

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학석사학위논문

Real-time System Optimization of DAG

Task Model Considering Applicability

적용성을고려한 DAG테스크모델의

실시간시스템최적화기법

2021년 2월

서울대학교대학원

컴퓨터공학부

이승수

Abstract

Real-time System Optimization of DAG

Task Model Considering Applicability

Seungsu Lee

Department of Computer Science and Engineering

The Graduate School

Seoul National University

Response time reduction in autonomous driving systems is very important. For this,

a real-time system must be applied to the autonomous driving system. However,

the application of real-time system is not so simple. With the development of the

open source platform, a real-time system that can be easily applied by non-majors

as various developers has become necessary. This paper presents a real-time system

optimization method that can reduce response time without kernel patch, without ap-

plication modifying. In this paper, an optimization method consisting of three steps

of heuristic algorithm was presented. This achieves the goal by determining schedul-

ing policy, CPU affinity, and priority, respectively. Through experiments conducted

in a simulated scheduler and an actual autonomous driving system, it shows a re-

markable response time reduction effect.

keywords : Optimization, Real-Time Scheduling, DAG Scheduling, Autonomous

i

Driving Systems

Student Number : 2019-25586

ii

Contents

1 Introduction 1

2 Background 4

2.1 Linux Scheduling Policy . 4

2.2 CPU Affinity . 5

2.3 Priority . 5

3 Problem Description 6

4 Proposed Approach 8

4.1 Decision of Scheduling Policy . 8

4.2 Assignment of CPU Affinity . 9

4.2.1 Linux load balancing . 9

4.2.2 Proposed Algorithm for CPU Affinity Assignment 9

4.2.3 Algorithm applied to example DAG task set 12

4.3 Prioritization of DAG tasks . 13

4.3.1 The makespan Delay of DAG Task set in Practical Case . . 13

4.3.2 Proposed Algorithm for Determine Priority 14

4.3.3 Prioritization example of DAG task set 15

5 Evaluation 16

5.1 Simulated Scheduler Evaluation 16

5.1.1 Evaluation Setup . 16

5.1.2 Evaluation Result . 17

iii

5.2 Autonomous System Evaluation 19

5.2.1 Evaluation Setup . 19

5.2.2 Evaluation Result . 20

6 Conclusion 22

References 23

iv

List of Figures

1 Basic scheduling tool of Linux . 6

2 Decision of scheduling policy . 8

3 Load balancing scenarios . 9

4 Example of affinity assignment . 12

5 Priority scenarios . 13

6 Example of prioritization . 15

7 Simulation makespan results . 17

8 Simulation schedulability results 18

9 DAG task set structure of Autoware 19

10 Autoware results . 20

v

List of Tables

1 Notations and descriptions used in the algorithm 10

2 Parameter of Random DAG Tasks Generator 16

vi

1 Introduction

Autonomous driving system is a field that has received the most attention recently.

Many companies, including existing automobile companies, are developing autonomous

driving systems. In general, the autonomous driving system consists of a structure

from sensing nodes to actuation nodes. The response time from sensing nodes to ac-

tuation nodes is directly related to safety. For example, when the vehicle is driving

at 54 km/h, if a vehicle detects a obstacle through sensing nodes and the response

time takes 400ms to actuation nodes, the vehicle will advance 6m until the actual

response, which is a critical problem when the distance to the Obstacle is not suffi-

cient. As such, application of a real-time system in the autonomous driving system is

essential for safety.

However, applying a real-time system is a very challenging task. In the past, re-

search on autonomous driving systems was only open to some developers, such as

those belonging to companies. Recently, research on autonomous driving systems

is conducted in open source platforms such as Robot Operating System(ROS)[1],

Autoware[2], and Apollo[3].For this reason, developers in various fields are partici-

pating in autonomous driving research. Among them, computer engineers can more

easily apply real-time systems through related knowledge, but for computer non-

majors, the need to use kernel patch and real-time scheduling API is a barrier to ap-

plying real-time system. In these cases, high-cost, high-performance HW computing

units are often used as a temporary solution. However, this not only slows commer-

cialization by increasing the cost of developing an autonomous driving system, but is

not strictly using a real-time system. Therefore, the necessity of an easily applicable

1

real-time system targeting developers in various fields has been raised.

Since most open source projects are developed based on Linux, studies on applying

a real-time system in Linux have been published accordingly. However, they have

the following limitations to be easily applied. A study on a Linux-based real-time

operating system(RTOS)[4, 5] such as LIT MUSRT suggested a method of applying

a real-time system to Linux. It requires a kernel patch, which is very complex. In

addition, it is inefficient to request such a kernel patch from not only the developer

but also the user.

ROSCH(Real-Time Scheduling Framework for ROS)[6] proposed a ROS-based real-

time system framework that can be used in Linux without kernel patch. However, to

use this framework, the autonomous system must be developed using the real-time

scheduling library and API suggested by RESCH(REal-time SCHEduler suite)[7]. In

order to apply to an already developed autonomous driving system such as Autoware[2],

it is difficult to use it because it requires modification of the entire system.

HLBS(Heterogeneous Laxity-Based Scheduling)[8] and HEFT(Heterogeneous Ear-

liest Finish Time)[9] proposed a fixed priority offline DAG (Directed Acyclic Graph)

schedule algorithm, which can be applied using the basic Linux scheduling tool with-

out application modification. However, these algorithms are difficult to use practically

because there is no consideration for repeated execution of the task.

In this paper, we propose a real-time system optimization method that can reduce re-

sponse time without kernel patch, without application modifying. For this, we present

a heuristic algorithm that can satisfy goals using only the scheduling tool provided

by Linux.

This paper is organized as follows. Section 2 briefly describes the background re-

2

quired for the paper. Section 3 formally defines our problem. Then, Section 4 explains

our proposed algorithm. Section 5 reports our experiment results. Finally, Section 6

concludes the paper.

3

2 Background

Linux uses CFS(Completely Fair Scheduler)[10] as the default scheduler from kernel

2.6.23. This scheduler shows responsiveness and fairness by allocating CPU time in

proportion to the weight of the task. However, there are cases where the desired goal

cannot be achieved by using only CFS, so various scheduling tools are provided in

Linux. As a basic scheduling tool in Linux, three parameters of policy, CPU affinity,

and priority can be assigned to a task.

2.1 Linux Scheduling Policy

There are three Linux Scheduling Policies to be covered in this paper. SCHED OTHER,

SCHED FIFO, SCHED RR. These policies do not mean system-wide scheduling

policies, but are assigned to tasks.

• SCHED OHTER

This is a default general task policy. The priority is fixed to 0, and it is scheduled with

the CFS.

• SCHED FIFO

Priority is always greater than or equal to 1, and is always superior to tasks with

SCHED OTHER policy. If a task with a higher priority is in the run queue, the lower

priority task is preempted. If a task with the same priority is in the run queue, it is

executed in the First-In, First-Out(FIFO) method.

• SCHED RR

4

If there is a task of the same prioirty in the run queue, it is executed in the round robin

method for the given time slice. The rest of the things are the same as SCHED FIFO.

2.2 CPU Affinity

By modifying the CPU affinity parameter, you can designate the CPU group where

the task will be executed. By default, CPU affinity is set to run on all CPU cores.

2.3 Priority

A task with a higher priority preemption a task with a lower priority. For tasks using

the SCHED OHTER policy, priority is fixed to 0, and tasks using the SCHED FIFO

and SCHED RR policies can have from 1 to 99.

In Linux, each CPU has its own run queue, so tasks in the run queue of other cores

are not affected regardless of priority. In other words, only tasks in the run queue of

the same CPU interfere with each other. Figure 1 shows the basic scheduling tool of

Linux described above.

5

Figure 1: Basic scheduling tool of Linux

3 Problem Description

We consider a system with CPU1..CPUQ cores. Q is number of cores in entire system.

Each task is represented by τk(1≤ k≤ n). The set of n tasks is represented by Γ, i.e.,

Γ = {τ1,τ2, · · · ,τn}.

• Description of Autonomous Driving System

Autonomous driving systems such as Autoware can be represented as task set in the

form of DAG. For example, Sensing corresponds to a root task and Actuation corre-

sponds to a leaf task. Therefore, task contains information about DAG. This can be

expressed as Gk. Gk can be represented as 2 tuples two tuples, i.e. Gk =(predk,succk).

predk is a set of predecessor tasks, and succk is a set of successor tasks. τk with

predk = /0 is called a root task, and τk with succk = /0 is called a leaf task. The root

task is released according to the period of the sensors, and the remaining tasks are

6

released as event driven by the parents task. At this time, assume that the periods of

all sensors are the same. Let this be called Tsystem. When there are more than one par-

ent task of a task, all parents’ events must be driven to be released. Among the paths

from the root task to the leaf task, the path with deadline can be defined as a module.

The time taken from the beginning to the end of the module is the response time of

the module, and this corresponds to the makespan in the DAG task set. The deadline

that the module must satisfy is expressed as Dmodulea . The makespan of DAG tasks

should be smaller than Dmodulea .

• Description of Tasks Model

When all tasks are listed, tasks with deadline and should be executed in real-time can

be expressed as ΓR = {Rτ1, · · · ,Rτm}. in sequence. Non real-time tasks without dead-

line such as kernel GUI tasks that are not included in the autonomous driving system

or tasks related to visualization can be expressed as ΓNR = {NRτ1, · · · ,NRτl}. in

sequence. Each task has set of its own execution times, Ek and scheduling param-

eter, Pk. The set of execution times Ek consists of execution times in each CPU,

i.e. Ek = (eCPU1
k , · · · ,eCPUQ

k). Scheduling parameter Pk is represented as 3 tuples,

i.e. Pk = (plck,a f fk, priok). plck is a scheduling policy given to a task. a f fk rep-

resents the CPU affinity of the task. priok is the priority of a task. These parameters

cannot be changed during runtime. Including DAG information, the task is repre-

sented as 3 tuples, i.e. τk = (Ek,Pk,Gk).

Under these assumptions, our problem is formally defined as follows:

Problem Definition: For each task τk in the given task set, Γ = {τ1,τ2, · · · ,τn}, our

problem is to find scheduling parameter Pk, such that all the modules of entire system

can be scheduled meeting their deadlines on Q CPU cores.

7

4 Proposed Approach

In this section, we present a 3-step heuristic algorithm to determine Pk. Each step of

the algorithm determines plck,a f fk, priok.

4.1 Decision of Scheduling Policy

Figure 2: Decision of scheduling policy

In the first step, the scheduling policy of the task, plck, is determined. Receives a task

set as input, classifies whether it is a real-time task or a non real-time task, and assigns

a scheduling policy accordingly. As mentioned in Section 3, tasks with deadline are

classified into real-time tasks, and tasks that do not are classified into non real-time

tasks. Through this step, real-time tasks always have higher priority over non real-

time tasks. For real-time tasks, LiDAR localization or object detection will be an

example, and GUI and Logging will be the other. Figure 2 describes this step.

8

4.2 Assignment of CPU Affinity

4.2.1 Linux load balancing

(a) Linux load balancing (b) Assign CPU affinity

Figure 3: Load balancing scenarios

In the second step, the CPU affinity,a f fk, is determined. Since Linux uses partitioned

queues, unfairness between CPU can occur, and this is resolved through load balanc-

ing. However, since load balancing only considers the weight and number of tasks, it

may not be able to accurately balance. Figure 3 shows an example. Suppose CPU0

and CPU1 are homogeneous. When τ1,τ2,τ3,τ4 is released, Linux divides the num-

ber of tasks equally and balances them as in figure 3(a). However, considering the

execution time, balancing as in figure 3(b) can reduce the makespan. Therefore, it is

necessary to properly load balance through CPU affinity adjustment.

4.2.2 Proposed Algorithm for CPU Affinity Assignment

Before presenting the algorithm, the required notation and description are described

in the table 1. The heuristic algorithm considering 4.2.1 is introduced on Algorithm

1.

The algorithm takes the real-time DAG task set expressed as ΓR as input. ΓCPU ,

which is the result of assigning the task to the CPU, and WCRT , Worst Case Re-

9

Notation Description
ΓCPUK The set of tasks assigned to CPUK

TotalCPUK Total execution time sum of tasks assigned to CPUK

SubtotalCPUK Subtotal execution time of tasks assigned to CPUK only in
AssignReady

LCPU The set of CPUK with least TotalCPUK

AssignReady The set of tasks ready to be assigned
AssignFinish The set of tasks that have already been assigned

Table 1: Notations and descriptions used in the algorithm

sponse Time that can be guaranteed, are taken as outputs. The algorithm first ini-

tializes the variables from Line 1 to Line 5. In the while-loop from Line 6 to Line

33, tasks are assigned until all real-time DAG tasks are included in AssignFinish. It

means all real-time DAG tasks are assigned. AssignReady is initialized in Line 7.

From Line 9 to Line 13, the for-loop finds assignable tasks. From Line 10 to Line

12, the if-conditional branch checks whether tasks are assignable. If all of the pre-

decessors of Rτi have been assigned, tasks are marked as assignable and included in

AssignReady. In Line 15, SubtotalCPU is initialize because a new AssignReady set is

ready. From Line 16 to Line 30, the for-loop assigns tasks in AssignReady in the or-

der of max
e j∈E j

(E j)’s largest. From Line 17 to Line 18, the CPU with the least TotalCPU

is a candidate to be assigned. This equalizes the sum of the CPU’s execution time.

The if-conditional branch from Line 19 to Line 20, If the number of candidates is 1,

the candidate is determined as the CPUK to be assigned. The else-conditional branch

from Line 22 to Line 24, if there are multiple candidates, the CPU with the least

SubtotalCPUL is determined as CPUK . This acts as a tie break and makes the sum of

execution time equal to local within AssignReady. From Line 25 to 26, the task is

assigned to the CPUK by determine a f f j as CPUK and including Rτ j in ΓCPUK . In

10

Algorithm 1 The DAG execution time fairness balancing algorithm
Input: ΓR(real-time DAG task set)
Output: ΓCPU (assigned task set),

WCRT (Worst Case Response Time)
1: ΓCPU = {ΓCPU1 , · · · ,ΓCPUQ} ← { /0, · · · , /0}
2: TotalCPU = {TotalCPU1 , · · · ,TotalCPUQ} ← {0, · · · ,0}
3: SubtotalCPU = {SubtotalCPU1 , · · · ,SubtotalCPUQ} ← {0, · · · ,0}
4: AssignFinish = /0

5: WCRT = 0
6: while AssignFinsh = ΓR do
7: AssignReady = /0

8: /* step 1: Classification of tasks that can be assigned */
9: for Rτi ∈ ΓR do

10: if predi ⊂ AssignFinish then
11: AssignReady = AssignReady ∪ {Rτi}
12: end if
13: end for
14: /* step 2: Assignment of AssignReady*/
15: SubtotalCPU ← {0, · · · ,0}
16: for Rτ j ∈ AssignReady, in largest max

e j∈E j
(E j) order do

17: LCPU ← /0

18: LCPU = LCPU ∪ {CPUL|CPUL that has least elements of TotalCPU }
19: if number of LCPU is 1 then
20: CPUK ←CPUL

21: else
22: /* tie breaker */
23: CPUK ←CPUL that has least element of FCPU

24: end if
25: a f f j ←CPUK

26: ΓCPUK = ΓCPUK ∪ {Rτ j}
27: AssignFinish = AssignFinish ∪ {Rτ j}
28: TotalCPUK = TotalCPUK + eCPUK

j

29: SubtotalCPUK = SubtotalCPUK + eCPUK
j

30: end for
31: WCRTReady ← SubtotalCPUW that greatest element of SubtotalCPU

32: WCRT = WCRT + WCRTReady

33: end while
34: return ΓCPU and WCRT

11

Line 27, Rτ j is included in AssignFinish, indicating that the assign is complete. From

Line 28 to Line 29, the execution time of the assigned task is added to TotalCPUk and

SubtotalCPUk , respectively. In Line 31, the largest FCPUW value in the AssignReady

assignments from Line 16 to Line 30 is set as the WCRTReady. Since AssignReady

tasks can be executed simultaneously, it means that it can be completed in WCRTReady

even in the worst case when only AssignReady tasks are considered. In Line 32, the

WCRTReady is added to the WCRT and updated. This means that if you add all of the

WCRTReady, it can be guaranteed that WCRT for all tasks. Finally, in Line 34, output

of algorithm ΓCPU and WCRT are returned.

4.2.3 Algorithm applied to example DAG task set

Figure 4: Example of affinity assignment

Figure 4 shows an example of affinity assignment. Three snapshots are taken ev-

ery Line 32 of the algorithm 1. Through this, change based on AssignReady can be

checked. Suppose CPU 0 to CPU 2 are homogeneous. In the first and second snap-

12

shot, the task with the smallest ek is assigned to the CPU with the least TotalCPU , In

the third snapshot, after assigning Rτ5 and Rτ6, TotalCPU are all equal to 20. At this

time, as a tie breaker, Rτ4 is assigned to CPU 1 with the smallest SubtotalCPU which

is 0.

4.3 Prioritization of DAG tasks

In the last step, the priority of the task, priok, is determined. the makespan of DAG

tasks set is practically guaranteed through prioritization.

4.3.1 The makespan Delay of DAG Task set in Practical Case

(a) Higher priority to predecessor tasks (b) Higher priority to successor tasks

Figure 5: Priority scenarios

As with HEFT [9] and HLBS [8], many DAG scheduling algorithms ignore the effect

of the next period’s job on the current job’s scheduling. However, in practical situa-

tions such as when using an autonomous driving system, the gap between the period

and the expected the makespan is not enough, so the job of the next period often af-

fects the scheduling of the job of the current period. The figure 5 shows examples.

The figure 5 depicts the situation in which the job of the current period was not com-

pleted and the job of the next period was released. Rτn−1,1,Rτn,1 are the jobs of the

current period, and Rτ1,2 is the job of the next period. Figure 5(a) is a scheduling

when a high priority is given to predecessor tasks, and Figure 5(b) is a scheduling

13

Algorithm 2 Successor tasks priority algorithm
Input: ΓR(real-time DAG task set)
Output: Prio(determined priority set)

1: Prio = {prio1, · · · , priom} ← {1, · · · ,1}
2: for Rτi ∈ ΓR, in topological order do
3: if predi is /0 then
4: prioi ← 1
5: else
6: prioi ← max

Rτ j∈pred j

(prio j)+1

7: end if
8: end for
9: return Prio

when a high priority is given to successor tasks. In the case of Figure 5(a), Rτ1,2 is ex-

ecuted first even though Rτn,1 has not been completed, and this delays the makespan

of the current period job. Figure 5(b) gives high priority to successor tasks to pre-

vent delay. If the makespan delay that often occurs is not considered, it can lead to a

critical damage.

4.3.2 Proposed Algorithm for Determine Priority

The priority decision Algorithm 2 using the idea of 4.3 is introduced on the next

page. Initialize Prio on Line 1. From Line 2 to Line 8, priorities are assigned to all

real-time DAG tasks in topological order in the for-loop. The if-conditional branch

from Line 3 to Line 5, if there is no predecessor tasks, 1 is given as a priority. This

corresponds to root tasks. The else-conditional branch from Line 5 to Line 7, the

priority is determined by adding 1 to the highest priority among predecessor tasks.

Therefore, priority increases from root tasks to leaf tasks. It returns the priority set

determined in Line 9.

14

4.3.3 Prioritization example of DAG task set

Figure 6: Example of prioritization

Figure shows an example of prioritization. The root task, Rτ1, is given 1 as a prio1.

Next, according to the topological order, the priority of Rτ2 becomes 2 by adding 1 to

max of predecessor’s prio. In the case of Rτ5, 1 is added to the max of predecessor’s

prio, so 3 is given as priority.

15

5 Evaluation

In this section, we evaluate the optimization method presented through two exper-

iments. First, compare the makespan on the schedule simulator by using Random

DAG Tasks Generator. Compare Random, Exhaustive, and Ours to find the differ-

ence in average makespan and deadline miss rate. Second, on the autonomous sys-

tem, Autoware[2], we conduct a real driving experiment using a minicar. When using

only Linux CFS and using our method, we measure the makespan and compare it

with the deadline for driving. As a result, we check whether the actual driving was

successfully performed.

5.1 Simulated Scheduler Evaluation

5.1.1 Evaluation Setup

Parameter Description Value
Tsystem Period of DAG task set 100ms
#RealTime Number of real-time tasks 10
#Dummy Number of dummy tasks 10
Depth Depth of DAG uniform[3,7]
etotal Total execution time of system [10ms, 200ms],

(in increments of 10ms)
Utotal Total utilization of system [0.1, 2.0]

depends on the value of etotal (in increments of 0.1)
PortionRT The portion of real-time tasks [0.2, 0.8]

across the system (in increments of 0.3)

Table 2: Parameter of Random DAG Tasks Generator

A real-time DAG task set and a dummy task set were created through the Random

DAG Tasks Generator. The dummy task set corresponds to a non-real time task set.

16

Table 2 describe parameters for task. Since the period is 100ms, when e is increased

by 10ms, utilization also increases by 0.1. For each utilization, we measure the aver-

age of makespan, increasing by 0.1 with 1000 working sets. We compare the resulting

from the following three different optimization methods:

• Ours: Scheduling by the method proposed in this paper.

• Random: Scheduling by randomly setting the scheduling parameter Pk.

• Exhaustive: Scheduling by searching all possible cases through exhaustive test

and selecting the best case.

5.1.2 Evaluation Result

(a) PortionRT = 0.2 (b) PortionRT = 0.5 (c) PortionRT = 0.8

Figure 7: Simulation makespan results

Figure 7 shows the simulation makespan results. Figure 7(a), 7(b). 7(c) are measured

makespan when PortionRT is 0.2, 0.5, and 0.8, respectively. In each graph, the x-axis

is the utilization of all task sets, and the y-axis is the makespan for real-time taskset. In

all graphs, makespan was measured in the order of Random, Ours, and Exhaustive.

Exhaustive is the best solution considering all cases, so makespan lower than this

cannot be measured. As the PortionRT decreases, the room for optimization increases,

17

(a) PortionRT = 0.2 (b) PortionRT = 0.5 (c) PortionRT = 0.8

Figure 8: Simulation schedulability results

and the effect of reducing makespan increases. In the case of Random, all task sets

are not classified, so all PortionRT show a similar graph pattern. Nevertheless, when

the PortionRT is small, the probability of completing the real-time tasks beforehand

is high, so we can see that the makespan is slightly reduced. In the case of Ours and

Exhaustive, the load of the real-time task set increases according to the PortionRT , so

the makespan is measured differently even at the same Utotal .

Figure 8 shows the simulation schedulability results. In each graph, the x-axis is the

utilization of all task sets, and the y-axis is the schedulability for real-time taskset.

In all graphs, Ours has higher schedulability than Random and Exhaustive than

Ours. As utilization increases, makespan increases, so schedulability decreases. In

all graphs, the reason that schedulability does not decrease significantly even when

utilization is close to the number of cores is because there is a deadline only in the

real-time task set, so it actually affects as much as PortionRT ∗Utotal . In figures 8(a)

and 8(b), only a few deadline misses occurred in the case of Random. In figure 8(c),

deadline misses were also observed in Random and Ours. At this time, in the case

of Random, schedulability is significantly lowered, while Ours has a graph similar to

Exhaustive and maintains schedulability.

18

5.2 Autonomous System Evaluation

5.2.1 Evaluation Setup

Figure 9: DAG task set structure of Autoware

For practical verification of the proposed optimization method, an experiment using

an RC minicar that has 1/10 scale of a real car was designed. Nivida TX2 embedded

board[11] is installed on the minicar and used as a hardware computing unit. TX2

board has 6 cores, which is composed of two CPU clusters. It consists of 2 Nvidia

Denver2 cores and 4 ARM Cortex-A57 cores, and the clock frequency is fixed to 2.0

GHz each. Linux kernel 4.4.197-tegra is installed on the TX2 board. On top of that,

ROS, a middleware, and Autoware, an autonomous driving system, were installed,

and a module for actual autonomous driving was constructed.

Figure 9 shows the autonomous driving DAG task set structure. The whole system

consists of two modules, LiDAR localization driving module and object detection

module, and the response time of each module is obtained by the measurement of

19

makespan. Tasks essential for driving were classified as real-time tasks, and tasks that

were not essential were classified as non real-time tasks. In addition, such as kernel

GUI tasks are added to the non real-time task. After measuring makespan through the

Linux basic CFS and our approach, we compare the results.

5.2.2 Evaluation Result

(a) Driving module on CFS (b) Driving module on Ours

(c) Detection module on CFS (d) Detection module on Ours

Figure 10: Autoware results

Figure 10 shows the response time measured in each module. In each graph, the

x-axis is the release time of each module and the y-axis is response time of each

module. The horizontal line in the graph represents the deadline for driving success,

and the response time above this line represents a deadline violation. Figure 10(a)

and 10(c) are measured on CFS, and deadline violations are observed. Figure 10(b)

20

and 10(d) are graphs measured inOurs. In this graph, no job is observed above the

horizontal line, which means that the deadline has always been satisfied. In the actual

driving test, when the deadline was not satisfied on the CFS, the driving failed, but

Ours confirmed that the driving was successful.

21

6 Conclusion

This paper presents a real-time system optimization method that can reduce response

time without kernel patch, without application modifying. To simplify this, it is de-

scribed as a problem that reduces the makespan of the DAG task set. The proposed

approach determines the scheduling parameter for the task through a heuristic al-

gorithm of three steps. First, in the first step, a scheduling policy is determined by

classifying a real-time task and a non real-time task. In the second step, CPU affinity

is assigned through an algorithm aimed at fair load balancing. In the third step, pri-

oritization is performed to resolve the response time delay that can practically occur

when the interval between response time and period is not enough. Through evalua-

tion conducted by simulated scheduler and Autoware, it showed significant response

time reduction effect close to optimal solution. In the future, we plan to extend our

heuristic approach to the optimal algorithm.

22

References

[1] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and

A. Y. Ng, “Ros: an open-source robot operating system,” in ICRA workshop on

open source software, vol. 3, 2009, p. 5.

[2] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi, Y. Kitsukawa,

A. Monrroy, T. Ando, Y. Fujii, and T. Azumi, “Autoware on board: Enabling

autonomous vehicles with embedded systems,” in 2018 ACM/IEEE 9th Inter-

national Conference on Cyber-Physical Systems (ICCPS). IEEE, 2018, pp.

287–296.

[3] B. A. team, “Apollo: Open source autonomous driving,” https://github.com/

ApolloAuto/apollo, 2017, online; Accessed: 2020-12-14.

[4] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H. Ander-

son, “litmusRT : A testbed for empirically comparing real-time multiprocessor

schedulers,” in 2006 27th IEEE International Real-Time Systems Symposium

(RTSS’06), 2006, pp. 111–126.

[5] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek, “A resource allocation

model for qos management,” in Proceedings Real-Time Systems Symposium.

IEEE, 1997, pp. 298–307.

[6] Y. Saito, F. Sato, T. Azumi, S. Kato, and N. Nishio, “Rosch: real-time schedul-

ing framework for ros,” in 2018 IEEE 24th International Conference on Em-

bedded and Real-Time Computing Systems and Applications (RTCSA). IEEE,

2018, pp. 52–58.

23

https://github.com/ApolloAuto/apollo
https://github.com/ApolloAuto/apollo

[7] S. Kato, R. Rajkumar, and Y. Ishikawa, “A loadable real-time scheduler suite

for multicore platforms,” Technical Report CMU-ECE-TR09-12, 2009.

[8] Y. Suzuki, T. Azumi, S. Kato et al., “Hlbs: Heterogeneous laxity-based schedul-

ing algorithm for dag-based real-time computing,” in 2016 IEEE 4th Interna-

tional Conference on Cyber-Physical Systems, Networks, and Applications (CP-

SNA). IEEE, 2016, pp. 83–88.

[9] H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-effective and low-

complexity task scheduling for heterogeneous computing,” IEEE transactions

on parallel and distributed systems, vol. 13, no. 3, pp. 260–274, 2002.

[10] I. Molnar, “Completely fair scheduler,” https://lwn.net/Articles/230501/, 2007.

[11] N. Corporation, “Jetson tx2,” https://www.nvidia.com/en-us/autonomous-

machines/embedded-systems/jetson-tx2/, 2019.

24

https://lwn.net/Articles/230501/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/

요약(국문초록)

자율주행시스템에서응답시간감소는매우중요하다.이를위해실시간

시스템은반드시자율주행시스템에적용되어야한다.하지만,실시간시스

템의 적용은 그리 간단하지 않다. 오픈 소스 플랫폼이 발전하면서, 다양한

개발자와 같은 비전공자를 위한 쉽게 적용 가능한 실시간 시스템이 필요

해지게 되었다. 이 논문에서는 커널 패치 없이, 어플리케이션의 수정없이

응답시간을감소시킬수있는실시간최적화기법을제시한다.이논문에서

는세단계의휴리스틱알고리즘으로구성된최적화기법을제시한다.이는

각각 스케쥴링 정책, 중앙 처리 장치 선호도, 우선순위를 결정하여 목표를

달성한다.시뮬레이션된스케줄러와실제자율주행시스템에서진행된실

험에서,뛰어난응답시간감소효과가있음을보인다.

주요어 :최적화,실시간스케줄링,유향비순환그래프스케줄링,자율주행

시스템

학번 : 2019-25586

25

	1 Introduction
	2 Background
	2.1 Linux Scheduling Policy
	2.2 CPU Affinity
	2.3 Priority

	3 Problem Description
	4 Proposed Approach
	4.1 Decision of Scheduling Policy
	4.2 Assignment of CPU Affinity
	4.2.1 Linux load balancing
	4.2.2 Proposed Algorithm for CPU Affinity Assignment
	4.2.3 Algorithm applied to example DAG task set

	4.3 Prioritization of DAG tasks
	4.3.1 The makespan Delay of DAG Task set in Practical Case
	4.3.2 Proposed Algorithm for Determine Priority
	4.3.3 Prioritization example of DAG task set

	5 Evaluation
	5.1 Simulated Scheduler Evaluation
	5.1.1 Evaluation Setup
	5.1.2 Evaluation Result

	5.2 Autonomous System Evaluation
	5.2.1 Evaluation Setup
	5.2.2 Evaluation Result

	6 Conclusion
	References

<startpage>10
1 Introduction 1
2 Background 4
 2.1 Linux Scheduling Policy 4
 2.2 CPU Affinity 5
 2.3 Priority 5
3 Problem Description 6
4 Proposed Approach 8
 4.1 Decision of Scheduling Policy 8
 4.2 Assignment of CPU Affinity 9
 4.2.1 Linux load balancing 9
 4.2.2 Proposed Algorithm for CPU Affinity Assignment 9
 4.2.3 Algorithm applied to example DAG task set 12
 4.3 Prioritization of DAG tasks 13
 4.3.1 The makespan Delay of DAG Task set in Practical Case 13
 4.3.2 Proposed Algorithm for Determine Priority 14
 4.3.3 Prioritization example of DAG task set 15
5 Evaluation 16
 5.1 Simulated Scheduler Evaluation 16
 5.1.1 Evaluation Setup 16
 5.1.2 Evaluation Result 17
 5.2 Autonomous System Evaluation 19
 5.2.1 Evaluation Setup 19
 5.2.2 Evaluation Result 20
6 Conclusion 22
References 23
</body>

