

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학석사학위논문

세그먼트 교체 기법을 활용한 심층

강화학습 기반의 ABR 알고리즘

Deep Reinforcement Learning Based

ABR Algorithms

Using Segment Replacement Technique

2021년 2월

서울대학교 대학원

컴퓨터공학부

배형호

 i

Abstract

Deep Reinforcement Learning Based

ABR Algorithm

Using Segment Replacement

Technique

Hyeongho Bae

 Department of Computer Science & Engineering

The Graduate School

Seoul National University

Adaptive bitrate (ABR) algorithm is one of the representative techniques used

to optimize the playback quality of online video services, namely Quality of

Experience (QoE). So far, ABR algorithms based on various optimization

techniques have optimized QoE. However, most of the ABR algorithms

proposed to date have common limitations; the range of options for

optimization. Currently, most ABR algorithms only determine the bit rate of the

next segment for QoE optimization. This type of ABR algorithm can optimize

 ii

the bit rate of a segment to be downloaded in the future in a dynamic network

environment. However, it is not possible to optimize any segment previously

downloaded, so the changed network environment cannot be utilized to the

maximum.

To overcome this limitation, we propose LAWS, learning based ABR

algorithm with segment replacement. LAWS can be replaced with a better bit

rate, even for previously downloaded segments, in conditions such as an

improved network environment. First for this, we design a novel form of reward

for optimization, including segment replacement. Through this, QoE, the

optimization objective of the ABR algorithm, can be optimized in the form of

segment replacement. In addition, we propose a rule-based learning method to

solve the challenges arising in the model learning process. We finally propose

an ABR algorithm with segment replacement based on deep reinforcement

learning. Experiments based on network traces show that the newly proposed

technique has a QoE improvement of 13.1% compared to the existing ABR

techniques.

Keywords:

video streaming, adaptive bitrate algorithm, deep reinforcement learning,

rate control, segment replacement, DASH, optimization

Student number: 2019-20993

 iii

Contents

Abstract .. i

Contents ... iii

List of Figures .. v

List of Tables .. vi

Chapter I Introduction ... 1

Chapter II Related Work .. 4

2.1 DASH ... 4

2.2 Adaptive BitRate Algorithm ... 6

Chapter III Motivation and Approach ... 9

3.1 Motivation .. 9

3.2 Approach .. 11

Chapter IV Neural ABR algorithm with Segment Replacement 13

4.1 Action ... 15

4.2 State .. 15

4.3 Reward ... 18

4.4 Rule based learning .. 26

4.5 Implementation .. 27

Chapter V Experiments ... 28

5.1 Experiment Setup ... 28

 iv

5.2 Baselines .. 29

5.3 Comparison with Existing ABR algorithms 33

5.4 Analyze Replacement Characteristics .. 35

5.5 Comparison Between Learning Based Algorithms 35

Chapter VI Conclusion .. 37

Bibliography .. 38

국문초록 ... 43

 v

List of Figures

Figure 1. DASH end to end operation ... 5

Figure 2. Profiling the pilot experiment results on selected network traces . 10

Figure 3. Overview of LAWS ... 14

Figure 4. Comparing LAWS with existing ABR algorithms in three different

QoE metrics ... 31

Figure 5. Comparing LAWS with existing ABR algorithms on the individual

components in the general QoE definition .. 32

Figure 6. Comparing LAWS-single and LAWS in terms of average QoE of each

test trace .. 34

Figure 7. Final played bitrate of Pensieve and LAWS on selected network traces

 ... 36

 vi

List of Tables

Table 1. Notation ... 25

Table 2. QoE metrics ... 28

 1

Chapter I

Introduction

In recent years, the demand for video services has skyrocketed and the amount

of video traffic has grown to account for the majority of total mobile network

traffic [1]. According to [2], video content traffic is expected to grow to 80

percent of the total mobile traffic by 2022. To meet the demand for exploding

video services, network operators and service providers have been studying

various communication techniques to transmit video content [3, 4, 5]. In

addition to research on the transmission of video content, studies have been

actively conducted to improve video playback quality in the user’s network

environment [6, 7, 8, 9, 10]. Researches about the impact of video quality on

user behavior, such as video interruptions, further highlight the importance of

providing high video quality. [11, 12, 13, 14]

ABR algorithm is one of the representative techniques used to improve

video playback quality. To date, the proposed ABR algorithms dynamically

adjust the bitrate of the video segment to be downloaded using a number of

information, including the user's buffer level and network situation [6, 7, 8, 9,

10, 15, 16]. This allows users to download video segments with the quality of

video optimized for their network environment. To this end, algorithms based

on learning techniques [15, 16], or optimization control techniques such as

MPC [6], PID-like [17] have been proposed. However, existing ABR studies

 2

have focused a lot on optimization methods, but options for optimization are

limited. A technique such as [7] has been proposed to overcome the existing

limitations, but has a limitation in that it is a fixed rule type algorithm rather

than an optimization type.

In this study, we propose Learning based ABR algorithms With Segment

replacement, namely LAWS, to overcome the limitations of existing ABR

algorithms. First, we design a novel type of reward. reflecting segment

replacement. We also show that even if we transform problems into extended

forms, we can maintain the same purpose of the QoE maximization problem,

which is the goal of the ABR algorithm of existing video streaming. As the

segment replacement option is added, the complexity of the QoE problem

increases. Simply applying the deep reinforcement learning technique to these

problems raises many challenges, such as convergence and learning time. We

solve this by using a rule-based action limiting technique.

We evaluated the proposed method through network trace-based

experiments. In the experiment, we demonstrated that the performance

improved up to 13.1% in overall QoE than the existing DRL-based ABR

algorithm.

The key contributions of this paper are as follows:

• We propose a novel QoE objective function including the segment

replacement option. Through this, options for optimization can be

expanded while maintaining the existing objectives.

• We provide a solution to solve the problem of increased complexity in DRL.

It is possible to induce learning of the DRL model through the solution.

 3

• We provide diversified performance evaluation. This provides insight into

how segment replacement affects QoE optimization.

This paper is organized as follows. At the very beginning, we introduce

the background of ABR streaming and related research (§2). Next, we briefly

deal with the motivation of our idea and conduct a simple experiment to support

it. Along with this, we briefly mention the approach to solving the proposed

idea (§3). Next, we will discuss the detail of our proposed technique (§4). We

then evaluate the proposed algorithm in detail (§5). Finally, the conclusion of

the paper is described (§6).

 4

Chapter II

Related Work

ABR streaming is a de facto standard being used to optimize QoE [18, 19].

ABR algorithms are designed for different purposes. Even if the ABR algorithm

works on the client side, several tasks must be performed on the server side.

Section 2.1 addresses how servers and video contents are organized to enable

the ABR algorithm to operate. Section 2.2 then outlines the recently proposed

representative ABR algorithms, along with the objectives of the ABR algorithm.

2.1 DASH

There are many implementations that implement ABR streaming. Examples

include Adobe's HTTP dynamic streaming [31], Apple's HTTP live streaming

[32] and Microsoft's smooth streaming [33]. One of the most representative is

Dynamic Adaptive Streaming over HTTP (DASH) [21, 22, 23]. DASH is the

first ABR streaming technique in which international standardization took place.

Currently, many video streaming platforms use DASH, and it is also a standard

for research. Figure 1 shows the end to end of DASH. First of all, video content

is encoded in multiple bitrates and stored on the server side. At this point, one

video is stored divided into short-length (2s to 10s) videos called segments.

 5

Figure 1. DASH end to end operation

 6

Video content stored in this form provides users with the option to download

segments of bitrate optimized according to their network environment, buffer

level, etc. In the process of the user starting streaming the video, the user obtains

the video's information (segment length, capacity, etc.) through the Media

Presentation Description (MPD) file. Subsequently, the segments are

downloaded by determining the appropriate bitrate according to the ABR

algorithm that operates. This allows users to download segments optimized for

their network environments.

2.2 Adaptive BitRate Algorithm

2.2.1 Quality of Experience

Many ABR algorithms are designed with each objective. Although there are

various purposes, such as latency, bitrate, buffer level, etc., the most

representative object is QoE [18, 19]. QoE is made up of three elements: bitrate,

rebuffing time and smoothness (Equation 1). These are conflicting factors that

make the QoE optimization problem difficult. Downloading high bitrate

segment increases the likelihood of increasing the rebuffering time as it requires

a lot of network resources. Also, if bitrate differences from the previous

segment are caused by simply downloading bitrate only high, smoothness

penalty will increase. Also, if the bitrate of the segment to be downloaded this

time is too high, it may be difficult to reduce smoothness with the bitrate of the

segment to be downloaded next time. Also, downloading segments in the

direction of reducing rebuffering time does not always reduce smoothness

penalty, so optimizing these two factors at the same time becomes a difficult

 7

problem.

2.2.2 Adaptive BitRate algorithm

ABR algorithms optimize QoE through their own optimization techniques for

each purpose. The ABR algorithm should choose the optimal bitrate for the

dynamically changing user's network environment. Generally, ABR algorithms

are classified as follows, depending on the information and methods used to

determine the bitrate [23].

• Rate-based: ABR algorithms belonging to this classification determine

bitrates based on network throughput information [24, 25, 26]. ABR

algorithms in this category have the advantage of being able to respond to

network changes faster than buffer-based algorithms by directly utilizing

network information. However, the network situation is characterized by

dynamic change, which has the disadvantage of showing poor performance

if the reasoning in the network environment is wrong.

• Buffer-based: ABR algorithms belonging to this classification determine

the bitrate of the next segment through the buffer level and segment bitrate

information inside the buffer [7, 27, 28]. The logical background of these

techniques is the assumption that the network environment can be deduced

through the bitrate, segment size, etc. of the downloaded segment.

Algorithms in this category are generally simple to operate and have the

advantage of being able to use certain information. However, in the

beginning stage of video streaming, or if the buffer remains empty due to

video jump, there is a limitation that it cannot perform normal operation.

 8

• Hybrid: Each of the above two categories has pros and cons. This led to

the emergence of ABR algorithms that combine the two categories to take

advantage of both categories [6, 29, 30]. Recently, ABR algorithms using

machine learning techniques have emerged to improve performance for

QoE optimization [15]. In addition, techniques that can be used in

combination with the existing ABR algorithm have been proposed beyond

the simple bitrate determination algorithm. A prime example of this is the

fast switch [7] technique. After determining the bitrate to download, if

there is a segment with a lower bitrate in the buffer, it is replaced with the

bitrate you determined.

 9

Chapter III

Motivation and Approach

In this section we deal with the motives of our ideas and the approach to the

realization of our ideas. First we propose the motivation of the proposed idea.

Also, a pilot experiment is performed on selected network traces to provide an

experimental basis for motivation. Next, the approach to realizing the proposed

idea is briefly discussed.

3.1 Motivation

The final target that the ABR algorithm should optimize is QoE, which consists

of a combination of bitrate, rebuffering time and smoothness (Equation 1). QoE

is determined by the segment played. Most ABR algorithms optimize QoE by

determining only the next bitrate to download. However, in the case of such an

optimization, if the network environment changes suddenly, there is a limitation

that it is not possible to modify the previous selection. ABR techniques such as

[7] provide an option to replace previously downloaded segments (Replace the

lower bitrate segment than the bitrate you want to download if it is in the buffer.).

However, since it is operated by a fixed rule, not a result of optimization, it can

show a result of reducing QoE.

 10

(a) Final played bitrate of RobustMPC and Fast Switching

(b) Normalized Average QoE of RobustMPC and Fast Switching

Figure 2. Profiling the pilot experiment results on selected network traces

 11

Figure 2 shows a pilot experiment conducted to support this claim. As

shown in Figure 2, the experimental result performed on the selected network

trace suggests that the QoE may decrease by applying the fast switch technique.

To solve these problems, segment replacements should be performed

as a result of optimization by designing ABR algorithms, including the

replacement option in. Accordingly, we propose a new type of ABR algorithm,

LAWS, Learning based ABR algorithm with segment replacement. LAWS

perform segment replacement as a result of optimization. This ensures that

segment replacement is carried out in a way that maximizes QoE.

3.2 Approach

Most existing algorithms do not replace already downloaded segments with

better ones (which increase the QoS). This makes it possible to optimize QoE

simply by optimizing the bitrate of the next segment to be downloaded, because

the segments downloaded and played are the same.

However, if segment replacement is possible as we suggest in this

paper, challenges arise. First, it is necessary to design an objective function that

optimizes QoE while including the segment replacement option. Second, it is a

problem of finding an optimization technique to be applied to the designed

objective function. As the complexity of the problem increases compared to the

existing QoE optimization problem, the existing optimization techniques

cannot be used due to a time problem or a performance problem.

We solve this challenge by proposing an ABR algorithm based on deep

reinforcement learning that includes a segment replacement option in the action.

 12

The proposed ABR algorithm is learned in the form of optimizing QoE while

including segment replacement options in the optimization problem through

novelly designed rewards. In order to reduce the increased complexity of the

QoE optimization problem, an action limiting technique based on logically

constructed rules is used.

 13

Chapter IV

Neural ABR algorithm with Segment

Replacement

In this section we LAWS, Learning based ABR algorithm With Segment

replacement. As mentioned earlier, we design the ABR algorithm, including

segment replacement options, by applying deep reinforcement learning

techniques. Figure 3 shows the overview of LAWS. We describe the action of

LAWS in section 4.1. Unlike the existing DRL based ABR algorithm, segment

replacement is included as an action. Sufficient information must be given

through the state in order for a deep reinforcement learning model to take proper

action. We describe the states in Section 4.2. It also deals with the reasons set

as a state through analysis of their characteristics. Section 4.3 describes the

newly defined Rewards. This enables LAWS to ultimately optimize existing

QoE, even though it includes segment replacement options. Section 4.4

proposes a solution for solving the model convergence problem and the increase

in learning time caused by the increased problem complexity. Section 4.5

covers brief parameter settings with the DRL models used.

 14

Figure 3. Overview of LAWS

 15

4.1 Action

Action is one of the key elements of the DRL model. The action in the DRL

model is consistent with the object of optimization. Existing ABR algorithms

decide only the bitrate of the segment to download next (as an action at existing

DRL based ABR algorithm) to whether there is a difference in the optimization

method. As a result, ABR Algorithm simply has as many choices as the number

of bitrates, determines which bitrate it is thought to derive the optimal QoE, and

downloads segments. However, as described earlier, this has limitations in

dynamically responding to changes in the network environment. We thus define

an action in which the option to replace segments in buffers with segments with

better bitrate is added. The number of actions is equal to

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑏𝑖𝑡𝑟𝑎𝑡𝑒 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 × 𝑏𝑢𝑓𝑓𝑒𝑟 𝑠𝑖𝑧𝑒.

4.2 State

We apply the DRL technique as a method of realizing the proposed idea.

Models get information about their current situation through State. Therefore,

state, one of the key elements in DRL, is a factor that directly affects the

model’s reasoning ability. Providing all information that can be known from

the client side as a state of the model guarantees the maximum amount of

information. However, in our case, setting all information to state leads to the

increased state space, and an adverse effect can be generated such as

exploration and convergence of the model. In addition, a situation in which an

inference relationship with irrelevant information is learned may occur. Thus,

 16

we consider following six states as an essential information for learning our

model.

1). Current Buffer State

Because most of existing ABR algorithms do not consider replacement of

downloaded segments, these algorithms use buffer level and the quality of last

downloaded segment when making bitrate decision. However, LAWS can use

segment replacement to improve the quality of previously downloaded

segments by replacing them with higher bitrate segments. For this reason, it is

impossible to infer the smoothness if only last downloaded bitrate and buffer

level are provided as states. It is also important to know the bit rate of the

downloaded segment in the buffer so that our model can decide whether to

replacement the segment with a low bitrate or download a new segment. To

provide the quality of neighboring segment of last downloaded segment and

buffer information, we take the buffer itself (e.g., [300, 750, 1350, ..., 4300]) as

a state. This allows our model to obtain the information needed to decide action

and to infer expected reward.

2). Current buffer level

Providing the status of the buffer provide rough information about the buffer

level. However, by the buffer level itself, it is not possible to know how much

the first segment in the buffer has been played (Because only bitrate is provided

as information in). in order to provide complementary information of this, we

provide a playable time in the current buffer state.

 17

3). Segment Map

For simple download schemes (existing ABR algorithm), the decision can be

made through the information of the next segment. However, our model can

also download segments already in the buffer, so we have to provide a manifest

of them. Thus, we use segment map as a state. At this time, providing

information on all segments is a great burden on the inference and learning of

the model. we provide only segment information in buffer for replacement and

information on the future five segments for planning in a state.

4). Average Traffic

Network resources are one of the biggest limitations in video steaming. The

buffer based ABR algorithms make rough guesses about the network situation

with buffer status alone. However, segment replacement can create the same

buffer state in a completely different environment, and vice versa. In addition,

providing separate information about the network environment, even if a buffer

level is given, allows the model to better respond to the network environment.

To solve this problem, we use the average traffic per segment as state.

5). Average Download Time

Average traffic enables inference about the approximation network conditions.

However, because the download time is different for each segment, each

average shows a difference in the degree of quantization. In order to provide

information on this, we provide additional information on how many seconds

 18

each average was made, that is, the segment download time.

6). Number of remaining segments

The number of segments left in the future is one of the important factors that

tells the model how much to consider for the future. By providing this

information directly, we enable the model to consider how to plan for the future.

4.3 Reward

In DRL, the final objective of the learning agent is to maximize the expected

cumulative reward, E [∑ γtrt
∞

t=0] [34]. Therefore, in ABR algorithms using

DRL, QoE per segment is generally used as a reward. In general, QoE metric

used by MPC can be defined:

𝑄𝑜𝐸 = ∑ 𝑞(𝑅𝑛)

𝑁

𝑛=1

−  ∑ 𝑇𝑛

𝑁

𝑛=1

−  ∑|𝑞(𝑅𝑛+1) − 𝑞(𝑅𝑛)|

𝑁−1

𝑛=1

 (1)

As a result, the rewards of existing DRL based ABR algorithms such as

[15] take the following form. Where N represents the total segment number. Rn,

q(.), Tn denotes the bitrate of n-th segment, the utility function, and the

rebuffering time when playing the nth segment, respectively. The last term in the

above equation denotes the changes in video quality between two continuous

segments.  and  penalizes the rebuffering time and the smoothness,

respectively.

Rewardn = q(Rn) − Tn − kn (2)

 19

𝑘𝑛 = {
0 , 𝑛 = 1

|q(Rn+1) − q(Rn)|, 𝑛  1
 (3)

However, this type of reward cannot be used if replacement action is

added to action space. In order to accommodate the final optimization

objective with the existing QoE while considering the replacement option in

the Rewards, we have designed a new type of reward.

To match the final QoE with the cumulative reward of the replacement

model, we redefine a reward of d-th action as below:

Rewardd = qour(𝑅d) − αTd − βkour(𝑅d) (4)

Unlike LAWS, general ABR algorithms that only consider sequential

single download action per segment, the segment index is as same as the action

index. With the new type of Rewards, LAWS will eventually lead in the form

of optimizing QoE while including the replacement option. The basic idea is to

eliminate the QoE increment and decrease caused by previous downloads and

to reflect the QoE increment and decrease caused by segments of the new bitrate.

The notes used to prove this are organized in table 1.

1). Bitrate term, 𝑞𝑜𝑢𝑟(𝑅𝑑)

Our newly defined quality function is as follows:

𝑞𝑜𝑢𝑟(Rd) = {
𝑞(Rcount(d),trans(d)) − 𝑞(Rcount(d)−1,trans(d)), 𝑐𝑜𝑢𝑛𝑡(𝑑)= 1

𝑞(Rcount(d),trans(d)) , 𝑐𝑜𝑢𝑛𝑡(𝑑)  1
 (5)

It is demonstrated that the cumulative sum for 𝑞𝑜𝑢𝑟(𝑅𝑑) is equal to the

∑ 𝑞(𝑅𝑛)𝑁
𝑛=1 of QoE:

 20

∑ 𝑞𝑜𝑢𝑟(R𝑑) = 𝑞𝑜𝑢𝑟(R1) +

𝐷

𝑑=1

𝑞𝑜𝑢𝑟(R2) + ⋯ + 𝑞𝑜𝑢𝑟(R𝐷)

= 𝑞(R1,1) + 𝑞(R1,2) + ⋯ + 𝑞(R1,𝑡𝑜𝑡𝑎𝑙(1)) + ⋯ + 𝑞(𝑅𝑁,1)

+ 𝑞(R𝑁,𝑡𝑜𝑡𝑎𝑙(𝑁))

= ∑ ∑ 𝑞(

𝑡𝑜𝑡𝑎𝑙(𝑛)

𝑟𝑒=1

𝑁

𝑛=1

R𝑟𝑒,𝑛)

= ∑ 𝑞(R1,𝑛) + (−𝑞(R1,𝑛) + 𝑞(R2,𝑛)) + ⋯

𝑁

𝑛=1

+ (−𝑞(R𝑡𝑜𝑡𝑎𝑙(𝑛)−1,𝑛) + 𝑞(R𝑡𝑜𝑡𝑎𝑙(𝑛),𝑛))

= ∑ 𝑞(R𝑡𝑜𝑡𝑎𝑙(𝑛),𝑛)

𝑁

𝑛=1

(6)

2). Rebuffering Time, 𝑇𝑑

We define 𝑇𝑑 as the rebuffering time that occurred during the dth action. This

definition allows for the consideration of all the rebuffing times that occurred

during video playback due to two assumptions. The first assumption is that the

segment must be downloaded in order for it to play. The second is that

streaming is finished only after all segments have been downloaded. Because

of this, the rebuffering time that occurs while all segments are downloaded is

reflected in the reward.

 ∑ 𝑇𝑛

𝑁

𝑛=1

=  ∑ 𝑇𝑑

𝐷

𝑑=1

 (7)

 21

3). Smoothness term, 𝑘𝑜𝑢𝑟(𝑅𝑑)

Where segments are downloaded from existing ABR algorithms is always the

last part of the buffer. Therefore, in order for users to calculate smoothness

when downloading segments, they only need to calculate smoothness between

the segments downloaded this time and the segments downloaded just before.

But our algorithm is that the segment located in the middle of the segments can

be retransmission. Accordingly, careful form of reward design is required

depending on the replacement situation.

The Smoothness term of the Reward is defined as follows:

• Case 1. 𝑡𝑟𝑎𝑛𝑠(𝑑) = 1

This is the case for downloading the first segment in the process of starting

streaming. In this case, no smoothness penalty occurs.

𝑘𝑜𝑢𝑟(𝑅𝑑) = 0 (8)

• Case 2. 𝑡𝑟𝑎𝑛𝑠(𝑑) ≠ 1 𝑎𝑛𝑑 𝑐𝑜𝑢𝑛𝑡(𝑑) = 1

In this case, segments after the first are downloaded for the first time. In

this case, to calculate the smoothness penalty, we just need to calculate the

bit rate difference from the previous segment, so it will be defined as

follows:

𝑘𝑜𝑢𝑟(𝑅𝑑) = |𝑞(𝑅1,𝑛) − 𝑞(𝑅𝑛−1
𝑑)| (9)

• Case 3. 𝑡𝑟𝑎𝑛𝑠(𝑑) ≠ 1 𝑎𝑛𝑑 𝑐𝑜𝑢𝑛𝑡(𝑑) ≠ 1 𝑎𝑛𝑑 𝑖(𝑑) = 1

This is the first of the cases in which the downloaded segment is not the

first segment but has been replaced. However, this case deals with the case

in which the segment is located at the end of the buffer. Accordingly,

 22

smoothness is calculated only with the previous segment. In this case, the

smoothness penalty already calculated in Case 2 must be removed for the

calculation of new smoothness. The new calculation of smoothness with

the previous segment then results in the correct smoothness penalty.

𝑘𝑜𝑢𝑟(𝑅𝑑) = |𝑞(𝑅𝑐𝑜𝑢𝑛𝑡(𝑑),𝑡𝑟𝑎𝑛𝑠(𝑑)) − 𝑞(𝑅𝑡𝑟𝑎𝑛𝑠(𝑑)−1
𝑑)|

− |𝑞(𝑅𝑐𝑜𝑢𝑛𝑡(𝑑)−1,𝑡𝑟𝑎𝑛𝑠(𝑑)) − 𝑞(𝑅𝑡𝑟𝑎𝑛𝑠(𝑑)−1
𝑑)|

(10)

• Case 4. t𝑟𝑎𝑛𝑠(𝑑) ≠ 1 𝑎𝑛𝑑 𝑐𝑜𝑢𝑛𝑡(𝑑) ≠ 1 𝑎𝑛𝑑 𝑖(𝑑) ≠ 1

This case is similar to case 3, but the segment located in the middle of the

buffer rather than the end of the buffer is replaced. Accordingly, the

smoothness with the immediately preceding segment as well as with the

immediately preceding segment must be updated together.

𝑘𝑜𝑢𝑟(𝑅𝑑) = (|𝑞(𝑅𝑐𝑜𝑢𝑛𝑡(𝑑),𝑡𝑟𝑎𝑛𝑠(𝑑)) − 𝑞(𝑅𝑡𝑟𝑎𝑛𝑠(𝑑)−1
𝑑)|

− |𝑞(𝑅𝑐𝑜𝑢𝑛𝑡(𝑑)−1,𝑡𝑟𝑎𝑛𝑠(𝑑)) − 𝑞(𝑅𝑡𝑟𝑎𝑛𝑠(𝑑)−1
𝑑)|)

+ (|𝑞(𝑅𝑐𝑜𝑢𝑛𝑡(𝑑),𝑡𝑟𝑎𝑛𝑠(𝑑)) − 𝑞(𝑅𝑡𝑟𝑎𝑛𝑠(𝑑)+1
𝑑)|

− |𝑞(𝑅𝑐𝑜𝑢𝑛𝑡(𝑑)−1,𝑡𝑟𝑎𝑛𝑠(𝑑)) − 𝑞(𝑅𝑡𝑟𝑎𝑛𝑠(𝑑)+1
𝑑)|)

(11)

We show that our smoothness term is the same as the existing smoothness

term in the following ways. First, case 1 and case 2 are the same definitions as

the existing smoothness terms. For the sake of proof, case 3 occurs first and

case 4 occurs first can be considered separately.

• Case 3 occurred before case 4

Let's consider the first case 3 to occur. If case 3 occurred at the s-th

 23

action point, it is self-evident that it is the same as the existing

smoothness term of QoE because no replacement occurred until s-1

point. The s-th action will be given a reward of case 3.

𝑘𝑜𝑢𝑟(𝑅𝑠) = |𝑞(𝑅𝑐𝑜𝑢𝑛𝑡(𝑠),𝑡𝑟𝑎𝑛𝑠(𝑠)) − 𝑞(𝑅𝑡𝑟𝑎𝑛𝑠(𝑠)−1
𝑑)|

− |𝑞(𝑅𝑐𝑜𝑢𝑛𝑡(𝑠)−1,𝑡𝑟𝑎𝑛𝑠(𝑠)) − 𝑞(𝑅𝑡𝑟𝑎𝑛𝑠(𝑠)−1
𝑠)|

(12)

At this time, |𝑞(𝑅𝑐𝑜𝑢𝑛𝑡(𝑠)−1,𝑡𝑟𝑎𝑛𝑠(𝑠)) − 𝑞(𝑅𝑡𝑟𝑎𝑛𝑠(𝑠)−1
𝑠)| is the

smoothness penalty assigned when the currently replaced segment was

previously downloaded. On the other hand, |𝑞(𝑅𝑐𝑜𝑢𝑛𝑡(𝑠),𝑡𝑟𝑎𝑛𝑠(𝑠)) −

𝑞(𝑅𝑡𝑟𝑎𝑛𝑠(𝑠)−1
𝑑)| is a smoothness penalty caused by this replacement.

Accordingly, the action up to the point s has the same value as the

existing QoE smoothness term. Accordingly, even if case 3 or case 4

occurs again next, the smoothness penalty can be calculated as if case

3 or case 4 first occurred.

• Case 4 occurred before case 3

This can be also proved as in case 3. When case 4 first occurs,

|𝑞(𝑅𝑐𝑜𝑢𝑛𝑡(𝑑)−1,𝑡𝑟𝑎𝑛𝑠(𝑑)) − 𝑞(𝑅𝑡𝑟𝑎𝑛𝑠(𝑑)−1
𝑑)| is a penalty imposed for

smoothness with the segment immediately preceding it, and

|𝑞(𝑅𝑐𝑜𝑢𝑛𝑡(𝑑)−1,𝑡𝑟𝑎𝑛𝑠(𝑑)) − 𝑞(𝑅𝑡𝑟𝑎𝑛𝑠(𝑑)+1
𝑑)| is a penalty imposed for

smoothness with the immediately preceding segment. The terms

|𝑞(𝑅𝑐𝑜𝑢𝑛𝑡(𝑑),𝑡𝑟𝑎𝑛𝑠(𝑑)) − 𝑞(𝑅𝑡𝑟𝑎𝑛𝑠(𝑑)−1
𝑑)| and

 |𝑞(𝑅𝑐𝑜𝑢𝑛𝑡(𝑑),𝑡𝑟𝑎𝑛𝑠(𝑑)) − 𝑞(𝑅𝑡𝑟𝑎𝑛𝑠(𝑑)+1
𝑑)| are newly calculated

smoothness penalties, and as in case 3, the same result as the

 24

smoothness term of the existing QoE is calculated.

∑ 𝑘𝑜𝑢𝑟(𝑅𝑑)

𝐷

𝑑=1

= ∑|𝑞(𝑅𝑛+1) − 𝑞(𝑅𝑛)|

𝑁−1

𝑛=1

 (13)

 25

Table 1: Notation

Notation Explanation

𝑁 Total number of segments

𝑛 The position of the segment being played

𝐷 Total number of download actions

𝑑 Sequence of download actions

𝑅𝑛 Bitrate of the d-th played segment

𝑅𝑑 Bitrate of d-th downloaded segment

𝑅𝑛
𝑑 bitrate of n-th segment during d-th action (n≤d)

𝑅𝑠,𝑛 Bit rate when n-th segment is downloaded s times

𝑇𝑑
Rebuffering generated when the d-th download action is

performed

𝑇𝑛 Rebuffering time that occurs when the n-th segment is played

𝑞(∙) Utility function

α Penalty for rebuffering

β Penalty for smoothness

𝑖(𝑑)
Function indicating whether the segment downloaded at d-th

action is at the end of the buffer

𝑡𝑟𝑎𝑛𝑠(𝑑) Mapping function from action number to segment position

𝑐𝑜𝑢𝑛𝑡(𝑑)
A function that maps how many times the segment downloaded

in the d-th action has been replaced

𝑡𝑜𝑡𝑎𝑙(𝑛) Total number of times the n-th segment was downloaded

 26

4.4 Rule based learning

Our model can also re-download segments in buffers in the form of replacement.

However, enabling replacements in all cases without any limitations

significantly increases the complexity of the problem, causing problems in

performance and convergence. As a solution to these problems, we apply some

rules in learning and action.

• Do not replace with low bitrate.

Clearly, there may be cases where QoE can be improved by replacing

segments with low bitrate. However, this is because the model was

taught to download high bitrate first and then replace it with low

bitrate. We limit replacement to low bitrate to induce segment of low

bitrate to download first.

• If the model downloads segments that are not in the buffer, the latest

segments must be downloaded.

Our model doesn't skip segment downloads. That is, if the current

buffer contains up to the nth segment, the (n+1)-th segment must be

downloaded before the (n+2)-th segment.

• The two segments in front of the buffer are not replaced.

Finally, our model does not conduct replacement for the first two

segments of the buffer. This is a rule to induce learning in the form of

preventing rebuffering. If there is only one segment in the buffer,

rebuffering occurs when the download speed is later than the playback

speed of the segment. For the (n+1)-th segment to play, the nth

segment must be completed. In this situation, if the segment at the

 27

front of the buffer is replaced in the situation, rebuffering must occur.

If you replace the second segment in front of the buffer, the download

must be completed before the first chunk has finished playing, so

rebuffering will not occur. To do this, the download rate must be faster

than the playback rate, causing a case that adversely affects

smoothness and bitrate. Because of this, we limit the replacement of

the first two segments in the buffer.

4.5 Implementation

Recently, a number of DRL models have been proposed. As the DRL model

improves, it is possible to solve more complex and difficult problems. In the

case of Pensieve [15], an existing DRL-based ABR algorithm, the A3C [36]

model was used. Since there is no reason not to utilize the performance of the

recently developed DRL model, we train the ABR algorithm using the PPO

model [37]. Accordingly, it is necessary to additionally check whether the

increase or decrease in performance is caused by the improvement of the model

or by segment replacement (section 5.4).

 28

Chapter V

Experiments

In this section we evaluate LAWS and compare its performance to existing

ABR algorithms.

5.1 Experiment Setup

We evaluate our model using trace-driven simulation similar to Sabre [19]. We

used the ‘Envivio-Dash3’ video from DASH-264 JavaScript reference client

test page [35] for our experiments. This video is encoded using the

H.264/MPEG-4 codec at bitrates in {300, 750, 1200, 1850, 2850, 4300} kbps.

It has a total length of 193 seconds and is divided into 48 segments each

consisting of 4 seconds. We set the buffer size to 40s. We used a general QoE

metric used by MPC [6] described in equation 1. Also, we consider 𝑄𝑜𝐸𝐻𝐷

and 𝑄𝑜𝐸𝑙𝑜𝑔 by varying the utility function and rebuffer penalty. The exact

values used in QoE metrics are described in Table 2.

Table 2: QoE metrics

QoE Metric Utility Function q(∙) Rebuffer Penalty α

𝑄𝑜𝐸𝑙𝑖𝑛𝑒𝑎𝑟 𝑅 4.3

𝑄𝑜𝐸𝐻𝐷
0.3 → 1, 0.75 → 2, 1.2 → 3,

1.85 → 12, 2.85 → 15, 4.3 → 20
8

𝑄𝑜𝐸𝑙𝑜𝑔 log(𝑅/𝑅𝑚𝑖𝑛) 2.66

 29

We use 3G/HSDPA mobile dataset to evaluate our model. We choose 141 traces

from HSDPA dataset, which contain various mobility environments such as bus,

car, ferry, metro, train and tram. We did not consider the traces whose average

throughput is less than 0.2Mbps, and above 6Mbps. We use 65% of randomly

divided traces as training set and the remaining 35% of traces as test set.

5.2 Baselines

We compare the performance of LAWS with the following ABR algorithms.

• Buffer-Based [27]: Buffer-Based algorithm selects bitrates only based on

the buffer level. If the buffer level is below 5 seconds, it selects the lowest

bitrate. On the contrary, if the buffer level is above 15 seconds, it selects

the highest bitrate. In between, the linear function is used to select the

bitrate. We set a reservoir value as 5 seconds, and a cushion value as 10

seconds, as described in [27].

• Rated-Based [15]: Rate-Based algorithm predicts the future throughput

using the harmonic mean of the throughput for the past 5 segments. It

selects the highest bitrate that is below the predicted bandwidth.

• Robust-MPC [6]: MPC uses the classical model predictive model to

determine the next bitrate. In MPC, both buffer level and future

throughput prediction results are used for bitrate decision. Like RB,

future throughput is predicted using the harmonic mean of the past 5

segments. After it obtains a predicted throughput, it selects the next

bitrate that maximizes a QoE over a horizon of 5 future segments. In our

 30

evaluation, we use RobustMPC that reflects the prediction error.

• Pensieve [15]: Pensieve is a learning based ABR algorithm, which selects

bitrates through deep reinforcement learning.

 31

Figure 4. Comparing LAWS with existing ABR algorithms in three

different QoE metrics

 32

Figure 5. Comparing LAWS with existing ABR algorithms on the

individual components in the general QoE definition

 33

5.3 Comparison with Existing ABR algorithms

To evaluate the overall performance of LAWS, we first compared the

normalized average QoE of LAWS with existing ABR algorithms. We use the

average QoE per segment, thus the total QoE value is divided by the number of

segments in the video. As shown in figure 4, LAWS performs better than

existing ABR algorithms in all three different QoE metrics. For 𝑄𝑜𝐸𝑙𝑖𝑛𝑒𝑎𝑟, the

average QoE for LAWS is 33.6%, 13.1% higher than robustMPC and Pensieve,

respectively. In the case of 𝑄𝑜𝐸𝐻𝐷 and 𝑄𝑜𝐸𝑙𝑜𝑔 , the gap in performance

between LAWS and other ABR algorithms has narrowed. For 𝑄𝑜𝐸𝐻𝐷 which

prefers High Definition (HD) video, the average QoE for LAWS is 27.4%, 9.6%

higher than robustMPC and Pensieve, respectively. For 𝑄𝑜𝐸𝑙𝑜𝑔 which was

used by BOLA [28], the average QoE for LAWS is 17.6%, 3.3% higher than

robustMPC and Pensieve, respectively.

Next, we analyzed the impact of individual terms in general QoE

definitions. Figure 5 shows the average bitrate utility, rebuffering time, and

smoothness of each ABR algorithm. As shown, LAWS does not always achieve

best performance on every QoE terms. However, LAWS balance between QoE

terms through optimization.

 34

Figure 6. Comparing LAWS-single and LAWS in terms of average QoE

of each test trace

 35

5.4 Analyze Replacement Characteristics

Replacement has a positive effect on QoE due to multi-download chance of

each segment, but it also has an adverse effect that it increases the action space

and thus makes it difficult to explore and convergence of DRL model. To

analyze the replacement characteristics, we compared the average QoE of

LAWS and LAWS with no replacement (LAWS-single). Figure 6 shows the

average QoE of LAWS and LAWS-single on each test trace. As shown, LAWS

does not outperform LAWS-single on every test trace. Nevertheless,

normalized average QoE of LAWS shows 6.4% of improvement compared to

LAWS-single.

5.5 Comparison Between Learning Based Algorithms

To give additional perspective on the value of DRL model with segment

replacement action, we compared final played bitrate of two learning based

ABR algorithms, LAWS and Pensieve. As shown in figure 7, after replacement

happens at segment 5, the final bitrate of LAWS tends to follow the final bitrate

of Pensieve. However, if the network throughput increased after downloading

all segments with Pensieve algorithm, LAWS perform higher final played

bitrates of the segments at the end of the video than Pensieve, resulting

performance gain through bitrate utility.

 36

Figure 7. Final played bitrate of Pensieve and LAWS on selected network

traces

 37

Chapter VI

Conclusion

In this paper, we studied how to apply segment replacement option in ABR

algorithm for QoE optimization. It has been proven that even if the segment

replacement option is included in the ABR algorithm, the same results as the

existing QoE optimization problem can be achieved. We proposed an ABR

algorithm based on deep reinforcement learning, LAWS, by defining rewards

and actions including segment replacement options. The challenges that exist

in applying the deep reinforcement learning technique were solved using novel

techniques. We evaluated the proposed method by experimenting based on the

network trace. In the experimental results, it was confirmed that LAWS showed

better performance in QoE optimization when compared to the existing ABR

techniques.

We believe that the extension of the QoE problem that we have found

can be applied to better optimization solutions, thereby providing the basis for

research on improved ABR algorithms.

 38

Bibliography

[1] Live Streaming Statistics about Twitch and Facebook.

https://www.theverge.com/2020/1/9/21058907/ twitch-youtube-mixer-

facebook-live-streaming-numbers-growth-q4

[2] Cisco, “Cisco visual networking index: global mobile data traffic forecast

update, 2017–2022,” 2019.

[3] H. Xie, A. Boukerche, and A. A. Loureiro, “Mervs: A novel multi channel

error recovery video streaming protocol for vehicle ad hoc networks,”IEEE

Transactions on Vehicular Technology, vol. 65, no. 2, pp. 923–935,2015.

[4] S. Swetha an D. Raj, “Optimized video content delivery over 5g net-

works,” in 2017 2nd International Conference on Communication and

Electronics Systems (ICCES). IEEE, 2017, pp. 1000–1002

[5] K. Poularakis, G. Iosifidis, A. Argyriou, I. Koutsopoulos, and L. Tassiulas,

“Caching and operator cooperation policies for layered video content delivery,”

in IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on

Computer Communications. IEEE, 2016, pp. 1–9.

[6] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic approach

for dynamic adaptive video streaming over http,” in Proceedings of the 2015

ACM Conference on Special Interest Group on Data Communication,2015, pp.

325–338.

[7] K. Spiteri, R. Sitaraman, and D. Sparacio, “From theory to practice: Im-

proving bitrate adaptation in the dash reference player,” ACM Transactions on

 39

Multimedia Computing, Communications, and Applications (TOMM), vol. 15,

no. 2s, pp. 1–29, 2019.

[8] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and sta-

bility in http-based adaptive video streaming with festive,” in Proceedings of

the 8th international conference on Emerging networking experiments and

technologies, 2012, pp. 97–108.

[9] Y. Sun, X. Yin, J. Jiang, V. Sekar, F. Lin, N. Wang, T. Liu, and B. Sinopoli,

“Cs2p: Improving video bitrate selection and adaptation with data-driven

throughput prediction,” in Proceedings of the 2016 ACM SIGCOMM

Conference, 2016, pp. 272–285

[10] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, “A

buffer-based approach to rate adaptation: Evidence from a large video

streaming service,” in Proceedings of the 2014 ACM conference on SIG-

COMM, 2014, pp. 187–198

[11] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan,

and H. Zhang, “Understanding the impact of video quality on user engage-

ment,”ACM SIGCOMM Computer Communication Review, vol. 41, no. 4, pp.

362–373, 2011.

[12] F. Dobrian, A. Awan, D. Joseph, A. Ganjam, J. Zhan, V. Sekar, I. Stoica,

and H. Zhang, “Understanding the impact of video quality on user engagement,”

Communications of the ACM, vol. 56, no. 3, pp. 91–99, 2013.

[13] S. S. Krishnan and R. K. Sitaraman, “Video stream quality impacts viewer

behavior: inferring causality using quasi-experimental designs,” IEEE/ACM

Transactions on Networking, vol. 21, no. 6, pp. 2001–2014,2013.

 40

[14] M. Z. Shafiq, J. Erman, L. Ji, A. X. Liu, J. Pang, and J. Wang, “Understand-

ing the impact of network dynamics on mobile video user engagement,” ACM

SIGMETRICS Performance Evaluation Review, vol. 42, no. 1, pp.367–379,

2014.

[15] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video streaming

with pensieve,” in Proceedings of the Conference of the ACM Special Interest

Group on Data Communication, 2017, pp. 197–210.

[16] T. Huang, X. Yao, C. Wu, R.-X. Zhang, Z. Pang, and L. Sun, “Tiyuntsong:

A self-play reinforcement learning approach for abr video streaming,” in 2019

IEEE International Conference on Multimedia and Expo (ICME).

[17] Y. Qin, R. Jin, S. Hao, K. R. Pattipati, F. Qian, S. Sen, C. Yue, and B. Wang,

“A control theoretic approach to abr video streaming: A fresh look at pid-based

rate adaptation,” IEEE Transactions on Mobile Computing, 2019.

[18] Y. Xu, Y. Zhou, and D.-M. Chiu, “Analytical qoe model for bit-rate

switching in dynamic adaptive streaming systems,” IEEE Transactions on

Mobile Computing, vol. 13, no. 12, pp. 2734–2748, 2014.

[19] N. Barman and M. G. Martini, “Qoe modeling for http adaptive video

streaming–a survey and open challenges,” IEEE Access, vol. 7, pp. 30 831–30

859, 2019

[20] DASH Industry Forum Official Website. https://dashif.org/.

[21] Dash-Industry-Forum/dash.js,

https://github.com/Dash-Industry-Forum/dash.js.

[22] Thomas Stockhammer. 2011. Dynamic adaptive streaming over HTTP—

Standards and design principles. In Proceedings of the 2nd Annual ACM

 41

Conference on Multimedia Systems. ACM, 133–144.

[23] Z. Meng, J. Chen, Y. Guo, C. Sun, H. Hu, and M. Xu, “Pitree: Practical

implementation of abr algorithms using decision trees,” in Proceedings of the

27th ACM International Conference on Multimedia, 2019, pp. 2431–2439.

[24] Jiang, J., Sekar, V., and Zhang, H. Improving fairness, efficiency, and

stability in http-based adaptive video streaming with festive. In ACM CoNEXT

(2012), pp. 97–108.

[25] Li, Z., Zhu, X., Gahm, J., Pan, R., Hu, H., Begen, A. C., and Oran, D. Probe

and adapt: Rate adaptation for http video streaming at scale. IEEE Journal on

Selected Areas in Communications 32, 4 (2014), 719–733.

[26] Wang, C., Rizk, A., and Zink, M. Squad: A spectrum-based quality

adaptation for dynamic adaptive streaming over http. In ACM MMSys (2016)

[27] Huang, T.-Y., Johari, R., McKeown, N., Trunnell, M., and Watson, M. A

buffer-based approach to rate adaptation: Evidence from a large video

streaming service. In ACM SIGCOMM (2014).

[28] Spiteri, K., Urgaonkar, R., and Sitaraman, R. K. Bola: Near-optimal bitrate

adaptation for online videos. In IEEE INFOCOM (2016).

[29] De Cicco, L., Caldaralo, V., Palmisano, V., and Mascolo, S. Elastic: A

client side controller for dynamic adaptive streaming over http (dash). In IEEE

International Packet Video Workshop (2013)

[30] Yadav, P. K., Shafiei, A., and Ooi, W. T. Quetra: A queuing theory approach

to dash rate adaptation. In ACM MM (2017)

[31] Adobe HTTP Dynamic Streaming,

http://www.adobe.com/products/httpdynamicstreaming/

 42

[32] R. Pantos, W. May, “HTTP Live Streaming”, IETF draft,

http://tools.ietf.org/html/draft-pantos-http-live-streaming-07

[33] Microsoft Smooth Streaming,

http://www.iis.net/download/smoothstreaming

[34] R. S. Sutton, A. G. Barto. Reinforcement learning: An introduction. MIT

press. 2018.

[35] DASH Industry Form. 2016. Reference Client 2.4.0.

http://mediapm.edgesuite.net/dash/public/nightly/samples/dash-if-reference-

player/index.html. (2016).

[36] Mnih, Volodymyr, et al. “Asynchronous methods for deep reinforcement

learning.” International conference on machine learning. (2016)

[37] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg

Klimov, “Proximal Policy Optimization Algorithms”, ArXiv 2017,

arXiv:1707.06347v2, 2017.8

 43

국문초록

적응형 비트레이트 알고리즘은 온라인 비디오 서비스의 재생

품질, 즉 사용자 체감 품질을 올리기 위하여 사용되는 대표적 기술

중 하나이다. 지금까지 적응형 비트레이트 알고리즘은 다양한 최적

화 기법에 기반하여 사용자 체감 품질을 최적화하였다. 그러나 대부

분의 적응형 비트레이트 알고리즘은 공통된 한계점을 지닌다. 사용

자 체감 품질을 최적화하기 위해 단순히 다음으로 다운로드 해야하

는 세그먼트의 비트레이트만을 결정한다는 점이 그 한계점으로, 이

러한 유형에 속하는 적응형 비트레이트 알고리즘들은 변화하는 네

트워크 환경에 맞춰 앞으로 다운로드할 세그먼트의 비트레이트는

최적으로 조정할 수 있지만 이미 다운로드한 세그먼트에 대해선 어

떠한 최적화도 진행할 수 없다. 그렇기에 사용자의 네트워크 환경이

극단적으로 개선되더라도 이에 대한 활용도가 떨어진다.

이러한 한계점을 극복하기 위해 우리는 LAWS 기법, 학습 기

반의 세그먼트 교체 전략을 포함한 적응형 비트레이트 알고리즘, 을

제안한다. 제안 모델은 사용자의 네트워크 환경 등에 따라서 더 나

은 비트레이트로 세그먼트를 교체할 수 있다. 제안 기법을 실현하기

위해 우리는 새로운 형태의 리워드를 디자인한다. 이를 통해 제안

기법은 세그먼트 교체 전략을 포함한 형태로 사용자 체감 품질을

최적화할 수 있다. 또한 세그먼트 교체 전략을 포함함에 따라 증가

 44

하는 문제의 복잡도에 대응하기 위해 규칙 기반 행동 제약 기법을

사용하여 모델의 학습을 원하는 방향으로 유도한다. 우리는 최종적

으로 심층 강화학습 기반의 적응형 비트레이트 알고리즘을 제안한

다. 네트워크 트레이스를 기반으로 실시한 실험에서는 제안 기법이

기존의 기법들에 비해 사용자 체감 품질을 13.1%까지 개선시키는

것으로 확인됐다.

주요어: 비디오 스트리밍, 적응형 비트레이트 알고리즘, 심층 강화학습,

세그먼트 교체, DASH, 최적화, 전송 제어

학번: 2019-20993

	I. Introduction
	II. Related Work
	2.1 DASH
	2.2 Adaptive BitRate Algorithm

	III. Motivation and Approach
	3.1 Motivation
	3.2 Approach

	IV. Neural ABR algorithm with Segment Replacement
	4.1 Action
	4.2 State
	4.3 Reward
	4.4 Rule based learning
	4.5 Implementation

	V. Experiments
	5.1 Experiment Setup
	5.2 Baselines
	5.3 Comparison with Existing ABR algorithms
	5.4 Analyze Replacement Characteristics
	5.5 Comparison Between Learning Based Algorithms

	VI. Conclusion

<startpage>11
I. Introduction 1
II. Related Work 4
 2.1 DASH 4
 2.2 Adaptive BitRate Algorithm 6
III. Motivation and Approach 9
 3.1 Motivation 9
 3.2 Approach 11
IV. Neural ABR algorithm with Segment Replacement 13
 4.1 Action 15
 4.2 State 15
 4.3 Reward 18
 4.4 Rule based learning 26
 4.5 Implementation 27
V. Experiments 28
 5.1 Experiment Setup 28
 5.2 Baselines 29
 5.3 Comparison with Existing ABR algorithms 33
 5.4 Analyze Replacement Characteristics 35
 5.5 Comparison Between Learning Based Algorithms 35
VI. Conclusion 37
</body>

