

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사학위논문

In-DRAM Neural Network Accelerator
Architecture for Binary Neural Network

이진뉴럴네트워를위한 DRAM기반의뉴럴네트워크
가속기구조

2021년 2월

서울대학교대학원

컴퓨터공학부

최해랑

Abstract

In-DRAM Neural Network Accelerator
Architecture for Binary Neural

Network

Haerang Choi

Department of Computer Science and Engineering

The Graduate School

Seoul National University

In the convolutional neural network applications, most computations oc-

curred by the multiplication and accumulation of the convolution and

fully-connected layers. From the hardware perspective (i.e., in the gate-

level circuits), these operations are performed by many dot-products be-

tween the feature map and kernel vectors. Since the feature map and

kernel have the matrix form, the vector converted from 3D, or 4D matri-

ces is reused many times for the matrix multiplications. As the through-

put of the DNN increases, the power consumption and performance bot-

tleneck due to the data movement become a more critical issue. More

importantly, power consumption due to off-chip memory accesses dom-

inates total power since off-chip memory access consumes several hun-

i

dred times greater power than the computation. The accelerators’ through-

put is about several hundred GOPS∼several TOPS, but Memory band-

width is less than 25.6 or 34GB/s (with DDR4 or LPDDR4).

By reducing the network size and/or data movement size, both data

movement power and performance bottleneck problems are improved.

Among the algorithms, Quantization is widely used. Binary Neural Net-

works (BNNs) dramatically reduce precision down to 1 bit. The accuracy

is much lower than that of the FP16, but the accuracy is continuously im-

proving through various studies. With the data flow control, there is a

method of reducing redundant data movement by increasing data reuse.

The above two methods are widely applied in accelerators because they

do not need additional computations in the inference computation.

In this dissertation, I present 1) a DRAM-based accelerator architec-

ture and 2) a DRAM refresh method to improve performance reduction

due to DRAM refresh. Both methods are orthogonal, so can be integrated

into the DRAM chip and operate independently.

First, we proposed a DRAM-based accelerator architecture capable

of massive and large vector dot product operation. In the field of CNN ac-

celerators to which BNN can be applied, a computing-in-memory (CIM)

structure that utilizes a cell-array structure of Memory for vector dot

product operation is being actively studied. Since DRAM stores all the

neural network data, it is advantageous to reduce the amount of data

transfer. The proposed architecture operates by utilizing the basic op-

ii

eration of the DRAM.

The second method is to reduce the performance degradation and

power consumption caused by DRAM refresh. Since the DRAM cannot

read and write data while performing a periodic refresh, system perfor-

mance decreases. The proposed refresh method tests the refresh char-

acteristics inside the DRAM chip during self-refresh and increases the

refresh cycle according to the characteristics. Since it operates indepen-

dently inside DRAM, it can be applied to all systems using DRAM and

is the same for deep neural network accelerators.

We surveyed system integration with a software stack to use the in-

DRAM accelerator in the DL framework. As a result, it is expected to

control in-DRAM accelerators with the memory controller implementa-

tion method verified in the previous experiment. Also, we have added the

performance simulation function of in-DRAM accelerator to PyTorch.

When running a neural network in PyTorch, it reports the computation

latency and data movement latency occurring in the layer running in the

in-DRAM accelerator. It is a significant advantage to predict the perfor-

mance when running in hardware while co-designing the network.

Keywords: Neural network, Memory bottleneck, convolutional neural

network, binary neural network, Computing-in-Memory, DRAM-based

accelerator, DRAM refresh

Student Number: 2016-34620

iii

Contents

Abstract i

Contents viii

List of Tables x

List of Figures xiv

Chapter 1 Introduction 1

Chapter 2 Background 6

2.1 Neural Network Operation 6

2.2 Data Movement Overhead 7

2.3 Binary Neural Networks 10

2.4 Computing-in-Memory 11

2.5 Memory Bottleneck due to Refresh 13

Chapter 3 In-DRAM Neural Network Accelerator 16

3.1 Backgrounds . 18

3.1.1 DRAM hierarchy 18

v

3.1.2 DRAM Basic Operation 21

3.1.3 DRAM Commands with Timing Parameters . . . 22

3.1.4 Bit-wise Operation in DRAM 25

3.2 Motivations . 29

3.3 Proposed architecture 30

3.3.1 Operation Examples of Row Operator 32

3.3.2 Convolutions on DRAM Chip 39

3.4 Data Flow . 44

3.4.1 Input Broadcasting in DRAM 44

3.4.2 Input Data Movement With M2V 47

3.4.3 Internal Data Movement With SiD 49

3.4.4 Data Partitioning for Parallel Operation 52

3.5 Experiments . 56

3.5.1 Performance Estimation 56

3.5.2 Configuration of In-DRAM Accelerator 58

3.5.3 Improving the Accuracy of BNN 60

3.5.4 Comparison with the Existing Works 62

3.6 Discussion . 67

3.6.1 Performance Comparison with ASIC Accelerators 67

3.6.2 Challenges of The Proposed Architecture 70

3.7 Conclusion . 72

vi

Chapter 4 Reducing DRAM Refresh Power Consumption

by Runtime Profiling of Retention Time and Dual-

row Activation 74

4.1 Introduction . 74

4.2 Background . 77

4.3 Related Works . 78

4.4 Observations . 84

4.5 Solution overview . 88

4.6 Runtime profiling . 93

4.6.1 Basic Operation 93

4.6.2 Profiling Multiple Rows in Parallel 96

4.6.3 Temperature, Data Backup and Error Check . . . 96

4.7 Dual-row Activation . 98

4.8 Experiments . 102

4.8.1 Experimental Setup 103

4.8.2 Refresh Period Improvement 107

4.8.3 Power Reduction 110

4.9 Conclusion . 116

Chapter 5 System Integration 118

5.1 Integrate The Proposed Methods 118

5.2 Software Stack . 121

Chapter 6 Conclusion 129

vii

Bibliography 131

국문초록 153

viii

List of Tables

Table 2.1 Data size, data movement latency and required

MAC operations (example of batch size 1) 8

Table 3.1 Latency and energy of operations in a sub-array . 38

Table 3.2 Policy of input feature map partitioning 53

Table 3.3 Performance of the proposed architecture 57

Table 3.4 Network accuracy comparison with different psum width 59

Table 3.5 Network accuracy with different number of en-

sembles . 60

Table 3.6 Network accuracy with different network size . . 61

Table 3.7 Data movement overhead comparison 63

Table 3.8 Performance comparison 65

Table 3.9 Performance comparison with ASIC accelerator . 68

Table 3.10 Performance comparison with Edge device 69

Table 4.1 Comparison of various related works to reduce

refresh power 79

Table 4.2 Comparison with state-of-the-art methods 92

ix

Table 4.3 Key simulation parameters 106

Table 4.4 System configuration for simulation 106

Table 4.5 Comparison of power, performance, and EDP (nor-

malized to the ddr3 baseline case) 112

Table 5.1 The comparison of DL compilers [1] 122

x

List of Figures

Figure 2.1 Typical DRAM Memory Structure. 7

Figure 2.2 Refresh overhead, (a) throughput loss over DRAM

density and (b) refresh power overhead [2]. . . . 14

Figure 2.3 Energy consumption breakdown of ResNet on

the evaluation platform [3]. 14

Figure 3.1 Typical DRAM Memory Structure. 19

Figure 3.2 DRAM basic operation example. 21

Figure 3.3 DRAM basic commands and command intervals. 23

Figure 3.4 (a) Logic operation examples (AND and OR),

and (b) data destructive access issue that the re-

sult is overwritten to the data cells. 27

Figure 3.5 AND operation examples of gate logic method,

(a) weight load, (b) weight store to latch, (c) ac-

tivation load, (d) AND operation. 28

Figure 3.6 Proposed architecture (based on DDR4 archi-

tecture). 31

xi

Figure 3.7 Proposed row operator (operand row is in sub-

array). 32

Figure 3.8 Operation example of NOT operation. 34

Figure 3.9 Operation example of PSUM operation. 35

Figure 3.10 Example of the proposed accumulation flow. . . 36

Figure 3.11 Operation flow of XNOR in proposed architecture. 38

Figure 3.12 Example of 1D-convolution on DRAM chip. . . 40

Figure 3.13 Example of 2D-convolution on DRAM chip. . . 42

Figure 3.14 Examples of write the input to all banks, (a) bank-

interleaving write, and (b) broadcasting write of

the proposed architecture. 45

Figure 3.15 DATA and CMD BUS control for broadcasting. 46

Figure 3.16 Example of M2V operation. (a) Input feature

map transfer, (b) M2V write sequence in NN

mode, and (c) M2V write operation with data

reuse. 48

Figure 3.17 Example of SiD operation. 50

Figure 3.18 SiD block diagram. (a) 4 SiD blocks on DRAM

for parallel operation, and (b) accumulation ex-

ample. 51

Figure 3.19 Input feature map partitioning for parallel oper-

ation. 55

xii

Figure 4.1 Cumulative distribution of retention time at 38 °C. 85

Figure 4.2 Refresh period (when improving weak rows) vs

temperature as (a) measured and (b) normalized

to 38 °C. 86

Figure 4.3 Refresh period (when improving weak rows) vs

temperature as (a) measured and (b) normalized

to 38 °C. 87

Figure 4.4 Our proposed refresh scheme: (a) mechanism

and (b) examples of skipping refresh operations. 89

Figure 4.5 Profiling inside the DRAM: (a) profiling flow,

(b) profiling routine examples. 94

Figure 4.6 Backup on a sub-array: (a) row data copied to

the sense amplifier array, and (b) backed up to

an additional row. 97

Figure 4.7 Dual-row activation. 99

Figure 4.8 Flow of row activation in the proposed method. . 101

Figure 4.9 Block diagram of proposed method. 101

Figure 4.10 Measurement environment. (a) FPGA board in

the chamber, and (b) temperature control panel

of the chamber. 103

Figure 4.11 Retention time distribution where dual-row acti-

vation was applied to 100 weak rows (measure-

ments). 108

xiii

Figure 4.12 Simulation results: (a) profiling and refreshing

different DRAM chips on a rank, (b) tempera-

ture changes during profiling, and (c) the num-

ber of weak rows found in each DRAM chip. . . 109

Figure 4.13 Average value of target refresh period (simu-

lated 10 times). 110

Figure 4.14 Performance and power consumption on the base-

line case. 115

Figure 5.1 Refresh sequence. (a) Refresh schedule for the

normal case and (b) for the integration of the

proposed method. 119

Figure 5.2 Pulling-in Refresh Commands [4]. 120

Figure 5.3 (a) Block diagrams for system integration, and

(b) software stack. 124

Figure 5.4 An example of simulation results of VGG-9 with

CIFAR-10 in the 1Rx8 3200 DDR4 DRAM based

accelerator. 128

xiv

Chapter 1

Introduction

In the convolutional neural network applications [?], most computations

occurred by the multiplication and accumulation (MAC) operation of the

convolution and fully-connected layers. In AlexNet, the computation of

the convolution and fully-connect layer accounts for 89% of the total [5].

Since the feature map and kernel have the matrix form, the vector which

converted from 3D or 4D matrices reused many times for the matrix mul-

tiplications. At the hardware perspective (i.e., in the gate-level circuits),

these operations performed by many dot-products between the feature

map and kernel vectors [6]. These operations are computation-intensive

and suitable to apply parallel processing because it is a repetition of sim-

ple MAC operations. Therefore, the neural network accelerator increases

the throughput of the network by integrating small and simple computa-

tion units in large quantities [7–10].

As the throughput of the deep neural network operations increases,

the performance bottleneck and power consumption due to the data move-

ment between Memory to Process unit become more critical issues. The

1

data movement size for neural network increases with the network through-

put. For example, the VGG-16 network’s kernel size is about 264MB in

16b Floating-point precision (FP16), and the data movement latency is

about 11.2ms (with 25.6GB/s Memory bandwidth). When the network

throughput increases twice, the kernel data movement also increases.

Since the network size is larger than the cache size, the kernel is newly

loaded from Memory for every layer. Throughput of the accelerators

are about several hundred Giga-operations per second (GOPS)∼several

Tera-operations per second (TOPS), but Memory bandwidth is less than

25.6 Giga-byte per second (GB/s) with DDR4 [4] (or 34 GB/s with

LPDDR4 [11]). Computation latency will be shorter than the data move-

ment latency. The memory-bound performance bottleneck can be pre-

dicted as the ratio of the memory bandwidth and the throughput [12].

More importantly, power consumption due to off-chip memory ac-

cesses dominates total power since off-chip memory access consumes

several hundred times greater power than the computation. For instance,

at the 65nm process, the DRAM access power is two hundred times larger

than the computation power [9]. DDR4 DRAM consumed 22.6mJ energy

to read the VGG-16 network kernel once [13]. The DRAM read power

overhead of about 2.1W is significantly large compared to the neural net-

work accelerator [13, 14]. Neural network accelerators use a local buffer

(SRAM) to reduce DRAM access power, but the data movement still has

a large proportion of power consumption. (i.e., 54.4 % [7], 57.6 % [8],

2

45.0 % [9], 70.0 % [10])

By reducing the network size and/or data movement size, both the

performance bottleneck and data movement power are improved. Among

the algorithms, Quantization is widely used. When 4b integer precision

(INT4) is applied to FP16 precision, the data size is reduced by 75 %. In

addition, it can be applied to various applications, and additional compu-

tation is not required during the inference. In terms of data flow, there is

a method of reducing redundant data movement by increasing data reuse.

The above two methods are widely applied in accelerators.

Binary neural network (BNN) dramatically reduce the precision down

to 1 bit [15–17]. The accuracy is much lower than that of the FP16, but

the accuracy is continuously improving through various studies. In recent

years, with the increasing accuracy of BNN, BNN have been applied to

various tasks such as image classification, object detection, and segmen-

tation in computer vision [18].

In the field of CNN accelerators to which BNN can be applied, a

computing-in-memory (CIM) architecture that utilizes a cell-array struc-

ture of Memory for vector dot product operation is being actively stud-

ied [6, 19–25]. CIM reduces data movement and overheads by perform-

ing operations inside the memory where data are stored. Since all the

data needed to run the neural network are loaded into the main memory,

DRAM-based CIM can minimize the data movement than other memory

types. The DRAM-based CIM can be classified into two types, charge

3

sharing and gate logic methods, according to how the logic operation is

implemented [20,21]. Among DRAM-based accelerators, the method of

implementing accelerators in the peripheral area [26, 27] is classified as

Logic-in-memory [28]. Area overhead is larger than DRAM-based CIM,

and the design target is a stand-alone accelerator. In this dissertation, we

focused on DRAM-based CIM.

The memory wall does not occur only as a data movement. Refresh

hearts the power efficiency and system performance. Refresh increases

the system background power because it continues to run while power is

supplied to the DRAM. The DRAM periodically performs refresh, data

cannot be read or written during the refresh. Refresh interval (tREFI of

1x mode) is 7.8 μs and refresh execution time is 350 ns and 550 ns for

8Gb DDR4 and 16Gb DDR4 respectively. It reduces the NN accelerator

performance of data-intensive applications by about 4.5 % and 7.1 %.

When refresh executes with 4x mode, the performance drop is 8.1 % and

13.3 %. The DRAM-based CIM operating inside the DRAM also cannot

operate during refresh. There are various methods of reducing DRAM

refresh overhead have been proposed [2,29–38]. Also, for the accelerator

using eDRAM, a refresh scheme to reduce overhead due to refresh was

proposed [3].

In this dissertation, we proposed 1) a DRAM-based accelerator ar-

chitecture and 2) a DRAM refresh method to improve performance re-

duction due to DRAM refresh. Both methods are orthogonal, so can be

4

integrated into the DRAM chip and operate independently.

We proposed a DRAM-based accelerator architecture capable of mas-

sive and large vector dot product operation. Since DRAM stores all the

data of the neural network, it is advantageous to reduce the amount of

data transfer. The proposed architecture operates by utilizing the basic

operation of the DRAM.

We proposed a refresh method to improve power consumption and

performance degradation caused by DRAM refresh. Whenever the DRAM

performs a refresh, the system performance decreases because it cannot

read or write data. The proposed refresh method tests the refresh char-

acteristics inside the DRAM chip during self-refresh, and increases the

refresh cycle according to the characteristics. Since it operates indepen-

dently inside DRAM, it can be applied to all systems using DRAM, and

is the same for deep neural network accelerators.

This dissertation is organized as follows. Chapter 2 introduces back-

ground for the neural network. Chapter 3 explains the proposed in-DRAM

neural network accelerator. Chapter 4 explains the proposed the refresh

method. Chapter 5 explains the system integration of the proposed meth-

ods. Chapter 6 concludes the dissertation.

5

Chapter 2

Background

2.1 Neural Network Operation

In the convolutional neural network applications, most computations oc-

curred in the convolution and fully-connected layers.For example, in AlexNet,

the convolution and fully-connect layer take up 89 % of the total compu-

tation [5].

As shown in Figure 2.1 (a), the convolution layer performs convolu-

tion between the input feature map (or activation matrix) and N number

of the kernels (weight matrix). Since the kernel is smaller than the input

feature map, the kernel is used repeatedly to calculate the entire input fea-

ture map. Convolution is an element-wise multiplication between matri-

ces and then accumulates all values. When it is executing at the hardware

level, all matrices converted to vectors and computed as a dot product.

Fully connected layer performs a weighted sum between input vector

(or converted vector from matrix form) and kernel vector. As shown in

Figure 2.1 (b), it performs a weighted sum across all activation of input

6

W

H

C

Input feature

map

Kernel Output feature

map

K

K

N

N

(a)

Convolution layer Fully-connected layer

(b)

Kernel

vector

Input

vector

Output

vector

Figure 2.1 Typical DRAM Memory Structure.

vector to create one output. Input vector and kernel vector have a same

dimension. At the hardware level, it is calculated by the dot product of

the two vector, and the input vector is repeatedly used.

2.2 Data Movement Overhead

Since the neural network computation is data-intensive, performance drop

due to data movement latency occurs [12]. In CPU and GPU, memory ac-

cess is hidden by scheduling, and data movement overhead is reduced by

optimizing data reuse patterns. However, in a customized accelerator, in-

stead of hiding memory access, it moves data to a local buffer and then

operates in a way that increases data reuse [9]. Also, even in accelerators

that can hide memory access, memory access power is not hidden.

Talbe 2.1 shows the data size, data movement latency, and MAC op-

7

Table 2.1 Data size, data movement latency and required MAC opera-

tions (example of batch size 1)

Data size (MB) Memory access latency

FP16 w/ im2col FP16 w/ im2col MAC#

CIFAR-10

VGG-9 28.2 32.5 1.2 ms 1.3 ms 0.62 G

ResNet-14 10.6 20.3 0.4 ms 0.8 ms 0.65 G

ResNet-18 28.4 63.8 1.2ms 2.6 ms 1.79 G

MobileNetV2 9.6 21.9 0.4 ms 0.9 ms 0.08 G

ImageNet

VGG-16 309.0 455.1 12.7 ms 18.6 ms 16.04 G

ResNet-34 58.5 117.1 2.4 ms 4.8 ms 4.0 G

MobileNetV2 33.8 93.2 1.4 ms 3.8 ms 0.31 G

8

erations required when the neural network processes CIFAR-10 [39] and

ImageNet [40]. CIFAR-10 is a 32x32 small image dataset, and Ima-

geNet is a 224x224 large image dataset. The table summarizes the re-

quired values when processing one image on VGG, ResNet, and Mo-

bileNetV2 [41–43] with a data set (bath size 1). Data size is the sum

of the input feature map, kernel, and output feature map. Assume FP16

precision. im2col is an input reshape method required for the GEMM

method that accelerates the convolution operation into matrix-matrix mul-

tiplication. Since the customized accelerator does not apply im2col in

many cases, the matrix form data is compared by default. Memory ac-

cess latency is the data movement latency when reading and writing data

to DRAM. Since data reuse methods vary depending on the accelerator

structure, it is assumed that only one read or write to Memory is per-

formed.

For ease of understanding, we assume an accelerator that performs

MAC operations with 1 TOPS. This accelerator takes 0.62 ms to com-

pute one CIFAR-10 image in VGG-9, and it takes 1.2 ms to read the

input and kernel to compute it and save the output. Memory access la-

tency is 19 times longer than computation latency. ResNet-14 is a smaller

version of ResNet-18 in order to make the amount of computation sim-

ilar to VGG-9. Memory access latency of ResNet-14 and MobileNetV2

is smaller than VGG-9. It means that the data movement overhead of

these networks is smaller than that of VGG. In terms of computation re-

9

source and Memory bottleneck, it is advantageous to use ResNet and Mo-

bileNetV2 for large images. In VGG and ResNet with ImageNet, Mem-

ory access latency is less than computation latency, but both values are

large. MobilenetV2’s Memory access latency is the smallest at 1.4ms, but

its computational latency is 0.31 seconds, so its performance is limited

by Memory access.

Therefore, by increasing the batch size, the kernel is reused to reduce

memory access. Also, accelerators use local buffers (SRAM) to reduce

DRAM access. If the kernel is still being stored in the local buffer, there

is no need to read kernel data from DRAM. However, since the kernel

size of the small network VGG-9 with CIFAR-10 is 26.7MB, most ac-

celerators load the kernel every time the layer is executed.

Also, the read power of 3200 DDR4 is 2.2W, which is larger than

most customized accelerators. Moreover, considering the ratio of mem-

ory access latency and computation latency, it is easy to predict the power

consumption problem in memory access.

2.3 Binary Neural Networks

Quantization. Quantization is a method of converting data of high pre-

cision into integer data of low precision bits. As data precision bits de-

crease, data movement size, and computation resource requirements de-

crease. Moreover, since quantized weights and activations are calculated

10

as integers, the overhead of implementing arithmetic logic is also re-

duced. Research on quantization has been actively conducted, and high

accuracy has been obtained with INT8 in image classification [?, 44],

and most customized accelerators are designed based on INT8 opera-

tion [44–46].

Binary neural network. BNN is an extreme quantization case that

reduces the precision of weight and activation to a binary bit. The advan-

tage of BNN is that there is a simple way to implement the ALU with

bit multiplication (XNOR operation) and pop counting [15, 17]. Also,

binary quantization can be implemented simply by using the sign bit of

data as binary data. Despite the loss of accuracy in BNN, to utilize the

advantage of small computing resources, a training method to increase

the accuracy of BNN and a structure of a BNN accelerator are actively

studied [18]. In particular, focusing on bit-wise operation, memory-based

accelerators that utilize a memory array for binary neural network oper-

ation have been proposed. Memory-based accelerator is explained in the

next section.

2.4 Computing-in-Memory

Computing-in-memory refers to an accelerator structure that performs

bit-wise operations directly on a memory array where raw bit vectors are

stored, without moving data from memory to the arithmetic core of the

11

CPU or GPU. It supports dot product operation and logic operation be-

tween two vectors. Because it operates on a column or row unit of a mem-

ory array, it is advantageous to calculate many bits at once. It can operate

in parallel on physically separate memory arrays. A latency required for

fetching and moving data is reduced because it operates directly in mem-

ory. Since there is no repetitive weight and activation matrix loading, the

power consumed by memory I/O will be greatly reduced. Memory I/O

power consumption is tens of times that of simple ALU operations [47].

Recently, NN accelerator based on ReRAM has been proposed the

most [24,48–56]. It is easy to implement multi-bit multiplication and ac-

cumulation using voltage and current because the data is determined by

the current flowing by applying the voltage to the resistive memory cell.

The memory structure is the same as DRAM, and it can operate several

K bit-wise operation at a time. Because different sub-arrays or banks can

operate in parallel, it is easy to increase throughput. Also, since it is not a

commodity product yet, it is possible to propose various structures. How-

ever, since there is a reliability problem such as limited write endurance,

resistance drift over time, susceptibility to process variation (PV), etc.,

using it in an actual system is the current challenge [57, 58].

SRAM based NN accelerators generally target the implementation in

the last level cache [19]. Compared with other memories, it is advanta-

geous that the latency is very short. However, since the data width ac-

cessed at once is 64b, the data access method of accelerator mode must

12

be implemented separately from memory mode [6, 19]. Since the mem-

ory size is as small as several MB, it is difficult to map a large network

to the SRAM.

DRAM based NN accelerator targets the implementation of an accel-

erator in main memory [20, 21]. Unlike other memories, main memory

does not need to load weight and activation data because the data needed

to run the program is already stored. DRAM chip density is as large as

several Giga-bit and can be operated more than 8 K bit-wise operation

at a time, so it is more advantageous than other memory when mapping

large networks. It can operate in parallel on many sub-arrays and banks to

increase throughput. In addition to running in parallel in memory, perfor-

mance can also be scaled up by increasing the number of DRAM. How-

ever, there are problems such as limitation of cell array structure change,

single bit operation only, and data destructive access method [20–22].

2.5 Memory Bottleneck due to Refresh

In the computing system, the memory bottleneck caused by DRAM re-

fresh is gradually becoming a critical issue [2, 59, 60]. As DRAM chips’

density increases, the number of cells that the DRAM needs to refresh

increases [2]. Also, as the technology shrinks, the DRAM cell capaci-

tor’s size decreases, so we need to refresh more often to maintain cell

data [61].

13

(a) (b)

Figure 2.2 Refresh overhead, (a) throughput loss over DRAM density

and (b) refresh power overhead [2].

Figure 2.3 Energy consumption breakdown of ResNet on the evaluation

platform [3].

14

As shown in the Figure 2.2, J. Liu analyzed that the throughput loss

due to refresh will occur about 50% in 64Gb DRAM chip [2]. Through-

put loss is a value obtained by dividing the refresh period (tREFI) by

the refresh time tRFC. Since DRAM cannot perform read/write access

during tRFC, system throughput loss occurs. In the current DDR4, the

throughput loss is smaller than the Figure. In normal refresh mode (AREF

x1), throughput loss of 8Gb and 16Gb occurs 4.5 % and 7.1 %, respec-

tively. Moreover, it increases up to 8.1 % and 13.3 % in AREF x4 mode.

Also, the refresh overhead is still increasing due to the tech scaling and

density increasing.

Refresh overhead is a problem that needs to be solved in the neural

network accelerator. In accelerators that use eDRAM to reduce DRAM

access overhead, the refresh overhead can be more significant. Since the

cell retention time of eDRAM is very short (45 µs), the refresh should

be performed about 1400 times more often than DRAM [62]. Figure 2.3

shows the breakdown of the energy consumption of the accelerator when

running ResNet [3]. Although power consumption is different for each

layer, refresh power accounts for 30 70 % of the layer’s power.

15

Chapter 3

In-DRAM Neural Network
Accelerator

Computation in memory (CIM) is a structure that reduces data move-

ment by performing operations inside the memory where data are stored.

CIM executes a large amount of bit-wise operation by utilizing a mem-

ory array structure. Hence, simple and massively parallel operations are

implemented in memory while the other operations are performed in the

CPU. Although it can be implemented in various memory types, the main

memory (i.e., DRAM) based structure [20–22] can minimize the data

movement. This is because all the data needed to run the neural network

are loaded into the main memory. Cache memory (SRAM) based struc-

ture [6, 19] cannot eliminate data movement between cache and main

memory. ReRAM based structure [24,48–56] is capable of various struc-

tures, and has advantages in the possibility of multi-bit operation and low

power consumption. However, since there is a reliability problem such as

resistance drift over time, using it in an actual system is the current chal-

lenge [57, 58]..The storage memory (NAND) based structures [25] use

16

an asynchronous memory access, which can yield longer latency than

DRAM.

The DRAM based CIM structure can be classified into two types,

charge sharing [20] and gate logic methods [21, 22], according to how

the logic operation is implemented. The gate logic method adds logic

circuits to all sense-amp array (S/A), so the area overhead is significant

(e.g., 24 % for DRISA 1T1C-nor) [21]. In addition, the performance of

the added circuit is limited by the low leakage transistor in the cell array.

The charge sharing method does not change the S/A array, and the area

overhead is very small (e.g., 1 % of DRAM chip area) [20]. However, in

the existing charge sharing method, the implementation of NOT opera-

tion requires a new structure of DRAM cell [20] or a gate logic (incurring

area overhead).

In this work, we focus on the charge sharing method on the existing

DRAM which exhibits better area efficiency than the gate logic method.

• We proposed a novel CIM architecture on DRAM which judi-

ciously exploits existing DRAM operations and charge sharing for

both NOT operation and accumulation, which enables us to signif-

icantly reduce off-chip accesses and area overhead.

• We propose a novel charge sharing method of realizing NOT oper-

ation and accumulation on DRAM utilizing the existing commands

of activation and pre-charge.

17

• We also present a new circuit for charge sharing-based operation

which makes best use of the existing structure of sense amplifier

and bit lines to obtain the inverted values and partial sum results.

• Our experiments report that the proposed method significantly (2.6

times in latency per image) outperforms the existing methods with-

out compromising the quality of neural networks.

3.1 Backgrounds

3.1.1 DRAM hierarchy

Figure 3.1 (a) shows a typical DRAM memory structure. The DIMM

(dual in-line memory module) is a PCB module where DRAM chips are

mounted. The rank is a unit to access DRAM and is a sub-unit of DIMM.

All DRAM chips of a given rank are controlled by the same command

and address signals. A DRAM chip consists of multiple banks, where

each bank comprises sub-arrays. For example, a bank of 4Gb DDR4

DRAM chip consists of 64 sub-arrays each of which has 1,024 rows.

As shown in the figure, a DRAM cell consists of a capacitor to store 1-

bit data and a switching transistor for access control (1T-1C structure).

One-bit data (0 or 1 represented by the amount of charge) is stored in

the capacitor. A DRAM chip needs an activation command to select a

row and load all the data of the selected row to the sense amplifier (S/A)

18

8 9 12 13

10 11 14 15

0 1 4 5

2 3 6 7

Peripheral

DRAM DRAM DRAM DRAM

8

64

Clock, command, address

Data

Sub-array

Page size (1 kB)

Sub-array

(1,024 rows)

DRAM (16 BANK)

Rank (x8 DRAM)

Activated

row

Word line

CS

Bit lineMemory

controller

Channel

MAT

8 MATs per Sub-array

MAT size (1024x1024)

MUX

MAT MAT
Row

DEC
Col

DEC
MUX MUX

888

S
E

R
D

E
S

DQ0

S
E

R
D

E
S

S
E

R
D

E
S

DQ1 DQ7

Peripheral

area

MAT

MUX

MAT MAT

Row

DEC

Col

DEC
MUX MUX

888

MAT MAT MAT

MAT MAT MAT

8 DQ blocks per BANK DQ block

Sub-array

(a)

(b)

DRAM_hierarchy

Figure 3.1 Typical DRAM Memory Structure.

19

array. Then, a read or write command with a column address is issued

to access the desired data in the S/A array. After accessing the data, the

S/A is turned off, and the bit-lines are pre-charged by a pre-charge com-

mand. To retain the data, DRAM periodically refreshes the cell before it

is discharged below a critical level [63]. Refresh is similar to performing

pre-charge after activation without the read or write operation.

Figure 3.1 (b) shows the structure in which data is mapped to a mem-

ory array inside the DRAM. In Figure 3.1 (a), the DRAM chip has 8 Data

I/O pins (DQ), and the sub-array consists of the same number of MAT

blocks as the DQ. MAT is the physical unit of the memory cell array that

composes the BANK. As shown on the left of Figure 3.1 (b), data input

from the outside is converted into low-speed parallel data through the

SERDES block in the peripheral area. The MAT of the sub-array stores

the data input to each DQ. In DRAM design, as shown in the figure on the

right, BANK is divided into DQ block units, which are units mapped to

DQ. In other words, the column of the BANK is divided into DQ block,

and the row is divided into sub-array.

MAT and DQ blocks are units used only inside DRAM. Since it is not

a unit that can be distinguished by the address, most memory architecture

levels do not use these units. However, when the in-DRAM accelerator is

running, it is necessary to identify where the data of each DQ is stored in

memory. Therefore, in this paper, DQ block and MAT are used together

with the sub-array.

20

Standby

(pre-charged)

Sensing Amplifying Pre-charge

Activation

(Row0 activated)

0.5

Row0

Row1

Row2

BL

S/A

0

1

0

OFF

BLB

0.5

BL

0

0

0

0

BLB

0

1

BL

0

1

0

PCG

BLB

0.5

0.5

BL

0

0

ON

BLB

0.5-ɑ

0.5

0.5-ɑ

Read or Write performed

to an activated row

Figure 3.2 DRAM basic operation example.

3.1.2 DRAM Basic Operation

The figure 3.2 shows a simplified DRAM structure has 3 rows and a sin-

gle bit line. The voltage level is represented as ‘1’ instead of the actual

voltage VCORE. Sub-array is a unit of DRAM cell array. In general, the

sub-array has 1024 rows, 8192 bit-lines and sense amps. Sense-amp is

a circuit that evaluates the data from the charge stored in the cell. Since

two sub-arrays share the sense-amps, one is called bit-line, and the other

is called bit-line-bar. Activation is the operation that converts the charge

stored in the cell to logical data. When we are activating the row 0, charge

sharing occurs between the cell in row 0 and the bit-line. Since the data

of the cell is ’0’ and the bit-line voltage is half, the charge sharing result

is half - alpha. And the sense amp amplifies the voltage difference be-

21

tween bit-line and bit-line-bar. Simply, when the charge sharing results

is smaller than half, the data evaluated to ‘0’. After activation, the data

in the sense amps can be accessed to read or write. And, before activates

other rows, bit-line, bit-line-bar, and sense amp must be initialized. This

is called pre-charge, and the voltage is made to half by the pre-charge

circuit inside a sense-amp. We exploit these activation and pre-charge.

3.1.3 DRAM Commands with Timing Parameters

There are four basic operations in DRAM. These are Activation (ACT),

Read/Write (RD/WR), pre-charge (PRE), and Refresh (AREF) commands.

In DRAM prior to DDR DRAM, it was divided into row address strobe

(RAS), column address strobe (CAS), pre-charge (PRE), and refresh (REF).

As described above, after the row is activated and data is loaded into

the S/A array, read and write are possible. Before activating another row

in the same sub-array, a pre-charge operation to reset the S/A array is

required. In other words, when reading data from DRAM, a command

sequence of ACT-RD-PRE is required. The figure shows an example of

the command sequence for the basic operation of DRAM and the related

timing parameters.

Figure 3.3 (a) shows the interval of ’ACT to PRE’ and ’ACT to ACT’

command. In the figure, tRAS is the latency from the row activation until

the S/A fully charges/discharges the cell and bit-line. tRP is the latency

22

(a)

CMD BUS ACT

ADDRESS Bank,Row

PRE ACT
Bank Bank,Row

tRAS tRP

tRC

CMD BUS ACT

DATA BUS

ADDRESS Bank,Row

RD PRE

Bank,Col Bank

tRCD tCCD_L

tRC

RD

DataData

Bank,Col

tCL

(b)

CMD BUS ACT

DATA BUS

ADDRESS Bank,Row

RD PRE

Bank,Col Bank

tRCD
tCCD_S

RD

DataData

Bank,Col

tCL

ACT

Bank,Row

tRRDS

(c)

CMD BUS ACT

DATA BUS

ADDRESS Bank,Row

WR PRE

Bank,Col Bank

tRCD
tCCD_S

WR

DataData

Bank,Col

tCWL

ACT

Bank,Row

(d)

CMD BUS AREF AREF

tREFI

VALID

tREFC

(e)

Figure 3.3 DRAM basic commands and command intervals.

23

to reset the fully charged bit line and S/A. When the row is activated, S/A

does not directly sense the cell capacitor’s voltage. It senses the charge-

shared voltage between the cell capacitor and the bit-line connecting the

cell and S/A. Since the several cells connected to one S/A along the bit-

line. The number of cells connected through the bit-line is the same as

the row number of the sub-array. Therefore, when the row is activated,

the cell capacitor’s voltage and the bit-line become a ’voltage’ smaller

than that of VCORE, and S/A senses this ’voltage’ and fully charges/dis-

charges to VCORE and VSS. In the field of DRAM design, this ’voltage’

is called delV. In this paper, we assume that CBL is 20 times CS, and delV

is VCORE*CS/(CS+CBL). For simplicity, we use 1 and 0 as VCORE (high

potential voltage) and VSS (low potential voltage), interchangeably.

Figure 3.3 (b) shows an example of executing read after activating

a row. tRCD is the interval at which the read command can be input

after ACT, and tCL is the latency until data is output to the DRAM DQ

after the read command. The read command is input with the column

address, and the DRAM reads the data located at the column address in

the column MUX connected to the output of the S/A array. Note: tRCD

is a smaller value than tRAS. That is because even before the S/A output

is fully charged, if the value is greater or less than the column MUX

circuit’s logic threshold voltage, the S/A output is recognized as logical

’1’ and ’0’.

Figure 3.3 (c) is different from Figure 3.3 (b) in RD to RD interval. In

24

the same bank group (BG) that shares GIO, the following read data can be

transferred through the GIO after the GIO data is completely transferred

to the read FIFO. The interval at which read commands can be executed

continuously in the same BG is tCCD L. As shown in Figure 3.3(c),

the serial read commands between the other BG can be executed with

tCCD S. As shown in Figure 3.3 (d), the same interval is applied to the

write command. tCWL is the latency that data is input to the DRAM DQ

pin after the write command. During tCWL, DRAM decodes the write

command and turns on the DQ I/O circuit to receive data.

Figure 3.3 (e) shows an example of the refresh command. DRAM

receives AREF at regular intervals, and this interval is tREFI. When the

AREF is received, the DRAM refreshes several rows inside. tREFC is the

time the AREF command is performed. Since other commands cannot be

performed during tREFC, tREFC/tREFI means performance degradation

by refresh.

3.1.4 Bit-wise Operation in DRAM

Depending on how logical operations are implemented, DRAM based

accelerators are divided into charge sharing and gate logic methods.

Figure 3.4 (a) shows an example of AND and OR implementation

of the charge sharing method [20]. We call a cell array connected to a

sense-amp (S/A) array in DRAM a sub-array. Typically, a sub-array has

25

1k rows and 8k columns. For simplicity, the figure shows an example

with three rows and one column. In the figure, since the cells (circles)

are connected to the same bit line (BL0), S/A can read the cell of the

selected row among them. This operation is called activation. If some of

the rows, e.g., the above three rows, are selected at the same time, charge

sharing occurs between cells, which yields, as the result, the majority of

0 and 1 values in the selected cells. This charge sharing can be used to

implement logic operations.

In Figure 3.4 (a), Row(W), Row(A), and Row(S) have cells with

stored weight, input activation, and select data, respectively. We call the

activation of the neural network as the input or output data to distinguish

it from DRAM row activation. Select data is a value for selecting an AND

operation or an OR operation. Figure 3.4 (a) shows an example of per-

forming an AND operation. In this case, since the select data is ‘0’, the

charge sharing result of the three cells, i.e., the select data ‘0’, the weight

‘1’ and the input ‘0’, becomes 0.33. For simplicity, we use 1 and 0 as

VCORE (high potential voltage) and VSS (low potential voltage), inter-

changeably. S/A evaluates the charge sharing result as ‘1’ if it is higher

than 0.5 and ‘0’ when it is lower than 0.5. Thus, the result of the AND

operation is ‘0’. In other words, if the select data is ’0’, S/A evaluates a

charge sharing result as ‘1’ only when both the weight and input are ‘1’.

Figure 3.4 (a) also shows that the OR operation is enabled by the select

data of ‘1’. In such a case, the S/A yields the output of ‘1’.

26

1

0

0

0.5

BL

Sensing

0

0

0

0

BL

Amplifying

0.33 0.67 0.33

1

0

0

Row(W)

Row(A)

Row(S)

0

BL

1

0

1

1

BL

AND OR

S/A

Bit-wise logical operation Data destructive issue

(a) (b)

Figure 3.4 (a) Logic operation examples (AND and OR), and (b) data

destructive access issue that the result is overwritten to the data cells.

There are two key issues to be considered in the charge sharing method,

process variation and data destructive access. The effect of process vari-

ation on the computational results is small at 0.3 % at a process variation

of 10 % [20]. Data destructive access issue means that the logic opera-

tion result is overwritten in the DRAM cell where the data is stored, as

shown in Figure 3.4 (b) thereby losing the original data (of Row(W) in

the figure). In order to address this issue, the original data are preserved

by copying them using the row clone technique [64]. Since such a data

backup is required for each operation, the latency of the charge shar-

ing method is 100ns∼1µs longer than the row cycle time, tRC, typically

50ns [20].

The gate logic method is a structure in which gate logic and latch are

27

1

0

0

Row(W)

Row(A)

Row(S)

1

BL

Weight load

S/A

1

0

0

0

BL

AND operation

1Latch

Gate

logic

1

0

0

1

BL

Weight store

1

Gate

logic

1

0

0

0

BL

Activation load

1

Gate

logic
AND

(a) (b) (c) (d)

Figure 3.5 AND operation examples of gate logic method, (a) weight

load, (b) weight store to latch, (c) activation load, (d) AND operation.

added to the output nodes of all S/A for bit-wise operation. Figure 3.5 is

a simplified example of AND operation of the gate logic method. Acti-

vate Row(W) to load data ’1’ of Row(W) into S/A (see Figure 3.5 (a)),

and store this value in a latch connected in parallel to the S/A output

node (see Figure 3.5 (b))). Activate Row(A) again and load the data of

Row(A) to S/A (see Figure 3.5 (c)). Figure 3.5 (d) shows that the data

of Row(A) loaded in S/A and data of Row(W) stored in the latch are

operated by AND gate logic connected to the S/A output terminal. How-

ever, the gate logic methods add circuits (latch and required gate blocks)

to every sense amp, so the area overhead is very large (e.g., 24 % for

DRISA 1T1C-nor) [21]. Since the accelerator is integrated to the mem-

ory, DRAM design issues should be considered. In the case of DRAM,

28

manufacturing cost is the most important, and a method with large area

overhead is unacceptable for DRAM.

3.2 Motivations

The previous works of the charge sharing method have two critical limi-

tations: lack of NOT operation and high accumulation cost. First, the pre-

vious study did not implement a NOT operation using the charge sharing

method, but instead added a new structure of DRAM cell [20]. Second,

in the previous works, the large amount of intermediate results has to be

transferred from DRAM to CPU for the accumulation. The size of the

intermediate results is much larger than the sum of input, kernel, and

output, e.g., 73.1MB vs. 2.6MB in a binary VGG-9 model with CIFAR-

10 [39, 41]. Handling the intermediate results on the CPU incurs signif-

icant overhead in power consumption (and area). According to our ex-

periments, especially, data movement latency is significant in both cases

because the time to read the intermediate results from the DRAM cells

is dominant. This problem occurs in DRAM-based accelerators and in

other memory types that use large cell-arrays such as ReRAM. There is

a need for a method to reduce latency and power to compute many in-

termediate results generated after executing a large number of bit-wise

operations at once.

Moreover, a method of reducing input data movement is needed.

29

DRAM-based accelerator and ReRAM-based accelerator increase through-

put by operating multiple sub-arrays (or banks) at once. For that, the op-

eration must be executed after input data is written to all sub-arrays. The

input data movement overhead that occurs, in this case, has not yet been

addressed.

3.3 Proposed architecture

Figure 3.6 shows our proposed in-DRAM accelerator architecture based

on 8Gb DDR4 DRAM. The basic structure of DRAM is maintained

for operation in memory mode, and the circuits added for neural net-

work (NN) mode are indicated in green. M2V (Matrix2Vector) converts

the input matrix (or vector) into a vector, especially for im2col, which

matches the DRAM structure and stores it in the DRAM row. Row oper-

ator performs the bit-wise logic operation and generates the partial sum

by charge sharing in the DRAM sub-array. SiD (Sum-in-DRAM) accu-

mulates partial sums (which obtained by the charge sharing method us-

ing Row operator) and generates the output of binary multiplication. The

proposed structure accelerates the computation of the convolution and

fully-connected layer. We assumed that the host processor executes out-

put reshape (col2im), batch normalization (BN), activation, and pooling.

In our in-DRAM accelerator, for logic operations, we run one sub-

array per bank and, thus, a total of 128 sub-arrays per rank in parallel

30

Bank group 0 Bank group 2

Row operator
Cell array

Sense-amp

Sub-array

Bank 0

Bank 2 Bank 8 Bank 10

Bank 9 Bank 11

Bank group 1 Bank group 3

DATA I/O

Write

FIFO
M2V

M
U

X

SiD

SiD

SiD

SiD

CMD/ADD

decoder

COMMAND ADDRESS I/O

READ FIFO

NNCMD

GEN

Data in/out

Bank 3Bank 1

Figure 3.6 Proposed architecture (based on DDR4 architecture).

(=one sub-array per bank * 16 banks per chip * 8 DRAM chips per rank).

Each bank stores different weight kernels and takes the same input. The

same input data are broadcast to all banks. In Figure 3.6, the blue line

represents the data bus, and the blue box the data repeater. The input is

broadcast to all the banks by using all repeaters (blue boxes) of the write

data path. Note that data movement latency can be hidden by operation

latency via sub-array interleaving.

After running logic operations on bit lines in parallel, we obtain the

final summation of them in two steps. First, we perform charge sharing-

based accumulation on each sub-array. Second, we run the counter in SiD

(sum-in-DRAM) module to count the partial sum results and obtain the

final accumulation result.

31

PSUM

COPY

PSUM

S/A

S/A

S/A

S/A

S/A

S/A

1 0 1

1 0 0Sub-array0

Sub-array1

BL

BLB

BLB

BL

Figure 3.7 Proposed row operator (operand row is in sub-array).

3.3.1 Operation Examples of Row Operator

Figure 3.7 shows our proposed row operator structure, showing the newly

proposed part in color in the existing structure of Figure 3.4. In terms of

circuit, we add two types of transistors, i.e., switches, COPY (for NOT

operation) and PSUM (for PSUM operation) to the existing sub-array.

NOT Operation. NOT operation judiciously exploits the adjacent

sub-arrays and the pre-charge operation. Figure 3.8 illustrates NOT op-

eration. As shown in the figure, a COPY transistor (in blue) connects

two sub-arrays. NOT operation is realized by copying the data of a bit

line on a sub-array to the bit line on the adjacent sub-array and activating

its S/A. In Figure 3.8 (Sensing), the bit line (BL) of sense amplifier S/A1

32

has 1. By turning on the COPY transistor, the contents of the bit line, i.e.,

1 is copied to the bit line bar (BLB) of S/A0 which was originally pre-

charged to 0.5 as shown in Figure 3.8 (data copying). Note that the EQ

transistor (used to pre-charge both BL and BLB) is turned on. Thus, the

contents of BLB of S/A0 is propagated to the BL of S/A0 as shown in the

figure. Then, as Figure 3.8 (Pre-charging) shows, S/A1 pre-charges BLB

of S/A0 via the COPY path. After that, when S/A0 is turned on, since

BL (1) of S/A0 has higher voltage than BLB (0.5), S/A0 evaluates BLB

as ‘0’. When this value is copied to the BL of S/A1 via COPY path, ‘0’

(the inversion of ‘1’) is stored in the cell of S/A1 as shown in the figure

(Inverting). Note that the COPY transistor, used to connect the BL and

BLB of adjacent sub-arrays, is similar to the transistor connecting short

and long bit lines of the same sub-array in [65]. Our difference is that

we utilize the transistor to copy data between two adjacent sub-arrays.

PSUM operation. The procedure for obtaining the partial sum with

charge sharing is as follows. For simplicity, let us assume that we activate

the row of sub-array1 in Figure 3.7 to fully charge/discharge the three bit

lines. In reality, we first perform logic operations (AND, OR or XNOR).

Then, we perform charge sharing to obtain the partial sum of the logic

operation results. Thus, the row In this case, each of the three bit lines has

a value of ‘1’, ‘0’, and ‘1’, respectively. After activation is completed, we

turn off S/A while turning on PSUM switch. Then, charge sharing occurs

between the bit lines connected to the PSUM switches. In the figure, the

33

Data copying Pre-chargingSensing Inverting

ON

EQ

1

Off

On

Off

Off

1

1

1

0

S/A0

S/A1 PCG

OFF

1

Off

On

Off

Off

0.5

0.5

1

0.5

S/A0

S/A1ON

OFF

1

On

Off

Off

Off

0.5+ɑ

0.5

0.5

0.5

S/A0

S/A1

BL

BLB

BL

BLB

OFF

ON

0

On

On

Off

Off

0

0

1

0.5

S/A0

S/A1

Figure 3.8 Operation example of NOT operation.

voltage of the three bit lines, connected by the PSUM switches, becomes

0.67 by change sharing. When we turns on S/A again, the bit line voltage

of 0.67 is evaluated as logic ‘1’, as shown in Figure 3.9 (b). PSUM switch

is required for each bit line, as shown in Figure 3.9 (b), to obtain the

partial sum.

Figure 3.10 illustrates an accumulation for a dot product operation

between two vectors of 64 bits. For simplicity, we use a smaller example

than our real implementation. First, we perform bit-wise XNOR opera-

tion between row(A) and row(W). We explain the details of XNOR oper-

ation later in this section. After obtaining the results of XNOR operation,

we run charge sharing based accumulation. As shown in the figure, we

perform two steps of charge sharing based accumulation. It is due to the

sensing margin of sense amplifier as will be explained below. In the first

34

PSUM evaluationActivation Charge sharing via PSUM path

1

S/A

0

S/A

1

S/A

1 0 1

1 0 0

Off

Off

Off

Off

On

S/A

1 0 1

OFF

S/A

OFF

S/A

OFF

S/A

1 0 1

1 0 0

Off

Off

On

Off

Off

S/A

0.67

1

S/A

1

S/A

1

S/A

1 0 1

1 0 0

Off

Off

On

Off

Off

S/A

0.67

(a) (b) (c)

Charge sharing via PSUM path PSUM evaluationActivation

Figure 3.9 Operation example of PSUM operation.

step of accumulation, PSUM step 1 in the figure, we perform accumula-

tion for each of four consecutive output bits. For instance, the accumula-

tion of the first four bits, ‘1’, ‘1’, ‘1’, and ‘0’ produces 0.75 in the charge

sharing based accumulation. The sense amplifier evaluates the results as

‘1’ or ‘0’ as shown in Figure 3.10. Then, we perform the second step of

accumulation, PSUM step 2. In this case, the previously obtained partial

sum results in PSUM step 1 are accumulated via the same charge sharing

method. As the figure shows, four previous outputs, ‘1’, ‘0’, ‘1’, and ‘1’

are accumulated to produce 0.75V, which is finally evaluated by the S/A

array to produce ‘1’.

In Figure 3.10, we perform each step of charge sharing based accu-

mulation for a group of 4 bits. In our experiments, we utilize a group

of 16 bits and call the number of bits psum width. In our experiments,

35

1) Generates partial sum with 2-step PSUM operation (by charge sharing)

2) 4 partial sums of 64b vector are accumulated in SiD block (by counting)

Row(A)

Row(W)

Vector size (64b)

1

1 1 0 1 1 0 1 1 1

1 1 0 0 0 1 1 0 1

XNOR(A,W)

1 1 1 0 0 0 1 0 1

1 0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 0 1

0 1 1 1 1 1 1 1 1

S/A array

S/A array

0.75 0.25 0.75 1

0 1 1

1S/A array

0.75

1b partial sum from 16b results

PSUM step1

PSUM step2

4 partial sums of 64b vector are accumulated in SiD block (by counting)

Internal data movement to SiD block

Figure 3.10 Example of the proposed accumulation flow.

36

we obtained the psum width considering the sensing margin of sense

amplifier as follows. In case of VCC = 1 , the sensing margin of nor-

mal activation operation is 0.025 assuming the bit line capacitance is 20

times larger than the cell capacitance. In order to sense the charge shar-

ing results, the charge sharing step size (=1/psum width) must be at least

twice the sensing margin. It is because the sense amplifier utilizes half

VCORE, i.e., from 0.5 to 1 or 0. As a result, we obtained the maximum

psum width of 20.

In our experiments, we perform in-DRAM accumulation for the gran-

ularity of 128 bits via sensitivity analysis (as will be shown in Section

IV). Thus, we divide 128 bit summation into two steps (psum width =

psum width1 * psum width2): the first step using psum width1 (=16),

and the second step using psum width2 (=8). Each step takes tRC (=45ns)

since the sense amplifier senses larger voltage difference than its original

sensing margin

We realize operations other than basic operations (AND, OR, NOT)

by a combination of basic operations. Figure 3.11 shows the operation

flow of XNOR used for binary multiplication in BNN. The left column

shows the operation flow of XNOR consisting of four logic operations.

The middle column shows the operation flow of the OR operation, and

the right column shows the flow that copies data to the row operator.

Table 3.1 shows the latency and energy consumption of the logic opera-

tions. We estimated these values using the post-layout simulation result

37

Target row

activation

S/A operation

Data copy to

operand row

Pre-charge

tRAS

tRP

Row(W) copy

Row(A) copy

Row(S) copy

Logic operation

(activates all row)

Data storing

OR(W,A)

AND(W,A)

OR(AND,NOR)

PSUM

NOT(OR)

OR Data copyXNOR

Figure 3.11 Operation flow of XNOR in proposed architecture.

Table 3.1 Latency and energy of operations in a sub-array

Operation Latency Energy

AND,OR 195ns 11.0nJ

NAND,NOR 270ns 19.2

XNOR 505ns 41.3nJ

NOT 135ns 8.2nJ

PSUM 90ns 5.4nJ

38

of 1x-nm DRAM and a DDR4 power calculator [13, 14].

3.3.2 Convolutions on DRAM Chip

Figure 3.12 is an example of executing 1D-convolution in the proposed

structure. In the 1D-convolution of the input vector and the kernel, the

dot product of the partial input and kernel performed while the kernel

vector moves one (stride=1) in the length direction of the input vector,

and all results are accumulated. As shown in Figure 3.12 (a), the pro-

posed structure executes the dot product in parallel in all DQ blocks of

the sub-array. The result of 1D-convolution is obtained by accumulating

the intermediate results (output in S/A array) in the SiD block.

M2V maps and splits the input vector to the DQ block and stores

the partial input vector. It is executed while receiving the input vector,

and no additional data transmission or cycle is required. The M2V write

operation is described in a later section. Kernel vector is stored in DRAM

at the beginning of neural network execution, so it can be operated only

by writing input. For parallel operation, the same kernel vector is stored

in all DQ blocks.

Dot product is executed in Row operator. The row operator executes

bit-wise multiplication using XNOR, and PSUM operation on the bit-

wise multiplication result. All elements in the picture are binary values.

Figure 3.12 (b) is an example of a 1D-convolution of an input vector

39

ROW(A)

ROW(W)

S/A array

Kernel vectorInput vector

a b c d e f g h 1 2 3

DQ block0 DQ block1 DQ block2

a b c

1 2 3

b c d

1 2 3

c d e

1 2 3

M2V(data): data mapped to DRAM row

a1 b2 c3 b1 c2 d3 c1 d2 e3

S/A array OUT0 OUT1 OUT2

⊛

Row operator: XNOR(A,W)

Row operator: PSUM

ROW(A)

ROW(W)

Two kernel vectors
Input vector

a b c d e f g h

1 2 3

DQ block0 DQ block1 DQ block2

a b c

1 2 3

b c d

1 2 3

c d e

1 2 3

BANK 0

ROW(A)

ROW(W)

DQ block0 DQ block1 DQ block2

a b c

4 5 6

b c d

4 5 6

c d e

4 5 6

BANK 1

4 5 6

⊛

⊛

(a)

(b)

Figure 3.12 Example of 1D-convolution on DRAM chip.

40

with several kernels. It is the same as executing Figure 3.12 (a) in several

banks at the same time. Different kernels are stored in the sub-array of

each bank. At this time, the kernel stores the same address in each bank.

In other words, except for the bank address, the address where the kernel

running in parallel is stored is the same. Input is also stored in the same

location in all banks. The data is stored by broadcasting to all banks.

By broadcasting CMD, all banks can perform convolution for different

kernels with the same control signal.

In the proposed structure, since there are 16 banks, 16 kernels can be

operated simultaneously. When the number of kernels is greater than the

number of banks, several kernels are stored in each sub-array, and the

sub-array repeats convolution while changing the kernel. Furthermore,

by applying sub-array level parallelism [66] to different sub-arrays of the

same bank, it is possible to increase the number of sub-arrays operating

at once.

Figure 3.13 is an example of a 2D-convolution operation. The row

size in the kernel matrix is called unit, and the write sequence of M2V

maps the input to the DQ block in unit size. When expanding to 3D-

convolution, it is simply applied by increasing the unit as much as the

the kernel matrix channel. As shown in Figure 3.13 (a), write the input

feature map in order of unit(0), unit(1), and unit(2). The kernel is pre-

stored in the same order as the input was written. Subsequent operations

are performed in the same way as 1D-convolution.

41

Results(0)

Row(0)

Unit(0)

Unit(0)

Unit(1)

Unit(2)

Row(0)

Row(1)

Row(2)

Kernel matrix

Input feature map

ROW(A0)

ROW(W0)

S/A array

Row operator: XNOR(A,W)

S/A array

Row operator: PSUM

PSUM0

Results(1)

Row(1)

Unit(1)

PSUM1

Results(2)

Row(2)

Unit(2)

PSUM2

⊛

M2V(data):

data mapped to DRAM row

DQ block0

Row(2)

Unit(3)

Unit(0)

Unit(1)

Unit(2)

Row(0)

Row(1)

Row(2)

Kernel matrix

Input feature map

ROW(W1) Row(0)

Unit(1)

Row(1)

Unit(2)

⊛

DQ block0

Unit(3)

Update unit(3)

ROW(A1)

(a)

(b)

Figure 3.13 Example of 2D-convolution on DRAM chip.

42

Figure 3.13 (b) is an example of stride and convolution in the height

direction in Figure 3.13 (a). The stride in the width direction is executed

simultaneously in the DQ block (see Figure 3.12 (a)), and the stride in

the height direction is executed sequentially in the same sub-array (see

Figure 3.13 (b)). It is an easy way to reuse the input stored in Row(A0)

in Figure 3.13 (a). Since we assumed that the operation is performed

after all input feature maps are stored in DRAM, the input of Figure 3.13

(a) is in Row(A0), and the input of Figure (b) is in Row(A1). To store

Row(A1) of Figure 3.13 (b), copy Row(A0) to Row(A1). With the row

clone technique, copying is possible during tRC without re-transmitting

data. After the row copy, unit(3) is written to the unit(0) in Row(A1).

Since unit(1) and unit(2) is already in Row(A1), off-chip data movement

is reduced by about 67 %. For convolution, the location of the kernel unit

must be the same as the input. The order of units is different between

Row (W0) of Figure 3.13 (a) and Row (w1) of Figure 3.13 (b). Sub-array

stores all kernels with different unit order. Since the sub-array has 1024

rows, it is possible to save the kernel.

43

3.4 Data Flow

3.4.1 Input Broadcasting in DRAM

As shown in the Figure 3.12 (a), to run multiple kernels in parallel in all

banks, input data must be written to all banks. Figure 3.14 (a) shows that

DRAM writes data to all banks in Memory mode. All bank rows are ac-

tivated, and write is repeated while changing only the bank address. This

write sequence is a bank interleaving write. Figure 3.14 (b) shows the

operation of simultaneously writing data to all banks in NN mode. The

write latency of Figure 3.14 (a) is 40 ns, and the write latency of Fig-

ure 3.14 (b) is 5 ns, which is 87.5 % reduced. It significantly contributes

not only to latency reduction but also to data movement power reduction.

Because the off-chip data movement decreases to 1/16, and the internal

data movement decreases to 1/4 compared to repeatedly writing the same

data by the number of banks. Since GIOs are separated for each bank

group, internal data movement is required once for every bank group.

The broadcasting method in the Figure 3.14 (b) is implemented by

changing only the repeater control signals of CMD and DATA BUS. Fig-

ure 3.15 (a) is the data path when writing to BANK0 in Memory mode.

Blueline is data BUS, redline is CMD BUS, the empty box is the turned-

off repeater, and the filled box is the turned-on repeater. Figure 3.15 (a)

turns on only the repeater connected from CMD and data bus to bank0. In

44

BANK0

BANK1

BANK2

BANK3

BANK4

BANK5

BANK6

BANK7

BANK8

BANK9

BANK10

BANK11

BANK12

BANK13

BANK14

BANK15

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

Broadcasting latency with normal writes

tCDD_S: CMD interval between other bank group

BANK0

BANK1

BANK2

BANK3

BANK4

BANK5

BANK6

BANK7

BANK8

BANK9

BANK10

BANK11

BANK12

BANK13

BANK14

BANK15

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

tCDD_L: CMD interval between same bank group

Broadcasting latency with broadcasting write

BG0

BG1

BG2

BG3

(a)

(b)

Figure 3.14 Examples of write the input to all banks, (a) bank-

interleaving write, and (b) broadcasting write of the proposed architec-

ture. 45

Row decoder

Column decoder

CMD/ADD path

Data path

Repeater (on)

Repeater (off)

Bank group 0 Bank group 2

Bank 2

Bank 3Bank 1

Bank 0

Bank 6

Bank 7Bank 5

Bank 4

Bank 10

Bank 11Bank 9

Bank 8

Bank 14

Bank 15Bank 13

Bank 12

Write

Bank group 1 Bank group 3

Normal write

Broadcasting write (to all bank)

Bank group 0 Bank group 2

Bank 2

Bank 3Bank 1

Bank 0

Bank 6

Bank 7Bank 5

Bank 4

Bank 10

Bank 11Bank 9

Bank 8

Bank 14

Bank 15Bank 13

Bank 12

Write

Bank group 1 Bank group 3

Write Write Write

Write Write Write Write

Write Write Write Write

Write Write Write Write

Figure 3.15 DATA and CMD BUS control for broadcasting.

46

the NN mode broadcasting in Figure 3.15 (b), the BUS’s repeater control

is changed. By activating the BUS control signal for each bank simulta-

neously, input data can be transmitted to all banks at the same time.

3.4.2 Input Data Movement With M2V

The Figure 3.16 shows an example of the operation of M2V. Figure 3.16

(a) shows the transmission of the data of the input feature map to DRAM.

Since the DRAM chip has 8 DQ and the data length (BL) is 8, (H=1,

W=8, C=8) is transferred to the DRAM chip in the input feature map

of Figure 3.16 (a). As the data format is transmitted through the memory

channel, the 1x1x8 (H, W, C) vector is transmitted as much as BL 8. M2V

transposes and stores the transmitted vector. In other words, the vector is

mapped to the BL in the memory channel, but M2V maps the vector to

the DQ block and stores it.

Figure 3.16 (b) shows the write command sequence of NN mode.

There are three commands for M2V write (M2V write BL8, M2V write

BL4, M2V shift). M2V write BL8 (M2V BL8) is a command to transmit

input, as shown in Figure 3.16 (a). M2V write BC4 (M2V BC4) is a

command to transmit the data necessary for the kernel stride. For a 3x3

kernel, the convolution requires two more vectors. When transmitting

two vectors with M2V BC4, the remaining data length is fixed to 1, and

data is transmitted. (In the DDR4 I/O structure, off-chip data movement

47

Reserved for
6x6, 7x7, 8x8, 9x9

Write to DQ_block [7]

M2V buffer

DQ7, BL[0:7]

Shift 1b

W
rite 6

4
b

Received data with

M2V BL8

Received data with

M2V BC4

1

2

3

4

5

6

7

Command

sequence

Received

data

M2V

write

(BL8)

M2V

write

(BC4)

NOP NOP NOP
M2V

shift
NOP NOP NOP NOP NOP NOP

64b 16b
Internal write

without data transfer

Valid

input
++8 ++8

16b ones

Column

address

(a)

(c)

(b)

[0] [7]

Write a vector to the DQ_block[#]

BL
0 1 2 3 7

0 1 2 3 7

DQ0
DQ1
DQ2
DQ3

DQ4
DQ5
DQ6
DQ7

W

(H=1, W=8, C=8)

0 1 2 3 7

H
C

Memory channelHost DRAM (M2V)

0 1 76

M2V BL8

M2V BC4

M2V shift

[0] [7]

Write a vector to the DQ_block[#]

4 5 6 70 1 2 3

5 6 7 81 2 3 4

6 7 8 92 3 4 5

i 8b vector[i]

Figure 3.16 Example of M2V operation. (a) Input feature map transfer,

(b) M2V write sequence in NN mode, and (c) M2V write operation with

data reuse.

48

energy is not consumed to transmit data ’1’ continuously.) The proposed

structure supports kernel from 1x1 to 5x5 and can be extended up to 9x9.

Figure 3.16 (c) shows the operation of M2V according to the com-

mand in Figure 3.16 (b). In the 3x3 convolution case, the M2V reuses the

input feature map and stores it in the DQ block. The data received with

the M2V BL8 is stored in the M2V buffer and transmitted to the DQ

block. The data received with the M2V BC4 is stored in the M2V buffer,

and the data in the M2V buffer is shift-left, then transmitted to the DQ

block. The M2V shift command shifts the M2V buffer data to the left

without external data transmission. M2V stores the M2V buffer data to

the DQ block. Without increasing the off-chip data movement, the M2V

block applied im2col to the 3D-feature map and stored it as a vector in

the DQ block.

3.4.3 Internal Data Movement With SiD

Figure 3.17 shows that SiD block accumulate eight partial sums of sin-

gle DQ block. One SiD block accumulates eight DQ blocks in parallel.

When accumulating with SiD, DRAM does not transmit data to the out-

side. NN mode uses the command SiD iRD for internal read-only and

the SiD eRD command for transmit data to the outside after accumula-

tion. As shown in the table, in NN mode, the read with auto pre-charge

(RDA) command is changed to SiD command. When SiD iRD command

49

PSUM0 PSUM1 PSUM2 PSUM3 PSUM4 PSUM5 PSUM6 PSUM7

1024b

128b

SiD iREAD

8 binary partial sums

S/A array

READ FIFO

Accumulation on SiD block

SiD eREAD

GIO data

DQ0 output

Serializer

Figure 3.17 Example of SiD operation.

is input, eight binary partial sum data are read from DQ block, and SiD

accumulates this 8b data. Accumulation results are stored to the read

FIFO. Since the data length transmitted to the outside is 8b per DQ, SiD

operation is repeated eight times to fill BL of the read FIFO.

Figure 3.18 is a SiD block diagram. One SiD block accumulates the

data of 8 DQ blocks in parallel. Since each BG has separated GIO, SiD

blocks are added to each BG to increase parallelism. The control block

controls 4 SiD blocks. When SiD iRD is input, the control block gen-

erates EN SUM signal to accumulate (BL) as much as the data length

transmitted to the SiD block. EN SUM signal is a high pulse of BL length

50

BK0 BK1

BK2 BK3

BK4 BK5

BK6 BK7

BG0

BK8 BK9

BK10 BK11

BK12 BK13

BK14 BK15

Upside Downside

BG1 BG2 BG3

SiD

blocks

SiD

blocks

SiD

blocks

SiD

blocks

control

block

MUX

UP/DN

CNT

OR
MSB

EN_SUM

FIFO

Data from DQ block

EN_COUNT

DN CNT
PULS

E

DETECT

BL

OR
PIPE_IN

COUNT_END PIPE_IN

PIPE_OUT

SiD control block

(a)

4

INIT

CNT

MSB 1

0

3

DN

0

0

2

0

DATA 1

4

UP

1

0

3

DN

0

DN

1

0

0

0

0

0

0

0

1

DN

0

0

2

0

1

2

UP

1

1

3

UP

0

DN

FIFO

PIPE_IN

1

1

0

1

0

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

DN_CNT 7 6 5 4 3 2 1 0

0

1

0

0

0

1

1

0

(b)

Figure 3.18 SiD block diagram. (a) 4 SiD blocks on DRAM for parallel

operation, and (b) accumulation example.

51

and is generated by using a down counter with a zero detector.

SiD accumulation result is a signed value using an up/down counter.

The initial value of the counter is 0. If the input is ’0’, it counts as -1,

and if ’1’, counts as +1. Note: In the proposed structure, the logic level

’0’ means network data’-1’. It operates with data ’-1’ and ’1’ (see figure

logicalOperation). When accumulation is ended, EN SUM goes low and

COUNT END signal is generated as a pulse. COUNT END generates

PIPE IN signal through OR gate and stores the sign bit (MSB) of the

accumulation result in the read FIFO.

Figure 3.18 (b) is an example of this accumulation. Eight binary par-

tial sums are input, and the initial value of the 3bit up/down counter

(CNT) is 4. At the circuit level, it is expressed as an unsigned value,

so 4 is the same as a signed value ’+’0. Accumulation is executed until

DN CNT of the control block becomes 0, and MSB of CNT is stored in

FIFO.

3.4.4 Data Partitioning for Parallel Operation

When applying a parallel operation to multiple DRAM chips, the input

feature map should be partitioned according to off-chip data movement

and DRAM memory structure. For example, in the rank of Figure 3.6,

the data bus is separated between DRAM chips. When all DRAM chips

convolution with the same input, redundant writes increase 7 times and

52

Table 3.2 Policy of input feature map partitioning

Name Resource Assign DATA BUS Priority Partitioning order

Channel 1∼2 Dynamic Separated 6 H, N, C

Rank 1∼4 Dynamic Shared 5 H, N, C

Chip 8 Fixed Separated 2 W, C, N, H, KN

BANK 16 Fixed Shared 3 KN

DQ 8 Fixed Separated 1 W

MAT 1∼4 Dynamic Shared 4 N, KN, C

off-chip data movement power increases 7 times. Therefore, it is nec-

essary to distinguish between a resource that shares DATA BUS and a

resource that does not share. The operation latency is the same, but the

input can be partitioned with the smallest off-chip data movement.

Table 3.2 summarizes the items required for input partitioning. Re-

source column is the number of resources that can be assigned, and As-

sign is an assignment method. For example, DQ, bank, and chip are

physically fixed values in the DRAM module (x8 DDR4). DATA BUS

is whether the BUS is shared. Priority is the order of improvement effect

of data movement. Grouping order is a data dimension suitable for allo-

cation in each resource. N, C, H, and W denote the batch size, channel,

height, and width dimensions of the input feature map. KN is the number

53

of kernels.

The grouping order determines what data is allocated to the resource.

In order to increase the parallelism of the In-DRAM accelerator and re-

duce the off-chip data movement, we partition the inputs in the order

of H/W resource priority. Since the data reuse method for the input ma-

trix width direction (with M2V) and height direction (with Row copy)

is different, we do not use a method of allocating H/W resources in the

order of input dimensions. The grouping order reflects the data reuse pat-

tern of the proposed structure. For example, since data in the input width

direction is reused using M2V, it can be partitioned as a DQ resource.

When partitioning with other resources, there is no data reuse effect, and

there is no effect of data movement reduction using M2V. Since BUS

is separated between chips of DRAM rank, it is possible to partitioning

for all dimensions of input. However, to maintain the effect of row reuse

in the input’s height direction, the priority of height is low. Since banks

are suitable for input broadcasting, only kernel partitioning is applied to

banks.

Figure 3.19 shows an example in which inputs are allocated to DRAM

according to the priority and partitioning order in Table 3.2. As shown in

Figure 3.19 (a), the inputs allocated to the DRAM chip are displayed

in color. Figure 3.19 (b) is the input feature map (batch size=1) of the

VGG-9 conv2 layer. In order to allocate different data to 8 DRAM chips,

it was divided into 4 in the width direction and 2 in the height direc-

54

PKG PKG PKG PKG PKG PKG PKG PKG

G(0) G(1) G(2) G(3) G(4) G(5) G(6) G(7)

4 5 6 7

0 1 2 3

H=32

W=32

C=128

N=1

0 1 2 3H=32

W=32

C=128

N=2

4 5 6 7

4 5 6 7

0 1 2 3
H=32

W=32

C=256

N=1

0 1 2 3

0 1 2 3

4 5 6 7

4 5 6 7

W=32 N=2

H=32

C=256

(b) (c)

(d) (e)

(a)

Figure 3.19 Input feature map partitioning for parallel operation.

55

tion. Figure 3.19 (c) shows the case where the channel length is doubled.

Partitioning was performed in the width and channel directions. This is

because row reuse in the height direction was considered. Figure 3.19 (d)

is an example of batch size 2 in Figure 3.19 (b). At this time, instead of

height, batch was partitioned. Figure 3.19 (e) is an example in which the

channel is doubled in Figure 3.19 (d). Since the partitioning order of the

channel is higher than that of batch, it is partitioned to execute batch 2

after batch 1.

3.5 Experiments

3.5.1 Performance Estimation

The base structure is 8Gb x8 DDR4 DRAM and the timing parameter of

3200 Mbps is used (e.g. tRAS = 35 ns, tRP = 15 ns, tRC = 50 ns). In pre-

vious experiments [67], we have confirmed that multi-row activation is

possible at the same time without changing timing parameters. Table 3.1

shows latency and energy consumption which was estimated using the

post-layout simulation result of 1x-nm DRAM and a DDR4 power cal-

culator. We assumed a DIMM module as the base main memory where

the in-DRAM accelerator runs. In previous work [68], the area overhead

is estimated within 1.22 % of base DRAM chip due to the additional rows

of Row operator, COPY and PSUM transistors in sub-arrays. In this dis-

56

Table 3.3 Performance of the proposed architecture

3200 8GB DIMM Binary networks with CIFAR-10

(x8 8Gb DDR4) VGG-9 ResNet-14 MobileNetV2

Peak throughput (TOPS) 4.3 4.4 3.2

Average utilization (%) 93.6 94.6 67.6

Computation latency 282.5 µs 295.6 µs 49.7 µs

Data movement latency 130.0 µs 158.5 µs 260.6 µs

Latency per image 412.5 µs 454.1 µs 310.3 µs

Effective throughput (TOPS) 3.0 2.9 0.5

sertation, we copy the data row into two rows at a time when backing up

data to improve data backup time. So, we reduced the vector dot product

latency is reduced to 452 ps from [68]. The row operator’s area over-

head is increased two times, and the total area overhead is 1.9 %. Also,

we assumed that DRAM row repair uses redundant rows provided in

the same sub-array. And, functions other than convolution, such as batch

normalization, activation function, max-pooling, etc., are assumed to be

executed in the host processor.

Table 3.3 shows the performance of CIFAR-10 with binary VGG-9,

ResNet-14, and MobileNetV2. In [68], MAC operation was counted as

57

1-OP to compare the performance between DRAM-based accelerators.

In this dissertation, we counted the MAC operation as 2-OP to compare

the DRAM-based accelerator’s performance with the ASIC accelerator.

The peak throughput and utilization of VGG-9 and ResNet-14 is sim-

ilar while MobileNetV2 gives lower throughput and utilization. Depth-

wise separable convolution of MobileNetV2 adversely affects throughput

due to 3x3 depthwise (i.e., two-dimensional) convolution.

It is because 3x3 depthwise convolution yields 9b vectors of input

activations in matrix (input)-matrix (kernel) multiplication of lowered

convolution. In such a case, our charge sharing circuit, which performs

charge sharing summation at the granularity of 16 bits, has only 9 active

bit lines among 16, which reduces utilization and throughput.

Note that the data movement latency of VGG-9 and ResNet-14 are

both less than computation latency. This is because the data movement

size is reduced 130 times smaller. We reduced the redundant input data

movement by using M2V and broadcasting write. We reduced the output

data size to be transferred to the CPU by 128 times via the two-step

accumulation in DRAM.

3.5.2 Configuration of In-DRAM Accelerator

We generate a binary partial sum with a DRAM sense amp, without

ADC. The area overhead of the proposed architecture is small, but an ac-

58

Table 3.4 Network accuracy comparison with different psum width

Binary network Accuracy@CPU
psum width

64 128 256 512

VGG-9 90.37 87.05 86.92 86.29 82.69

ResNet-14 88.40 83.69 82.99 82.25 79.38

curacy of the neural network drop occurs. Note that the larger psum width

(the granularity of in-DRAM accumulation) makes it possible to further

reduce data transfer for intermediate results. Table 3.4 shows how we

determined the psum width of 128 as mentioned in Section 3.3.1.

Table 3.4 shows the results obtained by training 300 epochs from ran-

dom initialization. All subsequent experiments use the same condition.

We ran only convolution in DRAM since both networks have different

numbers of FC layers. Table 3.4 shows that VGG-9 is more suitable than

ResNet-14 for in-DRAM accelerators. The total computation of convo-

lution layers is almost same, but VGG-9 has 50 % or more kernels than

ResNet-14 in each conv layer. We use the VGG-9 in the following exper-

iments.

As the table shows, as psum width increases, accuracy is decreased.

It is because the accumulation is performed in a premature way in case of

large psum width. The larger accumulation granularity, the more preci-

59

Table 3.5 Network accuracy with different number of ensembles

Binary network Accuracy@CPU
Ensembles

1 2 4 8

VGG-9 90.37 86.81 88.11 89.05 89.52

sion error is incurred. According to Table 3.4, we set psum width to 128,

which offers a large psum width at a tolerable loss of accuracy compared

with the case that the BNNs run only on the CPU without further accu-

racy loss due to charge sharing-based in-DRAM accumulation. In the

following sub-section, we recover the accuracy drop to 0.70 % from 3.56

%.

3.5.3 Improving the Accuracy of BNN

The proposed architecture loses the accuracy with binary partial sum.

We improve the accuracy by adopting ensembles and increasing network

size. Table 3.5 and Table 3.6 show how accuracy gets improved by adopt-

ing larger ensembles and larger kernels, respectively. We trained the en-

semble networks with 80 % of training data randomly selected from the

training set. The tables show the accuracy of running Conv2∼FC2 layers

of the network in DRAM (without first and last layer of the network).

In Table 3.5, when using 8 Ensemble networks, the accuracy is im-

60

Table 3.6 Network accuracy with different network size

Binary network Vanilla model
Base kernel number

128 112 168 224 280

VGG-9 86.81 85.26 88.38 89.20 90.14

VGG-9 w/ imptW 87.80 86.77 88.79 89.67

proved by 2.7 %. However, since it is about 0.4 % improvement per

ensemble network, the efficiency is low. Due to computing energy, the

ensemble network cannot apply to the in-DRAM accelerator.

Table 3.6 compares the accuracy according to the network size. Table

shows the results of two cases, ’VGG-9 case’ trained with a random ini-

tial value, and ’VGG-9 with important weight case (VGG-9 w/ imptW)’

using the important weight of VGG-9 as an initial value. VGG network

determines the number of kernels in Conv layer as a multiple of base

kernel number (the number of Conv-1 kernels). In consideration of uti-

lization, the number of kernels was increased to 168, 224, and 280. In

the case of VGG-9, when the base kernel number is 280, the accuracy is

improved to 90.14. The accuracy drop is very small at 0.23 %, but the

network size increases by 2.9 times.

To reduce the computation overhead of VGG-9 case, we further im-

proved the accuracy by training. In VGG-9 w/ imptW case, the weight

61

of VGG-9 case is used instead of the random value for the initial value

during training. In the BNN training process (for back-propagation), full

precision weights are used. We use the weight larger than the threshold in

VGG-9 case as an important weight. For other weights, a random value

is used as an initial value. We set the threshold to 1. In VGG-9 w/imptW

case, when the base kernel number is 224, the accuracy drop improves to

0.7 % and the network size increases by 2.1 times. Computation energy

consumption is 34.4 % smaller than that of VGG-9 case. Based on the

analyses shown in Tables 3.5 and Table 3.6, we chose the network having

224 kernels of Conv1 which offers the best accuracy for the comparison

with the existing methods (shown in the following sub-section).

3.5.4 Comparison with the Existing Works

We compared the proposed architecture with Ambit and DRISA on the

same sub-array characteristics. Since the original Ambit and DRISA uti-

lize different sub-array characteristics, we call our modified ones also

Ambit and DRISA. In case of DRISA, the sub-array size is halved from

the original DRISA [21]. Therefore, the multiplication operation latency

is halved in DRISA. However, both Ambit and DRISA do not have an in-

DRAM accumulation solution, so they accumulate the intermediate re-

sults in CPU suffering from long data movement latency and high power

consumption on off-chip DRAM accesses. Instead, Ambit and DRISA

62

Table 3.7 Data movement overhead comparison

Data movement overhead Ambit DRISA Proposed

Input Data size 4.8 MB 4.8 MB 52.7 KB

Latency 196.6 µs 196.6 µs 4.2 µs

Energy 368.4 µJ 368.4 µJ 73.5 µJ

Output Data size 73.4 MB 73.4 MB 0.5 MB

Latency 3.0 ms 3.0 ms 125.8 µs

Energy 6.2 mJ 6.2 mJ 0.2 mJ

do not suffer from the accuracy degradation during accumulation.

Table 3.7 compares the data movement overhead of Ambit, DRISA,

and Proposed architecture. The proposed architecture’s input data move-

ment size is about 93 times smaller, thanks to M2V and broadcasting

write. Since Ambit and DRISA have to store the input vector to which

im2col is applied, the data size is increased by the kernel size. Also, since

inputs are stored in all banks by bank interleaving write, input data is re-

peatedly transmitted 16 times.The proposed architecture has 46.8 times

faster latency and 5.0 times less energy consumption for input data move-

ment. The difference in energy consumption is small because the broad-

63

casting write also consumes internal write power to write to all banks.

In terms of the output data movement, the size of the intermediate

results determines the output data movement overhead. It is because the

PSUM operation reduces the intermediate results to 1/128. The proposed

architecture has 23.8 times faster latency and 31.1 times less energy con-

sumption.

Table 3.8 compares the two existing solutions (Ambit and DRISA)

and two versions of our proposed method. Proposed (vanilla) represents

the case of using the baseline binary network while proposed (accurate)

represents the case of using larger networks (having 224 base kernel

number as explained in Section 3.5.3) to improve accuracy. As described

above, this is the result of executing the Conv and FC layers excluding

the first and last layers with DRAM model. Functions other than con-

volution, such as batch normalization, activation function, max-pooling,

etc., are assumed to be executed in the host processor, and the power and

latency generated at this time are excluded.

The computation throughput of the proposed architecture is 4.3 TOPS,

which is slower than DRISA (6.7 TOPS). The reason is that we compared

the MAC operation latency of the proposed architecture with the XNOR

latency of Ambit and DRISA. Ambit and DRISA only execute XNOR

operations, but the proposed architecture includes the execution time of

PSUM. In all items of Ambit and DRISA in the table, time and energy

consumption for accumulation in the host processor are excluded (we de-

64

Table 3.8 Performance comparison

VGG-9 on CIFAR-10 Ambit DRISA
Proposed

(vanilla)

Proposed

(accurate)

Area overhead 1 % 24 % 1.9 % 1.9 %

Accuracy 90.37 90.37 87.80 89.67

Computation throughput* 2.6 T 6.7 T 4.3 T 4.6 T

Computation latency* 236.9 µs 92.1 µs 282.5 µs 816.8 µs

Computation energy* 780.4 µJ 360.2 µJ 720.4 µJ 2.1 mJ

Computation power* 2.47 W 3.91 W 2.55 W 2.55 W

Data movement size 78.2 MB 78.2 MB 0.6 MB 1.0 MB

Data movement latency 3.2 ms 3.2 ms 0.1 ms 0.3 ms

Data movement energy 6.6 mJ 6.6 mJ 0.3 mJ 0.6 mJ

Latency per image* 3.4 ms 3.3 ms 0.4 ms 1.2 ms

Energy per image* 7.4 mJ 7.0 mJ 1.0 mJ 2.7 mJ

Throughput (OPS)* 179 G 187 G 3.0 T 3.2 T

Efficiency (OPS/W)* 83 G 88 G 1.2 T 1.4 T

65

note as * in the table).

Table 3.8 shows that our proposed method, proposed (accurate) of-

fers 2.7 times (= 3.3 ms / 1.2 ms) lower latency per image and 2.6 times

(=7.0 mJ / 2.7 mJ) smaller energy consumption at acceptable accuracy

loss (0.7 %). Although the Proposed (accurate) case’s computation en-

ergy and data movement energy are increased by 2.9 times and about 2

times, the total energy consumption is still 2.6 times smaller than that

of DRISA. Such a gain comes mainly from the reduction in data move-

ment between the in-DRAM accelerator and the host processor. When

comparing only the computational latency, the Proposed (accurate) case

is about 9 times slower than that of DRISA, but it should be noted that,

as described above, the accumulation of DRISA is executed in the host

processor, and the latency at this time is assumed to be 0. The throughput

of Proposed (accurate) is 3.2 TOPS, and the efficiency is 1.4 TOPS/W.

Compared to the existing solution, the effective throughput is more than

17.2 times higher, and the efficiency is more than 15.5 times better.

66

3.6 Discussion

3.6.1 Performance Comparison with ASIC Accel-

erators

Our proposed in-DRAM accelerator has 15 times better efficiency than

the existing in-DRAM accelerator. As shown in Table 3.9, in-DRAM

accelerators’ throughput is higher even when compared to ASIC acceler-

ators. In the table, throughput refers to peak performance, excluding data

movement overhead. In particular, compared with TOPS/area term, the

proposed architecture’s performance is better than other ASIC accelera-

tors except for [69]. Because the throughput is high, it seems that the pro-

posed architecture is good in TOPS/W and TOPS/W/area terms. How-

ever, when comparing the computation power overhead by power/area,

the proposed architecture’s power is the largest. The efficiency with BNN

accelerator should be more than 8 times better than 8b ASIC accelerator.

So, power competitiveness is very low. For the proposed architecture,

note that the network size is 2.1 times larger, and the computation energy

consumption is 2.9 times consumed to compensate for the accuracy drop.

Tablee 3.10 compares the performance of the edge device and the

proposed in-DRAM accelerator. The proposed architecture’s efficiency is

similar to that of edge TPU and is better than other edge devices. When

considering the precision bit, the efficiency is significantly lower than

67

Table 3.9 Performance comparison with ASIC accelerator

ASIC accelerators (presented on ISSCC’19) Proposed

(accurate)[69] [70] [71] [72] [73]

Process (nm) 8 16 28 65 65 1x

Area (mm2) 5.5 94.52 10.92 16 16 6.2*

Cores 1024 1024 512 1024 768 1M

VDD (V) 0.8 0.8 0.9 1.1 1.1 1.2

Precision (W,A) (8,8) (16,16) (8,8) (16,16) (8,8) (1,1)

Memory size (MB) 1.53 16 1.1 0.45 0.37 8192

Throughput (TOPS) 6.9 20.5 0.9 0.2 0.6 4.6

Power (W) 1.55 9.78 0.24 0.20 0.37 2.55

Efficiency (TOPS/W) 4.5 2.1 3.6 1.0 1.6 1.8

Power/area 0.28 0.10 0.02 0.01 0.02 0.41

TOPS/area 1.25 0.22 0.08 0.01 0.04 0.74

TOPS/W/area 0.81 0.02 0.33 0.06 0.1 0.29

68

Table 3.10 Performance comparison with Edge device

Edge device
Proposed

(accurate)
Jetson Jetson Jetson Edge

nano Tx1 Tx2 TPU

Cores 128 256 256 4096 1M

Precision (W,A) (16,16) (16,16) (16,16) (8,8) (1,1)

Memory size (GB) 4 4 8 1 8

Throughput (TOPS) 0.1 1.0 1.3 4.0 4.6

Power (W) 10.0 10.0 7.5 2.0 2.6

Efficiency (TOPS/W) 0.1 0.1 0.2 2.0 1.8

69

that of edge TPU but better than other edge devices. Also, edge TPU has

all functions integrated, and the proposed architecture only accelerates

vector dot product operation. In this respect, the competitiveness of the

proposed in-DRAM accelerators is very low.

Nevertheless, since the in-DRAM accelerator like the proposed archi-

tecture has the following advantages, further research is needed. Since it

is added to the DRAM, there is no additional background power con-

sumption. On the other hand, the standby power of Edge TPU is about

0.4W, which is as large as the operation power. The in-DRAM accelera-

tor’s cost overhead is small as the DRAM chip cost (about 40 $) increases

as much as the area overhead (1.9 %). The proposed architecture’s cost

overhead is about 0.8 $, and the edge TPU module is 20.0 $. Compared

with TOPS/W/cost, the proposed structure is 2.25, which is 22 times bet-

ter than edge TPU (0.1).

3.6.2 Challenges of The Proposed Architecture

Our proposed in-DRAM accelerator’s efficiency is 16.5 times and 15.5

times better than that of Ambit and DRISA, respectively. In addition, as

well as weight, input, and intermediate result data movement was also

greatly improved. However, to put the in-DRAM accelerator into practi-

cal use, there are still challenges to be solved.

First, the proposed architecture consumes computation energy as max-

70

imum regardless of row utilization. It is because the activated row size

and psum width are physically fixed at the design stage. Designing to

change the active row size affects the characteristics of the memory mode.

Instead, it is better that add the PSUM path to increase row utilization by

adjusting a psum width.

Second, the computation overhead to improve the accuracy drop is

large. While improving the accuracy with the larger Network, the compu-

tation energy consumption increased 2.9 times. Instead of increasing the

network size, we need to improve the accuracy with the network topol-

ogy and training method. It helps to improve performance even for all

BNN accelerators. Also, we excluded the ADC by considering the area

overhead, most importantly. To improve accuracy, consider adding a low-

resolution ADC.

Third, the computation energy consumption itself using row activa-

tion is large. Despite the binary operation, the proposed architecture’s

MAC operation energy is large as 1.1 pJ/bit. The FP16 MAC operation

energy of the ASIC accelerator (at 65 nm process) is 1.3 pJ [3], and sim-

ply converted into energy per bit, it is 0.08 pJ/bit. MAC operation energy

of in-DRAM accelerator is 13.8 times larger. There is a need to reduce

energy consumption in data backup and reduce computation energy con-

sumption, such as using AND operation instead of XNOR.

Fourth, in addition to the vector dot product, functions such as max-

pooling and batch normalization need to be integrated. When comparing

71

the computation latency of several networks with the PyTorch profiler

on the CPU without GPU acceleration, it was confirmed that the com-

putation proportion of the Conv and FC layers gradually decreased. In

Alexnet, VGG-16, and ResNet-34, the computation proportion of Conv

and FC layers are 85.5 %, 87.5 %, and 74.9 %, respectively. However, the

proportions of MobileNetv2, shufflenetv2, and MNASNet were small at

51.7 %, 53.9 %, and 50.4 %, respectively. The network topology has been

proposed to reduce the computation overhead of the Conv and FC lay-

ers. Also, the computation proportion of max-pooling and batch normal-

ization increased. Therefore, when the in-DRAM accelerator accelerates

only the vector dot product, a performance bottleneck will occur in max-

pooling and BN. Among DRAM-based accelerators, there is a structure

that supports the end-to-end operation [27]. Although there is an area

overhead, the advantages of this structure must be accommodated.

3.7 Conclusion

We proposed a novel computing-in-memory architecture based on DRAM.

We focused on the two problems of in-DRAM accelerator, lack of NOT

operation support and the data movement bottleneck due to the inter-

mediate results to accumulate. Our proposed method, which is based on

charge sharing circuit, judiciously exploits the existing DRAM architec-

ture thereby incurring only a very small area overhead. Compared with

72

the existing in-DRAM accelerators, on VGG-9 model for CIFAR-10, our

proposed method offers 2.7 times lower latency per image and 2.6 times

smaller energy consumption with acceptable accuracy loss (0.7 %). Ef-

fective throughput, including data movement latency, is 3.2 TOPS, and

efficiency is 1.4 TOPS/W.

73

Chapter 4

Reducing DRAM Refresh Power
Consumption by Runtime
Profiling of Retention Time and
Dual-row Activation

This work was published on MICPRO journal, Feb. 2020 [67]. The DRAM

periodically performs refresh, data cannot be read or written during the

refresh. It reduces the NN accelerator performance of data-intensive ap-

plications. Using the proposed refresh method, we can improve power

consumption and performance degradation caused by DRAM refresh.

4.1 Introduction

The maximum density of a single DDR SDRAM chip, which is used for

main memory, has increased 4X from 4Gb (DDR3) to 16Gb (DDR4) [4,

74]. Also, the number of DRAM chips on memory modules has also

increased 2X from 64 EA (DDR3) to 128 EA (DDR4) [75]. Consider-

ing that the main memory often dominates total system power, e.g., up

74

to 30% [59, 60], the increasing memory capacity makes the problem of

high power consumption in main memory much more severe. In order

to resolve the power issue, also called ‘memory power wall’ [60], it is

imperative to devise novel solutions.

Memory power can be divided into operating and background power.

Operating power is consumed by data read/write operation, so the power

is not noticeably affected by memory density. However, the background

power increases in proportion to memory capacity. It is because the back-

ground power is mostly incurred by refresh operation for holding data in

the DRAM cells. Note that, among the background power, the leakage

power has been reduced by power gating and fin-FET [61]. The standby

power of the DRAM peripheral circuit has also been reduced by turn-

ing off some circuits during idle state [74, 76]. However, there is no ap-

propriate method to reduce refresh power, although various methods are

studied.

In this work, we focus on refresh power reduction. We analyze the

existing refresh power improvement methods [2, 29–38, 77, 78] in three

ways. 1) Temperature change: In the existing works [2,29,32,34–36], the

temperature-dependent characteristics of DRAM cell has not been con-

sidered. 2) External support: Some methods could reduce refresh power

only when operating system and memory controller support them, e.g.,

via data migration and turning off unused ranks [2, 30, 31, 33–36]. 3)

Overhead of area/performance/low availability: Some methods have a

75

substantial penalty in terms of area and/or speed [33, 36–38, 77, 78]. In

particular, they often incur low system availability due to profiling during

system boot up [2, 29, 34–36, 78].

In this chapter, we propose a novel method which resolves the prob-

lem of temperature changes and improves the refresh period in both ac-

tive and idle states at a very small overhead of area and performance

without requiring the external support. Our contribution is as follows.

• We propose a chip-level multi-rate refresh method which adjusts

refresh period in both active and idle states according to the tem-

perature dependent retention time characteristics of each DRAM

chip.

• We propose a retention time profiling method which identifies the

weak DRAM rows during DRAM idle time, hence avoiding low

system availability.

• We present dual-row activation that improves retention time by si-

multaneously activating two rows (one weak and one low-cost ad-

ditional row).

• We evaluate the proposed method experimentally by measuring

real DRAM chip retention times. We improve the refresh period by

12.5 % compared with AVATAR and in-DRAM ECC, respectively.

Under realistic system scenarios with SPEC 2006 benchmarks, we

76

improve the energy-delay product by 19.7 %, 15.4 %, and 12.4 %

compared with the baseline, AVATAR and in-DRAM ECC, respec-

tively.

4.2 Background

DRAM cell consists of a capacitor to store 1-bit data and a switching

transistor for access control (1T- 1C structure). One-bit data (0 or 1 rep-

resented by the amount of charge) is stored in the capacitor. To retain the

data, DRAM periodically refreshes the cell before it is discharged below

a critical level [63]. A cell with much shorter retention time than others is

called a weak cell, and a row containing this cell is called a weak row [2].

Generally, each DRAM cell must be refreshed every 64 ms [4, 74]. Dur-

ing the refresh period (tREFW) of 64 ms, all rows must be refreshed by

8192 refresh commands each of which is issued every 7.8 μs, the refresh

interval (tREFI).

Refresh is similar to performing pre-charge after activation without

the read or write operation. Since DRAM cells have the same structure

irrespective of type (DDR3, DDR4, LPDDR3, LPDDR4, and GDDR5),

retention time depends only on process technology, operating voltage,

and temperature. In our experiments, we measured retention time using

4Gb DDR3L DRAM chip samples.

DRAM refresh can be performed in auto-refresh (AREF) or self- re-

77

fresh (SREF) mode. If a DRAM rank is active, AREF is used. Other-

wise, SREF is used. The AREF refresh command is periodically gen-

erated by the memory controller, whereas the SREF refresh com- mand

generated inside the DRAM after the controller issues the SREF mode

entry. In SREF mode, only refresh operation is per- formed every 7.8

μs internally in DRAM. In both AREF and SREF modes, the row ad-

dress to be refreshed is generated using the same counter on the DRAM

chip [74]. To reduce DRAM background power, most peripheral circuits

(particularly DRAM I/O), aside from the refresh logic block, are turned

off during SREF mode. Thus, the DRAM refresh in SREF mode is not

controlled by the memory controller.

4.3 Related Works

Hamamoto et al. presented a retention time model of DRAM cell where

the temperature-dependent leakage behavior of cell transistor and capac-

itor is modeled [63]. Kim et al. showed that DRAM cells have a highly

skewed distribution of retention time with a long tail due to a small num-

ber of weak cells [86]. Kim et al. reported variable retention time (VRT)

where a cell can have multiple retention times [87]. Conventional solu-

tions ensure DRAM retention time by applying a time margin during test

and repair, e.g., 128 ms test for 64 ms refresh period [87,88]. Some weak

DRAM rows are also replaced with repair rows during manufacturing

78

Table 4.1 Comparison of various related works to reduce refresh power

Category Technique Year Modification Retention time profiling Overall Support mode

OS MC DRAM Profiling Temp. variation ECC overhead AREF SREF

Considering the recent Smart Refresh [30] 2007 X X - - Moderate

DRAM row activations TWW [32] 2017 X - - Small X

refresh applied to the PASR [79] - X X X - - Large X

memory cell used by DIMMer [33] 2014 X X X - - Large X

application programs SRA [29] 1998 X X - - Moderate X X

ESKIMO [31] 2009 X X X - - Large X X

EXTREME [31] 2018 X X X - - Large X X

Retention time-aware VRA [29] 1998 X X - - Moderate X X

refresh RAPID [34] 2006 X X - - Moderate

RAIDR [2] 2012 X Boot-up Scaling Small

AVATAR [35] 2015 X Online Worst X Large

TnE [80] 2014 X Online - X Large

Elaborate Refresh [81] 2018 X Boot-up - Moderate X X

MCRDRAM [78] 2015 X X - - Very large X X

Increasing refresh period Flikker [36] 2011 X X X - - Large X X

with error correction/ CAPB [82] 2019 X X Online - X Large X

tolerance Self-refresh In-DRAM ECC [38] 2017 X - - Large X X

power reduction Temp-aware SREF [83] 1993 X - - Small X

ESR [84] 2016 X - - Small X

Long idle mode [85] 2019 X - - Small X

Proposed [67] X Online Online Small X X

79

testing to improve the margin [89]. ECC DIMM and post pack- age re-

pair (PPR) have also been used [90]. However, at advanced technologies,

these conventional approaches are expected to suffer from high cost due

to the worse retention time [91, 92].

Reiss et al. showed that more than half of the total memory re- sources

in Google server are idle, i.e., in SREF mode [93]. Liu et al. reported,

about 95% of memory resources are in idle state [34, 36]. Shin et al.

showed that the memory scheduling and interleaving can place more

DRAM chips in SREF mode [94]. Considering that most of DRAM chips

can be in SREF mode, a practical solution of refresh power reduction

must be applied to the SREF mode as well as the AREF mode.

We summarized the comparison between existing works and ours in

Table 4.1. First, we group the existing works to five categories, three for

refresh power reduction in active mode, one for error correction/toler-

ance and one for self-refresh power reduction. The first category covers

methods which skip refreshing the DRAM rows which were recently ac-

tivated. Smart Refresh and TWW delay the refresh operation of recently

activated rows using a time-out counter in the DRAM module [30] or

without such a counter [32]. Considering the trend of ever-increasing

DRAM capacity, these methods have limited utility. They also lack in

supporting SREF mode.

The second category methods refresh the memory cells used by ap-

plication programs (at the granularity of row, bank or DIMM). In mobile

80

DRAM, PASR turns offrefresh operation in SREF mode at a granularity

of DRAM bank [79]. DIMMer turns offthe power at the granularity of

module [33]. In both methods, before turning offthe refresh operations

of the target address space, valid data must be migrated to the mem-

ory space under refresh, which in- curs data migration overhead. In [29],

SRA skips refresh operations for an empty row which does not store valid

data. In [31], ESKIMO adds a flag reset function to SRA. In [95], EX-

TREME skips the re- fresh operation of unused rows. They add a page

map table to the logic die of 3D-stacked DRAM, e.g., HBM, to refresh

only the used pages. When applied to real systems, those works require

system modification covering operating system and memory controller.

The third category is the most related with our proposed one since

refresh operations can be applied at different rates based on the reten-

tion time information of each row, which is called retention time-aware

refresh. In [29], VRA skips the row refresh command according to the re-

tention time flag associated to the DRAM row. It is a stand-alone method

in DRAM and supports both AREF and SREF refresh modes. In [34],

RAPID increases the refresh period of the majority of rows (not weak

ones). However, in [29, 34], there has been presented no profiling solu-

tion to measure the retention time of DRAM row. In [2], RAIDR reduces

refresh operations by keeping the refresh period information of each row

in the memory controller. RAIDR profiles retention time during system

boot up possibly incurring the problem of low availability especially in

81

case of large main memory. Moreover, it assumes the worst-case tem-

perature and cannot be applied to SREF mode due to the necessity of

memory controller support. In [35], AVATAR performs periodic profil-

ing that exploits ECC-DIMM to identify weak cells. However, it has the

same problems as RAIDR concerning temperature and SREF mode. In

addition, it runs only on ECC-DIMM. In [80], TnE performs retention

time-aware refresh on the memory area allocated by the application pro-

gram. TnE has an advantage of demand scrubbing which profiles only

the memory cells utilized by the application, not all the memory cells.

TnE requires ECC to recover from bit errors during profiling while ours

utilizes additional rows to backup and restore the contents of the row un-

der profiling. In [81], Elaborate Refresh performs more fine-grained re-

freshes than AVATAR by storing the weak address in each DRAM chip.

Elaborate Refresh adds weak group refresh (WGR) mode and refreshes

weak group every 64 ms in WGR mode. They reduce the refresh opera-

tion of both AREF and SREF, because modified DRAM translates AREF

command to WGR operation inside DRAM. RAPID, RADIR, AVATAR,

TnE, and Elaborate Refresh assume the worst-case temperature in reten-

tion time thereby losing opportunities of further power reduction which is

possible in a temperature-aware solution like ours. In [78], MCRDRAM

activates multiple rows simultaneously to improve retention time and re-

fresh period at a significant cost of DRAM capacity, e.g., 50% of the

entire chip capacity, even when the retention time of only a single weak

82

row needs to be improved.

In the fourth category, we can achieve longer refresh period by tol-

erating or correcting errors. In [36], Flikker reduces refresh operations

while allowing errors on non-critical data with the support of applica-

tions, operating system and memory controller. Flikker can reduce re-

fresh operations of SREF mode by equipping DRAM with the usage

information. However, it cannot consider temperature change, i.e., as-

sumes the worst-case temperature. In [82], CAPB skips the refresh op-

erations of non-weak row during AREF mode by providing the refresh

address counter in DRAM with the target row address to refresh. It also

attempts to further reduce refresh operations by exploiting the fact that

’0’ data incur less bit errors and reducing refresh operations with the

rows having abundant zero data. However, it does not consider temper-

ature change, i.e., assumes the worst-case temperature. In-DRAM ECC

achieves longer refresh period by correcting errors with ECC within the

DRAM chip [38]. In-DRAM ECC reduces refresh operations by more

than 75% [37, 38, 77]. However, it suffers from a significant area penalty

(>6%) for the parity bit and long write latency (5X) due to read-before-

write for parity calculation [77].

The fifth category includes works to reduce the power con- sumption

of SREF mode only. Kagenishi et al. proposed controlling the refresh

period of SREF mode according to temperature [83]. Oh et al. proposed

ESR which, in SREF mode, reduces the word- line voltage (applied to the

83

access transistor of DRAM cell) of non- activated rows in order to reduce

leakage current thereby increasing the refresh period [84]. Pardeik et al.

also proposed a method which controls the cell voltage to lengthen the re-

fresh period in SREF mode according to SREF mode duration [85]. Like

ours, these methods can be easily realized by modifying only the DRAM.

How- ever, the voltage control can incur additional latency overhead due

to voltage transition and associated DLL settling operation.

Note that our method can be applied together with the above- men-

tioned methods for further reduction in refresh power, which is left for

future work.

4.4 Observations

Temperature varies during system runtime. Above all, the temperature is

not usually controllable, e.g., cannot be set to the worst-case temperature

for profiling, in real systems. However, the existing methods of multi-

rate refresh and profiling lack in temperature consideration because they

assume a fixed temperature in profiling and operation. In this section, we

report our observations of temperature-related characteristics of retention

time based on real DRAM chip measurements.

In order to measure retention time while varying temperature, we im-

plemented a memory tester on an FPGA board and used a temperature

controlled chamber as explained in Section 8.1 . We varied the temper-

84

Figure 4.1 Cumulative distribution of retention time at 38 °C.

ature in a range of conventional desktop or server environment [96, 97],

e.g., boot-up temperature = 28 °C and operating temperature = 38–58 °C.

We measured 96 samples of recent 4Gb DDR3L DRAM chip at 28, 38,

48, and 58 °C.

Observation 1: Large gain in refresh period can be obtained by

improving only a few weak rows

Figure 4.1 shows the cumulative distribution of per-row retention time

averaged over 96 DRAM chips at 38 °C. The figure shows, refresh pe-

riod can be significantly increased by improving only a small number of

weak rows. For instance, average 78 rows have retention time smaller

than or equal to 1280 ms (= 20 × 64 ms) while the other rows have

much larger retention time. We represent the time axis at the granularity

of 64 ms called a tick. Notably, the relative gain, i.e., increase in refresh

period/number of improved rows, is large when improving a few weak

rows. The relative gain gets smaller when improving more weak rows,

e.g., relative gain gets reduced from 12 (for 1 row) to 0.26 (for 78 rows).

85

(a) (b)

Figure 4.2 Refresh period (when improving weak rows) vs temperature

as (a) measured and (b) normalized to 38 °C.

Observation 2: Relative improvement of refresh period inversely

depends on temperature.

Figure 4.2 (a) shows that the temperature significantly affects the im-

provements in retention time. For example, improving 100 weak rows

(red in the figure) increases refresh period up to 36 ticks (= 36 × 64 ms)

at 28 °C but only 8 ticks at 58 °C. Figure 4.2 (b) shows the refresh pe-

riod normalized to 38 °C (the data in Figure 4.2 (a) are normalized). The

figure shows that the relative improvement of refresh period is a strong

inverse function of temperature. Also, the function in Figure 4.2 (b) is

practically the same across different numbers of improved rows, 1, 10

and 100 rows. It means that the trend is statistically consistent, regard-

less of the number of improved rows. In our proposed refresh method,

we exploit this observation when extrapolating the refresh period from

the measured temperature to a higher temperature level (Section 6).

86

(a) (b)

Figure 4.3 Refresh period (when improving weak rows) vs temperature

as (a) measured and (b) normalized to 38 °C.

Observation 3: The weakest rows can change across temperature

range.

Figure 4.3 shows how the weakest rows change across temperature. For

instance, the graph of N = 10 shows how much the group of 10 weakest

rows found at 38 °C covers 10 weakest rows found at other temperature

levels. The figure shows, in the case of 58 °C, the coverage is 52.7%,

which means the two temperature levels share average 5.27 weakest rows

among 10. The key message of Fig 4.3 (a) is that tracking a small num-

ber, e.g., only one, of specific weakest rows can fail in capturing the min-

imum retention time of DRAM chip since different temperature levels

can give different weakest rows. Figure 4.3 (b) shows that the coverage

of weakest rows obtained at high temperature, 58 °C in this case, is better

across temperature levels than that obtained at low temperature, 38 °C (

Figure 4.3 (a)). According to this observation, it is clear that a group of

87

weak cells, i.e., rows need to be monitored across different temperature

levels for high confidence.

Typically, a weak row has a much smaller retention time than the

other rows. We define a weak row, in terms of utility and reliability, as the

one which, if dual-row activation is applied to it, offers improvement in

refresh period as well as helps meet the constraint of manufacture test for

reliability. In terms of utility in improving refresh period, when we apply

dual-row activation to a row having small retention time, if we can in-

crease the refresh period of the DRAM chip by at least 64 ms (in 38 °C),

then the dual-row activation of the row is useful. In terms of reliability,

the manufacture test typically requires, after repair, meeting a retention

time of 128 ms for a DRAM chip at the worst-case temperature. Thus,

after dual-row activation is applied to such rows having small retention

time, we need to be able to satisfy the constraint of DRAM manufacture

test like 128 ms. When both conditions are met, we call such rows weak

rows and apply dual-row activation to them.

4.5 Solution overview

Fig 4.4 (a) shows the overall flow of refresh operation in our proposed

scheme. Whenever a refresh command is issued (in SREF or AREF

mode), the current temperature is checked by a thermometer in DRAM [4,

74]. If it is above the maximum temperature of the target range (38–58 °C

88

No

Yes

Refresh
tREFW = 64 ms

Refresh
tREFW > 64 ms

REF command
Every tREFI

Temperature in range?

n*REFW
1 2 3 4

REF REF REF REF

Skip REF Skip REF

64 ms

128 ms

0

REF

REF

Skip Skip Skip REF256 ms REF

5

REF

Skip

Skip

tREFW

(a)

(b)

Figure 4.4 Our proposed refresh scheme: (a) mechanism and (b) exam-

ples of skipping refresh operations.

in our experiments) that our profiling method covers, then the proposed

scheme performs refresh operations with 64 ms assuming the worst-case

temperature. Otherwise, the proposed scheme refreshes with the refresh

period (called target refresh period) determined by our proposed method

which applies profiling (Section 6) and dual-row activation (Section 7

89

). Typically, the target refresh period is longer than 64 ms, e.g., average

4.5X longer at 58 °C in our experiments. Figure 4.4 (b) illustrates how

refresh operations are skipped when the target refresh period is longer

than 64 ms. For example, in order to perform refresh every 128 ms, the

DRAM performs refresh once for every two refreshes. Note that since

the proposed scheme skips refresh operation inside DRAM, it is applied

to both AREF and SREF modes.

Note that each DRAM chip has its own target refresh period deter-

mined by the characteristics of each chip and obtained by our profiling

method. Each DRAM device can have different characteristics (e.g., fast

or slow corner due to inter-chip variations) and operating conditions (e.g.,

hot or low temperature). Our pro- posed method adjusts refresh period in

a per-chip manner, which enables us to consider both chip characteristics

and operating conditions. For instance, in the case of a DRAM chip at

fast corner and hot temperature (with high leakage), the proposed pro-

filing method may select more rows to apply dual-row activation while

it will select less rows in the case of DRAM chip at slow corner and

low temperature (with low leakage). This is the first work for the chip-

level multi-rate refresh, and it allows us to further reduce the overhead

of multi-rate refresh operations in the DRAM DIMM. The overhead of

our refresh scheme is very small because it uses a thermometer inside

the DRAM for temperature reading [4, 74] and a simple counter to keep

track of skipping refresh operations, e.g., only a 2-bit global counter for

90

a DRAM chip is needed in the target refresh period of maximum 256 ms.

The target refresh period is obtained by the proposed profiling method

in two steps. First, the profiling scheme (Section 6) searches a minimum

retention time of all the rows inside a chip at the current temperature.

During the profiling, when the profiling method identifies weak rows,

then, dual-row activation (Section 7) is applied to them to increase their

retention time. Note that whenever the weak row is activated (for normal

activation or re- fresh), dual-row activation is applied. Second, in order

to account for temperature margin, it extrapolates the minimum retention

time of the current temperature to the that of maximum temperature in

the target range, 58 °C in our experiments. For in- stance, if the current

temperature is 38 °C, then the minimum retention time is scaled by 1/3

to obtain the target refresh period (Observation 2).

Table 4.2 compares our proposed scheme with state-of-the-art meth-

ods, RAIDR, AVATAR, and in-DRAM ECC. Based on where the refresh

control is executed, we classify them to memory-centric and controller-

centric methods. Our proposed one is classified to the memory-centric

method which is applied to both AREF and SREF modes. Note that the

controller-centric method cannot be applied to SREF mode since it re-

quires the memory controller to perform row-selective refresh operations.

As the table shows, our proposed method determines the refresh period

at a granularity of DRAM chip, rather than DRAM row in rank-level as

RAIDR and AVATAR.

91

Table 4.2 Comparison with state-of-the-art methods

Controller-centric method Memory-centric method

RAIDR AVATAR In-DRAM ECC Proposed

Refresh method Row selective Native (AREF,SREF)

Refresh rate Multi (row) Multi (row) Single Multi (chip)

SREF support No No Yes Yes

Profiling Needed Needed No Needed

Online profiling No w/ ECC DIMM - Yes

Parallel profiling No No - Yes

Parallel overhead Large Large No No

Temp. variation No No Yes Yes(partial)

ECC DIMM Optional Essential Optional Optional

VRT correction ECC ECC Default ECC

Table 4.2 shows that our proposed scheme enables on-line profiling

during system run while RAIDR allows for only boot-up time profil-

ing and AVATAR requires ECC support for online profiling. Note that

our proposed method allows parallel profiling by running multiple pro-

filing operations in parallel, thereby the profiling time does not increase

with memory capacity, which is not avail- able in the controller-centric

method. As mentioned earlier, our scheme adjusts refresh period of the

92

target temperature range, not the entire temperature range, while RAIDR

and AVATAR assume the worst-case temperature, thereby losing oppor-

tunities for further reduction in refresh period. All the methods require

ECC (in-DRAM or DIMM-level one) for error correction of variable re-

tention time (VRT) errors. In terms of reliability, even though it targets

a very low bit error rate as explained in Section 7 , depending on the re-

quired reliability requirement, it needs to be utilized together with other

solutions such as ECC DIMM, in order to address other error sources,

e.g., soft error, which the proposed method does not cover.

Note that our proposed scheme does not require assistance from the

memory controller while RAIDR and AVATAR require the memory con-

troller control both profiling and multi-rate refresh operations.

4.6 Runtime profiling

4.6.1 Basic Operation

Figure 4.5 (a) shows the flow of retention time profiling. We perform

parallel profiling while a DRAM chip is in idle state (SREF mode). For

simplicity, the figure shows the case that we perform profiling one row

(called target row) at a time. Note that one column in Figure 4.5 (b)

represents a period of 64 ms (tREFW). As the figure shows, if the row

counter in DRAM becomes equal to the target row address of retention

93

Target row? No

Yes
Refresh

tREFW >= 64 ms

Target row = next row address

REF command
Every tREFI

Target row
profiling routine

Test end

n*REFW
1 2 3 4 5

Backup Skip Skip Skip Check

Skip REF Skip REF Skip

Row 0

Row 1

6

REF

Backup

0

REF

REF

Skip REF Skip REF SkipRow 2 REFREF

(a)

(b)

Figure 4.5 Profiling inside the DRAM: (a) profiling flow, (b) profiling

routine examples.

94

time profiling, then its retention time is tested by a profiling routine which

will be explained later. After finishing the profiling of the target row, the

address of the target row is incremented for the profiling of the next row.

Figure 4.5 (b) illustrates the profiling routine. It consists of three

states, data backup, refresh skip(s) and error check. Profiling a tar- get

row is to skip its refresh for the target retention time, e.g., 256 ms. Note

that, as illustrated in the figure, the other rows not under profiling are

refreshed in the target refresh period, e.g., at a refresh period of 128 ms.

Since retention time profiling is per- formed in idle state, it can be in-

terrupted by SREF exit. In such a case, the profiling of the remaining

rows resumes in the next SREF mode. The contents of the target row are

restored during SREF exit operation, e.g., DLL initialization. Thus, the

latency of data restoration can be hidden.

After completing the profiling for the current target retention time

on all the rows of the DRAM chip, if there is no error, i.e., retention

error in error check, then we increase by 64 ms the target retention time

and perform profiling for all the rows. This procedure continues until

there is any retention error found in the error check. The current target

retention time without error that represents the minimum retention time

of the DRAM chip. Then, as described in Section 5 , we obtain the target

refresh period by extrapolating the minimum retention time of the current

temperature to that of the maximum temperature, 58 °C.

95

4.6.2 Profiling Multiple Rows in Parallel

It is important to reduce the total profiling time, especially, in order to

promptly adapt to temperature change. As mentioned previously, our

method performs parallel profiling, where all sub- arrays of each bank

perform profiling in parallel while sharing the error check logic per bank.

Note that, in the parallel profiling, the target row is determined by the row

index of the sub-array, not the entire row address.

4Gb DDR3 DRAM chip has 8 banks and each bank consists of 64

sub-arrays. Thus, we can profile 512 (= 64 × 8) rows in a DRAM chip in

parallel. The profiling of the entire chip requires 1024 profiling routines

(one per row) since the sub-array consists of 1024 rows. Note that the

runtime of the pro- posed parallel profiling, i.e., the number of profiling

routines depends on the number of rows in a sub-array, not the memory

capacity, e.g., the number of DRAM chips in the module.

4.6.3 Temperature, Data Backup and Error Check

When realizing the basic idea of retention time profiling in idle state,

there are two issues to be resolved, temperature and time for data backup

and test. First, while profiling, the temperature may change. When the

temperature increases, the retention time gets reduced, and data can be

lost. Thus, if an error is detected, then we reduce by 64 ms the target

retention time and continue to perform profiling with the new, shorter

96

Target row

Additional row

Column MUX

Sense-amp

Sub-array

Column MUX

Sense-amp

Sub-array

Additional row

(a) Activation (b) Row copy

Figure 4.6 Backup on a sub-array: (a) row data copied to the sense am-

plifier array, and (b) backed up to an additional row.

target retention time. Second, the data backup and error check require

data movement, which incurs the overhead of runtime and energy con-

sumption. For instance, it takes 0.7 μs to read an entire row from one

bank to another in DRAM. Its latency is determined by tRCD + tCL +

128 tCCD, where tRCD, tCL and tCCD are RAS-to-CAS delay, CAS

latency, and CAS-to-CAS delay, respectively. Hence, in case of DDR3

1600 (clock period = 1.25 ns, CL = 11, RCD = 11, and CCD = 4), the

latency is 0.7 μs. A data backup operation needs one read and two writes

(write original data to backup storage and write test pattern to a target

row) of the entire target row while the error check requires one read. In

order to reduce the backup overhead, we propose utilizing an additional

row in each sub-array as the backup storage using the RowClone tech-

nique [98].

97

Figure 4.6 illustrates the backup operation. When the target row is

activated, its contents loaded into sense-amplifier (S/A) array. Then, the

additional row is activated, and the data on the bit-line are copied to the

additional row. The latency of the row-level copy operation is less than

40 ns [98]. Adding an additional row for each sub-array incurs a very

small area overhead (approximately 0.1%, assuming 1024 rows and an

additional row per sub-array). Note that we equip each sub-array with

multiple additional rows and utilize one of them for data backup during

profiling. We exploit the additional rows mainly to improve the retention

time of weak row as will be explained in Section 7 .

For the error check, the contents of the target row are read to the error

check logic. The area overhead of the error check logic is small (0.05%,

where the area of one XOR gate is 24 m2) because only 64 XOR + OR

gates are required for each bank to compare the contents of the target

row and the test pattern at a granularity of 64 bits. The runtime of error

check operation, mostly determined by the read latency of the entire row,

is 0.74 μs which can be hidden by tREFI (7.8 μs).

4.7 Dual-row Activation

Figure 4.7 illustrates dual-row activation which utilizes an additional row

to keep the same contents of a weak row. When accessing the weak row,

we activate both the weak and additional rows. Figure 4.7 (a) shows the

98

S/ACB

Normal row activate

CS
Sub

array
No matched
additional row

S/ACB

Weak row activate

0.5CS

Additional row activate

CA

Sub
array

(a) Normal row access (b) Weak row access

Figure 4.7 Dual-row activation.

case of normal row activation. When a cell is activated, charge sharing

between the bit-line and the activated cell makes voltage difference (de-

tected by S/A) which is proportional to CS / (CB + CS), where CS and CB

are the cell and bit-line capacitance, respectively. In general, CB is much

(4X–10X) larger than CS .

Figure 4.7 (b) illustrates a case where CS is reduced by half in a weak

cell. In such a case, the voltage difference detected by S/A is halved,

which increases the risk of a read error. In this case, we activate both

the weak row and the additional row containing the same contents of

the weak row. Thus, the difference becomes proportional to (0.5 · CS +

CA)/(CB + 0.5 · CS + CA), where CA is the capacitance of additional

cell. Typically, CA = CS . Thus, the additional row increases the voltage

difference thereby avoiding the error.

Dual-row activation is not new [78] . In our work, we propose a low-

cost realization of dual-row activation in terms of additional row and

99

weak row information. Our proposal to reduce the cost is to equip each

sub-array with additional rows to improve the re- liability of weak rows

in the sub-array. The number of additional rows is determined by the

reliability requirement. We aim at improving up to 100 weak rows in a

DRAM chip, which is much more challenging than the existing PPR,

e.g., 1 or 2 row repairs. We expect such a high-reliability level is neces-

sary for more advanced technology.

We target the reliability requirement, 10E-12 in terms of the bit error

rate (BER) [99]. Considering this requirement, we need to add 8 addi-

tional rows per sub-array to cover 100 weak rows in a DRAM chip. The

total number of additional rows per DRAM chip is 100 which was ob-

tained to meet the constraints of reliability and utility in our definition of

weak row. Our area analysis shows that additional 8 rows per sub-array

incur a very small area (<0.8%) and power (<0.02%) overhead.

In our implementation, the dual-row activation method works with

the DRAM repair block in parallel. Figure 4.8 shows the flow of row acti-

vation and Figure 4.9 its realization. In Figure 4.9 , the shaded blocks and

bold arrows correspond to the new circuit of the proposed idea. Specif-

ically, the gray blocks are used for profiling and blue ones for dual-row

activation.

100

Row Address

Address decoder

Address blocking

HIT = true

Normalrow Repair row

HIT = true

Additional row

Repair block Dual-row activation

Sub-array

Repair address
table

Weak address
table

1 2 3

Figure 4.8 Flow of row activation in the proposed method.

Row array

REF_ADD

SREF

Address
(ADD)

R
ow

de
co

de
r

CMD & ADD
decoder

Matched
address

generator

BLOCK

RED_ADD

Addtional_ADD

Additional row
array

Sense-amp

CMD(ACT, internal REF)

Sub-array 1 EA

REF
controller

Refresh
period
control

Command
(CMD)

Row ADD

Column MUX

GIO

Error
detector

(per bank)

Target
address

generator

REF_ADD

AREF

Refresh
address

generator

ADD_END

XOR

OSC

SKIP_SREF

UP

ADD 0 Comparator

ADD 1 Comparator

HIT[0]

HIT[1]

WHIT[0]
ADD N ComparatorFLAG

Repair address table

Weak address table

REF_ADD, ERROR_FLAG (Address, strobe signal)

PRE_ROW_ADD

FLAG[0]

On-die
Temp.
sensor

DIV

READ_TEMP

DOWN
(ERROR_FLAG)

AREF

Figure 4.9 Block diagram of proposed method.

101

As the figures show, when an input row address (Row Address in

Figure 4.8 and PRE ROW ADD in Figure 4.9) is given for row activa-

tion, we consult two tables, repair address table and weak address table,

which contains the address of repaired rows and of weak rows, respec-

tively. If the input row address is found in the repair address table, then

we activate the repair row address (arrow 2 in Figure 4.8 and HIT[] sig-

nal in Figure 4.9) and block an output of the ad- dress decoder (BLOCK

signal in Fig 4.9) to prevent the activation of the original row (which is

repaired by the repair row). If not, we perform an activation for the input

row address (arrow 1 in Figure 4.8). In addition, if the input row address

is found in the weak address table, then we simultaneously activate the

additional row (arrow 3 in Figure 4.8 and WHIT[] and Additional ADD

signals in Figure 4.9). We can implement dual-row activation method to

DRAM within 0.9% area (includes additional array penalty, 0.8%) since

we only add blocks for the weak address table to the repair block and do

not change the existing blocks.

4.8 Experiments

We evaluate our proposed method in three ways: real measurements, a

statistical model and an architecture simulator. In real measurements, we

evaluate the improved retention time by dual-row activation. Based on

the measured results, we show that different refresh periods can be set

102

across DRAM chips in a temperature-changing condition. Using the ar-

chitecture model, we compare the existing methods and ours in various

memory configurations.

4.8.1 Experimental Setup

FPGA board

Chamber

Control panel
of the chamber

(a) (b)

Figure 4.10 Measurement environment. (a) FPGA board in the chamber,

and (b) temperature control panel of the chamber.

We used an in-house memory tester on an FPGA board to measure

the retention time of DRAM chips. The board is equipped with a Xil-

inx VC707 and 4Gb DDR3L DRAM. We tested 96 DRAM chips (12

ranks) of recent technology from a single company. The DRAM chips

are equipped with a dual-row activation function for testing purposes

only. The parameters of the DRAM chips used in our experiments are

103

very close to those used in [76]. Retention time was measured at 28 °C,

38 °C (default), 48 °C and 58 °C using a temperature-controlled cham-

ber (accuracy of± 1 °C) as shown in Figure 4.10. We set the temperature

condition according to the existing works [96,97] . Lee et al. [96] reports

that the temperature of server and desktop ranges between 34C and 50C

during 2-hour operation. El-Sayed [97] reports that memory throughput

is significantly reduced at higher than 58 °C. Considering these, we set

the range of operating temperature to 38 °C–58 °C. To be exact, the boot-

up temperature is the room temperature, 28 °C and the typical/worst tem-

perature is 38 °C/58 °C. Figure 4.1, 4.2,and 4.3 show the measurement

results we obtained from this setting.

We developed a statistical model based on a hidden Markov model

(HMM) [100] of retention time based on our measurements. We utilize

the HMM to evaluate the target refresh period of each DRAM chip under

the proposed method (profiling with dual-row activation) in a temperature-

changing condition. We utilize 8 additional rows per sub-array for dual-

row activation and improve (up to) 100 weak rows utilizing dual-row

activation and weak address table.

In order to evaluate our proposed method during system run, we de-

veloped a simulation model of AVATAR, in-DRAM ECC and proposed

method, on Ramulator [101]. We compare these methods on Ramulator

and DRAMPower [102]. Table 4.3 shows the key parameters used in our

simulation experiments. As will be shown in the following sub-section

104

(in Figure 4.13), our proposed method improves by 4.5X refresh period

at the typical range of operating temperature (below 58 °C) which is by

12.5% better than AVATAR (4X) and in-DRAM ECC (4X). The period of

AVATAR, 4X is extrapolated from 3.6X at 60 °C [35]. The refresh period

of in-DRAM ECC is fixed to 4X during the manufacturing process [38].

In terms of memory technology, AVATAR used older technology than the

one used in our experiments. Considering the fact that the retention time

gets shorter in the newer technology, our gain of 4.5X improvement can

be considered much better than 4X in AVATAR. Therefore, we assume

the refresh period of all methods to be 4 times the baseline, i.e., 256 ms (

= 4 × 64 ms). The other common parameters are based on 4Gb DDR3L

datasheet [76].

We used Ramulator with CPU trace mode. In the CPU trace mode,

Ramulator directly reads instruction traces and simulates a simplified

model of a ”core” that generates memory requests to the DRAM sub-

system. Table 4.4 shows the architectural parameters of CPU and mem-

ory subsystem. To be specific, the system is equipped with two channels

and each channel consists of two 8GB (4Gb x8 2 ranks) DDR3L 1600

Mbps DIMMs, i.e., total 8 ranks. We used the CPU traces of SPEC 2006

provided in Ramulator [101, 103].

105

Table 4.3 Key simulation parameters

DDR3 AVATAR In-DRAM ECC Proposed

Refresh command AREF (ACT-PRE) AREF AREF

Refresh period (tick) 1 4 4 4

Power overhead (%) No No 3 0.02

Latency overhead No No WR CCD (20ns) No

tRFC (+100ns)

CL,CWL (+2ns)

Table 4.4 System configuration for simulation

CPU 3.2 GHz (in-order), 1-core

Cache (L1, L2, L3) Density (32kB, 256kB, 8 MB)

Latency (4, 12, 31), all 8-way set-associative

Memory controller 32/32-entry read/write request queues, FR-FCFS

System memory 32GB (2DPC, 2CH)

DRAM Four 8GB (4Gb x8 2rank)

(nCL-nRCD-nRP) DDR3L 1600k (11–11–11)

106

4.8.2 Refresh Period Improvement

In this section, we utilize the measurement data of real DRAM chips and

our statistical model based on the measurement data of real DRAM chips.

We did neither utilize benchmark programs nor any architecture simula-

tion model since we assume that the characteristics of refresh period is

not affected by program characteristics.

Figure 4.11 shows the measured retention time (cumulative distribu-

tion) of two cases at 38 °C, before (‘baseline’) and after the dual- row

activation is adopted (‘dual-row activation’). Note that dual-row activa-

tion without profiling would not offer meaningful improvements because

it requires profiling to select which rows to perform dual-row activation.

Our proposed method gives the better distribution (the lower, the better)

than the baseline. The improvement comes from dual-row activation. It

gives 11% (9 to 10 ticks) improvement of minimum retention time, so we

can expect the target refresh period of each chip can be further improved

in a similar manner. However, the retention time improvement is smaller

than expected (up to 20 ticks as shown in Figure 4.2 (a)). We think it is

mainly because the two activation are not well synchronized in the cur-

rent DRAM chips (supporting dual-row activation), the improvement of

which is left for future work.

Using the statistical HMM based on the real measured result, we eval-

uate the target refresh period in a temperature changing condition. Fig-

107

Figure 4.11 Retention time distribution where dual-row activation was

applied to 100 weak rows (measurements).

ure 4.12 illustrates how the proposed method of profiling and dual-row

activation (Section 4.6 and 4.7) improves refresh period on different

DRAM chips. The x-axis represents the profiling time accumulated in

SREF mode. Figure 4.12 (a) shows the profiling operation on two dif-

ferent DRAM chips on a rank. Target refresh period improved to 5 and

4 ticks for denoted as solid and dashed lines, respectively. Figure 4.12

(b) shows how temperature changes over time in the experiment while

Figure 4.12 (c) gives the number of weak rows found in the profiling.

The figure shows that only a few weak rows need to be covered by our

method.

Figure 4.13 shows the average target refresh period we obtained by

running the simulations 10 times on the HMM. The figure shows that the

integrated method of proposed profiling and dual-row activation (denoted

as ‘Integrated’ in the figure) offers 4.5X to 22.1X improvements in re-

fresh period in the temperature range of 28 °C and 58 °C. The figure also

108

(a)

(b)

(c)

Figure 4.12 Simulation results: (a) profiling and refreshing different

DRAM chips on a rank, (b) temperature changes during profiling, and

(c) the number of weak rows found in each DRAM chip.

109

Figure 4.13 Average value of target refresh period (simulated 10 times).

shows the refresh period of rank-level and chip-level refresh methods (

Section 4.6 only) which adjust re- fresh period based on the proposed

profiling method at a granularity of DRAM rank and chip, respectively.

As the figure shows, the more fine-grained management of refresh pe-

riod, i.e. our proposed chip-level and integrated method, can give more

improvements in refresh period than the coarse-grained rank-level solu-

tion.

4.8.3 Power Reduction

We evaluate the refresh power on Ramulator and DRAMPower with the

simulation model of AVATAR, in-DRAM ECC and the proposed method.

We assume that the retention time profiling is already done for AVATAR.

Thus, the power consumption of AVATAR due to profiling is not included

in the power consumption.

Table 4.5 gives a comparison in terms of power consumption, per-

110

formance, and energy-delay-product (EDP). We obtain EDP by running

23 workloads of SPEC2006 with Ramulator and DRAMPower. The ta-

ble shows the overall results (in geometric mean). We give more detailed

results in Figure 4.14.

Table 4.5 shows that AVATAR, in-DRAM ECC and the proposed in-

tegrated method reduce the AREF power consumption by 20%, 16%,

and 19% compared with the baseline of 64 ms refresh (DDR3 in the ta-

ble). The reduction comes from 4X longer refresh period. AVATAR has

no power overhead of DRAM, so its power consumption is the lowest in

AREF mode. In-DRAM ECC and our proposed method have additional

power consumption due to ECC and dual-row activation operation, re-

spectively.

In terms of SREF power, the proposed method gives the largest reduc-

tion of 23.4% due to the (4X) increased refresh period. AVATAR does not

reduce the power consumption since it re- quires the memory controller

to perform multi-rate refresh and the memory controller operation is not

available in SREF mode. Thus, AVATAR needs to adopt the conventional

refresh period of 64 ms in SREF mode. Note that the SREF power of the

proposed method includes the power consumption due to profiling, 0.88

mW as shown in Table 4.5, because we turn on the proposed profiling

method continuously to check the retention time variation mostly due to

temperature.

As Table 4.5 shows, we simulate three memory configurations, where

111

Table 4.5 Comparison of power, performance, and EDP (normalized to

the ddr3 baseline case)

DDR3 AVATAR In-DRAM ECC Proposed

Profiling power of 8 ranks (mW) N/A 0.32 N/A 0.88

Area overhead in DRAM (%) N/A Controller >6.0% <1.05%

support

AREF power of 8 ranks (mW) 259.8 208.5 217.4 210.6

SREF power of 8 ranks (mW) 141.1 141.1 109.4 108.2

Baseline case (4-active-rank)

Power (normalized) 1.00 0.88 0.86 0.84

Speed (normalized) 1.00 1.01 0.95 1.00

EDP (normalized) 1.00 0.87 0.95 0.84

Energy-friendly case (1-active-rank)

Power (normalized) 0.70 0.67 0.57 0.56

Speed (normalized) 0.96 0.97 0.91 0.96

EDP (normalized) 0.75 0.71 0.69 0.60

Performance-friendly case (8-active-rank)

Power (normalized) 1.29 1.05 1.12 1.09

Speed (normalized) 1.02 1.03 0.98 1.02

EDP (normalized) 1.23 0.99 1.17 1.04

112

1, 4, 8 ranks of the total 8 ranks are operated. In the baseline condi-

tion (called 4-active-rank case), assuming that only half of DRAM chips

operate as reported in [93], only 4 ranks of total 8 ranks run, and the

rest are in SREF mode. All values are normalized to the DDR3 baseline.

We obtain the minimum energy consumption when only 1 rank operates

while the other 7 are in SREF mode, and the best performance when

all the 8 ranks operate. We call these cases energy-friendly (1-active-

rank) and performance-friendly (8-active-rank) cases, respectively. The

performance-friendly case has a poor EDP because it consumes by 29%

more power while giving only 2% performance gain compared with the

DDR3 baseline. In the case of the performance-friendly case, ours im-

proves EDP by 15.1% compared with the baseline, while AVATAR and

in-DRAM ECC improves 19.0% and 4.6%, respectively. According to [93],

this case rarely occurs in real systems.

Our proposed method offers the largest improvements in both the

baseline (4-active-rank) and energy-friendly cases. In the case of the

baseline rank configuration, ours improves EDP by 16.1%, 4.0%, and

11.2% compared with the baseline DDR3, AVATAR, and in-DRAM ECC,

respectively.

Our method gives larger improvements in the energy-friendly case

that only one rank operates while providing 19.7%, 15.4%, and 12.4%

better EDP than the other three methods. As will be shown later in this

section, all the improvements of the proposed method come from the

113

refresh power because no methods significantly improve the speed com-

pared with the DDR3 baseline. Our proposed method outperforms AVATAR

by the largest margin. It is because the energy-friendly case has the largest

number of ranks in SREF mode and ours reduces the refresh power in

SREF mode. In-DRAM ECC can also reduce the refresh power due to

the same reason as ours. However, the power benefit of in-DRAM ECC

is offset by the slower speed due to the poor write performance, which

gives worse EDP than our proposed method.

Figure 4.14 shows the details on the results of the 4-active-rank case

reported in Table 4.5. In Figure 4.14 (a), in-DRAM ECC gives a perfor-

mance drop of average 5% (in geometric mean) while AVATAR and the

proposed method do not lose performance. The performance loss is due

to the additional read operation required for every write to generate a new

parity. The error correction granularity of data, where in-DRAM ECC is

applied, is 128 bytes while the access granularity (i.e., the amount of the

read/write data) is 64 bytes. Thus, in case of write operation, in order to

produce a new parity, the existing 64 byte data of the 128 bytes (which

is not modified by the new write operation) needs to be read from the

memory, which incurs additional latency and finally increases write la-

tency, especially, for consecutive writes, i.e., WR CCD on Table 4.3 [77].

Figure 4.14 (a) shows AVATAR has a slight (1%) speed gain due to the

reduction in tRFC [35].

Figure 4.14 (b) shows that AVATAR, in-DRAM ECC and our pro-

114

0.80
0.85
0.90
0.95
1.00
1.05
1.10

Sp
ee

d

AVATAR Proposed method In-DRAM ECC

0.70
0.75
0.80
0.85
0.90
0.95
1.00

Po
w

er

AVATAR Proposed method In-DRAM ECC

0.80
0.85
0.90
0.95
1.00
1.05
1.10

ED
P

AVATAR Proposed method In-DRAM ECC

(a)

(b)

(c)

Figure 4.14 Performance and power consumption on the baseline case.

115

posed method improve power consumption by 12%, 14%, and 16%, re-

spectively. AVATAR reduces power consumption only in AREF mode as

shown in Table 4.5. On the contrary, in-DRAM ECC and our pro- posed

method can reduce power consumption in both AREF and SREF modes

thereby offering more power reduction than AVATAR. Figure 4.14 (c)

compares the EDP of the three methods. As the figure shows, our pro-

posed method gives the best EDP (0.84), and the gain of 3.5% and 11.6%

from AVATAR (0.87) and in-DRAM ECC (0.95), respectively.

We also performed a comparison on 11 benchmark programs in SPEC

2017 and obtained a similar trend, e.g., ours gives 18% gain in EDP while

AVATAR and in-DRAM ECC give 4% and 10%, respectively. Due to the

space limit and the completeness of comparison, we provide only the

comparison on SPEC 2006.

4.9 Conclusion

In order to reduce the power consumption of DRAM main memory, we

propose a novel scheme of chip-level multi-rate re- fresh. It is based

on runtime profiling which runs in idle state and determines the mini-

mum refresh period of each DRAM chip in a temperature-aware man-

ner. Our proposed method reduces refresh rate, thereby refresh power, in

both AREF and SREF modes without the support of memory controller.

Our method offers further reduction in refresh period by improving weak

116

rows with a low-cost dual-row activation method.

We evaluated the refresh period based on the statistical model devel-

oped with real measurements. Our proposed method gives 4.5X improve-

ment in refresh period for the typical range of operating temperature

(below 58 °C) which is by 12.5% better than AVATAR and in-DRAM

ECC. We also evaluated performance and power consumption in vari-

ous memory configurations using Ramulator and DRAMPower. The pro-

posed method consistently outperforms AVATAR and in-DRAM ECC.

Especially, in the energy-friendly case, our method improves EDP by

19.7%, 15.4%, and 12.4% compared with the baseline DDR3, AVATAR

and in-DRAM ECC, respectively.

117

Chapter 5

System Integration

5.1 Integrate The Proposed Methods

The proposed accelerator is based on 8Gb DDR4. The refresh overhead

of 8Gb DDR4 is about 4.5 % of throughput loss and about 13.6 % of

background power. Figure 5.1 (a) shows the refresh schedule for the nor-

mal case. AREF is scheduled every tREFI. And after AREF is input,

refresh is performed inside DRAM during tREFC. Due to the tREFC for

refresh every tREFI, refresh affects the throughput. Since data access is

not possible in DRAM while a refresh is being executed, the performance

of not only DRAM-based accelerators but also all accelerators operat-

ing data-intensively is reduced. Therefore, the proposed refresh method

needs to be integrated not only in DRAM-based accelerators but also

in NN accelerators. And, as shown in the Figure 2.2, as the density in-

creases, the refresh overhead is proportional to the DRAM density. For

example, the overhead of 16Gb DDR4 increases twice.

The accelerator and refresh method proposed in this dissertation are

118

AREF

tREFI × 4

VALID

tREFC

AREF

tREFI - tREFC

VALID

tREFC

AREF

AREF AREF

tREFI*4

VALID

tREFC

AREF AREF AREF

tCCD_S × 3 tREFI × 4 – (tCCD_S×3 + tREFC)

CMD BUS

CMD BUS

(a)

(b)

Figure 5.1 Refresh sequence. (a) Refresh schedule for the normal case

and (b) for the integration of the proposed method.

orthogonal to each other, so they can be integrated into one DRAM chip.

Among the DRAM basic commands ACT, PRE, RD/WT, and REF, the

proposed accelerator was implemented using ACT, PRE, and RD/WT,

and the proposed refresh method corresponds to REF and SREF. There-

fore, each method’s blocks are separate, and there is no need to modify

the circuits to integrate them into one chip. An additional row is added to

the sub-array and used for data backup and dual-row activation in both

methods, so the additional row is also separated. In-DRAM accelerators

need four additional rows to store weights, activations, AND offsets, and

OR offsets. Since dual-row activation requires eight additional rows, a

total of 12 additional rows are used. The refresh method’s dual-row acti-

vation works only when the normal row is activated, so it does not affect

119

JEDEC Standard No. 79-4
Page 124

Figure 135 — Postponing Refresh Commands (Example of 1X Refresh mode)

Figure 136 — Pulling-in Refresh Commands (Example of 1X Refresh mode)

4.27 Self refresh Operation
The Self-Refresh command can be used to retain data in the DDR4 SDRAM, even if the rest of the system is powered down. When in
the Self-Refresh mode, the DDR4 SDRAM retains data without external clocking.The DDR4 SDRAM device has a built-in timer to
accommodate Self-Refresh operation. The Self-Refresh-Entry (SRE) Command is defined by having CS_n, RAS_n/A16, CAS_n/
A15, and CKE held low with WE_n/A14 and ACT_n high at the rising edge of the clock.

Before issuing the Self-Refresh-Entry command, the DDR4 SDRAM must be idle with all bank precharge state with tRP satisfied. �Idle
state� is defined as all banks are closed (tRP, tDAL, etc. satisfied), no data bursts are in progress, CKE is high, and all timings from
previous operations are satisfied (tMRD, tMOD,tRFC, tZQinit, tZQoper, tZQCS, etc.). Deselect command must be registered on last
positive clock edge before issuing Self Refresh Entry command. Once the Self Refresh Entry command is registered, Deselect
command must also be registered at the next positive clock edge. Once the Self-Refresh Entry command is registered, CKE must be
held low to keep the device in Self-Refresh mode. .DRAM automatically disables ODT termination and set Hi-Z as termination state
regardless of ODT pin and RTT_PARK set when it enters in Self-Refresh mode. Upon exiting Self-Refresh, DRAM automatically
enables ODT termination and set RTT_PARK asynchronously during tXSDLL when RTT_PARK is enabled. During normal operation
(DLL on) the DLL is automatically disabled upon entering Self-Refresh and is automatically enabled (including a DLL-Reset) upon
exiting Self-Refresh.

When the DDR4 SDRAM has entered Self-Refresh mode, all of the external control signals, except CKE and RESET_n, are �don�t
care.� For proper Self-Refresh operation, all power supply and reference pins (VDD, VDDQ, VSS, VSSQ, VPP, and VRefCA) must be
at valid levels. DRAM internal VrefDQ generator circuitry may remain ON or turned OFF depending on DRAM design. If DRAM
internal VrefDQ circuitry is turned OFF in self refresh, when DRAM exits from self refresh state, it ensures that VrefDQ generator
circuitry is powered up and stable within tXS period. First Write operation or first Write Leveling Activity may not occur earlier than tXS
after exit from Self Refresh. The DRAM initiates a minimum of one Refresh command internally within tCKE period once it enters
Self-Refresh mode.

tREFI

9 tREFI

8REF-Commands postponed

t

tREFI

tREFI

9 tREFI

8 REF-Commands pulled-in

t

tREFI

Figure 5.2 Pulling-in Refresh Commands [4].

the accelerator activating only additional rows for calculation.

To improve throughput loss due to refresh, execute refresh as shown

in the Figure 5.1 (b). Execute AREF 4 times at intervals of tCCD S, wait

for tRFC, and execute another command. And it repeats at tREFI*4 in-

tervals. When the proposed dual-row activation is applied, the refresh

period increases by an average of 4.5 times, as shown in Figure 4.13.

The refresh is scheduled in consideration of this characteristic. In gen-

eral, DRAM performs refresh at tREFI intervals. However, to effectively

perform scheduling and switching between tasks, postponing and pulling

the AREF input are allowed. As shown in Figure 5.2, maximum of 8

AREF commands can be entered during the tREFI interval. In the pro-

posed method, the refresh period of the DRAM is changed in integer

units. For example, when the refresh period is increased four times, the

refresh is increased by executing the refresh once the AREF command

is input four times to the DRAM chip. Therefore, after inputting the 4th

120

AREF at tCCD S interval, as shown in the figure, schedule the tREFC

interval.

When the in-DRAM accelerator and refresh method of this disserta-

tion are integrated into 8Gb DDR4, the throughput loss is improved by

about 3.3% and the background power is reduced by about 10.0%. With

the proposed refresh method, the accelerator throughput is 3.2 TOPS,

and energy per image is 3.6 mJ. Efficiency is 1.0 TOPS/W.

5.2 Software Stack

Although research on customized accelerators is actively being conducted,

not many accelerators are actually integrated into the system, except for

the accelerator implemented based on FPGA. The reason is that a soft-

ware stack between the deep learning framework (e.g., PyTorch [104] ,

Tensorflow [105]) and the accelerator is required to run various neural

network models on the accelerator. Since this is redundant engineering

work, developing a software stack to support accelerators in the frame-

work at the academic level of accelerator research is beyond the research

scope. At the industry level, the hardware vendors have released spe-

cially optimized libraries for neural network computations (e.g., cuDNN

for NVIDIA GPU [106]). It is supported by all frameworks. However,

since these libraries are hardware dependent, they cannot be used in other

customized accelerators.

121

Table 5.1 The comparison of DL compilers [1]

TVM Glow XLA

Developer Apache Facebook Google

Framework support tensorflow/tflite/keras

pytorch/caffe2

mxnet/coreml/darknet

pytorch/caffe2

tensorflowlite

Use tensorflow

interface

Supported devices CPU/GPU/ARM

FPGA/Customized (

use VTA)

CPU/GPU

Customized

CPU/GPU/TPU

Customized

Programming Python/C++ Python/C++ Python/C++

Training support No (under developing) Yes (Limitted) Yes

122

Recently, to effectively use customized accelerators in the DL frame-

work, deep learning compilers that compile the model definition of the

deep learning framework into optimized code for custom hardware have

been proposed [1]. Popular DL compilers are TVM [107], Tensor Com-

prehension [108], Glow [109], nGraph [110], and XLA [111]. Table 5.1

is a comparison of those supporting DL framework PyTorch and tensor-

flow among these DL compilers. TVM and Glow support both PyTorch

and tensorflow, but XLA only supports tensorflow. TVM supports accel-

erators that operate stand-alone, and Glow supports executing specific

functions in customized accelerators. All DL compilers support Python

and C++ languages and training support well only in XLA.

When comparing the currently developed DL compiler, TVM is the

most suitable to use the in-DRAM accelerator in the DL framework. In

order to operate the in-DRAM accelerator in Memory mode and NN

mode, memory controller support is required. Also, since it only accel-

erates the vector dot product operation, a host processor is needed to ex-

ecute other operations. TVM compiler supports custom accelerator im-

plemented in FPGA, and officially provides TVM/VTA. Therefore, if we

modify the TVM/VTA accelerator’s memory controller, we can provide

an environment that supports the in-DRAM accelerator.

The Figure 5.3 (a) is an example of system integration of our pro-

posed in-DRAM accelerator. Since there is no in-DRAM accelerator chip,

this is a summary of the system integration blocks. The block marked

123

Memory mode
Memory
Control

NN mode
DRAM Acc.

control

MUX I/O

DRAM

Memory mode

Accelerator mode

FPGA
NN

Accelerator

Memory controller

Memory
Trace

format

Memory
request

NN request

PyTorch TVM TVM/VTA

Framework
DL

compiler
Host

processor

Custom memory
controller

Memory trace
for NN mode

In-DRAM accelerator

Additional H/W

Memory trace
for controller

Custom
function and compiler

(a)

(b)

Figure 5.3 (a) Block diagrams for system integration, and (b) software

stack.

124

with a blue line is for NN mode, and the block painted blue is verified in

Chapter 4 [67]. Because our proposed accelerator supports only vector

dot product or bit-wise logical operation, the host processor is required.

In Figure 5.3, it is assumed that the host processor uses the FPGA NN ac-

celerator (TVM/VTA) and the DL compiler uses the TVM. Our proposed

accelerator should control memory access with memory mode and NN

mode. For easy implementation, put a memory controller corresponding

to each mode, as shown in the Figure. In other words, the memory con-

troller has two internal-controller blocks with output MUX.

In the experiment of Chapter 4, we implemented a memory controller

on an FPGA board and measured the characteristics of DRAM. As shown

Figure 5.3 (a), a normal memory controller and a custom memory con-

troller are used. A custom memory controller is used when measuring

DRAM characteristics. DRAM can be controlled at a low-level also in

the application level. The memory controller’s operation has been veri-

fied in an actual environment. Since there is no real in-DRAM accelerator

chip, implementing an NN mode memory controller is out of the current

research focus. However, as described above, it is clear that FPGA board

can support in-DRAM accelerator by implementing NN mode memory

controller, as shown in the figure.

Unlike the code executed in the host processor, the in-DRAM accel-

erator’s code cannot be compiled through the DL compiler because it is

a memory command trace format. Instead, as shown in Figure 5.3 (b),

125

we will convert the convolution or fully-connected layer of the PyTorch

model into a custom function. Using a custom compiler, we compile the

custom function to a memory write (or read) sequence in binary data for-

mat for the NN mode memory controller. We called this a memory trace

for controller. When the memory trace for controller transferred to the

NN mode memory controller, the memory controller generates a mem-

ory trace for NN mode. In the memory controller, logical address with

the memory trace for controller is mapped to the physical address with

memory trace for NN mode. The memory trace for NN mode is a low-

level DRAM commands sequence to control the in-DRAM accelerator

to execute the neural network. Command trace is generated in consider-

ation of off-chip data movement and DRAM structure, as described in

the data flow of Chapter 3. The memory write sequence becomes the op-

eration sequence of the in-DRAM accelerator. After the operation, read

the Memory. Operations not supported by the in-DRAM accelerator are

executed by the host processor.

We added the performance simulation function of the in-DRAM ac-

celerator to PyTorch. When running a neural network in PyTorch, the

simulation program detects the layer which can be executed in in-DRAM

accelerator, and it reports the computation latency and data movement la-

tency when running in the proposed in-DRAM accelerator. Figure 5.4 is

an example of simulation results of VGG-9 with CIFAR-10 in the 1Rx8

3200 DDR4 DRAM based accelerator. It reports the result for each layer

126

executed in the in-DRAM accelerator, and the sum of latency of the exe-

cuted layers.

Simulation reflects the operation of Chapter 3. Computation latency

results from data being mapped to DRAM and executed according to the

feature map size. Data movement latency is the sum of input data move-

ment latency (M2V write) and output data movement latency (SiD read).

The simulation result is the result of reflecting the DRAM configuration

and timing parameters. Since it can be executed by changing the DRAM

configuration, it is also possible to evaluate in-DRAM accelerators’ per-

formance in Memory other than DDR4 DRAM.

Since it is a simulation, we can check the in-DRAM accelerator’s per-

formance regardless of the current hardware that the neural network is

running on. At the stage of co-designing the In-DRAM accelerator hard-

ware and the network suitable for it, it is advantageous to predict the per-

formance in advance. We can develop a network suitable for in-DRAM

accelerators or review hardware changes to fit the neural networks. It can

also be used to compare performance when run on different hardware.

127

Figure 5.4 An example of simulation results of VGG-9 with CIFAR-10

in the 1Rx8 3200 DDR4 DRAM based accelerator.

128

Chapter 6

Conclusion

In this dissertation, I present 1) a DRAM-based accelerator architecture

and 2) a DRAM refresh method to improve performance reduction due to

DRAM refresh. Both methods are orthogonal, so can be integrated into

the DRAM chip and operate independently.

First, we proposed a DRAM-based accelerator architecture capable

of massive and large vector dot product operation. In the field of CNN ac-

celerators to which BNN can be applied, a computing-in-memory (CIM)

structure that utilizes a cell-array structure of Memory for vector dot

product operation is being actively studied. Since DRAM stores all the

neural network data, it is advantageous to reduce the amount of data

transfer. The proposed architecture operates by utilizing the basic op-

eration of the DRAM.

The second method is to reduce the performance degradation and

power consumption caused by DRAM refresh. Since the DRAM cannot

read and write data while performing a periodic refresh, system perfor-

mance decreases. The proposed refresh method tests the refresh char-

129

acteristics inside the DRAM chip during self-refresh and increases the

refresh cycle according to the characteristics. Since it operates indepen-

dently inside DRAM, it can be applied to all systems using DRAM and

is the same for deep neural network accelerators.

When the in-DRAM accelerator and refresh method of this disserta-

tion are integrated into 8Gb DDR4, the throughput loss is improved by

about 3.3% and the background power is reduced by about 10.0%. With

the proposed refresh method, the accelerator throughput is 3.2 TOPS,

and energy per image is 3.6 mJ. Efficiency is 1.0 TOPS/W.

We surveyed system integration with a software stack to use the in-

DRAM accelerator in the DL framework. As a result, it is expected to

control in-DRAM accelerators with the memory controller implementa-

tion method verified in the previous experiment. Also, we have added the

performance simulation function of in-DRAM accelerator to PyTorch.

When running a neural network in PyTorch, it reports the computation

latency and data movement latency occurring in the layer running in the

in-DRAM accelerator. It is a significant advantage to predict the perfor-

mance when running in hardware while co-designing the network.

130

Bibliography

[1] M. Li, Y. Liu, X. Liu, Q. Sun, X. You, H. Yang, Z. Luan, L. Gan,

G. Yang, and D. Qian, “The deep learning compiler: A compre-

hensive survey,” IEEE Transactions on Parallel and Distributed

Systems, vol. 32, no. 3, pp. 708–727, 2020.

[2] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “Raidr: Retention-aware

intelligent dram refresh,” ACM SIGARCH Computer Architecture

News, vol. 40, no. 3, pp. 1–12, 2012.

[3] F. Tu, W. Wu, S. Yin, L. Liu, and S. Wei, “Rana: Towards efficient

neural acceleration with refresh-optimized embedded dram,” in

2018 ACM/IEEE 45th Annual International Symposium on Com-

puter Architecture (ISCA), pp. 340–352, IEEE, 2018.

[4] “DDR3 SDRAM specification JESD79-4B.” 2017.

[5] Y. Jia, Learning semantic image representations at a large scale.

PhD thesis, UC Berkeley, 2014.

[6] A. Biswas and A. P. Chandrakasan, “Conv-ram: An energy-

efficient sram with embedded convolution computation for low-

131

power cnn-based machine learning applications,” in 2018 IEEE

International Solid-State Circuits Conference-(ISSCC), pp. 488–

490, IEEE, 2018.

[7] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,

“Diannao: A small-footprint high-throughput accelerator for ubiq-

uitous machine-learning,” in ACM Sigplan Notices, vol. 49,

pp. 269–284, ACM, 2014.

[8] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,

Z. Xu, N. Sun, et al., “Dadiannao: A machine-learning supercom-

puter,” in Proceedings of the 47th Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, pp. 609–622, IEEE Com-

puter Society, 2014.

[9] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An

energy-efficient reconfigurable accelerator for deep convolutional

neural networks,” IEEE Journal of Solid-State Circuits, vol. 52,

no. 1, pp. 127–138, 2017.

[10] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and

W. J. Dally, “Eie: efficient inference engine on compressed deep

neural network,” in 2016 ACM/IEEE 43rd Annual International

Symposium on Computer Architecture (ISCA), pp. 243–254, IEEE,

2016.

132

[11] L. S. Standard, “Jedec jesd209-4,” 2015.

[12] E. Azarkhish, D. Rossi, I. Loi, and L. Benini, “Neurostream: Scal-

able and energy efficient deep learning with smart memory cubes,”

IEEE Transactions on Parallel and Distributed Systems, vol. 29,

no. 2, pp. 420–434, 2017.

[13] “DDR4 Power Calculator 4.0.” https://www.micron.com/

~/media/documents/products/power-calculator/ddr4_

power_calc.xlsm. Accessed: 2019-07-18.

[14] “8Gb DDR4 SDRAM.” https://www.skhynix.com/

products.view.do?vseq=2658&cseq=73. Accessed: 2020-10-

28.

[15] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,

“Binarized neural networks,” in Advances in neural information

processing systems, pp. 4107–4115, 2016.

[16] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,

“Binarized neural networks: Training deep neural networks with

weights and activations constrained to+ 1 or-1,” arXiv preprint

arXiv:1602.02830, 2016.

[17] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-

net: Imagenet classification using binary convolutional neural net-

133

https://www.micron.com/~/media/documents/products/power-calculator/ddr4_power_calc.xlsm
https://www.micron.com/~/media/documents/products/power-calculator/ddr4_power_calc.xlsm
https://www.micron.com/~/media/documents/products/power-calculator/ddr4_power_calc.xlsm
https://www.skhynix.com/products.view.do?vseq=2658&cseq=73
https://www.skhynix.com/products.view.do?vseq=2658&cseq=73

works,” in European conference on computer vision, pp. 525–542,

Springer, 2016.

[18] H. Qin, R. Gong, X. Liu, X. Bai, J. Song, and N. Sebe, “Binary

neural networks: A survey,” Pattern Recognition, p. 107281, 2020.

[19] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer,

D. Sylvester, D. Blaaauw, and R. Das, “Neural cache: Bit-serial in-

cache acceleration of deep neural networks,” in 2018 ACM/IEEE

45th Annual International Symposium on Computer Architecture

(ISCA), pp. 383–396, IEEE, 2018.

[20] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim,

M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit:

In-memory accelerator for bulk bitwise operations using commod-

ity dram technology,” in 2017 50th Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture (MICRO), pp. 273–287,

IEEE, 2017.

[21] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie,

“Drisa: A dram-based reconfigurable in-situ accelerator,” in 2017

50th Annual IEEE/ACM International Symposium on Microarchi-

tecture (MICRO), pp. 288–301, IEEE, 2017.

[22] S. Li, A. O. Glova, X. Hu, P. Gu, D. Niu, K. T. Malladi, H. Zheng,

B. Brennan, and Y. Xie, “Scope: A stochastic computing en-

134

gine for dram-based in-situ accelerator.,” in MICRO, pp. 696–709,

2018.

[23] M. Imani, S. Gupta, and T. Rosing, “Ultra-efficient process-

ing in-memory for data intensive applications,” in 2017 54th

ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–

6, IEEE, 2017.

[24] Y. Kim, H. Kim, D. Ahn, and J.-J. Kim, “Input-splitting of

large neural networks for power-efficient accelerator with resis-

tive crossbar memory array,” in Proceedings of the International

Symposium on Low Power Electronics and Design, pp. 1–6, 2018.

[25] S. K. Gonugondla, M. Kang, Y. Kim, M. Helm, S. Eilert, and

N. Shanbhag, “Energy-efficient deep in-memory architecture for

nand flash memories,” in 2018 IEEE International Symposium on

Circuits and Systems (ISCAS), pp. 1–5, IEEE, 2018.

[26] H. Shin, D. Kim, E. Park, S. Park, Y. Park, and S. Yoo, “Mcdram:

Low latency and energy-efficient matrix computations in dram,”

IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems, vol. 37, no. 11, pp. 2613–2622, 2018.

[27] S. Cho, H. Choi, E. Park, H. Shin, and S. Yoo, “Mcdram v2:

In-dynamic random access memory systolic array accelerator to

135

address the large model problem in deep neural networks on the

edge,” IEEE Access, vol. 8, pp. 135223–135243, 2020.

[28] G. Santoro, G. Turvani, and M. Graziano, “New logic-in-memory

paradigms: An architectural and technological perspective,” Mi-

cromachines, vol. 10, no. 6, p. 368, 2019.

[29] T. Ohsawa, K. Kai, and K. Murakami, “Optimizing the dram re-

fresh count for merged dram/logic lsis,” in Proceedings. 1998

International Symposium on Low Power Electronics and Design

(IEEE Cat. No. 98TH8379), pp. 82–87, IEEE, 1998.

[30] M. Ghosh and H.-H. S. Lee, “Smart refresh: An enhanced mem-

ory controller design for reducing energy in conventional and 3d

die-stacked drams,” in 40th Annual IEEE/ACM international sym-

posium on microarchitecture (MICRO 2007), pp. 134–145, IEEE,

2007.

[31] C. Isen and L. John, “Eskimo-energy savings using semantic

knowledge of inconsequential memory occupancy for dram sub-

system,” in 2009 42nd Annual IEEE/ACM International Sympo-

sium on Microarchitecture (MICRO), pp. 337–346, IEEE, 2009.

[32] H. H. Shin, H. Seo, B. Lee, J. Kim, and E.-Y. Chung, “Timing win-

dow wiper: A new scheme for reducing refresh power of dram,” in

136

2017 22nd Asia and South Pacific Design Automation Conference

(ASP-DAC), pp. 133–138, IEEE, 2017.

[33] D. Zhang, M. Ehsan, M. Ferdman, and R. Sion, “Dimmer: A case

for turning off dimms in clouds,” in Proceedings of the ACM Sym-

posium on Cloud Computing, pp. 1–8, 2014.

[34] R. K. Venkatesan, S. Herr, and E. Rotenberg, “Retention-aware

placement in dram (rapid): Software methods for quasi-non-

volatile dram,” in The Twelfth International Symposium on High-

Performance Computer Architecture, 2006., pp. 155–165, IEEE,

2006.

[35] M. K. Qureshi, D.-H. Kim, S. Khan, P. J. Nair, and O. Mutlu,

“Avatar: A variable-retention-time (vrt) aware refresh for dram

systems,” in 2015 45th Annual IEEE/IFIP International Confer-

ence on Dependable Systems and Networks, pp. 427–437, IEEE,

2015.

[36] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker:

saving dram refresh-power through critical data partitioning,” in

Proceedings of the sixteenth international conference on Architec-

tural support for programming languages and operating systems,

pp. 213–224, 2011.

137

[37] S.-H. Kim, W.-O. Lee, J.-H. Kim, S.-S. Lee, S.-Y. Hwang, C.-I.

Kim, T.-W. Kwon, B.-S. Han, S.-K. Cho, D.-H. Kim, et al., “A

low power and highly reliable 400mbps mobile ddr sdram with

on-chip distributed ecc,” in 2007 IEEE Asian Solid-State Circuits

Conference, pp. 34–37, IEEE, 2007.

[38] N. Kwak, S.-H. Kim, K. H. Lee, C.-K. Baek, M. S. Jang, Y. Joo,

S.-H. Lee, W. Y. Lee, E. Lee, D. Han, et al., “23.3 a 4.8 gb/s/pin

2gb lpddr4 sdram with sub-100µa self-refresh current for iot ap-

plications,” in 2017 IEEE International Solid-State Circuits Con-

ference (ISSCC), pp. 392–393, IEEE, 2017.

[39] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of fea-

tures from tiny images,” 2009.

[40] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Im-

agenet: A large-scale hierarchical image database,” in 2009 IEEE

conference on computer vision and pattern recognition, pp. 248–

255, Ieee, 2009.

[41] K. Simonyan and A. Zisserman, “Very deep convolutional

networks for large-scale image recognition,” arXiv preprint

arXiv:1409.1556, 2014.

138

[42] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning

for image recognition,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 770–778, 2016.

[43] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,

“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Pro-

ceedings of the IEEE conference on computer vision and pattern

recognition, pp. 4510–4520, 2018.

[44] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard,

H. Adam, and D. Kalenichenko, “Quantization and training of

neural networks for efficient integer-arithmetic-only inference,” in

Proceedings of the IEEE Conference on Computer Vision and Pat-

tern Recognition, pp. 2704–2713, 2018.

[45] H. Wu, “Nvidia low precision inference ongpu,” GPU Technology

Conference, 2019.

[46] J. Song, Y. Cho, J.-S. Park, J.-W. Jang, S. Lee, J.-H. Song, J.-G.

Lee, and I. Kang, “7.1 an 11.5 tops/w 1024-mac butterfly struc-

ture dual-core sparsity-aware neural processing unit in 8nm flag-

ship mobile soc,” in 2019 IEEE International Solid-State Circuits

Conference-(ISSCC), pp. 130–132, IEEE, 2019.

[47] M. Horowitz, “1.1 computing’s energy problem (and what we can

do about it),” in 2014 IEEE International Solid-State Circuits Con-

139

ference Digest of Technical Papers (ISSCC), pp. 10–14, IEEE,

2014.

[48] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and

Y. Xie, “Prime: A novel processing-in-memory architecture for

neural network computation in reram-based main memory,” ACM

SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 27–39,

2016.

[49] H. Kim, Y. Kim, and J.-J. Kim, “In-memory batch-normalization

for resistive memory based binary neural network hardware,” in

Proceedings of the 24th Asia and South Pacific Design Automation

Conference, pp. 645–650, 2019.

[50] M. Imani, S. Gupta, Y. Kim, and T. Rosing, “Floatpim: In-memory

acceleration of deep neural network training with high preci-

sion,” in 2019 ACM/IEEE 46th Annual International Symposium

on Computer Architecture (ISCA), pp. 802–815, IEEE, 2019.

[51] W.-H. Chen, K.-X. Li, W.-Y. Lin, K.-H. Hsu, P.-Y. Li, C.-H.

Yang, C.-X. Xue, E.-Y. Yang, Y.-K. Chen, Y.-S. Chang, et al., “A

65nm 1mb nonvolatile computing-in-memory reram macro with

sub-16ns multiply-and-accumulate for binary dnn ai edge proces-

sors,” in 2018 IEEE International Solid-State Circuits Conference-

(ISSCC), pp. 494–496, IEEE, 2018.

140

[52] T. F. Wu, H. Li, P.-C. Huang, A. Rahimi, J. M. Rabaey, H.-S. P.

Wong, M. M. Shulaker, and S. Mitra, “Brain-inspired computing

exploiting carbon nanotube fets and resistive ram: Hyperdimen-

sional computing case study,” in 2018 IEEE International Solid-

State Circuits Conference-(ISSCC), pp. 492–494, IEEE, 2018.

[53] H. Jang, J. Kim, J.-E. Jo, J. Lee, and J. Kim, “Mnnfast: A fast

and scalable system architecture for memory-augmented neural

networks,” in Proceedings of the 46th International Symposium

on Computer Architecture, pp. 250–263, 2019.

[54] Y. Kim, H. Kim, and J.-J. Kim, “Neural network-hardware co-

design for scalable rram-based bnn accelerators,” arXiv preprint

arXiv:1811.02187, 2018.

[55] T.-H. Yang, H.-Y. Cheng, C.-L. Yang, I.-C. Tseng, H.-W. Hu, H.-

S. Chang, and H.-P. Li, “Sparse reram engine: Joint exploration

of activation and weight sparsity in compressed neural networks,”

in Proceedings of the 46th International Symposium on Computer

Architecture, pp. 236–249, 2019.

[56] R. Mochida, K. Kouno, Y. Hayata, M. Nakayama, T. Ono,

H. Suwa, R. Yasuhara, K. Katayama, T. Mikawa, and Y. Gohou,

“A 4m synapses integrated analog reram based 66.5 tops/w neural-

network processor with cell current controlled writing and flexible

141

network architecture,” in 2018 IEEE Symposium on VLSI Technol-

ogy, pp. 175–176, IEEE, 2018.

[57] S. Mittal, “A survey of reram-based architectures for processing-

in-memory and neural networks,” Machine learning and knowl-

edge extraction, vol. 1, no. 1, pp. 75–114, 2019.

[58] S. Mittal, “A survey of soft-error mitigation techniques for non-

volatile memories,” Computers, vol. 6, no. 1, p. 8, 2017.

[59] T. Zhang, K. Chen, C. Xu, G. Sun, T. Wang, and Y. Xie, “Half-

dram: A high-bandwidth and low-power dram architecture from

the rethinking of fine-grained activation,” in 2014 ACM/IEEE

41st International Symposium on Computer Architecture (ISCA),

pp. 349–360, IEEE, 2014.

[60] S. Mittal, “A survey of architectural techniques for dram power

management,” International Journal of High Performance Sys-

tems Architecture, vol. 4, no. 2, pp. 110–119, 2012.

[61] S.-W. Park, S.-J. Hong, J.-W. Kim, J.-G. Jeong, K.-D. Yoo, S.-

C. Moon, H.-C. Sohn, N.-J. Kwak, Y.-S. Cho, S.-J. Baek, et al.,

“Highly scalable saddle-fin (s-fin) transistor for sub-50nm dram

technology,” in 2006 Symposium on VLSI Technology, 2006. Di-

gest of Technical Papers., pp. 32–33, IEEE, 2006.

142

[62] W. Kong, P. C. Parries, G. Wang, and S. S. Iyer, “Analysis of re-

tention time distribution of embedded dram-a new method to char-

acterize across-chip threshold voltage variation,” in 2008 IEEE In-

ternational Test Conference, pp. 1–7, IEEE, 2008.

[63] T. Hamamoto, S. Sugiura, and S. Sawada, “On the retention time

distribution of dynamic random access memory (dram),” IEEE

Transactions on Electron devices, vol. 45, no. 6, pp. 1300–1309,

1998.

[64] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun,

G. Pekhimenko, Y. Luo, O. Mutlu, P. B. Gibbons, M. A. Kozuch,

et al., “Rowclone: fast and energy-efficient in-dram bulk data copy

and initialization,” in Proceedings of the 46th Annual IEEE/ACM

International Symposium on Microarchitecture, pp. 185–197,

2013.

[65] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu,

“Tiered-latency dram: A low latency and low cost dram archi-

tecture,” in 2013 IEEE 19th International Symposium on High

Performance Computer Architecture (HPCA), pp. 615–626, IEEE,

2013.

[66] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A case

for exploiting subarray-level parallelism (salp) in dram,” in 2012

143

39th Annual International Symposium on Computer Architecture

(ISCA), pp. 368–379, IEEE, 2012.

[67] H. Choi, D. Hong, J. Lee, and S. Yoo, “Reducing dram refresh

power consumption by runtime profiling of retention time and

dual-row activation,” Microprocessors and Microsystems, vol. 72,

p. 102942, 2020.

[68] H. Choi, Y. Lee, J.-J. Kim, and S. Yoo, “A novel in-dram accelera-

tor architecture for binary neural network,” in 2020 IEEE Sympo-

sium in Low-Power and High-Speed Chips (COOL CHIPS), pp. 1–

3, IEEE, 2020.

[69] J. Song, Y. Cho, J.-S. Park, J.-W. Jang, S. Lee, J.-H. Song, J.-G.

Lee, and I. Kang, “7.1 an 11.5 tops/w 1024-mac butterfly struc-

ture dual-core sparsity-aware neural processing unit in 8nm flag-

ship mobile soc,” in 2019 IEEE International Solid-State Circuits

Conference-(ISSCC), pp. 130–132, IEEE, 2019.

[70] Y. Yamada, T. Sano, Y. Tanabe, Y. Ishigaki, S. Hosoda, F. Hyuga,

A. Moriya, R. Hada, A. Masuda, M. Uchiyama, et al., “7.2 a 20.5

tops and 217.3 gops/mm 2 multicore soc with dnn accelerator

and image signal processor complying with iso26262 for automo-

tive applications,” in 2019 IEEE International Solid-State Circuits

Conference-(ISSCC), pp. 132–134, IEEE, 2019.

144

[71] Z. Li, Y. Chen, L. Gong, L. Liu, D. Sylvester, D. Blaauw, and

H.-S. Kim, “An 879gops 243mw 80fps vga fully visual cnn-slam

processor for wide-range autonomous exploration,” in 2019 IEEE

International Solid-State Circuits Conference-(ISSCC), pp. 134–

136, IEEE, 2019.

[72] C. Kim, S. Kang, D. Shin, S. Choi, Y. Kim, and H.-J. Yoo, “A 2.1

tflops/w mobile deep rl accelerator with transposable pe array and

experience compression,” in 2019 IEEE International Solid-State

Circuits Conference-(ISSCC), pp. 136–138, IEEE, 2019.

[73] J. Lee, J. Lee, D. Han, J. Lee, G. Park, and H.-J. Yoo, “7.7 lnpu: A

25.3 tflops/w sparse deep-neural-network learning processor with

fine-grained mixed precision of fp8-fp16,” in 2019 IEEE Inter-

national Solid-State Circuits Conference-(ISSCC), pp. 142–144,

IEEE, 2019.

[74] “DDR3 SDRAM specification JESD79-3F.” 2010.

[75] “Micron DRAM Modules.” https://www.micron.com/

products/dram-modules. Accessed: 2019-07-18.

[76] “4Gb DDR3L SDRAM Data sheet.” http://www.skhynix.

com/eng/support/technicalSupport.jsp. Accessed: 2020-

10-28.

145

https://www.micron.com/products/dram-modules
https://www.micron.com/products/dram-modules
http://www.skhynix.com/eng/support/technicalSupport.jsp
http://www.skhynix.com/eng/support/technicalSupport.jsp

[77] S. Cha, O. Seongil, H. Shin, S. Hwang, K. Park, S. J. Jang, J. S.

Choi, G. Y. Jin, Y. H. Son, H. Cho, et al., “Defect analysis and

cost-effective resilience architecture for future dram devices,” in

2017 IEEE International Symposium on High Performance Com-

puter Architecture (HPCA), pp. 61–72, IEEE, 2017.

[78] J. Choi, W. Shin, J. Jang, J. Suh, Y. Kwon, Y. Moon, and L.-S.

Kim, “Multiple clone row dram: A low latency and area optimized

dram,” ACM SIGARCH Computer Architecture News, vol. 43,

no. 3S, pp. 223–234, 2015.

[79] “LPDDR3 SDRAM Specification JESD209-3C.” 2015.

[80] Y. Han, Y. Wang, H. Li, and X. Li, “Data-aware dram refresh to

squeeze the margin of retention time in hybrid memory cube,”

in 2014 IEEE/ACM International Conference on Computer-Aided

Design (ICCAD), pp. 295–300, IEEE, 2014.

[81] H. Seol, W. Shin, J. Jang, J. Choi, H. Lee, and L.-S. Kim, “Elabo-

rate refresh: a fine granularity retention management for deep sub-

micron drams,” IEEE Transactions on Computers, vol. 67, no. 10,

pp. 1403–1415, 2018.

[82] S. Wang, M. N. Bojnordi, X. Guo, and E. Ipek, “Content aware re-

fresh: Exploiting the asymmetry of dram retention errors to reduce

146

the refresh frequency of less vulnerable data,” IEEE Transactions

on Computers, vol. 68, no. 3, pp. 362–374, 2018.

[83] Y. Kagenishi, H. Hirano, A. Shibayama, H. Kotani, N. Moriwaki,

M. Kojima, and T. Sumi, “Low power self refresh mode dram with

temperature detecting circuit,” in Symp. VLSI Circuits Dig. Tech.

Papers, pp. 43–44, 1993.

[84] B. Oh, N. Abeyratne, J. Ahn, R. G. Dreslinski, and T. Mudge, “En-

hancing dram self-refresh for idle power reduction,” in Proceed-

ings of the 2016 International Symposium on Low Power Electron-

ics and Design, pp. 254–259, 2016.

[85] M. D. Pardeik, E. R. Cordero, A. Raychaudhuri, and D. B. C.

Vidyapoornachary, “Implementing dram refresh power optimiza-

tion during long idle mode,” May 28 2019. US Patent 10,304,501.

[86] K. Kim and J. Lee, “A new investigation of data retention time in

truly nanoscaled drams,” IEEE Electron Device Letters, vol. 30,

no. 8, pp. 846–848, 2009.

[87] H. Kim, B. Oh, Y. Son, K. Kim, S.-Y. Cha, J.-G. Jeong, S.-J. Hong,

and H. Shin, “Study of trap models related to the variable reten-

tion time phenomenon in dram,” IEEE transactions on electron

devices, vol. 58, no. 6, pp. 1643–1648, 2011.

147

[88] Y. Wang, Y.-H. Han, C. Wang, H. Li, and X. Li, “Retention-aware

dram assembly and repair for future fgr memories,” IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Sys-

tems, vol. 36, no. 5, pp. 705–718, 2016.

[89] M. Chang, J. Lin, C.-S. Lai, R.-D. Chang, S. N. Shih, M.-Y. Wang,

and P.-I. Lee, “Si-h bond breaking induced retention degradation

during packaging process of 256 mbit drams with negative word-

line bias,” IEEE transactions on electron devices, vol. 52, no. 4,

pp. 484–491, 2005.

[90] “DDR4 Device Operation.” http://www.skhynix.com/eng/

support/technicalSupport.jsp. Accessed: 2020-10-28.

[91] S. Hong, “Memory technology trend and future challenges,” in

2010 International Electron Devices Meeting, pp. 12–4, IEEE,

2010.

[92] S.-K. Park, “Technology scaling challenge and future prospects of

dram and nand flash memory,” in 2015 IEEE International Mem-

ory Workshop (IMW), pp. 1–4, IEEE, 2015.

[93] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A.

Kozuch, “Heterogeneity and dynamicity of clouds at scale:

Google trace analysis,” in Proceedings of the Third ACM Sym-

posium on Cloud Computing, pp. 1–13, 2012.

148

http://www.skhynix.com/eng/support/technicalSupport.jsp
http://www.skhynix.com/eng/support/technicalSupport.jsp

[94] H. Huang, K. G. Shin, C. Lefurgy, and T. Keller, “Improving en-

ergy efficiency by making dram less randomly accessed,” in Pro-

ceedings of the 2005 international symposium on Low power elec-

tronics and design, pp. 393–398, 2005.

[95] H. H. Shin, Y. M. Park, D. Choi, B. J. Kim, D.-H. Cho, and E.-

Y. Chung, “Extreme: Exploiting page table for reducing refresh

power of 3d-stacked dram memory,” IEEE Transactions on Com-

puters, vol. 67, no. 1, pp. 32–44, 2017.

[96] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang,

and O. Mutlu, “Adaptive-latency dram: Optimizing dram timing

for the common-case,” in 2015 IEEE 21st International Sym-

posium on High Performance Computer Architecture (HPCA),

pp. 489–501, IEEE, 2015.

[97] N. El-Sayed, I. A. Stefanovici, G. Amvrosiadis, A. A. Hwang,

and B. Schroeder, “Temperature management in data centers: why

some (might) like it hot,” in Proceedings of the 12th ACM SIG-

METRICS/PERFORMANCE joint international conference on

Measurement and Modeling of Computer Systems, pp. 163–174,

2012.

[98] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun,

G. Pekhimenko, Y. Luo, O. Mutlu, P. B. Gibbons, M. A. Kozuch,

149

et al., “Rowclone: fast and energy-efficient in-dram bulk data copy

and initialization,” in Proceedings of the 46th Annual IEEE/ACM

International Symposium on Microarchitecture, pp. 185–197,

2013.

[99] S. Chaudhuri, J. A. McCall, and J. H. Salmon, “Proposal for ber

based specifications for ddr4,” in 19th Topical Meeting on Electri-

cal Performance of Electronic Packaging and Systems, pp. 121–

124, IEEE, 2010.

[100] L. Rabiner and B. Juang, “An introduction to hidden markov mod-

els,” ieee assp magazine, vol. 3, no. 1, pp. 4–16, 1986.

[101] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensi-

ble dram simulator,” IEEE Computer architecture letters, vol. 15,

no. 1, pp. 45–49, 2015.

[102] K. Chandrasekar, C. Weis, B. Akesson, N. Wehn, and

K. Goossens, “Towards variation-aware system-level power esti-

mation of drams: an empirical approach,” in Proceedings of the

50th Annual Design Automation Conference, pp. 1–8, 2013.

[103] “SPEC CPU2006.” http://www.spec.org/cpu2006.

[104] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., “Pytorch: An

150

http://www.spec.org/cpu2006

imperative style, high-performance deep learning library,” in Ad-

vances in neural information processing systems, pp. 8026–8037,

2019.

[105] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, M. Isard, et al., “Tensorflow: A

system for large-scale machine learning,” in 12th {USENIX} sym-

posium on operating systems design and implementation ({OSDI}

16), pp. 265–283, 2016.

[106] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran,

B. Catanzaro, and E. Shelhamer, “cudnn: Efficient primitives for

deep learning,” arXiv preprint arXiv:1410.0759, 2014.

[107] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen,

M. Cowan, L. Wang, Y. Hu, L. Ceze, et al., “{TVM}: An au-

tomated end-to-end optimizing compiler for deep learning,” in

13th Symposium on Operating Systems Design and Implementa-

tion (18), pp. 578–594, 2018.

[108] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito,

W. S. Moses, S. Verdoolaege, A. Adams, and A. Cohen, “Tensor

comprehensions: Framework-agnostic high-performance machine

learning abstractions,” arXiv preprint arXiv:1802.04730, 2018.

151

[109] N. Rotem, J. Fix, S. Abdulrasool, G. Catron, S. Deng,

R. Dzhabarov, N. Gibson, J. Hegeman, M. Lele, R. Levenstein,

et al., “Glow: Graph lowering compiler techniques for neural net-

works,” arXiv preprint arXiv:1805.00907, 2018.

[110] S. Cyphers, A. K. Bansal, A. Bhiwandiwalla, J. Bobba,

M. Brookhart, A. Chakraborty, W. Constable, C. Convey, L. Cook,

O. Kanawi, et al., “Intel ngraph: An intermediate representa-

tion, compiler, and executor for deep learning,” arXiv preprint

arXiv:1801.08058, 2018.

[111] C. Leary and T. Wang, “Xla: Tensorflow, compiled,” TensorFlow

Dev Summit, 2017.

152

국문초록

컨볼루셔널 뉴럴 네트워크 (CNN) 어플리케이션에서는, 대부분의 연

산이 컨볼루션 레이어와 풀리-커넥티드 레이어에서 발생하는 곱셈과

누적 연산이다. 게이트-로직 레벨에서는, 대량의 벡터 내적으로 실행

되며, 입력과 커널 벡터들을 반복해서 사용하여 연산한다. 딥 뉴럴 네

트워크연산에는범용연산유닛보다,단순한연산이가능한작은연산

유닛을대량으로사용하는것이적합하다.가속기의성능이일정이상

높아지면,가속기의성능은연산에필요한데이터전송에의해제한된

다. 메모리에서 데이터를 오프-칩으로 전송할 때의 에너지 소모가, 연

산유닛에서연산에사용되는에너지의수백배로크다.또한연산기의

성능은초당수백기가∼수테라-연산이가능하지만,메모리의데이터

전송은초당수십기가바이트이다.

데이터 전송에 의한 파워와 성능 문제를 동시에 해결하는 방법은,

전송되는 데이터 크기를 줄이는 것이다. 알고리즘 중에서는 네트워크

의데이터를양자화하여,낮은정밀도로데이터를표현하는방법이널

리사용된다.이진뉴럴네트워크(BNN)는정밀도를 1비트까지극단적

으로 낮춘다. 16비트 정밀도보다 네트워크의 정확도가 낮아지는 문제

가 있지만, 다양한 연구를 통해 정확도가 지속적으로 개선되고 있다.

또한 구조적으로는, 전송된 데이터를 재사용하여 동일한 데이터의 반

복적인전송을줄이는방법이있다.위의두가지방법은추론과정에서

153

별도의연산없이적용가능하여가속기에서널리적용되고있다.

본논문에서는, DRAM기반의가속기구조를제안하고, DRAM re-

fresh에의한성능감소를개선하는기술을제안하였다.두방법은하나

의 DRAM칩으로집적가능하며,독립적으로구동가능하다.

첫번째는 대량의 벡터 내적 연산이 가능한 DRAM 기반 가속기에

대한 연구이다. BNN을 적용할 수 있는 CNN가속기 분야에서, 메모

리의 셀-어레이 구조를 벡터 내적 연산에 활용하는 컴퓨팅-인-메모리

(CIM) 구조가 활발히 연구되고 있다. 특히, DRAM에는 뉴럴 네트워

크의 모든 데이터가 있기 때문에, 데이터 전송량의 감소에 유리하다.

우리는 DRAM 셀-어레이의 구조를 바꾸지 않고, DRAM의 기본 동작

을활용하여연산하는방법을제안하였다.

두번째는 DRAM 리프레쉬 주기를 늘려서 성능 열화와 파워 소모

를개선하는방법이다. DRAM이리프레쉬를실행할때마다,데이터를

읽고 쓸 수 없기 때문에 시스템 혹은 가속기의 성능 감소가 발생한다.

DRAM칩내부에서 DRAM의리프레쉬특성을테스트하고,리프레쉬

주기를늘리는방법을제안하였다. DRAM내부에서독립적으로동작

하기때문에DRAM을사용하는모든시스템에적용가능하며,딥뉴럴

네트워크가속기에서도동일하다.

또한, 제안된 가속기를 PyTorch와 같이 널리 사용되는 딥러닝 프

레임 워크에서도 쉽게 사용할 수 있도록, 소프트웨어 스택을 비롯한

system integration방법을조사하였다.결과적으로,기존의 TVM com-

piler와 FPGA로구현하는 TVM/VTA가속기에, DRAM refresh실험에

서 검증된 메모리 컨트롤러와 커스텀 컴파일러를 추가하면 in-DRAM

154

가속기를제어할수있을것으로기대된다.이에더하여, in-DRAM가

속기와뉴럴네트워크의설계단계에서성능을예측할수있도록,시뮬

레이션 기능을 PyTorch에 추가하였다. PyTorch에서 신경망을 실행할

때, DRAM 가속기에서 실행되는 계층에서 발생하는 계산 대기 시간

및데이터이동시간을확인할수있다.

주요어:뉴럴네트워크,메모리병목현상,컨볼루션뉴럴네트워크,이진

뉴럴네트워크,컴퓨팅-인-메모리,디램-기반의가속기,디램리프레쉬

학번: 2016-34620

155

	Chapter 1 Introduction
	Chapter 2 Background
	2.1 Neural Network Operation
	2.2 Data Movement Overhead
	2.3 Binary Neural Networks
	2.4 Computing-in-Memory
	2.5 Memory Bottleneck due to Refresh

	Chapter 3 In-DRAM Neural Network Accelerator
	3.1 Backgrounds .
	3.1.1 DRAM hierarchy
	3.1.2 DRAM Basic Operation
	3.1.3 DRAM Commands with Timing Parameters . . .
	3.1.4 Bit-wise Operation in DRAM

	3.2 Motivations .
	3.3 Proposed architecture
	3.3.1 Operation Examples of Row Operator
	3.3.2 Convolutions on DRAM Chip

	3.4 Data Flow .
	3.4.1 Input Broadcasting in DRAM
	3.4.2 Input Data Movement With M2V
	3.4.3 Internal Data Movement With SiD
	3.4.4 Data Partitioning for Parallel Operation

	3.5 Experiments .
	3.5.1 Performance Estimation
	3.5.2 Configuration of In-DRAM Accelerator
	3.5.3 Improving the Accuracy of BNN
	3.5.4 Comparison with the Existing Works

	3.6 Discussion .
	3.6.1 Performance Comparison with ASIC Accelerators
	3.6.2 Challenges of The Proposed Architecture

	3.7 Conclusion .

	Chapter 4 Reducing DRAM Refresh Power Consumption by Runtime Profiling of Retention Time and Dualrow Activation
	4.1 Introduction .
	4.2 Background .
	4.3 Related Works .
	4.4 Observations .
	4.5 Solution overview .
	4.6 Runtime profiling .
	4.6.1 Basic Operation
	4.6.2 Profiling Multiple Rows in Parallel
	4.6.3 Temperature, Data Backup and Error Check . . .

	4.7 Dual-row Activation .
	4.8 Experiments .
	4.8.1 Experimental Setup
	4.8.2 Refresh Period Improvement
	4.8.3 Power Reduction

	4.9 Conclusion .

	Chapter 5 System Integration
	5.1 Integrate The Proposed Methods
	5.2 Software Stack .

	Chapter 6 Conclusion
	Bibliography
	국문초록

<startpage>20
Chapter 1 Introduction 1
Chapter 2 Background 6
 2.1 Neural Network Operation 6
 2.2 Data Movement Overhead 7
 2.3 Binary Neural Networks 10
 2.4 Computing-in-Memory 11
 2.5 Memory Bottleneck due to Refresh 13
Chapter 3 In-DRAM Neural Network Accelerator 16
 3.1 Backgrounds . 18
 3.1.1 DRAM hierarchy 18
 3.1.2 DRAM Basic Operation 21
 3.1.3 DRAM Commands with Timing Parameters . . . 22
 3.1.4 Bit-wise Operation in DRAM 25
 3.2 Motivations . 29
 3.3 Proposed architecture 30
 3.3.1 Operation Examples of Row Operator 32
 3.3.2 Convolutions on DRAM Chip 39
 3.4 Data Flow . 44
 3.4.1 Input Broadcasting in DRAM 44
 3.4.2 Input Data Movement With M2V 47
 3.4.3 Internal Data Movement With SiD 49
 3.4.4 Data Partitioning for Parallel Operation 52
 3.5 Experiments . 56
 3.5.1 Performance Estimation 56
 3.5.2 Configuration of In-DRAM Accelerator 58
 3.5.3 Improving the Accuracy of BNN 60
 3.5.4 Comparison with the Existing Works 62
 3.6 Discussion . 67
 3.6.1 Performance Comparison with ASIC Accelerators 67
 3.6.2 Challenges of The Proposed Architecture 70
 3.7 Conclusion . 72
Chapter 4 Reducing DRAM Refresh Power Consumption by Runtime Profiling of Retention Time and Dualrow Activation 74
 4.1 Introduction . 74
 4.2 Background . 77
 4.3 Related Works . 78
 4.4 Observations . 84
 4.5 Solution overview . 88
 4.6 Runtime profiling . 93
 4.6.1 Basic Operation 93
 4.6.2 Profiling Multiple Rows in Parallel 96
 4.6.3 Temperature, Data Backup and Error Check . . . 96
 4.7 Dual-row Activation . 98
 4.8 Experiments . 102
 4.8.1 Experimental Setup 103
 4.8.2 Refresh Period Improvement 107
 4.8.3 Power Reduction 110
 4.9 Conclusion . 116
Chapter 5 System Integration 118
 5.1 Integrate The Proposed Methods 118
 5.2 Software Stack . 121
Chapter 6 Conclusion 129
Bibliography 131
국문초록 153
</body>

