

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

A Flexible Architecture for Optimizing

Distributed Data Processing

Ñ∞ pt0 ò¨ \�T| ⌅\ \ D§Mò

FEBRUARY 2021

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Youngseok Yang

Ph.D. DISSERTATION

A Flexible Architecture for Optimizing

Distributed Data Processing

Ñ∞ pt0 ò¨ \�T| ⌅\ \ D§Mò

FEBRUARY 2021

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Youngseok Yang

Abstract

Optimizing scheduling and communication of distributed data processing for

resource and data characteristics is crucial for achieving high performance. Ex-

isting approaches to such optimizations largely fall into two categories. First,

distributed runtimes provide low-level policy interfaces to apply the optimiza-

tions, but do not ensure the maintenance of correct application semantics and

thus often require significant e↵ort to use. Second, policy interfaces that extend

a high-level application programming model ensure correctness, but do not

provide su�cient fine control.

In this paper we propose a flexible architecture for optimizing distributed

data processing. Our architecture aims to enable composable and reusable opti-

mization policies tailored for various deployment scenarios including harnessing

transient resources, performing geo-distributed data analytics, mitigating data

skew, and handling large on-disk shu✏e. To realize this architecture, we propose

a new approach to build distributed dataflow optimization policies, and a new

approach to harness transient resources in datacenters. Our evaluation results

show that our flexible architecture brings performance improvements on par

with existing specialized runtimes tailored for a specific deployment scenario.

Keywords: Distributed Data Processing Systems, Performance Optimization,

Datacenter Resources

Student Number: 2014-22685

i

Contents

Abstract i

Chapter 1 Introduction 1

Chapter 2 Background 4

2.1 Optimization Policy Interfaces 4

2.2 Transient Resources . 7

Chapter 3 Building Distributed Dataflow Optimization Policies 12

3.1 Overview . 12

3.2 System Design . 16

3.2.1 Intermediate Representation 17

3.2.2 Optimization Passes . 21

3.2.3 Runtime Extensions . 27

3.2.4 New Optimizations . 29

3.3 Implementation . 30

3.4 Experimental Evaluation . 32

3.4.1 Fine Control . 32

3.4.2 Composability . 39

ii

3.4.3 Reusability . 42

3.5 Discussion . 43

3.6 Summary . 43

Chapter 4 Harnessing Transient Resources in Datacenters 45

4.1 Overview . 45

4.2 System Design . 48

4.2.1 Design Overview . 48

4.2.2 Compiler . 53

4.2.3 Runtime . 59

4.3 Implementation . 65

4.4 Experimental Evaluation . 66

4.4.1 Experimental Setup . 66

4.4.2 Eviction Rate . 69

4.4.3 Ratio of Transient to Reserved Containers 75

4.4.4 Scalability . 77

4.5 Discussion . 77

4.6 Summary . 79

Chapter 5 Related Work 81

5.1 Dataflow Optimization Approaches 81

5.2 Optimizing for Transient Resources 83

Chapter 6 Conclusion and Future Directions 85

6.1 Conclusion . 85

6.2 Future Directions . 85

6.2.1 Shared Resources . 85

6.2.2 New Hardware and Architectures 86

iii

Bibliography 89

î} 99

iv

List of Figures

Figure 2.1 Pseudocode of Dryad policies. The Dryad policy interface

provides fine control over distributed scheduling and

communication, but does not ensure correctness. 5

Figure 2.2 Pseudocode of an Optimus policy. The application-level

Optimus policy interface ensures correctness, but pro-

vides coarse-grained control of substituting subqueries. . 7

Figure 2.3 CDFs of transient container lifetimes over di↵erent safety

margins. 9

Figure 3.1 Nemo optimizes scheduling and communication of dis-

tributed data processing. 13

Figure 3.2 A policy composed of the LargeShufflePass and the

TransientResourcePass, and another policy composed

of the LargeShufflePass and the SkewComplieTimePass

are applied on an input IR DAG. 26

Figure 3.3 Nemo runtime extensions (bold) apply optimizations in

a distributed runtime. 28

v

Figure 3.4 JCT for di↵erent cross-site network bandwidths, and

CDF of shu✏e read blocked time of tasks under the high

cross-site network bandwidth heterogeneity. 33

Figure 3.5 JCT and ratio of re-completed tasks to original tasks for

di↵erent mean times to eviction on transient resources. . 34

Figure 3.6 JCT for di↵erent input data sizes, and mean throughput

of scratch disks for maintaining intermediate data when

processing the 2TB input data. 36

Figure 3.7 JCT for di↵erent input data skewness, and CDF of reduce

task completion time when processing the 30%-Top10

skewed data. Each vertical line in the CDF graph denotes

the completion time of the slowest reduce task. 38

Figure 4.1 A Map-Reduce job’s logical(a) and physical DAG repre-

sentation in existing data processing engines, without(b)

and with(c) checkpointing, as well as in Pado (d). We

consider a case where transient containers 1 to 3 are

evicted while running the Reduce operator. The arrows

indicate dependencies of tasks, and red arrows indicate

those of the tasks that must be relaunched upon evictions. 50

Figure 4.2 Compilation results of di↵erent workloads. Operators

with complex dependencies with parent operators are

placed on reserved containers, and all stages finish on

operators placed on reserved containers. 56

Figure 4.3 Pado Runtime . 60

Figure 4.4 Job completion times, and ratio of relaunched tasks to

original tasks in ALS under di↵erent eviction rates . . . 71

vi

Figure 4.5 Job completion times, and ratio of relaunched tasks to

original tasks in MLR under di↵erent eviction rates . . . 73

Figure 4.6 Job completion times, and ratio of relaunched tasks to

original tasks in MR under di↵erent eviction rates 74

Figure 4.7 The job completion times of applications with di↵erent

numbers of reserved containers, in addition to 40 transient

containers under the high eviction rate 76

Figure 4.8 The job completion times of applications on Pado with

di↵erent numbers of a fixed 8 : 1 ratio of transient and

reserved containers under the high eviction rate 77

vii

List of Tables

Table 1.1 Capabilities of the current design of our flexible architec-

ture for optimizing distributed data processing. 2

Table 2.1 Time to di↵erent percentiles of transient container life-

times over di↵erent safety margins. 10

Table 2.2 Collected idle memory from total memory allocated to

LC jobs over di↵erent safety margins. Baseline indicates

collection of all idle memory. 10

Table 3.1 Example IR DAG transformation methods for optimiz-

ing scheduling and communication. Reshaping methods

take as input a utility vertex and additional arguments.

Annotation methods take as input a key/value execution

property. 17

Table 3.2 JCT when using di↵erent combinations of DefaultPass

(DP), GeoDistPass (GDP), SkewCTPass (SKP), Tran-

sientResourcePass (TP), LargeShufflePass (LSP), and

SkewSamplingPass (SSP). 40

viii

Chapter 1

Introduction

It is becoming increasingly important to optimize scheduling and communi-

cation for di↵erent characteristics of resources and data in distributed data

processing. Examples of such characteristics widely discussed in recent liter-

ature are geographically-distributed resources [33, 53, 71, 72], cheap transient

resources [57, 59, 66, 75, 77], disk-based large data shu✏e [47, 56, 80], and skewed

data [37, 40, 41, 55]. Researchers have shown that the existing scheduling and

communication methods, unaware of these characteristics, often su↵er from

substantial performance degradation.

In this paper we propose a flexible architecture for optimizing distributed

data processing. We aim to provide users with capabilities to adapt distributed

data processing to di↵erent resource and data characteristics.

Target users: We target the following types of users. First, we target data

processing application developers who are knowledgeable of their deployment

environments, and wish to fine tune the performance of their applications.

Second, we target cloud Data-as-a-Service (DaaS) [8, 9] developers who manage

1

Number Size (CPU, ..) Priority Autoscaling

Resource O O O X

Datacenter Rack Node Container Core/cache

Placement O O O O X

Intra-stage Inter-stage Inter-job

Pipelining O O X

Key distribution Task time Resource usage

Statistics O O X

Parallelism Cloning Inter-key Intra-key

Partitioning O O O X

Device selection Data selection Eviction policy

Caching O O X

Table 1.1: Capabilities of the current design of our flexible architecture for

optimizing distributed data processing.

the execution of various data processing applications submitted by clients. Third,

we target datacenter operators and site reliability engineers [19] who manage

datacenter resources and applications that run on the resources.

Capabilities: Table 1.1 lists the capabilities of the current design of our

flexible architecture. When acquiring datacenter resources, our architecture

allows specifying the number, the size (e.g., CPU, memory), and also the

priority [70] (e.g., transient, reserved) of resource containers. At the moment we

use a fixed set of resource containers, and do not support autoscaling [8] that

dynamically changes the resource configurations. For operation placement, our

architecture supports placements at the levels of datacenters [33,71,72], racks

and nodes [25, 35], and resource containers [32, 69]. However, the current design

2

does not support core or cache-level placement [34]. In case of operator pipelining,

we support intra-stage [23] (e.g., one-to-one dependency) and inter-stage [35,77]

(e.g., shu✏e dependency) pipelining, but does not support inter-job pipelining [1].

We use runtime statistics such as data key size distribution [35, 37] and task

time distribution [7, 35], but does not make use of actual resource usage [21].

For partitioning, we enable configuring parallelism [7,25,35], cloning [7,35], and

inter-key data partitioning [35,37]. However, our current design does not allow

partitioning intra-key data [8, 21]. For caching, we allow selecting which devices

to use and which data to cache, but does not allow configuring di↵erent eviction

policies [7]. Our architecture can be extended to support the capabilities that

are unsupported at the moment.

To realize this architecture, we propose a new approach to build distributed

dataflow optimization policies, and a new approach to harness transient resources

in datacenters. First, we show how to enable fine control and at the same time

ensure correctness in building new dataflow optimization policies. Second, we

show how to leverage the relationship between computations to reliably run the

computations that are most likely to cause high recomputation costs if evicted

on transient resources. In the rest of the paper, we describe the background, our

two new approaches, related work, and conclusion and future directions.

3

Chapter 2

Background

2.1 Optimization Policy Interfaces

We first discuss in detail the existing runtime policy interfaces and application-

level policy interfaces using concrete code examples. Specifically we describe the

interfaces of Dryad [35] and Optimus [37].

The Dryad policy interface allows for arbitrary modifications to its directed-

acyclic graph (DAG) representation of applications. In a Dryad DAG, a vertex

represents a unit of work performed on a machine and an edge represents a data

transfer from a vertex to another. For example, a map-reduce application can

be represented in Dryad as a number of map vertices fully connected with a

number of reduce vertices. The Dryad runtime coordinates the scheduling and

communication of the vertices on a cluster of machines.

Figure 2.1 shows the pseudocode of two example Dryad policies [10]. Here,

ConnectionManager is a callback-based abstraction that listens to events from

the configured upstream vertices. First, TreeAggregate builds an aggregation

4

c l a s s TreeAggregate implements ConnectionManager {

void onUpstreamVertexEvent (event) {

mapVertexGroups = analyzeLocat ionsAndSizes (event)

agg r ega t eVe r t i c e s = newVert ices (mapVertexGroups)

connect (mapVertexGroups , agg r ega t eVe r t i c e s)

}

}

c l a s s Repar t i t i on implements ConnectionManager {

void onUpstreamVertexEvent (event) {

d e s i r e dPa r t i t i o n s = ana l y z eDa taS t a t i s t i c s (event)

mod i f yPar t i t i onVer t i c e s (d e s i r e dPa r t i t i o n s)

modi fyReduceVert ices (d e s i r e dPa r t i t i o n s)

}

}

Figure 2.1: Pseudocode of Dryad policies. The Dryad policy interface provides

fine control over distributed scheduling and communication, but does not ensure

correctness.

tree with a goal to use network bandwidth resources more e�ciently. Suppose

TreeAggregate listens to the map vertices in a map-reduce application, to

obtain the information on the locations and sizes of map vertex outputs. Using

the information, TreeAggregate groups map vertices, creates intermediate

aggregation vertices, and then connects each map vertex group to an aggregation

vertex. Second, Repartition dynamically distributes data with a goal to handle

data skew. Suppose the map-reduce application additionally has bucketizer

vertices that consume sample output data from the map vertices, and partition

5

vertices that partition the original map vertex outputs prior to transferring the

data to the reduce vertices. Then, Repartition can be used to monitor the

bucketizer vertices, and modify the partition and reduce vertices with the goal

to evenly distribute the map outputs. As shown by these examples, runtime

policies can configure various scheduling and communication methods.

However, the flexibility of runtime interfaces comes at a cost: the policy

developer must exercise care to ensure application correctness when developing,

reusing, and composing di↵erent policies [7,35,37,62]. First, the interface allows

for a bug in TreeAggregate to miss connecting one of the map vertices to an

intermediate aggregation vertex, making the optimized DAG produce partial

results. Second, Repartition can break application semantics when applied on

a random vertex in a di↵erent DAG that does not use bucketizer and partition

vertices. Third, applying both TreeAggregate and Repartition on the same

DAG can lead to conflicting executions that produce incorrect results. Manually

building a combined policy can require a significant e↵ort for complex policies,

such as the DrDynamicAggregateManager in Dryad that consists of 1.3K lines of

C++ code [10]. As a consequence, runtime policies have been mostly hard coded

in runtimes and data processing application compilers such as the DryadLINQ

compiler [37,78], and the Hive compiler [68]. The authors of Optimus also report

that their system-level optimization policies are hard-coded in the DryadLINQ

compiler, maintaining the DAG property and operator semantics for the pre-

defined operators in DryadLINQ [37].

In contrast to runtime interfaces, Optimus provides an application-level policy

interface that ensures correctness, by restricting the interface to substituting

DryadLINQ subqueries. Figure 2.2 shows the pseudocode for optimizing a matrix

multiplication application described in the original Optimus paper [37]. The

code defines two alternative subqueries for multiplying two matrices, and a

6

// Appl i ca t ion code

mulA = defineMatMulSubqueryA (matrixX , matrixY)

mulB = defineMatMulSubqueryB (matrixX , matrixY)

// Po l i cy code

s t a t s = c o l l e c tD a t a S t a t i s t i c s (matrixX , matrixY)

r ew r i t e r . r e g i s t e rA l t e r n a t i v e s (s ta t s , mulA , mulB)

Figure 2.2: Pseudocode of an Optimus policy. The application-level Optimus

policy interface ensures correctness, but provides coarse-grained control of

substituting subqueries.

policy for selecting a subquery to use for the execution. Note that as long as

the two subqueries produce the same results, changing the policy code does not

alter the semantics of the application. However, as this example shows, such

application-level policy interfaces lack fine-grained control over scheduling and

communication like selecting the types of resources to run specific computations

on. The main reason is that application programming models are designed to

hide distributed execution from application developers.

2.2 Transient Resources

In this section, we introduce how transient resources are used in datacenter

environments that we assume, and the behavior of di↵erent data processing

engines in them.

We target datacenters in which resource managers [32, 69,70] manage com-

puting resources such as CPU, memory, network, and disk on a large number of

nodes. The resource manager collects and allocates containers, each of which is

7

a slice of resources of a node, to set up an environment for running heteroge-

neous jobs. Normally, each of the containers is reserved for a job until the job

voluntarily releases it to be collected by the resource manager.

Latency-critical (LC) jobs, which have strict service-level objective (SLO)

latency bounds, use containers with over-provisioned resources to meet the SLOs

at all times, even at load spikes. An example LC job is a user-facing search engine

service that needs to responsively return search query results to its customers

at any time of the day. However, as the average load is much smaller than at

load spikes, a large portion of resources are regularly left unused, making the

datacenter under-utilized [58,70].

To address this problem, resource managers like Borg and Mesos borrow

the regularly unused resources from LC jobs, and use the resources to run

new containers [32, 70]. However, such containers di↵er from the usual reserved

containers which are guaranteed to be available for the job. Once LC jobs require

the resources again, they must be yielded to the original LC jobs to meet their

SLOs. Although resource managers allow some types of resources, like CPUs, to

be throttled in such situations, other types of resources, like memory, have to be

evicted [32, 45, 70]. In this paper, we focus on the eviction aspect and call those

containers vulnerable to evictions as transient containers. We assume all state

in transient containers, including those saved on their local disks, gets destroyed

upon evictions [32].

To obtain transient container lifetimes and their eviction rates in real-world

datacenters, we analyzed a Google datacenter trace of average memory usage

records given in 5-minute intervals [59]. However, as we found 5-minute intervals

overly coarse-grained compared to real-world environments, where resources are

immediately returned to LC tasks as soon as they are needed, we have applied

the B-spline function to acquire memory usage records in a more fine-grained

8

0%

25%

50%

75%

100%

 0 10 20 30 40 50 60

C
D

F
 (

%
)

Lifetime (minutes)

High Eviction(Safety Margin=0.1%)
Medium Eviction(Safety Margin=1%)

Low Eviction(Safety Margin=5%)

Figure 2.3: CDFs of transient container lifetimes over di↵erent safety margins.

1-minute intervals, which is commonly used for curve-fitting of experimental

data [24]. Considering LC jobs as those tagged as the most latency-sensitive and

the highest-priority jobs, we observed the containers of the LC jobs. Assuming

that transient containers run on the unused resources of the LC job containers,

we were able to figure out when the transient containers were evicted, by applying

the technique introduced in Borg using safety margins [70]. Here, we set up

transient containers with the unused memory in each of the LC job containers,

while leaving a portion, the bu↵er memory, untouched to prevent evictions

from negligible LC job fluctuations. The maximum size of the bu↵er memory is

given by (total LC mem ⇥ safety margin), thus the safety margin indicates

the percentage of the memory that we try to leave intact. Under this condition,

once the memory usage of a LC job decreases, the transient container on the

same LC job container is additionally reallocated with the increased unused

memory. On the other hand, if the LC job requires more memory, exceeding

the value of the bu↵er memory, the transient container has to be evicted, as it

indicates resource conflict.

With this assumption, we derived cumulative distribution functions (CDF)

of transient container lifetimes and their eviction rates with three di↵erent

9

Safety Margin 0.1% 1% 5%

10th Percentile 1 min 1 min 1 min

50th Percentile 2 mins 10 mins 20 mins

90th Percentile 19 mins 64 mins 276 mins

Table 2.1: Time to di↵erent percentiles of transient container lifetimes over

di↵erent safety margins.

Safety Margin Baseline 0.1% 1% 5%

Collected Mem 26.0% 25.9% 25.3% 22.7%

Table 2.2: Collected idle memory from total memory allocated to LC jobs over

di↵erent safety margins. Baseline indicates collection of all idle memory.

safety margins, as depicted in Figure 2.3 and Table 2.1. Here, lower safety

margin indicates aggressive resource collection, which leads to higher datacenter

utilization. The 0.1% safety margin indicates that we aggressively use almost all

the available idle resources, consisted of around 25.9% of the memory allocated to

LC jobs as shown in Table 2.2. However, the 0.1% safety margin results in a high

eviction rate, where most transient containers are evicted within half an hour.

This implies that evictions occur much more frequently with transient containers

compared to other environments that previous works assume [66, 75]. Such

environments are mainly spot instances, which are revocable virtual machines

that cloud providers like Amazon Web Services (AWS) provide at a lower

cost compared to regular on-demand instances. Unlike transient containers,

spot instances are usually revoked at an hourly or at a more moderate basis.

Consequently, to e↵ectively use transient containers and increase datacenter

utilization, it is crucial for data processing engines to handle frequent evictions

10

and complete their workloads with minimum delays.

11

Chapter 3

Building Distributed Dataflow
Optimization Policies

3.1 Overview

It is becoming increasingly important to optimize scheduling and communi-

cation for di↵erent characteristics of resources and data in distributed data

processing. Examples of such characteristics widely discussed in recent liter-

ature are geographically-distributed resources [33, 53, 71, 72], cheap transient

resources [57, 59, 66, 75, 77], disk-based large data shu✏e [47, 56, 80], and skewed

data [37, 40, 41, 55]. Researchers have shown that the existing scheduling and

communication methods, unaware of these characteristics, often su↵er from

substantial performance degradation.

Distributed runtimes such as Dryad [35], Tez [62], and the Spark runtime [7]

provide low-level interfaces to plug in computation scheduler and data channel

policies to optimize for such diverse deployment scenarios. These policy inter-

faces have direct access to control messages and data elements, and can apply

12

Nemo

Applications

Optimization Passes Intermediate

Representation

Beam

GeoDistResource

TransientResource

LargeShuffle

DataSkew

…

...

Property Property

Nemo-compatible Runtime

RDD

Extensions

Figure 3.1: Nemo optimizes scheduling and communication of distributed data

processing.

optimizations such as placing computations on specific types of resources and

performing in-memory data shu✏e. Unfortunately, runtime policy developers

must exercise care to ensure that the policies they build and apply maintain

correct application semantics. The main reason is that runtime interfaces are

designed to be general, and allow for arbitrary modifications to scheduling and

communication methods.

On the other hand, policy interfaces integrated with a high-level application

programming model o↵er indirect control over runtime execution. For example,

Optimus [37] integrates with the DryadLINQ programming model to enable

specifying alternative DryadLINQ subqueries. This ensures correct application

semantics as long as the specified subqueries compute the same results, and thus

reduces the e↵ort required to build di↵erent optimization policies. However, such

application-level interfaces do not provide su�cient fine control over distributed

scheduling and communication, because application programming models are

designed to hide distributed execution from application developers.

To overcome the limitations of existing interfaces, we believe it is critical

13

to introduce a new policy interface that provides both fine control for high

performance, and also ensures correct application semantics for ease of use. In

this work we take a middle ground between the existing runtime and application-

level interfaces. We design a policy interface that transforms an intermediate

representation (IR) of applications to express indirect but fine-grained control

over distributed scheduling and communication.

There are three main challenges to designing an optimization framework

that embodies this middle ground approach. First, the framework should de-

fine the IR transformation methods that provide fine control and also ensure

correctness. Second, the framework should enable the development of reusable

and composable user-defined optimization policies that transform the IR. Third,

the framework should apply the transformations of the IR in the distributed

execution of the application.

Figure 3.1 depicts our Nemo optimization framework that addresses the

challenges. Specifically, its IR directed-acyclic graph (DAG), optimization passes,

and runtime extensions address the three challenges, respectively. Nemo inte-

grates with high-level application programming model libraries, and compatible

distributed runtimes.

First, the Nemo IR DAG represents a data processing application with

vertices representing logical operations and edges representing data dependencies.

To ensure that the transformed IR DAG produces the same outputs as the

original IR DAG, we provide two types of transformation methods: reshaping

and annotation. Reshaping methods can insert a set of utility vertices whose

semantics are known to Nemo, such as a vertex that samples data. Annotation

methods set execution properties of each vertex and edge to configure fine-

grained scheduling and communication, such as speculative cloning and data

persistence strategies. Nemo ensures correctness using the information about

14

the communication patterns (e.g., shu✏e) of edges, and the information about

the configured utility vertices and execution properties.

Second, the Nemo optimization pass abstraction enables expressing optimiza-

tions as a function that takes as input an IR DAG and calls its transformation

methods. Because a pass is a simple function, di↵erent combinations of passes

can be applied across di↵erent applications. We show that optimization tech-

niques previously employed in specialized runtimes, such as Iridium [53] and

Pado [77], can be expressed as optimization passes with concise lines of code.

Third, the Nemo runtime extensions integrate with the underlying runtime

to apply the IR DAG transformations. Runtimes typically provide a runtime

DAG abstraction to run computations on a cluster of machines [7, 35,62]. Our

scheduler extension applies various scheduling policies when scheduling the IR

vertices of an IR DAG through a runtime DAG. It also rewrites the runtime

DAG during job execution to apply run-time optimizations. Our data channel

extension applies the optimized data communication within the runtime DAG.

We have implemented Nemo, and also a distributed runtime that is compati-

ble with Nemo. At present, Nemo provides full support for Beam [2] applications

and a subset of Spark RDD [79] applications. Our runtime integrates with

REEF [73] to run on Hadoop YARN [4] and Mesos [32] clusters. We have

evaluated Nemo in a cluster of Amazon EC2 instances using di↵erent optimiza-

tion passes, datasets, and resource environments. Evaluation results show that

each optimization pass brings performance improvements on par with existing

specialized runtimes, and combinations of passes further improve performance

for scenarios with a combination of di↵erent resource and data characteristics.

Nemo is currently an Apache Incubator project [5].

15

3.2 System Design

The goal of the Nemo optimization framework is to support fine control over

distributed execution of data processing applications, and at the same time

maintain correct application semantics. Concretely, given a DAG representation

of a data processing application with deterministic operations and a user-

defined policy P where DAG
0 = P (DAG), Nemo aims to provide the following

properties.

• Correctness: Given the same inputs the optimized DAG
0 should produce

the same outputs as the DAG, even when P is applied while the DAG

is being executed. This ensures that the optimizations maintain correct

application semantics.

• Reusability: The same P should be applicable to di↵erentDAGs. This en-

ables reusing the same policy across di↵erent data processing applications,

although the e↵ects may di↵er between applications.

• Composability: If P and P
0 do not override optimizations specified by

the other policy then enable composing di↵erent policies like P 00 = (P �P 0).

If the policies do have a conflict, then automatically detect it for analysis.

This enables distinct policies that each optimizes for a di↵erent resource

or data characteristic to be incorporated into a single policy.

We show how Nemo combines an intermediate representation (IR) DAG,

optimization passes, and runtime extensions to ensure these properties. First, the

IR DAG provides reshaping and annotation methods for specifying optimizations

(Section 3.2.1). Second, optimization passes define functions that operate on

the IR DAG methods (Section 3.2.2). Third, runtime extensions apply the

optimizations in the underlying runtime (Section 3.2.3).

16

IR DAG Reshaping: irdag.insert()

Relay(f : x ! x), e : V [{v}, E \ {e} [{e.comm(e.src ! v), oneToOne(v ! e.dst)}

Reshuffle(f : x ! x), e : V [{v}, E \ {e} [{e.comm(e.src ! v), shuffle(v ! e.dst)}

Sampling(f : x ! sv.f(x)), sv, rate : V [{v}, E [{e.comm(e.src ! v)|e 2 E ^ e.dst = sv}

Trigger(f : x ! udf(x)), udf, e : V [{v}, E [{oneToOne(e.src ! v)}

(V /E = original vertex/edge set, v = inserted vertex, f = function of v, e.comm = oneToOne/shu✏e/broadcast)

IR Vertex Annotation: v.set()

Parallelism/Integer : sets the number of tasks for executing v

SpeculativeCloning/Thresholds : sets the thresholds for determining and cloning straggler tasks

ResourceSite/Map(Index, Site) : sets the geographical sites of the resources to place tasks on

ResourcePriority/Enum(Transient) : sets the priority of the resources to place tasks on

IR Edge Annotation: e.set()

DataFlow/Enum(Pull, Push) : e.dst is scheduled after e.src finishes, or scheduled concurrently

DataStore/Enum(Memory,Disk) : e.src tasks store output data for e in memory, or disk

NumPartitions/Integer : sets the number of partitions that e.src tasks create for e

PartitionSets/List(Set(Index)) : sets the partitions that each e.dst task fetches for e

Persistence/Enum(Keep,Discard) : sets whether to keep or discard data after e.dst processes e

Table 3.1: Example IR DAG transformation methods for optimizing scheduling

and communication. Reshaping methods take as input a utility vertex and

additional arguments. Annotation methods take as input a key/value execution

property.

3.2.1 Intermediate Representation

The Nemo IR DAG aims to provide the desired DAG representation of an

application. The main challenge in designing the IR DAG is defining the meth-

ods for transforming it. For Nemo to ensure the desired properties, we make

explicit both the intention and the e↵ect of the optimization for each method

invocation. For example, instead of providing a single method to insert arbitrary

computations, we provide multiple higher-level methods such as those specifically

for increasing parallelism, speculative cloning, and sampling. We describe the

IR DAG reshaping and annotation methods that embody this approach, and in

particular how those methods enable ensuring correctness. We then discuss the

types of applications and runtimes supported by our IR DAG design.

17

Transforming an IR DAG

The Nemo IR DAG represents a data processing application with vertices

representing logical operations and edges representing data dependencies. When

executed, an IR vertex is translated into parallel tasks that run on multiple

nodes. An IR edge can be translated into key-partitioned data blocks that

are produced by tasks. The initial IR DAG translated from an application,

such as an RDD [79] and Beam [2] application, typically consists of vertices

containing functions defined by the application, and edges with the information

on communication patterns (one-to-one, shu✏e, broadcast).

Table 3.1 shows example reshaping and annotation methods Nemo provides

to transform the IR DAG. The reshaping methods specify a new utility vertex

to insert into the IR DAG, and Nemo inserts new edges to connect the specified

vertex with the existing vertices in the IR DAG. Table 3.1 specifies four utility

vertices. Relay and Reshuffle simply apply an identity function to forward

data from an upstream vertex to a downstream vertex, connecting with the

downstream vertex with the one-to-one and the shu✏e dependency, respectively.

Sampling vertex applies the same function as an existing vertex, and consumes

the same data that the existing vertex consumes. During the execution, Nemo

schedules only a subset of Sampling tasks according to the given sampling rate.

Trigger vertex applies a user-defined function on intermediate data. When

a Trigger vertex executes and completes, Nemo collects the results of the

user-defined function to generate a message. Nemo then halts the execution of

the job, and uses the message to trigger a corresponding run-time optimization

pass, which we describe in Section 3.2.2. The IR DAG also supports deleting

the inserted utility vertices.

The annotation methods configure scheduling and communication of vertices

18

and edges by annotating specified execution properties. Table 3.1 specifies nine

execution properties. For scheduling, we have execution properties for deciding

how, where, and when to schedule tasks. Parallelism and SpeculativeCloning

configure how many tasks to schedule. ResourceSite and ResourcePriority

specify where to schedule the tasks. DataFlow determines whether or not to

schedule source and destination tasks concurrently. For communication, we

enable configuring the medium to store intermediate data with DataStore, the

persistence method with Persistence, and data partitioning strategies with

NumPartitions and PartitionSets. Combinations of di↵erent execution prop-

erties can express optimizations that can require significant e↵orts to implement

with runtime policy interfaces. For example, we can configure upfront task

cloning with a persistent in-memory data shu✏e that pushes data eagerly from

transient resources to reserved resources, through simply annotating appropri-

ate SpeculativeCloning, ResourcePriority, Persistence, DataStore, and

DataFlow properties on two vertices and a shu✏e edge that connects them. The

IR DAG also supports looking up the execution properties annotated on vertices

and edges.

Ensuring Correctness

The reshaping methods ensure correctness, because Nemo connects the newly

inserted utility vertex with existing vertices correctly. As shown in Table 3.1,

only the outputs of the Relay and Reshuffle vertices are consumed by existing

vertices, and these outputs are equivalent to the data that the existing vertices

originally consumed. The other utility vertices, on the other hand, do not reach

data sinks and thus do not a↵ect the final results that the IR DAG produces.

When a utility vertex is specified to be deleted, Nemo reverts appropriate

changes.

19

The annotation methods ensure correctness through enabling Nemo to exam-

ine the configured execution properties. For each vertex in the IR DAG, Nemo

checks its execution properties and the execution properties of its neighboring

edges and vertices, while also examining the communication patterns of the edges.

This ensure correctness because execution properties do not use and modify

computation semantics [29,36,81] inside each vertex, and also do not have direct

access to control messages and data elements in the runtime. For example, Nemo

checks that the sets in the PartitionSets are disjoint and together contain all

o↵sets for the NumPartitions, to read each partition exactly once. Nemo also

checks that PartitionSets and NumPartitions are set on shu✏e edges, and

that vertices connected with an one-to-one edge have the same Parallelism.

Persistence, for example, is not checked, because discarded intermediate data

can always be recomputed from the source data when needed.

Our transformation methods ensure correctness even when invoked during

the execution of the IR DAG. Because the IR DAG is decoupled from the

underlying runtime, Nemo ensures correctness by controlling when to apply the

transformations of the IR DAG in the runtime. Specifically, we define that a

vertex is being executed when its tasks are being executed, and an edge is being

executed when its source or destination vertex is being executed. First, if the

transformed vertices and edges have not yet been executed, then we apply the

changes immediately, such that the changes are used when they are executed.

Second, if they are being executed, then we delay applying the changes until

they finish execution to ensure correctness. Third, if they have already finished

execution, then we apply the changes immediately, such that the changes are

used when they are re-executed due to reasons such as faults.

20

Supported Applications and Runtimes

The current design of the IR DAG supports data processing applications that

can be represented as a DAG of data-parallel and deterministic operators that

process bounded data. Many real-world applications, such as Beam and RDD

batch applications and also higher-level domain-specific applications like machine

learning and SQL applications, meet this assumption. The current IR DAG

would need to be extended to support other types of applications, such as those

that have cyclic dependencies and process unbounded data [50].

The IR DAG assumes an underlying distributed runtime that supports con-

figuring and applying utility vertices and execution properties. Existing runtimes

can be enhanced to provide full support for the IR DAG optimizations through

introducing additional features. For example, new data channels in addition

to the existing ones (FIFO, File, TCP Pipe) can be introduced in Dryad [35]

to provide support for various combinations of the DataStore, DataFlow, and

Persistence execution properties. Similarly, a feature to dynamically add com-

putations to a running application can be introduced in Tez [62] and the Spark

runtime [7] to apply utility vertices inserted at run time.

3.2.2 Optimization Passes

Nemo optimization passes aim to provide the desired user-defined policy ab-

straction P . A pass is a function that receives an input IR DAG and produces a

transformed IR DAG. We first describe how to develop and compose passes. We

then describe how Nemo applies the given passes on the IR DAG.

21

Developing and Composing Passes

We describe the rationale and the algorithm for several example passes to

demonstrate how to develop and compose new passes. We can write two types

of passes: compile-time and run-time. Compile-time passes take as input only

an IR DAG, and are run prior to job execution. Run-time passes additionally

receive a message produced by a Trigger vertex during job execution.

Geo-distributed data analytics: We aim to cope with the low and vari-

able capacity of WAN links when processing data that are geographically dis-

tributed [33,53,71,72]. To reduce network bottlenecks, we formulate the problem

of placing computations to geographically distributed sites as a linear program

(LP), similar to specialized scheduler extensions like Iridium [53]. Here, we use

bandwidth information and data size estimations. We also use an o↵-the-shelf

linear solver library, since Nemo allows using external libraries when writing a

pass. The pseudocode of this algorithm is as follows.

CompileTimePass GeoDistPass (i rdag) :

s o l u t i o n = solveLP (bwInfo () , s i z eEs t imat e s (i rdag))

f o r v in i rdag . v e r t i c e s :

v . s e t (newResourceSite (s o l u t i o n . get (v)))

Harnessing transient resources: We aim to reduce recomputation costs

when using transient resources that are cheap but frequently evicted [57, 59, 66,

75, 77]. Based on the communication patterns, we identify operations that incur

large recomputation costs and place them on reserved resources. We place the

other operations on transient resources. We also quickly move intermediate data

produced on transient to reserved resources. This applies key scheduling and

communication optimizations employed in specialized runtimes like Pado [77].

The pseudocode of this algorithm is as follows.

22

CompileTimePass Trans ientResourcePass (i rdag) :

f o r v in i rdag . v e r t i c e s . t o p o l o g i c a l l y S o r t e d () :

i f (allOneToOneFromReserved (v . inEdges)

| | existsNonOneToOne (v . inEdges)) :

v . s e t (ResourcePr i o r i ty . Reserved)

e l s e :

v . s e t (ResourcePr i o r i ty . Trans ient)

f o r e in v . inEdges :

i f fromTransientToReserved (e . src , v) :

e . s e t (DataFlow . Push)

Large-scale data shu✏e: We aim to reduce random disk read overheads

that can grow quadratically with data size when shu✏ing data, similar to

specialized shu✏e systems like Sailfish [56] and Ri✏e [80]. We insert a Relay

vertex to specify shu✏ing data in memory as soon as produced and writing

the data as-is to a local disk. We also ensure that the in-memory data are

discarded once transferred, to avoid running into out of memory errors. Following

computations sequentially read the data from the local disk, after the shu✏e

completes. The pseudocode of this algorithm is as follows.

CompileTimePass LargeShu f f l ePass (i rdag) :

f o r e in i rdag . edges . f i l t e r (i s Shu f f l eEdge ()) :

rv = newRelayVertex ()

i rdag . i n s e r t (rv , e)

rv . inEdge . s e t (DataFlow . Push , DataStore .Memory)

rv . inEdge . s e t (Pe r s i s t e n c e . Discard)

rv . outEdge . s e t (DataFlow . Pull , DataStore . Disk)

Mitigating data skew: We aim to assign the same amount of data across

parallel computations to prevent stragglers. We first set the number of partitions

for the data to be shu✏ed. We then insert a Trigger vertex with a function for

23

obtaining the set of data partition sizes. We also ensure that the shu✏e receiver

is executed after the the shu✏e sender and the Trigger vertex complete, at

which point we will have obtained the statistics and optimized the execution of

the shu✏e receiver. The pseudocode of this algorithm is as follows.

CompileTimePass SkewCTPass (i rdag) :

f o r e in i rdag . edges . f i l t e r (i s Shu f f l eEdge ()) :

e . s e t (newNumPartitions (e) , DataFlow . Pul l)

i rdag . i n s e r t (newOptVertex () , s i z eFunct i on () , e)

At run time, when the Trigger vertex completes and makes available the

set of size numbers, we partition the set into subsets such that the sum of the

numbers in the subsets are as equal as possible. We then assign each subset to a

distinct shu✏e receiver task. The pseudocode of this algorithm is as follows.

RunTimePass SkewRTPass (i rdag , message) :

subs e t s = pa r t i t i o n (message)

message . edge . s e t (newPart i t i onSet s (subse t s))

Finally, we can compose multiple passes to build an optimization policy

like the following example. Registering a run-time pass requires specifying a

compile-time pass that inserts Trigger vertices, which produce the same type

of message the run-time pass uses.

po l i c yBu i l d e r . r e g i s t e r (LargeShu f f l ePas s)

po l i c yBu i l d e r . r e g i s t e r (SkewRTPass , SkewCTPass)

po l i c y = po l i c yBu i l d e r . bu i ld ()

Applying Passes

Given an IR DAG and a policy composed of passes, Nemo first applies the

compile-time passes on the IR DAG in the same order as they were registered.

24

The optimized IR DAG output by the last compile-time pass is executed. As the

execution progresses, each Trigger vertex completes execution and produces

a message. For each message, Nemo runs the corresponding run-time pass to

transform the IR DAG. Nemo runs the passes for di↵erent messages serially.

After applying each pass, Nemo checks whether the IR DAG produced by

the pass is correct as described in Section 3.2.1, and also whether the pass

has encountered a conflict with a previous pass. A conflict occurs when a pass

overwrites the value of an execution property set by a previous pass to a di↵erent

value, or deletes a utility vertex inserted by a previous pass. Nemo throws an

error and refuses to execute in case of a check failure after running a compile-

time pass. Upon a check failure of a run-time pass, Nemo just ignores the IR

DAG output by the pass and logs the failure, as stopping an already running

application can be costly.

Figure 3.2 shows how Nemo runs two example policies. Both policies first

apply the LargeShufflePass, which inserts a Relay vertex between V1 and

V3, and annotates E5 and E4. The first policy then applies the TransientRe-

sourcePass, which performs annotations without any conflict with the previous

pass. The second policy applies the SkewCTPass, which inserts a Trigger vertex,

and tries to annotate E5 with the pull DataFlow. However, the SkewCTPass

encounters a conflict as the push DataFlow has already been set for E5 by the

previous LargeShufflePass.

Fundamentally, the conflict in the second policy occurs because the LargeShuf-

flePass tries to shu✏e data eagerly in memory, whereas the SkewCTPass tries

to use the statistics of the data before the downstream computations start to

consume the data. If undetected, this conflict results in a pull-based in-memory

data shu✏e, where the outputs of all V1 tasks are stored in memory before the

Relay tasks start fetching the data. Although this configuration avoids disk

25

one-to-one

shuffle, Discard

Pull, Memory

LargeShufflePass

V1

V3

V2

V4

shuffle broadcast

one-to-one

TransientResourcePass SkewCTPass

Transient

Reserved

Relay
V3

V2

V4

shuffle,

Discard, Push,

Memory broadcast

one-to-one,

Push

V1

one-to-one,

Pull, Disk

V1 V3

V2 V4

broadcast

one-to-one

Opt

Relay

one-to-one,

Pull, Disk

Relay V3

V2

V4

shuffle, Discard

Push, Memory

broadcast

V1

one-to-one,

Pull, Disk

E3E1

E2

E3

E2

E4

E4

E3

E2

E
5

E
6

E5 E4

E
3

E2

one-to-one

E5

Figure 3.2: A policy composed of the LargeShufflePass and the TransientRe-

sourcePass, and another policy composed of the LargeShufflePass and the

SkewComplieTimePass are applied on an input IR DAG.

seek overheads and also handles data skew at the same time, it can cause out of

memory errors for large input data.

Because Nemo detects such conflicts explicitly, we can quickly address the

issue. In this case, we design a new SkewSamplingPass that avoids the conflict

with the LargeShufflePass. This new compile-time pass clones the IR DAG us-

ing Sampling vertices, and first runs the clone to obtain the statistics of sampled

26

data. Our third policy with the LargeShufflePass and the SkewSamplingPass

can be applied together on the IR DAG to optimize for both large data shu✏e

and data skew. However, compared to the SkewCTPass, the SkewSamplingPass

incurs the cost of executing additional vertices and using the statistics of sampled

data rather than the entire data.

Next, we describe how these various transformations of the IR DAG are

reflected in the distributed execution.

3.2.3 Runtime Extensions

We use a Nemo-compatible runtime depicted in Figure 3.3 to describe how the

Nemo runtime extensions apply the IR DAG transformations in the distributed

runtime. Upon job launch, the runtime starts a master process and executor pro-

cesses on user-specified resources. In the master, the NemoScheduler extension

operates on the task DAG abstraction that the runtime provides for scheduling

tasks to executors. Executors spawn a thread to run each scheduled task, and

uses the NemoChannel extension to communicate data between the tasks. In the

rest of the section we describe how these extensions apply optimizations.

First, we set up the initial task DAG using the IR DAG optimized by compile-

time passes (1). Here, we merge neighboring IR vertices into the same tasks as

much as possible to minimize data communication overheads, while considering

communication patterns of the IR edges and related execution properties such

as the Resource properties and the Parallelism property. In case of a Trigger

vertex, we also register a callback handler to collect the results produced by

the corresponding tasks from executors as a message. Upon job start, we select

candidate tasks for scheduling, which are the source tasks and their children

tasks connected with the push DataFlow (2). For each candidate task, we select

candidate executors by comparing the corresponding Resource properties of

27

Master

Executor Executor

Nemo IR DAG

Task DAG

NemoChannel NemoChannel

Callback Handlers

Run-time Passes

Task

Data FlowControl Flow

(2)

(3)

(4) (5) (6)

(7)

(8)

(9)NemoScheduler

(10)

(1)

Task

Figure 3.3: Nemo runtime extensions (bold) apply optimizations in a distributed

runtime.

the task with the information on the executors. We then schedule the task to a

candidate executor with the least number of running tasks (3).

When a task emits a data element, we write it to the corresponding Data-

Store implementation, creating a data block when all data elements for the

channel are written (4). If the corresponding edge is shu✏e, then the block is

partitioned into NumPartitions. When a task reads input data elements, we

look for the locations of the input data blocks, blocking the call when looking

for blocks that are not yet available. We fetch the input data elements from the

local and remote DataStores, while applying PartitionSets for shu✏e edges

(5-6). Once all of the downstream tasks successfully read a block, we decide to

either keep or discard the block based on the Persistence property.

Upon learning about task progress and executor status, we schedule new

tasks, restart tasks to recover from failures and evictions, and clone tasks based

on the SpeculativeCloning property (7-8). When a message is produced for a

Trigger vertex, we postpone scheduling new tasks, invoke the corresponding

run-time pass (9), rewrite the task DAG based on the new IR DAG output by

28

the run-time pass at the correct timing described in Section 3.2.1 (10), and

resume scheduling.

3.2.4 New Optimizations

Nemo enables new and sophisticated optimizations with the following two

techniques. First, Nemo enables new composite optimizations that combine

multiple existing optimizations. Second, Nemo provides a principled approach

to system extension: new utility vertices and execution properties.

To illustrate how Nemo enables new composite optimizations, we compare

the lines of code written to implement some of the optimization techniques

in Dryad [35] and Nemo. First, Nemo requires much fewer lines of code to

implement each optimization technique compared to Dryad. Second, Nemo

allows for composing various techniques while ensuring correctness, reusability,

and composability, as the optimizations are expressed with pre-defined IR

DAG modification methods. In contrast, developers must exercise care when

composing di↵erent optimization techniques in Dryad, as the techniques in

Dryad are expressed with even-driven interfaces that allow for arbitrary runtime

DAG modification.

• Dryad (C++)

– DrDynamicAggregateManager.cpp: 1215 LOC

– DrDynamicBroadcast.cpp: 161 LOC

– DrDynamicDistributor.cpp: 266 LOC

– DrDynamicRangeDistributor.cpp: 98 LOC

– DrPipelineSplitManager.cpp: 218 LOC

• Nemo (Java)

29

– SkewAnnotatingPass.java: 34 LOC

– SkewReshapingPass.java: 47 LOC

– TransientResourcePriorityPass.java: 42 LOC

– TransientResourceDataTransferPass.java: 43 LOC

– LargeShu✏eAnnotatingPass.java: 32 LOC

– LargeShu✏eReshapingPass.java: 23 LOC

– UpfrontCloningPass.java: 26 LOC

Nemo enables introducing new optimizations through adding new utility

vertices and execution properties. First, new utility vertices can be added with

the following guideline: outputs of the newly inserted utility vertex should not

alter the outputs of existing vertices. Second, new execution properties can

be added along with a property-specific correctness checker, and checkers for

the dependencies between the new execution property and existing properties

(i.e, modified vertex and edge, and neighboring vertices and edges). Third,

corresponding runtime extensions can be added in the runtime.

3.3 Implementation

We have implemented Nemo and a distributed runtime that is compatible with

Nemo in around 32K lines of Java code. Our Nemo implementation consists

of the following three components similar to Musketeer [27] and LLVM [42]:

frontend, optimizer, and backend.

The frontend translates applications such as Beam and RDD applications

into an IR DAG (Section 3.2.1). At present, our frontend provides translation

support for all Beam [2] operators, and a subset of RDD [79] operators such as

map, reduce, collect, broadcast, and cache. The main reason for not fully

30

supporting RDDs is that the current iterator implementation used in Nemo

is not readily compatible with the various RDD implementations. In the future

we plan to modify our iterator implementation to address this limitation. The

optimizer applies optimization passes on the IR DAG (Section 3.2.2). The

backend configures the underlying runtime with the optimizer and the runtime

extensions (Section 3.2.3).

Existing Beam applications can run on Nemo by modifying the line importing

the Beam PipelineRunner implementation to our implementation of the runner.

The frontend converts each Beam PTransform to an IR vertex, and PCollection

to an IR edge. The frontend also obtains the information on communication

patterns during the translation. For example, it specifies shu✏e edges for the

incoming PCollections of the GroupByKey PTransforms.

Similar to Beam, existing RDD applications can run on Nemo with simple

modifications to the lines importing the implementations of SparkSession and

SparkContext to our implementations of the classes. Each RDD becomes an

IR edge, and each user-defined function that generates an RDD becomes an IR

vertex. Our frontend also aims to respect all of the user-specified parameters on

RDDs such as parallelism and data caching, by setting the execution properties

on the translated IR DAG accordingly.

Our runtime implementation is built on top of REEF [73], and consists of

master and executor processes similar to the Nemo-compatible runtime described

in Section 3.2.3. A REEF job consists of the driver that obtains containers

from a resource manager, and evaluators that provide runtime environments

on containers. To take advantage of the abstractions provided by REEF, the

runtime master runs as the REEF driver and the runtime executors run as the

REEF evaluators. Through the integration with REEF [73], our runtime runs

on resource managers such as Hadoop YARN [4] and Mesos [32].

31

3.4 Experimental Evaluation

We evaluate Nemo on the following three dimensions. First, we evaluate how

Nemo applies fine control under di↵erent resource and data characteristics.

Second, we evaluate how di↵erent combinations of optimization passes optimize

the same application. Third, we evaluate how the same Nemo policy optimizes

di↵erent applications.

We run data processing applications with di↵erent combinations of following

resource and data characteristics: geographically distributed resources, transient

resources, large-shu✏e data, and skewed data. We run each application five times,

and we report the mean values with error bars showing standard deviations.

We use h1.4xlarge Amazon EC2 instances, each of which provides 16 vCPUs,

64 GiB memory, two 2 TB HDDs, and 10 Gbps network. We use di↵erent

numbers of instances for di↵erent experiments. On each instance, one of the two

disks is used by a Hadoop Distributed File System [4] cluster that we set up on

the instances, and the other is used as a scratch disk for maintaining intermediate

data. Input datasets are stored in HDFS, and fetched by the systems at the

beginning of each job.

3.4.1 Fine Control

In this experiment, we evaluate how Nemo applies fine control under di↵erent

resource and data characteristics. For comparison we run Spark 2.3.0 [7], because

it is an open-source, state-of-the-art system. We also run a specialized runtime

for each deployment scenario. Specifically, we run Iridium [53] for geo-distributed

resources, Pado [77] for transient resources, and Hurricane [21] for data skew.

We examine the results of Beam applications on Nemo and Pado, Spark RDD

applications on Spark and Iridium, and a Hurricane application on Hurricane.

32

 0

 5

 10

 15

 20

Low Medium High

JC
T

 (
m

in
)

(a) Cross−site network bandwidth heterogeneity

Nemo
Spark

Iridium

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 1 2 3 4 5 6

T
as

k
 C

D
F

(b) Shuffle read blocked time (min)

Nemo
Spark

Iridium

Figure 3.4: JCT for di↵erent cross-site network bandwidths, and CDF of shuf-

fle read blocked time of tasks under the high cross-site network bandwidth

heterogeneity.

We confirm that the baseline performance is comparable for Beam and basic

RDD applications on Nemo. We also confirm that the baseline performance is

comparable for Spark and Nemo with the DefaultPass, which configures pull-

based on-disk data shu✏e with locality-aware computation placement similar

to Spark. We observe that the overhead of running the compile-time passes on

Nemo is roughly 200ms. We also measure and report run-time overheads of the

Relay vertex, Trigger vertex, and SkewRTPass in this section.

Geo-Distributed Resources: To set up geo-distributed resources and

heterogeneous cross-site network bandwidths, we use Linux Tra�c Control [12]

to control the network speed between instances, as described in Iridium [53].

Each site is configured with 2Gbps uplink network speed, and a specific downlink

network speed between 25Mbps and 2Gbps. We experiment with Low, Medium,

and High bandwidth heterogeneity with the fastest downlink outperforming the

33

 0

 15

 30

 45

 60

60min 40min 20min

JC
T

 (
m

in
)

(a) Mean time to eviction on transient resources

Nemo
Spark
Pado

 0.01
 0.1

 1
 10

 100

60min 40min 20minR
e−

co
m

p
le

te
 (

%
)

(b) Mean time to eviction on transient resources

Nemo
Spark
Pado

Figure 3.5: JCT and ratio of re-completed tasks to original tasks for di↵erent

mean times to eviction on transient resources.

slowest downlink by 10⇥, 41⇥, and 82⇥. With this, we use 20 EC2 instances as

resources scattered across 20 sites. To evaluate data shu✏e under heterogeneous

network bandwidths, we use a workload that joins two partitions of 373GB

Caida [15] network trace dataset and computes network packet flow statistics.

The job completion time (JCT) of Iridium, Spark, and Nemo optimized with

the GeoDistPass, are shown on Figure 3.4 (a). Spark degrades significantly with

larger bandwidth heterogeneity, since tasks that fetch data through slow network

links become stragglers. In contrast, Iridium and Nemo are stable across di↵erent

network speeds. Figure 3.4 (b) shows that the cumulative distributive function

(CDF) of shu✏e read time has a long tail for Spark compared to Iridium and

Nemo. Iridium and Nemo show comparable performance with similar largest

shu✏e read blocked times, although Iridium shows overall better shu✏e read

blocked times using a more sophisticated linear programming model.

Transient Resources: Based on existing works [66, 75, 77], we classify

34

resources that are safe from eviction as reserved resources and those prone

to eviction as transient resources. We set up 10 EC2 instances for providing

transient resources and 2 instances for reserved resources. When an executor

running on transient resources is evicted, we allow the system to immediately

re-launch a new executor using the transient resources to replace the evicted

executor as described in Pado [77]. To evaluate handling long and complex

DAGs with transient resources, we run an Alternating Least Squares [39] (ALS)

workload, an iterative machine learning recommendation algorithm, on 10GB

Yahoo! Music user ratings data [17] with over 717M ratings of 136K songs given

by 1.8M users. We use 50 ranks and 15 iterations for the parameters. By varying

the mean time to eviction for transient resources, we show how systems deal

with the di↵erent eviction frequencies. The distribution of the time to eviction

is approximated as an exponential distribution, similar to TR-Spark [75].

Figure 3.5 (a) shows the JCT of Pado, Spark and Nemo optimized with

the TransientResourcePass for di↵erent mean times to eviction. With the

40-minute and 20-minute mean time to eviction, Spark is unable to complete the

job even after running for an hour, at which point we stop the job. The main

reason is heavy recomputation of intermediate data across multiple iterations

of the ALS algorithm, which is repeatedly lost in recurring evictions. On the

other hand, Nemo and Pado successfully finish the job in around 20 minutes,

as both systems are optimized to retain a set of selected intermediate data

on reserved resources. Figure 3.5 (b) shows the ratio of re-completed tasks to

original tasks for di↵erent mean times to eviction. It shows that Nemo and

Pado re-complete significantly fewer tasks compared to Spark, leading to a much

shorter JCT. Nemo and Pado show comparable performance although Nemo

re-completes more tasks, because the tasks that both systems re-complete are

executed quickly and do not cause cascading recomputations of parent tasks.

35

 0

 25

 50

 75

 100

Nemo Spark Nemo Spark Nemo Spark

JC
T

 (
m

in
) Map

Reduce

2TB1TB512GB

(a) Input data size

 0

 15

 30

 45

 60

 0 20 40 60 80 100 120

D
is

k
 (

M
B

/s
)

(b) Time (min)

Nemo−write
Nemo−read
Spark−write
Spark−read

Figure 3.6: JCT for di↵erent input data sizes, and mean throughput of scratch

disks for maintaining intermediate data when processing the 2TB input data.

Large-Shu✏e Data: We evaluate how Nemo and Spark handle large shu✏e

operations using 512GB, 1TB, and 2TB data of the Wikimedia pageview statis-

tics [13] from 2014 to 2016, as the datasets provide su�ciently large amount of

real-world data. We use a Map-Reduce application that computes the sum of

pageviews for each Wikimedia project. We choose the ratio of map to reduce

tasks to 5:1, similar to the ratios used in Ri✏e [80] and Sailfish [56], and use 20

EC2 instances to run the workload.

The JCT of Spark and Nemo optimized with the LargeShufflePass are

shown on Figure 3.6 (a). Both show comparable performance for the 512GB

dataset, but Nemo outperforms Spark with larger datasets. To understand the

di↵erence, we measured the mean throughput of the disks used for intermediate

data. Figure 3.6 (b) illustrates the mean disk throughput of scratch disks used

for intermediate data when running the 2TB workload. Here, a spike in the

36

write throughput is followed by a spike in the read throughput, which illustrates

disk writes during the map stage followed by disk reads during the reduce stage

while performing the shu✏e operation. For Spark, the disk read throughput

during the reduce stage is as low as about 10 MB/s, indicating severe disk

seek overheads. In contrast, the throughput is as high as 45 MB/s for Nemo,

as the LargeShufflePass enables sequential read of intermediate data by the

following reduce tasks, which minimizes the disk seek overhead.

To measure the overhead of the Relay vertex inserted by the LargeShuf-

flePass before the reduce operation, we have also run the 2TB workload on

Nemo without the LargeShufflePass. The reduce operation begins 56 seconds

earlier without the LargeShufflePass and the Relay vertex, where 56 seconds

represent 2.05% of the JCT of Nemo with the LargeShufflePass.

Skewed Data: To experiment with di↵erent degrees of data skewness, we

generate synthetic 200GB key-value datasets with two di↵erent key distributions:

Zipf and Top10. For the Zipf distribution, we use parameters 0.8 and 1.0 with 1

million keys [21]. Datasets with Top10 distribution have heaviest 10 keys that

represent 20% and 30% of the total data size. We run a Map-Reduce application

that computes the median of the values per key on 10 EC2 instances. Because

this application is non commutative-associative, for evaluating Hurricane we

use an approximation algorithm similar to Remedian [60] to fully leverage its

task cloning optimizations [21]. The Hurricane application also uses 4MB data

chunks and uses its own storage to handle input and output data, similar to the

available example application code.

Figure 3.7 (a) shows the JCT of Hurricane, Spark, and Nemo optimized

with the SkewCTPass and the SkewRTPass. Performance of Spark degrades

significantly with increasing skewness. Especially, Spark fails to complete the

job with the 1.0 Zipf parameter, due to the load imbalance in reduce tasks

37

 0

 7

 14

 21

 28

0.8−Zipf 1.0−Zipf 20%−Top10 30%−Top10

O
O

M

JC
T

 (
m

in
)

(a) Input data skewness

Nemo
Spark

Hurricane

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 2 4 6 8 10 12 14 16

Nemo

Hurricane

Spark

R
ed

u
ce

 t
as

k
 C

D
F

(b) Time (min)

Nemo
Spark

Hurricane

Figure 3.7: JCT for di↵erent input data skewness, and CDF of reduce task

completion time when processing the 30%-Top10 skewed data. Each vertical

line in the CDF graph denotes the completion time of the slowest reduce task.

with skewed keys which leads to out-of-memory errors. In contrast, both Nemo

and Hurricane handle data skew gracefully. In particular, Nemo achieves high

performance, and at the same computes medians correctly without using an

approximation algorithm.

Figure 3.7 (b) shows the CDF of reduce task completion time when processing

the 30%-Top10 dataset. The CDF for Spark shows that reduce tasks with popular

keys take a significant amount of time to finish compared to other tasks. In

contrast, the slowest task completes much quicker for Hurricane and Nemo. We

have observed short-lived tasks alongside with longer tasks in Hurricane with

its task cloning optimization, and longer tasks with balanced completion times

for Nemo with its data repartitioning optimization.

To measure the overhead of the Trigger vertex inserted by the SkewCTPass,

we also run the 30%-Top10 workload on Nemo without the SkewCTPass and the

38

SkewRTPass. The reduce operation begins 35 seconds earlier without the Trigger

vertex, where 35 seconds represent 5.52% of the JCT of Nemo configured with

the SkewCTPass and the SkewRTPass.

These results for each deployment scenario show that each optimization pass

on Nemo brings performance improvements on par with specialized runtimes

tailored for the specific scenario.

3.4.2 Composability

We now evaluate combinations of di↵erent optimization passes. Table 3.2 sum-

marizes the results.

Skewed Data on Geo-distributed Resources: In this experiment, we

use the same 1.0-Zipf workload for the skew handling experiment in Section 3.4.1,

because the workload showed the largest load imbalance. We use 10 EC2 instances

representing geo-distributed sites with heterogeneous network speed in between

25Mbps to 2Gbps. Here, DP and GDP run into out-of-memory errors due to the

reduce tasks with skewed keys that are requested to process excessively large

portions of data. SKP and GDP+SKP both successfully complete the job with

the skew handling technique in SKP, but GDP+SKP outperforms SKP by also

benefiting from the scheduling optimizations in GDP.

Large Shu✏e on Transient Resources: For this experiment, we use the

same 1TB workload for the large shu✏e experiment in Section 3.4.1, to use

su�ciently large data that incurs disk seek overheads. In this case, we use 10

reserved instances and 10 transient instances with the 20-minute mean time to

eviction setting.

Most notably, DP and LSP fail to complete even after 100 minutes, at which

point we stop the job, and TP runs into out-of-memory errors. We have observed

that heavy recomputation caused by frequent resource eviction significantly slows

39

Skewed data on

Geo-distributed

Large Shu✏e on

Transient

Large Shu✏e

with Skewed

DP: OOM DP: 100m DP: OOM

GDP: OOM TP: OOM LSP: OOM

SKP: 27.2m LSP: 100m SSP: OOM

GDP + SKP: 14.9m TP + LSP: 48.2m LSP + SSP: 31.4m

Table 3.2: JCT when using di↵erent combinations of DefaultPass (DP),

GeoDistPass (GDP), SkewCTPass (SKP), TransientResourcePass (TP),

LargeShufflePass (LSP), and SkewSamplingPass (SSP).

down the DP and LSP cases. We have also found out that the LSP optimization

makes the application much more vulnerable to resource evictions compared to

DP. The main reason is that with LSP, eviction of a single receiving task in the

shu✏e boundary leads to the entire recomputation of the sending tasks of the

shu✏e operation, to completely re-shu✏e the intermediate data in memory. In

contrast, DP does not need to recompute shu✏e sending tasks whose output

data are not evicted and stored in local disks. TP by itself also is not su�cient,

as it leads to out-of-memory errors while pushing large shu✏e data in memory

from transient resources to reserved resources.

TP+LSP is the only case that successfully completes the job by leveraging

both optimizations in TP and LSP. With TP+LSP, the job pushes the shu✏e

data from transient to reserved resources, and also streams them to local disks

on reserved resources that are safe from evictions. This allows TP+LSP to

handle frequent evictions on transient resources, and also to utilize disks for

storing large shu✏e data with minimum disk seek overheads. However, TP+LSP

incurs the overhead of using only half of the resources (transient or reserved) for

each end of the data shu✏e. As a result, the JCT for TP+LSP with transient

40

resources is around twice the JCT for LSP without using transient resources,

which is displayed in Section 3.4.1. Nevertheless, we believe that this overhead

is worthwhile, taking into account that transient resources are much cheaper

than reserved resources from the perspective of datacenter utilization [59,77].

Large Shu✏e with Skewed Data: For this experiment, we generate a

synthetic key-value dataset with a skewed key distribution that is around 1TB

in size, as the datasets used in Section 3.4.1 for skew handling are not su�ciently

large to incur disk seek overheads. This dataset has the distribution where

heaviest 20 keys represent 30% of the total data size. Using this dataset, we

run the same application that we have used for the skewed data experiment in

Section 3.4.1 on 20 EC2 instances.

In this experiment, only SSP+LSP successfully completes the job, whereas

all other cases run into out-of-memory errors. DP and LSP fails to complete

the job, due to particular tasks assigned with excessively large portions of data,

incurring out-of-memory errors. SSP by itself also runs into out-of-memory errors

although it repartitions data across the receiving tasks of the shu✏e boundary.

We have observed that with large data size, the absolute size of the heaviest

keys is significantly larger compared to smaller scale experiments with skewed

data shown in Section 3.4.1. Without the LSP optimization, this problem is

combined with random disk read overheads that degrade the running time of the

shu✏e receiving tasks, leading to out-of-memory errors. In contrast, SSP+LSP

successfully completes the job by leveraging both of the optimizations from SSP

and LSP.

These various results confirm that Nemo can apply combinations of distinct

optimization passes to further improve performance for deployment scenarios

with a combination of di↵erent resource and data characteristics.

41

3.4.3 Reusability

Finally, we evaluate how the same Nemo policy optimizes di↵erent applications.

In addition to di↵erent applications used in prior experiments, we apply the

policies on several ad-hoc BeamSQL [2] TPC-H [16] queries (Q) with di↵erent

scale factors (SF), as they are widely used for benchmarking distributed data

processing systems. Here, 1 SF is approximately 1GB of input data. We specifi-

cally use workloads that handle smaller input and intermediate data compared

to the previous experiments, and thus are much less a↵ected by the issues that

occur in the specific scenarios like disk-seek overheads and resource evictions.

First, using 20 nodes with the LargeShufflePass, we observe 20.8 minute

JCT for SF1000 Q3 that is 25% smaller than the JCT without the optimization,

but no significant performance improvements for SF1000 Q14. We also observe

41.1 minute JCT for SF3000 Q12 that brings 22% performance improvements.

Second, we do not observe meaningful performance improvements for SF100

Q4 and Q13 with the SkewCTPass on 10 nodes, as the dataset is not skewed.

Finally, using 8 transient nodes with the 10-minute expected eviction rate and 2

reserved resources, we apply the combination of the TransientResourcePass

and the LargeShufflePass on SF100 Q4 and Q14. For the respective queries,

we observe JCTs of 8.2 minutes and 3.4 minutes, which are smaller than when

not applying the optimizations by 9% and 15%.

These results as well as the results of di↵erent workloads in previous ex-

periments confirm that the same optimization passes on Nemo can speed up

di↵erent workloads instantly, with varying degrees of e↵ectiveness.

42

3.5 Discussion

Nemo provides a programming interface for building correct, reusable, and

composable optimization policies. We discuss several directions to extend the

interface and further facilitate the development of new policies.

Ensuring resource constraints: Although Nemo provides execution prop-

erties to specify where to place computations and data, Nemo relies on the

runtime to determine the actual resources to acquire. To ensure that the resource

constraints are met in the execution, we can incorporate the information into

the IR DAG on the resource availability and acquisition.

Declaring optimizations ahead of time: To enable compile-time analysis

of run-time pass conflicts and optimizations, we can provide the option to declare

intended optimizations ahead of time. For example, we can receive more explicit

information on the predicates (e.g., is a shu✏e edge) and actions (e.g., store in

memory) that a run-time pass intends to use.

Leveraging historical information: We can enable passes to use informa-

tion on previous executions of the same application, and employ more sophisti-

cated techniques such as machine learning to determine how to transform the IR

DAG. To facilitate this, we can maintain a database that stores the information

of the executed IR DAGs and their performance metrics, and provide an interface

for passes to access the information in the database.

3.6 Summary

This chapter presented Nemo, an optimization framework that provides fine

control over distributed scheduling and communication of data processing appli-

cations, and at the same time ensures correct application semantics. We hope

Nemo serves as a platform for dataflow optimization research and development.

43

Nemo is available at https://nemo.apache.org.

44

Chapter 4

Harnessing Transient Resources in
Datacenters

4.1 Overview

Companies like Amazon, Facebook, Google, and Microsoft are continuously

investing billions of dollars to increase the size and the capability of their

datacenters to keep up with the ever-increasing demand in popular online

services and complex data analytic workloads. Although the total amount of

computing resources are greatly increasing with the investments, a large portion

of resources in datacenters such as CPU and memory are left unused. A major

reason is that latency-critical (LC) jobs, such as user-facing search engine

services, are over-provisioned with excess resources in order to be responsive

even at load spikes. However, the resources are actually left idle at most of the

times [45, 70].

To increase datacenter utilization, researchers have developed runtime re-

source isolation and monitoring mechanisms to run batch jobs, such as data

45

analytic jobs, on the unused idle resources of the LC jobs [45,70,76]. However,

when LC jobs require resources again, the tasks of batch jobs running on these

resources need to be evicted. From this property, we categorize such eviction-

prone resources as transient resources. Although it is most ideal to use transient

resources most aggressively, it leads to frequent evictions with the fluctuation

of LC jobs. Indeed, based on the assumption that transient resources run on

the unused resources of LC jobs, our analysis of a Google datacenter trace [59]

shows that evictions can occur only a few minutes after the batch jobs are newly

allocated with transient resources.

Many distributed data processing engines [25,35,79] have been introduced

to run various data analytics jobs, but they were not designed to handle such

high rates of evictions. Most engines handle evictions through recomputing

from the last available intermediate result of previous computations. However,

such fault-tolerance mechanisms are ine↵ective with transient resources, as

intermediate results are repeatedly lost under frequent evictions, and requires

numerous cascading recomputations to recover the lost data. This notably delays

jobs from completion and causes a great deal of ine�ciency in resource usages.

As a solution, recent works like Flint [66] and TR-Spark [75] focus on using

additional nodes of eviction-free reserved resources as storages to checkpoint

intermediate results. This allows computations to resume the work from the

last checkpointed data. Nonetheless, checkpointing is very expensive for data-

intensive workloads, since checkpointing requires transferring large amounts

of data back and forth, and incurs substantial network and disk overhead. To

alleviate the overhead, such systems introduce various techniques to decide

the optimal amount of checkpointing. They predict eviction costs to selectively

checkpoint where evictions incur high recomputation costs. However, if evic-

tions of transient resources occur frequently, it forces checkpointing to be done

46

repeatedly even with such techniques.

In this work, we step away from such approaches and focus on observing

the job structure and the relationship between the computations of the job.

Generally, data processing engines take an arbitrary DAG (Directed Acyclic

Graph) of computations as its workload, where each vertex represents an op-

erator or an execution, and each edge represents the dependency of data flow.

Instead of checkpointing intermediate results, we focus on observing the DAG

of computations to use the additional reserved resources to selectively run the

computations that are most likely to cause high recomputation costs once evicted.

For example, as many tasks are involved in a shu✏ing edge, a single eviction

of a task can lead to a large number of recomputations of its dependent tasks,

and we choose to run such operators reliably. As a result, our approach reliably

retains corresponding intermediate results e↵ortlessly on reserved resources.

This idea is embodied in a general-purpose data processing engine called Pado.

Pado consists of two main components: the Pado Compiler and Runtime. The

compiler takes input programs and analyzes their derived logical DAGs to select

and place a set of operators that are more likely to cause high recomputation

costs on reserved resources, and the rest on transient resources. Then, the logical

DAG is partitioned into stages based on the placement information, each of

which acts as a unit of execution. Using the DAG of stages, the runtime generates

physical execution plans and schedules the generated tasks across combinations

of reserved and transient resources. During the execution, the outputs of the

tasks placed on transient resources are transferred as soon as they are completed

to the tasks allocated on reserved resources so that they can quickly escape from

the threat of evictions. The runtime also provides several optimizations, such as

task input caching and task output partial aggregation, to reduce the load and

to minimize the amount of additional reserved resources.

47

We have integrated Pado with several big data open source projects, in order

to facilitate real-world deployments. Our implementation supports programs

written with Beam [2], a programming model initially developed by the Google

Dataflow [8] team, and runs on various datacenter resource managers like

Mesos [32] and Hadoop YARN [4] by using the REEF library [73].

We evaluated Pado with several real-world applications on a cluster of Ama-

zon EC2 instances, which we set up to simulate a datacenter environment with

transient resources. We obtained the transient container lifetimes by analyzing a

Google datacenter trace [59]. The results show that under a high rate of evictions,

Pado outperforms Spark 2.0.0 [7] by up to 5.1⇥ and checkpoint-enabled Spark,

which encompasses ideas proposed by Flint [66], by up to 3.8⇥. Using Pado,

datacenters can greatly increase utilization through e↵ectively running batch

jobs using wasted idle resources aggressively collected from datacenters.

4.2 System Design

Pado is our general-purpose distributed data processing engine tailored to

harness transient resources in datacenters. Pado can be largely divided into the

Compiler and the Runtime. The Compiler translates and processes dataflow

programs into a DAG of Pado Stages, each of which is a unit of execution. The

Runtime executes the processed DAG e�ciently under frequent evictions using a

combination of transient containers and a small number of reserved containers.

4.2.1 Design Overview

A plethora of distributed data processing engines [25,35,79] have been introduced

to run batch data analytics jobs. They allow users to write dataflow programs

with high level languages. In general, dataflow programs can be represented as

48

logical DAGs of computations, in which each vertex represents an operator that

processes data, and each edge represents the dependency of data flow between

the operators. Data processing engines transform and run the logical DAGs as

physical DAGs in which each operator is expanded into multiple parallel tasks

to be distributed and run on containers, and each dependency is converted into

a physical data transfer between the corresponding tasks.

In logical DAGs, we define four types of dependencies: (1) one-to-one, (2)

one-to-many, (3) many-to-one, and (4) many-to-many dependency. (1) First,

the one-to-one dependency describes a relation where each of the parent tasks

only has a single child task and vice versa. (2) The one-to-many dependency

describes a relation in which the results of the parent tasks are transferred to

all tasks of the child operator. (3) The many-to-one dependency describes a

relation where the results of the parent tasks are collected in a task of the child

operator. (4) Lastly, the many-to-many dependency describes a relation where

parent tasks and their children tasks are co-related to each other.

Figure 4.1 illustrates the logical and physical DAG representations of a simple

Map-Reduce program in di↵erent data processing engines. We have selected

Map-Reduce as our example workload for the ease of explanation, but this can

be applied to any kind of programs expressed as a DAG of computations. In

our example, the Map operator is expanded into tasks of the upper row, and

the Reduce operator is expanded into tasks of the bottom row, both running

on containers as shown in the figure. We assume that containers can run both

Map and Reduce tasks. Figure 4.1(a) shows the logical DAG representation of

the program, in which the Reduce operator depends on the Map operator with

a many-to-many dependency. Due to the many-to-many dependency, each of

the Reduce tasks needs the outputs of all Map tasks as its input. (b) and (c)

each shows the physical DAG interpretation of the logical DAG in current data

49

T4,5,6

Map Reduce

(a) Logical DAG

T2 T3

Container 1

Transient

Container 2

Transient

Container 3

Transient

Map

Reduce

Container 4

Reserved

T4,5,6

(d) Physical DAG in Pado

Pado: no need for recomputation or checkpointing to recover

T1

T2 T3

T6

(b) Physical DAG without checkpointing

Container 1

Evicted

Container 2

Evicted

Container 3

Evicted

Map

Reduce

Container 4

Not evicted

T4

T7 T8

No checkpoint: recompute 6 tasks (T1-3,T5-7) to recover

T1

T5

T2 T3

T5

(c) Physical DAG with checkpointing

Container 1

Evicted

Container 2

Evicted

Container 3

Evicted

Map

Reduce

Stable Storage

Not evicted

T6

Checkpoint: recompute 3 tasks (T4-6) and checkpoint 3 tasks (T1-3)

T1

T4

Figure 4.1: A Map-Reduce job’s logical(a) and physical DAG representation

in existing data processing engines, without(b) and with(c) checkpointing, as

well as in Pado (d). We consider a case where transient containers 1 to 3 are

evicted while running the Reduce operator. The arrows indicate dependencies of

tasks, and red arrows indicate those of the tasks that must be relaunched upon

evictions.

50

processing engines without and with checkpointing enabled. Lastly, (d) shows

the physical DAG that Pado generates. With this setup, we explore a case where

container 4 is reserved and free from evictions, and containers 1-3 are transient

and evicted at arbitrary time. As an eviction while executing the Map operator

simply results in recomputations of evicted Map tasks, we focus on the e↵ect of

an eviction while executing the Reduce operator in this subsection.

In the case of general data processing engines, illustrated in Figure 4.1(b),

when an eviction occurs, the engines first check whether the outputs of the

parent tasks (1-4) of the evicted tasks (5-7) are available to be reused, and see

which tasks need to be relaunched. Such engines, like MapReduce and Spark,

maintain Map task outputs on local disk, for them to be pulled by the following

Reduce tasks when needed. Therefore, the outputs of the Map tasks 1-3 are

destroyed upon the container eviction, and they need to be recomputed along

with the evicted Reduce tasks 5-7. This requires recomputations of a total of 6

tasks (1-3, 5-7) to recover from the eviction, delaying the job from completion.

For more complex jobs, such as iterative algorithms, the delay is even more

amplified. For example, if tasks 1-3 also had parent tasks that ran on transient

containers, those parent tasks need to be recomputed as well, and the same

applies for their parent tasks recursively. Such chain of cascading recomputations

are called as a critical chain [37,38].

To address the critical chain problem and to provide more fault-tolerance,

data processing engines usually provide techniques to checkpoint intermediate

results in remote stable storages placed on reserved containers. The idea is

to checkpoint the outputs of the Map operator to remote storages to prevent

recomputations of the evicted Map tasks. As shown in our example case (c), we

would only need to recompute 3 tasks (5-7) to recover from the eviction and

complete the job, as the outputs of the evicted Map tasks (1-3) are already

51

checkpointed on the remote stable storages (container 4). However, the problem

of checkpointing is that checkpointing incurs a considerable amount of additional

network and disk I/O costs, which hinder jobs from completions. This overhead

can become much larger depending on the amount of intermediate results that

have to be sent back and forth with remote stable storages. Consequently,

works like Flint [66] and TR-Spark [75] explore methods to checkpoint only

when it is needed, by making predictions about task durations and container

lifetimes to calculate recomputation costs. Nevertheless, recomputation cost

rises under frequent evictions, and checkpointing has to be done frequently

with those engines as well. Indeed, the mentioned works report that under

frequent evictions, jobs can face severe performance degradation even with their

sophisticated checkpointing mechanisms.

We propose a novel solution to overcome such limitations of current data

processing engines, as briefly illustrated in (d). Here, we first compute the Map

tasks on transient containers, and push the mapped data to reserved containers

immediately upon completions, for them to quickly escape the risk of evictions.

As the eviction occurs while performing Reduce tasks, the lost data on transient

containers are already transferred to reserved containers at this point, hence

there is no need for any recomputations or any checkpointing upon the eviction.

This idea can be generalized for DAGs of arbitrary length and complexity. We

observe the job structure and the relationships between the operators to sort out

computations that are more likely to cause higher number of recomputations

upon evictions, like the Reduce tasks in our example, to run them reliably

on reserved containers. This is implemented with a simple algorithm, that

observes and processes the DAG prior to the execution, along with a runtime

specifically tailored for our requirements. With our idea, intermediate results

then can be e↵ortlessly preserved on reserved containers without the overhead

52

of checkpointing or cascading recomputations.

4.2.2 Compiler

The Pado Compiler receives and processes dataflow programs, represented as

logical DAGs, through two major steps. First, the compiler places the operators

in the logical DAG of the given program on transient or reserved containers. The

compiler marks a set of operators that are more likely to cause larger numbers

of recomputations upon evictions to run them reliably on reserved containers

and the rest on transient containers. Next, leveraging the placement information,

it partitions the logical DAG into Pado Stages, each of which serves as a basic

execution unit in Pado. These subpado/graphs/ are later received by the Pado

Runtime to be transformed into physical execution plans and run in distributed

tasks. We describe the compilation process in detail and show how it is applied

to a number of real-world data processing applications.

Operator Placement

Computations and their outputs placed on transient containers are vulnerable

to data loss and recomputations due to container evictions, whereas those on

reserved containers are free from evictions. However, as reserved containers are

consisted of expensive resources that cannot be yielded to any other jobs, we

need to keep the size of reserved containers as small as possible to maximize

datacenter utilization. As a simple solution, the compiler observes the logical

DAG and carefully selects the operators that are most likely to have the highest

recomputation costs once evicted by observing their dependencies.

In the case of a child operator with a many-to-many or a many-to-one

dependency from its parent operator, eviction of a single task can result in

recomputations of multiple tasks of the parent operator, as it requires outputs

53

Algorithm 1 Operator Placement Algorithm

1: Input: Logical DAG dataflow-dag

2: Output: Logical DAG op-placed-dag

3: for op 2 topologicalSort(dataflow-dag) do

4: if op.inEdges 6= ; then . Computational Operator

5: if op.inEdges.anyMatch(m-m or m-o) then

6: op.mark(reserved)

7: else if op.inEdges.allMatch(o-o) and

8: op.inEdges.allFrom(reserved) then

9: op.mark(reserved)

10: else

11: op.mark(transient)

12: end if

13: else if op.inEdges=; then . Source Operator

14: if op.isRead then

15: op.mark(transient)

16: else if op.isCreated then

17: op.mark(reserved)

18: end if

19: end if

20: end for

of multiple parent tasks, similar to Reduce tasks in the Map-Reduce example in

Section 4.2.1. In contrast, in the case of a child operator with a one-to-one or a

one-to-many dependency with its parent operator, eviction of a single task only

results in a recomputation of a single additional task of the parent operator, as

it only requires the output of its single parent task.

Based on this simple intuition, the compiler places operators with complex

dependencies with parent operators on reserved containers, and the rest on

transient containers, while being aware of data locality. The placement algorithm

54

is illustrated in Algorithm 1. The semantics of algorithms are explained in

parenthesis throughout the section.

First of all, we sort the DAG in a topological order and observe each operator.

As described in the algorithm, each operator is placed by the following policy:

• Operators with any (anyMatch) incoming many-to-many (m-m) or many-

to-one (m-o) dependencies from parent operators are placed on reserved

containers. This prevents such tasks from being evicted and prohibits

multiple recomputations of parent tasks.

• Operators with all (allMatch) incoming edges that have one-to-one (o-

o) dependency from parent operators and that all come from (allFrom)

operators placed on reserved containers are also placed on reserved con-

tainers. This lets us exploit data locality on reserved containers.

• All operators that do not fall under the previous two conditions are placed

on transient containers. This allows us to aggressively utilize transient

containers where the risk of cascading recomputations are not as large.

Source operators, which do not have any incoming edges, are handled di↵er-

ently. Those that read their input from a storage, such as a distributed filesystem

or a disk (isRead), are placed on transient containers to load large amounts of

input data using many containers. On the other hand, those that newly create

their data in memory (isCreated) are placed on reserved containers as the

relatively lightweight created data can be kept on a small number of reserved

containers. Our algorithm can be applied to a logical DAG with any length and

complexity, and we can get a logical DAG in which every operator is marked to

run on either a transient or a reserved container as a result.

55

Map Reduce

Reserved

Containers

One-to-One

Dependency

Read
Training

Data

Compute
Gradient

Compute
2nd Model

Aggregate
Gradients

Create
1st

Model
....

(a) Map-Reduce (b) Multinomial Logistic Regression (c) Alternating Least Squares

One-to-Many

Dependency

Many-to-Many

Dependency

Aggregate
User Data

Aggregate
Item Data

Compute
1st User
Factor

Aggregate
1st User
Factor

Compute
1st Item
Factor

Compute
2nd Item

Factor
....

Read

Transient

Containers

Stage a-1
Stage b-1 Stage b-2 Stage b-3 Stage c-1

Stage c-2
Stage c-3

Stage c-4

Read

Many-to-One

Dependency

Figure 4.2: Compilation results of di↵erent workloads. Operators with complex

dependencies with parent operators are placed on reserved containers, and all

stages finish on operators placed on reserved containers.

Partitioning

To facilitate the execution and to easily keep track of the job progress, the

compiler partitions the marked logical DAG into subpado/graphs/ called Pado

Stages, each of which acts as a basic unit of execution. The idea of partitioning

is also widely used by existing data processing engines, as it simplifies the

implementations of task execution and fault tolerance mechanisms. Nevertheless,

unlike the stages in general data processing engines, which are partitioned in

the shu✏e boundaries, Pado partitions stages based on the operator placement

information that we have previously discussed.

The algorithm traverses the logical DAG in a topological order and creates

a new stage at each of the operators placed on reserved containers or without

any outgoing edges. At each of such operators, its parent operators placed on

transient containers are recursively added to the stage. If the parent operator

is placed on reserved containers, this indicates that it belongs to a previously

created stage. Algorithm 2 shows how a DAG of Pado Stages is generated.

As the result of the partitioning algorithm, computations of a stage start on

transient containers, if any exists, and finish on reserved containers, unless the

56

Algorithm 2 Logical DAG Partitioning Algorithm

1: Input: Logical DAG op-placed-dag

2: Output: DAG of Pado Stages stages

3: for op 2 topologicalSort(op-placed-dag) do

4: if op.isMarked(reserved) or op.outEdges=; then

5: currStage := stages.newStage()

6: recursiveAdd(currStage, op)

7: end if

8: end for

9:

10: function recursiveAdd(currStage, op)

11: currStage.add(op)

12: for all parentOp 2 op.inEdges do

13: if parentOp.isMarked(transient) then

14: recursiveAdd(currStage, parentOp)

15: else if parentOp.isMarked(reserved) then

16: parentOp.stage.addChild(currStage)

17: end if

18: end for

19: end function

DAG ends on a transient container. Also, as stages finish on reserved containers

or at the end of the DAG, it ensures that all stage outputs are reliably conserved

on reserved containers or written to sink, minimizing the risk of data loss. With

this characteristic, following children stages can steadily fetch the intermediate

results stored on reserved containers. This enables us to simply relaunch the

evicted tasks of the stage that is running at the time of evictions, without having

to recompute previous parent stages.

57

Application on Di↵erent Workloads

We use three real-world example workloads to show how our algorithms can be

applied on di↵erent cases. We use Figure 4.2 to visualize each of the examples.

Map-Reduce: Map-Reduce is used for various large-scale Extract-Transform-

Load (ETL) types of applications. The compilation result is illustrated in Fig-

ure 4.2(a). Following the placement algorithm 1, the Read operator and the

following Map operator are placed on transient containers. Then, the next opera-

tor is placed on reserved containers, as it has a many-to-many incoming edge.

For partitioning, the algorithm finds the Reduce operator on reserved containers

while traversing the logical DAG, and adds up the in-edges placed on transient

containers recursively to Stage a-1.

Multinomial Logistic Regression: Multinomial Logistic Regression is

a machine learning application for classifying inputs, like classifying tumors

as malignant or benign and ad clicks as profitable or not [31]. Such iterative

workloads compute gradients to update the regression model, which is used

to classify results and predict outcomes for arbitrary inputs. Its compilation

result is illustrated in Figure 4.2(b). As illustrated, Aggregate Gradients has

a many-to-one incoming edge, and Compute 2nd Model only has one-to-one

relations from operators on reserved containers, thus both are placed on reserved

containers. For source operators, Create 1st Model newly creates its data and

hence is placed on reserved containers, and Read Training Data reads its data

from a source, thus is placed on transient containers. The rest are placed on

transient containers following the algorithm. As a result of partitioning, we can

observe that there are three stages for the three operators on reserved containers.

Alternating Least Squares: Alternating Least Squares is another machine

learning application used for recommendation services, such as for shopping or

58

movie recommendation sites [39]. It alternates its computation and aggregation

between user and item factors, and its compilation result is illustrated in

Figure 4.2(c). The Read operator is placed on transient containers, then operators

with many-to-many in-edges are placed on reserved containers. Compute 1st

Item Factor operator only has a single one-to-one incoming edge from reserved

containers and is placed on reserved containers to ensure data locality. The

rest of the operators are placed on transient containers. By the partitioning

algorithm, operators placed on transient containers are recursively added by the

four operators on reserved containers.

Now, we describe how the Pado Runtime actually executes the DAGs of

Pado Stages.

4.2.3 Runtime

The Pado Runtime receives and e�ciently executes the DAG of Pado Stages with

several techniques. As illustrated in Figure 4.3, the runtime consists of the Pado

master that orchestrates the distributed workload, and multiple Pado executors

that carry out the actual execution. For every submission of a dataflow program,

a master is launched by the resource manager that manages computing resources

of the cluster. Then the container manager in the master obtains a number of

transient and reserved containers from the resource manager and launches them

as Pado executors. The execution plan generator generates execution plans from

the physical DAG of tasks, in which each operator of the stages is expanded into

multiple parallel tasks, and each of the edges is translated into physical data

transfers between the tasks. The task scheduler in the master then schedules and

launches tasks of the generated execution plan in the Pado executors by each

of the partitioned stages. Here, unlike existent runtimes that assume reserved

containers, tasks are scheduled across a combination of reserved and transient

59

Pool of Reserved Resources

Pool of Transient Resources

Master

Compiler

Dataflow Program Executor

Task Scheduler

Resource Manager

Executor

Executor

ExecutorContainer Manager

….

….

Execution Plan Generator

Figure 4.3: Pado Runtime

containers. Finally, the scheduled tasks are executed in multiple threads of

the executors and their intermediate results are shu✏ed across executors and

pushed into reserved containers to quickly escape the threat of evictions. In

the meanwhile, the runtime e�ciently handles evictions, and provides several

optimizations to minimize the load on the small number of reserved containers.

We explain each of the components of Pado Runtime in more detail throughout

the rest of the section.

Container Manager

The container manager in the master interacts with the resource manager to

obtain, classify, and manage transient and reserved containers. It obtains a

user-configured number of reserved and transient containers from the resource

manager and launches executors on them. We call the executors running on

transient containers as transient executors, and those on reserved containers

as reserved executors. The container manager keeps track of the executors on

di↵erent types of containers and notifies the task scheduler whenever a new

executor comes online, so that the executor can be utilized. It also delivers

60

container eviction notifications from the resource manager to the task scheduler

to handle them accordingly.

Execution Plan Generator

The execution plan generator converts the DAG of Pado Stages created by the

compiler into a physical DAG of tasks. For each stage, neighboring operators

placed on identical types of containers are fused into a single operator to

exploit data locality. For example, a chain of Map operators placed on transient

containers are fused as a single Map operator. Such operators are expanded into a

number of multiple parallel tasks, which is configured by the user or determined

by the number of input data partitions. Then, edges between the operators

are converted into physical data transfers between the tasks. For example, a

many-to-many dependency can be converted into a hash-partitioned data shu✏e.

The tasks of the initial operators of each stage fetch data from reserved executors

or storages. They can then process the data and push their outputs to their

children operators. At the final operator of each stage, the outputs are preserved

on reserved executors, and they can be later pulled by the following children

stages.

Task Scheduler

The task scheduler in the master schedules and distributes tasks in the generated

execution plan to reserved and transient executors. The DAG of tasks is executed

stage-by-stage in a topological order. For each stage, the task scheduler first

schedules and sets up the tasks placed on reserved executors, so that they can

be prepared to receive task outputs pushed from transient executors. Once

they are set up, the tasks placed on transient executors are scheduled and run.

Here, each of the executors is allocated with task slots, the size of which can be

61

configured by the user. With a pluggable scheduling policy, the user can schedule

each task on a particular executor with an available task slot. By default, the

policy schedules tasks in a round-robin manner, while utilizing data locality

information as much as possible. The policy first tries to pick an executor with

the input data of the task cached, which we will discuss further in Section 4.2.3.

If not applicable, it picks an available executor in a round-robin manner, and

waits until a task slot becomes available if none of the executors are available.

Executor

Each executor has a user-configured number of threads for executing scheduled

tasks, and thus can execute multiple tasks in parallel on separate threads. When

a task on a transient executor finishes execution, it immediately notifies the

master for the task scheduler to schedule a new task to the executor, without

having to wait for the task output to be sent. In the meanwhile, on a separate

thread, the task’s output is partitioned and pushed to reserved executors that

are dependent on the task. The tasks scheduled on reserved executors receive

and process it, and finally preserve their outputs on its local disk for their

following children stages.

Eviction Tolerance

Transient executors are expected to be frequently evicted during execution, which

raises the following issues. First, task outputs can be partially pushed to only

some of the reserved executors. To address this issue, transient executors send

task output commit messages to the destination reserved executors through the

master to acknowledge that all outputs are sent to them. Only after receiving the

commit messages, the tasks on the reserved executors can process the outputs.

This ensures that the outputs are processed exactly once. Second, we have

62

to determine the tasks that need to be re-executed to recover lost data. As

discussed previously, an eviction of a task of a particular stage never leads

to recomputations of the tasks of its parent stages. Thus, the tasks of the

evicted stage can be rescheduled independently and immediately upon evictions.

Exploiting this property, the task scheduler reschedules only the tasks that were

scheduled in the evicted executors, whose outputs were not transferred and

committed to their destinations.

Fault Tolerance

Any container can fail due to various reasons such as hardware failures, which

are very rare compared to container evictions. In case of transient executor

failures, the runtime can simply use the eviction tolerance mechanisms we have

just described. However, in case of reserved executor or master failures upon

machine faults, the runtime needs to handle them di↵erently. First, failures of

reserved executors result in a loss of the intermediate results that were preserved

on their local disk. The runtime handles this by pausing the currently executing

stage, and observing its parent stages to recompute those that are necessary.

Specifically, it observes the parent stages in a topological order to identify stages

whose intermediate results are unavailable, to relaunch the corresponding tasks.

Second, failure of the master results in a loss of the execution progress record,

which includes the record of finished stages and tasks. This can be resolved

by periodically replicating the progress metadata. Then, a new master can be

launched to resume from the last available progress information upon machine

failures.

63

Optimizations

Pado tries to keep the number of additional reserved containers as small as

possible, since reserved containers are expensive as they cannot be yielded

for other jobs. However, the small number of reserved executors and their

limited computational resources can become a bottleneck in job executions,

if they cannot handle the load that they receive. To mitigate this potential

bottleneck issue, the runtime provides optimizations to reduce the load on

reserved executors.

Task input caching: Tasks of operators specified by the user can cache

their input data in their executor memory once the data becomes available.

When the cache memory space gets full, evictions occur by the LRU policy.

Moreover, as mentioned earlier, the runtime provides the cache-aware scheduling

policy that distributes tasks on specific executors, in which the input data are

cached. This lets tasks scheduled on transient executors to read the cached data

instead of incurring data transfer from the reserved executors that they depend

on or the storage that it reads from. For example, the transient tasks of the

Compute Gradient operator in Figure 4.2(b) takes the latest model residing on

reserved executors as their input. Without caching, the reserved executors need

to send the model for every task of the operator. However, with caching, it only

needs to be sent once to the executors that the tasks are allocated to.

Task output partial aggregation: Task outputs can be partially aggre-

gated if the aggregation logic is commutative and associative [25]. Exploiting

this property, on Pado, partial aggregation occurs on the outputs of the tasks

allocated on the same transient executors and on the pushed data that arrive

on identical reserved executors. This optimization reduces the amount of data

that reserved executors receive and maintain. For example, the Aggregate Gra-

64

dients operator in Figure 4.2(b) computes the sum of gradients, each of which

is a vector. With partial aggregation, the number of vectors reserved executors

receive is reduced, as multiple vectors computed on transient executors can be

partially aggregated into a single vector before getting sent. Moreover, reserved

executors only need to maintain a single vector by partially aggregating it with

vectors getting pushed to them on the fly. A downside of aggregation is that

data stay on transient executor for a longer time before getting sent, which

increases the risk of evictions. To solve this issue, Pado can configure an upper

limit for the time and the number of aggregated tasks, so that data escapes

once it reaches a certain point.

4.3 Implementation

We have implemented Pado with around 7,000 lines of code in Java. We have

integrated our implementation with big data open source projects to facilitate

real-world deployments, and minimize boilerplate code.

First, our implementation can run dataflow programs written with Beam [2],

an open source programming model also supported by other data processing

engines like Google Cloud Dataflow [8], Flink [3], and Spark [7]. Beam pro-

grams are represented as logical DAGs of Transforms, which are operators for

transforming one or more distributed data sets. Example Transforms are ParDo

(Parallel-Do), which performs a parallel operation on each of input elements, and

Combine, which groups all input elements by key. Given a Beam program, our

implementation first identifies the data dependency type (e.g., many-to-many) of

edges between Transforms and applies the compilation algorithms as described

in Section 4.2.2. During the process, user-defined functions and output serializers

for each Transform are extracted and saved as a part of a stage to be used by

65

the runtime.

Second, our implementation can run on di↵erent resource managers like

Mesos [32] and Hadoop YARN [4] using REEF [6,73], an open source library

for developing portable systems on di↵erent resource managers. In REEF, a

job consists of a Driver, which interacts with a resource manager to obtain

and manage containers, and multiple Evaluators, each of which is a process

running on a container managed by the Driver. Thus, in our implementation,

Pado master runs as the Driver, and Pado executors run as the Evaluators.

Using REEF, we were able to reduce the boilerplate code that would otherwise

be required to implement the low-level resource manager protocols, and to focus

on developing the core runtime logic described in Section 4.2.3.

4.4 Experimental Evaluation

We evaluate Pado with three di↵erent experiments to answer the following

questions:

• How Pado e�ciently handles frequent evictions while aggressively collecting

idle resources.

• How Pado performs with di↵erent ratios of transient to reserved containers.

• How Pado scales with more numbers of a fixed ratio of transient and

reserved containers.

4.4.1 Experimental Setup

We describe the cluster environment, the data processing engines that we

compare, and the workloads that we run on the engines for the experiments.

66

Cluster Environment

We set up a YARN cluster on AWS EC2 instances to simulate a datacenter

environment. Each of the instances is used to run a transient or a reserved

container. We use i2.xlarge instances (4 virtual cores, 30.5GB memory, 800GB

local SSD) for reserved containers, and m3.xlarge instances (4 virtual cores,

15GB memory, double 40GB local SSDs) for transient containers. We chose

instances with fast and large local SSDs to provide fast checkpointing and other

disk operations.

Under our environment, reserved containers are never evicted, meaning that

a job is able to use them until it voluntarily lets them go. On the other hand,

transient containers are evicted according to di↵erent lifetime CDFs in Figure 2.3

that we acquired from analyzing the Google cluster trace. As we assume that

each job in our experiments uses a small portion of total resources of the cluster,

whenever an eviction occurs on a transient container, we immediately provide a

new transient container with a new container lifetime.

Data Processing Engines

The specifications of the data processing engines we evaluate in this cluster are

as follows:

Spark: Spark 2.0.0 that runs executors on both transient and reserved

containers.

Spark-checkpoint: Our modified checkpointing-enabled version of Spark

2.0.0. We modified the Spark internal task scheduler and shu✏e manager to

implement task-level asynchronous checkpointing, in which compressed map

outputs, preserved on local disks, are checkpointed by separate threads. Based

on the checkpointing policy introduced in Flint [66], Spark-checkpoint selec-

67

tively checkpoints intermediate data. As mentioned, works like Flint usually

assume spot instances which are evicted on an hourly or daily basis, whereas

we assume transient containers which get evicted on a minutewise basis. With

this assumption and as data shu✏e boundaries are treated as an important

point to checkpoint due to the high recomputation cost, we have implemented

Spark-checkpoint to checkpoint on each shu✏e boundary. Spark-checkpoint runs

executors on transient containers and uses reserved containers to run a non-

replicated GlusterFS [11] cluster as stable storages for checkpointing. We also

observed similar trends of experiment results using a non-replicated HDFS [4]

cluster as stable storages.

Pado: Our Pado implementation that runs executors on both transient and

reserved containers.

Workloads

On the engines presented above, we run three data analytics applications:

Alternating Least Squares (ALS), Multinomial Logistic Regression (MLR), and

Map-Reduce (MR). For Spark and Spark-checkpoint, we use MLlib [14] programs

for ALS and MLR, and implement MR using Spark’s programming API. For

Pado, we implement Beam programs with the DAGs as illustrated in Figure 4.2.

Input data are stored on AWS S3, and read by engines upon launching the job.

The workloads for the applications are as shown below:

ALS: ALS is a workload with long and complex dependencies between oper-

ators, which makes it vulnerable to critical chains of cascading recomputations.

We use a 10GB music ratings dataset provided by Yahoo! [17], which contains

over 717M ratings of 136K songs given by 1.8M users. We set rank to 50, and

run 10 iterations of the algorithm.

MLR: MLR also has long, but slightly less complex dependencies between

68

its operators. MLR creates large amounts of intermediate data in each iteration,

which can be partially aggregated into a small vector. We use a synthetic 31GB

training dataset generated with a script open sourced as part of Petuum [74].

The dataset is a sparse matrix with 500K samples of 512 classes, 100K features,

and 2.5B nonzero numbers. We run 5 iterations of the algorithm.

MR: MR has the shortest and simplest dependencies between operators

among our workloads, and imposes the largest amount of load on reserved con-

tainers for Pado. We use a 280GB Wikipedia dump of its page view statistics [13].

The dataset consists of around a month of hourly page view counts of document.

We compute the sum of page views for each of the documents over the month.

We run the experiments five times and report the averages with error bars

showing standard deviations.

4.4.2 Eviction Rate

As discussed in Section 2.2, an e↵ective way to increase datacenter utilization is by

collecting idle resources to run transient containers. However, such containers are

evicted more frequently as resources are collected more aggressively. Therefore,

it is crucial for data processing engines to complete their jobs while handling

frequent evictions with minimum delays. We observe the e↵ect of di↵erent

eviction rates on job completion times (JCTs) of di↵erent engines for each of

the workloads.

In this experiment, we simulate datacenter environments with di↵erent

safety margins by varying the eviction rate for transient containers with di↵erent

lifetime CDFs illustrated in Figure 2.3 and Table 2.1. The CDFs show the low,

medium, and high eviction rates. As the baseline, we also experiment without

any evictions on transient containers, which is shown as the none eviction rate.

We use 40 transient containers and 5 reserved containers to run the workloads,

69

with an additional reserved container for the master process of the engines to

run on. The numbers demonstrate the e↵ectiveness of Pado with a relatively

small number of reserved containers. We discuss the e↵ect of di↵erent ratios of

transient to reserved containers and di↵erent sizes of cluster in more depth in

Section 4.4.3 and Section 4.4.4.

Alternating Least Squares

The results of running ALS according to di↵erent eviction rates are as shown

in Figure 4.4. Spark finishes the job in 13 minutes without any evictions, but

does not finish for more than 90 minutes under the medium and high eviction

rates. On the other hand, the job completion times of both Spark-checkpoint

and Pado increase smoothly with higher eviction rates. Yet, Pado outperforms

Spark-checkpoint at all eviction rates. Under the high eviction rate, Pado is

2.1⇥ faster than Spark-checkpoint and 4.1⇥ faster than Spark.

In Spark, task outputs are preserved on local disks and pulled by the

children tasks between shu✏e boundaries. Thus, an eviction of a transient

container can result in a loss of intermediate results of all previous iterations. As

discussed previously in Section 4.2.1, this creates a critical chain of cascading

recomputations. For example, Spark can only relaunch the tasks of an iteration,

only if it has the results of its previous iteration, and the same applies recursively.

Thus, tasks of di↵erent iterations cannot be relaunched in parallel, as each of the

iterations is dependent on its previous iteration. When an eviction occurs, Spark

has to relaunch the tasks that output the lost data to recover from the eviction,

from the initial iteration. This can delay the job greatly, as evictions can occur

while running the recomputation itself, thus critical chains can repeatedly occur,

further delaying the job from completion. Indeed, we found Spark recomputing

identical iterations dozens of times under the high eviction rate. This makes

70

 0
 15
 30
 45
 60
 75
 90

None Low Medium High

JC
T

 (
m

)

Eviction Rate

Spark
Spark−checkpoint
Pado

0%

10%

20%

30%

40%

50%

Low Medium High

R
el

au
n

ch
ed

 T
as

k
s

Eviction Rate

Spark
Spark−checkpoint
Pado

Figure 4.4: Job completion times, and ratio of relaunched tasks to original tasks

in ALS under di↵erent eviction rates

Spark severely degrade with 31% of original tasks being relaunched under the

high eviction rate.

In Spark-checkpoint, task outputs are checkpointed to stable storages on

reserved containers, safe from evictions. This lets Spark-checkpoint avoid the cas-

cading recomputations that Spark su↵ers from. Upon evictions, Spark-checkpoint

only needs to relaunch the tasks that were running on the evicted transient

containers. As a result, its job completion time marginally increases with higher

eviction rates.

However, checkpointing incurs the overhead of transferring data back and

forth with the stable storages. We found that a total of 279GB of data were

checkpointed to the stable storage during the execution of the ALS workload

without repetitions caused by relaunched tasks. Sending the data does not

incur much overhead, since each task output can be sent independently and

71

asynchronously. Nonetheless, fetching the data incurs a large overhead. Due to

pull-based data shu✏es, children tasks can only start after their parent tasks

finish and checkpoint their outputs, after which the checkpointed data are pulled

all at once. In Spark-checkpoint the data are served by the 5-node stable storages,

whereas they are served by 45 executors in the original Spark. The reduced disk

and network bandwidth slows down the data transfer and greatly increases the

time to fetch the data.

In Pado, most computations are run by the tasks on transient executors,

and their outputs are pushed to reserved executors to be aggregated. Thus, the

aggregation occurs on reserved executors and its intermediate results are reliably

retained on them, preventing cascading recomputations. For this workload,

although the aggregation does not reduce the size of the data, executors can retain

intermediate results within the memory. Therefore, Pado can fetch intermediate

results much faster than using stable storages. This makes Pado faster than

Spark-checkpoint at all eviction rates.

Multinomial Logistic Regression

The results of MLR are shown in Figure 4.5. Under the high eviction rate, Pado

is 2.7⇥ faster than Spark-checkpoint and more than 3.5⇥ faster than Spark.

Pado outperforms Spark-checkpoint even more compared to ALS, due to the

larger amount of intermediate data created in each iteration. Each MLR iteration

consists of 550 map tasks, each of which computes a gradient vector using a

partition of the training data and the latest model, followed by a tree-aggregation

of the vectors to update the model. The tree-aggregation is performed di↵erently

in each of the engines.

In Spark, 550 gradient vectors computed by the map tasks are preserved

in the local disks of the executors. Then, each of the 22 aggregate tasks pulls

72

 0
 30
 60
 90

 120
 150
 180

None Low Medium High

JC
T

 (
m

)

Eviction Rate

Spark
Spark−checkpoint

Pado

0%
10%
20%
30%
40%
50%
60%

Low Medium High

R
el

au
n

ch
ed

 T
as

k
s

Eviction Rate

Spark
Spark−checkpoint
Pado

Figure 4.5: Job completion times, and ratio of relaunched tasks to original tasks

in MLR under di↵erent eviction rates

550/22 vectors, and aggregates them into a single gradient vector. Finally, the

22 aggregated vectors are sent to the master process, which uses them to update

its model. As the master process is never evicted, the critical chain does not

exceed the current iteration, unlike ALS. Nonetheless, MLR iterations are much

longer than ALS iterations, due to the time it takes for the gradient vector

computation. Thus, the loss of preserved vectors upon evictions causes Spark to

degrade severely with higher eviction rates.

In Spark-checkpoint, map task outputs are checkpointed to the stable stor-

ages on reserved containers, immediately after they are computed on transient

containers. Although this prevents recomputations, each compressed map task

output vector is 323MB in size, and around 173GB (323MB ⇤ 550 tasks) of

data have to be checkpointed in each iteration. Moreover, the data also need

to be fetched back to transient containers for the following aggregate tasks.

73

 0

 30

 60

 90

 120

None Low Medium High

JC
T

 (
m

)

Eviction Rate

Spark
Spark−checkpoint
Pado

0%
50%

100%
150%
200%
250%
300%

Low Medium High

R
el

au
n

ch
ed

 T
as

k
s

Eviction Rate

Spark
Spark−checkpoint
Pado

Figure 4.6: Job completion times, and ratio of relaunched tasks to original tasks

in MR under di↵erent eviction rates

This checkpointing process requires transferring large data repeatedly, greatly

delaying the work.

In Pado, gradient vectors are partially aggregated with other gradient vectors

computed on the same transient container. Then, the partially aggregated vectors

are pushed to aggregate tasks on eviction-free reserved containers, which prevents

costly losses of the gradient vectors and task relaunches. As Pado sends less

data to reserved containers with partial aggregation, it reduces the load on

reserved containers. Only an average of 303 partially aggregated vectors were

sent, in contrast to the 550 gradient vectors in Spark-checkpoint. Moreover, Pado

does not need to transfer the data back to transient containers for aggregation.

Instead, the aggregate tasks on reserved containers can directly receive the data

and aggregate them into a single vector on the fly. This creates a great di↵erence

in performance since Spark-checkpoint has to checkpoint large amounts of data

74

repeatedly.

Map-Reduce

The results of MR are shown in Figure 4.6. Unlike other workloads, Spark

performs better than other engines up to medium eviction rate, as the short and

simple dependencies make evictions less costly for Spark. However, under the

high eviction rate, where we reclaim idle resources aggressively, Spark degrades

significantly even with a simple MR job. Under the high eviction rate, Pado is

1.3⇥ faster than Spark-checkpoint and 5.1⇥ faster than Spark. Although Pado

still outperforms Spark-checkpoint, the di↵erence is not as great as in other

workloads. The main reason is that the load on reserved containers is much

heavier with MR.

In summary, Pado allows datacenters to aggressive collect transient resources

from unused idle resources of over-provisioned latency-critical jobs to increase

datacenter e�ciency. As discussed, although the eviction rate rises with the

aggressiveness of resource collection, Pado can still run various data analytic

jobs under such harsh conditions.

4.4.3 Ratio of Transient to Reserved Containers

In this experiment, we investigate how using di↵erent ratios of transient to

reserved containers a↵ect job performance. We fix the eviction rate of 40 transient

containers to the high eviction rate, and vary the number of reserved containers

from 3 to 7. As Spark degrades severely with the high eviction rate with all

workloads, we only compare Spark-checkpoint and Pado.

As shown in Figure 4.7, less reserved containers degrades the performance

of both Spark-checkpoint and Pado. Spark-checkpoint degrades mainly due to

the reduced throughput of stable storages, whereas Pado degrades due to the

75

 0

 20

 40

 60

 80

3 4 5 6 7

JC
T

 (
m

)

Number of Reserved Containers

(a) ALS

Spark−checkpoint
Pado

 0
 50

 100
 150
 200
 250
 300

3 4 5 6 7

JC
T

 (
m

)

Number of Reserved Containers

(b) MLR

Spark−checkpoint
Pado

 0

 10

 20

 30

 40

 50

3 4 5 6 7

JC
T

 (
m

)

Number of Reserved Containers

(c) MR

Spark−checkpoint
Pado

Figure 4.7: The job completion times of applications with di↵erent numbers

of reserved containers, in addition to 40 transient containers under the high

eviction rate

reduced throughput of reserved executors. However, the trend of the slopes vary

with di↵erent workloads. For ALS(a) and MLR(b), the slope of degradation for

Spark-checkpoint is much greater than that of Pado, as Pado can run in-memory

processing for intermediate results, whereas Spark-checkpoint su↵ers from the

checkpointing cost on the small number of stable storages. However, for MR(c),

the slope of degradation for Pado is slightly greater than that of Spark-checkpoint,

as the workload for the comparatively large Reduce operation is divided among

the small number of reserved containers, whereas Spark-checkpoint distributes

the work among all of its transient containers. Therefore, reducing the number

of reserved containers from 7 to 3 causes Pado to slow down by around 2.6⇥ for

the MR workload. Nevertheless, Pado still outperforms Spark-checkpoint under

every number of reserved containers, as in the case of the MLR workload (by

3.8⇥).

To summarize, Pado can execute various data analytics workloads e�ciently

even when the ratio of transient to reserved containers is as high as 40:3. Thus,

by using Pado, we can save reserved containers, and instead use them for other

purposes, such as for running latency-critical jobs.

76

 0

 20

 40

 60

 80

27(24T+3R) 45(40T+5R) 63(56T+7R)

JC
T

 (
m

)

Number of Containers(Transient+Reserved)

ALS
MLR

MR

Figure 4.8: The job completion times of applications on Pado with di↵erent

numbers of a fixed 8 : 1 ratio of transient and reserved containers under the

high eviction rate

4.4.4 Scalability

In this experiment, we vary the numbers of a fixed 8 : 1 ratio of transient

and reserved containers to evaluate the scalability of Pado. We experiment

under the high eviction rate of transient containers. As shown in Figure 4.8, all

workloads scale on Pado with larger numbers of containers. Nonetheless, ALS

scales relatively worse than the other workloads, as it is a more communication-

intensive workload. Overall, this shows that Pado scales well with additional

reserved and transient containers even under very frequent evictions.

4.5 Discussion

Pado focuses on observing the DAG and the relationships between operators

to run data analytic jobs reliably under harsh conditions where evictions occur

very frequently. While our work performs well in such environments, we suggest

directions in improving our system further to achieve better performances and

datacenter utilization.

Datacenter Resource Scheduling: Harvest [82], a work concurrent to

77

ours, focuses on the resource manager to solve a common goal with our system,

which is to maximize datacenter utilization by using idle over-provisioned

resources to run data analytic jobs. Our approach tries to overcome the frequent

evictions that occur with transient resources, whereas Harvest [82] tries to

minimize the number of evictions by using historic information to predict

transient resource lifetimes to place them with workloads of adequate lengths.

For example, it preferably schedules long jobs on transient resources that are

less likely to be evicted, while scheduling short jobs on resources with short,

unpredictable lifetimes. Harvest [82] and Pado tackle the problem with di↵erent

aspects, and we believe that the techniques introduced in two systems are

complementary. Moreover, as Pado enables workloads to run on resources with

even shorter and more unpredictable lifetimes, workloads are less strictly a↵ected

by resource lifetimes. This enables resource managers to become more flexible

when assigning workloads to resources of di↵erent lifetimes and enable resource

managers to collect transient resources more aggressively. An interesting future

research direction is to allow jobs to request resources with preferred resource

lifetimes to further enhance resource managers to e↵ectively collect and allocate

idle resources to di↵erent workloads with an optimal combination of resources.

Operator Placement Optimization: With the suggested approach above,

estimation of transient resource lifetimes [82] can be used to categorize resources

into di↵erent lengths. Using this information, we can extend Pado to further

optimize the placement algorithm to place operators on resources of di↵erent

lifetimes in a more fine-grained manner. For instance, we may place the operators

that are expected to have higher recomputation costs with reserved resources or

those that have longer lifetimes, while placing less costly operators on resources

with shorter lifetimes. This approach can further be optimized by dynamically

placing and partitioning the DAG and its operators based on runtime metrics

78

and operator statistics. Through this approach, we may place operators more

optimally and better balance the load across resources with di↵erent lifetimes.

For example, in the MR example illustrated in Figure 4.7, we can dynamically

migrate work from reserved resources to transient resources with relatively

long lifetimes to reduce the computational delay caused by the small number

of reserved resources. By alleviating the load on reserved resources, we can

also overcome workloads with deeper pado/graphs/ where a larger portion of

operators are placed on reserved resources due to the increased recomputation

costs. Implementation and evaluation of our proposed techniques running other

workloads of various depths and complexities are left as future work.

4.6 Summary

A major problem in modern datacenters is that large amounts of resources are

left idle and wasted. Running batch jobs on such transient resources increases

datacenter utilization, but evictions occur very frequently on transient containers.

Due to this characteristic, general data processing engines have di�culties

in running jobs under such harsh conditions. They perform poorly with the

cost of cascading recomputations, and incur substantial checkpointing costs,

significantly slowing down the job. Pado steps away from current approaches

and focuses on the job structure to run a set of carefully selected computations,

based on the relationship between dependent operators, and retain intermediate

results reliably on stable reserved containers. Using the Pado Compiler with the

placement and the partitioning algorithm, as well as the Runtime with several

optimizations, data processing workloads can run e�ciently using transient

containers. Evaluation results show that Pado outperforms Spark 2.0.0 by up

to 5.1⇥, and checkpoint-enabled Spark by up to 3.8⇥. We believe Pado can

79

significantly increase datacenter utilization by e�ciently using the wasted idle

resources in current datacenter environments.

80

Chapter 5

Related Work

5.1 Dataflow Optimization Approaches

Nemo builds on many years of research in dataflow processing, relational

database, and compiler optimizations. Nevertheless, we believe the set of trade-

o↵s we have chosen to design the IR DAG, optimization passes, and runtime

extensions for optimizing distributed dataflow processing makes Nemo a unique

system.

Dataflow processing: Nemo di↵erentiates itself from the existing application-

level [37] and runtime-level [7, 35, 37, 62] approaches to dataflow scheduling and

communication optimizations by taking a middle ground approach. Nemo pro-

vides a policy interface that transforms an intermediate representation (IR) of

applications to express indirect but fine control over distributed scheduling and

communication.

Our decoupled system design and our DAG-based IR are similar to Muske-

teer [27]. However, our work is complementary to Musketeer, as we focus on

81

providing fine control over physical scheduling and communication in our IR,

whereas Musketeer focuses on dynamically mapping its IR to a range of di↵erent

execution runtimes.

The SparkSQL Catalyst optimizer [18] takes as input a SparkSQL application

and outputs a Spark RDD application, which Nemo can take as input. Compared

to Nemo, Catalyst has more information about application semantics (e.g., ‘Add’

‘1’ and ‘2’), but has less fine control over scheduling and communication (e.g.,

speculative task cloning).

Recently proposed dynamic query optimizers [44,48] for distributed dataflow

processing runtimes operate on high-level logical plans for SQL queries. Leverag-

ing the semantics of SQL queries and the runtime information, these optimizers

focus on choosing an optimal logical plan, for example by finding an optimal join

order. Nemo operates on a lower-level IR DAG that supports general dataflow

processing applications, and provides the methods to configure scheduling and

communication methods of each data-parallel operation in the applications.

Weld [52] takes as input code that composes imperative libraries such as

Pandas [49] and Numpy [64], creates a combined Weld IR program, and outputs

optimized assembly code using LLVM.Weld can reduce data movement overheads

across such imperative libraries, but it is not designed to optimize distributed

scheduling and communication like Nemo.

Relational databases: Many of the optimizations in Nemo, such as paral-

lelization and distributed scheduling optimizations, can be traced to research

in parallel databases [26, 28]. Nemo enables expressing and composing various

types of such optimizations for distributed dataflow processing applications, by

introducing a policy interface that provides fine control and at the same time

ensures correctness.

Our idea of annotating operators with execution properties is similar to using

82

query hints in relational databases to influence the optimizer [22]. Nevertheless,

these works focus on restricting the search space of SQL query execution plans,

whereas Nemo focuses on tuning the scheduling and communication of dataflow

processing applications.

Compilers: Our approach of expressing optimizations as passes that trans-

form an IR is similar to LLVM [42]. However, in contrast to the LLVM IR that

represents assembly code, the Nemo IR explicitly captures the dependencies

and the communication patterns of coarse-grained, data-parallel operations.

This enables passes on Nemo to express various distributed scheduling and

communication optimizations.

Verified compilers, such as CompCert [43], aim to ensure the correctness

of optimized assembly code using formal verification methods. Nemo aims to

ensure the correctness of optimized distributed execution of dataflow processing

applications, by introducing utility vertices and execution properties that make

it simple to ensure correctness.

5.2 Optimizing for Transient Resources

Pado is designed to run dataflow programs represented as a logical DAG of

operators, like other general-purpose data processing engines [25,35,79]. Here,

each operator is scheduled as tasks and executed in parallel on multiple dis-

tributed containers. It also shares some fault-tolerance mechanisms to recover

by recomputing from a certain point in the logical DAG. However, as Pado pri-

marily focuses on harnessing transient resources in datacenters, the core runtime

mechanisms, such as task scheduling and data transfer, are very di↵erent from

other data processing engines.

To prevent loss of data during computations, recent works have come up

83

with intelligent methods of checkpointing to e�ciently handle data loss and

interruptions. Flint [66] checkpoints the frontier of the RDD [79] lineage graph in

every dynamically updated intervals. TR-Spark [75] prioritizes tasks that output

the least amount of data, and performs task-level checkpointing according to

resource instability. The common assumption of such works are that container

evictions occur on an hourly, or on a more moderate basis, as they target spot

instances. However, our goal is to use transient containers made up of the leftover

idle resources reserved by LC tasks, which get evicted on a minutewise basis.

Under such harsh conditions of transient resources, checkpointing has to be

done very frequently, which leads to poor performances. To step away from the

idea of checkpointing, Pado instead observes logical DAGs, and places a set

of carefully chosen computations and the corresponding intermediate results

reliably on reserved containers.

Realizing the considerable extra cost in checkpointing, there is also research

on specialized processing systems that exploit domain-specific properties, like

the convergence property, of particular workloads to infer the lost data [54, 63].

However, they also have limitations as they have not been designed as generic

DAG processing systems, and usually give up the completeness of the result to

avoid checkpointing costs. As these systems also do not target environments

with frequent evictions, the completeness of their results can drop significantly,

providing incorrect results and requiring more iterations to converge. On the

other hand, Pado accurately executes general dataflow programs e�ciently using

transient containers without such restrictions and limitations.

84

Chapter 6

Conclusion and Future Directions

6.1 Conclusion

We presented a flexible architecture for optimizing distributed data processing.

We first showed how to enable fine control and at the same time ensure correctness

in building new dataflow optimization policies. We then showed how to leverage

the relationship between computations to reliably run the computations that are

most likely to cause high recomputation costs if evicted on transient resources.

We hope our flexible architecture serves as a platform for dataflow optimization

research and development.

6.2 Future Directions

6.2.1 Shared Resources

Nemo operates with node-level and task-level granularities for data locality

and job statistics. First, Nemo uses node-level, rack-level, and datacenter-level

85

localities. Second, Nemo uses execution properties that leverage task time

(SpeculativeCloning), resource availability (ResourceLocality), and cross-

datacenter bandwidth (ResourceSite).

However, recent works on core and memory sharing within each machine

have enabled new configuration and optimization knobs for data processing

jobs. First, Shenango [51] enables fine granularity core reallocation at every

5 microseconds. Second, Elfen scheduling [76] introduces the nanonap syscall

to stop the batch thread execution without yielding its SMT lane to the OS

scheduler. Third, SAM [67] colocates tasks that share data and distributes tasks

with high cache capacity and memory bandwidth behaviors.

We can extend Nemo to better leverage these recent works on core and

memory sharing. First, we can introduce a new vertex execution property

(CoreRelocation) that enables cross-core and cross-socket relocation. For ex-

ample, we can set thresholds for triggering relocation based on statistics such as

thread and packet queues, SMT utilization, intra and inter socket coherence,

memory bandwidth utilization, and remote access (NUMA). Second, we can

extend the current Trigger vertex to be triggered during vertex execution,

rather than triggered after a vertex execution. Third, we can enable dynamic

optimizations based on hardware statistics using the new execution property

and the extended Trigger vertex. For example, we can create new policies

that combine core-level locality optimizations with existing optimizations that

leverage node-level, rack-level and datacenter-level locality.

6.2.2 New Hardware and Architectures

Nemo currently supports common hardware used in datacenters. For compute,

Nemo supports CPUs. For storage, Nemo supports, through the DataStore

execution property, memory, disk (HDD), and distributed filesystem. For network,

86

Nemo supports Ethernet.

However, a number of recent works have focused on enabling using new

hardware and architectures in datacenters. First, INSIDER [61] enables e↵ective

in-storage computing (ISC) with virtual file abstraction which abstracts ISC

as file operations. Second, Octopus [46] proposes a RDMA-enabled distributed

memory filesystem that closely couples non-volatile memory (NVM) and remote

direct memory (RDMA). Third, GPU-accelerated incremental HDFS proposed

by Shredder [20] provides content-based chunking instead of fixed-size chunking

which enables reusing previous map task results. Fourth, LegoOS [65] proposes a

disaggregated operating system for disaggregated hardware using loosely-copuled

monitors. Fifth, the work on energy-e�cient ultra-low latency SSD [30] shows

that the idle power consumption is larger for older generation storages, and

writes are more power-hungry than reads for newer generation storages.

We can extend Nemo to leverage these new opportunities to accelerate

computation, increase cost e�ciency, and reduce power consumption. First, for

compute, we can introduce new utility vertices to accelerate computation. We

can introduce the Chunking vertex that supports GPU-accelerated chunking. We

can also introduce the ISC vertex to support o✏oading computations to ISC, for

example through interpreting Beam and Spark user-defined functions. Second,

for storage, we can introduce new DataStore execution property options. For

example, we can introduce options for ISC-supported devices, RDMA-enabled

memory filesystems, optane SSDs and SSDs, and CPU cache for disaggregated

operating systes. Third, we can introduce new optimization passes that aim for

energy-e�ciency. For example, we minimize idle time through pipelining when

using HDDs, and apply in-memory shu✏e and tree-aggregate optimizations

before writing to minimize data writes when using optane SSDs. Fourth, we can

combine the use of new hardware and architectures with existing optimization

87

in Nemo. For example, we can opt to not consider data source locality and fully

utilize cores, when using RDMA-enabled memory filesystems.

88

Bibliography

[1] Apache Airflow. https://airflow.apache.org.

[2] Apache Beam. https://beam.apache.org.

[3] Apache Flink. https://flink.apache.org/.

[4] Apache Hadoop. https://hadoop.apache.org.

[5] Apache Nemo. https://nemo.apache.org.

[6] Apache REEF. http://reef.apache.org.

[7] Apache Spark. https://spark.apache.org.

[8] Cloud Dataflow. https://cloud.google.com/dataflow.

[9] Databricks. https://databricks.com/.

[10] Dryad Research Prototype. https://github.com/MicrosoftResearch/

Dryad.

[11] GlusterFS. https://www.gluster.org.

[12] Linux Tra�c Control. https://lartc.org/manpages/tc.txt.

89

[13] Page view statistics for Wikimedia projects. https://dumps.wikimedia.

org/other/pagecounts-raw.

[14] Spark MLlib. http://spark.apache.org/mllib.

[15] The CAIDA Anonymized Internet Traces 2016 Dataset. https://www.

caida.org/data/passive/passive_2016_dataset.xml.

[16] TPC-H. http://www.tpc.org/tpch.

[17] Yahoo! Music User Ratings of Songs with Artist, Album, and Genre Meta In-

formation, v. 1.0. https://webscope.sandbox.yahoo.com/catalog.php?

datatype=r.

[18] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu,

Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali

Ghodsi, and Matei Zaharia. Spark sql: Relational data processing in spark.

In ACM SIGMOD, 2015.

[19] Betsy Beyer, Chris Jones, Jennifer Peto↵, and Niall Richard Murphy. Site

Reliability Engineering: How Google Runs Production Systems. ” O’Reilly

Media, Inc.”, 2016.

[20] Pramod Bhatotia, Rodrigo Rodrigues, and Akshat Verma. Shredder: Gpu-

accelerated incremental storage and computation. In Proceedings of the

10th USENIX Conference on File and Storage Technologies, 2012.

[21] Laurent Bindschaedler, Jasmina Malicevic, Nicolas Schiper, Ashvin Goel,

and Willy Zwaenepoel. Rock you like a hurricane: Taming skew in large

scale analytics. 2018.

[22] Nicolas Bruno, Surajit Chaudhuri, and Ravishankar Ramamurthy. Power

hints for query optimization. In ICDE, 2009.

90

[23] Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams,

Robert R. Henry, Robert Bradshaw, and Nathan Weizenbaum. Flumejava:

Easy, e�cient data-parallel pipelines. In PLDI, 2010.

[24] C. de Boor. A Practical Guide to Splines. Springer New York, 2001.

[25] Je↵rey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing

on large clusters. In OSDI, 2004.

[26] D. J. Dewitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H. I. Hsiao,

and R. Rasmussen. The gamma database machine project. IEEE Trans.

on Knowl. and Data Eng., 1990.

[27] Ionel Gog, Malte Schwarzkopf, Natacha Crooks, Matthew P. Grosvenor,

Allen Clement, and Steven Hand. Musketeer: All for one, one for all in

data processing systems. In EuroSys, 2015.

[28] Goetz Graefe. Encapsulation of parallelism in the volcano query processing

system. In Proceedings of the 1990 ACM SIGMOD International Conference

on Management of Data, 1990.

[29] Zhenyu Guo, Xuepeng Fan, Rishan Chen, Jiaxing Zhang, Hucheng Zhou,

Sean McDirmid, Chang Liu, Wei Lin, Jingren Zhou, and Lidong Zhou.

Spotting code optimizations in data-parallel pipelines through periscope.

In OSDI, 2012.

[30] Bryan Harris and Nihat Altiparmak. Ultra-low latency ssds’ impact on

overall energy e�ciency. In 12th USENIX Workshop on Hot Topics in

Storage and File Systems (HotStorage 20), 2020.

91

[31] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements

of Statistical Learning: Data Mining, Inference, and Prediction. Springer

Publishing Company, New York, NY, 2009.

[32] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-

thony D Joseph, Randy Katz, Scott Shenker, and Ion Stoica. Mesos: A

platform for fine-grained resource sharing in the data center. In NSDI,

2011.

[33] Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis, Gre-

gory R Ganger, Phillip B Gibbons, and Onur Mutlu. Gaia: Geo-distributed

machine learning approaching lan speeds. In NSDI, 2017.

[34] Eunji Hwang, Hyungoo Kim, Beomseok Nam, and Young-ri Choi. Cava:

exploring memory locality for big data analytics in virtualized clusters. In

CCGRID. IEEE, 2018.

[35] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly.

Dryad: Distributed data-parallel programs from sequential building blocks.

In EuroSys, 2007.

[36] Eaman Jahani, Michael J. Cafarella, and Christopher Ré. Automatic

optimization for mapreduce programs. Proc. VLDB Endow., 2011.

[37] Qifa Ke, Michael Isard, and Yuan Yu. Optimus: A dynamic rewriting

framework for data-parallel execution plans. In EuroSys, 2013.

[38] Steven Y. Ko, Imranul Hoque, Brian Cho, and Indranil Gupta. On avail-

ability of intermediate data in cloud computations. In HotOS, 2009.

[39] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization

techniques for recommender systems. Computer, 2009.

92

[40] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. Skew-

resistant parallel processing of feature-extracting scientific user-defined

functions. In SOCC, 2010.

[41] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia.

Skewtune: Mitigating skew in mapreduce applications. In ACM SIGMOD,

2012.

[42] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong

program analysis & transformation. In Proceedings of the International

Symposium on Code Generation and Optimization: Feedback-directed and

Runtime Optimization, 2004.

[43] Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM,

2009.

[44] Youfu Li, Mingda Li, Ling Ding, and Matteo Interlandi. Rios: Runtime

integrated optimizer for spark. In SOCC, 2018.

[45] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan,

and Christos Kozyrakis. Heracles: Improving resource e�ciency at scale.

In ISCA, 2015.

[46] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Octopus: an rdma-

enabled distributed persistent memory file system. In 2017 USENIX

Annual Technical Conference (USENIX ATC 17), 2017.

[47] Kshiteej Mahajan, Arjun Balasubramanian, Arjun Singhvi, Shivaram

Venkataraman, Aditya Akella, Amar Phanishayee, and Shuchi Chawla.

Themis: Fair and e�cient GPU cluster scheduling. In 17th USENIX Sym-

93

posium on Networked Systems Design and Implementation (NSDI 20),

2020.

[48] Kshiteej Mahajan, Mosharaf Chowdhury, Aditya Akella, and Shuchi Chawla.

Dynamic query re-planning using qoop. In OSDI, 2018.

[49] Wes McKinney et al. Data structures for statistical computing in python.

In Proceedings of the 9th Python in Science Conference, 2010.

[50] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul

Barham, and Mart́ın Abadi. Naiad: A timely dataflow system. In SOSP,

2013.

[51] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari

Balakrishnan. Shenango: Achieving high CPU e�ciency for latency-sensitive

datacenter workloads. In 16th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 19), 2019.

[52] Shoumik Palkar, James J Thomas, Anil Shanbhag, Deepak Narayanan,

Holger Pirk, Malte Schwarzkopf, Saman Amarasinghe, Matei Zaharia, and

Stanford InfoLab. Weld: A common runtime for high performance data

analytics. In CIDR, 2017.

[53] Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik, Srikanth Kandula,

Aditya Akella, Paramvir Bahl, and Ion Stoica. Low latency geo-distributed

data analytics. In ACM SIGCOMM, 2015.

[54] Mayank Pundir, Luke M. Leslie, Indranil Gupta, and Roy H. Campbell.

Zorro: Zero-cost reactive failure recovery in distributed graph processing.

In SOCC, 2015.

94

[55] Smriti R. Ramakrishnan, Garret Swart, and Aleksey Urmanov. Balancing

reducer skew in mapreduce workloads using progressive sampling. In SOCC,

2012.

[56] Sriram Rao, Raghu Ramakrishnan, Adam Silberstein, Mike Ovsiannikov,

and Damian Reeves. Sailfish: A framework for large scale data processing.

In SOCC, 2012.

[57] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz, and

Michael A. Kozuch. Heterogeneity and dynamicity of clouds at scale: Google

trace analysis. In SOCC, 2012.

[58] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz, and

Michael A. Kozuch. Heterogeneity and dynamicity of clouds at scale: Google

trace analysis. In SOCC, 2012.

[59] Charles Reiss, John Wilkes, and Joseph L. Hellerstein. Google cluster-usage

traces: format + schema. Technical report. https://github.com/google/

cluster-data.

[60] Peter J Rousseeuw and Gilbert W Bassett Jr. The remedian: A robust

averaging method for large data sets. Journal of the American Statistical

Association, 1990.

[61] Zhenyuan Ruan, Tong He, and Jason Cong. INSIDER: Designing in-storage

computing system for emerging high-performance drive. In 2019 USENIX

Annual Technical Conference (USENIX ATC 19), 2019.

[62] Bikas Saha, Hitesh Shah, Siddharth Seth, Gopal Vijayaraghavan, Arun

Murthy, and Carlo Curino. Apache tez: A unifying framework for modeling

and building data processing applications. In ACM SIGMOD, 2015.

95

[63] Sebastian Schelter, Stephan Ewen, Kostas Tzoumas, and Volker Markl.

All roads lead to rome: optimistic recovery for distributed iterative data

processing. 2013.

[64] SciPy.org. NumPy. https://www.numpy.org.

[65] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. Legoos: A

disseminated, distributed OS for hardware resource disaggregation. In 13th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI 18), 2018.

[66] Prateek Sharma, Tian Guo, Xin He, David Irwin, and Prashant Shenoy.

Flint: Batch-interactive data-intensive processing on transient servers. In

EuroSys, 2016.

[67] Sharanyan Srikanthan, Sandhya Dwarkadas, and Kai Shen. Data sharing

or resource contention: Toward performance transparency on multicore

systems. In 2015 USENIX Annual Technical Conference (USENIX ATC

15), 2015.

[68] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad

Chakka, Ning Zhang, Suresh Antony, Hao Liu, and Raghotham Murthy.

Hive-a petabyte scale data warehouse using hadoop. In ICDE, 2010.

[69] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal,

Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah,

Siddharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay Radia,

Benjamin Reed, and Eric Baldeschwieler. Apache hadoop yarn: Yet another

resource negotiator. In SOCC, 2013.

96

[70] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer,

Eric Tune, and John Wilkes. Large-scale cluster management at Google

with Borg. In EuroSys, 2015.

[71] Raajay Viswanathan, Ganesh Ananthanarayanan, and Aditya Akella. Clar-

inet: Wan-aware optimization for analytics queries. In OSDI, 2016.

[72] Ashish Vulimiri, Carlo Curino, P. Brighten Godfrey, Thomas Jungblut, Jitu

Padhye, and George Varghese. Global analytics in the face of bandwidth

and regulatory constraints. In NSDI, 2015.

[73] Markus Weimer, Yingda Chen, Byung-Gon Chun, Tyson Condie, Carlo

Curino, Chris Douglas, Yunseong Lee, Tony Majestro, Dahlia Malkhi,

Sergiy Matusevych, Brandon Myers, Shravan Narayanamurthy, Raghu

Ramakrishnan, Sriram Rao, Russel Sears, Beysim Sezgin, and Julia Wang.

Reef: Retainable evaluator execution framework. In ACM SIGMOD, 2015.

[74] Eric P. Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak

Lee, Xun Zheng, Pengtao Xie, Abhimanu Kumar, and Yaoliang Yu. Petuum:

A new platform for distributed machine learning on big data. In ACM

SIGKDD, 2015.

[75] Ying Yan, Yanjie Gao, Yang Chen, Zhongxin Guo, Bole Chen, and Thomas

Moscibroda. Tr-spark: Transient computing for big data analytics. In

SOCC, 2016.

[76] Xi Yang, Stephen M. Blackburn, and Kathryn S. McKinley. Elfen schedul-

ing: Fine-grain principled borrowing from latency-critical workloads using

simultaneous multithreading. In USENIX ATC, 2016.

97

[77] Youngseok Yang, Geon-Woo Kim, Won Wook Song, Yunseong Lee, Andrew

Chung, Zhengping Qian, Brian Cho, and Byung-Gon Chun. Pado: A data

processing engine for harnessing transient resources in datacenters. In

Proceedings of the Twelfth European Conference on Computer Systems,

2017.

[78] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson,

Pradeep Kumar Gunda, and Jon Currey. Dryadlinq: A system for general-

purpose distributed data-parallel computing using a high-level language.

In OSDI, 2008.

[79] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin

Ma, Murphy McCauley, Michael Franklin, Scott Shenker, and Ion Stoica.

Resilient distributed datasets: A fault-tolerant abstraction for in-memory

cluster computing. In NSDI, 2012.

[80] Haoyu Zhang, Brian Cho, Ergin Seyfe, Avery Ching, and Michael J Freed-

man. Ri✏e: optimized shu✏e service for large-scale data analytics. In

EuroSys, 2018.

[81] Jiaxing Zhang, Hucheng Zhou, Rishan Chen, Xuepeng Fan, Zhenyu Guo,

Haoxiang Lin, Jack Y. Li, Wei Lin, Jingren Zhou, and Lidong Zhou. Op-

timizing data shu✏ing in data-parallel computation by understanding

user-defined functions. In NSDI, 2012.

[82] Yunqi Zhang, George Prekas, Giovanni Matteo Fumarola, Marcus Fontoura,

Íñigo Goiri, and Ricardo Bianchini. History-based harvesting of spare cycles

and storage in large-scale datacenters. In OSDI, 2016.

98

î}

Ñ∞pt0⌅\8ÒX§�t¡¸‰§»�tXD¨å§@pt0π1–fiî

¥ \�T Xî É@ í@ 1•D Ï1Xîp ‰∞ ⌘îX‰. 0t \�T)›@

lå P�¿ tL‡¨\ ò⌅¥ƒ‰. ´¯, Ñ∞ ¿Ñ‰@ \�T| �©X0

⌅\ \∞ �® �E x0òt§| ⌧ıX¿Ã, ,x `�¨�tX ‹XÒX

Ù•D X¿ J0L8–, ¨©Xîp p x%D DîXå \‰. X¯, Xt �®

`�¨�tX ⌅\¯ò� ®xD U•Xî �E x0òt§‰@ ,x ‹XÒ

Ù•D X¿Ã, 8�\ Ë∏dD ©ÑXå ⌧ıX¿ ª\‰.

¯ |8–⌧ Ñ∞ pt0 ò¨ \�T| ⌅\ \ D§Mò| ⌧H\‰. ∞

¨X \ D§Mòî pi �•X‡ ¨¨© �•\, ‰ë\ ‰âXΩ– fiò

\�T �E ⌧⌧D �•Xå Xî ÉD ©\\ \‰. �| ‰¥⌧ |‹� ê–

\©, ¿¨� Ñ∞ pt0 Ñ�, pt0 §P ò¨, §l| \©\ p pt0 T

� Ò ‰âXΩt à‰. \ D§Mò| ‰⌅X0 ⌅XÏ ∞¨î Ñ∞ \�T

�ED ⌧⌧Xî »\¥)› ✏ |‹� ê–D \©Xî »\¥)›D ⌧H\

‰. ∞¨X \ D§Mò� π� ‰â XΩ– \�T⌧ 0t π⇠ ¿Ñ‰–

�L¥ 1• ⌧ D ⌧ıhD ‰ÿ ∞¸| µt Ù�‰.

¸î¥: Ñ∞ pt0 ò¨ ‹§\, 1• \�T, pt0<0 ê–

Yà: 2014-22685

99

	Chapter 1 Introduction
	Chapter 2 Background
	2.1 Optimization Policy Interfaces
	2.2 Transient Resources

	Chapter 3 Building Distributed Dataflow Optimization Policies
	3.1 Overview
	3.2 System Design
	3.2.1 Intermediate Representation
	3.2.2 Optimization Passes
	3.2.3 Runtime Extensions
	3.2.4 New Optimizations

	3.3 Implementation
	3.4 Experimental Evaluation
	3.4.1 Fine Control
	3.4.2 Composability
	3.4.3 Reusability

	3.5 Discussion
	3.6 Summary

	Chapter 4 Harnessing Transient Resources in Datacenters
	4.1 Overview
	4.2 System Design
	4.2.1 Design Overview
	4.2.2 Compiler
	4.2.3 Runtime

	4.3 Implementation
	4.4 Experimental Evaluation
	4.4.1 Experimental Setup
	4.4.2 Eviction Rate
	4.4.3 Ratio of Transient to Reserved Containers
	4.4.4 Scalability

	4.5 Discussion
	4.6 Summary

	Chapter 5 Related Work
	5.1 Dataflow Optimization Approaches
	5.2 Optimizing for Transient Resources

	Chapter 6 Conclusion and Future Directions
	6.1 Conclusion
	6.2 Future Directions
	6.2.1 Shared Resources
	6.2.2 New Hardware and Architectures

	Bibliography
	요약

<startpage>13
Chapter 1 Introduction 1
Chapter 2 Background 4
 2.1 Optimization Policy Interfaces 4
 2.2 Transient Resources 7
Chapter 3 Building Distributed Dataflow Optimization Policies 12
 3.1 Overview 12
 3.2 System Design 16
 3.2.1 Intermediate Representation 17
 3.2.2 Optimization Passes 21
 3.2.3 Runtime Extensions 27
 3.2.4 New Optimizations 29
 3.3 Implementation 30
 3.4 Experimental Evaluation 32
 3.4.1 Fine Control 32
 3.4.2 Composability 39
 3.4.3 Reusability 42
 3.5 Discussion 43
 3.6 Summary 43
Chapter 4 Harnessing Transient Resources in Datacenters 45
 4.1 Overview 45
 4.2 System Design 48
 4.2.1 Design Overview 48
 4.2.2 Compiler 53
 4.2.3 Runtime 59
 4.3 Implementation 65
 4.4 Experimental Evaluation 66
 4.4.1 Experimental Setup 66
 4.4.2 Eviction Rate 69
 4.4.3 Ratio of Transient to Reserved Containers 75
 4.4.4 Scalability 77
 4.5 Discussion 77
 4.6 Summary 79
Chapter 5 Related Work 81
 5.1 Dataflow Optimization Approaches 81
 5.2 Optimizing for Transient Resources 83
Chapter 6 Conclusion and Future Directions 85
 6.1 Conclusion 85
 6.2 Future Directions 85
 6.2.1 Shared Resources 85
 6.2.2 New Hardware and Architectures 86
Bibliography 89
요약 99
</body>

