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Abstract 

Deep Reinforcement Learning Based 

ABR Algorithm 

Using Segment Replacement 

Technique 

 

Hyeongho Bae 

  Department of Computer Science & Engineering 

The Graduate School 

Seoul National University 

 

Adaptive bitrate (ABR) algorithm is one of the representative techniques used 

to optimize the playback quality of online video services, namely Quality of 

Experience (QoE). So far, ABR algorithms based on various optimization 

techniques have optimized QoE. However, most of the ABR algorithms 

proposed to date have common limitations; the range of options for 

optimization. Currently, most ABR algorithms only determine the bit rate of the 

next segment for QoE optimization. This type of ABR algorithm can optimize 
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the bit rate of a segment to be downloaded in the future in a dynamic network 

environment. However, it is not possible to optimize any segment previously 

downloaded, so the changed network environment cannot be utilized to the 

maximum. 

To overcome this limitation, we propose LAWS, learning based ABR 

algorithm with segment replacement. LAWS can be replaced with a better bit 

rate, even for previously downloaded segments, in conditions such as an 

improved network environment. First for this, we design a novel form of reward 

for optimization, including segment replacement. Through this, QoE, the 

optimization objective of the ABR algorithm, can be optimized in the form of 

segment replacement. In addition, we propose a rule-based learning method to 

solve the challenges arising in the model learning process. We finally propose 

an ABR algorithm with segment replacement based on deep reinforcement 

learning. Experiments based on network traces show that the newly proposed 

technique has a QoE improvement of 13.1% compared to the existing ABR 

techniques. 
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Chapter I 

Introduction 

In recent years, the demand for video services has skyrocketed and the amount 

of video traffic has grown to account for the majority of total mobile network 

traffic [1]. According to [2], video content traffic is expected to grow to 80 

percent of the total mobile traffic by 2022. To meet the demand for exploding 

video services, network operators and service providers have been studying 

various communication techniques to transmit video content [3, 4, 5]. In 

addition to research on the transmission of video content, studies have been 

actively conducted to improve video playback quality in the user’s network 

environment [6, 7, 8, 9, 10]. Researches about the impact of video quality on 

user behavior, such as video interruptions, further highlight the importance of 

providing high video quality. [11, 12, 13, 14] 

ABR algorithm is one of the representative techniques used to improve 

video playback quality. To date, the proposed ABR algorithms dynamically 

adjust the bitrate of the video segment to be downloaded using a number of 

information, including the user's buffer level and network situation [6, 7, 8, 9, 

10, 15, 16]. This allows users to download video segments with the quality of 

video optimized for their network environment. To this end, algorithms based 

on learning techniques [15, 16], or optimization control techniques such as 

MPC [6], PID-like [17] have been proposed. However, existing ABR studies 
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have focused a lot on optimization methods, but options for optimization are 

limited. A technique such as [7] has been proposed to overcome the existing 

limitations, but has a limitation in that it is a fixed rule type algorithm rather 

than an optimization type. 

In this study, we propose Learning based ABR algorithms With Segment 

replacement, namely LAWS, to overcome the limitations of existing ABR 

algorithms. First, we design a novel type of reward. reflecting segment 

replacement. We also show that even if we transform problems into extended 

forms, we can maintain the same purpose of the QoE maximization problem, 

which is the goal of the ABR algorithm of existing video streaming. As the 

segment replacement option is added, the complexity of the QoE problem 

increases. Simply applying the deep reinforcement learning technique to these 

problems raises many challenges, such as convergence and learning time. We 

solve this by using a rule-based action limiting technique. 

We evaluated the proposed method through network trace-based 

experiments. In the experiment, we demonstrated that the performance 

improved up to 13.1% in overall QoE than the existing DRL-based ABR 

algorithm. 

The key contributions of this paper are as follows: 

• We propose a novel QoE objective function including the segment 

replacement option. Through this, options for optimization can be 

expanded while maintaining the existing objectives. 

• We provide a solution to solve the problem of increased complexity in DRL. 

It is possible to induce learning of the DRL model through the solution. 
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• We provide diversified performance evaluation. This provides insight into 

how segment replacement affects QoE optimization. 

 

This paper is organized as follows. At the very beginning, we introduce 

the background of ABR streaming and related research (§2). Next, we briefly 

deal with the motivation of our idea and conduct a simple experiment to support 

it. Along with this, we briefly mention the approach to solving the proposed 

idea (§3). Next, we will discuss the detail of our proposed technique (§4). We 

then evaluate the proposed algorithm in detail (§5). Finally, the conclusion of 

the paper is described (§6). 
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Chapter II 

Related Work 

ABR streaming is a de facto standard being used to optimize QoE [18, 19]. 

ABR algorithms are designed for different purposes. Even if the ABR algorithm 

works on the client side, several tasks must be performed on the server side. 

Section 2.1 addresses how servers and video contents are organized to enable 

the ABR algorithm to operate. Section 2.2 then outlines the recently proposed 

representative ABR algorithms, along with the objectives of the ABR algorithm. 

 

2.1 DASH 

There are many implementations that implement ABR streaming. Examples 

include Adobe's HTTP dynamic streaming [31], Apple's HTTP live streaming 

[32] and Microsoft's smooth streaming [33]. One of the most representative is 

Dynamic Adaptive Streaming over HTTP (DASH) [21, 22, 23]. DASH is the 

first ABR streaming technique in which international standardization took place. 

Currently, many video streaming platforms use DASH, and it is also a standard 

for research. Figure 1 shows the end to end of DASH. First of all, video content 

is encoded in multiple bitrates and stored on the server side. At this point, one 

video is stored divided into short-length (2s to 10s) videos called segments.  
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Figure 1. DASH end to end operation 

 

 

 

 

 

 

  



 6 

Video content stored in this form provides users with the option to download 

segments of bitrate optimized according to their network environment, buffer 

level, etc. In the process of the user starting streaming the video, the user obtains 

the video's information (segment length, capacity, etc.) through the Media 

Presentation Description (MPD) file. Subsequently, the segments are 

downloaded by determining the appropriate bitrate according to the ABR 

algorithm that operates. This allows users to download segments optimized for 

their network environments.  

 

2.2 Adaptive BitRate Algorithm 

2.2.1 Quality of Experience 

Many ABR algorithms are designed with each objective. Although there are 

various purposes, such as latency, bitrate, buffer level, etc., the most 

representative object is QoE [18, 19]. QoE is made up of three elements: bitrate, 

rebuffing time and smoothness (Equation 1). These are conflicting factors that 

make the QoE optimization problem difficult. Downloading high bitrate 

segment increases the likelihood of increasing the rebuffering time as it requires 

a lot of network resources. Also, if bitrate differences from the previous 

segment are caused by simply downloading bitrate only high, smoothness 

penalty will increase. Also, if the bitrate of the segment to be downloaded this 

time is too high, it may be difficult to reduce smoothness with the bitrate of the 

segment to be downloaded next time. Also, downloading segments in the 

direction of reducing rebuffering time does not always reduce smoothness 

penalty, so optimizing these two factors at the same time becomes a difficult 
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problem.  

 

2.2.2 Adaptive BitRate algorithm 

ABR algorithms optimize QoE through their own optimization techniques for 

each purpose. The ABR algorithm should choose the optimal bitrate for the 

dynamically changing user's network environment. Generally, ABR algorithms 

are classified as follows, depending on the information and methods used to 

determine the bitrate [23].  

• Rate-based: ABR algorithms belonging to this classification determine 

bitrates based on network throughput information [24, 25, 26]. ABR 

algorithms in this category have the advantage of being able to respond to 

network changes faster than buffer-based algorithms by directly utilizing 

network information. However, the network situation is characterized by 

dynamic change, which has the disadvantage of showing poor performance 

if the reasoning in the network environment is wrong. 

• Buffer-based: ABR algorithms belonging to this classification determine 

the bitrate of the next segment through the buffer level and segment bitrate 

information inside the buffer [7, 27, 28]. The logical background of these 

techniques is the assumption that the network environment can be deduced 

through the bitrate, segment size, etc. of the downloaded segment. 

Algorithms in this category are generally simple to operate and have the 

advantage of being able to use certain information. However, in the 

beginning stage of video streaming, or if the buffer remains empty due to 

video jump, there is a limitation that it cannot perform normal operation. 
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• Hybrid: Each of the above two categories has pros and cons. This led to 

the emergence of ABR algorithms that combine the two categories to take 

advantage of both categories [6, 29, 30]. Recently, ABR algorithms using 

machine learning techniques have emerged to improve performance for 

QoE optimization [15]. In addition, techniques that can be used in 

combination with the existing ABR algorithm have been proposed beyond 

the simple bitrate determination algorithm. A prime example of this is the 

fast switch [7] technique. After determining the bitrate to download, if 

there is a segment with a lower bitrate in the buffer, it is replaced with the 

bitrate you determined. 
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Chapter III 

Motivation and Approach 

In this section we deal with the motives of our ideas and the approach to the 

realization of our ideas. First we propose the motivation of the proposed idea. 

Also, a pilot experiment is performed on selected network traces to provide an 

experimental basis for motivation. Next, the approach to realizing the proposed 

idea is briefly discussed. 

 

3.1 Motivation 

The final target that the ABR algorithm should optimize is QoE, which consists 

of a combination of bitrate, rebuffering time and smoothness (Equation 1). QoE 

is determined by the segment played. Most ABR algorithms optimize QoE by 

determining only the next bitrate to download. However, in the case of such an 

optimization, if the network environment changes suddenly, there is a limitation 

that it is not possible to modify the previous selection. ABR techniques such as 

[7] provide an option to replace previously downloaded segments (Replace the 

lower bitrate segment than the bitrate you want to download if it is in the buffer.). 

However, since it is operated by a fixed rule, not a result of optimization, it can 

show a result of reducing QoE.  
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(a) Final played bitrate of RobustMPC and Fast Switching 

 

(b) Normalized Average QoE of RobustMPC and Fast Switching 

Figure 2. Profiling the pilot experiment results on selected network traces 
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Figure 2 shows a pilot experiment conducted to support this claim. As 

shown in Figure 2, the experimental result performed on the selected network 

trace suggests that the QoE may decrease by applying the fast switch technique.  

To solve these problems, segment replacements should be performed 

as a result of optimization by designing ABR algorithms, including the 

replacement option in. Accordingly, we propose a new type of ABR algorithm, 

LAWS, Learning based ABR algorithm with segment replacement. LAWS 

perform segment replacement as a result of optimization. This ensures that 

segment replacement is carried out in a way that maximizes QoE. 

 

3.2 Approach 

Most existing algorithms do not replace already downloaded segments with 

better ones (which increase the QoS). This makes it possible to optimize QoE 

simply by optimizing the bitrate of the next segment to be downloaded, because 

the segments downloaded and played are the same.  

However, if segment replacement is possible as we suggest in this 

paper, challenges arise. First, it is necessary to design an objective function that 

optimizes QoE while including the segment replacement option. Second, it is a 

problem of finding an optimization technique to be applied to the designed 

objective function. As the complexity of the problem increases compared to the 

existing QoE optimization problem, the existing optimization techniques 

cannot be used due to a time problem or a performance problem. 

We solve this challenge by proposing an ABR algorithm based on deep 

reinforcement learning that includes a segment replacement option in the action. 
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The proposed ABR algorithm is learned in the form of optimizing QoE while 

including segment replacement options in the optimization problem through 

novelly designed rewards. In order to reduce the increased complexity of the 

QoE optimization problem, an action limiting technique based on logically 

constructed rules is used. 
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Chapter IV 

Neural ABR algorithm with Segment 

Replacement 

In this section we LAWS, Learning based ABR algorithm With Segment 

replacement. As mentioned earlier, we design the ABR algorithm, including 

segment replacement options, by applying deep reinforcement learning 

techniques. Figure 3 shows the overview of LAWS. We describe the action of 

LAWS in section 4.1. Unlike the existing DRL based ABR algorithm, segment 

replacement is included as an action. Sufficient information must be given 

through the state in order for a deep reinforcement learning model to take proper 

action. We describe the states in Section 4.2. It also deals with the reasons set 

as a state through analysis of their characteristics. Section 4.3 describes the 

newly defined Rewards. This enables LAWS to ultimately optimize existing 

QoE, even though it includes segment replacement options. Section 4.4 

proposes a solution for solving the model convergence problem and the increase 

in learning time caused by the increased problem complexity. Section 4.5 

covers brief parameter settings with the DRL models used. 
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Figure 3. Overview of LAWS 
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4.1 Action 

Action is one of the key elements of the DRL model. The action in the DRL 

model is consistent with the object of optimization. Existing ABR algorithms 

decide only the bitrate of the segment to download next (as an action at existing 

DRL based ABR algorithm) to whether there is a difference in the optimization 

method. As a result, ABR Algorithm simply has as many choices as the number 

of bitrates, determines which bitrate it is thought to derive the optimal QoE, and 

downloads segments. However, as described earlier, this has limitations in 

dynamically responding to changes in the network environment. We thus define 

an action in which the option to replace segments in buffers with segments with 

better bitrate is added. The number of actions is equal to 

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑏𝑖𝑡𝑟𝑎𝑡𝑒 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 ×  𝑏𝑢𝑓𝑓𝑒𝑟 𝑠𝑖𝑧𝑒. 

 

4.2 State 

We apply the DRL technique as a method of realizing the proposed idea. 

Models get information about their current situation through State. Therefore, 

state, one of the key elements in DRL, is a factor that directly affects the 

model’s reasoning ability. Providing all information that can be known from 

the client side as a state of the model guarantees the maximum amount of 

information. However, in our case, setting all information to state leads to the 

increased state space, and an adverse effect can be generated such as 

exploration and convergence of the model. In addition, a situation in which an 

inference relationship with irrelevant information is learned may occur. Thus, 
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we consider following six states as an essential information for learning our 

model. 

 

1). Current Buffer State 

Because most of existing ABR algorithms do not consider replacement of 

downloaded segments, these algorithms use buffer level and the quality of last 

downloaded segment when making bitrate decision. However, LAWS can use 

segment replacement to improve the quality of previously downloaded 

segments by replacing them with higher bitrate segments. For this reason, it is 

impossible to infer the smoothness if only last downloaded bitrate and buffer 

level are provided as states. It is also important to know the bit rate of the 

downloaded segment in the buffer so that our model can decide whether to 

replacement the segment with a low bitrate or download a new segment. To 

provide the quality of neighboring segment of last downloaded segment and 

buffer information, we take the buffer itself (e.g., [300, 750, 1350, ..., 4300]) as 

a state. This allows our model to obtain the information needed to decide action 

and to infer expected reward. 

 

2). Current buffer level 

Providing the status of the buffer provide rough information about the buffer 

level. However, by the buffer level itself, it is not possible to know how much 

the first segment in the buffer has been played (Because only bitrate is provided 

as information in). in order to provide complementary information of this, we 

provide a playable time in the current buffer state. 
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3). Segment Map 

For simple download schemes (existing ABR algorithm), the decision can be 

made through the information of the next segment. However, our model can 

also download segments already in the buffer, so we have to provide a manifest 

of them. Thus, we use segment map as a state. At this time, providing 

information on all segments is a great burden on the inference and learning of 

the model. we provide only segment information in buffer for replacement and 

information on the future five segments for planning in a state. 

 

4). Average Traffic 

Network resources are one of the biggest limitations in video steaming. The 

buffer based ABR algorithms make rough guesses about the network situation 

with buffer status alone. However, segment replacement can create the same 

buffer state in a completely different environment, and vice versa. In addition, 

providing separate information about the network environment, even if a buffer 

level is given, allows the model to better respond to the network environment. 

To solve this problem, we use the average traffic per segment as state.  

 

5). Average Download Time 

Average traffic enables inference about the approximation network conditions. 

However, because the download time is different for each segment, each 

average shows a difference in the degree of quantization. In order to provide 

information on this, we provide additional information on how many seconds 
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each average was made, that is, the segment download time. 

 

6). Number of remaining segments 

The number of segments left in the future is one of the important factors that 

tells the model how much to consider for the future. By providing this 

information directly, we enable the model to consider how to plan for the future. 

 

4.3 Reward 

In DRL, the final objective of the learning agent is to maximize the expected 

cumulative reward, E [∑ γtrt
∞

t=0 ]  [34]. Therefore, in ABR algorithms using 

DRL, QoE per segment is generally used as a reward. In general, QoE metric 

used by MPC can be defined: 

𝑄𝑜𝐸 =  ∑ 𝑞(𝑅𝑛)

𝑁

𝑛=1

−   ∑ 𝑇𝑛

𝑁

𝑛=1

−  ∑|𝑞(𝑅𝑛+1) − 𝑞(𝑅𝑛)|

𝑁−1

𝑛=1

 (1) 

As a result, the rewards of existing DRL based ABR algorithms such as 

[15] take the following form. Where N represents the total segment number. Rn, 

q(.), Tn denotes the bitrate of n-th segment, the utility function, and the 

rebuffering time when playing the nth segment, respectively. The last term in the 

above equation denotes the changes in video quality between two continuous 

segments.    and   penalizes the rebuffering time and the smoothness, 

respectively. 

Rewardn = q(Rn) − Tn − kn (2) 
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𝑘𝑛 = {
0       ,    𝑛 = 1

|q(Rn+1) − q(Rn)|,    𝑛  1
 (3) 

However, this type of reward cannot be used if replacement action is 

added to action space.  In order to accommodate the final optimization 

objective with the existing QoE while considering the replacement option in 

the Rewards, we have designed a new type of reward. 

To match the final QoE with the cumulative reward of the replacement 

model, we redefine a reward of d-th action as below: 

Rewardd = qour(𝑅d) − αTd − βkour(𝑅d) (4) 

Unlike LAWS, general ABR algorithms that only consider sequential 

single download action per segment, the segment index is as same as the action 

index. With the new type of Rewards, LAWS will eventually lead in the form 

of optimizing QoE while including the replacement option. The basic idea is to 

eliminate the QoE increment and decrease caused by previous downloads and 

to reflect the QoE increment and decrease caused by segments of the new bitrate. 

The notes used to prove this are organized in table 1. 

 

1). Bitrate term, 𝑞𝑜𝑢𝑟(𝑅𝑑) 

Our newly defined quality function is as follows: 

𝑞𝑜𝑢𝑟(Rd) = {
𝑞(Rcount(d),trans(d)) − 𝑞(Rcount(d)−1,trans(d)), 𝑐𝑜𝑢𝑛𝑡(𝑑)= 1

𝑞(Rcount(d),trans(d))        , 𝑐𝑜𝑢𝑛𝑡(𝑑)  1
 (5) 

It is demonstrated that the cumulative sum for 𝑞𝑜𝑢𝑟(𝑅𝑑) is equal to the 

∑ 𝑞(𝑅𝑛)𝑁
𝑛=1  of QoE: 
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∑ 𝑞𝑜𝑢𝑟(R𝑑) = 𝑞𝑜𝑢𝑟(R1) +

𝐷

𝑑=1

𝑞𝑜𝑢𝑟(R2) + ⋯ + 𝑞𝑜𝑢𝑟(R𝐷)

= 𝑞(R1,1) + 𝑞(R1,2) + ⋯ + 𝑞(R1,𝑡𝑜𝑡𝑎𝑙(1)) + ⋯ + 𝑞(𝑅𝑁,1)   

+ 𝑞(R𝑁,𝑡𝑜𝑡𝑎𝑙(𝑁))     

= ∑ ∑ 𝑞(

𝑡𝑜𝑡𝑎𝑙(𝑛)

𝑟𝑒=1

𝑁

𝑛=1

R𝑟𝑒,𝑛)

= ∑ 𝑞(R1,𝑛) + (−𝑞(R1,𝑛) + 𝑞(R2,𝑛)) + ⋯

𝑁

𝑛=1

+ (−𝑞(R𝑡𝑜𝑡𝑎𝑙(𝑛)−1,𝑛) + 𝑞(R𝑡𝑜𝑡𝑎𝑙(𝑛),𝑛))

= ∑ 𝑞(R𝑡𝑜𝑡𝑎𝑙(𝑛),𝑛)

𝑁

𝑛=1

 

 

(6) 

 

2). Rebuffering Time, 𝑇𝑑 

We define 𝑇𝑑 as the rebuffering time that occurred during the dth action. This 

definition allows for the consideration of all the rebuffing times that occurred 

during video playback due to two assumptions. The first assumption is that the 

segment must be downloaded in order for it to play. The second is that 

streaming is finished only after all segments have been downloaded. Because 

of this, the rebuffering time that occurs while all segments are downloaded is 

reflected in the reward. 

 ∑ 𝑇𝑛

𝑁

𝑛=1

=  ∑ 𝑇𝑑

𝐷

𝑑=1

 (7) 
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3). Smoothness term, 𝑘𝑜𝑢𝑟(𝑅𝑑) 

Where segments are downloaded from existing ABR algorithms is always the 

last part of the buffer. Therefore, in order for users to calculate smoothness 

when downloading segments, they only need to calculate smoothness between 

the segments downloaded this time and the segments downloaded just before. 

But our algorithm is that the segment located in the middle of the segments can 

be retransmission. Accordingly, careful form of reward design is required 

depending on the replacement situation. 

The Smoothness term of the Reward is defined as follows: 

• Case 1. 𝑡𝑟𝑎𝑛𝑠(𝑑)  = 1 

This is the case for downloading the first segment in the process of starting 

streaming. In this case, no smoothness penalty occurs. 

𝑘𝑜𝑢𝑟(𝑅𝑑) = 0 (8) 

• Case 2. 𝑡𝑟𝑎𝑛𝑠(𝑑)  ≠  1 𝑎𝑛𝑑 𝑐𝑜𝑢𝑛𝑡(𝑑)  =  1 

In this case, segments after the first are downloaded for the first time. In 

this case, to calculate the smoothness penalty, we just need to calculate the 

bit rate difference from the previous segment, so it will be defined as 

follows: 

𝑘𝑜𝑢𝑟(𝑅𝑑) = |𝑞(𝑅1,𝑛) − 𝑞(𝑅𝑛−1
𝑑 )| (9) 

• Case 3. 𝑡𝑟𝑎𝑛𝑠(𝑑)  ≠  1 𝑎𝑛𝑑 𝑐𝑜𝑢𝑛𝑡(𝑑)  ≠  1 𝑎𝑛𝑑 𝑖(𝑑) = 1  

This is the first of the cases in which the downloaded segment is not the 

first segment but has been replaced. However, this case deals with the case 

in which the segment is located at the end of the buffer. Accordingly, 
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smoothness is calculated only with the previous segment. In this case, the 

smoothness penalty already calculated in Case 2 must be removed for the 

calculation of new smoothness. The new calculation of smoothness with 

the previous segment then results in the correct smoothness penalty. 

𝑘𝑜𝑢𝑟(𝑅𝑑) = |𝑞(𝑅𝑐𝑜𝑢𝑛𝑡(𝑑),𝑡𝑟𝑎𝑛𝑠(𝑑)) − 𝑞(𝑅𝑡𝑟𝑎𝑛𝑠(𝑑)−1
𝑑 )|       

− |𝑞(𝑅𝑐𝑜𝑢𝑛𝑡(𝑑)−1,𝑡𝑟𝑎𝑛𝑠(𝑑)) − 𝑞(𝑅𝑡𝑟𝑎𝑛𝑠(𝑑)−1
𝑑 )| 

(10) 

• Case 4. t𝑟𝑎𝑛𝑠(𝑑)  ≠  1 𝑎𝑛𝑑 𝑐𝑜𝑢𝑛𝑡(𝑑)  ≠  1 𝑎𝑛𝑑 𝑖(𝑑) ≠ 1  

This case is similar to case 3, but the segment located in the middle of the 

buffer rather than the end of the buffer is replaced. Accordingly, the 

smoothness with the immediately preceding segment as well as with the 

immediately preceding segment must be updated together. 

𝑘𝑜𝑢𝑟(𝑅𝑑) = (|𝑞(𝑅𝑐𝑜𝑢𝑛𝑡(𝑑),𝑡𝑟𝑎𝑛𝑠(𝑑)) − 𝑞(𝑅𝑡𝑟𝑎𝑛𝑠(𝑑)−1
𝑑 )|       

− |𝑞(𝑅𝑐𝑜𝑢𝑛𝑡(𝑑)−1,𝑡𝑟𝑎𝑛𝑠(𝑑)) − 𝑞(𝑅𝑡𝑟𝑎𝑛𝑠(𝑑)−1
𝑑 )|)

+ (|𝑞(𝑅𝑐𝑜𝑢𝑛𝑡(𝑑),𝑡𝑟𝑎𝑛𝑠(𝑑)) − 𝑞(𝑅𝑡𝑟𝑎𝑛𝑠(𝑑)+1
𝑑 )|

− |𝑞(𝑅𝑐𝑜𝑢𝑛𝑡(𝑑)−1,𝑡𝑟𝑎𝑛𝑠(𝑑)) − 𝑞(𝑅𝑡𝑟𝑎𝑛𝑠(𝑑)+1
𝑑 )|) 

(11) 

We show that our smoothness term is the same as the existing smoothness 

term in the following ways. First, case 1 and case 2 are the same definitions as 

the existing smoothness terms. For the sake of proof, case 3 occurs first and 

case 4 occurs first can be considered separately. 

• Case 3 occurred before case 4 

Let's consider the first case 3 to occur. If case 3 occurred at the s-th 
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action point, it is self-evident that it is the same as the existing 

smoothness term of QoE because no replacement occurred until s-1 

point. The s-th action will be given a reward of case 3.  

𝑘𝑜𝑢𝑟(𝑅𝑠) = |𝑞(𝑅𝑐𝑜𝑢𝑛𝑡(𝑠),𝑡𝑟𝑎𝑛𝑠(𝑠)) − 𝑞(𝑅𝑡𝑟𝑎𝑛𝑠(𝑠)−1
𝑑 )|       

− |𝑞(𝑅𝑐𝑜𝑢𝑛𝑡(𝑠)−1,𝑡𝑟𝑎𝑛𝑠(𝑠)) − 𝑞(𝑅𝑡𝑟𝑎𝑛𝑠(𝑠)−1
𝑠 )| 

(12) 

At this time, |𝑞(𝑅𝑐𝑜𝑢𝑛𝑡(𝑠)−1,𝑡𝑟𝑎𝑛𝑠(𝑠)) − 𝑞(𝑅𝑡𝑟𝑎𝑛𝑠(𝑠)−1
𝑠 )|  is the 

smoothness penalty assigned when the currently replaced segment was 

previously downloaded. On the other hand, |𝑞(𝑅𝑐𝑜𝑢𝑛𝑡(𝑠),𝑡𝑟𝑎𝑛𝑠(𝑠)) −

𝑞(𝑅𝑡𝑟𝑎𝑛𝑠(𝑠)−1
𝑑 )| is a smoothness penalty caused by this replacement. 

Accordingly, the action up to the point s has the same value as the 

existing QoE smoothness term. Accordingly, even if case 3 or case 4 

occurs again next, the smoothness penalty can be calculated as if case 

3 or case 4 first occurred. 

• Case 4 occurred before case 3 

This can be also proved as in case 3. When case 4 first occurs, 

|𝑞(𝑅𝑐𝑜𝑢𝑛𝑡(𝑑)−1,𝑡𝑟𝑎𝑛𝑠(𝑑)) − 𝑞(𝑅𝑡𝑟𝑎𝑛𝑠(𝑑)−1
𝑑 )| is a penalty imposed for 

smoothness with the segment immediately preceding it, and 

|𝑞(𝑅𝑐𝑜𝑢𝑛𝑡(𝑑)−1,𝑡𝑟𝑎𝑛𝑠(𝑑)) − 𝑞(𝑅𝑡𝑟𝑎𝑛𝑠(𝑑)+1
𝑑 )| is a penalty imposed for 

smoothness with the immediately preceding segment. The terms 

|𝑞(𝑅𝑐𝑜𝑢𝑛𝑡(𝑑),𝑡𝑟𝑎𝑛𝑠(𝑑)) − 𝑞(𝑅𝑡𝑟𝑎𝑛𝑠(𝑑)−1
𝑑 )|  and 

 |𝑞(𝑅𝑐𝑜𝑢𝑛𝑡(𝑑),𝑡𝑟𝑎𝑛𝑠(𝑑)) − 𝑞(𝑅𝑡𝑟𝑎𝑛𝑠(𝑑)+1
𝑑 )|  are newly calculated 

smoothness penalties, and as in case 3, the same result as the 
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smoothness term of the existing QoE is calculated. 

∑ 𝑘𝑜𝑢𝑟(𝑅𝑑)

𝐷

𝑑=1

= ∑|𝑞(𝑅𝑛+1) − 𝑞(𝑅𝑛)|

𝑁−1

𝑛=1

 (13) 
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Table 1: Notation 

Notation Explanation 

𝑁 Total number of segments 

𝑛 The position of the segment being played 

𝐷 Total number of download actions 

𝑑 Sequence of download actions 

𝑅𝑛 Bitrate of the d-th played segment 

𝑅𝑑 Bitrate of d-th downloaded segment 

𝑅𝑛
𝑑 bitrate of n-th segment during d-th action (n≤d) 

𝑅𝑠,𝑛 Bit rate when n-th segment is downloaded s times 

𝑇𝑑 
Rebuffering generated when the d-th download action is 

performed 

𝑇𝑛 Rebuffering time that occurs when the n-th segment is played 

𝑞(∙) Utility function 

α Penalty for rebuffering 

β Penalty for smoothness 

𝑖(𝑑) 
Function indicating whether the segment downloaded at d-th 

action is at the end of the buffer 

𝑡𝑟𝑎𝑛𝑠(𝑑) Mapping function from action number to segment position 

𝑐𝑜𝑢𝑛𝑡(𝑑) 
A function that maps how many times the segment downloaded 

in the d-th action has been replaced 

𝑡𝑜𝑡𝑎𝑙(𝑛) Total number of times the n-th segment was downloaded 
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4.4 Rule based learning 

Our model can also re-download segments in buffers in the form of replacement. 

However, enabling replacements in all cases without any limitations 

significantly increases the complexity of the problem, causing problems in 

performance and convergence. As a solution to these problems, we apply some 

rules in learning and action. 

• Do not replace with low bitrate. 

Clearly, there may be cases where QoE can be improved by replacing 

segments with low bitrate. However, this is because the model was 

taught to download high bitrate first and then replace it with low 

bitrate. We limit replacement to low bitrate to induce segment of low 

bitrate to download first.  

• If the model downloads segments that are not in the buffer, the latest 

segments must be downloaded. 

Our model doesn't skip segment downloads. That is, if the current 

buffer contains up to the nth segment, the (n+1)-th segment must be 

downloaded before the (n+2)-th segment. 

• The two segments in front of the buffer are not replaced. 

Finally, our model does not conduct replacement for the first two 

segments of the buffer. This is a rule to induce learning in the form of 

preventing rebuffering. If there is only one segment in the buffer, 

rebuffering occurs when the download speed is later than the playback 

speed of the segment. For the (n+1)-th segment to play, the nth 

segment must be completed. In this situation, if the segment at the 
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front of the buffer is replaced in the situation, rebuffering must occur. 

If you replace the second segment in front of the buffer, the download 

must be completed before the first chunk has finished playing, so 

rebuffering will not occur. To do this, the download rate must be faster 

than the playback rate, causing a case that adversely affects 

smoothness and bitrate. Because of this, we limit the replacement of 

the first two segments in the buffer. 

 

4.5 Implementation 

Recently, a number of DRL models have been proposed. As the DRL model 

improves, it is possible to solve more complex and difficult problems. In the 

case of Pensieve [15], an existing DRL-based ABR algorithm, the A3C [36] 

model was used. Since there is no reason not to utilize the performance of the 

recently developed DRL model, we train the ABR algorithm using the PPO 

model [37]. Accordingly, it is necessary to additionally check whether the 

increase or decrease in performance is caused by the improvement of the model 

or by segment replacement (section 5.4). 
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Chapter V 

Experiments 

In this section we evaluate LAWS and compare its performance to existing 

ABR algorithms.  

 

5.1 Experiment Setup 

We evaluate our model using trace-driven simulation similar to Sabre [19]. We 

used the ‘Envivio-Dash3’ video from DASH-264 JavaScript reference client 

test page [35] for our experiments. This video is encoded using the 

H.264/MPEG-4 codec at bitrates in {300, 750, 1200, 1850, 2850, 4300} kbps. 

It has a total length of 193 seconds and is divided into 48 segments each 

consisting of 4 seconds. We set the buffer size to 40s. We used a general QoE 

metric used by MPC [6] described in equation 1. Also, we consider 𝑄𝑜𝐸𝐻𝐷 

and 𝑄𝑜𝐸𝑙𝑜𝑔  by varying the utility function and rebuffer penalty. The exact 

values used in QoE metrics are described in Table 2.  

Table 2: QoE metrics 

QoE Metric Utility Function q(∙) Rebuffer Penalty α 

𝑄𝑜𝐸𝑙𝑖𝑛𝑒𝑎𝑟 𝑅 4.3 

𝑄𝑜𝐸𝐻𝐷 
0.3 → 1, 0.75 → 2, 1.2 → 3, 

1.85 → 12, 2.85 → 15, 4.3 → 20 
8 

𝑄𝑜𝐸𝑙𝑜𝑔 log(𝑅/𝑅𝑚𝑖𝑛) 2.66 
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We use 3G/HSDPA mobile dataset to evaluate our model. We choose 141 traces 

from HSDPA dataset, which contain various mobility environments such as bus, 

car, ferry, metro, train and tram. We did not consider the traces whose average 

throughput is less than 0.2Mbps, and above 6Mbps. We use 65% of randomly 

divided traces as training set and the remaining 35% of traces as test set. 

 

5.2 Baselines 

We compare the performance of LAWS with the following ABR algorithms. 

• Buffer-Based [27]: Buffer-Based algorithm selects bitrates only based on 

the buffer level. If the buffer level is below 5 seconds, it selects the lowest 

bitrate. On the contrary, if the buffer level is above 15 seconds, it selects 

the highest bitrate. In between, the linear function is used to select the 

bitrate. We set a reservoir value as 5 seconds, and a cushion value as 10 

seconds, as described in [27]. 

• Rated-Based [15]: Rate-Based algorithm predicts the future throughput 

using the harmonic mean of the throughput for the past 5 segments. It 

selects the highest bitrate that is below the predicted bandwidth. 

• Robust-MPC [6]: MPC uses the classical model predictive model to 

determine the next bitrate. In MPC, both buffer level and future 

throughput prediction results are used for bitrate decision. Like RB, 

future throughput is predicted using the harmonic mean of the past 5 

segments. After it obtains a predicted throughput, it selects the next 

bitrate that maximizes a QoE over a horizon of 5 future segments. In our 
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evaluation, we use RobustMPC that reflects the prediction error. 

• Pensieve [15]: Pensieve is a learning based ABR algorithm, which selects 

bitrates through deep reinforcement learning.  
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Figure 4. Comparing LAWS with existing ABR algorithms in three 

different QoE metrics 
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Figure 5. Comparing LAWS with existing ABR algorithms on the 

individual components in the general QoE definition 
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5.3 Comparison with Existing ABR algorithms 

To evaluate the overall performance of LAWS, we first compared the 

normalized average QoE of LAWS with existing ABR algorithms. We use the 

average QoE per segment, thus the total QoE value is divided by the number of 

segments in the video. As shown in figure 4, LAWS performs better than 

existing ABR algorithms in all three different QoE metrics. For 𝑄𝑜𝐸𝑙𝑖𝑛𝑒𝑎𝑟, the 

average QoE for LAWS is 33.6%, 13.1% higher than robustMPC and Pensieve, 

respectively. In the case of 𝑄𝑜𝐸𝐻𝐷  and 𝑄𝑜𝐸𝑙𝑜𝑔 , the gap in performance 

between LAWS and other ABR algorithms has narrowed. For 𝑄𝑜𝐸𝐻𝐷 which 

prefers High Definition (HD) video, the average QoE for LAWS is 27.4%, 9.6% 

higher than robustMPC and Pensieve, respectively. For 𝑄𝑜𝐸𝑙𝑜𝑔  which was 

used by BOLA [28], the average QoE for LAWS is 17.6%, 3.3% higher than 

robustMPC and Pensieve, respectively. 

Next, we analyzed the impact of individual terms in general QoE 

definitions. Figure 5 shows the average bitrate utility, rebuffering time, and 

smoothness of each ABR algorithm. As shown, LAWS does not always achieve 

best performance on every QoE terms. However, LAWS balance between QoE 

terms through optimization.  
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Figure 6. Comparing LAWS-single and LAWS in terms of average QoE 

of each test trace 
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5.4 Analyze Replacement Characteristics 

Replacement has a positive effect on QoE due to multi-download chance of 

each segment, but it also has an adverse effect that it increases the action space 

and thus makes it difficult to explore and convergence of DRL model. To 

analyze the replacement characteristics, we compared the average QoE of 

LAWS and LAWS with no replacement (LAWS-single). Figure 6 shows the 

average QoE of LAWS and LAWS-single on each test trace. As shown, LAWS 

does not outperform LAWS-single on every test trace. Nevertheless, 

normalized average QoE of LAWS shows 6.4% of improvement compared to 

LAWS-single. 

 

5.5 Comparison Between Learning Based Algorithms 

To give additional perspective on the value of DRL model with segment 

replacement action, we compared final played bitrate of two learning based 

ABR algorithms, LAWS and Pensieve. As shown in figure 7, after replacement 

happens at segment 5, the final bitrate of LAWS tends to follow the final bitrate 

of Pensieve. However, if the network throughput increased after downloading 

all segments with Pensieve algorithm, LAWS perform higher final played 

bitrates of the segments at the end of the video than Pensieve, resulting 

performance gain through bitrate utility. 

 

  



 36 

 

 

 

 

 

 

 

Figure 7. Final played bitrate of Pensieve and LAWS on selected network 

traces 
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Chapter VI 

Conclusion 

In this paper, we studied how to apply segment replacement option in ABR 

algorithm for QoE optimization. It has been proven that even if the segment 

replacement option is included in the ABR algorithm, the same results as the 

existing QoE optimization problem can be achieved. We proposed an ABR 

algorithm based on deep reinforcement learning, LAWS, by defining rewards 

and actions including segment replacement options. The challenges that exist 

in applying the deep reinforcement learning technique were solved using novel 

techniques. We evaluated the proposed method by experimenting based on the 

network trace. In the experimental results, it was confirmed that LAWS showed 

better performance in QoE optimization when compared to the existing ABR 

techniques. 

We believe that the extension of the QoE problem that we have found 

can be applied to better optimization solutions, thereby providing the basis for 

research on improved ABR algorithms. 
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국문초록 

 

적응형 비트레이트 알고리즘은 온라인 비디오 서비스의 재생 

품질, 즉 사용자 체감 품질을 올리기 위하여 사용되는 대표적 기술 

중 하나이다. 지금까지 적응형 비트레이트 알고리즘은 다양한 최적

화 기법에 기반하여 사용자 체감 품질을 최적화하였다. 그러나 대부

분의 적응형 비트레이트 알고리즘은 공통된 한계점을 지닌다. 사용

자 체감 품질을 최적화하기 위해 단순히 다음으로 다운로드 해야하

는 세그먼트의 비트레이트만을 결정한다는 점이 그 한계점으로, 이

러한 유형에 속하는 적응형 비트레이트 알고리즘들은 변화하는 네

트워크 환경에 맞춰 앞으로 다운로드할 세그먼트의 비트레이트는 

최적으로 조정할 수 있지만 이미 다운로드한 세그먼트에 대해선 어

떠한 최적화도 진행할 수 없다. 그렇기에 사용자의 네트워크 환경이 

극단적으로 개선되더라도 이에 대한 활용도가 떨어진다. 

이러한 한계점을 극복하기 위해 우리는 LAWS 기법, 학습 기

반의 세그먼트 교체 전략을 포함한 적응형 비트레이트 알고리즘, 을 

제안한다. 제안 모델은 사용자의 네트워크 환경 등에 따라서 더 나

은 비트레이트로 세그먼트를 교체할 수 있다. 제안 기법을 실현하기 

위해 우리는 새로운 형태의 리워드를 디자인한다. 이를 통해 제안 

기법은 세그먼트 교체 전략을 포함한 형태로 사용자 체감 품질을 

최적화할 수 있다. 또한 세그먼트 교체 전략을 포함함에 따라 증가



 44 

하는 문제의 복잡도에 대응하기 위해 규칙 기반 행동 제약 기법을 

사용하여 모델의 학습을 원하는 방향으로 유도한다. 우리는 최종적

으로 심층 강화학습 기반의 적응형 비트레이트 알고리즘을 제안한

다. 네트워크 트레이스를 기반으로 실시한 실험에서는 제안 기법이 

기존의 기법들에 비해 사용자 체감 품질을 13.1%까지 개선시키는 

것으로 확인됐다.  
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