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Three-dimensional (3D) depth recovery from two-dimensional images is a fun-

damental and challenging objective in computer vision, and is one of the most

important prerequisites for many applications such as 3D measurement, robot

location and navigation, self-driving, and so on. Depth-from-focus (DFF) is

one of the important methods to reconstruct a 3D depth in the use of focus

information. Reconstructing a 3D depth from texture-less regions is a typical

issue associated with the conventional DFF. Further more, it is difficult for the

conventional DFF reconstruction techniques to preserve depth edges and fine

details while maintaining spatial consistency. In this dissertation, we address

these problems and propose an DFF depth recovery framework which is robust

over texture-less regions, and can reconstruct a depth image with clear edges

and fine details.

The depth recovery framework proposed in this dissertation is composed

of two processes: depth reconstruction and depth refinement. To recovery an

accurate 3D depth, We first formulate the depth reconstruction as a maximum

a posterior (MAP) estimation problem with the inclusion of matting Lapla-
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cian prior. The nonlocal principle is adopted during the construction stage of

the matting Laplacian matrix to preserve depth edges and fine details. Addi-

tionally, a depth variance based confidence measure with the combination of

the reliability measure of focus measure is proposed to maintain the spatial

smoothness, such that the smooth depth regions in initial depth could have

high confidence value and the reconstructed depth could be more derived from

the initial depth. As the nonlocal principle breaks the spatial consistency, the

reconstructed depth image is spatially inconsistent. Meanwhile, it suffers from

texture-copy artifacts. To smooth the noise and suppress the texture-copy ar-

tifacts introduced in the reconstructed depth image, we propose a closed-form

edge-preserving depth refinement algorithm that formulates the depth refine-

ment as a MAP estimation problem using Markov random fields (MRFs). With

the incorporation of pre-estimated depth edges and mutual structure infor-

mation into our energy function and the specially designed smoothness weight,

the proposed refinement method can effectively suppress noise and texture-copy

artifacts while preserving depth edges. Additionally, with the construction of

undirected weighted graph representing the energy function, a closed-form so-

lution is obtained by using the Laplacian matrix corresponding to the graph.

The proposed framework presents a novel method of 3D depth recovery from

a focal stack. The proposed algorithm shows the superiority in depth recovery

over texture-less regions owing to the effective variance based confidence level

computation and the matting Laplacian prior. Additionally, this proposed re-

construction method can obtain a depth image with clear edges and fine details

due to the adoption of nonlocal principle in the construction of matting Lapla-
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cian matrix. The proposed closed-form depth refinement approach shows that

the ability in noise removal while preserving object structure with the usage

of common edges. Additionally, it is able to effectively suppress texture-copy

artifacts by utilizing mutual structure information. The proposed depth refine-

ment provides a general idea for edge-preserving image smoothing, especially

for depth related refinement such as stereo vision.

Both quantitative and qualitative experimental results show the supremacy

of the proposed method in terms of robustness in texture-less regions, accuracy,

and ability to preserve object structure while maintaining spatial smoothness.

Keywords: Depth-from-Focus, Depth Recovery, Matting Laplacian, Depth Re-

finement, Image Denoising, Markov Random Field

Student Number: 2012-31287
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Chapter 1

Introduction

1.1 Overview

With the development of semiconductor industry, digital camera imaging de-

vices are rapidly becoming small, cheap, and portable. As three-dimensional

(3D) vision provides much richer information than 2D, 3D depth reconstruc-

tion from two-dimensional images becomes more and more important in com-

puter vision. 3D recovery from 2D image sequences can be boardly catego-

rized into active and passive methods. In active methods, laser scanning, sonar

and many more like them are included. Normally, devices used in active meth-

ods are expensive and sometimes impractical to use. On the contrary, passive

methods including stereo vision, shape-from-motion, shape-from-shading and

shape-from-texture are more popular for being cheap and easy to implement.

Shape-from-stereo can extract the depth information by measuring the dispar-
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Figure 1.1: Example of shape recovery from a focal stack.

ities between a pair of images taken from different viewpoints. Structure-from-

motion computes the correspondences between images to obtain the 2D motion

field, which in turn used to recover 3D motion and the depth. Depth-from-focus

(DFF) and depth-from-defocus (DFD) are two representative passive methods

utilizing focus information to recovery a 3D depth image from a focal stack. In

contrast to the multi-camera system, DFF and DFD approaches require only

a monocular camera whose extrinsic or intrinsic setting can be modified, thus

preventing matching ambiguities typically found in stereo devices.

DFD attempts to recover depth based on the direct relationships among

the depth, amount of blur, and camera parameters. The disadvantage of DFD

is the requirement of accurate camera calibration. Unlike DFD, DFF estimates

the depth value for each pixel from a sequence of images acquired with different
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focal settings. This technique assumes that a one-to-one correspondence exists

between the depth of one point in the scene and the focal setting. Subsequently,

the depth per pixel can be roughly inferred by choosing the focal setting at

which the pixel is most focused or sharpest. The algorithm used to measure

the sharpness level for each pixel is typically referred to as a focus measure

operator. As DFF uses a larger number of observations, the performance of

DFF is generally better compared with that of DFD [1].

1.2 Motivation

Many researches regrading to DFF have been conducted and can be roughly

divided into four directions: 1) development of various kind of focus measure

operators; 2) improvement of focus measure accuracy [1–8]; 3) formulating the

DFF into a reconstruction process [3, 9–13] ; 4) deep learning based methods

[14].

The inherent problem in the first direction is the sensitivity of the window

size. Focus measure operators using small window size can derive a depth image

with clear edges and details but at a cost of introducing noise. On the contrary,

a large window size can make it roust to noise but at a cost of blurring edges

and losing object details. Another problem for the traditional focus measure

operators is that they would yield spurious responses in texture-less regions

owing to the weak variation in the gray level. The researches aiming at im-

proving focus measure accuracy can only basically improve the errors caused

by the noise and they have limitations to accurately recover the depth from
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texture-less regions. Typically, there two main issues existing in current DFF

reconstruction approaches: depth recovery from texture-less regions and object

structure or edge preservation while maintain spatial consistency. Most of cur-

rent researches focus either on robustness in depth recovery over texture-less

regions or on the object structure preservation. It is still difficult to solve above

issues at the same time. Deep learning based methods have a strong ability to

extract meaningful image features and correlate pixel information via convo-

lutions. However, as a lot of ground truth training data are required for the

deep learning based methods and it is difficult to acquire ground truth depth

images, till now, there are not many deep learning based DFF method have

been proposed. Additionally, intrinsic parameters are necessary when recovery

a 3D depth image using DFF method. It is impractical to train a general model

to process a focal stack acquired with different devices. Thus, the current deep

learning based methods are basically used for focus measures. Even being used

for focus measures, there are still some limitations when applying deep learning

techniques. Firstly, once one model is trained, it is impossible to modify image

resolution for new input image sequences but reshape the input data to adapt

the trained model. Another limitation when applying deep learning techniques

is the size of focal stack. Similar to image resolution, once the model is trained,

the size of focal stack for the input data should be consistent with the trained

data, which has a great influence on the accuracy of depth recovery.

Depth refinement is a common operation after depth reconstruction to make

depth spatially smooth while preserving object structures. The commonly used

methods are edge-preserving image filters such as anisotropic fusion filter, bilat-
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eral filter and nonlocal means filter. Even though the traditional edge-preserving

filters have good property in noise smoothing while preserving object structures.

However, there is one common but challenging issue named texture-copy arti-

facts that they are hard to handle it. Texture-copy artifacts are the fake edges

appear in recovered depth image due to the structure inconsistency between

guided color image and initial depth image. Those fake edges might be preserved

or even enhanced by using traditional edge-preserving filter if the texture-copy

artifacts have large edge gradient. In this dissertation, texture-copy artifacts

reduction is one important target that needs to be taken into account.

Consequently, it is meaningful and necessary to develop a DFF method that

should be able to recover depth from texture-less regions and preserve objective

structures and details while maintain spatial consistency.

1.3 Contribution

In this dissertation, a framework of depth recovery from focal stack is presented.

The proposed framework aims to improve the recovery accuracy and robustness

in texture-less regions, and maintain spatial smoothness while preserving object

structure. In the proposed framework, two processes, depth reconstruction and

depth refinement, are included.

Dealing with texture-less regions and preserving object structure are two

main issues in the process of depth reconstruction. This work thus presents

a depth reconstruction method using matting Laplacian prior. In the depth

reconstruction process, the matting Laplacian is employed to improve the ro-
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bustness in texture-less regions. Besides, the nonlocal principle is adopted in the

construction of matting Laplacian to preserve object structure and fine details.

Meanwhile, a variance-based confidence measure is proposed to help maintain

depth spatial smoothness. The proposed method with the inclusion of nonlocal

Laplacian prior can effectively recover a depth image in texture-less regions,

and can preserve with clear edges and rich details.

While the nonlocal principle can help preserve object structure and fine de-

tails, it breaks the depth spatial consistency and thus noise and texture-copy

artifacts can be introduced. To smooth noise and suppress texture-copy arti-

facts, an closed-form edge-preserving depth refinement method is presented.

The proposed method treats depth refinement as a MAP estimation problem

based on Gaussian MRFs Model. As Gaussian MRFs tends to over-smooth

depth image and blur real depth edges, specially designed smoothness weight

and mutual structure information are incorporated into the proposed method,

and therefore can better suppress noise and texture-copy artifacts while pre-

serving depth edges. Additionally, the proposed method can obtain an global

optimum by utilizing the Laplacian matrix based on the undirected weighted

graph representing the energy function.

The architecture of proposed framework is illustrated in Figure 1.2. Given

an image with different focus settings, the focus measure is first computed to

derive depth image and a Gaussian interpolation around the peak of the fo-

cus measure profile is subsequently performed to generate a relatively smooth

and reliable initial depth image. With the focus measures, a probability-based

scheme is proposed to generate an all-in-focus image. Additionally, an effective
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Figure 1.2: The architecture of proposed two-stage framework.

variance based confidence measure scheme is proposed to compute a confidence

map for the initial depth image. By combining all-in-focus image, initial depth

image and corresponding confidence map, a depth reconstruction algorithm us-

ing the MAP framework is proposed, in which the likelihood model is built

based on the initial depth image and the prior model is derived using the affin-

ity matrix embedded in nonlocal matting Laplacian matrix. After the process

of depth reconstruction, a closed-form MAP-MRF based depth refinement algo-

rithm is proposed, in which the pre-estimated depth edges and mutual structure

information are incorporated into the proposed energy function to effectively

smooth the noise and suppress the texture-copy artifacts introduced in the re-

constructed depth image. Additionally, a closed-form solution can be obtained

with the construction of undirected weighted graph representing the energy

function by using the Laplacian matrix corresponding to the graph.
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1.4 Organization

The following chapters of this dissertation are organized as follows. The back-

ground and related works is presented in chapter 2. In chapter 2, the basic

knowledge of DFF and several focus measure operators are first described.

Subsequently, a literature review of depth reconstruction from a focal stack

described is presented. Finally, a literature review of edge-preserving image

smoothing algorithms is introduced. A depth reconstruction method using mat-

ting Laplacian prior is introduced in chapter 3. A closed-form MAP-MRF based

edge-preserving depth refinement is presented in chapter 4. Experimental com-

parison between the proposed method and the state-of-the-art algorithms are

reported in chapter 5. The conclusion and future works are presented in chapter

6.
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Chapter 2

Related Works

2.1 Overview

In this chapter, an introduction of related knowledge and works regarding DFF

is presented. First, the thin lens model and principle of DFF are described

separately. Several representative focus measure operators used for initial depth

estimation are then introduced. The following parts of this chapter are the

literature review regarding DFF reconstruction methods and edge-preserving

image smoothing approaches. Additionally, several representative methods of

DFF reconstruction and image denoising are simply introduced, respectively.

2.2 Principle of depth-from-focus

The DFF approach is a method to estimate 3D depth from focal stack acquired

with varying focus settings. In order to derive the depth image of scene from

9



Figure 2.1: Illustration of focused and defocused images using thin lens model.

a focal stack, it is necessary to estimate the psychical distance of each point

in the scene by measuring its relative degree of focus in the images where that

point appears. This technique attempts to recover depth based on the direct

relationships among the depth, amount of blur, and camera settings. Figure 2.1

gives an illustration of the effect of defocus in an image using thin lens model. If

the sensor plane is located at a distance of δ from focus plane, point p would be

projected as a circle of radius R at imaging sensor. That means p is defocused.

The image distance v is determined by the focal length f of the lens and the

object distance u. The geometry relationship between these three variables can

be derived by the Gaussian lens formula:

1/f = 1/u+ 1/v. (2.1)

By assuming that there is a one-to-one correspondence between image dis-
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Figure 2.2: Illustration of the process of depth recovery from a focal stack.

tance v and object distance u, the most focused situation can only be achieved

at a certain object distance. Thus, for a given focal stack with varying focal set-

tings, the depth per pixel can be roughly inferred by choosing the focal setting

at which the pixel is most focused or sharpest. Figure 2.2 illustrates the process

of depth recovery from a focal stack. As shown in Figure 2.2, degree of focus

at each position (x, y) for all images is first measured and then find the image

index where the pixel is most focused. Based on the index image and Gaussian

lens formula, the depth image can be finally derived.

Therefore, the measuring the focus level becomes critical in DFF applica-

tion.
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2.2.1 Focus measure operators

The algorithm used to measure the sharpness level for each pixel is typically

referred to as a focus measure operator. Comparative studies targeted at the

focus measure operator have been conducted, such as a second-derivative-based

focus measure operator called summed modified Laplacian (SMLAP) in [2],

the gradient-based operator in [15], wavelet-based operator in [16], statistics-

based operator in [17], discrete cosine transform (DCT) based operator [18], and

miscellaneous operators [19]. Several representative focus measure operators are

presented in this dissertation.

Tenengrad

A popular focus measure based on the magnitude of image gradient is defined

as [20, 21]

fm(x, y) =
∑

(i,j)∈Ω(x,y)

(
Gx(i, j)

2 +Gy(i, j)
2
)
, (2.2)

where Gx and Gy are image gradients computed by convolving the give image

using Sobel operators in X and Y direction respectively.

Diagonal Laplacian

Thelen et al. in [6] proposed a diagonal Laplacian based focus measure oper-

ator that takes both the horizontal and vertical variations of the image into

consideration. This diagonal Laplacian operator can be defined as follows:

fm (x, y) = |I ∗ Lx|+ |I ∗ Ly|+ |I ∗ Lx1|+ |I ∗ Ly2| (2.3)
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where Lx, Ly, Lx2 and Ly2 are convolution masks to compute the diagonal

Laplacian, and they are defined as

Lx =

[
−1 2 1

]
and Ly = Lx

T . (2.4)

and

Lx2 =
1√
2


0 0 1

0 −2 0

1 0 0

 , Ly2 =
1√
2


1 0 0

0 −2 0

0 0 1

 (2.5)

Gray-level variance

The variance of image gray-levels is also one of the most used methods to

estimate degree of focus. It has been applied in many applications such as

auto-focusing, DFF, image segmentation, image restoration, and so on. This

focus measure operator is defined as

fm(x, y) =
∑

(i,j)∈Ω(x,y)

(I(i, j)− µ)2, (2.6)

where µ is the mean grey-value of pixels with Ω(x,y).

Summed of wavelet coefficients

Wavelet-based focus measure operators are mostly based on the statistical prop-

erties of the discrete wavelet transform (DWT) coefficients. In the first level

DWT, the image is decomposed in to four sub-images, whereWLH1,WHL1,WHH1
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and WLL1 denote the three detail sub-bands and the coarse approximation sub-

band,respectively. For a higher level DWT, the coarse approximation is suc-

cessively decomposed into detail and coarse sub-bands. The information of the

detail and coarse sub-bands is then used to compute the focus measure. Yang

and Nelson [22] presented a focus measure operator for the use of auto-focusing,

which is calculated from sub-bands

fm =
∑

(i,j)∈ΩD

|WLH1(i, j)|+ |WHL1(i, j)|+ |WHH1(i, j)| , (2.7)

where ΩD is the corresponding window of Ω in the DWT sub-bands. In this

work, the focus measure of all the wavelet-based operators has been computed

using the coefficients of the over-complete wavelet transform, thus avoiding the

need for computing the corresponding neighborhood within each sub-band.

In general, reliable depth estimation can be obtained if focused regions con-

tain sharp edges or high frequency patterns. However, most of those traditional

operators would yield spurious responses to texture-less regions owing to the

weak variation in the gray level. Another problem of those algorithms is the

sensitivity to the window size. A small window size can preserve depth discon-

tinuities but increase the sensitivity to noise. Meanwhile, a large window size

performs better for noisy images but at the cost of blurring sharp edges.

2.3 Depth-from-focus reconstruction

As aforementioned, there are several issues to recover a depth only using focus

measure operator. First of all, those focus measure operators are sensitive to
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window size. A small window size can preserve object structures but increase

the sensitivity to noise. A large window size makes it robust to noise but at a

cost of blurring edges. Another issue for these operators is the poor performance

in yielding spurious responses to texture-less image regions. Many studies ad-

dressing these problems have been performed. Those efforts can be roughly

categorized into three types: 1) methods aiming at the improvement of focus

measure accuracy, 2) methods using depth reconstruction process, and 3) deep

learning based methods.

Methods aiming at the improvement of focus measure

accuracy

Many researches regarding the improvement of focus measure accuracy have

been conducted. In [2], the authors presented a scheme to perform a Gaussian

interpolation around the peak detected in the focus measure profile. Instead of

using Gaussian interpolation, the authors in [1, 3] used a polynomial to inter-

polate the focus measure profile. In microscopy, Muhammad and Choi [4] pro-

posed a Lorentzian-Cauchy fit for the focus measure profile. Aydin and Akgul

[5] suggested an adaptive focus measure operator using adaptively shaped and

weighted support windows that are determined from the image characteristics

of an all-in-focus image of a scene. Thelen et al. [6] discussed the importance of

window size and proposed an adaptive method to select the effective window

size among several neighborhood sizes for the local operator based on a confi-

dence criterion. More recently, Surh et al. [7] presented a new ring difference
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filter focus measure operator. The structure of this focus measure operator is a

combination of ring and disk, which utilizes both local and nonlocal character-

istics and thus makes the focus measure more robust against noise. Sakurikar

and Narayanan in [8] proposed a composite scheme using various different focus

measure operators to derive more accurate depth image.

In this dissertation, a representative method proposed by Aydin and Akgul

[5] is described. They proposed a new adaptive focus measure operator, which

is achieved by assigning weights to each pixel in the support window. The

weights are computed according to the similarity and proximity levels between

the pixels enclosed by the window and the pixel for which window is computed.

The adaptive focus measure operator is defined as

AFM(x0, y0) =
∑

(x,y)∈Ωx0,y0

ωx0,y0fm(x, y), (2.8)

where fm(x, y) is the focus measure operator, ωx0,yo is the weight of support

window Ωx0,yo centered at the pixel (x0, y0), which can be calculated using

all-in-focus image If according to the following equation

ωx0,yo(x, y) = e−(∆d/γ1+∆If/γ2). (2.9)

In (2.9), ∆If is the euclidean distance in color space, ∆d is the euclidean dis-

tance in spatial domain. They are defined as follows:

∆d =

√
(x− x0)

2 + (y − y0)
2, (x, y) ∈ Ωx0,yo , (2.10)
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and

∆If =

√√√√√√√√√
(
Irf (x, y)− Irf (x0, y0)

)2
+
(
Igf (x, y)− Igf (x0, y0)

)2

+
(
Ibf (x, y)− Ibf (x0, y0)

)2 , (2.11)

where Irf (x, y), I
g
f (x, y), and Ibf (x, y) are the intensity values of R, G, and B

color channels, respectively. γ1 and γ2 are parameters supervise relative weights.

As we can see, the weight of adaptive focus measure operator consists of two

Gaussian kernels on space distance ∆d and range distance ∆I. It resembles

the kernels used in Bilateral filter [23], which are designed for edge preserving

image smoothing. By employing adaptively shapped and weighted windows,

this method can partially solve the problems due to the depth discontinuities

and edge bleeding, which are difficult for traditional focus measure operators.

However, to accurately recover depth from texture-less regions, large enough

support window is needed. Computing weights in the support window for each

pixel in each frame has much higher computational complexity compared to

traditional focus measure operators. Additionally, a very large support window

could also introduce visual artifacts.

Methods using depth reconstruction process

In addition to the efforts on improving the focus measure accuracy, some re-

searchers have attempted to formulate the DFF problem as depth reconstruc-

tion to derive more reliable and accurate depth image from a noisy depth im-
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age. Because depth reconstruction with a limited number of sequence images

is an ill-posed problem, prior knowledge is required to regularize the solution.

Gaganov and Ignateko [9] proposed an MRF-based framework to derive an en-

ergy function consisting of two truncated quadratic functions, and yields an

optimal depth estimation with enforced smoothness constraints. The energy

optimization algorithm used in that framework is α-expansion based on graph

cut. Even though reasonable results can be obtained, it is prone to obtaining

the local minima energy owing to its nonconvex property. Another MRF-based

approach was proposed in [10] to extract smooth and texture-less objects using

iterative conditional modes. Their approach is robust against texture-less re-

gions but surfers from the high computation cost, which is the inherent problem

in MRF-based algorithms. The authors in [3] proposed a variational approach

and solved it using an efficient nonconvex minimization scheme. The primary

problem of this algorithm is that the depth image is over-smoothed, and thus the

edges and fine details cannot be preserved. Tseng and Wang in [11] presented

a depth reconstruction algorithm with spatial coherency prior based on mat-

ting Laplacian matrix constructed from the all-in-focus image. A local learning

scheme to derive a spatial coherency prior directly from a multi-focus image

sequence was proposed in [12]. Depth reconstruction methods using matting

Laplacian prior assume that a typical depth image can be approximated by a

set of piece-wise of affine transformations of image features within the corre-

sponding windows. It is robust over low-contrast regions and can reduce edge

bleeding artifacts. However, the assumption of this local spatial coherency prior

does not hold in highly textured regions, and thus the texture-copy artifacts
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could be introduced. Javidnia and Corcoran in [13] proposed a depth recon-

struction algorithm based on Preconditioned Alternating Direction Method of

Multipliers (PADMM) to refine the depth discontinuities and derive a noise-free

depth image.

In this dissertation, a reconstruction method proposed by Moeller et al.

[3] is described. In [3], the authors try to formulate the DFF problem as a

variational problem. The proposed objective function includes a smooth but

nonconvex data fidelity term and a convex nonsmooth regularization, which

makes the the method robust to noise and leads to more realistic depth map.

It is defined as

d̂ = arg min
d

D(d) + αR(d), (2.12)

where D(d) is the data fidelity term that takes the dependence on the measured

data into account, R(d) is the regularization term. α is a parameter controlling

the balance between fidelity and regularity. As reconstructing depth map by

an energy minimization is designed, negative contrast measure at each pixel is

chosen as the data fidelity term that can be computed as

D(d) = −
∑
i

∑
j

ci,j(di,j), (2.13)

where ci,j is the continuous contrast function that maps a depth to its corre-

sponding contrast value. The regularization term R acts as smoothness term to

impose spatial smoothness on reconstructed depth image. The regularization

term normally depend on the prior knowledge about the depth that need to be

recovered. To to this, the authors used discrete isotropic total variation (TV),
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R(d) = ∥Kd∥2,1, where K is the linear operator such that Kd becomes a matrix

with the x-derivative in the first column and y-derivative in the second column,

then the total variation can be defined as

∥g∥2,1 :=
∑
i

√∑
j

(gi,j)
2. (2.14)

To minimize such nonconvex energy function, many approaches such as

forward-backward splittings (FBS) [24, 25], and methods based on the difference

of convex functions [26]. To decrease computational complexity, the authors

proposed to apply the alternating directions of multipliers (ADMM) [27] as if

the energy was convex. To do this, a new variable g under the constrain g = Kd

is introduced, then the energy function can be rewritten as

(
d̂, ĝ
)
= arg min

d,g
D(d) + α∥g∥2,1 such that g = Kd. (2.15)

The constraint g = Kd is enforced iteratively by using augmented Lagrangian

method. The minimization for d and g can be down in an alternating way by

using applying ADMM and FBS, which can yield

dk+1 = arg min
d

λ
2

∥∥Kd− gk + bk
∥∥2
2
+ 1

2

∥∥d− dk + τ∇D(dk)
∥∥2 ,

gk+1 = arg min
g

λ
2

∥∥g −Kdk+1 + bk
∥∥2
2
+ α∥g∥2,1,

bk+1 = bk +
(
Kdk+1 − dk+1

) (2.16)

Due to the excellent performance in edge preservation and smoothing of flat

regions, total variation being as a regularization has often been used in many
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tasks such as image denosing, restoration, reconstruction and so on. However,

the performance of Moeller’s method relies on the initial depth derived using

focus measure operator. To make it robust in texture-less regions, a large ker-

nel for focus measure operator is used, such that object structure and details

would be lost in initial depth image. Additional, as it only relies on the ini-

tial depth and no additional information such as color information utilized in

the optimization framework, numerous fine details are lost and depth edges are

blurred.

Deep learning based methods

Recently, deep learning has drawn considerable attention in both academia and

industry. As for the problem of DFF, Hazirbas et al. [14] proposed a deep learn-

ing method to depth disparity via an auto-encoder-style convolutional neural

network named Deep Depth From Focus Network (DDFFNet). The network

proposed in this paper is the first end-to-end learning approach to DFF prob-

lem. To train such a convolutional neural network, the authors created a dataset

with a large number of light-field images and co-registered ground truth depth

images recorded with an RGB-D camera. The network takes a focal stack S

of refocused images I ∈ RH×W×C , and the corresponding target disparity map

D ∈ RH×W as the input. Then the loss function between the estimated disparity

f(S) and the target D can be defines as

Loss =
HW∑
p

M(p) ∥fW (S, p)−D(p)∥22 + λ ∥Θ∥22 . (2.17)
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Figure 2.3: DDFFNet proposed in [14]. This network takes a focal stack as a
input, and the output is a disparity map.

The loss function is the summation over all valid pixels p where D(p) > 0 in-

dicated by the mask M(p). f : RS×H×W×C → RH×W is a convolutional neural

network with weights Θ penalized in L2 norm. Figure 2.3 gives the architecture

of the DDFFNet. In DDFFNet, the VGG-16 net[28] was utilized as a baseline

for the encoder network that consists of 13 convolutional layers, 5 poolings and

3 fully-connected layers. In order to reconstruct the input size, the authors re-

moved the fully-connected layers and reconstructed the decoder part of the net-

work by mirroring the encoder layers. They inverted the 2×2 pooling operation

with 4× 4 upconvolution (deconvolution) [29] with a stride of 2 and initialized

the weights of the upconvolution layers with bilinear interpolation, depicted as

upsample in Figure 2.3. Similar to the encoder part, they utilized convolutions

after upconvolution layers to further sharpen the activation results. To accel-

erate convergence, they added batch normalization [30] after each convolution

and learned the scale and shift parameters during training. Batch normalization

layers were followed by rectified linear unit (ReLU) activation. Moreover, after

the 3rd, 4th and 5th poolings and before the corresponding upconvolutions,
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they applied dropout with 0.5 probability during training similar to [31]. In

order to preserve the sharp object boundaries, the authors concatenated the

feature maps of early convolutions conv1 2, conv2 2, conv3 3 with the decoder

feature maps: output of the convolutions were concatenated with the output of

corresponding upconvolutions.

The DDFFNet basically is a deep learning based sharpness measure method,

which takes the focal stack and its corresponding disparity map as the input.

Its design allows the network to learn the sharpness for each pixel, and from the

sharpness level, the regression layer denoted as Score in Figure 2.3 regresses

the depth from sharpness. Even though the experimental results demonstrated

the robustness and accuracy, there is a significant need to improve the ability

of preserving object structure.

2.4 Edge-preserving image denoising

In this section, a literature review of methods for edge-preserving image denois-

ing methods is presented. Several classical edge-preserving algorithms includ-

ing anisotropic diffusion filter, bilateral filter, nonlocal means filter and mutual

structure for joint filter are presented respectively.

Anisotropic diffusion

Anisotropic diffusion in [32] is inspired by interpreting the Gaussian blur as a

heat conduction partial differential equation (PDE) ∂I
∂t = −△I. That is, the

intensity I of each pixel is seen as heat and is propagated over time to its 4
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neighbors based on the heat spatial variation.

Perona and Malik in [32] introduced and edge-stopping function g that varies

the conductance according to the image gradient. The prevents heat flows across

edges:

∂I
∂t = div (c(x, y, t)∇I)

= ∇c∇I + c(x, y, t)∆I,
(2.18)

where c is the edge-stopping function suggested as

c (∥∇I∥) = e−(∥∇I∥/K)2 , (2.19)

or

c (∥∇I∥) = 1

1 +
(
∥∇I∥2

K

) (2.20)

, in which ∇ is the Laplacian operator, ∆ is the gradient operator, and c(x, y, t)

is the diffusion coefficient controlling what gradient intensity should stop diffu-

sion. K is an edge magnitude parameter in the intensity domain. In diffusion

process, this gradient magnitude is adopted to detect image edges or boundaries

as a step. The diffusion coefficient c(x, y) → 0 if∇I ≫ K, such that the diffusion

is ”stepped” across edges. On the contrary, c(x, y) → 1 if ∇I ≪ K, such that

it becomes isotropic diffusion (Gaussian filtering). The discrete Perona-Malik

diffusion equation is given by

It+1 = It + λ
(
cNx,y∇N (It) + cSx,y∇S (It) + cEx,y∇E (It) + cWx,y∇W (It)

)
(2.21)

where t describes discrete time steps and λ is a scalar that determines the
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diffusion rate. ∇N , ∇S , ∇E , and ∇W are gradient operator in north, south,

east and west directions, respectively. cNx, cSx, cEx, and cWx are diffusion

coefficients in corresponding directions, respectively. The calculations of those

operators are reported as follows:

∇N (It) = Ix,y−1 − Ix,y

∇S (It) = Ix,y+1 − Ix,y

∇E (It) = Ix−1,y − Ix,y

∇W (It) = Ix+1,y − Ix,y,

(2.22)

and

cNx,y = e(−∥∇N (I)∥2/K2)

cSx,y = e(−∥∇S(I)∥2/K2)

cEx,y = e(−∥∇E(I)∥2/K2)

cWx,y = e(−∥∇W (I)∥2/K2).

(2.23)

Although anisotropic diffusion is a very powerful filter in edge-preserving image

denoising, it is very difficult to find the proper parameter settings especially

stopping time to get satisfactory results. Figure 2.4 illustrates the denoising

effects on varying parameter settings.

Bilateral filter

Bilateral filter was proposed by Tomasi and Manduchi [23] as an alternative

to anisotropic diffusion. It is a non-linear filter where the output is a weighted

25



t = 5 t = 15 t = 30 

K= 0.1 

K= 0.25 

K = 0.75 

Figure 2.4: Illustration of the effects in anisotropic diffusion using various pa-
rameters setting. From top row to bottom row, the edge magnitude parameter
K is set to 0.1, 0.25, and 0.75, respectively. From left column to right column,
the time steps t is set to 5, 15, and 30, respectively.
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Figure 2.5: Illustration of how the spatial kernel and color kernel combine to
preserve edges. This figure is reorganized from images in [33].

average of the input. The bilateral filter is defined as follows:

BF [I]p =
1

Wp

∑
q∈S

Gσs (∥p− q∥)Gσr (|Ip − Iq|) ∗ Iq, (2.24)

and Figure 2.5 illustrates the process of bilateral filtering. As shown, the bi-

lateral filter consists of two kernels: spatial kernel Gσs and range kernel Gσr ,

which are defined as follows:

Gσs = exp

(
−∥p− q∥2

2σs2

)
, (2.25)
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Figure 2.6: Results of bilateral filter with vary spatial and range parameter
settings. From top row to bottom row, the spatial parameter is set to 2, 6, and
18, respectively. From left column to right column, the range parameter is set
to 0.01, 0.25, and 1, respectively.

and

Gσr = exp

(
−∥Ip − Iq∥2

2σr2

)
. (2.26)
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The weight of a pixel not only depends on a spatial function, but also on a

function of range function, which is able to decrease the weight of pixels with

large intensity differences. Similar with anisotropic diffusion, the range function

acts as an edge-stopping function. With Eqs. (2.25) and (2.26), the bilateral

filter can be rewritten as

BF [I]p = 1
Wp

∑
q∈S

Gσs (∥p− q∥)Gσr (|Ip − Iq|) ∗ Iq

= 1
Wp

∑
q∈S

exp
(
−∥p−q∥2

2σs
2

)
exp

(
−∥Ip−Iq∥2

2σr
2

)
∗ Iq

, (2.27)

where Wp is a normalization factor:

Wp =
∑
q∈S

exp

(
−∥p− q∥2

2σs2

)
exp

(
−∥Ip − Iq∥2

2σr2

)
(2.28)

As an alternative to anisotropic filter, bilateral filter computes the weight of

each pixel using a Gaussian in spatial domain multiplied by an influence func-

tion (range function) in intensity domain that can decrease the weight of pixels

with large intensity differences. Figure 2.6 shows some smoothing results using

bilateral filter with varying spatial and range parameter settings. Even though

both anisotropic fusion and bilateral filter are able to prevent averaging across

edges, bilateral filter has some advantages compared to anisotropic fusion. Bi-

lateral filter does not involve the solution of partial differential equations can

be implemented in a single iteration.
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Nonlocal means filter

Unlike the other ”local mean” filters that take the mean value of of a group

of pixels surrounding a target pixel to smooth the image, nonlocal means filter

proposed in [34] takes a mean of all pixels in the image, weighted by how similar

these pixels are to the target pixel. Given a discrete noisy image v = {v(x)|x ∈

I}, the denoised value NL(x), for a pixel x, can be calculated as weighted

average of all pixels in the whole image,

NL(x) =
∑
y∈I

w(x, y) ∗ v(y) (2.29)

where the family of weights {w(x, y)}y depend on the similarity of the pixels

x and y, and satisfy the conditions 0 ≤ w(x, y) ≥ 1 and
∑

y w(x, y) = 1. The

similarity between two pixels x and y depends on the similarity of intensity

vectors v(Nx) and v(Ny), where the Nk represents neighborhood pixels in a

fixed sized local window centered at pixel k. This similarity is measured as a

function of weighted Euclidean distance ∥v(Nx)− v(Ny)∥2. The weights then

can be computed as

w(x, y) =
1

Z(x)
exp

(
−∥v(Nx)− v(Ny)∥2

h2

)
(2.30)

where Z(x) is the normalization factor, which can be defined as follows:

Z(x) =
∑
y

exp

(
−∥v(Nx)− v(Ny)∥2

h2

)
, (2.31)
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Figure 2.7: Scheme of nonlocal means filter. Similar patches give a large weight,
w(p, q1) and w(p, q2), on the contrary, different neighborhoods give a small
weight w(p, q3) [35].

where h is a parameter controlling the degree of filtering. Nonlocal means filter

not only compares the gray level in a single point but geometrical configuration

in a whole neighborhood. This fact allows a more robust comparison than local

neighborhood filters. Figure 2.7 gives an illustration of this fact. As shown the

pixel q3 has the similar intensity value of pixel p, but the neighborhood pixels

are much different and thus, the weight of w(p, q3) becomes small. Figure 2.8

gives an example of image smoothing result using nonlocal means filter.

The nonlocal filter has better performance in noise removal and structure

preservation by adopting the local and nonlocal geometry of the image com-

pared with other local means filter. However, in terms of depth refinement, there

are texture-copy artifacts caused by color inconsistency between depth image
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Figure 2.8: An example of image smoothing using nonlocal means filter.

and color image. Some artifacts contain clear edges, which would be treated as

geometrical structures and preserved in the smoothed image.

Mutual structure for joint filtering

In image filtering, there is one kind of filtering with a guidance image as a prior

and transfer the structure details from guidance image to target image, known

as joint or guided filtering. Joint image filtering has been successfully been

applied to a variety of computer vision and computer graphics tasks such as

depth enhancement [16, 36, 37], joint upsampling [38], and cross-modality noise

reduction [39–41]. Generally, there is one assumption for joint filtering that

the guided image has perfect structural information. However, there may be

completely different edges in guided image and target image. Simply passing all

structures into target image could introduce significant errors. Figure 2.9 gives

an example of inconsistent edges in target image and guided image. To solve this

issue, Shen et al. in [41] propose a joint filtering using mutual structure. The
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Figure 2.9: Example of inconsistent edges in target image and guidance image
[41].

basic idea of this method is trying to utilize both target image and guided image,

not guided image only. To address this structure inconsistency problem, they

proposed the the concept of mutual-structure, which refers to the structural

information both contained in target image and guided image. Thus, target

image can be safely enhanced by joint filtering.

Mutual structure formulation

As target image and guided image are hardly with exact same structures, the

authors roughly categorize it into three types: mutual structures, inconsistent

structures, and smooth regions. Mutual structure can be intuitively understood

as common edges that are not necessary with same gradient direction or mag-

nitude. Inconsistent structures are defined when one edge appears only in one

image but not in another image. Smooth regions can be easily understood as

non-edge regions that are easily influenced by noise. Among these three types,

inconsistent structures generally cause significant errors when transferring er-

roneous structures to target image. To solve this problem, authors try to find
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the mutual structures between target image and guided image and let it guides

joint filtering process. Accordingly, filtering process is not only applied on the

target image but the guided image.

The structure similarity measure between corresponding patches in target

image I and guided image G is given as

ρ(Ip, Gp) =
cov(Ip, Gp)√
σ(Ip) + σ(Gp)

, (2.32)

where cov(Ip, Gp) is the covariance of patch intensities. σ(Ip) and σ(Gp) denote

the variance.

As ρ(Ip, Gp) is nonlinear operator, it is difficult to use it directly for structure

optimization. To make the problem trackable, the relationship between ρ(Ip, Gp)

and least-square regression is built as follows:

f(I,G, a1p, a
0
p) =

∑
q∈N(p)

(
a1pIq + a0p −Gq

)2
, (2.33)

where a1p and a0p are the regression coefficients assumed to be constant in local

window N(p) of pixel p. This function linearly represents one patch in G by

that in I. To determine the regression coefficients, a error function e(Ip, Gp)
2 is

defined as

e(Ip, Gp)
2 = min

a1p,a
0
p

1

|N |
f(I,G, a1p, a

0
p), (2.34)

where |N | is number of pixels in N(p). It is claimed that the relationship be-
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Figure 2.10: 1-D example of three types of different structures [41].

tween the mean square error e(Ip, Gp)
2 and ρ(Ip, Gp) is

e(Ip, Gp) = σ(Gp)(1− ρ(Ip, Gp)
2), (2.35)

where σ(Gp) is the variance of patch centered at p in G. As e(Ip, Gp) is not a

symmetrical function, the final patch similarity measure is defined as a sum of

e(Ip, Gp) and e(Gp, Ip), which is defined as follows:

S(Ip, Gp) =
(
σ(Ip)

2+ σ(Gp)
2
)(

1− ρ(Ip, Gp)
2
)2

. (2.36)

Figure 2.10 gives an example of three different structures. When two patches

contain same edges, |ρ(Ip, Gp)| = 1. Otherwise, |ρ(Ip, Gp)| is small when patch

structures are different. In texture-copy regions where the edges appear in the

reconstructed depth image but not in the initial depth image, σ(Gp) is large

and σ(Ip) is small. S(Ip, Gp) therefore outputs a relatively large number. On the

other hand, when common edges appear in two patches or when both patches

do not contain any significant edges, S(Ip, Gp) would be a small value.

Considering the trivial solution could be produced when the whole images
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of I and G contain no edges at all, and requirement to smooth the target image

by removing noise and visual artifacts, some regularization terms are added

into the final objective function that is

E(I,G, a, b) = ES(I,G, a, b) + Ed(I,G) + Er(a, b), (2.37)

where ES(I,G, a, b) is the essential image structure similarity term, Ed(I,G)

is a regularization term used to avoid trivial solution, and Er(a, b) is another

regularization term used to smooth target image. Those three terms are defined

as follows:

ES(I,G, a, b) =
∑
p

f(I,G, a1p, a
0
p) + f(G, I, b1p, b

0
p), (2.38)

Ed(I,G) =
∑
p

λ ∥Gp −G0,p∥+ β ∥Ip − I0,p∥ , (2.39)

where λ and β two parameters.

Er(a, b) =
∑
p

(
ε1a

1
p

2

+ ε2b
1
p

2)
(2.40)

where ε1 and ε2 are parameters controlling smoothness strength on G and I

respectively.

The optimization process is able to efficiently get filtered output I and G

from I0 and G0 using derivatives and Jacobi method [39]. Mutual structure

based joint filtering aims to preserve the mutually consistent structures while

suppressing that not commonly shared in both images, which enables it have a
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better better performance compared with bilateral filtering. However, in DFF,

it is difficult for this filter to recover initial depth derived using focus measure

operator, especially in texture-less regions. Additionally, as the reconstructed

depth image using nonlocal Laplacian prior already suffers from inconsistent

structure from color image, mutual structure based joint filter could only add

to this problem.
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Chapter 3

Depth-from-Focus Reconstruction
using Nonlocal Matting Laplacian
Prior

3.1 Overview

Depth reconstruction from 2D image is a fundamental problem for various kinds

of applications such as 3D measurement and 3D object segmentation. Object

structure plays an very important role in those applications. In the field of

DFF, to preserve object structure and fine details, many researches proposed

to adopt color image as guidance, and transfer the object structures to the

reconstructed depth image. The advantage of such kind of methods is the ability

to preserve object structures. However, as the structure in color image may exist

some structures that are not expected to transfer to target depth image, it is

inevitable to introduce some visual artifacts called texture-copy artifacts. This
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Figure 3.1: An example of inconsistent edges between color image and initial
depth image.

is caused by the structure inconsistency between initial depth image and the

color image. Figure 3.1 gives and example of structure inconsistency. Now that,

it is difficult to avoid the texture-copy artifacts, we can achieve our final goal

in an indirect way. That is the two-stage framework for the depth recovery.

In the reconstruction stage, preserving the object structure and fine details as

much as we can becomes the temporary objective, and the noise removal and

texture-copy suppression can be left to the depth refinement stage.

In this chapter, a DFF reconstruction approach with the inclusion of mat-

ting Laplacian prior is presented. As the texture-copy artifacts suppression in

this stage is not our concern, nonlocal principle is a adopted in the matting

Laplacian matrix construction to keep object structure and preserve fine de-
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tails. Additionally, an effective variance based confidence level measure is also

proposed to suppress the texture-copy artifacts. The design of confidence mea-

sure does not only consider individual pixels but also its local consistency.

Generally, the regions in initial depth image with small depth variances are

generally highly textured, thus it can help suppress the texture-copy artifacts

to some degree.

3.2 Image matting and matting Laplacian

Image matting is a problem of accurate foreground extraction from an image

based on limited user input. Formally, image matting algorithms take an image

I as input, which is composed of a foreground image F and a background

image B. The image value Ii at pixel i is assumed to be linear combination of

a foreground color value Fi and a background color value Bi. That is,

Ii = αiFi + (1− αi)Bi, (3.1)

where αi corresponds to the pixel’s foreground opacity and usually named the

alpha matte value ranging from 0 to 1. In image matting, as all quantities on the

right-hand side of Equation (3.1) are unknown, the image matting process is ba-

sically an ill-posed problem. Typically, to solve this severely under-constrained

problem, user interaction is usually needed to provide a trimap as a starting

point. Figure 3.2 gives an example of image matting. The trimap consists of a

small set of labelled foreground pixels marked white color, background pixels

marked black and unknown pixels marked gray. Such kind of algorithms are
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Figure 3.2: Example of image matting. From left to right: Color image, input
trimap, and result of matting respectively. The white, black, and gray regions
in middle image represent foreground, background and unknown regions, re-
spectively.

called supervised image matting [42–45]. In contrast, other approaches decom-

pose the color image into foreground and background parts automatically called

unsupervised matting. [46–49].

Among aforementioned image matting approaches, matting Laplacian based

method introduced by Levin et al. in [42] is one of the prominent works. In that

work, Levin et al. propose the use of the matting Laplacian, which is basically a

graph-based method to compute alpha matte. As solving the alpha in Equation

(3.1) is a severely under-constrained problem, Levin et al. assume that the both

foreground and background are approximately constant over a small window

around each pixel. More specially, the approach is based on a color line model,

which assumes that each of F and B in a small window w (3×3 or 5 × 5) lies

roughly on a line in the color space. The α then can be expressed as a linear

combination of the color values:

αi = aIi + b,∀i ∈ ωi, (3.2)

where a = 1
F−B and b = −B

F−B . By scanning the window wj over the image, the
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matting problem can be formulated as the minimization of the following cost

function:

J(α, a, b) =
∑
j∈I

∑
i∈ωj

(αi − ajIi − bi)
2
+ εaj

2

 ， (3.3)

where wj is a local window centered at pixel j, and ε is a regularization pa-

rameter. By minimizing the cost function, a and b can be ultimately eliminated

from equation 3.3, and a quadratic form respect to α can be derived as

J(α) = αTLα. (3.4)

In (3.4), α is a N × 1 vector, where N is the number of image pixels. L is a

sparse, symmetric, and positive semi-definite N ×N matrix called the matting

Laplacian matrix. The entry L(i, j) of the matting Laplacian can be calculated

as ∑
k|(i,j)∈wk

(
δij−

1

|wk|

(
1+(Ii−µk)

T
(
Σk+

ε

|wk|
U
)−1

(Ij − µk)
))

, (3.5)

where Ii and Ij are the color vectors of input image at pixels i and j, respectively,

δi,j is the Kronecker delta, µk is the 3×1 mean vector in window wk centered at

k, Σk is the 3× 3 covariance matrix of the color intensities in the same window

, and |wk| is the number of pixels in this window.

This matrix is originally proposed to solve the matting problem, and later

applied in many fields such as: image dehazing [50], image deblurring [51, 52],

depth reconstruction [11, 12, 53], and so on. An example application is presented

to show the use of matting Laplacian. Figure 3.3 illustrates an example of haze

removal using the method proposed in [50]. As shown the refined transmission
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Figure 3.3: Haze removal. The top-left image is the input haze image. The
top-middle image is the estimated transmission map before soft matting. The
bottom-middle image is the refined transmission map after soft matting. The
top-right and bottom right images are the recovered images using unrefined and
refined transmission maps, respectively.

map using matting Laplacian can help achieve much better performance than

unrefined transmission.

3.3 Depth-from-focus

In this dissertation, the summed-modified Laplacian (SMLAP) operator is em-

ployed to measure the degree of focus due to its better performance and less

computational complexity compared to other operators [54]. Then, for a given

image focal stack Iset = {I1, I2, ...IK}, the focus measure for a pixel i at position

(x, y) on k-th image can be calculated as follows:

fmk (x, y) =
∑

(i,j)∈Ω(x,y)

∆Ik (i, j), (3.6)
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Figure 3.4: Gaussian approximation of focus measure function.

where fmk is the modified Laplacian of Ik which can be calculated as

∆Ik = |Ik ∗ Lx|+ |Ik ∗ Ly|. (3.7)

The convolution filter kernels used to calculate the modified Laplacian are

Lx =

[
−1 2 1

]
and Ly = Lx

T . (3.8)

To improve the accuracy of the initial depth estimation, the authors in [2]

proposed to model the focus measure function fm(x, y) of k as a Gaussian

function of continuous depth z whose maximum corresponds to the position of
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Figure 3.5: Color images in various of scenes and its initial depth images using
SMLAP operator after Gaussian interpolation.

best focus. The ideal Gaussian function at position (x, y) is defined as

Gx,y(z) = A · exp

(
−1

2

(
z − µ

σfm

)2
)
, (3.9)

where A is the maximum value of the Gaussian function, µ and σfm are its

mean value and standard deviation, respectively. Following [2], A, µ, and σfm

can be obtained by interpolation as a function of depth z. The estimated initial

depth D̃(x, y) after Gaussian interpolation corresponds to the location that

maximizes Gx,y(z). Then, we have

D̃(x, y) = argmax
z

(Gx,y (z)). (3.10)

Figure 3.5 presents some example of the initial depth images after Gaussian

interpolation from depth images derived using SMLAP. Owing to the limitations

of the focus measure operator, some unreliable depths appear in texture-less,
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Figure 3.6: Reliability measure for the initial depth images derived using SM-
LAP operator after Gaussian interpolation. The reliability measure map indi-
cates that the brighter pixels have higher reliability levels.

underexposed, or overexposed regions. To detect such unreliable depth regions,

Pertuz et al. [54] proposed a reliability measure scheme by measuring the fit

of focus measure function to the Gaussian model to predict the performance of

initial depth estimation. The reliability measure is calculated as

RM(x, y) = 20 · log

 fmmax

1
K

K∑
k=1

|fmk(x, y)−Gx,y(k)|

, (3.11)

where fmmax = max{fm(x, y)} is the normalization factor. Figure 3.6 shows

some examples of the reliability measure for the initial depth images after Gaus-

sian interpolation.

By expecting that a larger focus measure value at an image pixel typically

indicates that the image pixel is more focused, we assume that the probability pki

of pixel i at position (x, y) on the k-th frame is proportional to the corresponding
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focus measure value fmk. Here, we define

pi
k =

fmk(x, y)
K∑
j=1

fmj(x, y)

. (3.12)

Based on the assumption, all-in-focused image AIF can be calculated as follows:

AIFi =

K∑
k=1

pi
k · Iik. (3.13)

3.4 Depth reconstruction

3.4.1 Problem statement

In this section, we aim to reconstruct a reliable depth image with clear edges and

fine details from a sequence of multi-focus images. Herein, we denote the depth

image D and treat the depth reconstruction as a MAP estimation problem in

the Bayesian network. For a given image sequence Iset = {I1, I2, ...IK}, we seek

a D∗ to maximize

D∗ = argmax
D

{p(D|Iset)}. (3.14)

According to the Bayesian rule, the posterior probability P (D|Iset) can be

decomposed into the product of likelihood function P (Iset|D) and prior prob-

ability function P (D). Then, we have

D∗ = argmax
D

{p(D|Iset)}

= argmax
D

p(Iset|D)p(D).

(3.15)
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In the following subsections, we will describe the construction of the like-

lihood and prior models. The likelihood model is constructed based on depth

prediction with spatially varying precision, which can properly improve the ro-

bustness of depth estimation over texture-less regions. On the other hand, the

prior model is derived using the affinity matrix embedded in nonlocal matting

Laplacian matrix. The property of this prior achieves the propagation of high-

confident depth values to unreliable depth values. With the likelihood and prior

models, we can reconstruct a reliable depth image by solving an optimization

problem.

3.4.2 Likelihood model

As it is an ill-posed problem to directly model the relation between image

set Iset and depth image D, we cannot explicitly model the likelihood function

p(Iset|D). On the other side, the initial depth image D̃ is inferred from image set

Iset using SMLAP operator. Thus, we employ the indirect relationship between

the initial image D̃ and depth image D to formulate p(Iset|D) which can be

expressed as

p(Iset|D) ≡ p(D̃|D). (3.16)

Here, we regard D̃ as a random variable governed by the hidden depth D

and model it as an identically independent Gaussian distribution with spatially

varying precision Λ. Hence, our negative logarithmic likelihood function can be
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formulated as

− ln
(
p(D̃|D)

)
≡ − ln(N(D̃|D,Λ−1))

∝
n∑

i=1

λi · |d̃i − di|2

= (D̃ −D)TΛ(D̃ −D),

(3.17)

where D̃ and D are represented as n×1 vector and n denotes the total number

of pixels of the depth image. di and d̃i are the values of hidden depth image and

observed initial depth image at pixel i. Λ is an n×n diagonal matrix, in which

the element Λ(i, i) equals λi. Basically, λi models the confidence level of initial

depth pixel d̃i. Consequently, a large value of λi implies that the reconstructed

depth di would be more derived from the observed initial depth d̃i. For the

texture-less regions in all-in-focus image, we believe that the confidence levels

would decrease. In this dissertation, the design of the confidence level λ is based

on the observation that a confident pixel generally exhibits a high reliability

measure value and a small depth variance in a local window. On the contrary,

a noisy pixel typically has a large depth variance and low reliability measure

value. Herein, the depth variance based confidence level λ is defined as follows:

λi =



coefl ·
(
exp

(
−σD̃(i)

))
σD̃(i) ≤ tvar & RMi > tRM ,

Cl σD̃(i) > tvar & RMi > tRM ,

0 RMi ≤ tRM ,

(3.18)

where coefl is a user defined coefficient of confidence level λ. σD̃ is the normal-

ized variance of the initial depth D̃. RM is the reliability measures calculated
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using Equation 3.11; and tRM is a user specified threshold to separate reliable

and unreliable depth regions. tvar is the depth variance threshold to partition

the smooth depth regions from depth discontinuities, which is derived through

Otsu’s method [55] on reliable depth regions. To maintain the depth image

consistency, the λ value of each reliable pixel is set inversely proportional to

the depth variance value. A positive and small constant value Cl is assigned to

reliable depth regions with large depth variances to balance the estimation be-

tween the observed initial depth and hidden depth. For unreliable regions in the

initial depth image, we simply set the confidence levels to zero. Our confidence

level design is reasonable and effective as it considers both the independent

pixel and its local consistency. As shown in Figure 3.7, the reliable pixels with

a small depth variances are assigned with large λ values. As the regions in ini-

tial depth image with small depth variances are generally highly textured in

its corresponding all-in-focus image, our λ design can thus help maintain the

spatial consistency to some degree.

3.4.3 Nonlocal matting Laplacian prior model

As DFF is a classic ill-posed inverse problem, it is necessary to employ image

priors to regularize it into a well-posed problem. In [42], Levin et al. introduced

a matting Laplacian matrix to compute alpha matte based on a local linear color

model. This matrix is originally proposed to solve the matting problem, and

later used in dehazing [50] and depth reconstruction [11, 12, 53]. The authors

in [11, 53] attempted to reconstruct a depth image by employing a spatial-

coherence prior constructed from a graph-based affinity matrix embedded in a
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Figure 3.7: Confidence map of selected synthetic data from 4D light field bench-
mark [56]. From left column to right column are all-in-focus images, the es-
timated initial depth images; and the corresponding confidence maps, respec-
tively. The confidence map indicates that brighter pixels have higher confidence
levels.

matting Laplacian matrix. Tseng and Wang in [12] constructed a local prior

model through a local learning scheme under the assumption that the depth

value of each pixel can be predicted by an affine transformation of its image

features. Good results can be guaranteed if the local linear color model holds.

Recently the nonlocal principle has drawn significant attention owing to its

excellent edge preservation property in image and movie denoising [34] and

image matting [57]. In this dissertation, the nonlocal principle is adopted in the

matting Laplacian matrix construction to preserve clear edges and fine details.

Rather than using a larger kernel or other nonlocal matting methods performing
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in spatial domain, our nonlocal principle is implemented by computing the K

nearest neighborhood (KNN) in the feature space. For a given pixel i, the feature

space is defined as follows:

Hi = (x, y, r, g, b)i. (3.19)

The feature vector Hi is constructed using spatial coordinates and RGB color:

x, y are the normalized spatial coordinates and r, g, b are the normalized

RGB values, respectively. To enforce spatial consistency, r, g, b are scaled by a

factor of Cs after normalization. Subsequently, we search for KNN in the feature

space using the Euclidean distance ∥Hi −Hj∥. Figure 3.8 shows a visualization

comparison of nine nearest neighbors in spatial domain and defined feature

space.

Here, we assume that the KNN of a pixel in the feature space satisfies the

color line model. The element of the matting Laplacian matrix L(i, j) can be

calculated as follows:

∑
q|(i,j)∈(Nq)

(
δij−

1

KNN

(
1+(AIFi−µq)

T
(
Σq+

ε

KNN
I
)−1

(AIFj − µq)
))

, (3.20)

where L is an n×nmatrix; AIFi and AIFj are the color vectors of the all-in-focus

image at pixels i and j, respectively; δij is the Kronecker delta; µq and Σq are

the mean and covariance matrices of the color intensity values in the nonlocal

neighbors N(q) of q, respectively; KNN is the element number of N(q); I is a

3 × 3 identity matrix; and ε is the regularizing parameter. More information
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Figure 3.8: Visualization of neighbors used for matting Laplacian matrix con-
struction. The first and second column are the all-in-focus image and its
cropped all-in-focus images. The last two columns represent the spatial neigh-
bors marked green and the nonlocal neighbors in our feature space marked
white.

can be found in [42]. In the proposed method, unlike the traditional matting

Laplacian matrix, the (i, j)−th entry of the modified matting Laplacian matrix

is given as

∑
q|(i,j)∈N(q)

(
δij−

1

KNN

(
1+(Xi−µq)

T
(
Σq+

ε

KNN
I
)−1

(Xj − µq)
))

, (3.21)

where

Xi∈N(q) =


AIFi RMi ≤ tRM ,

µq others.

(3.22)

For unreliable regions, especially for the unreliable regions that are highly tex-

tured in-all-in focus image, we enhance the spatial consistency by reinforcing
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color smoothness. Our KNN matting Laplacian matrix is constructed based

on the nonlocal color smoothness assumption. During the depth reconstruc-

tion process, we use this nonlocal color smoothness assumption and employ the

matting Laplacian matrix to construct our prior model, which is defined as

− ln (P (D)) = DTLD. (3.23)

Under this nonlocal color smoothness assumption, there would be a slow

depth change between adjacent pixels in our defined feature space if the in-

tensity or colors at these pixels are similar, and a quick depth change if the

colors or intensity at these pixels are apparently different. With the likelihood

function (3.17) and prior function (3.23), our depth reconstruction is equivalent

to minimizing the following energy function:

E(D) = (D̃ −D)TΛ(D̃ −D) +DTLD. (3.24)

With the precision matrix Λ and our matting Laplacian matrix L, the closed-

form solution of our energy function with respect to D can be obtained by

solving the following linear equation

(L+ Λ)D = ΛD̃ (3.25)
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3.5 Experimental results

3.5.1 Overview

As the reconstruction process is just one stage of the proposed depth recov-

ery framework, quantitative comparison between the proposed reconstruction

method and other related DFF reconstruction methods are not performed in

this section. The objective of this set of experiments is to test the performance of

depth recovery over texture-less regions and the ability to preserve object struc-

tures and fine details in the reconstructed depth image. Several experiments are

conducted to validate the proposed method. Experiments for testing the per-

formance of depth recovery over texture-less regions are firstly presented. After

that, some experimental comparisons between reconstructed depth images us-

ing the proposed nonlocal matting Laplacian prior and local matting Laplacian

prior are conducted to evaluate the ability to preserve object structures and

fine details. Additionally, a spatial consistency analysis is conduct to compare

the difference between reconstruction results using modified nonlocal matting

Laplacian and traditional matting Laplacian.

3.5.2 Data configuration

The image sequences used in our experiments are derived from the 4D Light

Fields benchmark [56] as it provides several carefully designed synthetic and

densely sampled 4D light fields with a highly accurate disparity ground truth.

For each dataset, we generate thirty refocused images using the toolbox function

LFFiltShiftSum [58] with the range parameters provided in [56].
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3.5.3 Reconstruction results

In this experiments, the performance of the depth recovery over texture-less

regions are qualitatively evaluated. Figure 3.9 gives some reconstruction results

using the proposed reconstruction method. As shown, the result obtained by

the SMLAP with Gaussian interpolation is quite noisy and the depth estima-

tion over texture-less regions shows numerous errors. On the other hand, the

proposed reconstruction approach with the inclusion of matting Laplacian prior

exhibits the good performance in the depth recovery over texture-less regions.

3.5.4 Comparison between reconstruction using local and non-

local matting Laplacian

The objective of this experiment is to validate the effectiveness of adopting

nonlocal principle into the proposed reconstruction method. As the texture-

copy artifacts is not taken into account in this reconstruction stage, the purpose

of adopting nonlocal principle into the proposed method is trying to preserve

object structure and fine details as much as possible. Figure 3.10 shows the

comparison results of the reconstructed depth image using traditional local

matting and our modified nonlocal matting Laplacian. As shown, the proposed

modified nonlocal method can produce depth images with more clear edges and

fine details compared with the traditional local method. On the contrary, the

local method blurs real depth edges and some details are lost though the rough

object structures can be preserved. This is because our nonlocal principle can

achieve better clustering performance especially when consistent edges exist in

both depth image and the associated all-in-focus image. Additionally, with our
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Figure 3.9: Reconstruction results using proposed method with nonlocal mat-
ting Laplacian prior. The left column images are the all-in-focus images derived
from the proposed method. The middle column images are initial depth images
using SMLAP operator after Gaussian interpolation. The right column images
are reconstructed depth images.
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Figure 3.10: Comparison of our reconstructed depth image using traditional lo-
cal matting Laplacian and modified nonlocal matting Laplacian. The first three
rows show the reconstruction results using the synthetic datasets from [56], and
the last row shows the reconstruction result using real scene images from [3].
From left to right: all-in-focus images, cropped images, our reconstructed depth
images using traditional local matting Laplacian, and reconstructed depth im-
ages using modified nonlocal matting Laplacian, respectively.

proposed scheme, both local and nonlocal methods exhibit the ability to deal

with texture-less regions.
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3.5.5 Spatial consistency analysis

As aforementioned, the nonlocal method has better performance local method

in terms of object structure and fine details preservation. On the contrary,

the local method which can be considered as a spatial consistency model could

have better performance in spatial consistency. This experiment is to verify this

prediction on the spatial consistency. Figure 3.11 presents an example of spatial

consistency analysis between the local and nonlocal method. The profiles of the

averaged depth values with respect to the marked regions are plotted in the

bottom image. As shown, the profile marked red in top-left depth image derived

using local matting Laplacian method shows less fluctuation compared with the

blue one in the top-right depth image derived from the proposed method, which

means that the local method exhibits better performance in maintaining spatial

consistency compared to nonlocal method. In other words, the nonlocal method

suffers from texture-copy artifacts much more serious than local method.

3.5.6 Parameter setting and analysis

Table 3.1: Parameter setting used in depth reconstruction process

Parameter r ϵ Cs tRM coefl KNN

Value 1 10−5 1/3 20 0.1 6

Empirical parameters used in the depth reconstruction process are summa-

rized in Table 3.1. The analysis of these parameters are described as follows:

1. r corresponds to the window size for the focus measure computation using

the SMLAP operator. As using a large window size could seriously blur
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Figure 3.11: Spatial consistency analysis between reconstructed images using
traditional local matting Laplacian and modified nonlocal matting Laplacian.
The top-left depth image is the reconstructed depth image using traditional
local matting Laplacian. The top-right depth image is the reconstructed depth
image using proposed method. The bottom plot shows the depth profiles with
respect to marked regions in above depth images.

depth edges, r is set to one for all synthetic datasets and two for the noisy

real scene datasets.

2. ϵ is the weight of the regularization term to derive a numerically stable
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solution. If ϵ is extremely small, our reconstructed depth would be sensi-

tive to image noise. On the contrary, the depth edges could not be well

preserved for a large ϵ.

3. Cs is the scale factor of the RGB values in our feature space. If Cs is

too small, the reconstruction results would be similar to those using local

method. A large Cs value would seriously break the spatial consistency,

thus resulting in inaccurate depth estimation.

4. tRM is the threshold of the reliability measure to determine the unreliable

depth regions. If tRM is too large, it may remove critical data and decrease

the accuracy of depth reconstruction. By contrast, a small value of tRM

would generate noisy and inaccurate depth image.

5. coefl is a constant coefficient of confidence level λ. If coefl is too large, the

reconstructed depth image would be similar to the initial depth image. If

coefl is too small, more texture-copy artifacts would be introduced.

6. KNN is the number of nearest neighbors in our defined feature space to

construct the matting Laplacian matrix. For a small number ofKNN , there

is insufficient information to recover the depth correctly. A large KNN

would produce a dense Laplacian matrix and thus introduce speed and

memory problems. In addition, the nonlocal color smoothness assumption

would not be valid for a large number of nearest neighbors. Note that,

KNN is set to nine for the noisy real scene datasets.
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3.6 Summary

Texture-copy artifacts suffering and depth discontinuities blurring are two main

issues in 3D depth reconstruction. As color image contains rich and useful in-

formation about object structures and details, a color-guided depth reconstruc-

tion method is proposed. As it is hard to avoid texture-copy artifacts using

color-guided method, the purpose of this reconstruction stage changes to effec-

tively preserve object structure and fine details with the ignorance of texture-

copy artifacts. In this dissertation, a depth reconstruction method using mat-

ting Laplacian prior is presented. Experimental results show that the proposed

depth reconstruction utilizing matting Laplacian as a prior can effectively re-

cover depth over texture-less regions. Considering that the nonlocal principle

has drawn significant attention owing to its excellent edge preservation property

in image denoising and image matting, the nonlocal principle is adopted in the

construction of matting Laplacian matrix to preserve object structure and fine

details. Experimental results also demonstrate the effectiveness and superiority

of the proposed nonlocal method compared to the local method.
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Chapter 4

Closed-form MRF-based Depth
Refinement

4.1 Overview

The proposed depth reconstruction algorithm can extract clear depth edges

and preserve fine details owing to the adoption of the nonlocal principle in the

matting Laplacian matrix construction, whereas the method using local matting

Laplacian can provide more spatially consistent and less noisy depth image

because the nonlocal principle breaks the spatial consistency. Additionally, our

results suffer from the texture-copy artifacts caused by the edge inconsistency

between the initial depth image and all-in-focus image. Figure 4.1 illustrates an

example of texture-copy artifacts introduced in depth reconstruction process.

As shown, the estimated depth images are noisy and the texture-copy artifacts

are introduced in the smooth depth regions when the corresponding color image
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regions are highly textured.

In this chapter, we will describe an algorithm for depth image smoothing

and texture-copy artifacts reduction. As edges are critical features in various

depth-based applications such as object segmentation and measurement, an

edge-preserving image denoising algorithm is required to smooth noise while

preserving depth edges and fine details.

Over the decades, a number of researchers have dedicated their efforts in

searching for efficient image denoising algorithms and various image denois-

ing approaches have been developed. Traditional image denoising algorithms

such as the mean filter [59], Gaussian filter [60] and Wiener filter [61] are the

typically used linear local filters owing to their excellent properties in noise

removal and fast computation. However, those linear filters cannot maintain

sharp edges and preserve image details. In the last few years, many nonlinear

filters have been proposed to resolve the issues above. Most of the popular non-

linear denoising methods are based on partial differential equations such as the

anisotropic filter [32, 62, 63] that utilizes the anisotropic diffusion equation to

denoise images. The nonlinear anisotropic filter is highly effective in smoothing

noise while maintaining fine image details across sharp edges. However, it is

implemented in an iterative process in which the iteration number is a criti-

cal parameter for the denoising performance of anisotropic diffusion methods.

A bilateral filter [23, 64] is an alternative nonlinear filter to iterative filters.

Unlike other local filters that consider only the pixels’ geometric closeness, a

bilateral filter enforces both geometric closeness in the spatial domain and gray

level similarity in the denoising operation. He [65] proposed an efficient and
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Figure 4.1: Illustration of texture-copy artifacts caused by structure inconsis-
tency between depth image and all-in-focus image. From left to right: all-in-
focus images, cropped images, initial depth images, and the texture-copy ar-
tifacts in our reconstructed depth images using nonlocal matting Laplacian,
respectively.

effective edge-preserving image smoothing filtering-guided filter, that performs

image denoising by considering the content of a guidance image. Shen et al. in

[41] proposed a normalized cross correlation (NCC) based joint filtering using

mutual structure, which utilizes the common structure between reference and

target images to suppress noise while preserving the edges. In this chapter, a

closed-form MAP-MRF edge-preserving algorithm is proposed to smooth the

noisy depth images and reduce texture-copy artifacts.

4.2 Problem statement

Markov random fields were first introduced in computer vision in [66], and have

proven to be useful for various computer vision problems such as image seg-
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mentation [67], image restoration [66], and stereo vision correspondence [68].

In the context of image denoising, we represent the components of MRFs with

D = [d1, d2, ..., dn]
T and F = [f1, f2, ..., fn]

T , where D and F denote the ob-

served depth image with noise and the denoised depth image, respectively. n is

the total number of pixels in the noisy depth image. Here di and fi denote the

depth values of pixel i, where 1 <= i <= n. Similar with depth reconstruction,

we formulate depth refinement as an optimization problem that maximizes the

posterior probability P (F |D). According to the Bayesian rule, we have

F ∗ = argmax
F

P (D|F )P (F ), (4.1)

The first term P (D|F ) in (4.1) is a likelihood function of observing the data

given a certain hidden state F and can be represented with the sensor noise

model. Here, we assume that the noise can be modeled as additive Gaussian

white noise and only neighboring pixels are statistically dependent. Subse-

quently, the negative logarithmic likelihood function can be expressed as

− ln(P (D|F )) ∝ − ln
( n∏
i=1

exp (−Vi (di, fi))
)

=

n∑
i=1

Vi (di, fi)

(4.2)

where exp (−Vi(di, fi) is the noise model and Vi(di, fi) is the data fidelity term

that penalizes the inconsistency between the pixels of hidden depth image and

observed depth image. Herein, we use squared-distance to define the data fidelity
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term which is defined as

Vi (di, fi) = |fi − di|2. (4.3)

According to the Hammersley-Clifford theorem [69] and our independent

identical distribution assumption, the prior probability of an MRF can be fac-

torized as the product of the summation over all cliques in the neighborhood

system. Hence, we have

− ln(P (F )) ∝ − ln
( n∏
i=1

(
exp
(
−
∑

j∈N(i)

Uij(fi, fj)
)))

=
n∑

i=1

∑
j∈N(i)

Uij (fi, fj),

(4.4)

where N(i) is defined as the four-connected neighborhoods of the element i,

and Uij is the clique potential that is also known as a smoothness term to

enforce the depth spatial consistency in our depth refinement process. Herein,

we formulate our smoothness term in a quadratic form as it is a better prior

for slanted surfaces and can facilitate in deriving our energy function with a

closed-form solution based on using the Laplacian matrix. Here, we have

Uij = wij · |fi − fj |2. (4.5)

The variable wij is denoted as the affinity value between each neighborhood pair

that is utilized to control the degree of smoothness based on local statistical
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information. Herein, wij is defined as

exp(−|di − dj |2

2σ12
) exp(−|i− j|2

2σ22
) exp(−

∑
c∈C

|AIF c
i −AIF c

j |2

|C| × 2σ32
), (4.6)

where σ1, σ2, and σ3 are three user defined constant to balance the contribution

of wij to Uij . C = {R,G,B} represents different channels of the all-in-focus

image and |C| is the number of color channels. Our weight wij consists of three

terms: depth range filter, spatial filter and color range filter. Qualitatively, the

depth term would give a large value if di is close to dj . This term is designed to

avoid incorrect depth prediction owing to the structure inconsistency between

input depth image and all-in-focus image. The effect of the spatial term on the

smoothness penalty Uij would be decreased as the distance between pixels i

and j increases. The color term is designed to make use of consistent edges in

both input depth image and all-in-focus image, and it would give a large value

as the color of AIFi and AIFj is similar. From (4.1), (4.2), and (4.4), our MAP-

MRF based depth refinement is equivalent to minimizing the following energy

function:

E(F ) =

n∑
i=1

(
Vi (di, fi) +

∑
j∈N(i)

Uij (fi, fj)
)
. (4.7)
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4.3 Closed-form solution

With the definitions of the data term and smoothness term in (4.3) and (4.5),

respectively, our final energy function (4.7) can be rewritten as

E(F ) =
n∑

i=1

(
τiVi(di, fi) +

∑
j∈N(i)

Uij(fi, fj)
)

=
n∑

i=1

(
τi · |di−fi|2 +

∑
j∈N(i)

wij · |fi − fj |2
)
.

(4.8)

In the final energy function, a confidence level τ is adopted to balance the

importance between the data and smoothness term, which is defined as

τi = coefm · exp (−σD(i)) , (4.9)

where coefm is a user defined coefficient of confidence level τ ; σD is the nor-

malized variance of the reconstructed depth image. Herein, τ is set inversely

proportional to the depth variance value. Large τ values are assigned for the

pixels with small variances to maintain the spatial consistency; and small τ

values for the noisy pixels.

With the definition of the smoothness term in (4.8), our proposed MRF is

isotropic and we define an undirected weighted graph G = (V,E), in which the

vertices V represent the depth image pixels and the edge E is a set of weighted

edges representing the affinities between the corresponding depth image pixels.
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Subsequently, the adjacent matrix of G is W , whose elements are defined as

Wij =



wij i ̸= j, j ∈ N(i),

0 i ̸= j, j /∈ N(i),

Cw i = j,

(4.10)

where Cw is a positive and small constant indicating the constant edge between

vertex i and itself. Let Dia be an n×n diagonal matrix with the entry Diaii =∑n
j=1Wij . If vertex i is isolated in the graph, Diaii becomes zero, thereby

resulting in a singularity in the adjacent matrix W . Using constant Cw can

help avoid the singularity problem and achieve an accurate and numerically

stable solution. With the construction of our energy function E(F ) and the

corresponding undirected weighted graph G, our proposed MAP-MRF model

yields a closed form solution according to the following theorem.

Theorem 1. Let D= [d1, d2, . . . , dn]
T and F = [f1, f2, . . . , fn]

T . Therefore, the

Dia−1/2(TMDia−1+2LM )−1TMDia−1/2D is the closed form solution for the fol-

lowing energy function:

E(F ) =

n∑
i=1

(
τi · |di−fi|2 +

∑
j∈N(i)

Wij · |fi − fj |2
)
, (4.11)

where TM is a n × n diagonal matrix, in which the element TM (i, i) equals τi,

and LM is the normalized Laplacian matrix of the undirected weighted graph G

constructed above, which can be expressed as
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LM = Dia−1/2(Dia−W )Dia−1/2. (4.12)

Proof. Let R = [r1, r2, ..., rn]
T , where ri =

√
(Diaii) · fi, 1 ≤ i ≤ n, for a set of

medium variables, we have

F = Dia−1/2R. (4.13)

Subsequently, the energy function (4.11) can be rewritten as

E(F ) = E(R) =

n∑
i=1

τi ·
∣∣∣∣ ri√

Diaii
−di

∣∣∣∣2+ n∑
i,j=1

Wij ·

∣∣∣∣∣ ri√
Diaii

− rj√
Diajj

∣∣∣∣∣
2

. (4.14)

A compact matrix form can be expressed as

E(R)=(Dia−1/2R−D)TTM (Dia−1/2R−D)+2(RTLMR), (4.15)

where

(Dia−1/2R−D)TTM (Dia−1/2R−D) =

n∑
i=1

τi ·
∣∣∣∣ ri√

Diaii
− di

∣∣∣∣2, (4.16)

and

2(RTLMR) =
n∑

i,j=1

Wij ·

∣∣∣∣∣ ri√
Diaii

− rj√
Diajj

∣∣∣∣∣
2

. (4.17)

To minimize E(R), we set the first derivative with respect to R to zero, which

yields
∂E(R)

∂R
= 2TMDia−1/2(Dia−1/2R−D) + 4LMR = 0

⇒ (TMDia−1 + 2LM )R = TMDia−1/2D.
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It is noteworthy that (TMDia−1 + 2LM ) is positive semi-definite because LM

is positive semi-definite and Dia is a diagonal matrix. The closed form solution

with respect to the medium variable R can be derived as

R = (TMDia−1 + 2LM )−1TMDia−1/2D. (4.18)

Thus, the optimal solution with respect to F is

F = Dia−1/2R = Dia−1/2(TMDia−1 + 2LM )−1TMDia−1/2D. (4.19)

4.4 Edge preservation

As our Gaussian MRFs tends to over-smooth depth image and blur real depth

edges, additional operations on these edges are needed. By exploiting the fact

that real depth edges often coincide with color edges, we first aim to find the

common edges in both initial depth image and all-in-focus image, and then

subsequently increase confidence level τ values for these edges. Since the edges

in initial depth image are not perfectly consistent with color edges owing to the

noise and edge bleeding problem present in initial depth image, the common

edges herein are detected as the color edges located in dilated edge regions of

initial depth image. The dilation operation is further employed to enhance the

these edges.

Figure 4.2 illustrates some examples of our detected common edges. By
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Figure 4.2: Common edges between all-in-focus image and initial depth image.
From left to right: all-in-focus images, initial depth images, and common edges,
respectively.

taking the pre-estimated edges information into consideration, the real depth

edges be well preserved.

4.5 Texture-copy artifacts suppression

As our algorithm is designed for edge-preserving image denoising, it is still

difficult to suppress texture-copy artifacts especially in the artifacts regions with

strong edges. To suppress these artifacts, our strategy is to detect texture-copy

artifacts and subsequently increase the effect of the smoothness penalty function

Uij over the detected artifacts regions. Typically, the texture-copy artifacts
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Figure 4.3: Texture-copy artifacts detection using mutual structure between
initial depth image and reconstructed depth image. From left to right: initial
depth image, reconstructed depth image, and detected texture-copy artifacts,
respectively.

appear in the smooth depth regions when the corresponding all-in-focus image

regions are highly textured, thus implying that the structure of texture-copy

regions in initial depth image D̃ and our reconstructed depth image D are

inconsistent. In this dissertation, we utilize the mutual structure proposed in

[41] to detect texture-copy artifacts. The structure similarity measure between

corresponding patches in D̃ and D is defined as

S(D̃p, Dp) =
(
σ(D̃p)

2
+ σ(Dp)

2
)(

1− ρ(D̃p, Dp)
2
)2

, (4.20)

where σ(D̃p) and σ(Dp) denote the variances of the patch depth values;
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ρ(D̃p, Dp) is the NCC of the corresponding patch in the initial depth image D̃

and reconstructed depth image D, which is defined as

ρ(D̃p, Dp) =
cov(D̃p, Dp)√
σ(D̃p) + σ(Dp)

, (4.21)

where cov(D̃p, Dp) is the covariance of the patch depth values. When two

patches contain same edges, |ρ(D̃p, Dp)| = 1. Otherwise, |ρ(D̃p, Dp)| is small

when patch structures are different. In texture-copy regions where the edges

appear in the reconstructed depth image but not in the initial depth image,

σ(Dp) is large and σ(D̃p) is small. S(D̃p, Dp) therefore outputs a relatively

large number. On the other hand, when common edges appear in two patches

or when both patches do not contain any significant edges, S(D̃p, Dp) would be

a small value. In the initial depth image, the reliable regions with a large struc-

ture similarity measure and small variance will be detected as the texture-copy

regions, which can be expressed as

TCi =


1 S(i) ≥ tssm&σD̃(i) ≤ tvar &RMi ≤ tRM ,

0 others,

(4.22)

where tssm is the threshold to the structure similarity measure S(D̃,D). The

definitions of tvar and tRM are the same as those used in depth reconstruction

process. The morphological operations are further employed to enhance the

extracted texture-copy regions. Figure 4.3 illustrates some examples of our de-

tected texture-copy regions. with this information, we can effectively suppress
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the texture-copy artifacts by increasing the effect of the smoothness penalty

function Uij , through increasing the σ1 used in depth kernel construction for

all of the marked pixels in TC.

4.6 Experimental results

Our depth refinement algorithm is designed for edge-preserving depth image

denoising and texture-copy artifacts suppression. In this section, we evaluate

the performance of the proposed depth refinement algorithm after the depth

image is reconstructed in Chapter 3. To demonstrate the performance of the

proposed algorithm, five edge-preserving smoothing methods are compared: fast

bilateral solver (FBS) [70], anisotropic diffusion (AD) [32], nonlocal means filter

(NLM) [34], mutual structure for joint filtering (MS) [41] and robust color

guided filtering (RCG) [71].

Figure 4.4 gives some examples of depth refinement results from datasets[56].

As shown, the proposed method can effectively preserve the edges and details

while maintaining spatial consistency. Figs 4.5 and 4.6 present our refined depth

images and results from five edge-preserving smoothing algorithms. FBS is fast

and can preserve object details, but the false edges are enhanced due to the

structure inconsistency between color image and depth image. AD method has

good performance in noise suppression while preserving depth edges; however,

it is difficult to obtain satisfactory result in the texture-copy artifacts regions

with strong edges. The MS and NLM methods have better performance in noise

removing and texture-copy artifacts suppression compared with the FBS, AD,
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Figure 4.4: Refinement results using proposed edge-preserving method. The
left column images are the all-in-focus images. The middle column images are
reconstructed depth images using the proposed reconstruction method. Images
on the right column are refinement results.

77



Figure 4.5: Comparison of depth refinement results using various edge-
preserving image denoising algorithms. From top left to bottom right: input
noisy depth image, and the results by FBS, AD, NLM, MS, RCG, our algo-
rithm, and ground truth, respectively. Bottom parts are color-mapped to clearly
show the better performance of our refinement algorithm.

Figure 4.6: Comparison of depth refinement results using various edge-
preserving image denoising algorithms. From top left to bottom right: input
noisy depth image, and the results by FBS, AD, NLM, MS, RCG, our algo-
rithm, and ground truth, respectively. Bottom parts are color-mapped to clearly
show the better performance of our refinement algorithm.
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and RCG methods, but at the expense of slightly blurring sharp edges. The

RCG method exhibits a comparable performance in preserving edges and bet-

ter performance in texture-copy artifacts suppression compared with FBS and

AD methods. As shown, with the incorporation of edges and mutual structure

information into our formulation, our method achieves the competitive and

better performance in edge preservation and texture-copy artifacts suppression

compared to these methods.

Table 4.1: Parameter setting used in depth refinement process

Parameter σ1 σ2 σ3 tssm coefm

Value 1 0.35 0.1 10−3 0.1

Table 4.1 shows the empirical parameter setting used in the depth refinement

process. The analysis of those parameters are described as follows:

1. σ1 is the parameter controlling the fall-off weight in depth domain. If σ1

is too large, the tolerance for two different depth values to be considered

close enough would be large too, thus implying that the depth edges would

be smoothed.

2. σ2 and σ3 are the parameters controlling the decay rate of the spatial

and color range filter, and adjust the importance of spatial difference and

intensity difference, respectively. Increasing σ2 results in large features

being degraded. Too small a value of σ3 fails to suppress noise, while too

large a value would result in blurring depth discontinuities.

3. tssm is the threshold of structure similarity measure between initial depth

image and reconstructed depth image. If tssm is too small, depth regions
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would be mis-detected as texture-copy artifacts, thus resulting in over-

smoothing. On the contrary, texture-copy artifacts could not be well sup-

pressed if tssm is too large.

4. coefm is a constant coefficient of confidence level τ of the input noisy

depth image. As coefm increases, the effect of τ on data term becomes

stronger, and thus the refined depth image would be more close to the

input noisy depth image.

4.7 Summary

Depth refinement acting as a post processing is commonly used in depth re-

covery tasks. Different with the purpose of general depth refinement methods

that only aim at edge-preserving smoothing, the purpose of depth refinement in

this dissertation needs to take texture-copy artifacts suppression into consider-

ation. The traditional edge-preserving filters such as bilateral filter, anisotropic

fusion and nonlocal means filters are the most methods to suppress noise while

preserving edges. However, it is difficult for these filters to suppress texture-

copy artifacts at the same time. Even worse, the texture-copy artifacts could

be enhanced when the artifacts have large edge gradients. To suppress texture-

copy artifacts, enhance spatial smoothness while preserving edges, a MAP-MRF

based edge-preserving depth refinement algorithm is proposed.

As the proposed method is based on the Gaussian MRF model, it would

over-smooth depth discontinuities if no additional operations are taken. Based

on the fact that real depth edges are generally coincide with color edges, a spe-
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cially designed smoothness weight containing the information of common edges

is proposed to preserve truth depth edges. Similar with the idea to preserve real

depth edges, the strategy of suppressing texture-copy artifacts is firstly to find

texture-copy artifacts regions, and then improve the important ratio of smooth-

ness term in the proposed energy function over the detected artifacts regions.

Typically, the texture-copy artifacts generally appear in the regions with in-

consistent structures between initial depth image and color image. Considering

that the mutual structure based method can effectively find mutual structures

between images, in this dissertation, mutual structure based method is inversely

utilized to detect such texture-copy artifacts regions. Additionally, the proposed

method can obtain an global optimum by utilizing the Laplacian matrix based

on the undirected weighted graph representing the energy function.
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Chapter 5

Evaluation

5.1 Overview

To validate the effectiveness and superiority of the proposed depth recovery

method herein, experiments over synthetic and real scene datasets are con-

ducted. The synthetic image sequences used in our experiments are the same

with those used in depth reconstruction process. To evaluate our proposed al-

gorithm on real scene image sequences, we test the DDFF 12-Scene datasets

[14] for the quantitative comparison. Additionally, more experiments on real

scene image sequences from [72] and [3] are conducted for the qualitative com-

parison. The real scene images are downsampled by a factor of two before our

depth reconstruction to reduce the amount of data. the proposed method is

qualitatively and quantitatively compared with the related approaches.
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5.2 Evaluation metrics

The comparison results of depth recovery are evaluated using mean square error

(MSE) and the structural similarity index measure (SSIM) [73]. The MSE is

used as a integral error criteria between the recovered depth image and ground

truth, which is defined as:

MSE(F,G) =
1

n

n∑
i=1

(fi − gi)
2, (5.1)

where fi and gi are the recovered pixel depth value ground truth value at

position i. n is the pixel number of the all-in-focus image.

The SSIM is used as a metric to measure structural accuracy between re-

covered depth image and ground truth, which is defined as:

SSIM (F,G) = L (F,G)C (F,G)S (F,G) , (5.2)

where 
L (F,G) = 2µFµG+C1

µF
2+µG

2+C1

C (F,G) = 2σF σG+C2

σF
2+σG

2+C2

S (F,G) = σFG+C3
σF σG+C3

. (5.3)

The first term L(F,G) in 5.3 is the luminance comparison function measuring

the difference between the recovered depth image F and ground truth G, in

which µ represents the images’ mean luminance. The second term C(F,G) is the

contrast comparison function measuring contrast difference between F andG, in

which σ denotes the the images’ standard deviation. The third term S(F,G) is
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the structure comparison function measuring the correlation coefficient between

F and G, in which σFG denotes the covariance between F and G.

5.3 Evaluation on synthetic datasets

In this section, the evaluation of the proposed method over synthetic datasetss

is firstly presented. To do this, the comparison between the proposed approach

against the previous state-of-the-art DFF reconstruction algorithms such as

those by Tseng [12], Moeller [3], Javidnia [13], and Hazibras [14] is conducted.

Note that the pretrained DDFFNet-CC3 neural network provided by authors

is utilized for disparity image predictions, whose parameter settings are recom-

mended and reported in [14].

Figure 5.1 illustrates some depth reconstruction results from the synthetic

datasets [56]. As shown, the proposed method is robust, and performs best in

preserving sharp depth edges and fine details while maintaining spatial con-

sistency. Tseng’s method can present more details compared with other meth-

ods, but suffers seriously from the texture-copy artifacts. This is because that

Tseng’s method over relies on the color information owing to its inaccurate

entropy based confidence level calculations. By contrast, our variance based

confidence level calculation considers both the independent pixel and its local

spatial consistency, and this makes our reconstruction method more robust over

texture-less regions. Another issue in Tseng’s method is the edge blurring prob-

lem. It is because the matting Laplacian matrix is constructed only in spatial

domain. In our method, the nonlocal principle is adopted during the construc-
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Figure 5.1: Comparison results of recovered depth images. From left to right:
all-in-focus images, the results by Tseng [12], Moeller [3], Javidnia [13], our
algorithm, and ground truth, respectively.

85



Table 5.1: Quantitative comparison of depth reconstruction for synthetic
datasets [56] in MSE.

Method table greek b.g. s.b. boxes dino town pillows

Nayar[2] 0.120 0.367 0.139 1.537 0.021 0.104 6.852 0.036
Tseng[12] 0.055 0.123 0.101 0.395 0.004 0.012 1.210 0.013
Moeller[3] 0.087 0.186 0.027 0.333 0.005 0.013 0.417 0.006
Javidnia[13] 0.049 0.113 0.015 0.321 0.009 0.015 0.949 0.018
Hazirbas[14] 0.156 1.528 0.406 4.008 0.016 0.133 13.815 0.188
Ours 0.048 0.057 0.007 0.184 0.004 0.006 0.337 0.002

Table 5.2: Quantitative comparison of depth reconstruction for synthetic
datasets [56] in SSIM.

Method table greek b.g. s.b. boxes dino town pillows

Nayar[2] 0.539 0.458 0.373 0.433 0.457 0.537 0.399 0.841
Tseng[12] 0.852 0.874 0.813 0.760 0.732 0.914 0.876 0.938
Moeller[3] 0.822 0.810 0.879 0.816 0.704 0.901 0.894 0.941
Javidnia[13] 0.835 0.866 0.923 0.804 0.627 0.886 0.893 0.921
Hazirbas[14] 0.694 0.440 0.529 0.596 0.550 0.800 0.601 0.540
Ours 0.890 0.913 0.964 0.886 0.774 0.945 0.904 0.973

tion stage of matting Laplacian matrix, and thus can obtain better clustering

especially when consistent edges exist in both depth image and all-in-focus im-

age. Moeller’s method can yield good results in terms of spatial consistency.

However, as it uses a large kernel to generate initial depth image and no addi-

tional information such as color information utilized in the optimization frame-

work, numerous fine details are lost and depth edges are blurred. Even though

Javidnia’s method can preserve high structural accuracy for some cases, it is

less robust to texture-less regions, and suffers much more from texture-copy

artifacts compared to the proposed method. Additionally, to improve the ro-

bustness, all images are downscaled by a factor of three before applying the

PADMM, and thus numerous fine details would be lost for the images with low

86



Figure 5.2: Absolute difference comparison between recovered depth images
derived from the-state-of-the art methods and the proposed method. From top
left to bottom-right: absolute difference between ground truth and depth images
using methods from Nayar[2], Tseng [12], Moeller [3], Javidina [13], Hazirbas
[14], and ours, respectively. Brighter pixel intensities indicate larger differences.

Figure 5.3: Absolute difference comparison between recovered depth images
derived from the-state-of-the art methods and the proposed method. From top
left to bottom-right: absolute difference between ground truth and depth images
using methods from Nayar[2], Tseng [12], Moeller [3], Javidina [13], Hazirbas
[14], and ours, respectively. Brighter pixel intensities indicate larger differences.
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spatial resolution. Hazirbas’s method fails to predict correct depth values, and

can not preserve edges and structural details.

The quantitative comparisons between the proposed method and these re-

lated approaches in terms of the mean square error (MSE) and the structural

similarity index measure (SSIM) [73] are shown in Tables 5.1 and 5.2, respec-

tively. Table 5.1 presents the comparison of the overall error of the recovered

depth image, in which the lower is better. As shown, the proposed method has

the minimum difference in reference depth image compared to the related meth-

ods. Table 5.2 gives the evaluation of structure similarity between the recovered

depth images and ground truth, in which the higher is better. As shown, the

proposed method exhibits the highest structure similarity to the ground truth.

To intuitively demonstrate the performance of the proposed method, a com-

parison of absolute errors between ground truth and recovered images using

related methods are given in Figs 5.2 and 5.3. The darker intensities show lower

difference between ground truth. As shown, the proposed method exhibits bet-

ter performance over texture-less regions, and the recovered depth images are

spatially smoother. Additionally, the recovered depth image derived from the

proposed method show less errors in real depth edges. It is clear that the pro-

posed method performs better than these state-of-the-art approaches in terms

of overall accuracy of depth recovery and the ability to effectively recover the

object structures.

88



Figure 5.4: Comparison of recovered disparity maps. From left to right: all-in-
focus image, the results by Tseng [12], Moeller [3], Javidina [13], Hazirbas [14],
ours and ground truth, respectively. Brighter pixel intensities indicate closer
distances.

5.4 Evaluation on real scene datasets

To demonstrate the effectiveness of our proposed method, additional experi-

ments on real scene datasets are further conducted. The comparison here is

performed on disparity images, which can be achieved by mapping the depth

values from traditional optimization methods to their corresponding disparity

values.

Figure 5.4 illustrates some results from DDFF 12-Scene datasets [14]. As

shown, the proposed method is robust over texture-less regions, and can pre-

serve edges and fine details while maintaining spatial consistency. Moreover, our

approach can effectively suppress texture-copy artifacts compared to Tseng’s
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Table 5.3: Quantitative results of the proposed method for DDFF 12-Scene
datasets [14] in MSE. Metrics are computed on the recovered and ground truth
disparity maps.

Method studentlab kitchen socialcorner office41 seminaroom glassroom

Tseng[12] 5.764e-3 2.293e-3 3.505e-3 5.669e-3 1.743e-3 1.206e-3
Moeller[3] 2.477e-3 2.205e-3 2.967e-3 6.143e-3 2.341e-3 1.177e-3
Javidnia[13] 2.107e-3 2.024e-3 3.028e-3 4.915e-3 2.243e-3 1.227e-3
Hazirbas[14] 1.416e-3 1.828e-3 2.865e-3 3.991e-3 0.630e-3 0.997e-3
Ours 0.947e-3 0.990e-3 1.063e-3 3.096e-3 0.504e-3 0.675e-3

Table 5.4: Quantitative results of the proposed method for DDFF 12-Scene
datasets [14] in SSIM. Metrics are computed on the recovered and ground truth
disparity maps.

Method studentlab kitchen socialcorner office41 seminaroom glassroom

Tseng[12] 0.790 0.925 0.837 0.834 0.787 0.911
Moeller[3] 0.883 0.945 0.792 0.845 0.659 0.898
Javidnia[13] 0.930 0.946 0.897 0.870 0.894 0.923
Hazirbas[14] 0.849 0.938 0.785 0.824 0.699 0.879
Ours 0.933 0.957 0.908 0.861 0.904 0.937

and Javidnia’s methods. In comparison, Hazibras’s method cannot effectively

preserve object structure, even though it can alleviate texture-copy artifacts.

The corresponding quantitative comparisons in terms of MSE and SSIM are

reported in tables 5.3 and 5.4, respectively. Table 5.3 shows the comparison of

the integral error of the recovered depth image, in which the lower is better.

As shown, the proposed method achieves the lowest number compared to the

previous state-of-the-art approaches. Additionally, as shown in Table 5.4, the

proposed method also achieves the best performance in structure similarity mea-

sure compared to other related methods. The comparison results demonstrate

that the proposed method outperforms the previous state-of-the-art algorithms

in terms of robustness and accuracy on real scene datasets for most cases.
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Figure 5.5: Comparison of recovered depth image. From top left to bottom right:
all-in-focus image, the results by Nayar [2], Tseng [12], Moeller [3], Javidina [13],
and ours, respectively.

The qualitative comparisons with the datasets from [72] and [3] are further

carried out to comprehensively evaluate the performance of the proposed algo-

rithm. It is noteworthy that the recovered depth here is relative depth among

objects rather than the physical distance of the object from the camera. The

experimental results of above datasets are shown in Figs. 5.5, 5.6, and 5.7.

As there are only ten images in each datasets [72] used in the experiments, it

is quite difficult for the related methods to derive satisfactory depth images.

Experimental results shown in Figure 5.5 demonstrate the effectiveness and su-

periority of the proposed method even for a focal stack with very few images.

Experimental results shown in Figs 5.6, and 5.7 clearly demonstrate the ca-

pability of the proposed method to recover accurate depth images under both
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Figure 5.6: Comparison of recovered depth image. From top left to bottom
right: all-in-focus image, the results by Tseng [12], Moeller [3], Javidina [13],
Hazirbas [14], and ours, respectively.

Figure 5.7: Comparison of recovered depth image. From top left to bottom
right: all-in-focus image, the results by Tseng [12], Moeller [3], Javidina [13],
Hazirbas [14], and ours, respectively.

indoor and outdoor environments.

5.5 Limitations

Even though our proposed method can significantly increase the accuracy of

depth estimation, it still cannot effectively deal with transparent and reflected
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Figure 5.8: Illustration of depth reconstruction for transparent and reflected sur-
faces. From top left to bottom right: cropped all-in-focus image, initial depth
image, confidence map, our reconstructed depth image, and ground truth, re-
spectively.

surfaces. In such circumstances, inaccurate but reliable depth values in the

initial depth image would be utilized for further depth reconstruction, and

thus decrease the reconstruction accuracy. Figure 5.8 illustrates an example

of this problem. As shown, in the transparent regions marked in green boxes

and reflection regions marked in blue boxes, some incorrect initial depths with

high confidence levels are used in the depth reconstruction, thus resulting in

inaccurate depth estimation. To address these cases, more researches regarding

advanced focus measure operators and reliability measure algorithms should be

performed in the future.
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5.6 Computational performances

All the experiments were performed on a desktop computer with Intel(R)

Core(TM) i7-7700k CPU 4.2GHz and an NVIDIA GeForce GTX Titan X

graphic card. Our method and other comparison algorithms were implemented

in Matlab 2018b except for Moeller’s and Hazirbas’s methods which were im-

plemented in parallel with CUDA. As the Laplacian-based methods require

solving a large linear system, where the Laplacian matrix is derived from color

guidance image, the computational performance of our and Tseng’s methods is

highly-related with the image resolution. Figure 5.9 shows the computational

time of different methods on different datasets. The image resolutions of the

tested datasets are 552× 383, 512× 512, 1080× 1080, and 1920× 1080, respec-

tively. Note that all the real scene images were downsampled by a factor two for

all but Moeller’s and Hazirbas’s methods. As shown, Hazirbas’s deep learning

method has the best computational performance, and it is not much affected

by the image resolution. Moeller’s method is faster and less highly-related to

image resolution compared to the other traditional optimization methods. As

the proposed framework contains two stages and each stage needs to solve such

a large linear system, it is much slower than the other methods although it

has better performance. Nevertheless, the computational time of our method

can be further dramatically reduced by adopting GPU-based matting Laplacian

solution [74] or cell-based framework [12].
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Figure 5.9: Average computational time (in seconds) comparison of different
methods on different datasets.
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Chapter 6

Conclusion

In this dissertation, we presented a robust depth recovery framework to re-

cover 3D depth for a given sequence of multi-focus images. Our proposed depth

recovery framework involved two processes: depth reconstruction and depth re-

finement. In the reconstruction process, we formulated the DFF problem as

MAP estimation problem in the Bayesian network. Under the assumption of

identically independent Gaussian distribution, our likelihood function or data

term can be derived in L2 norm with the pixel-wised confidence measure. The

prior function or smoothness term was designed by including the matting Lapla-

cian matrix which is often used as a prior to transfer the object structure in

the color image to the target image. As it is very difficult to avoid the introduc-

tion of texture-copy artifacts, the global goal of texture-less artifacts reduction

is temporarily neglected. In the reconstruction process, the nonlocal principle

was adopted in the construction process of the matting Laplacian matrix to
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preserve the object structure and fine details as much as possible. With the

adoption of the nonlocal matting Laplacian prior and the effective variance

based confidence level computation, our proposed reconstruction approach is

robust over texture-less regions, and can reconstruct a depth image with clear

edges and fine details. However, as the nonlocal principle destroyed the spatial

consistency, the reconstructed depth image was spatially inconsistent and suf-

fered from the texture-copy artifacts caused by inconsistent structures between

depth image and color image. To suppress noise and texture-copy artifacts, we

then proposed a MAP-MRF based depth refinement algorithm. With the con-

struction of undirected weighted graph representing the energy function, we

utilized the Laplacian matrix corresponding to the graph to derive a closed

form solution. Moreover, the depth edges and fine details can be well preserved,

and the texture-copy artifacts can be effectively suppressed by incorporating

the pre-estimated edges and mutual structure information into our formula-

tion. Experiments over synthetic and real scene datasets demonstrated that the

proposed framework outperformed the previous state-of-the-art methods.

Even though the performance of the proposed approach has been signif-

icantly improved, there still many limitations. As aforementioned in section

limitations, it still cannot effectively deal with transparent and reflected ob-

ject. That is because of the inaccurate reliability measures for unreliable depth

pixels in initial depth image. Those unreliable initial depth values are further

utilized in depth reconstruction process leading inaccurate reconstruction re-

sult. Apparently, the reliability measure by measuring the fit of focus measure

function to Gaussian model is accurate. As the reliability measure is based on
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the focus measure, further researches on effective focus measure operator are

necessary. One possible solution is the two-round focus measure using adaptive

SMLAP for different regions. For the first round, small kernel size 3 × 3 SM-

LAP operator is utilized to generate a initial depth image and reliability map.

In the second round, the summation for each pixel in the reliable KNN neigh-

bors is re-calculated, such that the pixel depth in unreliable regions normally

less textured regions can be recovered by relatively reliable pixel depth.

Even though we took various kinds of operations to suppress texture-copy

artifacts, it still can not be perfectly solved. One possible solution to this is-

sue is the precise segmentation aware depth reconstruction. For one object,

precise structure information is just what we need. On the contrary, the color

information inside the object not only can provide unuseful information, but

possibly introduce the texture-copy artifacts. Once precise object segmentation

is obtained, the object can be assigned with homogeneous color, such that the

texture-copy problem can be fundamentally solved by using our depth recon-

struction approach. Additionally, deep learning based segmentation methods

can be utilized to obtain precise segmentation result. An alternative idea for

texture-copy artifacts reduction is to precisely estimate depth values on all edge

pixels. The remaining works can be done with image inpainting-like approaches.
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