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Abstract

Previous studies reported various computational drug representation methods for

predicting drug-drug interactions to avoid side effects induced by taking multiple drugs

together. Proteins as targets, enzymes, transporters and carriers cause interactions and

thus are used as a feature for the drug representation. However, previous drug repre-

sentation methods do not extract enough information to predict drug interactions and

are limited only to detect interactions between two drugs but not a quantification of

interactions. This paper presents a novel Drug Graph Completion (DGC) for (1) an

improved drug representation and (2) a prediction of quantifying drug interactions.

DGC is the model well-suitable for predicting an increase or decrease (quantification)

of drug interactions by reflecting drug-protein relations. This model consists of Graph

Neural Network (GNN) and Knowledge Graph Completion (KGC) act as encoder-

decoder, respectively. First, Graph Attention Network, one of GNN, generates drug

vectors by assigning different importance between neighbor nodes such that a node

affecting interactions receives a higher attention value. Second, the Knowledge Graph

Completion (KGC) method, one of the link prediction models, is applied to quantify

drug interactions increasing or decreasing. KGC predicts by calculating the validity

of triple, consisting of two drug vectors and a vector representing an amount of their

interaction. Experimental results demonstrate significant predictive accuracy improve-

ment compared to previous drug-drug interaction prediction methods and the KGC

and GNN model. In addition, the validation results show that our model successfully

predicts the quantification of drug interactions.

keywords: Graph Neural Network, Knowledge Graph Completion, Drug Drug

Interaction

student number: 2019-22256
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Chapter 1

Introduction

Drug-drug interaction (DDI) refers to the unexpected symptoms, or side effects, of

taking two different drugs together. Drug interactions are divided into two groups,

pharmacokinetic (PK) and pharmacodynamic (PD), and we mainly focused on PK

interactions in this study. PK is the body’s response to a drug, which includes absorp-

tion, distribution, metabolism, and excretion (ADME). Cytochrome P450 (CYP450)

enzymes are essential for the metabolism of many drugs, and they can be inhibited,

induced or substrated by drugs. Co-administering two drugs (one for an inhibitor and

another for a substrate of the enzyme) result in clinically significant drug-drug interac-

tions that can cause unanticipated adverse reactions or therapeutic failures. Drug inter-

actions can be inferred by a change in the concentration of the drugs. In other words,

the amount of variation in the serum concentration detects interactions. In general, in-

hibition of drug metabolism elevates concentrations whereas induction decreases the

concentration.

The increasing number of approved drugs has made drug interactions more likely,

especially for patients taking multiple drugs, such as cancer patients. The unexpected

side effects caused by DDIs are hazardous (may lead to deaths) and significantly in-

crease healthcare costs. Therefore, DDI studies have always attracted much attention

to drug safety and healthcare management [1]. Existing DDI studies have focused on
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metabolic profile tests such as CYP450 or transporter-associated pharmacokinetic in-

teraction [2]. However, a limitation of DDI research based on experimental approach

such as insufficient experimental data, high cost of research, long time required, con-

sideration of animal protection, etc., is a major obstacle in the drug development phase

[3]. In that sense, various computational methods has been proposed than simula-

tion methods. Simulation methods represented by PBPK study required mathematical

equations to describe ADME’s properties resulting in numerous parameters and thus

longer time for the analyses. [4, 5].

Several computational methods such as similarity-based, network-based, matrix

factorization-based, and Graph Neural Network-based approaches were proposed to

predict DDI. First, the similarity-based approach [6, 2, 7, 8, 9] assumes that two sim-

ilar drugs interact. Second, the network-based approach [10, 11] calculates similari-

ties such as common neighbor, Adamic-Adar, Resource Allocation and Katz similar-

ity in the network adjacency matrix. Third, the matrix factorization-based approach

[12, 13, 14] decompose the adjacency matrix and reconstruct the adjacency matrix to

identify novel DDIs. Finally, there are several methods using Graph Neural Networks

(GNN). [15] use Graph Convolutional Network to represent molecular graph struc-

tures. [16] model each drug as a node in the drug association network and extend the

Graph Convolutional Networks (GCN) to embed features such as DDIs, side effects

and chemical structures. Recent studies also adopted Knowledge Graph (KG) for a

DDI prediction. [17] proposes a method to obtain the rich neighborhood information

of each entity in KG by learning from the neighborhoods for each entity as their lo-

cal receptive and integrating neighborhood information with bias from representing

the current entity. However, these aforementioned approaches accomplished a limited

success as they could only predict an existence of interactions while the amount of

interactions was not quantified.

Recently, new methods are proposed to predict an interaction more specifically.

[18] provide fine-grained descriptions including drug-drug interaction mechanism and
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Figure 1.1: (a) Link prediction process; the encoder generates both entity and relation

embeddings and decoder returns score to determine whether the triple is valid. (b) Sub-

graph of a Knowledge Graph contains actual relations between entities (solid lines) and

inferred relations that are initially hidden (dashed lines) (example of increase case). A

triple example of this subgraph is as follows: (Imatinib, inhibitor, CYP2D6)

action using pathway, substructure, target and enzyme. Also, [19] presents complex

relationships of drug interactions by providing side effects. These methods still have

some limitations. Although [18] predicts various DDIs, their prediction is not based

on the underlying mechanism of DDIs and not focused on the amount of serum con-

centration increasing or decreasing. Both of them use proteins as features; they only

consider drug-protein relation as a binary outcome - exist or not.

With all these limitations noted, in this study, we propose and demonstrate a GNN

based Knowledge Graph Completion (KGC) model, DGC (Drug Graph Completion),

the model for predicting an increase/decrease of DDIs based on drug-protein relations.

Estimating an amount of DDIs (increase/decrease) is essential to optimizing patient

care, setting up drug doses and finding drug resistance in a polypharmacy environment.

We construct a graph with drugs, proteins and their interactions and then embed nodes

and relations using the Graph Attention Network (GAT), a GNN model. Then KGC
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calculates a score of how valid the triple is to construct a link which represents DDI.

The main advantage of this method is that DGC not only predicts an existence of

DDIs but also can quantify the interactions. DGC utilizes multi relations between drugs

and proteins such as inhibit and induce, which incur DDIs to quantify interactions. In

addition, this model shows high accuracy in predicting DDIs compared to the other

previous methods.

Main contributions of this study are as followings:

• We propose an informative drug embedding method that reflects inhibit/induce/substrate

information closely related to DDI. Furthermore, our model predicts not only

whether interaction occurs or not but also the amount of the interaction (quan-

tification).

• Our proposed DGC model, Graph Attention Network-based KGC method, shows

the best performance. We demonstrate the performance of our model by com-

paring with other previous DDI methods which only employed either KGC or

GNN model.

• It is validated that our model is able to quantify the DDIs by comparing the

interactions predicted by the model and previously reported.
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Chapter 2

Materials

2.1 Overview

Fig. 1.1a shows the link prediction (DDI prediction) process of DGC. First, we con-

struct a Drug-Protein graph, which is a Knowledge Graph. A Knowledge Graph (KG)

is a graph consisting of entity and relation, expressed in triple form (head, relation,

tail) (Fig. 1.1b). This triple means entity head has a relationship relation with entity

tail. Then, the encoder (GNN) embeds entities and relations of KG. The embedding

method is the process of learning to express the relations and the entities effectively.

Lastly, with the encoder’s output, the decoder (KGC) calculates the score with the

score function. The scoring function f calculates how valid triple is when the triple

enters the input value.

2.2 Graph Construction

We start by explaining the Graph Construction process. At first, we describe the most

critical information, drug-CYP information, and then analyze supporting information

to predict the quantification of drug interaction.
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2.2.1 Drug-CYP Interaction

There are three known types of interactions between drugs and CYPs: the drug is

• a substrates, metabolized by the CYP enzyme, or

• an inhibitor, inhibits the CYP activity, or

• an inducer, increases the CYP activity,

and some drugs interact with a CYP in more than one way. Predicting drug interaction

and quantification of it is closely related to drug-CYP relation. If a drug pair interacts,

the subject of the interaction drug is a perpetrator, and the other affected drug is a vic-

tim. The perpetrator drug inhibits or induces CYP while the affected drug substrates

CYP. As mentioned before, in the case of a perpetrator is an inhibitor, the concen-

tration of drug value is increased. On the other hand, if a perpetrator is an inducer,

the concentration value is decreased. For this reason, the inhibit/induce/substrate of

drug metabolism enzymes is an important drug-drug interaction source. CYP3A4, as

an example of enzymes, is involved in the metabolism of numerous drugs, and CYP

induction is a major concern in clinical practice.

2.2.2 Supporting Information

Predicting increase or decrease of interaction is challenging due to several reasons.

Although we decide to use drug-CYP interaction to predict the quantification of drug

interactions, not every increasing/decreasing drug interaction is involved with drug

metabolism enzymes. Only 44% of known interactions are related to these relations.

Furthermore, sometimes drug interaction can happen paradoxically. If a drug’s metabolism

gives rise to a product, which produces the effect of the drug, the enzymatic inhibition

causes a decrease in the drug’s effect. Therefore, to predict the quantification of drug

interactions, we need supporting information such as other drug and protein relations,

not only drug enzyme metabolism, or drug and drug relations, protein and protein

relation. We looked at how each relation plays a role in predicting drug interactions.
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• Drug-Protein Interactions: Co-prescribed drugs tend to have more proteins

in common than random pairs. [19] This fact suggests drug-protein interaction

information is valuable for predicting drug interactions. The inhibition of me-

tabolizing enzymes produces many interactions, but other possible mechanisms

are also produced, such as interactions of transporters or pharmacological tar-

gets. Therefore we include other proteins (target, transporter, and carrier) and

other drug-protein relations (antagonist and agonist) in our graph. An agonist is

a chemical that binds to a receptor and activates the receptor to produce a biolog-

ical response while an antagonist blocks the agonist’s action. We also use others

(ex. antibody, activator, or modulator) to include drug-protein relationship not

belonging to any of the above relations. Including inhibit/induce/substrate, in

DGC graph, the number of drug-protein relations is six.

• Drug-Drug Interactions: Some previous studies show that known drug inter-

action information can be used as sufficient information to predict new interac-

tions. For example, by including interaction profile fingerprint-based similarity,

[20] constructed a large-scale drug interaction predictor. Vilar’s model consid-

ers different pharmacological effects implicated in the drug interaction informa-

tion. By proposing a new interaction prediction model using only information

about the interacting drugs, [20] shows drug-drug interaction incorporates im-

plicit bioavailability information. For this reason, we include drug-drug interac-

tion to predict unknown DDIs. There are two relations between drugs, increase

and decrease.

• Protein-Protein Interactions: As we mentioned before, most co-prescribed

drugs have common proteins. However, there are more than 11% of drug combi-

nations with zero target proteins in common. In this case, drugs cannot connect

each other with the drug-protein relationship. This fact suggests that it is impor-

tant to use protein-protein interaction information to connect different proteins
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targeted by various drugs. According to [19], considering how proteins interact

with each other and modeling longer chains of (indirect) interactions are es-

sential to predict novel drug interactions. Therefore, we include protein-protein

interaction information to illustrate drug interaction mechanisms better and pre-

dict DDIs. We refer to cases such that protein-protein interaction makes a longer

chain of interacting two drugs in Section 3 of Appendix. This interaction is de-

fined in one form, and we named it PPI.

The final DGC drug-protein graph consists of multi-type entities and relations. The

elements of the entity set defined in this study are drugs and proteins, totaling two,

and the relation set elements are six drug and protein interactions, two drug and

drug interactions, and one protein and protein interaction, totaling nine. According

to Table 2.1 notations, our graph G statistic is |A| = 2 and |R| = 9, and the graph

include the node type set A = {drug, protein}, and the relation type set R = {increase,

decrease, antagonist, agonist, substrate, inhibit, induce, others, PPI}.

Table 2.1: Graph Notations

Notations Descriptions

| · | The cardinality of a set

G = (V, E ,R) Graph G with nodes set V and edges set E

A the set of node types (�(v) = p 2 A)

R the set of relation types

e = (i, r, j) a edge e from vertex i 2 V to j 2 V with a relation type r 2 R

8



Chapter 3

Methods

Using the constructed graph G, DGC predicts labeled edges between drug nodes. In

other words, given a drug pair (vi, vj), i.e., vi, vj 2 {drug}, our aim is to determine

how likely a triple tij = (vi, r, vj) of type r belongs to increase, decrease. DGC has

two main components (Fig. 1.1a):

• Graph Neural Network (an encoder): a Graph Attention Network operating on

G and producing embeddings for nodes in G and

• Knowledge Graph Completion (a decoder): a Convolutional Neural Network

(CNN) model using these embeddings to model increase/decrease interactions.

We proceed by describing these two part, our approach for predicting drug-drug inter-

actions with serum concentration changes using drug-protein graph.

3.1 Graph Attention Network

We first describe the graph encoder model, Graph Attention Network (GAT). The in-

put to the GAT is node feature set h =
n
~h1, ~h2, ..., ~hN

o
, where ~hi 2 RF , where F

represents the feature dimension of each node and N represents the number of nodes.

At least one learnable linear transformation is required to convert input features to
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higher-level, where the weight matrix used is W 2 RF 0⇥F . The self-attention mech-

anism [21] for calculating the importance of node j for node i is calculated using

eij = a(W~hi,W ~hj), j 2 Ni. The obtained coefficient is normalized with softmax

function:

↵ij = softmaxj(eij) =
exp (eij)P

k2Ni
exp (eik)

. (3.1)

The attention coefficient eij is LeakyReLU(~aT [W~hi||W ~hj ]), and a is a single layer

feedforward network ~a 2 R2F 0 . This value is used to calculate the output feature of a

node:

~h0i = �

0

@
X

j2Ni

↵ijW ~hj

1

A . (3.2)

One layer returns a new set of features h0 =
n
~h01,

~h02, ...,
~h0N

o
, where ~h0i 2 RF 0 , to

output.

3.2 GAT with Relation

There are two main differences between the existing GAT and DGC’s encoder. In

DGC, our graph includes essential information in relations. Therefore, node embed-

ding must represent relation information, and relation embedding itself is needed.

We proceed by explaining each embedding process. Our model borrows the idea of

a KBAT [22].

In each layer, two embedded matrices h =
n
~h1, ~h2, ..., ~hNe

o
for entity, where

~hi 2 RT and g = {~g1, ~g2, ..., ~gNr} for relation, where ~gi 2 RP , are received as

inputs. Ne and Nr are the number of entities and relations respectively, T and P are

the dimensions of each. In DGC graph, Ne and Nr are the numbers of entities and

relations mentioned in Section 4.1. To initialize embedding values, we use TransE

[23] model and set the dimensions (T and P ) as 50.
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Figure 3.1: Overview of DGC model architecture. (a) DGC constructs a graph with

two entities and nine relations. (b) The attention mechanism aW(~hi, ~hj , ~gk) parame-

terized by a weight matrix, applying a LeakyReLU activation. (c) To obtain the final

output, aggregate all the neighbor triples of the node. (d) Translational scoring func-

tion to learn entity and relation embedding (h2 needs to be the nearest neighbor of h1

connected via relation g1). (e) Process involved in ConvKB (with the embedding size

k=4 and the number of filters ⌦ = 3 for illustration purpose).

11



3.2.1 Entity and Relation Embedding

For entity embedding, DGC’s encoder calculates the attention coefficient for the

neighbor triple, eijk = aW(~hi, ~hj , ~gk) while the existing GAT calculated the attention

coefficient for the neighbor node. Therefore, embedded results can include relation in-

formation as well as a neighbor node. The detailed process to get attention coefficient

is as follows: first, the neighbor triple ~tijk is obtained by concatenating two node em-

bedding vectors and one relation embedding vector and multiply linear transformation

W, i.e., ~tijk = W1[~hi k ~hj k ~gk]. Then, this triple value becomes the input of the sin-

gle layer feedforward network, eijk = LeakyReLU
�
W2 ~tijk

�
. The normalize process

utilizes the softmax function just like the normal GAT (Fig. 3.1b),

↵ijk =
exp (eijk)P

n2Ni

P
r2Rin

exp (einr)
, (3.3)

and the concatenate process for the output feature vector is applied to the neighbor

triples instead of the neighbor nodes as follows (Fig. 3.1c):

~h0i = �

0

@
X

j2Ni

X

k2Rij

↵ijk ~tijk

1

A . (3.4)

For relation embedding, the relation vector is updated by G0 = G·WR, where WR 2

RP⇥P 0 . The result of one layer for entity and relation embedding vectors are h0 =
n
~h01,

~h02, ...,
~h0Ne

o
(~h0i 2 RT 0

) and g0 =
n
~g01,

~g02, ...,
~g0Nr

o
(~g0i 2 RP 0

) respectively.

3.2.2 Traning Encoder

For training learnable linear transformations, W1,W2 and WR, we adopt TransE

(Fig. 3.1d) model. The idea of TransE [23] is when there is valid triple tkij = (hi, gk, hj),

they must satisfy ~hi + ~gk ⇡ ~hj . For dtkij (= k~hi + ~gk � ~hjk1), the smaller the value

for a valid set and the larger for the invalid set, the more consistent the idea of TransE.

Thus, the loss function is defined as Equation (3.5), and the difference between valid

12



triple and corrupted triple is further learned by having a margin:

L =
X

tkij2S

X

t0ij
k2S0

max
n
dtkij � dt0ijk + �, 0

o

in which S0 = {(hi0 , gk, hj)|hi0 2 V } [
�
(hi, gk, hj0)|hj0 2 V

 
.

(3.5)

The S is set for the valid triple on the DGC Graph, while S0 is the corrupted triple set

that dose not appear in the DGC Graph. The set of corrupted triples is composed of

training triples with either the head or tail replaced by a random entity (but not both at

the same time) [23].

3.3 Knowledge Graph Completion

Now we describe our decoder model, Knowledge Graph Completion (KGC). KGC,

one of link prediction methods, deals with prediction of new facts (i.e., triples (h, r, t)).

We’ll explain the overall KGC methods first and then look at DGC’s decoder model.

3.3.1 Background

The link prediction process by KGC can be explained as follows. Formally, the Knowl-

edge Graph is represented by a directed, labeled graph G = (V, E ,R). By assuming that

we are given only an incomplete subset Ê rather than the full set of edges E , we con-

duct the link prediction task. The task is to assign scores f(h, r, t) to possible edges

(or triples) (h, r, t) in order to determine how likely those edges are to belong to E

[24].

KGC methods are largely divided into the Factorization models [25, 26, 27], Trans-

lational models [23, 28, 29], and Neural network models [30, 31]. First, Translational

models formulate relations as a linear/bilinear mapping by projecting head entities

into a representation space close to tail entities. Second, Factorization models aim to

decompose relational data into low-rank matrices for representation learning. Third,

Neural network models encode relational data with non-linear neural activation and
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more complex network structures [32]. At last, there are several models were pro-

posed based on GNN [33, 22, 34], which are easy to learn the connectivity structure.

As mentioned earlier, GNN-based KGC is regarded as an encoder-decoder format, and

any one of the KGC models can perform the role of a decoder.

3.3.2 ConvKB

In DGC, we use the ConvKB [31] as a decoder, which performs the best among sev-

eral models. ConvKB applies a convolution layer over the embedding triples (here

each triple (h, r, t) is represented as a 3-column matrix where each column vector rep-

resents a triple element) [35]. This model keeps the transitional characteristic, and it

makes great performance compare to other CNN KGC model [32]. Its score function

is defined as

f(tkij) =
⇣
⌦
m=1ReLU([~hi, ~gk, ~hj ] ⇤ !m)

⌘
·W. (3.6)

ConvKB uses multiple filters to generate different feature maps; ⌦ denotes the number

of filters. These feature maps generated by convolution are concatenated into a single

vector to increase the learning ability of latent features. This single vector is then

computed with a weight vector W via a dot product to give a score for the triple (h,

r, t) (Fig. 3.1e). For training weight vector W of the model, we use Adam optimizer,

minimizing the loss function L with L2 regularization:

L =
X

tkij2{S[S0}

log
⇣
1 + exp

⇣
ltkij · f(t

k
ij)
⌘⌘

+
�

2
kWk22

in which l =

8
><

>:

1, for tkij 2 S

�1, for tkij 2 S0

(3.7)

here S0 is a collection of invalid triples generated by corrupting valid triples in S, just

as written in Equation 3.5. The entire framework of DGC can be found in Figure 2.
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Chapter 4

Experiments and Results

4.1 Dataset

We extract drug-drug and drug-protein interactions from DrugBank [36], and protein-

protein interaction from HIPPIE [37]. We extract the golden standard set of DDIs

including their quantified information from DrugBank. For drug-protein interactions,

we only extract drugs which were included in the set of DDIs. For protein-protein

interactions, we only consider proteins from HIPPIE that appear in the drug-protein

interactions. The final network has 723 drug and 1578 protein nodes (total 2301 nodes)

connected by 17674 drug-drug, 9363 drug-protein, and 4982 protein-protein edges

(total 32752 edges). Table 4.1 shows DGC graph statistics, and we illustrate the details

about each relation statistics in Section 1 of Appendix.

4.2 Method comparison

4.2.1 DDI Baselines

We compare the performance of our method with previous DDI studies in two aspects:

one for a drug representation and the other for a state-of-the-art DDI prediction. For

the first experiment, we choose baselines using the same feature set as used for DGC
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but different embedding methods [2] and [38].

• [2] uses similarity-based embedding, which represents a drug by one-hot encod-

ing, and applies similarity operations such as Jaccard or Tanimoto to represent

drug pairs. This method is the most common way to represent drug pairs in DDI

studies.

• [38] is similar to DGC in constructing a graph with drug and proteins. Still,

they only consider whether drugs connect with proteins or not, not the type of

relations, such as inhibit or induce. They generate a drug vector by node2vec

[39] method and represent a drug pair by subtracting two vectors.

For DGC, we use a drug vector from an encoder part, and the way to represent a drug

pair is the same as [38].

For the second experiment, we choose the most recent and high performance mod-

els, DDIMDL [18] and KGNN [17].

• DDIMDL uses four features of drugs: chemical substructures, targets, pathways,

and enzymes. This study predicts drug interaction with related mechanisms and

reports a performance by how each mechanism is well predicted. Of all kinds

of mechanisms, a performance of two mechanisms was mainly considered; in-

creased or decreased serum concentrations. For the final value, we averaged a

performance of two mechanisms.

• KGNN constructs Knowledge Graph by collecting DrugBank data and using

Bio2RDF tool. This method exploits topological information of each entity in

KG and aggregates all neighborhoods to predict the potential DDIs. It imple-

ments multiple types of aggregations (concat, sum, neighbor) and classifies if

drug pairs have interaction or not. [17] reports the performance by each aggre-

gation method. Among them, we choose the highest value.

Other settings are applied as written in the original paper.

16



Figure 4.1: Performance evaluation of DGC on several challenging scenarios. (a) For

DDI baseline, we got this result by conducting 5-fold cross-validation, in which the

ratio between positive and negative samples is 1: 1. (b) For KGC baseline, a linear

based model SimplE’s value is 0.33, 0.2, 0.36, 0.6 (MRR, Hits@1, Hits@3, Hits@10

in order). A factorization based model TuckER’s value is 0.52, 0.4, 0.59, 0.76 and

a CNN based model ConvKB’s is 0.67, 0.63, 0.69, 0.75. Our model’s value is 0.74,

0.71, 0.75, 0.81. (c) For GNN baseline, GCN with relation’s value is 0.67, 0.63, 0.69

and 0.75. DGC’s value is the same as a KGC Baseline experiment. All results were

summarized over five trials and expressed as mean ± SD.

In this experiment, every model gets drug pairs as input and decides they inter-

act or not, i.e., conducts a binary classification task. We use AUC (Area Under the

Curve) value is used as an evaluation metric. For the first experiment, all three methods

use SVM (Support Vector Machine) as a classifier. The result of the first experiment

presents our GNN based embedding method performs best under the same setting. As

a result of the second experiment, DGC shows better performance than state-of-the-art

models. Figure 4.1a shows the final result.

Table 4.1: DGC Statistics
#Entities #Relations #Triples Train Valid Test

2301 9 32752 29052 1850 1850
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4.2.2 KGC Baselines

We compare the performance of DGC with other Knowledge Graph Completion meth-

ods to see GNN-based KGC brings how much performance improvement. We use the

best one of linear-based models (SimplE), factorization-based models (TuckER), and

Convolutional Neural Network-based models (ConvKB) as the baselines. Table 4.2

shows score functions of baselines. Detailed explanations are follows:

• SimplE [40] is based on Canonical Polyadic (CP) decomposition in which head

and tail entity embeddings for the same entity are independent. SimplE’s scoring

function alters CP to make head and tail entity embedding vectors dependent on

each other by computing the two terms’ average.

• TuckER [27] learns to embed by outputting a core tensor and embedding vectors

of entities and relations. By having core tensor W , TuckER does not encode all

the learned knowledge into the embeddings; some is stored in the core tensor

and shared between all entities and relations through multi-task learning.

We explain ConvKB in our model’s decoder part.

In this experiment, every model got triple as input and returned score as output,

which means the input triple’s validity. We split DGC triples into train, valid, and

test set as mentioned in Table 4.1. To evaluate each model’s performance, we use the

most common evaluation metric in KGC methods, a ranking procedure presented in

[23]. First, for each triple in the test set, the head entity is removed and replaced by

each entity of the entity set in turn to make a corrupted triple set. Then, scores of

those corrupted triples are computed by the model’s score function and then sorted by

ascending order, which means a valid triple gets the lower score. Finally, the correct

entity’s rank is stored. This whole procedure is repeated while removing the tail instead

of the head, and averaged values are reported. We report the value of metrics such as

MRR (mean reciprocal rank), which calculates the mean of correct triple’s rank in

reciprocal and Hits@N, which the proportion of correct entities ranked in the top N
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ranks for N = 1, 3, and 10. For both metrics, the higher value means better performance.

We applied a filtered setting, which removes from the list of corrupted triplets all the

triplets that appear either in the training, validation, or test set (except the test triplet

of interest).

Figure 4.1b shows the result. The result clearly demonstrates that DGC signif-

icantly outperforms state-of-the-art results on four metrics. The performance differ-

ence between ConvKB and DGC also means the role of a Graph Neural Network.

GNN improves performance by making it possible to predict the connectivity between

the triples rather than simply using the KGC method.

Table 4.2: Score Functions of State-of-the-Art
Model Score function

SimplE 1
2(

~hi � ~gk ~hj + ~hj � ~gk
0 ~hi)

TuckER W ⇥1
~hi ⇥2 ~gk ⇥3

~hj

ConvKB
⇣
k⌦m=1 ReLU([~hi, ~gk, ~hj ] ⇤ !m)

⌘
·W

Note: � means Hadmard (element-wise) product, ⇥n denotes the tensor product along the

n-th mode and k means concatenation.

4.3 Encoder comparison

We conduct this experiment to show our encoder GAT performs better than another

GNN model, Graph Convolutional Network. We introduce the method using GCN

[34] as a baseline that embeds entity and relation both, just like DGC. The convolution

operation on graph can be summarized with two operations. First, in order to achieve

a higher order representation of nodes, do a linear transformation paramterized by a

weight matrix W. The transformed feature vectors ~h0i are given as ~h0i = W~hi. Then,

to get the output features of node i, aggregate the features across the neighborhood of

node. For relation embedding, [34] use several composition operators � such as sub-
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traction [23], multiplication [25] and circular-correlation [41]. Final feature vectors

can be defined as:

~h0i = �

0

@
X

(j,r)2Ni

Wr�(~gk, ~hj)

1

A (4.1)

Because DGC utilizes TransE when initializing the relation vector, we choose subtrac-

tion operation for fair comparison.

We compared the performance by inserting the embedding vector created with the

GCN into the input of the ConvKB. Experimental setting and performance metric are

applied just the same as KGC baseline experiment. The result of comparison shows

that DGC’s performance increased by 8% to 12% (Figure 4.1c). While GAT implicitly

captures the weight via an end-to-end neural network architecture so that more impor-

tant nodes receive larger weights, GCN explicitly assigns a non-parametric weight to

the neighbor during the aggregation process [42]. This difference makes GAT performs

better as an encoder.

4.4 Case Study

Drug interaction studies concern about finding novel drug interaction pairs. Among

the result of our model DGC, novel interaction pairs are validated by other databases.

We use UpToDate 1 database, a software system that is a point-of-care medical re-

source. The validation target is the drug pair that returned the highest score but was

not included in the train, valid, and test dataset, i.e., the pair that the model never

observed. If UpToDate includes target pairs, we consider they are novel drug pairs.

When searching for UpToDate, we paid attention to two points. First, if the type of

interaction is PD, we do not include a drug pair in the novel pair set due to we limit

our study’s scope to PK interactions. Second, the quantification of interaction needs

to be correctly predicted. When considering this, we additionally care about the order

of drugs. For example, when (Fosaprepitant, increase, Eszopiclone) is a correct novel

1https://www.uptodate.com
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Figure 4.2: Sampled drug pairs are expressed in red for increase and blue for decrease.

For novel pairs, we use darker colors.

pair, (Eszopiclone, increase, Fosaprepitant) would not be included in the novel pair set.

The triple’s head is a perpetrator drug, and the tail is a victim drug. When a prediction

result is constructed oppositely, it is a wrong prediction. These constraints make novel

pair validation more challenging compare to previous studies, which only consider a

drug pair has interaction or not.

Table 4 shows the top 14 novel DDI pair predicted by the DGC. Seven novel pairs

were verified for each increase/decrease case—these interactions were caused by in-

hibiting and substrating CYP enzymes, such as CYP3A4, CYP2D6, or CYP1A2. We

embed drug pairs included in the training set and novel pairs together into a 2D space

using t-SNE [43] and then visualize in Figure 4.2. Figure 4.2 reveals it DGC can clas-

sify quantification of interaction clearly. It also reveals the newly predicted novel pairs

are included in each interaction cluster properly. This study shows DGC’s ability to

predict the quantification of interaction.
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Table 4.3: Novel DDI pair Validation
Relation Perpetrator Victim Summary

increase Fosaprepitant Eszopiclone Fosaprepitant may increase the serum concentration of CYP3A4 Substrates (High risk with Inhibitors).

Celecoxib Thioridazine CYP2D6 Inhibitors (Weak) may increase the serum concentration of Thioridazine.

Simeprevir Olaparib Simeprevir may increase the serum concentration of CYP3A4 Substrates (High risk with Inhibitors).

Fluvoxamine Propranolol CYP1A2 Inhibitors (Strong) may increase the serum concentration of Propranolol.

Terbinafine Flecainide CYP2D6 Inhibitors (Moderate) may increase the serum concentration of Flecainide.

Letermovir Dronedarone CYP3A4 Inhibitors (Moderate) may decrease the metabolism of CYP3A4 Substrates (High risk with Inhibitors).

Nelfinavir Amiodarone Nelfinavir may increase the serum concentration of Amiodarone.

decrease Magnesium hydroxide Nilotinib Antacids may decrease the serum concentration of Nilotinib.

Apalutamide Tipranavir CYP3A4 Inducers (Strong) may increase the metabolism of CYP3A4 Substrates (High risk with Inducers).

Fosphenytoin Buspirone CYP3A4 Inducers (Strong) may decrease the serum concentration of BusPIRone.

Sevelamer Calcitriol Sevelamer may decrease the serum concentration of Calcitriol (Systemic).

Orlistat Ritonavir Orlistat may decrease the serum concentration of Antiretroviral Agents.

Rifampicin Dronedarone CYP3A4 Inducers (Strong) may decrease the serum concentration of Dronedarone.

Phenytoin Indinavir CYP3A4 Inducers (Strong) may increase the metabolism of CYP3A4 Substrates (High risk with Inducers)
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Chapter 5

Conclusion

This study proposes a drug interaction prediction model with a change of concentra-

tion by reflecting drug-protein relationships. DGC generates more informative drug

embedding by Graph Attention Network and predicts which relation exists between

two drugs by Knowledge Graph Completion. When conducting a comparative experi-

ment of performance with existing DDI studies, we found that the embedding method

proposed in this paper performs the best. In addition, a comparative experiment of link

prediction methods shows our model, the Graph Neural Network-based Knowledge

Graph Completion, showed the highest performance results compared to other Knowl-

edge Graph Completion methods. Validation of novel drug pairs demonstrated that

the model predicts both interaction happens or not and the interaction’s quantification.

There are some tasks we can do as future works. First of all, predicting the amount of

concentration change would be more helpful to make therapy strategies. Second, as we

present drug-protein relation in DGC graph, novel drug-protein interaction prediction

to drug repositioning can be conducted without extra work. We can also apply various

drug features to make specific predictions, such as genetic variation information or

drug dosage.
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Chapter A

Appendix

A.1 Node and Relation Statistics

We analyzed the node and relation information of DGC from various perspectives. This

information would help to understand how drugs interact with other drugs or proteins.

Figure A.1: The number of indegrees (a) means the number of perpetrator drugs and

the number of outdegrees (b) means the number of victim drugs. Most drugs have 11

to 50 pair drugs which have interaction with.
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Figure A.2: Distribution about how much protein a drug is associated with. The drug

with the most protein is Fostamatinib, which has a total of 310 proteins. On average,

when we looked at 706 drugs, they interacted with 12 proteins. Figure S4 shows the

distribution of the number of proteins each drug has.

Figure A.3: The number of Top 12 Proteins. Most of them are CYP superfamilies (9

Enzymes), and the rests are a Carrier (serum albumin) and two Transporters (P-gp,

ABCG2).
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Figure A.4: We analyzed how many relations exist between one drug-protein pair. Of

these, 82% relation was a unique interaction, and 8% was an interaction that occurred

with other relation types

Table A.1: Relation Statistics Detail
Drug-Drug increase 12287

decrease 5387

Drug-Protein antagonist 739

agonist 373

substrate 2775

inhibitor 3220

inducer 497

others 1759

Protein-Protein PPI 4982

Total number of DDI is 17674, Drug-Protein Interaction is 9363, and PPI is as written.
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A.2 Ablation Study

We compare our model’s performance with several experiment settings. First, we ex-

perimented with the performance according to the combination. Feature combinations

including enzyme showed the highest performance.

Table A.2: Performance Differences by Feature Combination

MRR Hits@1 Hits@3 Hits@10

Target 0.77 0.74 0.78 0.83

Enzyme 0.79 0.76 0.8 0.84

Transporter 0.77 0.74 0.78 0.82

Carrier 0.75 0.72 0.76 0.81

Target + Enzyme 0.77 0.74 0.78 0.82

Target + Transporter 0.71 0.66 0.73 0.8

Target + Carrier 0.75 0.72 0.76 0.81

Enzyme + Transporter 0.76 0.72 0.77 0.83

Enzyme + Carrier 0.77 0.74 0.78 0.83

Transporter + Carrier 0.78 0.75 0.79 0.83

Target + Enzyme + Transporter 0.74 0.71 0.76 0.82

Target + Enzyme + Carrier 0.79 0.76 0.8 0.84

Target + Transporter + Carrier 0.78 0.74 0.79 0.84

Enzyme + Transporter + Carrier 0.73 0.7 0.75 0.79

Target + Enzyme + Transporter + Carrier 0.75 0.72 0.76 0.82

34



Figure A.5: (a) To confirm the effect of top 10 enzymes, we only include those proteins

to the training set. The final graph includes 723 drugs and 10 proteins for nodes and

2568 drug-proteins and 1 ppis for relations. The values of top 10 CYP are 0.77, 0.74,

0.78 and 0.82 (MRR, Hits@1, Hits@3, Hits@10 in order) while including all proteins

has 0.74, 0.71, 0.75, 0.81. (b) We also conduct experiments excluding Protein-Protein

Interactions, others left still. The values of without PPI are 0.75, 0.72, 0.76, 0.82 while

PPI including version’s values are the same as including all proteins which are men-

tioned in (a).

A.3 The association of PPI and drug interactions

We organized a network without DDI information to see how much PPI information

was related to the two drugs interacting. We experimented to see how many hops take

to connect the drug pair which interact with each other. If the path connecting the drug

pair is 2-hops, it means they share the same protein, and if it takes 3-hops, it means

that the PPI connects the two drugs.
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A.4 Performance on Other Databases

While DGC outperforms in Drug and Protein databases, Graph Neural Network-based

Knowledge Graph Completion method shows great performance at other databases.

We looked at representative Knowledge Graph, such as WN18RR, KB15K-237, NELL-

995, and Kinship, which are WordNet or knowledge graph describes facts about movies,

actors, awards, sports, and sports teams. The result with these knowledge graphs is

presented in Table A.3. DGC performs best on kinship, and on other databases also

performs better than other KGC methods. With this experiment, GNN based KGC is

suitable for a multi-relational model to embedding and predicting links.

Table A.3: Experimental results

Database MRR Hits@1 Hits@3 Hits10

WN18RR 0.44 0.36 0.48 0.58

KB15K-237 0.51 0.46 0.54 0.62

NELL-995 0.53 0.44 0.56 0.69

Kinship 0.90 0.85 0.94 0.98

A.5 Parameter Sensitivity

In this section, we test the parameter sensitivity of DGC on our dataset and the re-

sults are presented in Figure A.6. We train DGC using a grid search of hyperparame-

ters: embedding size 2 {50, 100, 200, 400} of encoder output, margin 2 {1, 3, 5, 7}

for training encoder, weight decay 2 {5e�04, 1e�05, 5e�05, 5e�06} and epochs 2

{1000, 2000, 3000, 3600} used in learning encoder. The left-top figure shows the effect

of embedding size when other parameters are fixed. The performance of DGC is best

at embedding size is 100. Most evaluation metrics show a slightly lower performance

at 200 and then a get higher performance again at 400. The right-top figure shows the
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Figure A.6: Parameter analysis of DGC. Indicates the performance change of the four

metrics according to the parameter change. As the epoch value changes, DGC showed

the best performance in most indicators. Among the rest, the performance was higher

in order of margin, embedding size, and weight decay.

effect of margin that corresponds to the value of � in the loss function for training

encoder. The performance of DGC goes down when � > 5. The bottom figures show

the result about parameters to use when learning an encoder model, GAT. As shown in

Figure A.6c weight decay (�) is best at 1e�04. Epochs best at 1000 or 2000, and as its

value increases, it shows lower performance.

A.6 Result Analysis

We now analyze the result to interpret the predictive performance of our model. In the

case of incorrect answers that did not return true triple to first place, see what charac-
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teristics are shared between the drug predicted first and the drug actually correct. As

Figure A.7 shows, if the correct answer triple is a drug pair in which CYP3A4 inhibits

and substrates meet and interact, the incorrect response triple also has this feature.

Drug Imatinib and Asunaprevir are two drugs that interact with CYP3A4. The result

of head prediction for this triple was drug Letermovir, and the result of tail prediction

was Vilazodone, CYP3A4 inhibitor, and substrate, respectively. As with an increase,

decrease also calculated the highest scores of inducer and substrate drugs, resulting in

the lower ranking of correct triplets. When P-gp inducer Apalutamide and P-gp sub-

strate Colchicine are correct triple, the head Tamoxifen predicted as the highest score

which is also P-gp inducer. Likewise, the tail Levomilnacipran predicted as the highest

score is also P-gp substrate. Although the answer is incorrect, it can be seen that the

result is due to these pharmacological characteristics.

In CYP3A4 or P-gp, recommending drugs that contain these proteins is possible

because of the large number of drugs it has. By checking other protein examples,

we showed that it was not a simple recommendation. In addition, for correct pairs

that were not satisfied with the inducer-substrate relationship, it could be seen that

the highest score was given to the pair that satisfies the inducer-substrate relationship.

Drug Gemfibrozil and Enzalutamide have CYP2C9 in common but are in the inhibit

- substrate relationship and have an interaction with decreasing concentration value.

The DGC returned Dabrafenib, CYP2C9 inducer, to top-ranked in the head prediction.

Figure A.7 illustrates these situations.
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Figure A.7: A graph consisting of a total of 40 nodes and 75 relation. The size of the

node means its degree. The legend of nodes and relation is described at the bottom

of the graph. The drugs in the increase relationship were high-lighted in yellow, the

drugs in the decrease relationship were red, and the drugs in which the index inhibit

information was reversed with the connotation results were high-lighted in purple.
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