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Adversarial training is a defense technique that improves adversarial robust-

ness of a deep neural network (DNN) by including adversarial examples in the

training data. In this paper, we identify an overlooked problem of adversarial

training in that these adversarial examples often have different semantics than

the original data, introducing unintended biases into the model. We hypothe-

size that such non-semantics-preserving (and resultingly ambiguous) adversarial

data harm the robustness of the target models. To mitigate such unintended

semantic changes of adversarial examples, we propose semantics-preserving ad-

versarial training (SPAT) which encourages perturbation on the pixels that are

shared among all classes when generating adversarial examples in the training

stage. Experiment results show that SPAT improves adversarial robustness and

achieves state-of-the-art results in CIFAR-10, CIFAR-100, and STL-10.
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Chapter 1

Introduction

Recent successes in many deep learning applications such as computer vision

[2], speech recognition [3], game playing [4], and natural language processing

[5] raised expectations for AI applications in real life. However, as Deep Neural

Networks (DNNs) turn out to be too brittle and susceptible to small pertur-

bations known as adversarial examples [6, 7], serious concerns are being raised

on applying DNNs to safety-critical real life tasks such as face recognition [8],

autonomous driving [9], and medical applications [10].

A broad definition of an adversarial example is an input to a machine learn-

ing model that is intentionally designed by an attacker to fool the model into

producing an incorrect output [11]. In the image classification domain, although

unrestricted attacks such as adversarial rotations, and translations [12] exist,

typically, adversarial examples are crafted by adding some small perturbations

to examples to change model outputs, where perturbation size is restricted by

an Lp norm ε-ball constraint. These are called sensitivity-based adversarial ex-

amples [13]. Underlying assumption here is that every data point inside an ε-ball

is semantically identical. Extensive studies were made to effectively find adver-

sarial examples inside an ε-ball and to make classifiers empirically or provably
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robust to such Lp norm bounded adversarial attacks [14, 15, 16, 17, 18, 19, 20].

However, many defense methods including even the recent researches were later

shown to be ineffective [21, 22, 23, 24].

In spite of such bitter failures, adversarial training, which incorporates ad-

versarial examples into the training data, remains as one of the best defense

methods. Projected gradient descent (PGD) is typically utilized to find adver-

sarial examples used in training stage. PGD finds a data point x′ which is most

likely to be adversarial inside an ε-ball centered at the original data x by max-

imizing the loss function and the x′ is used as training data in place of the

original data x. Therefore, adversarial training can be thought of as an online

data augmentation technique.

Recently, authors in [13] exposed a problem of adversarial training. This

failure mode motivates us to rethink the adversarial training from the begin-

ning. The problem of adversarial training is that actually, data points in ε-ball

are not always semantically identical. There are perturbations that change ora-

cle (human) label inside ε-ball in MNIST dataset [13]. Additionally, adversarial

examples of adversarially trained models are often perceived as samples from

different classes [25]. Even if the label does not change, at least the semantics

can become mixed or ambiguous. In the perspective of the data augmentation,

such a data is undesirable because it makes data noisy and disrupts model from

learning intended semantics. Instead of learning the intended task-relevant in-

formation, a model learns unintended features and wrong type of invariances.

We hypothesize that such non-semantics-preserving (and resultingly ambigu-

ous) adversarial data harm the robustness of the target model.

To mitigate such unintended semantic changes of adversarial examples, we

propose semantics-preserving adversarial training (SPAT) which encourages

perturbation on the pixels that are shared among all classes when generating

adversarial examples in the training stage. We show in Section 5 that perturbing

on the pixels that are shared among all classes is more effective in preserving
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original semantics than perturbing on the pixels that are only influential to

the true class. Our aim is to train a model with more semantics-preserving

adversarial examples.

By proposing SPAT, we are arguing for the necessity to separate adversarial

examples for training and adversarial examples for evaluating the robustness.

When evaluating the adversarial robustness, even if the semantics is mixed or

ambiguous, it is plausible to decide the label of the data based on the dominant

semantics of the data as long as the label of the data is same. However, when

training, such semantically ambiguous data disturbs a model from learning

intended semantics.

SPAT is a simple yet effective method. It is worth noting that SPAT is

orthogonal to existing adversarial training variants in that SPAT suggests a

new method for generating adversarial examples used in training stage which

remains relatively unexplored. We show in Section 6 that when combined with

TRADES and MART, SPAT achieves state-of-the-art results in CIFAR-10,

CIFAR-100, and STL-10 and is further improved with additional unlabeled

data in CIFAR-10.

Our contributions are summarized as:

• We analyze and visualize adversarial examples on various settings in a

complex dataset.

• We identify an overlooked problem of adversarial training in that these ad-

versarial examples often have different semantics than the original data,

introducing unintended biases into the model. To mitigate such unin-

tended semantic changes of adversarial examples, we propose semantics-

preserving adversarial training (SPAT).

• We experimentally show that SPAT can improve adversarial robustness

and achieve state-of-the-art results in CIFAR-10, CIFAR-100, and STL-

10.
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In Chapter 2, we introduce some preliminaries. In Chapter 3, we introduce

some related works. In Chapter 4, we analyze the current problem of PGD-

based adversarial training and propose SPAT as a solution to mitigate such

problems. In Chapter 5, we visualize various attacks and empirically show that

PGD-LS attack is more effective at preserving semantics than other attacks. In

Chapter 6, we show that SPAT with proper choice of α which is dependent on

perturbation limit ε improves robustness and present state-of-the-art robustness

on CIFAR-10, CIFAR-100, and STL-10.
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Chapter 2

Preliminaries

Consider a standard image classification task. Given a classfier which is parametrized

by θ and data (x, y) ∼ D where x is a image and y ∈ {0, 1}K is a one-hot en-

coded class label:

Standard Training In standard training, we minimize the loss with train-

ing data. Formally, the goal of Empirical Risk Minimization (ERM) is to find

parameter θ that minimizes the risk:

θ∗ = argmin
θ

E(x,y)∼D[L(θ, x, y)] (2.1)

DNNs trained with standard training usually have good test set perfor-

mance, but are highly vulnerable to adversarial examples.

Adversarial Example An adversarial example is an input to a machine

learning model that is intentionally designed by an attacker to fool the model

into producing an incorrect output [11]. In the image classification domain,

although unrestricted attacks such as adversarial rotations, and translations

[12] exist, typically, adversarial examples are crafted by adding some small
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perturbations to examples to change model outputs, where perturbation size is

restricted by an Lp norm ε-ball constraint.

Adversarial Training In adversarial training, we minimize the loss with

training data or their adversarial examples. Sometimes both are used and some-

times only adversarial examples are used. We explain the latter here. Then, the

former is obvious.

When we minimize the loss with adversarial examples, we allow some per-

turbations for each data point x. The perturbation set S is chosen to capture

semantic similarity of images. Usually, lp ball centered at x is used:

Bp
ε (x) = {x′ : ||x− x′||p ≤ ε} (2.2)

In this paper, we use p =∞. Then, Adversarial Risk Minimization (ARM)

is formulated as a saddle point problem:

θ∗ = argmin
θ

E(x,y)∼D[ max
x′∈B∞

ε (x)
L(θ, x′, y)] (2.3)

which can be rewritten as:

θ∗ = argmin
θ

E(x,y)∼D[L(θ, x̂′, y)] (2.4)

where

x̂′ = argmax
x′∈B∞

ε (x)
L(θ, x′, y) (2.5)

It is alternating between inner maximization problem and outer minimiza-

tion problem and rewritten formulation can be thought of as just a modifi-

cation of standard training where adversarial data is used instead of natural

data. In its variants, loss function L in equation 2.4 and equation 2.5 are not

essentially same. Compared with DNNs trained with standard training, DNNs

trained with adversarial training are more robust to adversarial examples and

have many benefits such as human-aligned gradient, and shape bias while hav-

ing slightly lower test set performance. Although many defense methods have
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Figure 2.1: An example of finding an adversarial example by PGD in an ε-ball

[1].

failed, adversarial training remains as a one of the best defense methods against

adversarial examples.

Projected Gradient Descent To find adversarial examples (= approxi-

mately solve inner maximization problem), adversarial training usually utilizes

Projected Gradient Descent (PGD) [15]. First, we introduce Fast Gradient Sign

Method (FGSM) [7] and then explain PGD. Both find a point that maximizes

the loss within a ε-ball because that point would be likely to be misclassified

by the model. FGSM finds an adversarial example as

x′ = x+ εsgn(∇xL(θ, x, y)) (2.6)

which is a one-step first-order method.

The multi-step variant of FGSM is called PGD:

x(t+1) = ΠB∞
ε (x)(x

(t) + αsgn(∇x(t)L(θ, x(t), y))) (2.7)

where α > 0 is a step size and Π is a projection operator that projects

adversarial example onto ε-ball centered at original data point x and x(t) is

a adversarial example at step t. The differences with regular gradient descent
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are (1) the result is projected onto ε-ball and (2) the gradient is computed

with respect to the input instead of the parameter. For a visual explanation,

refer to Figure 2.1. For both methods, at the beginning(x(0)), small Gaussian

or uniform noise may be added to x and that is called a random start. PGD is

performed for fixed iteration T and is called PGD-T algorithm. Most commonly

used function for surrogate loss of inner maximization is standard cross entropy

loss [15, 17, 26]. KL-divergence function and other methods have been used as

well [16, 27, 28]. We emphasize that x̂′ found by PGD is not always adversarial.

Instead, PGD finds a point that is most likely to be misclassified by the model.
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Chapter 3

Related Works

Since its discovery [6], adversarial noise was investigated by many researchers

on adversarial attacks, defenses and its characteristics. Started by the work

of [7] which proposed first attack Fast Gradient Sign Method (FGSM) and

first defense based on FGSM, many effective attacks including DeepFool [29],

JSMA [30], BIM [31, 32], PGD [15], C&W [28], and spatially transformed attack

[33] have been proposed and defenses including distillation [34], thermometer

encoding [35], stochastic gradients [36], exploding/vanishing gradients [37], and

adversarial training [15], followed. However, many defenses including methods

that utilize gradient obfuscation were later turned out to be ineffective [22, 24,

21, 23].

Adversarial training is a defense technique that incorporates adversarial

examples into training data. Due to its efficacy, it has been studied widely

and many variants exist [15, 16, 17, 38, 26, 39], which are orthogonal to our

work. However, ALP was controversial for its effectiveness [40, 41, 42] and

drawbacks of adversarial training was recently discovered [13]. The work of

[43, 44] investigated to improve accuracy while preserving robustness.

Researches on cause and characteristics of adversarial examples were per-
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formed. The authors of [45] argued that adversarial examples can be directly

attributed to the presence of non-robust features. The authors of [46] showed

that excessive invariance can cause adversarial vulnerability and [13] claimed

that there are fundamental tradeoffs between invariance and sensitivity. The

authors of [47] argued that learning shortcut can cause adversarial vulnerabil-

ity. The authors of [25] showed that robustness may be at odds with accuracy.

In contrast, the authors of [48] showed that adversarial examples can improve

accuracy. The authors of [39, 49] showed that unlabeled data can improve ro-

bustness. The authors of [50] analyzed adversarially trained CNNs (AT-CNNs)

and showed that adversarial training alleviates the texture bias of standard

CNNs and helps CNNs become more shape-biased.
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Chapter 4

Semantics-Preserving
Adversarial Training

In this chapter, we analyze current problem of PGD-based adversarial training

and propose semantics-preserving adversarial training (SPAT) algorithm, which

encourages perturbation on the pixels that are shared among all classes when

generating adversarial examples in the training stage.

4.1 Problem of PGD-training

Several researches have been conducted on how the survived adversarially trained

models differ from the standard models [50, 25]. Specifically, authors in [25] have

shown that the gradients of adversarially trained models align well with per-

ceptually relevant features of the input image while the gradients of standard

models seem as mere noises to humans. See Figure 4.1 for examples.

Since PGD finds adversarial examples based on the gradients of the models,

the distinct aspects of gradients induce significant disparity between the PGD-

generated examples from the adversarially trained models and the standard

models. Adversarial examples of standard models seem as noisy version of the

11



Figure 4.1: (Left) natural image (Middle) gradient w.r.t. x of standard model

(Right) gradient w.r.t. x of adversarially trained model.

original images. In contrast, adversarial examples of adversarially trained mod-

els look semantically different from the original images and they often belong

to different classes. See Figure 5.1 for examples.

Moreover, there are perturbations that change oracle (human) label inside

ε-ball in MNIST dataset [13]. This may apply to other datasets and other size

of ε-balls as well. Thus it can not be guaranteed that adversarial examples

have same semantics as original images. If not totally change labels, adversarial

perturbations may make images ambiguous by adding semantics of different

classes or by erasing semantics of the original classes.

In the perspective of an adversarial attack whose goal is to generate images

that the model misclassifies, this is a very interesting phenomenon and it is

a evidence that adversarial training can teach the semantics to the models to

some degree. However, in the perspective of a data augmentation in adversarial

training, training with such an attack is harmful because it prevents the model

from learning intended semantics in that it mixes up the task-relevant and

task-irrelevant information.

We hypothesize that such non-semantics-preserving (and resultingly am-

biguous) adversarial data harm the robustness of the target model and this

may be one of the cause of phenomenon that defenses against sensitivity-based
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attacks harm a model’s accuracy on invariance-based attacks [13]. That is, mak-

ing the model robust in ε-balls actually gives the model invariance in wrong

direction so that the model becomes invariant to semantics.

4.2 Semantics-Preserving Adversarial Training

To solve this problem, we propose semantics-preserving adversarial training

(SPAT), where we use label smoothed cross entropy loss (LSCE) [51] instead

of standard cross entropy loss (CE) for surrogate loss of inner maximization

problem. That is, we use

LSCE(p, y) =
K∑
k=1

−yLSk log(pk) (4.1)

where

yLSk =


(1− α) if yk = 1

α/(K − 1) if yk = 0

(4.2)

for surrogate loss of inner maximization where α ∈ [0, 1] is a label smooth-

ing hyperparameter and pk is k-th element of softmax layer output. For full

formulation, refer to Equation 4.3. Note that LSCE is equivalent to CE when

α = 0. Since PGD with cross entropy loss perturbs towards increasing loss only

with original class, it encourages erasing semantics of true class and adding

semantics of other classes. As a result, PGD with cross entropy loss changes

the original semantics of the images.

x̂′ = argmax
x′∈B∞

ε (x)
LSCE(p(x′, θ), y) (4.3)

In contrast, as SPAT encourages to perturb on the pixels that are shared

among all classes, it mitigates two causes of semantic changes of PGD-generated

adversarial examples: adding semantics of other classes and erasing semantics of

the original class. Such a semantics-preserving effect increases as label smooth-

ing hyperparameter α gets bigger. As α gets bigger, PGD will perturb more
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on parts that are common across all other classes, therefore lesser erasing se-

mantics of the true class. However, as α gets bigger, it provides less invariance

to the model since evenly distributed loss prevents the sample from diverging

from the original data point. Therefore, there is a tradeoff. When using LSCE

loss for PGD, we call it PGD-LS for convenience and same go for PGD-CE and

PGD-KL.

CE(p, q) = Entropy(p) +DKL(p||q) (4.4)

Since CE loss function is equivalent to KL divergence except for the entropy

(which is the constant part), if the softmax probability is same, LSCE loss is

equivalent to KL divergence (refer to Equation 4.4). However, we claim that

LSCE has advantage over KL divergence in that we are able to control how

much semantics to preserve with label smoothing hyperparameter α. Since KL

divergence highly depends on the sample prediction computed by trained mod-

els, it varies from model to model and from example to example. In contrast,

with LSCE, we are able to control the ratio between the true class and other

classes. Overall, PGD-LS can be thought of as a generalization of PGD-CE and

PGD-KL.

4.3 Combining with Adversarial Training Variants

Since our method is changing the surrogate loss for inner maximization problem,

it is orthogonal to various existing adversarial training methods. Therefore, we

combine our method with Madry [15], TRADES [16], and MART [17].

Madry + SPAT Loss function is formulated as CE(p(x̂′, θ), y).

TRADES + SPAT Loss function is formulated as

CE(p(x, θ), y) +KL(p(x, θ)||p(x̂′, θ)).

14



MART + SPAT Loss function is formulated as

BCE(p(x̂′, θ), y) +KL(p(x, θ)||p(x̂′, θ))(1− py(x, θ)).

In SPAT, all the adversarial examples x̂′ are generated by PGD-LS (Equa-

tion 4.3).
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Chapter 5

Analysis of Adversarial Examples

In this chapter, we compare our proposed PGD-LS attack with various PGD-

based attacks. First, we show that semantic changes occur in ε-balls and such

semantic changes can be mitigated with PGD-LS. Next, to show the effect of

hyperparameter α and compare with other PGD-based attacks numerically, we

plot attack success rate curves on a standard model and an adversarially trained

model.

5.1 Visualizing Various Adversarial Examples

Here, we visualize adversarial examples generated by various PGD-based at-

tacks and various perturbation limits. First, to test the effect of perturbation

limit on adversarial examples, we generate adversarial examples with C&W∞

attack on various perturbation limits on CIFAR-10 dataset. Figure 5.1 shows

the result. With ε = 32/255, labels of the images completely change. For ex-

ample, images in first row show a ship turning into a airplane. On ε = 16/255,

semantics of the images change to some degree and labels often become am-

biguous and mixed. For instance, images in first row show a ship becoming

16



ambiguous between a ship and a airplane and images in second row show that

the shape of a horse is deformed. On ε = 8/255, which is the most commonly

used perturbation limit on CIFAR-10 dataset, labels of the images are preserved

but some images show mixed semantics. For example, semantics of adversarial

image in third row is mixed but the label is preserved. However, since we cannot

inspect every image in every used dataset, we cannot assure that there is no

label-changing or ambiguous adversarial examples in defined epsilon balls.

Secondly, to confirm that PGD-LS attack is more effective at preserving

semantics than PGD-CE attack, we visualize adversarial examples generated

by PGD-CE and PGD-LS attack on perturbation limit of ε = 32/255. Fig-

ure 5.2 shows that adversarial examples generated by PGD-LS attack preserve

more semantics than adversarial examples generated by PGD-CE attack and

semantics-preserving effect is greater with larger α. Therefore, by using larger

α on larger perturbation limit, adversarial training can become more stable by

a larger semantics-preserving effect.

5.2 Comparing the Attack Success Rate

Here, we analyze the effect of label smoothing hyperparameter α on attack

success rate of PGD-LS against a standard model and an adversarially trained

model (Madry). We vary α from 0 to 1 with stride 0.1. Note that when α = 0,

it is equivalent to PGD-CE. We also plot PGD-KL [16] for comparison. Note

that robust accuracy is equal to 1− attack success rate. Figure 5.3 shows the

result.

As expected, we observe that bigger α leads to lower attack success rate

(= higher robust accuracy) due to its larger semantics-preserving effect. It is

worth noting that for both model, when α is 1.0, accuracy under attacks get

higher than accuracy for clean examples. This is because of closed set nature

of classification problem. In closed set classification, moving away from every

class except true class results in moving towards true class.
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Attack success rates in a standard model and an adversarially trained model

show quite different aspect. On a standard model, α = 0 shows huge difference

from other PGD-LS. In contrast, on adversarially trained model, PGD-LS shows

gradual changes.

Relation of PGD-KL vs PGD-LS vs PGD-CE We also notice that PGD-

KL shows difference in a standard model and an adversarially trained model.

Therefore, we investigate what α value leads PGD-LS to have similar attack

success rate with PGD-KL. We show results in Table 5.1 and 5.2. Results show

that for a standard model, PGD-LS with α between 1e-4 and 5e-5 is similar

with PGD-KL and for an adversarially trained model, PGD-LS with α between

0.4 and 0.5 is similar with PGD-KL. Probably standard training makes a highly

confident classifier whereas adversarial training yields less confident classifier.

The disadvantage of PGD-KL is that since its power of attack (or attack success

rate) is determined by the model’s sample prediction which is uncontrollable,

it is undependable.

Attack PGD-KL
PGD-LS

1e-2 1e-3 1e-4 5e-5 1e-5

PGD-20 acc 47.51 80.04 69.23 51.28 44.16 25.3

Table 5.1: Robust accuracy (%) of standard model under PGD-KL and PGD-LS

attack with different α values.
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Attack PGD-KL
PGD-LS

0.1 0.2 0.3 0.4 0.5

PGD-20 acc 71.58 57.7 62.93 67.7 72.14 75.57

Table 5.2: Robust accuracy (%) of adversarially trained model under PGD-KL

and PGD-LS attack with different α values.

Figure 5.1: Adversarial examples of adversarially trained model generated on

various perturbation limits. All adversarial images are generated by C&W∞

attack. From left to right: original image, ε = 32/255, ε = 16/255, ε = 8/255.

From top to bottom: ship to airplane, horse to frog, bird to frog, horse to frog,

automobile to ship.
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Figure 5.2: Adversarial examples generated on adversarially trained model with

various attacks. All adversarial images are generated on ε = 32/255. From left

to right: original image, PGD-CE, PGD-LS (α = 0.2), PGD-LS (α = 0.8).
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Figure 5.3: Robust accuracy under various attacks on a standard model and an

adversarially trained model.
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Chapter 6

Experiments & Results

In this chapter, we first verify the efficacy of SPAT empirically by several ex-

periments and then check how the label smoothing parameter α of the SPAT

affects the accuracy of a classifier on various perturbation limits.

6.1 Evaluating Robustness

We train WideResNet-34-10 [52] on CIFAR-10 and CIFAR-100 dataset [53] to

benchmark state-of-the-art robustness and train with 500k unlabeled data on

CIFAR-10 to achieve further improvements. Then, we train ResNet-18 [2] on

STL-10 [54] to test our method on larger images.

6.1.1 CIFAR-10 & CIFAR-100

We compare our method with adversarial training variants: 1) Madry [15], 2)

TRADES [16], and 3) MART [17].

Training Details For CIFAR-10, we follow all the settings in MART. Mod-

els are trained with SGD with momentum 0.9, weight decay 7e-4 and initial

learning rate is 0.1 and divided by 0.1 at 75-th and 90-th epoch. All images are
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Defense Natural FGSM PGD-20 CW∞

Madry 84.39 59.93 56.37 54.14

TRADES 85.97 62.29 57.32 54.38

MART 83.7 61.93 58.46 53.28

TRADES + SPAT (α = 0.1) 84.6 61.46 58.22 54.97

MART + SPAT (α = 0.3) 81.93 61.87 59.59 51.57

Table 6.1: Natural and Robust accuracy (%) of WRN-34-10 trained on CIFAR-

10 dataset.

normalized into [0, 1] and when training, data augmentation such as random

horizontal flipping and random crop with 4 pixel padding is performed. The

perturbation limit is ε = 8/255 and for training attack, we use PGD-10 with

random start and step size is ε/4. For all hyperparameters, we use λ = 6 for

TRADES and TRADES + SPAT, λ = 5 for MART and MART + SPAT. For

CIFAR-100, we use same settings except for weight decay which follow their

original implementations.

We test all models against FGSM(w/o random start), PGD-20, and C&W∞

(optimized by PGD for 30 steps) [28] attacks.

Results & Discussion Table 6.1, 6.2 shows the result. In CIFAR-10, our pro-

posed method MART + SPAT outperforms all other methods in terms of PGD-

20 accuracy, which is the most common comparison setting. Also, TRADES +

SPAT outperforms all other methods in terms of CW∞ accuracy. Compared

with its original algorithm TRADES, TRADES + SPAT improves on PGD-20

and CW∞ accuracy. MART + SPAT improves on PGD-20 over MART but

worsens on CW∞ accuracy. This phenomenon is similar to relation of MART

and TRADES. MART has higher PGD-20 accuracy than TRADES but shows

lower CW∞ accuracy. We presume that this is because BCE loss used in MART
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Defense Natural FGSM PGD-20 CW∞

Madry 61.77 34.42 31.51 30.1

TRADES 57.13 32.9 31.02 28.07

MART 58.56 36.46 34.12 30.16

TRADES + SPAT (α = 0.1) 55.54 33.35 31.20 28.14

MART + SPAT (α = 0.2) 60.28 36.91 34.66 30.93

Table 6.2: Natural and Robust accuracy (%) of WRN-34-10 trained on CIFAR-

100 dataset.

(instead of CE in TRADES) sometimes cause mismatch between robustness

against PGD attack and C&W attack. All our method worsens in natural ac-

curacy, which conforms with claim that robustness may be inherently at odds

with natural accuracy [25, 16].

In CIFAR-100, our proposed method MART + SPAT outperforms all other

methods in all robust accuracy and also improves natural accuracy over its

original algorithm, MART. TRADES + SPAT improves on all robust accuracy

over TRADES but worsens natural accuracy.

Overall, experiment results show that our proposed method SPAT consis-

tently improves robust accuracy. It was generally thought that increasing the

power of attack by increasing the number of attack iterations can create more

robust model [15, 55, 42]. Our results show that stronger attack is not the only

way to creating more robust models. This conforms with our intuition that

semantics-preserving data augmentation is important.

6.1.2 CIFAR-10 with 500K Unlabeled Data

Here, we investigate the additional benefit of unlabeled data with SPAT. We

follow exact same settings in RST [39]. Specifically, we train RST + SPAT and

MART + SPAT onWideResNet-28-10 and compare them with RST and MART
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Defense Natural PGD-20

RST 89.65 63.00

MART 89.81 63.06

RST + SPAT (α = 0.1) 89.52 63.47

MART + SPAT (α = 0.1) 89.44 63.37

Table 6.3: Natural and Robust accuracy (%) of WRN-28-10 trained on CIFAR-

10 with 500k unlabeled dataset.

on natural accuracy and PGD-20 (settings in [39]) accuracy. Evaluation results

are shown in Table 6.3. Results show that SPAT improves PGD-20 accuracy

on both RST and MART. We again confirm that SPAT consistently improves

robust accuracy.

6.1.3 STL-10

Here, we train our methods on STL-10 to test versatility of our methods on

larger images. Since STL-10 has larger images, their semantics are more distinct.

We follow similar settings as in previous experiments except that we train our

models for 200 epochs and batch size of 32. Evaluation results are shown in

Table 6.4. Results show that SPAT again improves PGD-20 accuracy on both

TRADES and MART and similar to previous experiments, natural accuracy

decreases.

6.2 Effect of Label Smoothing Hyperparameter α

To test the effect of label smoothing hyperparameter α on SPAT on various

perturbation limits, we train ResNet-50 [2] on CIFAR-10 dataset. We apply

SPAT on the standard adversarial training method, Madry [15]. We vary α

from 0 to 1 with stride 0.2. Note that when α = 0, it is equivalent to Madry.
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Defense Natural PGD-20

TRADES 70.15 42.16

MART 67.89 44.24

TRADES + SPAT (α = 0.1) 69.24 43.33

MART + SPAT (α = 0.2) 67.85 45.19

Table 6.4: Natural and Robust accuracy (%) of ResNet-18 trained on STL-10.

Adversarial Setting We train models on various perturbation limits to see

the effect of SPAT on various amount of possible semantics change. The per-

turbation limits for training are ε = 4/255, 8/255, 16/255 and ε = 8/255 for

evaluation. For training, we use PGD-10 with random start and step size is ε/4.

For evaluation, we use PGD-20 with random start and step size is ε/10.
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Figure 6.1: Clean and Robust Accuracy (%) under various α and perturbation

limits on CIFAR-10 dataset.

Evaluation Results In Figure 6.1, we show the performance of Madry and

SPAT w.r.t. α on various perturbation limits. Clean accuracy refers to the

accuracy of a classifier evaluated on natural images and robust accuracy refers

to the accuracy of a classifier evaluated on adversarial examples generated by

PGD-20. All DNNs trained by SPAT show higher clean accuracy compared
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Figure 6.2: Clean and Robust Accuracy (%) under various α and perturbation

limits on CIFAR-100 dataset.

to the models that are trained by Madry. The models trained by SPAT with

higher α have higher clean accuracy, but when α = 1, training gets broken. The

model trained by SPAT with α = 1 has clean accuracy of 32.44% and robust

accuracy of 0% when ε = 8/255. We presume that training with data that is

more ’friendly’ than clean data (or flattering) kills training.

For robust accuracy, a DNN trained with α = 0 get highest robust accuracy

when ε = 4/255. When ε = 8/255, SPAT with α = 0.2 get highest robust

accuracy. When ε = 16/255, SPAT with α = 0.4 get highest robust accuracy.

In contrast to clean accuracy, robust accuracy peaks at certain α value and

decreases as it gets farther away from the peak α value. In addition, the peak

α value is higher on bigger ε-ball.

Higher clean accuracy is achieved with smaller ε-ball. In contrast, higher

robust accuracy is achieved with middle sized ε-ball and some semantics preser-

vation. Overall, this conforms with our intuition that although some degree of

invariances are essential to achieve robustness, too much invariance (or unin-

tended bias) caused by non-semantics-preserving data hinders adversarial train-

ing and that can be mitigated with semantics-preserving adversarial training.

We confirm that semantics-preserving adversarial training with proper choice

of α helps to increase robustness of the model even with large perturbation lim-
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its. The optimal amount of semantics to be preserved which is controlled by α

is dependent on the radius of the ε-ball since larger perturbation limit allows

for more semantic changes. When α is too big compared to ε, SPAT makes

adversarial data too close to original data so that it does not provide enough

invariances and the model becomes less robust. SPAT could serve as a guide to

finding the appropriate size of ε-ball.
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Chapter 7

Conclusion & Future Work

In this paper, motivated by recently discovered vulnerability of adversarially

trained DNNs, we investigate the effect of semantics of adversarial data on

adversarial robustness. We show that adversarial data often change original

semantics and such semantic changes are bigger in larger ε-balls.

To mitigate such semantic changes of adversarial data for adversarial train-

ing, we propose a PGD-LS and a semantics-preserving adversarial training

(SPAT) algorithm. Our empirical analysis show that PGD-LS preserve more

semantics than other PGD-based attacks. Experiment results show that SPAT

with proper choice of α which is dependent on the perturbation limit improves

robustness. We conclude that not only insufficient invariance but also too much

invariance (= semantics-changing adversarial data) impairs robustness.

Efficiently finding the optimal combination of ε and α remains uninvesti-

gated. Also, there could be other heuristic techniques to preserve semantics of

adversarial data. We developed our method from intuition that perturbations

on the pixels that are shared among all classes would preserve more semantics

and showed its effectivness empircally but theoretical analysis is rather weak.

We leave them as future works.
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Fundamentally, learning the intention and defining the semantics without

human supervision would be the goal. Also, accounting for the amount of

semantics-change of data could be a future research direction.
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초 록

적대적 학습은 적대적 예제를 학습 데이터에 포함시킴으로써 심층 신경망의 적대

적 강건성을 개선하는 방어 방법이다. 이 논문에서는 적대적 예제들이 원본 데이

터와는 때때로 다른 의미를 가지며, 모델에 의도하지 않은 편향을 집어 넣는다는

기존에는 간과되어왔던 적대적 학습의 문제를 밝힌다. 우리는 이러한 의미를 보존

하지 않는, 그리고 결과적으로 애매모호한 적대적 데이터가 목표 모델의 강건성을

해친다고 가설을 세웠다. 우리는 이러한 적대적 예제들의 의도하지 않은 의미적

변화를완화하기위해,학습단계에서적대적예제들을생성할때모든클래스들에

게서 공유되는 픽셀에 교란하도록 권장하는, 의미 보존 적대적 학습을 제안한다.

실험 결과는 의미 보존 적대적 학습이 적대적 강건성을 개선하며, CIFAR-10과

CIFAR-100과 STL-10에서 최고의 성능을 달성함을 보인다.

주요어: 적대적 학습, 적대적 강건성, 이미지 분류, 데이터 증대

학번: 2019-23759
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