according to Algorithm 3.

Proof. The row spaces of G2
2 and G1

2 are equivalent. Thus, it is sufficient to show that

the rank of
“

G1ᵀ|G1ᵀ
2

‰

is n. Using the fact that
“

G1ᵀ|G1ᵀ
2

‰

“Mᵀ rGᵀ|pQpG0 `Tqqᵀs

and M is nonsingular, we omit M when discussing the rank of
“

G1ᵀ|G1ᵀ
2

‰

.

Without loss of generality, we assume that J “ t1, 2, . . . , ku. Let G1
sys “

“

Ik|G
1
p

‰

be a systematic form of G1. Let T “ rTJ |TJ cs and then QT “ r0|LHJTJ cs. It is

noted that LHJTJ c is an nˆpn´ kq full rank matrix. Given G1
2 “ QpG0`Tq, we

have
»

–

G1
sys

G1
2

fi

fl “

»

–

G1
sys

QG0 `QT

fi

fl . (5.11)

As the rows of QG0 are codewords of C, QG0 can be eliminated by some linear

combinations of rows in G1
sys. Thus, the rank of the matrix (5.11) is the same as

»

–

G1
sys

QT

fi

fl “

»

–

Ik G1
p

0 LHJTJ c

fi

fl .

Applying Gaussian elimination on the pk`1q-th to pn`kq-th rows of the above matrix,

we have
»

—

—

—

–

Ik G1
p

0 In´k

0 0

fi

ffi

ffi

ffi

fl

.
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Hence, the rank of
»

–

G1
sys

G1
2

fi

fl

is n and thus
“

G1ᵀ|G2ᵀ
2

‰

is a nonsingular matrix.

Therefore, the proposed attack algorithm always succeeds.

In the modified version of prototype IKKR cryptosystem, G1
1 “WDpG0´PqM

is used instead of G1
2 and the rank of G1

1 is t ă pn ´ kq. Similarly,
“

G1ᵀ|G2ᵀ
1

‰

is a

full-rank nˆ pk ` tq matrix from the following theorem.

Theorem 5.7. The rank of
“

G1ᵀ|G1ᵀ
1

‰

is pk ` tq, where G1
1 “WDpG0 ´PqM, W

is an n ˆ n nonsingular matrix, and D is an n ˆ n diagonal matrix with t non-zero

elements on the diagonal.

Proof. As in the proof of Theorem 5.6, we omit M. The rank of matrix
»

–

G1

G1
1

fi

fl “

»

–

G0

WDG0 ´WDP

fi

fl

is equal to
»

–

G0

WDP

fi

fl

as the rows of WDG0 are codewords generated by G0. The Hamming weight of the

rows of WDP is at most t while the minimum distance of the code generated by G0

is larger than 2t. Hence, every row of WDP is independent of the rows of G0 while

the rank of WDP is t. This implies that the rank of
“

G1ᵀ|G1ᵀ
1

‰

is pk ` tq.

Therefore, (5.10) also has a unique solution.

5.7.3 Implementation

I have done a proof-of-concept implementation of the upgraded IKKR cryptosystem

and the attack algorithm in Section 5.7.2 using SageMath9.01. It is noted that the
1Source code: https://github.com/Yongwoo-Lee-ccl/crypt_ikkr
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Table 5.5: Average execution time for each step with 100 trials when q “ 2, n “ 1024,

and k “ 524.
KeyGen Enc Dec Proposed attack

5.97 s 161 ms 513 ms 188 ms

decryption does not utilize the decoding of the code C and thus I could consider C as

a random code rather than a well-designed code with efficient decoding such as the

Goppa codes. Table 5.5 shows the execution time on average for 100 trials running in

Intel Core i7-6700k (4.0 GHz). It can be seen that the proposed attack algo-

rithm finds the plaintext corresponding to a given ciphertext within 0.2s in a stock PC

that is faster than the elapsed time for legitimate decryption. During the 100 trials of

cryptanalysis with different keys, the attack algorithm always succeeds.
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Algorithm 6 Decoding for modified RM code
1: function DECODE(s;H)

2: r Ð PRANGEpH, sq

3: while True do

4: r Ð r` random codeword

5: cÐ MODDEC(r, r,m)

6: if wtpr ` cq ď w then

7: Output r ` c

8: end if

9: end while

10: end function

11: function MODDEC(y, r,m)

12: y Ð yσ
´1

13: if r “ 0 then

14: Output MD decoding on RMp0,mq

15: else if r “ m then

16: Output MD decoding on RMpr, rq or replaced p2r, krepq code

17: else

18: py1|y2q Ð y

19: yv “ y1 ¨ y2

20: v̂ Ð MODDEC(yv, r ´ 1,m´ 1)

21: yu Ð py1 ` y2 ¨ v̂q{2

22: ûÐ MODDEC(yu, r,m´ 1)

23: y Ð pû|û ¨ v̂q

24: end if

25: Output yσ

26: end function

*σ is σ1
p or σ2

p for permuted block and identity, otherwise.
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Algorithm 7 Modified pqsigRM signature scheme
Key Generation:

Using σ1
p and σ2

p , generate a partially permuted generator matrix G

Generate H from G

Generate S and Q

Compute H1 Ð SHQ

Secret key: H,S,Q

Public key: H1

Signing:

m is a message to be signed

iÐâ t0, 1uλ0

Find syndrome sÐ hphpm|H1q|iq

s1T Ð S´1sT

Perform decoding e1 Ð DECODE(s;H)

* Compute eT Ð Q´1e1T , and then the signature is pm, e, iq

Verification:

Check wtpeq ď w ^H1eT “ hphpm|H1q|iq

If True, then return ACCEPT; else, return REJECT
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Chapter 6

Conclusion

In this dissertation, three main contributions are given as; i) a protocol of privacy-

preserving machine learning using network resources, ii) the development of approx-

imate homomorphic encryption that achieves less error and high-precision bootstrap-

ping algorithm without compromising performance and security, iii) the cryptanalysis

and the modification of code-based cryptosystems: cryptanalysis on IKKR cryptosys-

tem and modification of the pqsigRM, a digital signature scheme proposed to the PQC

standardization of NIST.

6.1 Privacy-Preserving Machine Learning Without Boot-

strapping

I introduced a method of privacy-preserving machine learning using the CKKS scheme

without bootstrapping. In the proposed method, bootstrapping is replaced by network

communication. The ciphertext of intermediate value is sent to the receiver, and the

receiver decrypts and re-encrypts the ciphertext and sends the message back. The

information-theoretic secrecy is adopted to secure the intermediate values during this

process.

This protocol is effective in the CKKS scheme. A deep neural network is impracti-
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cal in the CKKS scheme because of the expensive computation as well as error. Hence,

a larger scaling factor should be used for high precision. In this protocol, unlike boot-

strapping, the refreshing of ciphertext does not introduce additional error, and thus

the more level can be used. Moreover, full slots can be utilized, and thus the through-

put is much larger than the method with bootstrapping. In conclusion, following the

application might require the receiver less computation and less communication.

6.2 Variance-Minimization in the CKKS Scheme

I introduced two novel methods to improve the precision of the CKKS scheme. First,

SNR, a widely-used measure of performance when we deal with erroneous media such

as communication systems, was adopted for the error variance minimization of the

CKKS scheme. To maximize the SNR of encrypted data, I proposed a method to min-

imize the variance of errors. To do this, I replaced the high-probability upper bound

that has been in the tagged information so far with the variance of errors. As a result,

I could tightly manage the error, and the homomorphic operations were effectively

reordered to minimize the error variance. Second, I proposed a method to find the op-

timal approximate polynomial for the CKKS scheme in the same aspect of minimizing

the error variance. Especially, the newly proposed operation reordering and approxi-

mate polynomial were applied to the bootstrapping of the CKKS scheme, and thus,

the error performance of the bootstrapping of the CKKS scheme was improved. To

our best knowledge, this is the first bootstrapping algorithm that contemplates various

parameters, slot size, the error characteristics of the CKKS scheme, and the polynomial

evaluation algorithm. From its implementation on HEAAN and SEAL, it was shown

that the proposed bootstrapping algorithm achieves less variance of error in encrypted

data while consuming less level, compared to the previous works.

From the proposed method, now there are two criteria to reorder homomorphic

operations when I use the CKKS scheme: error variance reduction and computation
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time reduction. In addition to the proposed three examples in this dissertation, there

are various methodologies to reorder homomorphic operations to minimize the error,

and it will affect the error performance of the CKKS scheme significantly as the op-

eration becomes deep. Since a lot of studies to adjust the order of operations for a

general-purpose have been done in the field of compilers, applying the results of these

researches will lead to significant improvement in many applications using the CKKS

scheme. I leave application-specific reordering of homomorphic operations with com-

piler techniques as further work.

6.3 L2-Norm Minimization for the Bootstrapping of the

CKKS Scheme

I determined the near-optimal approximate polynomial of a modulus reduction func-

tion for bootstrapping of the CKKS scheme. I cast the problem of finding approximate

polynomials for a modulus reduction into an L2-norm minimization problem for which

the solution can be directly found without intermediates, such as a sine function. As the

approximation error in the proposed method is not subject to the sine function, it ap-

proximates the modulus reduction better than the best-known method [20]. Using the

Chebyshev polynomials as a basis, I achieved a lower approximation error even with

a lower degree compared with the best-known method. Moreover, the proposed poly-

nomial can utilize the baby-step giant-step algorithm [20] and Paterson-Stockmeyer

algorithm [21]. I re-investigated the number of nonscalar multiplications, scalar mul-

tiplications, and additions needed for the baby-step giant-step algorithm and showed

that the proposed polynomial reduces the required number of operations for the homo-

morphic approximate modulus reduction.

By casting the problem into a simple L2-norm optimization problem, I free the

approximation problem from the sine function. The proposed method can offer a boot-

strapping with fewer errors, particularly when a large scaling factor is selected. Thus,
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one can say that the choice of parameters has been expanded. Most importantly, the

proposed method is essential for applications that require accurate approximation be-

cause the approximation error cannot be lowered when previous methods are used.

In contrast, as the proposed method does not have such a lower bound, a better pa-

rameter can be selected. Consequently, bootstrapping consumes fewer levels when the

proposed method is used.

I proposed loose upper and lower bounds, which were far from the numerical re-

sult. The challenge of a tighter bound or a better method for finding the minimax

polynomial can be addressed in future work. In [20], the number of operations is re-

duced by using the double angle formula of the cosine function, but it is challenging to

apply to the proposed method. A double angle formula-like approach for the proposed

method also requires further study.

6.4 Modified pqsigRM: RM Code-Based Signature Scheme

I introduced a new signature scheme, called modified pqsigRM, based on modified

RM codes with partial permutation as well as row appending and replacement in the

generator matrix. For any given syndrome, an error vector with a small Hamming

weight can be obtained. Moreover, the decoding method achieves indistinguishability

to some degree because it is collision-resistant. The proposed signature scheme resists

all known attacks against cryptosystems based on the original RM codes. The partially

permuted RM code improves the signature success condition in previous signature

schemes such as the CFS signature scheme and can improve signing time and key

size.

I further modified the RM code using row appending/replacement. The resulting

code is expected to be indistinguishable from random codes with the same hull dimen-

sion; moreover, the decoding of the partially permuted RM code is maintained. As-

suming indistinguishability and the hardness of DOOM with a high-dimensional hull,
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I proved the EUF-CMA security of the proposed signature scheme. The challenge of

rigorously verifying these two assumptions will be addressed in the future.

6.5 Cryptanalysis of the IKKR Cryptosystem

It was shown that the prototype IKKR cryptosystem is equal to the McEliece cryp-

tosystem. The linearity of encryption allows the proposed cryptanalysis on the other

two IKKR cryptosystems. The proposed attack algorithm runs in polynomial-time; fur-

ther, although it depends on the implementation, it turns out that the attack algorithm

is even faster than the decryption in [52]. It is worth noting that the error vectors in

the McEliece-type cryptosystem should not have a certain structure; instead, it is de-

sirable to use random error vectors. When designing or using variants of the McEliece

cryptosystem, careful attention should be paid to the attacks using the structure error

structure in addition to the key distinguishing attacks.

As the proposed attack algorithm finds the plaintext corresponding to the given

ciphertext in polynomial-time only with the public key, even if conversion techniques

such as the one in [85] is used, the modified version of prototype and the upgraded

IKKR cryptosystems are vulnerable.
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초록

본 논문은 크게 다음의 세 가지의 기여를 포함한다. i) 네트워크를 활용해서 정

보보호딥러닝을개선하는프로토콜 ii)근사동형암호에서보안성과성능의손해

없이 에러를 낮추고 높은 정확도로 부트스트래핑하는 방법 iii) IKKR 암호 시스템

과 pqsigRM 등 부호 기반 암호를 공격하는 방법과 효율적인 부호 기반 전자 서명

시스템.

근래의 기계학습과 블록체인 기술의 발전으로 인해서 기밀 데이터에 대한 연

산을 어떻게 외주할 수 있느냐에 대한 새로운 보안 문제가 대두되고 있다. 또한,

양자컴퓨터에관한연구가성공을거듭하면서,이를이용한공격에저항하는포스

트양자암호의필요성또한커지고있다.다자간컴퓨팅은데이터를공개하지않고

데이터에 대한 연산을 수행할 수 있도록 하는 암호학적 프로토콜의 총칭이다. 다

자간컴퓨팅은동형암호와포스트양자암호에기반하고있으므로,효율적인동형

암호와포스트양자암호에관한연구가활발하게수행되고있다.

동형암호는암호화된데이터에대한연산이가능한특수한암호화알고리즘이

다.일반적으로동형암호의암호문에대해서수행가능한연산의깊이가정해져있

으며,이를암호문의레벨이라고칭한다.레벨을모두소비한암호문의레벨을다시

복원하는과정을부트스트래핑 (bootstrapping)이라고칭한다.일반적으로부트스트

래핑은 매우 오래 걸리는 연산이며 시간 및 공간 복잡도가 크다. 그러나, 딥러닝과

같이 깊이가 큰 연산을 수행하는 경우 부트스트래핑이 필수적이다. 본 논문에서는

정보 보호 기계학습을 위한 새로운 프로토콜을 제안한다. 이 프로토콜에서는 입력

메시지와 더불어 신경망의 중간값들 또한 안전하게 보호된다. 그러나 여전히 사용
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자의통신및연산복잡도는낮게유지된다.

Cheon, Kim, Kim그리고 Song (CKKS)가제안한암호시스템 (Asiacrypt’ 17)은

기계학습 등에서 가장 널리 쓰이는 데이터인 실수를 효율적으로 다룰 수 있으므로

가장촉망받는완전동형암호시스템이다.그러나,오류의증폭과전파가 CKKS암

호시스템의가장큰단점이다.이논문에서는아래의기술을활용하여 CKKS암호

시스템의오류를줄이는방법을제안하며,이는근사동형암호에일반화하여적용

할수있다.첫째,신호대비잡음비 (signal-to-noise ratio, SNR)의개념을도입하여,

SNR를 최대화하도록 연산의 순서를 재조정한다. 그러기 위해서는, 오류의 최대치

대신 분산이 최소화되어야 하며, 이를 관리해야 한다. 둘째, 오류의 분산을 최소화

한다는 같은 관점에서 새로운 다항식 근사 방법을 제안한다. 이 근사 방법은 특히,

CKKS 암호 시스템의 부트스트래핑에 적용되었으며, 종래 기술보다 더 낮은 오류

를 달성한다. 위의 방법에 더하여, 근사 다항식을 구하는 문제를 L2-norm 최소화

문제로 치환하는 방법을 제안한다. 이를 통해서 사인 함수의 도입 없이 근사 다항

식을 구하는 방법을 제안한다. 제안된 방법을 사용하면, q “ Opm3{2q라는 제약을

q “ Opmq으로줄일수있으며,부트스트래핑에필요한레벨소모를줄일수있다.

성능 향상은 HEAAN과 SEAL 등의 동형 암호 라이브러리를 활용한 구현을 통해

증명했으며, 구현을 통해서 연산 재정렬과 새로운 부트스트래핑이 CKKS 암호 시

스템의 성능을 향상함을 확인했다. 따라서, 보안성과 성능의 타협 없이 근사 동형

암호를사용하는서비스의질을향상할수있다.

양자 컴퓨터를 활용하여 전통적인 공개키 암호를 공격하는 효율적인 알고리즘

이공개되면서,포스트양자암호에대한필요성이증대했다.부호기반암호는포스

트양자암호로써널리연구되었다.작은키크기를갖는새로운부호기반전자서명

시스템과 부호 기반 암호를 공격하는 방법이 논문에 제안되어 있다. pqsigRM이라

명명한 전자 서명 시스템이 그것이다. 이 전자 서명 시스템은 수정된 Reed-Muller

(RM) 부호를 활용하며, 서명의 복잡도와 키 크기를 종래 기술보다 많이 줄인다.

pqsigRM은 hull의 차원이 큰 pU,U ` V q 부호와 이의 복호화를 이용하여, 서명에

서큰이득이있다.이복호화알고리즘은주어진모든코셋 (coset)의원소에대하여

작은헤밍무게를갖는원소를반환한다.또한,수정된 RM부호를이용하여,알려진
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모든공격에저항한다. 128비트안정성에대해서서명의크기는 4096비트이고,공

개키의크기는 1MB보다작다.최근, Ivanov, Kabatiansky, Krouk,그리고 Rumenko

(IKKR)가McEliece암호시스템의세가지변형을발표했다 (CBCrypto 2020, Euro-

crypt 2020와함께진행).본논문에서는 IKKR암호시스템중하나가McEliece암호

시스템과동치임을증명한다.또한나머지 IKKR암호시스템에대한다항시간공

격을제안한다.제안하는공격은 IKKR암호시스템의선형성을활용한다.또한,이

논문은제안한공격의구현을포함하며,제안된공격은 0.2초이내에메시지를복원

하고,이는정상적인복호화보다빠른속도이다.

주요어: 격자 기반 암호, 공개 키 암호, 근사 동형 암호, 부트스트래핑, 부호 기반

암호, 암호 공격, 암호학, 완전 동영 암호, 오류 정정 부호, 전자 서명, 정보 보호,

정보보호머신러닝, McEliece암호시스템,포스트양자암호, CKKS암호시스템,

Reed-Muller (RM)부호
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