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Abstract

Real-time System Optimization of DAG
Task Model Considering Applicability

Seungsu Lee
Department of Computer Science and Engineering
The Graduate School

Seoul National University

Response time reduction in autonomous driving systems is very important. For this,
a real-time system must be applied to the autonomous driving system. However,
the application of real-time system is not so simple. With the development of the
open source platform, a real-time system that can be easily applied by non-majors
as various developers has become necessary. This paper presents a real-time system
optimization method that can reduce response time without kernel patch, without ap-
plication modifying. In this paper, an optimization method consisting of three steps
of heuristic algorithm was presented. This achieves the goal by determining schedul-
ing policy, CPU affinity, and priority, respectively. Through experiments conducted
in a simulated scheduler and an actual autonomous driving system, it shows a re-

markable response time reduction effect.
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1 Introduction

Autonomous driving system is a field that has received the most attention recently.
Many companies, including existing automobile companies, are developing autonomous
driving systems. In general, the autonomous driving system consists of a structure
from sensing nodes to actuation nodes. The response time from sensing nodes to ac-
tuation nodes is directly related to safety. For example, when the vehicle is driving
at 54 km/h, if a vehicle detects a obstacle through sensing nodes and the response
time takes 400ms to actuation nodes, the vehicle will advance 6m until the actual
response, which is a critical problem when the distance to the Obstacle is not suffi-
cient. As such, application of a real-time system in the autonomous driving system is
essential for safety.

However, applying a real-time system is a very challenging task. In the past, re-
search on autonomous driving systems was only open to some developers, such as
those belonging to companies. Recently, research on autonomous driving systems
is conducted in open source platforms such as Robot Operating System(ROS)[1],
Autoware[2], and Apollo[3].For this reason, developers in various fields are partici-
pating in autonomous driving research. Among them, computer engineers can more
easily apply real-time systems through related knowledge, but for computer non-
majors, the need to use kernel patch and real-time scheduling API is a barrier to ap-
plying real-time system. In these cases, high-cost, high-performance HW computing
units are often used as a temporary solution. However, this not only slows commer-
cialization by increasing the cost of developing an autonomous driving system, but is

not strictly using a real-time system. Therefore, the necessity of an easily applicable



real-time system targeting developers in various fields has been raised.

Since most open source projects are developed based on Linux, studies on applying
a real-time system in Linux have been published accordingly. However, they have
the following limitations to be easily applied. A study on a Linux-based real-time
operating system(RTOS)[4, 5] such as LITMU SR suggested a method of applying
a real-time system to Linux. It requires a kernel patch, which is very complex. In
addition, it is inefficient to request such a kernel patch from not only the developer
but also the user.

ROSCH(Real-Time Scheduling Framework for ROS)[6] proposed a ROS-based real-
time system framework that can be used in Linux without kernel patch. However, to
use this framework, the autonomous system must be developed using the real-time
scheduling library and API suggested by RESCH(REal-time SCHEduler suite)[7]. In
order to apply to an already developed autonomous driving system such as Autoware[2],
it is difficult to use it because it requires modification of the entire system.
HLBS(Heterogeneous Laxity-Based Scheduling)[8] and HEFT(Heterogeneous Ear-
liest Finish Time)[9] proposed a fixed priority offline DAG (Directed Acyclic Graph)
schedule algorithm, which can be applied using the basic Linux scheduling tool with-
out application modification. However, these algorithms are difficult to use practically
because there is no consideration for repeated execution of the task.

In this paper, we propose a real-time system optimization method that can reduce re-
sponse time without kernel patch, without application modifying. For this, we present
a heuristic algorithm that can satisfy goals using only the scheduling tool provided
by Linux.

This paper is organized as follows. Section 2 briefly describes the background re-



quired for the paper. Section 3 formally defines our problem. Then, Section 4 explains
our proposed algorithm. Section 5 reports our experiment results. Finally, Section 6

concludes the paper.
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2 Background

Linux uses CFS(Completely Fair Scheduler)[10] as the default scheduler from kernel
2.6.23. This scheduler shows responsiveness and fairness by allocating CPU time in
proportion to the weight of the task. However, there are cases where the desired goal
cannot be achieved by using only CFS, so various scheduling tools are provided in
Linux. As a basic scheduling tool in Linux, three parameters of policy, CPU affinity,

and priority can be assigned to a task.

2.1 Linux Scheduling Policy

There are three Linux Scheduling Policies to be covered in this paper. SCHED_OTHER,
SCHED _FIFO, SCHED_RR. These policies do not mean system-wide scheduling

policies, but are assigned to tasks.
* SCHED_OHTER

This is a default general task policy. The priority is fixed to 0, and it is scheduled with

the CFS.
* SCHED_FIFO

Priority is always greater than or equal to 1, and is always superior to tasks with
SCHED_OTHER policy. If a task with a higher priority is in the run queue, the lower
priority task is preempted. If a task with the same priority is in the run queue, it is

executed in the First-In, First-Out(FIFO) method.

* SCHED_RR



If there is a task of the same prioirty in the run queue, it is executed in the round robin

method for the given time slice. The rest of the things are the same as SCHED_FIFO.

2.2 CPU Affinity

By modifying the CPU affinity parameter, you can designate the CPU group where

the task will be executed. By default, CPU affinity is set to run on all CPU cores.

2.3 Priority

A task with a higher priority preemption a task with a lower priority. For tasks using
the SCHED_OHTER policy, priority is fixed to 0, and tasks using the SCHED_FIFO
and SCHED_RR policies can have from 1 to 99.

In Linux, each CPU has its own run queue, so tasks in the run queue of other cores
are not affected regardless of priority. In other words, only tasks in the run queue of
the same CPU interfere with each other. Figure 1 shows the basic scheduling tool of

Linux described above.



Non Real-time Real-time

Task Task
\
Task SCHED_OTHER
Policy
CPU Affinity > | » !
CPUO CPU 1 CPUO CPU 1
Priority

L SCHED_FIFO
J SCHED_OTHER
SCHED_RR

0

1~99

Figure 1: Basic scheduling tool of Linux

3 Problem Description

We consider a system with CPU;..CPUg cores. Q is number of cores in entire system.
Each task is represented by 1 (1 < k < n). The set of n tasks is represented by I, i.e.,

I'={t,T2,"",Tu}
* Description of Autonomous Driving System

Autonomous driving systems such as Autoware can be represented as task set in the
form of DAG. For example, Sensing corresponds to a root task and Actuation corre-
sponds to a leaf task. Therefore, task contains information about DAG. This can be
expressed as Gi. G can be represented as 2 tuples two tuples, i.e. Gy = (predy, succy).
predy, is a set of predecessor tasks, and succy is a set of successor tasks. T, with
pred; = 0 is called a root task, and T; with succ; = 0 is called a leaf task. The root

task is released according to the period of the sensors, and the remaining tasks are



released as event driven by the parents task. At this time, assume that the periods of
all sensors are the same. Let this be called Tjy.n. When there are more than one par-
ent task of a task, all parents’ events must be driven to be released. Among the paths
from the root task to the leaf task, the path with deadline can be defined as a module.
The time taken from the beginning to the end of the module is the response time of
the module, and this corresponds to the makespan in the DAG task set. The deadline
that the module must satisfy is expressed as Dypquie,- The makespan of DAG tasks

should be smaller than Dypquie, -
* Description of Tasks Model

When all tasks are listed, tasks with deadline and should be executed in real-time can
be expressed as I'® = {R1y,--- ,RT,,}. in sequence. Non real-time tasks without dead-
line such as kernel GUI tasks that are not included in the autonomous driving system
or tasks related to visualization can be expressed as I'VR = {NRt,--- ,NR7;}. in
sequence. Each task has set of its own execution times, E; and scheduling param-
eter, P,. The set of execution times E; consists of execution times in each CPU,
ie. Ey = (efp bi... ,efPUQ). Scheduling parameter P, is represented as 3 tuples,
i.e. P = (pley,af fi, priog). pleg is a scheduling policy given to a task. aff; rep-
resents the CPU affinity of the task. prioy is the priority of a task. These parameters
cannot be changed during runtime. Including DAG information, the task is repre-
sented as 3 tuples, i.e. T = (Ex, P, Gy).

Under these assumptions, our problem is formally defined as follows:

Problem Definition: For each task Ty in the given task set, I' = {t,72,--+ ,T,}, our

problem is to find scheduling parameter Py, such that all the modules of entire system

can be scheduled meeting their deadlines on Q CPU cores.



4 Proposed Approach

In this section, we present a 3-step heuristic algorithm to determine Py. Each step of

the algorithm determines plcy,af fi, prioy.

4.1 Decision of Scheduling Policy

['={r,..7,}

AN S/

Does it affects RSP,,0qute?

Yes No
Y A4
ex) Real-time Task Non Real-time ex)
Lidar Localization I'R = Rt, ...R1,, Task GUI
Object Detection SCHED_RR [NE = NR7y ..NRT, | | ogging
SCHED_FIFO SCHED_OTHER

Figure 2: Decision of scheduling policy

In the first step, the scheduling policy of the task, plcg, is determined. Receives a task
set as input, classifies whether it is a real-time task or a non real-time task, and assigns
a scheduling policy accordingly. As mentioned in Section 3, tasks with deadline are
classified into real-time tasks, and tasks that do not are classified into non real-time
tasks. Through this step, real-time tasks always have higher priority over non real-
time tasks. For real-time tasks, LiDAR localization or object detection will be an

example, and GUI and Logging will be the other. Figure 2 describes this step.
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4.2 Assignment of CPU Affinity

4.2.1 Linux load balancing

{e1, €2, €3, €4} = {10,10,10,30} {e1,e4, 5 €,} = {10,10,10,30}
cPUO | Ty | T3 cPU0 | Ty | To| T3
0 20 t 0 20 t
CPU 1 Ty Ty CPU 1 Ty
0 40 Tt 0 30 "t
(a) Linux load balancing (b) Assign CPU affinity

Figure 3: Load balancing scenarios

In the second step, the CPU affinity,af f, is determined. Since Linux uses partitioned
queues, unfairness between CPU can occur, and this is resolved through load balanc-
ing. However, since load balancing only considers the weight and number of tasks, it
may not be able to accurately balance. Figure 3 shows an example. Suppose CPUO
and CPUI1 are homogeneous. When 1y, 1>, 73, T4 is released, Linux divides the num-
ber of tasks equally and balances them as in figure 3(a). However, considering the
execution time, balancing as in figure 3(b) can reduce the makespan. Therefore, it is

necessary to properly load balance through CPU affinity adjustment.

4.2.2 Proposed Algorithm for CPU Affinity Assignment

Before presenting the algorithm, the required notation and description are described
in the table 1. The heuristic algorithm considering 4.2.1 is introduced on Algorithm
1.

The algorithm takes the real-time DAG task set expressed as I'F as input. Tcpy,

which is the result of assigning the task to the CPU, and WCRT, Worst Case Re-



Notation Description

I'cruy The set of tasks assigned to CPUg

Totalcpy, Total execution time sum of tasks assigned to CPUg

Subtotalcpy, | Subtotal execution time of tasks assigned to CPUg only in
AssignReady

Lcepy The set of CPUk with least Totalcpy,

AssignReady | The set of tasks ready to be assigned
AssignFinish | The set of tasks that have already been assigned

Table 1: Notations and descriptions used in the algorithm

sponse Time that can be guaranteed, are taken as outputs. The algorithm first ini-
tializes the variables from Line 1 to Line 5. In the while-loop from Line 6 to Line
33, tasks are assigned until all real-time DAG tasks are included in AssignFinish. It
means all real-time DAG tasks are assigned. AssignReady is initialized in Line 7.
From Line 9 to Line 13, the for-loop finds assignable tasks. From Line 10 to Line
12, the if-conditional branch checks whether tasks are assignable. If all of the pre-
decessors of RT; have been assigned, tasks are marked as assignable and included in
AssignReady. In Line 15, Subtotalcpy is initialize because a new AssignReady set is
ready. From Line 16 to Line 30, the for-loop assigns tasks in AssignReady in the or-
der of gleag(j (E;)’s largest. From Line 17 to Line 18, the CPU with the least Totalcpy
is a candidate to be assigned. This equalizes the sum of the CPU’s execution time.
The if-conditional branch from Line 19 to Line 20, If the number of candidates is 1,
the candidate is determined as the CPUk to be assigned. The else-conditional branch
from Line 22 to Line 24, if there are multiple candidates, the CPU with the least
Subtotalcpy, is determined as CPUk. This acts as a tie break and makes the sum of

execution time equal to local within AssignReady. From Line 25 to 26, the task is

assigned to the CPUg by determine af f; as CPUk and including RT; in I'cpyy. In

10 A= L



Algorithm 1 The DAG execution time fairness balancing algorithm

Input: I'*(real-time DAG task set)
Output: I'cpy(assigned task set),
WCRT (Worst Case Response Time)

: Terv = {Lcruy, -+ 5 Teru, b < {0, ,0}

1
2: Totalcpy = {TOfCllchl yre ,TotalCPUQ} — {O, e ,0}
3: Subtotalcpy = {Subtotalcpyl yott ,SubtotalchQ} — {0, s ,0}
4: AssignFinish =0
5: WCRT =0
6: while AssignFinsh =TR do
7 AssignReady =0
8:  /*step 1: Classification of tasks that can be assigned */
9: for Rt; € TR do
10 if pred; C AssignFinish then
11: AssignReady = AssignReady U {Rt;}
12: end if
13:  end for
14:  /* step 2: Assignment of AssignReady*/
15: Subtotalcpy < {0, e ,O}
16:  for Rt; € AssignReady, in largest gr_leag(_(Ej) order do
17: Lepy < 0 T
18: Lepy = Lepy U {CPUL| CPU that has least elements of Totalcpy }
19: if number of Lcpy is 1 then
20: CPUk + CPUL
21: else
22: /* tie breaker */
23: CPUg < CPUy, that has least element of Fcpy
24: end if
25: affj <+ CPUg
26: FCPUK = FCPUK U {R’Cj}
27: AssignFinish = AssignFinish U {Rt;}
28: Totalcpy, = Totalcpy, + e]C-PU"
29: Subtotalcpy, = Subtotalcpy, + eJC-PUK
30:  end for

31:  WCRTReaqy < Subtotalcpy, that greatest element of Subtotalcpy
32:  WCRT = WCRT + WCRTgeqay

33: end while

34: return I'cpy and WCRT

1 ™
11 N =



Line 27, Rt; is included in AssignFinish, indicating that the assign is complete. From
Line 28 to Line 29, the execution time of the assigned task is added to Totalcpy, and
Subtotalcpy,, respectively. In Line 31, the largest Fcpy, value in the AssignReady
assignments from Line 16 to Line 30 is set as the WCRTgeady. Since AssignReady
tasks can be executed simultaneously, it means that it can be completed in W CRTg,qqy
even in the worst case when only AssignReady tasks are considered. In Line 32, the
WCRTReaay 1s added to the WCRT and updated. This means that if you add all of the
WCRTReaay it can be guaranteed that WCRT for all tasks. Finally, in Line 34, output

of algorithm I'cpy and WCRT are returned.

4.2.3 Algorithm applied to example DAG task set

(execution time)|

) (5) (5)

Period: 100
(5)

Period: 100 Period: 100

(10) (5)

(15)

(10) (10)

(10)

AssignReady = {Rt,} AssignReady = {Rt,, R13} AssignReady = {Rt,, Rts, R7e}
AssignFinish = {Rt4} AssignFinish = {Rty, RT,, RT3} AssignFinish = {Rt,, RT,, RT3, RT4, RT5, RT¢}
WCRTgeaay =5 WCRTgeqay = 20 WCRTgeqay = 15
WCRT =5 WCRT = 25 WCRT = 40
CPU # Tepy Totalepy |Subtotalcpy CPU # Tepy Totalcpy | Subtotalcpy CPU# Tepy Totalcpy |Subtotalcpy
CPUO {Rty} 5 5 CPUO {Rt,} 5 5 CPUO {Rty, Rt} 20 15
CPU1 {} 0 0 CPU 1 {Rt1,} 20 20 CPU1 {Rt,, R} 25 5
CPU 2 {} 0 0 CPU 2 {Rt3} 10 10 CPU2 | {Rt3,Rts} 20 10

Figure 4: Example of affinity assignment

Figure 4 shows an example of affinity assignment. Three snapshots are taken ev-
ery Line 32 of the algorithm 1. Through this, change based on AssignReady can be

checked. Suppose CPU 0 to CPU 2 are homogeneous. In the first and second snap-
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shot, the task with the smallest ey is assigned to the CPU with the least Totalcpy, In
the third snapshot, after assigning Rts and Rt¢, Totalcpy are all equal to 20. At this
time, as a tie breaker, Rt4 is assigned to CPU 1 with the smallest Subtotalcpy which

is 0.

4.3 Prioritization of DAG tasks

In the last step, the priority of the task, priog, is determined. the makespan of DAG

tasks set is practically guaranteed through prioritization.

4.3.1 The makespan Delay of DAG Task set in Practical Case

Rt,,, Completed Rt,, Completed
N ‘ l
Core 0 ‘ Bl | Braz | Ron Core 0 ‘ Rln-1a | Btna | R
Rt, , Released t Rz, , Released t
(a) Higher priority to predecessor tasks (b) Higher priority to successor tasks

Figure 5: Priority scenarios

As with HEFT [9] and HLBS [8], many DAG scheduling algorithms ignore the effect
of the next period’s job on the current job’s scheduling. However, in practical situa-
tions such as when using an autonomous driving system, the gap between the period
and the expected the makespan is not enough, so the job of the next period often af-
fects the scheduling of the job of the current period. The figure 5 shows examples.
The figure 5 depicts the situation in which the job of the current period was not com-
pleted and the job of the next period was released. RT,_; 1,RT, | are the jobs of the
current period, and Rty is the job of the next period. Figure 5(a) is a scheduling

when a high priority is given to predecessor tasks, and Figure 5(b) is a scheduling

13 x—g N :.-_ -:I



Algorithm 2 Successor tasks priority algorithm
Input: I'*(real-time DAG task set)
Output: Prio(determined priority set)
1. Prio = {prioy,--- ,prio,} < {1,---,1}
2: for Rt; € I'R, in topological order do
3:  if pred; is 0 then

4: prio; < 1

5:  else

6: prio; < max (prio;)+1
Rtj€pred;

7 end if

8: end for

9: return Prio

when a high priority is given to successor tasks. In the case of Figure 5(a), Rt > is ex-
ecuted first even though Rt, 1 has not been completed, and this delays the makespan
of the current period job. Figure 5(b) gives high priority to successor tasks to pre-
vent delay. If the makespan delay that often occurs is not considered, it can lead to a

critical damage.

4.3.2 Proposed Algorithm for Determine Priority

The priority decision Algorithm 2 using the idea of 4.3 is introduced on the next
page. Initialize Prio on Line 1. From Line 2 to Line 8, priorities are assigned to all
real-time DAG tasks in topological order in the for-loop. The if-conditional branch
from Line 3 to Line 5, if there is no predecessor tasks, 1 is given as a priority. This
corresponds to root tasks. The else-conditional branch from Line 5 to Line 7, the
priority is determined by adding 1 to the highest priority among predecessor tasks.
Therefore, priority increases from root tasks to leaf tasks. It returns the priority set

determined in Line 9.

s R e |
14 = L



4.3.3 Prioritization example of DAG task set

prioy = 3

prio, =2

prio, =1 priog =3

Figure 6: Example of prioritization

Figure shows an example of prioritization. The root task, Rty, is given 1 as a prio;.

Next, according to the topological order, the priority of Rt becomes 2 by adding 1 to

max of predecessor’s prio. In the case of RTs, 1 is added to the max of predecessor’s

prio, so 3 is given as priority.

15



5 Evaluation

In this section, we evaluate the optimization method presented through two exper-
iments. First, compare the makespan on the schedule simulator by using Random
DAG Tasks Generator. Compare Random, Exhaustive, and Ours to find the differ-
ence in average makespan and deadline miss rate. Second, on the autonomous sys-
tem, Autoware[2], we conduct a real driving experiment using a minicar. When using
only Linux CFS and using our method, we measure the makespan and compare it
with the deadline for driving. As a result, we check whether the actual driving was

successfully performed.

5.1 Simulated Scheduler Evaluation

5.1.1 Evaluation Setup

Parameter | Description Value
Tsystem Period of DAG task set 100ms
H#Real Time Number of real-time tasks 10
#Dummy Number of dummy tasks 10
Depth Depth of DAG uniform[3,7]
Ciotal Total execution time of system [10ms, 200ms],
(in increments of 10ms)

Usotal Total utilization of system [0.1, 2.0]

depends on the value of e, (in increments of 0.1)
Portiongr The portion of real-time tasks [0.2,0.8]

across the system (in increments of 0.3)

Table 2: Parameter of Random DAG Tasks Generator

A real-time DAG task set and a dummy task set were created through the Random

DAG Tasks Generator. The dummy task set corresponds to a non-real time task set.

§
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Table 2 describe parameters for task. Since the period is 100ms, when e is increased
by 10ms, utilization also increases by 0.1. For each utilization, we measure the aver-
age of makespan, increasing by 0.1 with 1000 working sets. We compare the resulting

from the following three different optimization methods:
* QOurs: Scheduling by the method proposed in this paper.
* Random: Scheduling by randomly setting the scheduling parameter FPy.

* Exhaustive: Scheduling by searching all possible cases through exhaustive test

and selecting the best case.

5.1.2 Evaluation Result

120 120 120
o~ Random ©- Random o~ Random
o Ours o~ ours J o ours o
1001 % Exhaustive 1001 % Exhaustive o 1001 Exhaustive 2
— ° — o — o o
A 9 o 0 o o
2 80 S 2 e e 2 a0 0% B X
= o S S o @
I > I o I o %
3 60 P 2 60 o q 3 60 O T
0 a o a2 a o T x
o 2 1] o 8 %X [ o g8 x
2 4w o 2 w0 o g% 2 4 oax
@ o g ? o 8 X
o o gaR g
20 o QQQQQQQ 20 ooaggg 20 aﬁQ
COP Tl gw &
0w o
0.0 05 10 15 2.0 0.0 05 10 15 20 0.0 05 10 15 2.0
Task set utilization Task set utilization Task set utilization
(a) Portiongr =0.2 (b) Portiongr =0.5 (c) Portiongr =0.8

Figure 7: Simulation makespan results

Figure 7 shows the simulation makespan results. Figure 7(a), 7(b). 7(c) are measured
makespan when Portiongr is 0.2, 0.5, and 0.8, respectively. In each graph, the x-axis
is the utilization of all task sets, and the y-axis is the makespan for real-time taskset. In
all graphs, makespan was measured in the order of Random, Ours, and Exhaustive.
Exhaustive is the best solution considering all cases, so makespan lower than this

cannot be measured. As the Portiongy decreases, the room for optimization increases,
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Figure 8: Simulation schedulability results

and the effect of reducing makespan increases. In the case of Random, all task sets
are not classified, so all Portiongr show a similar graph pattern. Nevertheless, when
the Portiongr is small, the probability of completing the real-time tasks beforehand
is high, so we can see that the makespan is slightly reduced. In the case of Ours and
Exhaustive, the load of the real-time task set increases according to the Portiongr, so
the makespan is measured differently even at the same Uy ;.

Figure 8 shows the simulation schedulability results. In each graph, the x-axis is the
utilization of all task sets, and the y-axis is the schedulability for real-time taskset.
In all graphs, Ours has higher schedulability than Random and Exhaustive than
Ours. As utilization increases, makespan increases, so schedulability decreases. In
all graphs, the reason that schedulability does not decrease significantly even when
utilization is close to the number of cores is because there is a deadline only in the
real-time task set, so it actually affects as much as Portiongy * U;pq. In figures 8(a)
and 8(b), only a few deadline misses occurred in the case of Random. In figure 8(c),
deadline misses were also observed in Random and Ours. At this time, in the case
of Random, schedulability is significantly lowered, while Ours has a graph similar to

Exhaustive and maintains schedulability.
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5.2 Autonomous System Evaluation

5.2.1 Evaluation Setup

Vs . e . Vs . Ve N
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Behavior
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Trajectory

Figure 9: DAG task set structure of Autoware

For practical verification of the proposed optimization method, an experiment using
an RC minicar that has 1/10 scale of a real car was designed. Nivida TX2 embedded
board[11] is installed on the minicar and used as a hardware computing unit. TX2
board has 6 cores, which is composed of two CPU clusters. It consists of 2 Nvidia
Denver2 cores and 4 ARM Cortex-A57 cores, and the clock frequency is fixed to 2.0
GHz each. Linux kernel 4.4.197-tegra is installed on the TX2 board. On top of that,
ROS, a middleware, and Autoware, an autonomous driving system, were installed,
and a module for actual autonomous driving was constructed.

Figure 9 shows the autonomous driving DAG task set structure. The whole system
consists of two modules, LiDAR localization driving module and object detection

module, and the response time of each module is obtained by the measurement of

’ SRS L



makespan. Tasks essential for driving were classified as real-time tasks, and tasks that

were not essential were classified as non real-time tasks. In addition, such as kernel

GUI tasks are added to the non real-time task. After measuring makespan through the

Linux basic CFS and our approach, we compare the results.

5.2.2 Evaluation Result
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Figure 10: Autoware results
Figure 10 shows the response time measured in each module. In each graph, the

x-axis is the release time of each module and the y-axis is response time of each

module. The horizontal line in the graph represents the deadline for driving success,

and the response time above this line represents a deadline violation. Figure 10(a)

and 10(c) are measured on CFS, and deadline violations are observed. Figure 10(b)
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and 10(d) are graphs measured inOurs. In this graph, no job is observed above the
horizontal line, which means that the deadline has always been satisfied. In the actual
driving test, when the deadline was not satisfied on the CFS, the driving failed, but

Ours confirmed that the driving was successful.

]
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6 Conclusion

This paper presents a real-time system optimization method that can reduce response
time without kernel patch, without application modifying. To simplify this, it is de-
scribed as a problem that reduces the makespan of the DAG task set. The proposed
approach determines the scheduling parameter for the task through a heuristic al-
gorithm of three steps. First, in the first step, a scheduling policy is determined by
classifying a real-time task and a non real-time task. In the second step, CPU affinity
is assigned through an algorithm aimed at fair load balancing. In the third step, pri-
oritization is performed to resolve the response time delay that can practically occur
when the interval between response time and period is not enough. Through evalua-
tion conducted by simulated scheduler and Autoware, it showed significant response
time reduction effect close to optimal solution. In the future, we plan to extend our

heuristic approach to the optimal algorithm.
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