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Abstract

The rapid evolution of deep neural networks is demanding deep learning (DL)

frameworks not only to satisfy the requirement of quickly executing large com-

putations, but also to support straightforward programming models for quickly

implementing and experimenting with complex network structures. However,

existing frameworks fail to excel in both departments simultaneously, leading

to diverged e↵orts for optimizing performance and improving usability.

This thesis presents systems to unify two existing paradigms in current deep

learning frameworks, symbolic and imperative, to achieve the performance and

programmability at the same time. First we present Janus, a system that com-

bines the advantages from both sides by transparently converting an imperative

DL program written in Python, the de-facto scripting language for DL, into an

e�ciently executable symbolic dataflow graph. Janus can convert various dy-

namic features of Python, including dynamic control flow, dynamic types, and

impure functions, into elements of a symbolic dataflow graph.

Next, we propose Terra, an imperative-symbolic co-execution framework for

imperative DL programs. As the usability of deep learning (DL) framework is

getting more important, the imperative programming model has become an

essential part of recent DL frameworks. However, optimizing individual opera-

tions in imperative programs has limited opportunities compared to optimizing

them as a group in a symbolic graph format. Still, existing approaches that con-

vert imperative DL programs into optimized symbolic graphs cannot provide

a general solution due to their limited program coverage. Terra decouples the
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actual computation of DL operations from imperative programs and converts

the DL operations into an optimized graph. Then the optimized graph and the

skeleton imperative program are executed at the same time in a complementary

manner to each other, so that we can achieve high performance of optimized

graph execution while supporting the whole semantics of the original imperative

program.

Among various DL models, we additionally delve into recursive neural net-

works (TreeNNs), which are important yet highly challenging to be represented

as DL graphs. We introduce new DL abstractions, SubGraph and InvokeOp,

which naturally capture any tree- or graph-like structure of the input data as

DL graph elements. Then, we present our underlying system that supports the

automatic di↵erentiation of the abstractions and e�ciently executes TreeNNs

by running InvokeOps in parallel.

We implemented a system using the proposed Janus architecture, which ad-

ditionally exploits recursive DL abstractions. Our evaluation show that Janus

can achieve fast DL training by exploiting the techniques imposed by sym-

bolic graph-based DL frameworks, while maintaining the simple and flexible

programmability of imperative DL frameworks at the same time.
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Student Number: 2017-37662
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Chapter 1

Introduction

1.1 Motivation

In recent years, deep neural networks have been widely used in various appli-

cation domains such as computer vision, speech, and natural language process-

ing for their powerful capabilities of extracting abstract features from data.

Scientists have created deep learning (DL) frameworks – TensorFlow [8], Py-

Torch [70], Ca↵e2 [27], MXNet [17], and many more [98, 94, 68, 84, 66, 30, 86, 12]

– to improve the performance of deep neural networks in various jobs and pro-

mote the use of deep neural networks in both production and research.

Such DL frameworks can be classified into two distinct families depending

on their execution models. One family comprises frameworks that base their

execution on symbolic graphs constructed from DL programs. The other family

consists of frameworks that directly execute DL programs in an imperative

manner.
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1.2 Challenges

The di↵erent characteristics of DL frameworks suggest that we cannot achieve

high performance and good usability at the same time. To reach high perfor-

mance, we must sacrifice framework usability to a certain extent, and vice versa.

Otherwise, users are forced to resort to an awkward approach of learning how

to use several frameworks and switching between them according to the current

task in hand.

In this thesis, we propose architectures to transparently convert impera-

tive Python DL programs into symbolic dataflow graphs. By not altering the

user-facing interface for building neural networks, we maintain the flexible pro-

grammability of frameworks with imperative execution models. At the same

time, behind the scenes, we execute the symbolic graph versions of the impera-

tive programs to enjoy the performance optimizations done by symbolic graph

execution models.

However, this approach introduces a technical challenge of capturing the

dynamic semantics of an imperative Python program in a symbolic dataflow

graph. The dynamic aspects of Python, including dynamic control flow, dy-

namic typing, and impure functions, are di�cult to embedded in a symbolic

graph correctly while providing the performance of symbolic graph execution

frameworks.

1.3 Contribuiton

To this end, we first present Janus, a DL framework that achieves the best

of both worlds by receiving an imperative DL program as input and creating

symbolic graphs of the program accordingly with speculative program context

assumptions. Janus makes environment assumptions on the program context
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(e.g., constant variables and branches) based on past iterations to simplify the

dynamic nature of the program and transform the program into a symbolic

graph. These assumptions are speculative, because the context may change dur-

ing execution; an incorrect assumption results in an invalidation of a symbolic

graph, in which case Janus falls back to imperative execution to guarantee cor-

rectness. For design (Section 3.4.4) and implementation (Section 3.4.4) reasons,

Janus converts only the subset of Python programs into the e�cient symbolic

graphs, but the rest of them still can be executed imperatively, ensuring the

full Python coverage.

We also propose a new imperative-symbolic co-execution architecture to

overcome the limitation of Janus. Existing approaches that convert imperative

DL programs into optimized symbolic graphs, including Janus, cannot provide

a general solution due to their limited program coverage. Terra decouples the

actual computation of DL operations from imperative programs and converts

the DL operations into an optimized graph. Then the optimized graph and the

skeleton imperative program are executed at the same time in a complementary

manner to each other, so that we can achieve high performance of optimized

graph execution while supporting the whole semantics of the original imperative

program.

This thesis also presents new DL abstractions for the special type of input

imperative programs, where the programs include recursive function calls. We

propose SubGraph and InvokeOp in DL graph context, which corresponds to

a function and a function call expression, respectively, in general-purpose pro-

gramming languages. Our abstractions enables converting recursive functions

in imperative programs into DL symbolic graph elements, and also enables

e�cient execution compared to the original imperative program by running

multiple InvokeOps in parallel.
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1.4 Organization

The rest of this thesis is organized as follows. Chapter 2 describes the program-

ming and execution models of existing deep learning frameworks. In Chapter 3,

we present Janus, which introduced speculative graph generation and optimiza-

tion technique to unify imperative and symbolic graph execution. Chapter 4

proposes Terra, an imperative-symbolic co-execution framework that enables

to widen the Python coverage of previous approaches including Janus. Chap-

ter 5 covers the special case where the input imperative programs given to the

systems include the recursive function. We conclude in Chapter 6 and discuss

the future work.
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Chapter 2

Background

2.1 Symbolic Graph Definition and Execution

Frameworks such as TensorFlow [8], Ca↵e2 [27], and MXNet [17] formulate

neural networks as symbolic dataflow graphs. Graph vertices denote the states

and operations of a neural network, while graph edges indicate the flow of data

between vertices. Operations in the graph are executed as their dependencies are

solved, similar to how most dataflow systems process dataflow graphs [22, 40].

The graph representation allows the framework to identify which operations

can be run in parallel, and apply various compiler optimization techniques such

as common subexpression elimination or constant folding to generate optimized

versions of graphs. Moreover, it is easy to process dataflow graphs on accelerator

devices or deploy graphs across multiple machines by assigning an operation to

the appropriate device or machine [60].

However, the separation of building a symbolic graph and executing it com-

plicates user experience, because users are not actually running any numerical
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computations when defining neural networks through the framework interface.

Rather, they are constructing graphs that will be executed later through sepa-

rate functions.

2.2 Imperative Graph Definition and Execution

In contrast, frameworks including PyTorch [70], TensorFlow Eager [84], and

MXNet Imperative [64] have adopted the execution model of running opera-

tions imperatively, without going through a separate graph construction phase.

Stemming from popular Python libraries for scientific, numerical computation

such as NumPy [97] and Scikit-learn [15], this imperative approach is useful

for rapidly experimenting and working with new neural network models, par-

ticularly those with complex structures. The native control flow statements of

Python can be exploited to build models of interest. Unfortunately, skipping

the formation of a dataflow graph means that such frameworks lose the chance

to apply the many optimizations that were possible in the symbolic graph exe-

cution model, leading to significant performance di↵erences for certain models.

2.3 Execution models of Imperative Programs

Although the symbolic graph programming model achieves higher performance

than the imperative programming model, we notice that the shift from the

former to the latter is a major trend to fulfill requirements of deep learning

researchers. The imperative programming model is easy to use and debug and

suits well for rapid development and experimentations of various neural net-

works. They provide the imperative programming model but di↵er from each

other in terms of their execution model and flexibility in programming.
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2.3.1 Python-oriented approaches

Python-oriented approaches treat a DL program entirely as a Python program.

TensorFlow Eager [84] and PyTorch (synchronous) [70] follow synchronous

Python-oriented approaches. In these approaches, DL operations are executed

one by one under the control of the Python interpreter.When the Python in-

terpreter encounters a Python statement that declares a DL operation, the op-

eration is immediately executed as a blocking call. This approach allows users

to exploit the imperative programming model of Python safely. DL models are

Python programs, and the features developed for general-purpose programming

in Python can be reused without limitations.

PyTorch (asynchronous) [70] and DyNet [68] are similar in the sense that

they make the Python interpreter control the execution of DL operations, but

they have additional optimizations to achieve higher performance. In these

approaches, the Python interpreter interprets each Python statement as syn-

chronous approaches do, but the actual execution of the operation is a non-

blocking call. The operation either runs asynchronously with the interpreter [70]

or gets delayed to be executed together with other operations [68]. The asyn-

chronous option is useful for hiding the Python interpreter overhead to some

degree, while delayed execution provides opportunities for optimizing the par-

tial lineage of the operations.

Although the Python-oriented approaches have been quite successful at

gaining performance, it is restricted to apply additional optimizations to achieve

higher performance. Most graph-level optimization techniques (e.g., operation

fusion [69, 44, 89, 18, 104], device placement [58, 59, 104], layout optimiza-

tion [55, 44], memory optimization [42, 37, 9]) assume that the whole lineage

(or at least a substantial portion) of computation is visible at the time of opti-
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mization, which is infeasible in the Python-oriented approaches.Moreover, since

the Python-oriented approaches do not construct symbolic graphs that can be

optimized once and used repeatedly, any applicable optimizations must take

place every training step, incurring overheads.

2.3.2 Graph-oriented approaches

Recent works present approaches to convert whole imperative programs into

symbolic graphs transparently if they can [5, 30, 62]. The symbolic graphs are

further optimized and are executed on a graph executor, a dedicated runtime

specialized for symbolic graphs.

We group these approaches according to how they convert imperative pro-

grams into symbolic graphs. TF function [88], PyTorch JIT trace [4], and

MXNet Gluon [66] take the tracing (record and replay) approach. At initializa-

tion time, they construct a symbolic graph with respect to the given inputs by

saving the trace of DL operations. The extracted graph is cached and reused

for further execution. However, since the tracing approach uses a fixed trace

obtained by running the program only once, they cannot deal with dynamic

features of the program. When the program takes a di↵erent control flow branch

in the next training step, this approach silently performs the same computation

as the previous step, which is incorrect.

TorchScript [5] guarantees correctness by defining its own subset of the

Python language and statically compiles a program into a TorchScript graph

in PyTorch. If the program contains any syntax that cannot be translated,

TorchScript fails to generate a symbolic graph. Autograph [62] operates as an

extension of TF function [88] to alleviate the tracing approach’s correctness

problem. Autograph first compiles Python features (mostly control flow state-

ments) into TensorFlow operations, then TF function saves the trace of DL
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operations of the transformed program. However, since Autograph also adopts

static compilation, it supports only a subset of Python features.

Since Autograph and TorchScript do not support all Python features, they

provide the o�cial language references [2, 6] that users should be familiar with

beforehand. However, such reference documents are complicated for users to

understand. For example, the Autograph document spans roughly ten pages

and divides dynamic features that Autograph does not support into four cat-

egories and 11 subcategories. TorchScript provides a language specification [7]

similar to Autograph. It enumerates all 139 Python features from the o�cial

Python language reference [3] and shows whether TorchScript supports them

or not. Among the 139 features, TorchScript does not support 43 features and

it partially supports 22 features.
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Chapter 3

Speculative Graph Generation

and Execution

3.1 Motivation

3.1.1 Challenges in Graph Generation

Converting an imperative program written in Python into a DL dataflow graph

brings on many challenges, because dataflow graphs consist of a restrictive set of

operations, lacking the dynamic semantics of the programming language. More

specifically, various characteristics of a Python program, such as the execution

count and execution order of statements, the types of expressions, or the global

program execution state, can only be determined after the program is actually

executed. For the rest of this thesis, we will refer to these characteristics as the

dynamic features of Python. In contrast, DL dataflow graphs are expected to be

defined before the computation starts, to apply aggressive graph optimizations

and e�ciently schedule the graph operations by viewing the entire graph. In

this sense, DL dataflow graphs are usually considered to be static [56, 68, 70].
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Category
Imp.

pgm

Sym.

exec

Conversion
Framework(s)

Corr. Opt.

Symbolic ⇥ � – – TensorFlow (TF), Caffe2, MXNet

Imperative � ⇥ – – PyTorch (PTH), TF Eager, DyNet

One-shot converters

Record&Replay � � ⇥ � TF defun, PTH JIT trace, Gluon

Static compiler � � 4 4 TF AutoGraph, PTH JIT script

Non-Python � � � 4 Swift for TensorFlow

Speculative � � � � JANUS

Table 3.1: Comparison of DL frameworks with respect to correctly supported

features for converting imperative programs into symbolic graphs (”Correct-

ness”) and the ability to optimize the generated graphs with the information

given only at program runtime (”Optimization w/ runtime info”). Optimiza-

tions can be incorrect in some frameworks (”�(unsafe)”), not preserving the

original semantics of Python. The host language is also specified.
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1 class RNNModel(object):

2 def call (self, sequence):

3 state = self.state

4 outputs = []

5 for item in sequence:

6 state = rnn cell(state, item)

7 outputs += [state]

8 self.state = state

9 return compute loss(outputs)

10

11 for sequence in sequences:

12 optimize(lambda: model(sequence))

Figure 3.1: A Python program that implements training process of a recurrent

neural network (RNN) in an imperative manner. For each item in the sequence,

rnn_cell function is called to produce the next state required for the next

rnn_cell invocation. After finishing up processing the whole sequence, the

model holds the final state by replacing self.state attribute for processing

the next sequence.

The di↵erence in characteristics makes it di�cult to embed dynamic Python

features in static dataflow graphs.

Figure 4.1 depicts a DL program written in Python, of which semantics

are di�cult to be captured in a dataflow graph correctly due to the following

representative dynamic features of Python.

• Dynamic control flow (DCF) Conditional branches and iterative loop

constructs have di↵erent execution paths depending on intermediate values.
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Lines 5-7 of Figure 4.1 show an example of an iterative loop construct used in a

DL program. Such control flow statements are intensively used in Python and

must be correctly represented in the dataflow graph.

• Dynamic types (DT) Python is a dynamically-typed language, i.e., the

type of a Python expression can only be determined at program execution

time. The example program in Figure 4.1 does not have any type annotations

(e.g. int or float), which makes it di�cult to statically decide the type of

target dataflow graph operations. Furthermore, various non-numerical types

of Python, such as lists, dictionaries, and arbitrary class instances, are even

harder to be converted into elements of a dataflow graph, of which vertices

usually output numerical arrays.

• Impure1 functions (IF) Another useful feature for using Python is the

ease of accessing and mutating global states within functions. In Figure 4.1, the

function __call__ reads from and writes to an object attribute2 at Lines 3 and

8, to pass the final state of a sequence to the next sequence. Since the modified

global states can make the following function call behave di↵erently, such reads

and writes of global states must be handled correctly while generating dataflow

graphs.

Moreover, correctness is not the only issue when converting an imperative

program; achieving the high performance of state-of-the-art symbolic graph

execution DL frameworks is also a challenge on its own. State-of-the-art frame-

works require additional information on dynamic types and control flow in order

to optimize graph execution. However, a näıve, one-shot converter would be un-

able to extract this information from an imperative program before execution,

1A pure function is a function whose return value is determined only by its parameters,
and has no side e↵ects.

2”class members” in C++ terminology, except that the attributes are stored in dictionaries,
without fixed data layout.
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and thus is incapable of supplying frameworks with such hints. For instance, if

the input sequence at Line 2 in Figure 4.1 is expected to always have a fixed

length, then that information can be exploited to unroll the following loop at

Line 5 when generating the corresponding dataflow graph. It is unclear how a

näıve converter would do this without actually executing the program to check

the loop length.

3.1.2 Related Works

Previous works that try to translate a Python DL program into a dataflow

graph either fail to capture the important dynamic semantics of Python, or

run in slower performance due to the lack of su�cient information at graph

build time. Table 3.1 summarizes state-of-the-art DL frameworks alongside their

execution models and their status regarding the coverage and e�ciency of graph

conversion support.

Tracing-based graph generation approaches such as PyTorch’s JIT compiler

(torch.jit.trace) [70], MXNet Gluon [66], and the defun [88] functionality

of TensorFlow Eager [84] execute the imperative program once, and convert

the single execution trace directly into a dataflow graph. Though this approach

enables generating optimized symbolic graphs with su�cient information gath-

ered from a specific execution trace, it fails to capture dynamic semantics of

the Python interpreter correctly, leading to incorrect computation results for

dynamically changing execution paths, dynamic types of non-tensor or non-

input expressions, or impure functions of Python at runtime. Moreover, these

approaches currently do not give any feedback about incorrectly-converted con-

trol flows to users, making the problem even worse.

On the other hand, there exist other approaches that select a less-dynamic

host language and therefore succeed in capturing the wider semantics of source
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programs. JAX [30] limits the Python syntax and supports converting only

pure-and-statically-composed functions. S4TF [86] supports Swift, losing the

merit of supporting Python, the de-facto standard programming language for

DL programming, and introduces new programming models that most DL re-

searchers are unfamiliar with. Moreover, since the graph conversion occurs be-

fore actually executing the program, these approaches can miss the opportunity

to further optimize the graph with the information only obtainable during the

program execution. For example, always converting a Python loop into control

flow operations can be sub-optimal if the loop iteration count is known to be

fixed.

Concurrent works including AutoGraph-enabled TensorFlow defun func-

tionality [62] and the ”scripting” mode of PyTorch JIT (torch.jit.script) [70]

also have limitations. AutoGraph makes users to explicitly provide the neces-

sary information, or generates incorrect or sub-optimal graph in some cases, all

of which could be avoided if su�cient information existed. For example, users

must explicitly specify the types of Python lists, prohibiting the dynamic typed

or heterogeneous elements. For another example, for dynamic control flow state-

ments, the statements with non-tensor predicates are always unrolled, which is

error-prone, and the statements with tensor-typed predicates are always con-

verted to control flow operations, which can be sub-optimal. In the ”scripting”

mode of PyTorch JIT, users must use TorchScript, a subset of Python which

does not allow variables to have dynamic types. Further graph optimizations

based on the runtime information are also not possible.
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3.2 Proposed Solution: Speculative

Graph Generation and Execution

Existing optimizers and compilers for dynamic languages suggest a useful tech-

nique for performing such conversions from imperative programs to symbolic

dataflow graphs: speculative optimization. Managed language runtimes have

succeeded in exploiting the inherent static nature of dynamic programs which

rarely changes during the execution to convert them into static, low-level repre-

sentations while maintaining correctness. For example, JavaScript just-in-time

(JIT) compilers convert dynamic JavaScript programs into e�cient machine

code, and this conversion is done speculatively assuming that the program in-

herently maintains some statically fixed structures over repeated executions.

In case this assumption breaks, the program falls back to the interpreter and

attempts to compile the program again with di↵erent assumptions.

We propose to adopt this concept of speculative optimization when convert-

ing imperative DL programs into symbolic dataflow graphs. Converting various

dynamic features like dynamic control flow and impure functions correctly may

impose some inevitable overheads if we generate dataflow graphs in a conserva-

tive manner. To overcome this challenge, Janus makes assumptions about the

program’s behavior based on the runtime profiling information, and generates

a symbolic graph tailored for the assumptions. This speculatively constructed

dataflow graph can show much better performance compared to the conserva-

tive counterpart due to specializations. If the assumptions do not hold, Janus

builds a new dataflow graph based on di↵erent assumptions. Since a DL program

comprises a number of iterations of an optimization procedure, the speculative

approach is a good fit since the interpreter is likely to execute specific code

blocks of the program repeatedly.
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Unlike the JIT compilers of managed language runtimes, however, the goal

of Janus is not to optimize the host language execution itself. In fact, when

running imperative DL programs, the execution time of the language runtime

is usually much shorter compared to the execution time of the mathemati-

cal operations for DL, such as convolution or matrix multiplication. However,

since these mathematical operations are usually implemented in separate low-

level language like C++, existing JIT compilers of managed language runtimes

would execute them just as separated function invocations. Under such an ex-

ecution model, it is impossible to see the multiple mathematical operations

at once and apply compiler optimizations or execute them in parallel. On the

other hand, Janus understands the function invocations for such mathematical

operations, and converts them into appropriate target graph operations, which

can be optimized and be executed e�ciently by symbolic graph executors.

3.3 Janus System Design

In this section, we introduce Janus, a DL framework that receives an imperative

DL program and either executes it as is directly, or generates a symbolic graph

version of the program and executes the graph instead.

The input program for Janus is assumed to be written using the API and

the programming model of existing imperative DL frameworks like TensorFlow

Eager [84]. Given an input program, Janus extracts the main neural network

computation part, over which the automatic di↵erentiation is performed, and

starts the speculative graph generation and execution process. From the user’s

point of view, the whole graph conversion and execution process is done trans-

parently; in other words, the given DL program is automatically transformed

into a corresponding graph representation without any interactions.
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Figure 3.2: An illustration of the execution model of Janus, showing how a

DL program is processed by several components. Profiler observes imperative

program execution and collects information to make the realistic assumptions.

Speculative Graph Generator generates dataflow graphs from the program and

hands the optimized graphs over to Speculative Graph Executor. The Specula-

tive Graph Executor actually runs the generated graph and handles assumption

failures.

18



Figure 3.2 depicts the system components and the overall execution model

of Janus. The common case in which an e�cient dataflow graph is utilized

is depicted as solid lines in the figure, while the rare case where the graph

representation is not available is depicted as dotted lines.

3.3.1 Fast Path for Common Cases

Runtime profiling. Once Janus receives a DL program, the program is first

executed imperatively, while the Profiler gathers runtime information required

for making reasonable assumptions (Figure 3.2 (A)). Various information is

collected, including control flow decisions on conditional branches, loop itera-

tion counts for iterative loop constructs, variable type information, non-local

variables, object attributes, and so on.

Symbolic graph generation. After a su�cient amount of information has

been collected, the Speculative Graph Generator tries to convert the program

into a symbolic dataflow graph with the assumptions based on the runtime in-

formation (Figure 3.2 (B)). To avoid making any hasty generalizations, Janus

does not begin graph generation until the executor has profiled the program

for a certain amount of iterations.3 First, Janus traverses the abstract syntax

tree (AST) of the DL program and generates the corresponding graph elements

for each AST node, along with assertion operations that can validate the con-

text assumption at runtime. Since Janus targets DL programs, operations for

automatic di↵erentiation and model parameter updates are also automatically

inserted if necessary. Next, the generated graph is further optimized by the

post-processor, of which optimizations were not applicable to the original im-

perative DL program. Finally, the optimized graph and the assumption that

3We found that 3 iterations were enough to come up with a decent program context as-
sumption, for our experimental workloads.
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were used to generate the graph are saved into the graph cache.

Graph execution. If a graph representation with correct assumptions re-

garding the program context is available, the Speculative Graph Executor ex-

ecutes the symbolic graph (Figure 3.2 (D)). Note that the same graph can be

reused multiple times, given that the runtime context assumption holds for

future invocations.

3.3.2 Accurate Path for Rare Cases

Assumption failure. Handling the assumptions is important to guarantee

the correctness of the converted graph. If an assumption is proven to be wrong,

the associated graph cannot be executed for the current runtime as it may

produce incorrect results. Instead, Janus falls back to the imperative executor

(Figure 3.2 (E)) and resumes runtime profiling to make more relaxed assump-

tions for subsequent executions.

Assumptions that can be validated before actually executing the associated

graph, such as type assumptions on input arguments, are checked when retriev-

ing the graph from the graph cache (Figure 3.2 1 ). In the unfortunate case

where such an assumption is wrong, Janus regards this as a cache miss and

falls back to imperative execution.

On the other hand, for assumptions that can only be validated during graph

execution (Figure 3.2 2 ), it can be erroneous to simply abort the current ex-

ecution to fall back to the imperative executor, because the global state may

have been changed during the current execution. To solve this issue, Janus de-

fers state update operations until every assumption is validated (Section 3.4.2).

This way, even if an assumption turns out to be wrong during computation,

no state update operation has been triggered yet and thus no state has been
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mutated. Knowing this, the system can safely stop the current execution. In

other words, states are updated in an all-or-nothing manner.

In order to validate an assumption, a runtime assertion is encoded into

the symbolic graph as an operation called AssertOp. The AssertOp aborts the

graph execution if the given condition fails. It also reports which assumption has

been broken, and this information is used to give up further optimizations that

rely on the assumptions that repeatedly break. If the same assumption breaks

too frequently, Janus discards all symbolic dataflow graphs that were generated

based on the assumption from the graph cache, and does not optimize this part

of the program again.

Imperatively executed programs. With Turing-complete graph represen-

tations, any Python program can be represented as a symbolic graph, in theory.

However, the Speculative Graph Generator does not convert every single Python

feature into a symbolic graph operation (Figure 3.2 (C)). For example, to ensure

the all-or-nothing characteristic of state updates, programs that include invisi-

ble state mutations are not converted into symbolic graphs. Some complicated

Python features such as coroutines and generators are also not converted, since

they do not have any clear graph representations. Section 3.4.4 describes the

design choices and current limitations of the Speculative Graph Generator in

terms of Python coverage. In spite of such limitations of the Speculative Graph

Generator, however, it is worth noting that Janus users can still freely use the

all features of Python on the imperative executor.

3.4 Symbolic Graph Generation

In this section, we describe in detail how Janus converts an imperative DL pro-

gram into a symbolic dataflow graph. We start the section by showing the con-
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version process of a basic DL program free of dynamic features (Section 3.4.1).

Next, we explain how Janus converts dynamic features of Python, including dy-

namic control flow, dynamic types, and impure functions, into symbolic graph

operations (Section 3.4.2). Janus uses the runtime information to simplify the

dynamic program and treat it as a program of only static aspects, which is then

easily transformed into a static graph. Finally, we discuss the Python coverage

limitations of the Symbolic Graph Generator (Section 3.4.4). More thorough

discussion about the Python coverage of Janus is in Appendix ??.

For simplicity, we describe our design using various operations of Tensor-

Flow [8], a widely-used DL framework. However, our design is not necessarily

coupled with TensorFlow and can be applied to other DL frameworks.

3.4.1 Graph Generation Basics

Figure 3.3(a) is a simple, imperative Python program that calculates a linear

model, written as a pure function without any dynamic control flow or arbitrary

Python objects. We use this program as an example to show the basic graph

conversion process.

Input parameters (x and y) are converted into graph input objects that

require external inputs in order to execute the graph. In the case of TensorFlow,

this corresponds to PlaceholderOp4s. At runtime, they are filled with the

actual argument values. The return value of the return statement is marked

as the computation target of the graph, so that we can retrieve the value after

executing the graph.

Python literals such as 0.5, 1.5 and 2 are simply converted into operations

that output constant values – ConstantOp for TensorFlow. The conversion

4PlaceholderOps are unique operations that generate errors unless they are provided with
external inputs before graph execution. TensorFlow expects users to feed a dictionary {ph1:
v1, ph2: v2, ...} to a PlaceHolderOp.
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1 def loss fn(x, y):

2 y = 0.5 ⇤ x + 1.5
3 return (y � y) ⇤⇤ 2

(a) Source code of a DL program calculating a linear model

=

y_

*

+

1.5

0.5 x

Ret

**

y_ y

2-

Body

(b) AST of loss_fn

MultOp

AddOp

1.5

0.5
x

loss
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y

2SubOp

(c) Generated graph from loss_fn

Figure 3.3: The Python source code, AST, and symbolic graph of a simple
linear model that receives several external inputs. The static features of the
program are represented as nodes in the AST, which in turn are converted to
vertices of the symbolic graph.
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of mathematical operators is done by finding the corresponding mathematical

graph operations and replacing them one-to-one. For standard Python operators

such as + and **, Janus places the appropriate primitive calculation operations

in the graph, like AddOp and PowOp for TensorFlow.

An assignment to a Python local variable and a value retrieval from the

same variable is converted into a connection between two operations, just as in

Pydron [67]. Figures 3.3(b) and 3.3(c) illustrate how such a connection is made

for the variable y_ in Figure 3.3(a), along with the rest of the program.

3.4.2 Dynamic Features

In addition to the basic features, Janus converts the dynamic features of Python

into the elements of the symbolic DL graph as well to provide the performance

of dataflow graphs while maintaining the same programmability of impera-

tive DL frameworks. Moreover, Janus exploits the fact that the dynamism in

Python DL programs can often be simplified to static dataflow, treating a dy-

namic program as a program of only static aspects with appropriate program

context assumptions. Context assumptions are generated based on the profile

information Janus gathers at runtime.

Dynamic Control Flow

Basic translation rules. Among various dynamic control flow statements,

Janus focuses on conditional branches, loop constructs, and function calls, sim-

ilar to Pydron [67]. As shown in Pydron, these three constructs are enough to

express most complex dynamic control flows in Python. Furthermore, they can

all be expressed using special control flow graph operations proposed in recent

works [100, 43] as follows.

Python’s conditional statement, the if statement, can be obtained by com-
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bining switch and merge primitives. The switch and merge primitives, origi-

nating from classic dataflow architectures [23, 21, 11], act as demultiplexers

and multiplexers, respectively, selecting a single path to pass their inputs or

outputs. In TensorFlow, the SwitchOp and MergeOp [100] serve as symbolic

dataflow graph counterparts for these primitives, allowing Janus to plant con-

ditional branches in graphs.

The iterative statements of Python, while and for, are handled by using

the switch and merge primitives together with loop context primitives that

hold iteration frames. TensorFlow conveniently provides EnterOp, ExitOp, and

NextIterationOp [100] for creating iteration frames and passing values over

them.

Finally, for function calls, a separate graph is generated for the callee func-

tion, and a function invocation operation that points to the generated graph is

inserted in the position of the function calls. Recent work proposes a TensorFlow

implementation of this operation called InvokeOp [43], which can represent an

invocation of a recursive function with automatic di↵erentiation support.

Speculative graph generation: unrolling and inlining. If Janus detects

that only a single particular path is taken for a certain control flow statement

during profiling, Janus presumes that the control flow decision is actually fixed.

The system replaces the control flow operation with an assertion operation that

double-checks the assumption for this control flow decision, and proceeds with

graph generation as if the control flow statement were unrolled. This allows

Janus to remove control flow operation overheads and apply graph optimiza-

tions such as common subexpression elimination or constant folding in broader

portions of the graph. If the assertion operation fails, Janus falls back to im-

perative execution.
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To be more specific, for conditional branches, if the program takes only one

side of the branch during profiling, Janus generates that particular side of the

branch in the final graph without any switch or merge primitives and adds an

assertion operation that can detect a jump to the other side of the branch.

For iterative statements, if the number of iterations of a loop is discovered to

be fixed, Janus unrolls the loop with this fixed iteration count, and adds an

assertion operation to check that the number of iterations is indeed correct.

For function calls, if the callee is expected to be fixed for a function call at a

certain position, Janus inlines the callee function body inside the caller unless

that function call is identified as a recursive one. In addition, for callee functions

whose implementation is already known for Janus, e.g., the functions provided

by the framework such as matmul() or conv2d(), or Python built-in functions

like print() or len(), Janus adds the corresponding graph operations which

behave the same as the original callee functions, based on the prior knowledge

about their behaviors. Section 3.4.4 includes more details and limitations about

such function calls.

Dynamic Type

Basic translation rules. The types of all expressions within a Python pro-

gram must be known before Janus can convert the program into a symbolic

graph, because graph operations require operands to have fixed types. This is a

challenging task for Python programs because we cannot determine the type of

an arbitrary Python expression before actually executing the expression. For-

tunately, it is possible to infer the types of some expressions, given the types of

other expressions; for example, it is clear that the variable c in c = a + b is

an integer if a and b are integers.

As a basic rule, Janus converts numerical Python values such as scalars,
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list of numbers, and NumPy [97] arrays into corresponding tensors, and con-

verts non-numerical values, including arbitrary class instances, into integer-

typed scalar tensors which hold pointers to the corresponding Python values.

Next, Janus infers the types of other expressions that are derived from expres-

sions covered by the basic rule.

Speculative graph generation: specialization. Expressions whose types

cannot be inferred from other expressions require a di↵erent measure. For in-

stance, it is impossible to identify the types of input parameters for functions,

or Python object attribute accesses (obj.attr) without any external clues.

Similarly, inferring the return types of recursive function calls is also challeng-

ing due to the circular dependencies. To make proper assumptions about the

types of such expressions, Profiler observes the types of the expressions during

imperative executions. Given these context assumptions, Janus can finish in-

ferring the types of remaining expressions, and construct a specialized dataflow

graph accordingly.

In addition, Janus makes further assumptions about the expressions to ap-

ply more aggressive optimizations. For numerical expressions, we can try to

specialize the shape of tensors before constructing the graph. Furthermore, if

a Python expression always evaluates to the same value while profiling, Janus

converts it into a constant node in the dataflow graph. With statically deter-

mined shapes or values, the graph can be further optimized, or even be compiled

to the e�cient machine code [90].

Figure 3.4 shows an example hierarchy of shapes and values that a certain

tensor may have. After profiling the first few runs, Janus finds out that even

though the values of the tensor are di↵erent every time, they all have the same

shape, for example (4, 8), as in the figure. Janus exploits this information to
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Figure 3.4: Type, shape, and value specialization hierarchy for an example
tensor.

generate a dataflow graph with an assumption that the shape of this tensor

is (4, 8). When the assumption fails, Janus tries to relax the assumption. For

instance, in case the tensor has a shape (3, 8) for the next iteration to process a

di↵erent size of mini-batch, Janus modifies the assumption to suit both shapes

(4, 8) and (3, 8), resulting in another dataflow graph with a shape assumption

of (?, 8). The system does not have to repeat the graph generation process for

a possible future case in which the example tensor has yet another unpredicted

shape of (2, 8) or (6, 8).

Impure Functions

Näıve translation rules. It is common for a Python function to access global

variables to calculate return values and have side-e↵ects, mutating its enclosing

Python context during execution. Likewise, it is common for a Python DL

program to read from and write to global states such as global or nonlocal

variables and heap objects. Janus respects this characteristic and handles global

state accesses alongside symbolic graph execution.
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Figure 3.5: Symbolic dataflow graph generated graph from Figure 4.1 and the
global states.

A trivial solution is to use TensorFlow’s PyFuncOps, which can execute

arbitrary Python functions as graph operations. A function for reading and

updating a certain global state can be created and inserted in the appropriate

position within the graph. However, this trivial approach has clear limitations.

First, since only one Python function can be executed at a time due to the

global interpreter lock (GIL), the overall performance can be reduced when

multiple operations should be executed in parallel. It also complicates the fall-

back mechanism of Janus. If a global state has already been mutated before the

fallback occurs, instead of starting the imperative executor from the function

entrance at fallback, execution must start from the middle of the function to

be correct, by mapping the state update operation with corresponding Python

bytecode.

Optimized graph generation: deferred state update. To make things

simpler and also faster, Janus does not mutate global states in place on the fly.

Janus instead creates local copies of global states, and mutates only the local

copies during symbolic graph execution.
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Figure 3.5 shows the symbolic dataflow graph version of the program in Fig-

ure 4.1, which includes the object attribute expressions (self.state) that ac-

cess and mutate the global states. We add new graph operations PyGetAttrOp

and PySetAttrOp to represent Python attribute read and write. Each of them

receives an object pointer (0xb84c) and a name of the attribute ("state") as

inputs, and behaves as follows: 1 The PyGetAttrOp can access the Python

heap to read the state unless a corresponding local copy exists. 2 When the

PySetAttrOp wants to update the attribute, a new value is inserted to the

local copy instead of directly updating the Python heap. 3 Further read and

write operations are redirected to the local copies. Note that Janus inserts ap-

propriate dependencies between PyGetAttrOps and PySetAttrOps if necessary

to prevent any data hazards. 4 After the graph executor finishes this run, the

local copies are written back to the Python heap. Global or nonlocal variables

can also be regarded as the object attributes, where the global variables are the

attributes of the global object, and the nonlocal variables are the attributes of

the function’s closure objects. Subscript expressions (obj[subscr]) are sim-

ilarly implemented with equivalent custom operations, PyGetSubscrOp and

PySetSubscrOp.

By not mutating the Python heap directly, Janus can always bypass the

Python GIL to execute more read and write operations in parallel. In addition,

the fallback mechanism of Janus can be simplified thanks to the all-or-nothing

based state update mechanism. It is notable that as the input and output of

PyAttrOps are not mathematically related, the partial derivative of PyAttrOp

does not have to be calculated.
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Opcode Num Description Section Ref.

POP TOP, ROT TWO, ROT THREE, DUP TOP, DUP TOP TWO, NOP,

EXTENDED ARG
7

stack

manipulation

No conversion

is necessary

LOAD CONST 1 constant Section 3.4.1

UNARY INVERT, UNARY NEGATIVE, UNARY NOT, UNARY POSITIVE,
BINARY ADD, BINARY AND, BINARY FLOOR DIVIDE, BINARY LSHIFT,

BINARY MATRIX MULTIPLY, BINARY MODULO, BINARY MULTIPLY,

BINARY OR, BINARY POWER, BINARY RSHIFT, BINARY SUBTRACT,

BINARY TRUE DIVIDE, BINARY XOR, INPLACE ADD, INPLACE AND,

INPLACE FLOOR DIVIDE, INPLACE LSHIFT, INPLACE MATRIX MULTIPLY,

INPLACE MODULO, INPLACE MULTIPLY, INPLACE OR, INPLACE POWER,

INPLACE RSHIFT, INPLACE SUBTRACT, INPLACE TRUE DIVIDE,
INPLACE XOR, COMPARE OP

31
mathematical

operators
Section 3.4.1

LOAD FAST, STORE FAST, DELETE FAST, UNPACK SEQUENCE, UNPACK EX 5 local variables Section 3.4.1

JUMP ABSOLUTE, JUMP FORWARD, JUMP IF FALSE OR POP,

JUMP IF TRUE OR POP, POP JUMP IF FALSE, POP JUMP IF TRUE,
POP BLOCK, GET ITER, FOR ITER, BREAK LOOP, CONTINUE LOOP,

SETUP LOOP

12
dynamic

control flow
Section 3.4.2

CALL FUNCTION, CALL FUNCTION KW, CALL FUNCTION VAR,

CALL FUNCTION VAR KW, RETURN VALUE, MAKE FUNCTION
6 function call

Section 3.4.2,

Section 3.4.4

LOAD ATTR, STORE ATTR, DELETE ATTR 3
arbitrary

object

Section 3.4.2,

Section 3.4.2

BUILD LIST, BUILD LIST UNPACK, LIST APPEND, BUILD MAP,

BUILD MAP UNPACK, BUILD MAP UNPACK WITH CALL, MAP ADD,

BUILD SET, BUILD SET UNPACK, SET ADD, BUILD SLICE, BUILD TUPLE,
BUILD TUPLE UNPACK, BINARY SUBSCR, STORE SUBSCR, DELETE SUBSCR

16 list, set, map
Section 3.4.2,

Section 3.4.2

LOAD GLOBAL, LOAD DEREF, LOAD NAME, STORE GLOBAL,
STORE DEREF, STORE NAME, DELETE GLOBAL, DELETE DEREF,
DELETE NAME, LOAD CLOSURE, MAKE CLOSURE

11
non-local

variables
Section 3.4.2

POP EXCEPT, SETUP EXCEPT, SETUP FINALLY, RAISE VARARGS,
END FINALLY

5
exception

handling
Section 3.4.3

SETUP WITH, WITH CLEANUP FINISH, WITH CLEANUP START 3 with Section 3.4.3

YIELD FROM, YIELD VALUE, GET YIELD FROM ITER 3 yield Section 3.4.4

IMPORT FROM, IMPORT NAME, IMPORT STAR 3 in-line import Section 3.4.4

LOAD BUILD CLASS, LOAD CLASSDEREF 2
in-line class

definition
Section 3.4.4

GET AITER, GET ANEXT, GET AWAITABLE, BEFORE ASYNC WITH,

SETUP ASYNC WITH
5 coroutine Section 3.4.4

Total 113

Table 3.2: The mapping of the full list of CPython opcode and the
corresponding sections.
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3.4.3 Python Syntax Coverage

Table 3.2 describes the entire set of opcode in the CPython [71] 3.5.2 inter-

preter, and maps them to the sections which describe the corresponding graph

generation rules. Python programs whose opcodes are mapped to Section 3.4.4

can only be executed on the imperative executor, and the others can be exe-

cuted on the graph executor. Python features that are not covered in previous

sections are briefly discussed in the rest of this section.

Exceptions. A Python raise statement can be represented as an Asser-

tOp in the dataflow graph. When the AssertOp for an exception aborts the

graph execution, the fallback occurs, and the actual, Python-style exception

can be safely raised on the imperative executor. Under the same principle, for

try-except-finally statements, only the try-finally part is converted into

the graph elements, and the except part is simply not converted, since the

exception will never be caught by the symbolic graph. By avoiding exception

handling inside the symbolic graph, we can protect users from having to debug

through symbolic graph execution traces, which are relatively more complicated

than imperative execution traces.

Context manager. Since exception handling always occurs on the impera-

tive executor as described in the previous paragraph, the with statement can

be converted into the simple function calls to __enter__ and __exit__ of the

corresponding context manager object.

3.4.4 Imperative-Only Features

Albeit being able to support a wide range of imperative DL programs, the

current Janus graph generator does not convert some particular features of
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Python into dataflow graph elements. Programs with such features are executed

only on the imperative executor.

Coverage Limitations from Design

Alignment with the design principles. To be aligned with the design of

Janus in previous sections, the Janus graph generator does not convert some

features of Python. For example, to keep the implementation of local copies

of global state simple (Section 3.4.2), Python objects with custom accessor

functions (e.g., __setattr__) are not supported by the Janus graph generator.

Also, a function should always return the same type of value, to infer the type

of call expressions (Section 3.4.2).

External function calls. Janus must understand the behavior of the exter-

nal functions, i.e., the framework-provided functions or foreign functions5, to

convert them into corresponding graph operations. The Janus graph generator

converts the external functions into the graph operations based on a separate

whitelist. Most of the framework-provided functions such as matmul or conv2d,

and many commonly-used Python built-in functions such as print or len are

included in this whitelist. We plan to cover more functions in the Python stan-

dard library.

Janus handles such external functions with extra caution to ensure correct-

ness. First, since the underlying assumption here is that the implementation

of external functions never changes, Janus prohibits the modification of the

functions included in the whitelist. Also, if an external function includes state

mutation (e.g., assign() in TensorFlow), the execution of the corresponding

graph operation is deferred until all the other assumptions are validated, under

5functions written in the languages other than Python
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the same principle about the deferred state update in Section 3.4.2.

Coverage Limitations from Implementation

Currently, Janus does not cover a few features from Python that do not have

clear graph representations. Such Python features include coroutines, genera-

tors, in-line class definitions and in-line import statements. We plan to support

these features as future work.

3.5 Implementation

We implemented Janus on top of TensorFlow [8] 1.8.0 and CPython [71] 3.5.2.

Janus exploits the existing TensorFlow graph executor and TensorFlow Eager

imperative executor as its components. In this section, we explain the modifica-

tions to existing systems, and then describe how Janus supports data-parallel

training.

Modifications to existing systems. TensorFlow has been modified for sev-

eral reasons. First, to transparently separate out the neural network computa-

tion from the rest of the Python program without extra user intervention, the

automatic di↵erentiation functionality of TensorFlow Eager is modified to trig-

ger Janus graph conversion. Second, to share the model parameters between

eager mode and graph mode, Janus slightly modifies the parameter storing

mechanism of TensorFlow Eager. Third, several custom operations had been

added, including the InvokeOp and PyAttrOp as described in earlier sections.

CPython has also been modified to have bytecode-level instrumentation

functionality for non-intrusive profiling. Without modifying the interpreter, in-

strumentation for the profiling should exist at the Python source-code level,

which would significantly a↵ect the performance and the debuggability of the
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imperative execution.

Data-parallelization on Janus. Using multiple machines equipped with

multiple GPUs is a common approach for accelerating DL jobs. We integrate

Janus with Horovod [75], a distributed training module for TensorFlow that

encapsulates the MPI collective communication [33] (e.g. AllReduce and All-

Gather) as an operation inside the symbolic graph. After converting an imper-

ative program into a dataflow graph, Janus inserts appropriate communication

operations to the graph in order to get the average of gradients generated by

multiple workers. Since the generated dataflow graph contains both commu-

nication and computation operations, we can parallelize their execution and

therefore achieve higher throughput.

3.6 Evaluation

We present experimental results that show how imperative DL programs can

be executed both correctly and e�ciently when converted into symbolic graphs

on Janus.

3.6.1 Experimental Setup

Frameworks. As baseline frameworks representing symbolic graph execution

frameworks and imperative execution frameworks respectively, we use Tensor-

Flow [8] and TensorFlow Eager [84]. We could run the same DL program on

Janus as on TensorFlow Eager, thanks to the transparent graph conversion fea-

ture of Janus. In addition, to demonstrate the correctness of graph conversion of

Janus, we also compare Janus with TensorFlow defun [88], which implements

a trace-based graph conversion mechanism. TensorFlow-based frameworks have

been chosen to avoid implementation-dependent performance di↵erences.
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Applications. We have evaluated Janus with 11 models in five major neural

network types, covering three convolutional neural networks (CNN ; LeNet [50],

ResNet50 [34], Inception-v3 [82]), two recurrent neural networks (RNN ; LSTM [101],

LM [46]), two recursive neural networks (TreeNN ; TreeRNN [80], Tree-LSTM [83]),

two deep reinforcement learning models (DRL; A3C [61], PPO [74]), and two

generative adversarial networks (GAN ; AN [31], pix2pix [41]) as shown in Ta-

ble 3.3. The datasets and the mini-batch sizes used for evaluation are also

specified in the table.

These models are implemented in an imperative programming style, using

a number of dynamic features in Python as shown in Table 3.3. First, large

CNN models such as ResNet50 and Inception-v3 have conditional statements

for handling batch normalization [39], which make them behave di↵erently un-

der particular conditions when training and evaluating the model. Next, RNNs

include Python for loops, and they also include global state mutation state-

ments to retain hidden states inside the models. Next, TreeNNs6 require all

three kinds of dynamic features. They include recursive function calls, and con-

ditional statements to separate recursion base cases and inductive cases. They

also include values with undecided type; the return type of a recursive function

is unknown until the function returns certain values. In addition, they include

the Python object access to fetch the information of the current subtree. For

DRL models7, Python for loops are used for handling an arbitrary length of the

states of an episode, and global state mutation statements are used for storing

the intermediate computation results to monitor the progress of the training.

GAN models also use global state mutation statements for the same reason. All

6The implementation of TreeNN models on TensorFlow follows the recursion-based imple-
mentation with InvokeOp [43], and Janus converts an imperative Python program into similar
recursion-based graphs.

7The DL framework only handles model training and policy evaluation, and the environ-
ment simulation is handled by an external library [14].
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CategoryModel DataSet BS DCFDT IF

CNN
LeNet MNIST [51] 50 ⇥ � ⇥
ResNet50 ImageNet [73] 64 � � ⇥
Inception-v3 ImageNet [73] 64 � � ⇥

RNN
LSTM PTB [101] 20 � � �
LM 1B [16] 256 � � �

TreeNN
TreeRNN SST [81] 25 � � �
TreeLSTM SST [81] 25 � � �

DRL
A3C CartPole [14] 20 � � �
PPO Pong [14] 256 ⇥ � �

GAN
AN MNIST [51] 128 ⇥ � �
pix2pix Facades [96] 1 ⇥ � �

Table 3.3: Categories, models, datasets, batch sizes (”BS”), and the dynamic
features of the applications used for evaluation.

models use Python function calls, including Python class methods of high-level

DL programming APIs such as Keras [19]. Training data instances fed into each

neural network have di↵erent shapes over di↵erent training iterations, when the

length of the dataset cannot be divided by the batch size.

Environments. A homogeneous GPU cluster of 6 machines, connected via

Mellanox ConnectX-4 cards with 100Gbps InfiniBand is used for evaluation.

Each machine is equipped with two 18-core Intel Xeon E5-2695 @ 2.10 GHz,

and 6 NVIDIA TITAN Xp GPU cards. Ubuntu 16.04, Horovod 0.12.1, CUDA

9.0, cuDNN 7, OpenMPI v3.0.0, and NCCL v2.1 are installed for each machine.

LeNet, LSTM, AN, and pix2pix models are evaluated on a single GPU,

since these models and the datasets are regarded to be too small to amortize

the communication cost of parallel execution. Similarly, TreeRNN, Tree- LSTM,

and A3C models are evaluated on CPUs on a single machine, since these mod-

els and datasets are regarded to be too small to amortize the communication

between CPU and GPU. The other models are evaluated using multiple GPUs.
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Figure 3.6: (a) The test error of ResNet50, (b) validation perplexity of LM,
(c) test accuracy of TreeLSTM, (d) episode reward of PPO, and (e) discrimina-
tor loss of AN measured on Janus, TensorFlow (Symbolic), TensorFlow Eager
(Imperative), and TensorFlow defun (Tracing) according to the elapsed time
in seconds. Each marker in (b) represents each training epoch, describing that
per-epoch convergence is slower on TensorFlow defun compared to other frame-
works.

ResNet50 and Inception-v3 models are evaluated using up to 36 GPUs, and LM

is evaluated on up to 12 GPUs. The network bandwidth made the throughput of

LM saturated on more than 2 machines with MPI collective communication, due

to the huge parameter size of LM (0.83 billion parameters). Therefore, model

convergence of LM is experimented with 6 GPUs. We evaluated the model con-

vergence of PPO using 4 GPUs on a single machine, since the number of parallel

actors used in the original paper was only 8.

3.6.2 Model Convergence

Figure 3.6 shows how the neural networks converge on various underlying frame-

works, with ResNet50 with the ImageNet dataset, LM with the 1B dataset,

TreeLSTM with the SST dataset, PPO with the Pong-v4 environment, and AN

with the Facades dataset on four frameworks. For all evaluated models, Janus,

TensorFlow, and TensorFlow Eager succeeded to make the neural networks

converge correctly as reported in literatures: 23.7% top-1 error for ResNet50

after 90 epochs, perplexity 47.5 for LM after 5 epochs, 82.0% binary accuracy

for Tree- LSTM after 4 epochs, 20.7 mean final score for PPO after 40M game
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frames, and 3.52 discriminator loss for AN after 30 epochs.8 Also, Janus could

make the model to converge up to 18.7 times faster than TensorFlow Eager,

while executing the identical imperative program. The performance di↵erence

between Janus and TensorFlow was within 4.0%.

On the other hand, trace-based TensorFlow defun failed to make the mod-

els to converge correctly. The ResNet50 model includes the conditional state-

ment to distinguish the behavior of the batch-normalization [39] layer on model

training and evaluation. If a user evaluates the initial accuracy before train-

ing the model by manipulating the model object attribute, TensorFlow defun

converts the first execution trace into graph operations, which silently leads to

an inaccurate result. Similarly, the LM model does not converge properly with

TensorFlow defun, since it failed to capture state passing across sequences,

due to its trace-based conversion mechanism. The TreeLSTM model could not

be converted into the symbolic graph at all with TensorFlow defun, since it

does not support recursive function call. We could not get the convergence

metrics for PPO model with TensorFlow defun, as it does not support global

state update statements. TensorFlow Eager converges slowly, since its training

throughput is much lower than TensorFlow and Janus. We next analyze the

training throughput of the frameworks, excluding TensorFlow defun, which

fails to make models converge correctly.

3.6.3 Training Throughput

Single-machine Throughput

Table 3.4 presents the training throughput of all models executed with Janus,

TensorFlow Eager, and TensorFlow on a single machine with a single GPU. As

shown in the table, Janus outperforms TensorFlow Eager (imperative execution)

8We measured the training loss with the o�cial implementation in Tensorflow Eager [85].
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Model
(A)
Imp.

(B)
Janus

(C)
Sym.

(B)
(A)

(B)
(C)–1

LeNet 7.94k 25.84k 26.82k 3.25x -3.6%
ResNet50 188.46 200.37 207.39 1.06x -3.4%
Inception-v3 108.36 119.32 124.33 1.10x -4.0%
LSTM 2.75k 22.06k 22.58k 8.03x -2.3%
LM 19.02k 40.18k 40.45k 2.11x -0.7%
TreeRNN 20.76 988.72 928.66 47.6x +6.5%
TreeLSTM 7.51 138.12 141.71 18.4x -2.5%
A3C 220.66 1132.9 1178.6 5.13x -3.9%
PPO 596.80 1301.0 1306.4 2.18x -0.4%
AN 4.34k 11.33k 11.56k 2.61x -2.1%
pix2pix 4.04 8.69 8.88 2.15x -2.1%

Table 3.4: Training throughput of all models evaluated on a single machine with
a single GPU in Janus, TensorFlow (Sym.), and TensorFlow Eager (Imp.). The
numbers represent processed images/s for CNN and GAN models, processed
words/s for RNN models, processed sentences/s for TreeNN models, and pro-
cessed frames/s for DRL models.

by up to 47.6 times, and shows throughput similar to TensorFlow (symbolic

graph execution) by up to 4.0% performance degradation. Janus even performs

slightly better (+6.5%) for TreeRNN, since there is no need to pre-process the

input sentences, which are the tree-structured Python objects.

Janus achieves bigger performance gains on RNNs, TreeNNs, DRLs, and

GANs than on CNNs, since those networks have many concurrently executable

operations. In addition, the performance gain of Janus on a single machine

is larger on models with fine-grained graph operations such as LeNet, LSTM,

TreeRNN, A3C, and AN, compared to the models with coarse-grained opera-

tions such as ResNet50, Inception-v3, LM, PPO, and pix2pix, since the gain

from bypassing the Python interpreter and applying compiler optimizations is

bigger when the computation time of each operation is short.

For large CNN models such as ResNet50 and Inception-v3, optimized GPU

kernel computation accounts for most of the computation time, which makes
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Figure 3.7: The contribution of optimizations to improve training through-
put. Optimizations are cumulative. IMP: Imperative, BASE: Janus without
following optimizations, +UNRL: control flow unrolling, +SPCN: type spe-
cialization, +PARL: graph executor with 72 threads in threadpool (Janus)

the performance di↵erence among Janus, TensorFlow, and TensorFlow Eager

relatively small.

Optimization e↵ect. Figure 3.7 analyzes the cause of the performance im-

provement of Janus in detail. Converting the imperative program into the

symbolic graph without any following optimizations (BASE) enabled up to

4.9x performance improvement compared to the imperative execution (IMP).

It removes the Python interpreter and framework code overhead, which has

the bigger e↵ect when each graph operation is relatively smaller. Control flow

unrolling (+UNRL) and type specialization (+SPCN) enable more aggres-
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Figure 3.8: Training throughput for the ResNet50, Inception-v3, LM, and PPO
models on Janus, TensorFlow (Symbolic), TensorFlow Eager (Imperative), us-
ing varying numbers of GPUs.

sive compiler optimizations. On RNNs, +UNRL improved the performance of

LSTM and LM by 2.09x and 1.04x, respectively. The control flow statements

in CNNs, TreeNNs and DRLs could not be unrolled due to their dynamicity.

+SPCN enabled some compiler optimizations and improved the throughput

up to 18.3% in small neural networks. Finally, executing multiple operations

in parallel (+PARL) improved the throughput up to 9.81x. Especially higher

gain could be achieved for TreeNNs, since there exist many operations that

could be executed in parallel in multiple independent tree nodes.

We have also measured the e↵ect of assumption validation, but the e↵ect

was negligible (in the error range), since the AssertOps can be executed with

the main neural network in parallel.

Scalability

Figure 3.8 shows the scalability of ResNet50, Inception-v3, LM, and PPO mod-

els on Janus, TensorFlow, and TensorFlow Eager on the cluster with 36 GPUs

(12 GPUs for LM, 6 GPUs for PPO). We measured the scale factor, which

is defined as Multi-GPU Throughput / (Single-GPU Throughput ⇥ Number of

GPUs). Janus achieves similar scalability (scale factor 0.77, 0.81, 0.18 each) as

TensorFlow (0.81, 0.80, 0.18 each), but TensorFlow Eager does not scale well

(0.24, 0.24, 0.14 each), due its inability to overlap computation and communi-
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cation.

The performance di↵erence between Janus and TensorFlow becomes smaller

when the synthetic dataset is used, since the input processing of TensorFlow

is highly optimized. The slight di↵erence in the scalability of ResNet50 comes

from the under-optimized input pipeline of TensorFlow Eager, which Janus also

uses. Optimizing the input processing pipeline for Janus will further reduce the

performance di↵erence between Janus and TensorFlow. We leave this optimiza-

tion as future work.

3.7 Summary

In this chapter, we introduced Janus, a system that achieves the performance

of symbolic DL frameworks while maintaining the programmability of impera-

tive DL frameworks. To achieve the performance of symbolic DL frameworks,

Janus converts imperative DL programs into static dataflow graphs by assuming

that DL programs inherently have the static nature. To preserve the dynamic

semantics of Python, Janus generates and executes the graph speculatively, ver-

ifying the correctness of such assumptions at runtime. Our experiments showed

that Janus can execute various deep neural networks e�ciently while retaining

programmability of imperative programming.
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Chapter 4

Imperative-Symbolic

Co-Execution

4.1 Motivation

4.1.1 Limitations of Existing Approaches

As the usability of deep learning (DL) framework is getting more important,

the imperative programming model has become an essential part of recent DL

frameworks. PyTorch [70], which provides an imperative and Pythonic pro-

gramming style as default, has been chosen by an increasing number of ma-

chine learning researchers in recent years [36]. And TensorFlow [8] has recently

changed its default programming model from symbolic to imperative. However,

optimizing individual operations in imperative programs has limited opportu-

nities compared to optimizing them as a group in a symbolic graph format.

For this reason, TensorFlow provides AutoGraph and PyTorch provides Torch-

Script for e�cient execution. Still, existing approaches that convert imperative

DL programs into optimized symbolic graphs cannot provide a general solution
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1 def forward(self, input ids , attention mask=None, token type ids=None,

2 position ids=None, head mask=None):

3 if attention mask is None:

4 attention mask = torch.ones like(input ids)

5 if token type ids is None:

6 token type ids = torch.zeros like(input ids)

7

8 extended attention mask = attention mask.unsqueeze(1).unsqueeze(2)

9 extended attention mask = extended attention mask.to(dtype=next(self.parameters()).dtype)

10 extended attention mask = (1.0� extended attention mask) ⇤ �10000.0
11

12 if head mask is not None:

13 if head mask.dim() == 1:

14 head mask = head mask.unsqueeze(0).unsqueeze(0).unsqueeze(�1).unsqueeze(�1)
15 head mask = head mask.expand(self.config.num hidden layers , �1, �1, �1,�1)
16 elif head mask.dim() == 2:

17 head mask = head mask.unsqueeze(1).unsqueeze(�1).unsqueeze(�1)
18 head mask = head mask.to(dtype=next(self.parameters()).dtype)

19 else:

20 head mask = [None] ⇤ self.config.num hidden layers
21

22 embedding output = self.embeddings(input ids , position ids=position ids ,

23 token type ids=token type ids)

24 encoder outputs = self.encoder(embedding output , extended attention mask ,

25 head mask=head mask)

26 sequence output = encoder outputs[0]

27 return (sequence output , self.pooler(sequence output),) + encoder outputs[1:]

Figure 4.1: A part of a PyTorch implementation of the BERT [24] model
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due to their limited program coverage.

4.1.2 Motivating Example

Listing 1 is a part of a PyTorch implementation [5] of the BERT [6] model, of

which behavior cannot be fully represented with DL operations. For example,

Python has “generator” functions which can be paused and resumed while being

executed. A built-in function “next()” at Lines 8, 17 fetches a value from an

iterator, by resuming a generator function until it is paused again to return

an intermediate value. Such behavior is almost impossible to be represented

with symbolic graphs. For another example, “None” value at Lines 1, 2, 4, and

19 cannot be correctly handled with type systems for existing symbolic DL

frameworks. In fact, this style of programming is not uncommon. We analyzed

14 popular DL models implemented in PyTorch1; 12 out of 14 models use various

features that do not have trivial graph representation, which make it di�cult to

use existing graph conversion frameworks like AutoGraph [62], TorchScript [1]

and JANUS. AutoGraph and TorchScript may fail with exceptions, and JANUS

runs in its imperative mode.

4.1.3 Proposing Solution

To address the above challenge, we propose Terra, an imperative-symbolic co-

execution framework for imperative DL programs. Unlike previous approaches,

we do not attempt to substitute a whole imperative program with a symbolic

graph. Instead, we propose a novel approach that performs imperative and

symbolic execution simultaneously to leverage the optimized symbolic graph

and also preserve the behavior of the original imperative program. Given an

1Four CNN models (GoogleNet, Shu✏eNet, DenseNet, ResNet) from the o�cial imple-
mentations, six RNN models (OpenNMT, BERT, GPT2, XLNET, XLM, RoBERTa) from a
popular repository, four GAN models (ACGAN, COGAN, Pix2Pix, CycleGAN).
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imperative program, Terra executes the program on the Python interpreter but

leaves out DL operations that compose the core computation logic for neural

networks, including loss functions and gradient computation algorithms. The

DL operations are converted into a symbolic graph, whose execution is delegated

to a separate symbolic graph executor. The generated graph runs concurrently

with the Python interpreter.

Although Terra does not require a symbolic graph representation that cor-

responds to a whole imperative program, it still needs a symbolic graph for

the DL operations. To this end, Terra first executes the imperative program

as-is for a few iterations and collects traces of executed DL operations. Terra

then merges the collected traces into a single symbolic graph, not relying on

static analysis of the source code as previous approaches did. In order to enable

seamless execution between the skeleton imperative program and the delegated

symbolic graph, Terra opens a communication channel between the Python

interpreter and symbolic graph executor. Whenever the Python interpreter re-

quires a computation result from a certain DL operation of the symbolic graph,

or vice versa, it waits until the requested data are prepared and continues to

execute as soon as the data transfer finishes.

4.2 Terra Overview

This section briefly describes how Terra adopts imperative-symbolic co-execution

to overcome the limitations of existing approaches to execute imperative DL

programs. Figure 4.2 shows the overall workflow of Terra with its components.

Given an imperative DL program, Graph Extractor executes the program imper-

atively and extracts the trace of executed DL operations. Since the trace only

covers a single program path out of various possible paths, Graph Extractor runs

the program multiple times to collect several traces and merges the traces into
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Figure 4.2: System overview

a single symbolic graph.

After the symbolic graph generation, Co-Execution Manager takes over the

role of controlling the program execution. Co-Execution Manager is composed

of Python Runner and Graph Runner. Python Runner executes the skeleton

imperative program in which the original program’s semantics is preserved ex-

cept for the DL operations. It omits the DL operations and leaves them to

the Graph Runner, which executes the symbolic graph generated by Graph Ex-

tractor concurrently with the skeleton imperative program. In case the Graph

Runner requires data from the Python Runner or vice versa, Co-Execution Man-

ager opens a communication channel between the two. Data from the skeleton

program is passed to the symbolic graph through the graph source node and

data from the graph to the skeleton program is passed through the graph sink

node. Finally, since the generated symbolic graph may not cover all possible
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program paths, Co-Execution Manager validates the graph by checking whether

the skeleton program follows one of the paths that the program has taken dur-

ing the trace extraction. If the program goes into a path that has never been

taken, Co-Execution Manager invalidates the symbolic graph and informs Graph

Extractor that it should collect more traces and re-generate the symbolic graph.

4.3 System Design

This section describes the design of Terra to e�ciently handle DL programs.

4.3.1 Graph Merging

Instead of generating and optimizing a new graph for every gradient descent

step, we build a general graph once that can be reused for the following steps.

To build such a general graph that is applicable for multiple gradient descent

steps that may take di↵erent control flow paths, we merge multiple execution

traces of the same program to form a single graph. We use information from

source code to correctly find out which part of the graph should be in a branch,

and which part should be in a loop, etc. The merged graph may include control

flow operations to cover dynamic control flow paths, but many control flows

will be able to be unrolled in the graph using speculative graph generation and

optimization techniques of JANUS.

4.3.2 Inter-runner Communication

It is su�cient to infer the shape and type of each DL operation’s output in

order to continue the execution of the skeleton program for most of the cases.

However, in case where the actual value of a DL operation’s output is required,

e.g. to print the intermediate values for debug purpose, or to handle the data-

dependent control flow, the Python runner may request the computation results
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from the graph runner. Likewise, the graph runner may request input values

from the Python runner. To handle such inter-runner communication, we ap-

pend additional graph source and sink nodes to the original graph, and use

proper synchronization between runners.

4.3.3 Graph Validation

Even if we try to generate a general graph to be reused for multiple steps, the

graph may become invalid due to the dynamic nature of Python. For example,

someone can even silently overwrite the behavior of the convolution operation.

To address this problem, we check if the sequence of DL operations of each

gradient descent step matches with the generated graph.

4.4 Implementation

Terra is implemented atop TensorFlow [8] 2.3.1 with 4K lines of code in C++

and 3K lines of code in Python. Although our implementation is based on

TensorFlow, our approach is applicable to other DL frameworks that support

both imperative and symbolic execution of DL models (e.g., PyTorch [70] and

MXNet [17]). The Graph Runner of Terra uses FuncGraph as a symbolic graph

representation and utilizes the execution model of ConcreteFunction, which

TF function [88] also adopts.

4.5 Evaluation

4.5.1 Experiment Setup

Frameworks. We use TensorFlow [8] v2.3.1 as a baseline framework, and

Terra is also built on TensorFlow v2.3.1. All evaluated DL programs are imple-

mented with the imperative API of TensorFlow, which has become the standard

interface since TensorFlow v2.0. Python-oriented approach of our experiment

50



executes the imperative programs as they are. For the Graph-oriented approach,

we adopt TensorFlow TF function [88] with AutoGraph [?], which is the state-

of-the-art Graph-oriented approach. We compile a single training step function

by AutoGraph, then trace the function by TF function. We refer to this sys-

tem setting as AutoGraph+ onward.

Environments. We conducted all the experiments on a single machine that

is equipped with two 18-core Intel Xeon Gold 6254 @ 3.10 GHz and an NVIDIA

TITAN Xp GPU. We used Ubuntu 18.04, CUDA 10.1, cuDNN 7.6 and Python

3.8.

Programs. For the experiments, we use imperative DL programs collected

from open-source GitHub repositories. We use following programs in the evalua-

tion: ResNet-50 [87], E�cientNet-B0 [87], DCGAN [87], CycleGAN [87], BERT-

Base [26], BERT-CLS [49], GCN [32], MelGAN [93], YOLO-v3 [103], Music-

Transformer [47], GPT [79], DropBlock [25], SlimmableNet [99], SDPoint [48],

To collect various programs that use the TensorFlow imperative programming

API, we search on GitHub with two keywords: “tf 2” and “tensorflow 2”. The

search results are sorted by “Most Stars”, and the ones with less than 100

stars are filtered out for the credibility of the implementation. Among them,

we excluded non-English-written, tutorial-purpose, and DL-irrelevant reposito-

ries. To make each program much more “imperative”, we replace some symbolic

APIs such as tf.cond and tf.while_loop by Python if-else and Python

while statement respectively. In addition to the programs collected by the me-

chanical process described above, we collect more programs from GitHub to

cover diverse types of DL programs. ResNet-50, E�cientNet-B0, DCGAN and

CycleGAN are programs that train well-recognized image-classification and gen-
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erative models2, while DropBlock, SlimmableNet, and SDPoint correspond to

programs that use dynamic training techniques3.

4.5.2 Performance
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Figure 4.3: The training speedup of Terra and AutoGraph+ relative to Ten-
sorFlow imperative execution. The baseline is the training throughput of the
imperative execution, which is presented as a dotted horizontal line.

Program
Stall time (%)

Graph Runner Python Runner

ResNet-50 1.94 23.54
DCGAN 0.95 2.25
E�cientNet-B0 2.67 9.65
CycleGAN 7.96 0.58
MelGAN 6.22 16.99

Table 4.1: The ratio of the Graph runner stall time and the Python Runner
stall time against the total execution time.

Figure 4.3 presents the training speedup of Terra and AutoGraph+ over

the imperative execution. Terra outperforms the imperative execution in every

2These programs are from the o�cial model garden [87] maintained by TensorFlow devel-
opers.

3Note that SlimmableNet and SDPoint are originally written in PyTorch. We conducted
unbiased conversion based on the one-to-one mapping between the framework APIs (e.g.
from PyTorch nn.Conv2d to TensorFlow keras.layers.Conv2d) without harming any of the
original Python semantics and the code structures.
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Execution order

Figure 4.4: Due to the long Python execution path of TensorFlow, the Graph
Runner stalls and waits for a label y to be fed from Python Runner. When the
Graph Runner gets the label, it can resume the execution and calculate a loss.

evaluated program by up to 2.44 times. While AutoGraph+ cannot generate

the symbolic graph for the GO-incompatible programs (“X” marked bars in

Figure 4.3), Terra successfully runs all the programs with the performance gain

(white bars). Moreover, Terra outperforms AutoGraph+ by up to 4.75 times

when the input signature is not properly provided.

Stall time and performance. Since Terra executes the optimized symbolic

graph, it can ideally obtain the same performance gain as AutoGraph+. In most

programs, Terra achieves comparable performance to AutoGraph+, yet some

of the programs like MelGAN and GCN show a relatively big performance

gap. The reason of the performance gap is the system stall time caused by

communication between the Python Runner and the Graph Runner.At the point

when no operation can be executed until a value is fed from the Python Runner,

the Graph Runner is stalled. For example, Figure 4.4 depicts the case that the

Graph Runner waits for variable y to be fed from the Python Runner to calculate

the loss.

To analyze the correlation between the system stall time and the perfor-

mance, we profile the stall time of the each Runner as Table 4.1 shows. When
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a program has a short Graph Runner stall time, Terra attains almost the same

throughput as AutoGraph+ (ResNet-50, E�cientNet-B0, and DCGAN) no

matter how long the Python Runner stall time is. In contrast, for the programs

that show the longer Graph Runner stall time, the performance gap between

Terra and AutoGraph+ goes bigger (CycleGAN, and MelGAN). Especially for

the MelGAN, we found that the concurrency was broken in certain parts of the

training step, because both Runners are alternately stalled.

4.6 Summary

We propose Terra, a novel approach to execute imperative Python DL pro-

grams. Terra performs imperative-symbolic co-execution, which addresses the

problem of covering Python program features in prior graph generation ap-

proaches. Terra carves out DL operations from an imperative DL program and

converts the DL operations into an optimized symbolic graph. It then executes

the graph and the skeleton imperative program concurrently in a complemen-

tary manner to improve performance while maintaining the programmability of

the imperative program. Our evaluation shows that Terra can optimize imper-

ative DL programs that are di�cult to optimize with the state-of-the-art graph

generation approach.
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Chapter 5

Graph Generation for Recursive

Networks

5.1 Introduction

Recursive neural networks have widely been used by researchers to handle ap-

plications with recursively or hierarchically structured data, such as natural

language processing [83, 80, 13] and scene parsing [77, 80, 76, 53].

In order to implement such models, embedded control flow deep learning

frameworks (in short, embedded control flow frameworks 1), such as Tensor-

Flow [8], Theano [94], Ca↵e2 [27], and MXNet [17], embed control flows within

dataflow graphs, i.e., the control flow is represented as a type of operation of

the dataflow graph, which can trigger conditional execution or iterative com-

putation. However, the programming model proposed by such frameworks fails

to e�ciently represent and execute neural networks with recursive structures.

The designs of these frameworks do not consider recursive models and instead

1This is the same as ”imperative deep learning frameworks” in Chapter 3. In this chapter,
however, we introduce new name for the same category of frameworks for readability.
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urge users to either write their models with iterative constructs [92] or com-

pletely unroll models without exploiting control flow at all [91, 65]. Meanwhile,

non-embedded control flow deep learning frameworks (in short, non-embedded

control flow frameworks 2) such as PyTorch [70] or DyNet [68] allow users to

define control flows from the client-side, creating new computation graphs for

all possible control flow paths of a model. This approach trades performance

for programmability, losing optimization opportunities because each graph is

usually executed only once.

An important example of recursive neural networks is the TreeLSTM [83]

model, a tree-shaped network with recursively definable nodes, demanding com-

plicated execution mechanisms. In existing frameworks, the TreeLSTM net-

work is handled by either statically unrolling the full network graph before-

hand [70, 68], or using a single LSTM cell to iteratively compute all interme-

diate nodes [8, 94]. For the former case, it is di�cult to process multiple data

instances together because the tree structure di↵ers for each instance. For the

latter case, the iterative execution is inherently sequential and thus is incapable

of computing multiple nodes in parallel.

In this chapter, we introduce recursive definitions into the programming

model of existing embedded control flow frameworks [8, 27, 17, 94], adding

first-class support for recursion. By allowing users to directly express recursive

definitions in application code with enhanced programmability, models with

recursive data structures such as trees or graphs can be written without requir-

ing users to use a separate complex API to express the control flow [56]. Also,

optimization opportunities can be exploited to boost performance, such as con-

currently executing child nodes in tree structures that have no dependencies

between each other.
2This is the same as ”symbolic deep learning frameworks” in Chapter 3.
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We make recursive definitions possible by introducing a special graph op-

eration, InvokeOp, that abstracts the execution of a SubGraph. Users can in-

corporate recursion in models by invoking a SubGraph within the InvokeOp

that abstracts the same SubGraph. The framework handles the execution of

an InvokeOp as the initiation of a new SubGraph containing a bundle of inner

operations, which are treated the same as the original running operations.

We implemented support for recursively defined dataflow graphs on Ten-

sorFlow [8], a widely used deep learning (DL) framework. To show the ex-

pressive power and the performance of recursive graphs, we implemented three

applications using our framework: sentiment analysis with the TreeRNN [80],

RNTN [81], and TreeLSTM [83] models. For every model, we succeeded in cap-

turing the recursive semantics of the computation graph, and achieved compet-

itive performance compared to other state-of-the-art deep learning frameworks

such as TensorFlow [8] and PyTorch [70].

The rest of the chapter is organized as follows. Section 5.2 explains the

limitations of existing embedded control flow frameworks regarding recursive

models, and Section 5.3 provides a high-level API for e�ciently representing

such recursive models. Section 5.4 describes the design aspects of our frame-

work, and Section 5.5 presents the implementation details. Section 5.6 presents

evaluation results on various applications. Section 5.7 covers related work and

Section 5.8 concludes.

5.2 Motivation

5.2.1 Embedded Control Flow Frameworks and Their Limita-

tions

Modern deep learning frameworks use directed acyclic graphs (DAGs) to repre-

sent mathematical computations of deep learning applications and the execution
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order of such computations. The vertices of graphs represent the mathematical

operations, while the edges represent the dependencies between two operations.

An edge from operation a to operation b implies that the output of a is fed into

b as the input value. As the execution order between any two operations in the

computation graph is statically determined, it is a non-trivial task to represent

dynamic control flow within computations, such as conditionally executing only

a part of the graph, or jumping to a nonadjacent operation.

Based on how to handle dynamic control flow, we can divide deep learning

frameworks into two categories: embedded control flow frameworks and non-

embedded control flow frameworks. Embedded control flow frameworks such

as TensorFlow [8] and Theano [94] include control flow concepts inside the

computation graph. They define special kinds of control flow operations to

embed the control flow within the graph. This way, a single computation graph

is able to express multiple control flow paths. Since these frameworks can build

a single graph and execute it repeatedly, aggressive performance optimization

can be done while hiding the optimization overhead.

On the other hand, non-embedded control flow frameworks including Py-

Torch [70], DyNet [68], and Chainer [95] do not represent the control flow inside

the computation graph. Instead, they create a new static computation graph for

every activated control flow. This approach enables fast prototyping and easy

development of various deep neural networks. However, this approach leaves lit-

tle room to optimize the performance of computation graph execution, because

each graph gets executed only once.

Embedded control flow frameworks. In embedded control flow frame-

works, graph vertices represent not only arithmetic operations (e.g., Add or

MatMul) and data transformations (e.g., Concat), but also data-dependent con-

trol flow mechanisms. Conditional expressions are often made available by many
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embedded control flow frameworks. A predicate is expected as the first input

argument, and two other operation groups as the true and false inputs. Based

on the predicate value, only one of the two operation groups are executed and

passed to the output operation. Another useful control flow construct in existing

deep learning frameworks is the iterative loop construct, namely the while loop

operation in TensorFlow and the Scan operator in Theano. This kind of API

enables adding a group of operations, referred to as a loop body, to be executed

multiple times iteratively. Conditional expressions are usually used with loop

constructs to denote the termination condition of the loop body.

By planting dynamic control flow inside the computation graph and thus

decoupling the client-side code execution from computation graph execution,

frameworks can exploit parallelism while executing jobs by handling mutually

independent operations in a concurrent manner, and can also exploit graph

optimization techniques for faster execution that would otherwise be impossible

for non-embedded control flow frameworks. This chapter will focus on embedded

control flow frameworks, building up on the provided optimizations to produce

maximum performance.

Limitations of embedded control flow frameworks. The computation

graphs of embedded control flow frameworks do not fully cover every possible

control flow construct, however. Designing recursive neural networks e�ciently

using embedded control flow of iterative loop constructs is di�cult. Not only is it

unclear how to parallelize independent operations with iterative loops, recursion

and iteration are fundamentally di↵erent and thus converting one into another

involves a nontrivial conversion process [54, 29, 28]. The following subsection

shows an example demonstrating the di�culties of designing recursive neural

networks with just loop constructs.
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5.2.2 Example: TreeLSTM

The long short-term memory [35] (LSTM) cell is a block of functions that is

well-known for its ability to “remember” past computations of a neural network,

and is often used for networks that process data of sequential characteristics

such as text data with sentence structures.

TreeLSTM [83] is a widely used recursive neural network based on LSTMs

that is known to perform well for applications with tree-shaped data instances

such as parse trees for natural language processing and hierarchical scene pars-

ing [80]. In an ordinary linear recursive neural network, LSTM cells are placed

sequentially regardless of the input data structure. On the other hand, in the

TreeLSTMmodel, LSTM cells are combined to form a tree, mimicking the shape

of the input data tree. Sentiment analysis is often used as an application of the

TreeLSTM. For example, with movie review sentences and the corresponding

ratings as training input data and labels, the TreeLSTM network can be trained

to predict the sentiment of each movie review sentence.

There are two approaches to implement this TreeLSTM network with cur-

rent deep learning frameworks, both having its own limitations.

The first approach is unrolling the whole tree structure to the computation

graph, so that LSTM cells are duplicated for each tree node. To train multiple

trees with this approach, however, a new graph must be created for all input

training instances. Not only does this result in an excessive amount of graph

objects and significant construction overhead, the e↵ect of compile-time graph

optimization is near zero as all graphs are used only once.

The second approach is using iterative control flow operations provided

by frameworks. Figure 5.1 shows pseudocode of an iterative implementation

of the TreeLSTM model. In this implementation, a single LSTM cell can be
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used multiple times for multiple input data instances. After the leaf nodes are

processed sequentially in Line 14, the internal nodes with their dependencies

resolved get processed in Line 15. In order for this approach to work, the input

tree must be preprocessed so that its nodes are assigned with topologically

sorted indices, i.e., executing the tree nodes in an iterative manner does not

violate the computational dependencies. Since the recursive nature of the tree

structure cannot be directly represented by iteration, it is di�cult to write and

understand this code.

The process of topologically sorting the tree nodes loses the parent-child

node relationships of the tree, and thus the iterative implementation can only

view the tree nodes as a linearly ordered list. A recursive formulation, on the

other hand, would be able to utilize the information on parent-child relation-

ships to concurrently execute nodes, and is inherently more suitable for repre-

senting recursive neural networks, preserving their recursive nature.

5.2.3 Recursion in Embedded Control Flow Frameworks

The drawbacks of the unrolling method and the iterative method suggest the

need for a more e↵ective and intuitive solution to implement TreeLSTMs, and

recursive neural networks in general. We propose that recursively defining and

executing recursive neural networks is a simple yet powerful approach.

Recursive execution of computation graphs has many similarities with re-

cursive invocation of functions in general programming languages. Recursive

function invocation in programming languages is supported by allowing a func-

tion to call itself inside the function body. This is usually more complicated

than executing non-recursive functions, since when parsing the source code of

a recursive function, the recursive function call must be processed before the

parsing of the function gets finished.
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1 states = array()

2

3 def compute leaf(idx):

4 curr state = lstm(embed(tree.leaves[idx]))

5 states.insert(idx, curr state)

6

7 def compute internal(idx):

8 left idx , right idx = tree.children[idx]

9 left state = states.get(left idx)

10 right state = states.get(right idx)

11 curr state = lstm(left state , right state)

12 states.insert(idx, curr state)

13

14 for loop(range(num leaves), compute leaf)

15 for loop(range(num internals), compute internal)

16

17 root state = states[root idx]

Figure 5.1: Iterative implementation of the TreeLSTM model in pseudocode.

Inspired by the concept of functions and function invocations, we propose to

design similar ideas in embedded control flow frameworks to support recursive

execution. First, a programming interface for defining a subset of the compu-

tation graph that will be executed recursively is required. Then, an invocation

operation inside the graph subset is also needed, to trigger the recursive execu-

tion of the graph subset. No modern embedded control flow framework supports

these functionalities and, at the same time, is able to train a recursive neural

network, to the best of our knowledge.

Our observations above suggest that an implementation of recursion, for

embedded control flow frameworks, must satisfy two conditions. First, recursion

must be expressible as part of a valid computation graph. Despite the fact

that recursion implies the usage of a call stack of arbitrary length, the graph

representation of recursion must be finite and executable by the framework.
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The graph representation of recursion corresponds to the recursive function

definition; the definition simply denotes what computation is involved and how

the recursion occurs, while not actually running the function. Moreover, this

representation must be usable together with other non-recursive parts of the

computation graph (Section 5.3.1).

Second, an operation included in a recursive computation graph must be

able to trigger the surrounding computation graph recursively. The operation

triggering the recursive graph execution corresponds to the function invoca-

tion, which can further unfold the computation until the recursion termination

condition is satisfied (Section 5.3.2).

5.3 Programming Model

In this section, we describe our modifications to the programming model of

existing embedded control flow frameworks, as well as how they are translated

into dataflow graph components.

5.3.1 Unit of Recursion: SubGraph

It is infeasible to implement the dynamism and recurrences of recursive com-

putations using the static components of dataflow graphs provided by existing

embedded control flow frameworks. In response to this shortcoming, we first

propose an abstraction, SubGraph, that represents basic recursive blocks and,

at the same time, can be used in conjunction with existing operations to create

a dataflow graph with recursive computations.

SubGraphs are created by grouping operations of a given computation graph

that will be executed recursively. SubGraphs represent fractions of a dataflow

graph. Executing a SubGraph refers to executing the operations that belong to

that SubGraph. The inputs and outputs of operations that are connected to
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outer operations (operations that reside outside of the current SubGraph) are

assigned as inputs and outputs of the SubGraph itself. During execution, the

inputs of a SubGraph are passed to the corresponding inner operations, while

operation outputs that must be shipped out to outer operations are passed

as SubGraph outputs. A SubGraph can be regarded as a function in general

programming languages.

Additionally, we allow SubGraphs to invoke other SubGraphs. A SubGraph

invocation within an outer SubGraph is connected to the other inner operations

to form an inner dataflow graph, just as the outer SubGraph is connected to

outer operations. A SubGraph invocation in a SubGraph simply implies that

there is yet another group of operations to be executed at that particular graph

position. Coming back to the function analogy, placing a SubGraph invocation

within a SubGraph is identical to calling a function within another function.

More importantly, a SubGraph may recursively invoke itself. This aspect

makes possible the definition of a recursive computation; we define a recursive

block as a SubGraph and insert a invocation to itself in the same SubGraph.

Figure 5.2 shows the recursive implementation of the TreeLSTM model,

with details omitted for brevity. After defining a SubGraph for the TreeLSTM

model in Line 2, we reuse the definition in Lines 10-11 to complete the recursive

tree structure of the model. Notice how a conditional expression is used (if in

Line 14) to separate the base case from the recursive case. Comparing with

Figure 5.1, this recursive version follows the definition of the TreeLSTM model

more clearly; the recursive nature of the tree structure is explicitly represented

in this implementation.
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1 # TreeLSTM: index(int32)�> hidden state(Tensor)

2 with SubGraph() as TreeLSTM:

3 idx = TreeLSTM.input(int32)

4

5 def compute leaf node():

6 return LSTM(embed(tree.leaves[idx]))

7

8 def compute internal node():

9 left idx , right idx = tree.children[idx]

10 left state = TreeLSTM(left idx)

11 right state = TreeLSTM(right idx)

12 return LSTM(left state , right state)

13

14 TreeLSTM.output(if(is leaf node(idx),

15 compute leaf node ,

16 compute internal node))

17

18 root state = TreeLSTM(root idx)

Figure 5.2: Recursive implementation of the TreeLSTM model with SubGraph

definitions. After declaring the start of a SubGraph in Line 2, we indicate the
inputs of the SubGraph in Line 3. The body of the SubGraph is defined in Lines
5-16, while recursive calls are made on Lines 10-11. Note that SubGraph outputs
must be given as in Lines 14-16. The completed SubGraph definition can now
be used in Line 18.

5.3.2 Recursion in Dataflow Graphs: InvokeOp

While SubGraphs provide a convenient way to define recursive computations,

the framework is still left with the task of actually executing the operations

gathered as SubGraphs. However, as SubGraph operations are expected to be

executed in a recursive fashion, an additional mechanism for “re-executing” the

operations of SubGraphs repeatedly (until some termination condition is met)

is required. To this end, we introduce a new operation named InvokeOp.

An InvokeOp is an operation that takes a set of tensors as input, runs an
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associated SubGraph (i.e., executes the inner operations of the SubGraph) with

the provided inputs, and returns the resulting tensors as output. InvokeOps

are execution objects instantiated from SubGraph invocations; as SubGraphs

are semantically close to function definitions, InvokeOps can be considered as

function calls to the functions specified by SubGraphs. As such, it is possible

for a single SubGraph to be associated with more than one InvokeOp.

Despite the special property of having an associated SubGraph, an InvokeOp

is fundamentally the same as other operations such as Add or MatMul, and is

generally treated as an ordinary operation. The di↵erence with other opera-

tions comes from the operation kernel implementation; instead of performing

a mathematical calculation, an InvokeOp abstracts the execution of an entire

SubGraph. This di↵erence also a↵ects a process called automatic di↵erentiation,

a core functionality provided by modern deep learning frameworks for training

models. Instead of calculating mathematical derivates of some numerical func-

tion like other operations, the framework must take into account the associated

SubGraph of an InvokeOp. We will discuss this further in Section 5.4.2.

5.3.3 TreeLSTM with SubGraphs & InvokeOps

Figure 5.3 portrays an example on how InvokeOps are used to represent the

TreeLSTM (Section 5.2.2) model with recursion. A completely unrolled depic-

tion of the model for a full binary tree is shown in Figures 5.3(a) and 5.3(b).

It is not hard to observe that the model can be expressed using recursion:

the embed operation and the LSTM cell at the leaves form the base case (Fig-

ure 5.3(a)), while the two-input LSTM cell at the intermediate notes corresponds

to the recursive case (Figure 5.3(b)).

Merging the base case and the recursive case into a SubGraph with a con-

ditional branch (if), we now have a concise representation of the TreeLSTM
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Figure 5.3: An illustration of how an unrolled computation graph of the TreeL-
STM model (a, b) can be transformed into a recursive graph with InvokeOps
(c). The base case, depicted in the boxes of (a), and the recursive case, indi-
cated by the boxes in (b), can be combined to succinctly describe the model
as a recursive SubGraph as shown in (c). InvokeOps have been added at the
appropriate places to mark the points where a recursive function call to the
SubGraph must occur.
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model, as shown in Figure 5.3(c). Note that the condensed SubGraph is able to

represent TreeLSTMs of arbitrary height or shape, and not just a single par-

ticular structure. InvokeOps are inserted at all inner recursive call points to

complete the computation graph.

5.4 System Design

In this section, we discuss various system design aspects for supporting the

recursive programming model of the previous section.

Our design complements existing embedded control flow frameworks with

additional APIs for declaring recursive graphs and core changes for executing

such recursive graphs. Models declared using the SubGraph API from Section 5.3

are transformed into a dataflow graph containing InvokeOps. In turn, the frame-

work core engine runs the resulting graph with the same mechanism used to

run non-recursive graphs, accessing additional graph and value cache structures

when dealing with InvokeOps. The design does not involve any implementation

details of a particular framework, and can be applied to any DL framework that

incorporates control flows in computation graphs.

5.4.1 Graph Execution

Background: Execution Model of Existing Frameworks

The execution model of embedded control flow frameworks can be character-

ized by three components: the client who builds and submits dataflow graphs

to the framework, the master which parses the given graphs and schedules the

execution of operations, and one or more workers that carry out the actual com-

putation of the operations. The master coordinates the execution of operations

on the workers, running operations in an order that respects the inter-operation

dependencies.
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Figure 5.4: The execution model of embedded control flow frameworks with
InvokeOps. (1) After the client initiates the job with a dataflow graph, (2) the
master decomposes the graph into operations and places them into either the
ready queue or the waiting line of the worker, depending on the number of un-
resolved inputs. (3) Operations are dequeued from the queue by idle execution
threads, while new operations are enqueued when input dependencies are re-
solved. (4) When an InvokeOp gets executed, its associated SubGraph is passed
to and processed by the master, similar to step (1). Only one worker is shown
for the sake of clarity.
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Steps (1)-(3) of Figure 5.4 displays an illustration of the execution model,

with only one worker shown for simplicity. When the master first analyzes the

input dataflow graph, operations that require no inputs are enqueued directly

into the ready queue of the worker, whereas operations that need at least one in-

put are put on standby. Next, execution threads of the worker’s execution thread

pool grab operations from the operation queue and perform the computation

for those operations in parallel. When an execution thread finishes running an

operation, the master checks the waiting operations that have a dependency on

the completed operation, and enqueues operations whose dependencies have all

been resolved to the ready queue. This process is repeated until all operations

have been processed.

Recursive Execution

The execution mechanism for executing a recursively defined dataflow graph

is no di↵erent from the mechanism for executing non-recursive graphs. This is

possible because the execution of an InvokeOp mimics the initiation of a new

dataflow graph, with the exception of reusing the same master scheduler as

well as the same worker ready queues, as illustrated in step (4) of Figure 5.4.

When an InvokeOp becomes executable and is dequeued by an execution thread,

the graph associated with the InvokeOp is processed by the master, similar to

how a graph submitted by the client is parsed by the master. Operations that

are immediately ready to be run are enqueued into the ready queue, behind

the existing operations. Likewise, operations that have at least one unresolved

input dependency are added to the waiting list, together with other previous

standby operations.

This design allows recursive dataflow graphs to be processed on existing

embedded control flow frameworks without drastic changes. Recursive graphs
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can enjoy graph optimizations supplied by such frameworks and achieve good

performance while providing intuitive, recursive APIs at the same time. In

fact, from the framework’s point of view, a recursive graph is the more general

representation, while non-recursive graphs are simply special cases which have

no recursive SubGraphs and InvokeOps.

It is also worth noting that performing priority scheduling of operations in-

stead of simple FIFO scheduling may possibly yield significant e↵ects on the ex-

ecution time of recursive computation graphs, depending on the inter-operation

dependencies of the given recursive model. For example, if the model contains

a SubGraph whose inner operation must be processed in order for many outer

operations to be enqueued into the ready queue, then a scheduling decision of

processing inner operations before others would lead to a shorter execution time

overall. Although this is an interesting problem, it is usually not an issue for

servers with many parallel computation threads to spare and thus we leave this

as future work.

Graph execution stack. When a function is invoked in programming lan-

guages, the language runtime maintains a call stack to record the call history

and relevant information. This enables the program to correctly return from the

callee function to the corresponding caller function, and also provides helpful

information to programmers such as backtrace information when an exception

occurs while executing the function. A similar process of keeping track of the

SubGraph invocation history is required for the recursive graph execution en-

gine. However, the caller-callee relationship of InvokeOps cannot be managed

with a linear stack, because an InvokeOp can branch out into multiple child

InvokeOps in parallel. Rather, the relationship is maintained as a tree, where

each InvokeOp holds a pointer to its parent InvokeOp (i.e., return location).
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5.4.2 Graph Backpropagation

Background: Automatic Di↵erentiation

Neural networks are normally trained via the backpropagation algorithm [72].

Backpropagation calculates the errors of all operation output values, by first

comparing the final outputs of a neural network with expected ground-truth

values3 (labels) to compute output errors, and then propagating the output er-

rors all the way back up to the input according to the chain rule. The calculated

errors – often referred to as gradients – are used to update model parameters

so that operation outputs are pushed towards the expected values.

Backpropagation of a simple linear network is shown in Figure 5.5(a). Start-

ing from operation op1, all forward operations op1, op2, and op3 are computed

in succession to produce values a, b, and c, respectively. The final output c is

checked with the expected value c* to produce the loss value E, as well as the

gradient of E with respect to c, denoted as dE/dc. Next, the other gradients are

generated one by one, this time through the backpropagation line of operations,

op3-grad, op2-grad, and op1-grad.

Note that in order to calculate a certain gradient, both the previous gradient

and the corresponding forward value are required. For instance, the gradient

dE/db is computed with the previous gradient dE/dc and the forward value b

(op3-grad). Likewise, dE/db and a are used to compute dE/da (op2-grad). This

results in a final dataflow graph where a forward operation shares its inputs with

its backpropagation equivalent (e.g. op2 and op2-grad both take a as input). As

a precaution to prevent values from being invalidated (released from memory)

before being consumed by all dependent operations, DL frameworks always keep

3Even for unsupervised learning and reinforcement learning tasks in which there is no
explicit ground-truth value, the backpropagation algorithm is still applicable if a well-defined
loss function exists.
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(a) A simple linear feedforward network is shown on the left, while
the backpropagation side of the same network is shown on the right.
All gradient operations receive previous gradient values from its gra-
dient predecessor as well as the original feedforward value from the
feedforward network.
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(b) An InvokeOp and its gradient operation for backpropagation are
shown on the left and right, respectively.

Figure 5.5: Backpropagation of dataflow graphs with and without InvokeOps.
Notice how (a) and (b) are structurally very similar, except for the enclosing
InvokeOps.
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all operation outputs as valid data until that particular iteration terminates.4

Automatic di↵erentiation. Deep learning frameworks relieve users from

the burden of manually inserting backpropagation operations, with the help of

a process called automatic di↵erentiation. In the case of embedded control flow

frameworks, after a user submits a feedforward neural network to the frame-

work, the framework automatically adds all operations required for computing

gradients to the given dataflow graph. Maintaining a catalogue of predefined

gradient operations, the framework backtracks along the feedforward path and

adds the corresponding gradient for each and every feedforward operation. The

resulting computation graph can then be processed by the framework for exe-

cution. As setting up the backpropagation path is usually much more tedious

than defining the forward path, the automatic di↵erentiation process is very

helpful for users and currently supported by all deep learning frameworks.

Recursive Backpropagation

Backpropagation of a recursive dataflow graph is similar to backpropagation of

a non-recursive dataflow graph. The only nontrivial issue is how to define and

calculate gradients for InvokeOps. As the feedforward output of an InvokeOp

is the execution output of its associated SubGraph, naturally the gradient of an

InvokeOp is also generated from the gradients of the associated SubGraph.

During automatic di↵erentiation, we inspect the SubGraphs associated with

InvokeOps and perform automatic di↵erentiation on them as well. For each

SubGraph, we collect the gradient operations that were inserted by automatic

di↵erentiation. At this point, it is possible to simply add the inserted gradient

operations to the backpropagation path of the computation graph. However,

4Technically, we could recompute the forward operation values during backpropagation
instead of retaining them to save memory. However, this incurs a significant increase in training
time and is generally not preferred.
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in case the SubGraph was used for recursion, the gradients for the inner recur-

sive computations would not be generated and thus backpropagation would be

returning incorrect results.

Instead, we wrap each set of gradient operations from SubGraphs with yet

another SubGraph. If a feedforward SubGraph contains a recursive invocation to

itself, then its corresponding backpropagation SubGraph will also hold a recur-

sive invocation, at the same position. Later, InvokeOps are inserted at SubGraph

invocation points for both the feedforward SubGraph and the backpropagation

SubGraph to complete the computation graph.

Figure 5.5(b) illustrates how a gradient operation of an InvokeOp is formed.

The associated SubGraph is shown in the inner side of the feedforward InvokeOp,

while the corresponding gradient operations of the SubGraph are shown inside

the backpropagation InvokeOp. Carrying over operation outputs from the feed-

forward phase to the backpropagation phase is done by connecting the outputs

and inputs of the relevant operations, same as in Section 5.4.2.

5.5 Implementation

We implemented our framework atop TensorFlow [8] 1.3.0. Framework changes,

including the kernel implementation of InvokeOp as well as internal data struc-

tures, were done in the C++ core, while client-side APIs for recursive definitions

are exposed in Python. Here, we describe several implementation issues of our

framework.

Forward declaration. In embedded control flow frameworks, all opera-

tions must have well-defined inputs and outputs before they are used (com-

parable to function signatures in programming languages). InvokeOps are not

exceptions; the framework does not allow the creation of a recursive InvokeOp

unless the operation definition for the recursive call is specified beforehand.
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This rule can be bypassed by using forward declarations for InvokeOps that are

recursively defined; when a SubGraph is defined, we first predeclare an empty

InvokeOp that has the same signature as the SubGraph, and later “register” the

SubGraph definition to the empty InvokeOp. Note that this procedure is auto-

matically done by the framework, and is not exposed to users. Gradients for

backpropagation are defined in a similar manner, with the operation declaration

coming before the actual definition.

Backpropagation cache implementation. As described in Section 5.4.2,

operation output values from the feedforward phase must be retained until

backpropagation and be fed into the corresponding gradient operations. For

non-recursive computation graphs, embedded control flow frameworks would

accomplish this simply by holding a feedforward value entry for each required

operation and later passing the values to the appropriate gradient operations.

Unfortunately, for recursive graphs, an operation within a SubGraph may be

called more than one time across multiple recursions. Multiple output values

generated during multiple executions must all be passed to the corresponding

gradient operation, without losing their topological position information.

We resolve this issue by maintaining a concurrent hash table for storing and

fetching operation output values of SubGraphs. Figure 5.6 describes the whole

procedure of passing multiple feedforward output values from InvokeOps. A

hash table is externally generated and managed per SubGraph, and a unique

hash entry key is used to distinguish table entries. During the feedforward phase,

we store all output values of InvokeOp instances that come from the SubGraph

in the table. An InvokeOp’s key is defined by combining the InvokeOp’s topo-

logical position within the SubGraph with the key of the parent InvokeOp,

guaranteeing uniqueness. By using a concurrent hash table, multiple instances

of the same operation in the graph can concurrently access and update the hash
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Figure 5.6: Concurrent hash table being used between multiple forward and
backward executions of the same operation (InvokeOp).

table.

Next, during backpropagation, we perform a hash table lookup for each

gradient operation of the InvokeOp instances and feed the stored value as input.

This enables feedforward output values to be retained and correctly retrieved

for backpropagation. While the concurrent insert operations may incur minor

overhead, the lookup operations are thread-safe and are negligible. Is it notable

that using a simple queue or stack to store activation values is inadequate, as

the order of enqueue and dequeue operations or push and pop operations is not

deterministic and thus output values may be directed to the wrong gradient

operation.

Outer reference. It is common for a recursive SubGraph to not refer to the

external input values explicitly, but rather implicitly. For instance, a static value

that is required for all levels of recursion of a SubGraph should not be included as

an input of the SubGraph, as the value does not change anyway. Nonetheless,

the TensorFlow framework regards a SubGraph and the outer graph as two
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separate graphs and is unable to understand the identities of such implicit

external values unless they are specified as actual operation inputs. Therefore,

when a SubGraph is created, we analyze the operations to check whether there

are any external inputs that have not already been specified as the SubGraph’s

inputs and add them to the input list.

Implementation on other frameworks. Recursively defined SubGraphs

and InvokeOps can be implemented on not only TensorFlow but any other

embedded control flow DL frameworks as well, with the computation graph and

the operations as its elements. A SubGraph can be provided as an abstraction

that is similar to the framework’s original graph structure but contains only

a subset of all operations to mark a recursion block. An InvokeOp can be

implemented as a new kind of user-defined operation type, which recursively

executes a SubGraph.

For instance, Ca↵e2 [27] uses a NetDef protocol bu↵er as its computation

graph, and allows feeding NetDefs as inputs to operators. By extending NetDefs

to recursively represent subgroups of operators, we can create a Ca↵e2 ver-

sion of InvokeOp that receives such subgroups as inputs and executes them.

Theano [94] provides the Scan operator which abstracts the execution of a loop

in a single operator. Although the Scan operator is usually used to express it-

erative control flow, the concept of maintaining a separate graph isolated from

the main computation graph fits well with SubGraphs and is a good starting

point for implementing recursive computations.

5.6 Evaluation

We evaluate our framework while focusing on the performance benefits of the

recursive nature of the framework, mostly made possible by exploitation of

parallelism in recursive neural networks.
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5.6.1 Experimental Setup

Applications. We implemented a variety of neural network models from the

recursive neural network family, namely the aforementioned TreeLSTM [83]

model as well as the TreeRNN [80] and the RNTN [81] model. All models were

trained and tested to perform sentiment analysis on the Large Movie Review [57]

dataset, where data instances are sentences in the form of binary parse trees.

For this dataset, we used a pre-trained network (for each model) to label all

nodes. For all models, we used the same hyperparameters as the ones suggested

in the original papers. We also considered smaller batch sizes to investigate the

performance trends of our framework without mixing in additional performance

gains obtainable from batching instances.

Frameworks. Along with our implementation of recursive dataflow graphs

(built on TensorFlow 1.3.0), we also implemented neural networks on other

frameworks, including TensorFlow [8] (TF 1.3.0) without recursive graphs,

which allows an iterative way of programming, and PyTorch [70] (PTH 0.3.1),

which only supports the static unrolling technique. Since native TensorFlow

does not support recursive definitions, we used TensorFlow’s control flow oper-

ators to train the neural networks in an iterative fashion, as shown in Section 5.2.

For PyTorch, we dynamically create a new graph structure for each sentence.

Although implementing the static unrolling technique on TensorFlow is pos-

sible, the graph generation overhead tends to be very large; instead, we use

PyTorch for the unrolling technique, which incurs negligible graph construction

overhead.

Hardware specification. All numbers reported in this section were re-

trieved from experiment results on a single machine of two 18-core Intel Xeon

E5-2695 @ 2.10 GHz processors with 256GB RAM, unless otherwise specified.
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Figure 5.7: Training throughput for the TreeRNN, RNTN, and TreeLSTM
models with the Large Movie Review dataset. Numbers are shown for our re-
cursive implementation, TensorFlow’s iterative implementation, and PyTorch’s
static unrolling implementation. Our recursive implementation outperforms the
other frameworks for all models and all batch sizes except when training TreeL-
STM with a batch size of 25, at which point the amount of system resources is
insu�cient to completely parallelize the computation. We did not observe any
significant performance gain for the static unrolling approach when the batch
size was increased.

We also used an NVIDIA Titan X GPU for certain models. Unlike other com-

mon neural networks such as convolutional models, the unstructured input data

of recursive neural networks makes it di�cult to exploit the full computational

power of GPUs. Thus, we use GPUs only if they introduce performance gain

compared to CPU-only execution. Our implementation and TensorFlow showed

greater performance on CPUs, while PyTorch performed better on a GPU.

5.6.2 Throughput and Convergence Time

We start our analysis by measuring the training and inference throughputs with

the recursive, iterative, and static unrolling implementations.

Training throughput. Figure 5.7 shows the throughput of training the

TreeRNN, RNTN, and TreeLSTMmodels using the Large Movie Review dataset

with recursive, iterative, and static unrolling implementations. The models were

trained with batch sizes of 1, 10, and 25.5

5The original TreeRNN, RNTN, and TreeLSTM papers state that using a batch size of 25
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Figure 5.8: Inference throughput for the TreeRNN, RNTN, and TreeLSTM
models with the Large Movie Review dataset. Measurements are presented for
our recursive implementation, TensorFlow’s iterative implementation, and Py-
Torch’s static unrolling implementation. Our recursive implementation outper-
forms the other frameworks for all models and all batch sizes.

Thanks to the parallelism exploited by recursive dataflow graphs, our im-

plementation outperforms other implementations for the TreeRNN and RNTN

models at all batch sizes, by up to 3.3x improved throughput over the itera-

tive implementation, and 30.2x improved throughput over the static unrolling

approach. Note that the performance gap between the recursive and iterative

approach for the TreeRNN model is bigger than that of the RNTN model. This

is due to the fact that the TreeRNN model involves much less computation

in its recursive function body compared to the RNTN model, therefore having

bigger room for performance optimization via computation parallelization. We

will further discuss the e↵ectiveness of parallelization in Section 5.6.3.

For the TreeLSTM model, our implementation performs better than other

frameworks at batch sizes 1 and 10. On the other hand, at a batch size of

25, our implementation is slower than the iterative implementation. Generally,

recursion has additional overheads compared to iteration, including passing

around arguments and return values, caller and callee context setup, etc. We

also have additional overheads related to backpropagation, as discussed in pre-

yielded the best model.
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Figure 5.9: Validation accuracy for the binary sentiment classification task
with (a) TreeRNN, (b) RNTN, and (c) TreeLSTM models. Results are shown
for training each model with the recursive and iterative implementations, using
the Large Movie Review dataset. The time to reach 93% accuracy for each setup
is also plotted, showing that the recursive implementation converges faster for
all models.

vious sections. Consequently, our recursive implementation exhibits excessively

high resource utilization for computing large batches, making the throughput

lower than the iterative computation.

Inference throughput. Inference refers to the process of computing the

operation output values of the feedforward phase, stopping before backprop-

agation. Aside from training throughput, inference throughput is also a use-

ful metric for computing the performance of a neural network, indicating how

quickly a deployed model can process unseen data, e.g., in serving systems.

Figure 5.8 shows the inference throughput, with identical environments

with the previous experiments on training throughput. Our framework demon-

strates throughput up to 5.4x higher than the iterative implementation, and

147.9x higher than the static unrolling approach. Unlike training throughput,

our recursive implementation greatly dominates other implementations, since

our framework can fully utilize the given resources and the additional overheads

introduced by backpropagation are not present.

Convergence. We also measured how the accuracy of the model increases

as the training progresses, in Figure 5.9. Since our implementation calculates
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Figure 5.10: Training throughput for the TreeLSTM model on our recursive
implementation, using varying numbers of machines for data parallelism. The
performance increases almost linearly as more machines are used for training.

numerically identical results as the iterative implementation, the accuracy im-

provement per epoch is the same. However, thanks to our higher throughput,

training with our framework results in faster convergence than the iterative

implementation.

Training throughput with multiple machines. One way to overcome

the resource limitations is scaling out to multiple machines. Figure 5.10 shows

how the training throughput for the TreeLSTM model on our recursive im-

plementation changes, as the number of machines used in training gradually

grows from 1 to 8. Utilizing the well-known data parallelism technique [52], the

training throughput improves almost linearly up to 8 machines.

5.6.3 Analysis of Recursive Graphs: Parallelization

The performance di↵erence between the iterative and recursive implementation

of the same recursive neural network mainly comes from the parallelization of
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Figure 5.11: Time taken for processing each data instance, in the TreeLSTM
model using the Large Movie Review dataset. The bold lines represent the aver-
age time for each specific sentence length in the whole dataset, and the enclosing
colored areas represent the range of time taken to process the specific length
of sentences. No batching is used for this experiment. As the number of words
inside a data instance increases, our recursive implementation outperforms the
iterative implementation thanks to the parallelized execution of tree cells. For
inference, the computation load is low enough for the framework to utilize sys-
tem resources without hitting the resource limit, and the processing time of the
recursive implementation is O(logN), where N is the number of words.

recursive operations. In this subsection, we analyze how the performance varies

depending on various aspects related to parallelization.

Sentence length. A close inspection of the training time per data instance

sorted by sentence length gives us interesting results. As shown in Figure 5.11,

the time required for processing a single sentence generally increases as sen-

tences become longer, regardless of whether the implementation is based on

native TensorFlow or our recursive implementation. This is an expected phe-

nomenon, because longer sentences form larger tree structures consisting of

more cells which require more computation.
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Batch size
Throughput (instances/s)

Balanced Moderate Linear

1 46.7 27.3 7.6
10 125.2 78.2 22.7
25 129.7 83.1 45.4

Table 5.1: Throughput for the TreeRNN model implemented with recursive
dataflow graphs, using datasets of varying tree balancedness. The balanced
dataset exhibits highest throughput thanks to the high degree of parallelization,
but at the same time does not improve as well as the linear dataset when
the batch size increases from 1 to 25, because there is only a small room of
performance improvement left, w.r.t parallelization.

However, there is a clear di↵erence in the increasing slope; the training time

grows at a steeper slope for TensorFlow than that of our implementation. This

is because the recursive implementation allows tree cells to be processed con-

currently, whereas the iterative TensorFlow implementation is only capable of

processing one tree cell at a time. Theoretically, our implementation is able to

process a tree structure consisting of N cells in O(logN) time (native Tensor-

Flow requires O(N) time), though the parallelization e↵ect is diminished by

the framework overhead and therefore the performance is more close to a linear

trend rather than a logarithmic trend. On inference workloads with much less

resource needs, the trend is clearly closer to a logarithmic scale.

Balancedness of trees. To analyze the influence of tree balancedness on

training throughput on our recursive implementation, we prepared several mod-

ified versions of the Large Movie Review dataset, that contain the same sen-

tences as the original dataset but have di↵erent parse tree shapes. Specifically,

we prepared 1) a balanced dataset consisting of only complete binary trees, 2)

a moderate dataset that contains moderately balanced binary trees, and 3) a

linear dataset comprising only extremely unbalanced binary trees.
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Table 5.1 shows the throughput of training the TreeRNN model using these

three datasets. For all batch sizes, the training throughput on the balanced

dataset is the highest, while the throughput on the linear dataset is the lowest.

This trend occurs because the maximum possible execution concurrency of a

tree is a↵ected by the balancedness of the tree. A full binary tree of N cells

can be processed concurrently with at most N+1
2 threads, because all N+1

2 leaf

nodes are mutually independent. On the other hand, an extremely unbalanced

binary tree can be processed with only one or two threads at a time due to the

linearity of the tree. As a result, our implementation can train input data of

balanced trees with greater throughput than input data of unbalanced trees.

Resource Utilization. Another interesting fact in Table 5.1 is that the

training throughput on the linear dataset scales better than the throughput

on the balanced dataset, as the batch size increases. For the balanced dataset,

the recursive implementation e�ciently utilizes many threads to process the

data even at a small batch size of 1, and thus increasing the batch size leads

to a relatively small speed boost. On the contrary, for the linear dataset, the

recursive implementation fails to e�ciently make use of CPU resources and thus

the performance gain provided by increasing the batch size is relatively high.

5.6.4 Comparison with Folding

The performance improvement of our recursive framework discussed in previous

subsections comes from executing multiple tree nodes in parallel. On the other

hand, another approach for e�ciently executing recursive neural networks ex-

ists: identifying concurrently executable nodes and batching them into a single

node to be run on GPUs. We refer to this technique as folding, following the

name of a framework, TensorFlow Fold [56], that implements this technique.

The folding technique hardly su↵ers from resource limitations, as GPUs are
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Batch
size

Throughput (instances/s)
Inference Training

Iter Recur Fold Iter Recur Fold

1 19.2 81.4 16.5 2.5 4.8 9.0
10 49.3 217.9 52.2 4.0 4.2 37.5
25 72.1 269.9 61.6 5.5 3.6 54.7

Table 5.2: Throughput for processing the TreeLSTM model on our recursive
framework, Fold’s folding technique, and TensorFlow’s iterative approach, with
the Large Movie Review dataset. The recursive approach performs the best
on inference with e�cient parallel execution of tree nodes, while the folding
technique shows better performance on training thanks to its GPU exploitation.

very e�cient in batching computations. However, batching multiple nodes leads

to overheads that are not present in other approaches. Due to the various tree

structures in the input data, the batching decision must be done in a depth-

wise manner, thus the ungrouping and regrouping of tree nodes across multiple

depths lead to numerous memory reallocations and copies. Moreover, folding is

applicable only if the tree structure of the input data is known before execut-

ing the computation; for dynamically structured models the folding technique

cannot be implemented. Here, we discuss and compare our recursive framework

with the folding technique. Experiment results for folding were obtained using

the TensorFlow Fold framework.

Statically Structured Models

Table 5.2 compares the throughput of performing inference and training on the

TreeLSTM model using our implementation, the iterative approach, and the

folding technique. The amount of resources is su�cient for executing forward

computations, and therefore our framework outperforms the folding technique

for the inference task with up to 4.93x faster throughput. Unlike folding, the
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recursive approach does not have any overheads regarding batch regrouping,

since the calculated values can be directly passed between caller and callee

SubGraphs.

However, when the resource usage is high, not every scheduled tree node in

the worker ready queue can be executed concurrently, even if the dependencies

have been fully resolved. While the scalability of the recursive approach is lim-

ited by this drawback for the training task, the folding technique can exploit

the GPU and scales better. As a result, the folding technique performs better

than the recursive approach for the training task. We can improve the perfor-

mance of the recursive approach by conditionally deciding whether to batch the

operations or not similar to the folding technique, and we leave this as future

work.

Dynamically Structured Models

While the models presented in the previous sections demand support for dy-

namic control flow, there is yet another collection of models that boast an even

greater degree of dynamism, in which the model structure is gradually formed

depending on intermediate values calculated from prior steps. Top-down TreeL-

STM [102] (TD-TreeLSTM) is a dynamic model proposed for sentence comple-

tion and dependency parsing. When a trained model receives root node informa-

tion as an input, the model can generate child nodes based on the information

and completes the rest of the tree sentence. The decision of generating a child

node or stopping tree expansion is conditionally made based on the computed

value of the current node at runtime, so the structure of the complete tree is

not known before actually executing the graph. DRNN [10] is a neural network

model that can generate tree-structured data from sequences, and therefore the

tree structure in unknown before graph execution, similar to TD-TreeLSTM.
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Batch size
Throughput (instances/s)

Iterative Recursive Folding

1
64

0.30
0.34

5.59
9.30

Not supported

Table 5.3: Throughput for evaluating the TD-TreeLSTM model on our recur-
sive framework and TensorFlow’s iterative implementation, on batch sizes of 1
and 64.6 Being able to execute tree nodes in parallel lets our framework per-
form better than the iterative approach. Fold’s folding technique is inapplicable
to the TD-TreeLSTM model.

The Hierarchical Mixtures of Experts [45, 78] model has a similar structure,

where the whole tree structure is decided at runtime. The network structure of

HMRNN [20] is also dynamically determined by the intermediate computation

values.

Our framework performs well for such dynamic models. Table 5.3 shows the

throughput of the sentence completing task with the TD-TreeLSTMmodel. Our

implementation performs better than the iterative approach by up to 18.6x,

since multiple tree nodes are executed in parallel. For this kind of model, tech-

niques that rely on heavy preprocessing of input data to batch operations (fold-

ing) are ine↵ective because the model structures are unknown until the main

computation. We note that it is impossible to express such models using the

API provided by the Fold framework.

5.7 Related Work

Embedded control flow frameworks. DL frameworks with a computa-

tion graph comprised of control flow operators along with the mathemati-

cal operators to represent a DL job are called embedded control flow frame-

works [8, 94, 27, 17]. This class of frameworks does not use the programming lan-

6We follow the suggestions of the original TD-TreeLSTM paper to use a batch size of 64.
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guage’s control flow support (e.g., Python’s if clause) for representing dynamic

control flow. Instead, they provide certain primitives for embedding dynamic

control flow in the dataflow graph; the framework cores evaluate a boolean ex-

pression and decide what to apply for the next operation at graph execution

time.

Although our implementation is based on the embedded control flow frame-

work TensorFlow [8], the key di↵erence is the ability to express recursive func-

tions. In our implementation, a user can define an arbitrary function and use

it as an operation to compose a graph. The arbitrary function can call another

function including itself without restriction, allowing recursive definitions of

functions. TensorFlow and Theano [94] also let users write user-defined func-

tions, but do not support recursion; the user must not create a cycle of depen-

dencies between functions.

Non-embedded control flow frameworks. Unlike embedded control

flow frameworks, PyTorch [70], DyNet [68], and Chainer [95] do not embed

control flow operators inside their computation graphs. Rather, the computa-

tion occurs along with the dynamic control flow of the host language, removing

the need to embed the control flow operators inside the computation graph.

In other words, these non-embedded control flow frameworks behave just like

numerical computation libraries such as NumPy [97] and MKL [38], so one

can directly exploit the underlying language’s abilities for handling conditional

branches, loops, and recursive functions. Thanks to this behavior, a user can

easily build a prototype of a new neural network architecture or optimization

algorithm.

However, since neural networks are usually trained for numerous steps un-

til they converge, non-embedded control flow frameworks su↵er from repetitive

construction of graphs composed of hundreds or thousands of nodes, resulting in
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substantial object creation and removal overhead. More importantly, embedded

control flow frameworks employ graph compilation techniques like operation fu-

sion or in-place operation conversion to optimize execution, but non-embedded

control flow frameworks cannot since they do not reuse the graphs.

Recursive dataflow graphs are designed to provide a similar level of pro-

grammability to non-embedded control flow frameworks, without losing opti-

mization opportunities by using an embedded control flow framework (Tensor-

Flow) to declare computations with recursion.

Other frameworks with recursion support. TensorFlow Fold [56], a

library for handling models with dynamic computation, allows recursion for

writing computation graphs. Fold provides a number of new APIs for creat-

ing and managing blocks (sets of low-level operations). A block behaves as a

scheduling unit to enable dynamic batching of di↵erent computation graphs.

Using these blocks, Fold constructs an execution loop that resembles recursion

and starts running the loop from base cases, wiring intermediate results to

the appropriate positions for subsequent recursive cases. From the perspective

of programmability, Fold provides a whole new set of functional programming

style APIs to preprocess input data and build the computation graph. It is

required to mix the control flow API of Fold and the computational API of

TensorFlow to represent a complete DL job, which is not a trivial task. Also,

since the structure and execution order of the computation graph becomes com-

pletely di↵erent after graph preprocessing, it becomes impossible to pinpoint

the location of errors on failures, resulting in poor debuggability.

On the other hand, our framework adds a simple abstraction, SubGraph,

to the programming model to support recursion. SubGraphs can be used with

existing operations analogously and does not import any additional execution

details other than those already provided by the underlying embedded control
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flow framework. Moreover, the final computation graph of InvokeOps retains

the original position information of SubGraphs, allowing the same debugging

experience as the underlying framework.

CIEL [63] is a dynamic task (operator) creation framework that allows users

to declare data processing jobs recursively. The operators of CIEL are relatively

more coarse-grained compared to DL frameworks, which means the number of

recursion calls is not large. The di↵erent granularity comes from the characteris-

tics of the target domain; CIEL targets batch processing applications, whereas

recursively defined graphs were designed for deep learning. More fundamen-

tally, CIEL cannot be integrated with modern DL frameworks because CIEL

does not consider DL-specific mechanisms such as backpropagation or typed

operator definitions, which are highly important for DL applications.

5.8 Summary

In this chapter, we have introduced recursive declarations and recursive execu-

tion mechanisms for running recursive neural networks on top of existing em-

bedded control flow frameworks. With recursively defined computation graphs,

recursive neural networks can be implemented in a fashion that better portrays

the recursion aspect, and be executed e�ciently by letting the framework ex-

ploit parallel execution of computations, both of which were very di�cult to

achieve on existing frameworks due to the lack of support for recursion. To

achieve this goal, we designed and implemented a programming model and a

runtime execution model, including automatic di↵erentiation support for deep

learning jobs. We have demonstrated the expressive power and performance of

recursive graphs by implementing various recursive neural network models us-

ing our programming model and comparing them with iterative and unrolling

implementations, showing that recursive graphs outperform other approaches
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significantly.
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Chapter 6

Conculsion and Future Work

6.1 Conclusion

In this thesis, we explored the architectures that unify the imperative and sym-

bolic deep learning execution to improve the performance and programmability

of deep learning.

We first introduced Janus, a system that achieves the performance of sym-

bolic DL frameworks while maintaining the programmability of imperative DL

frameworks. To achieve the performance of symbolic DL frameworks, Janus

converts imperative DL programs into static dataflow graphs by assuming that

DL programs inherently have the static nature. To preserve the dynamic seman-

tics of Python, Janus generates and executes the graph speculatively, verifying

the correctness of such assumptions at runtime. The experiments showed that

Janus can execute various deep neural networks e�ciently while retaining pro-

grammability of imperative programming.

Second, we additionally proposed Terra, a new system architecture for imperative-
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symbolic co-execution that overcomes the limitation of Janus. Terra executes

the symbolic graph and the skeleton imperative program concurrently in a com-

plementary manner to improve performance while maintaining the programma-

bility of the imperative program. The evaluation showed that Terra can optimize

imperative DL programs that are di�cult to optimize with the state-of-the-art

graph generation approach.

We have additionally introduced recursive declarations and recursive execu-

tion mechanisms for running recursive neural networks on top of existing em-

bedded control flow frameworks. With recursively defined computation graphs,

recursive neural networks can be implemented in a fashion that better portrays

the recursion aspect, and be executed e�ciently by letting the framework ex-

ploit parallel execution of computations, both of which were very di�cult to

achieve on existing frameworks due to the lack of support for recursion. To

achieve this goal, we designed and implemented a programming model and a

runtime execution model, including automatic di↵erentiation support for deep

learning jobs. We have demonstrated the expressive power and performance of

recursive graphs by implementing various recursive neural network models us-

ing our programming model and comparing them with iterative and unrolling

implementations, showing that recursive graphs outperform other approaches

significantly.

6.2 Future Work

In this thesis, we explored the architectures that unify the imperative and sym-

bolic deep learning execution to improve the performance and programmability

of deep learning.
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6.2.1 Lightweight Imperative Runtime

In order for Terra to be more e↵ective when optimizing the deep learning exe-

cution, we need to minimize the stall time. And to minimize the stall time, we

need to minimize the Python execution time. Although we selected TensorFlow

as the experiment framework to exploit its powerful graph optimizer, Tensor-

Flow’s imperative runtime is much heavier compared to PyTorch’s lightweight

imperative runtime. Combining the lightweight imperative runtime of PyTorch

and the powerful graph optimizer of TensorFlow will improve the performance

of Terra in the future.

6.2.2 Alternative Languages for Deep Learning

Python has been the de-facto standard language for describing deep learning

models and training them for a while. However, there could be alternative

languages other than Python that may enable new opportunities for improving

the programmability and performance of deep learning. Such languages should

be able to export the model to other runtimes for e�cient model inference. And

the native type and shape inference of tensors should be supported for model

optimization.
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