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Abstract
Molecular simulation informed

viscoelastic constitutive model for
amorphous polymer and its
incremental formulation

Jiwon Jung
Department of Aerospace Engineering

The Graduate School

Seoul National University

This thesis aims to develop a viscoelastic constitutive equation
of elastomers that reflects the molecular characteristics. In the
viscoelastic constitutive equation, each polymer characteristic
variable is obtained from the primitive path analysis, the molecular
model's initial condition, and the coarse—grained molecular dynamics
(MD). To compose a coarse—grained model of the elastomer, the
energy renormalization method was employed. The molecular

simulation is accelerated through the energy renormalization method,



and the same level of precision as the conventional all—atom MD is
conserved by controlling the interaction parameters between
molecules according to temperature. However, since the existing
method did not consider the correlation between the two parameters
included in the potential, the multi objective optimization algorithm
was adopted and verified. Furthermore, the viscoelastic properties of
the elastomer were obtained from the viscoelastic constitutive
equation. Since the previous literature did not report the incremental
formulation for the implicit finite element analysis, the incremental
formulation of the viscoelastic constitutive equation and the tangent
stiffness matrix's derivation was suggested. Moreover, the study on
crosslink effect and a parametric study were conducted by
investigating the effect of the variables included in the viscoelastic

constitutive equation on the dynamic properties.

Keywords: Multiscale simulation, molecular dynamics, viscoelastic polymer,

elastomer, finite element analysis
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1. Introduction

1.1. Background and motivation

In contemporary cutting—edge industries, composites are a
widely studied field of research for enhancing performance
efficiencies. The most commonly used composites for structure
consist of the reinforcement with high stiffness and the matrix with
high toughness that holds reinforcements. Due to their high strength
with light weights, they are utilized in various fields, including
aerospace, marine, fuel tanks, etc. However, since they show
anisotropic thermo—mechanical characteristics and unique failure
modes such as delamination, it makes the analysis of composites
more difficult. For composites, the simple rule of mixture, failure
criteria like Tsai—Wu, Tsai—Hill [1], and Mori—Tanaka [2]
homogenization methods were developed as pioneering researches
for composites.

Furthermore, with the discovery of nanoscale reinforcements
including carbon nano tubes (CNT) and graphenes, more variables
were considered. Therefore, the importance of the computer

simulations describing physical phenomena without experiments has



been elucidated to reduce economic and temporal resources
consumed during the classical trial—and—errors.

Structural analysis with computer simulations has been mainly
conducted with macroscale continuum finite element analysis (FEA).
Expanded from elastic material analysis, several material models to
depict nonlinearities  generated from  viscoelasticity and
hyperelasticity in FEA have been suggested. As the simplest model,
the Generalized Maxwell Model and the Neo—Hookean model are
commonly used to analyze viscoelasticity and hyperelasticity,
respectively. However, the aforementioned models were empirically
developed, and they contain mathematical parameters that do not
have any physical meanings. Therefore, to apply such models to FEA,
experiments should be executed to fit mathematical parameters and
cannot reflect the effects of the matrix's molecular structures. Thus,
to study polymer nano—composites with diverse molecular
srtuctures, the molecular dynamics (MD) simulations were
developed.

From MD simulations, material properties are calculated through

the Newton equation of force fields defined by the interaction

A &-tf) 8



between atoms. Force field terms in all—atom scale MD can be
classified into two categories: (1) non—bond terms, including Van der
Waals interactions and coulomb forces, (2) and bond terms including
bond, angle, dihedral, improper, etc., which acts between chemically
bonded atoms. Since MD simulations predict physical behavior at the
molecular scale, researches for several phenomena such as phase
change and interphase properties that were difficult to study in
experimental scale have been attempted in the MD simulation.
However, in MD simulation, it has limitations that they are conducted
at the nano length and time scale, and they have substantial
discrepancy from macroscales. Therefore, to compensate for
limitations with nanoscale MD and macroscale FE simulations,
several researches to bridge between nano and macroscales were
conducted.

To study the viscoelasticity of elastomer in MD scale, the
extensive time to observe time—dependent properties of the polymer
1s consumed. Thus, to reduce computational resources during MD
simulations, the coarse—grained MD was developed. In coarse—

grained MD, several adjacent atoms were combined into a single bead,

10
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and the overall degree of freedom in the molecular system is reduced.
However, since the computation accuracy is sacrificed, several
methodologies to find proper coarse—grained MD potential matching
with all—atom simulations were developed [3—6]. The coarse—
grained MD can be classified into the degree of coarse—graining. At
the finest level, TraPPE (UA) potential [3] combines a carbon atom
and adjacent chemically bonded hydrogen atoms, and they were
called united—atom force fields. In a molecular level of coarse—
graining, the Iterative Boltzmann Inversion (IBI) method [4] is
commonly adopted, and even several molecules were combined in
elastomer studies with MD [6]. Even though IBI had the strength to
describe the structural properties, some results from non-—
equilibrium MD simulations such as mechanical moduli and
thermomechanical properties were not matched since frictions
between polymer chains were diminished. Therefore, to compensate
for such effects, the dissipative particle dynamics method (DPD) [7,
8] was adopted by adding non—conservative forces between beads.
The temperature—transferable energy renormalization method was

developed to develop force fields for thermodynamic studies [9, 10].
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Even by such efforts to expand MD into the mesoscale, they are
conducted at the microscales and have a huge discrepancy with
experimental scale.

Several constitutive equations were developed in the analysis
of viscoelasticity and hyperelasticity of elastomers with FEA that can
directly reflect the molecular structure difference and include
physical parameters rather than empirically developed mathematical
parameters. As pioneering research for the elastomer hyperelastic
model, Arruda—Boyce developed an 8-—chain network model for
crosslinked elastomers [11]. For the viscoelastic constitutive
equation, the Bergstrom—Boyce model [12] and microsphere model
[13] were proposed. Moreover, the expansion of classical FEA into
multi—scale micro—morphic analysis was also tried to bridge
between nano and macroscale. Park et al. [14, 15] studied the
polymer's inhomogeneous deformation by applying SS curves from
MD at the microscale and experimental results at the macroscale.
They showed that the size of microscale affects the strain rate at the
microscale and fast strain rate over 108~101°/s in MD has been

accomplished. Tang et al. [16] developed 2D model of elastomer

12



where Arruda—Boyce [11] hyperelasticity for crosslinked network
in macroscale and viscoelasticity for free chain network in microscale
were adopted. In 2012, Li et al. [17] developed a molecular
simulation simulation—informed viscoelastic constitutive equation
with Doi—Edward’s model developed based on the tube theory [18,
19] and where all the parameters have exact physical meanings. In
the tube theory, motions of each polymer chain in the free chain
network 1s assumed to move as moving in the virtual tube by
constraints from neighborhood chains.

The viscoelastic model established from the tube theory
contains parameters oriented from polymer dynamics, polymer
physics, and polymer chemistry. Parameter from polymer dynamics
1s determined from coarse—grained MD simulation, and parameters
from polymer chemistry are determined from polymerization
condition when manufactured. Polymer physics parameters are based
on tube theory, and it can be obtained from primitive path analysis
code (Z1 code) developed by M. Kréger [20]. In this paper, we
performed coarse—grained MD and primitive path analysis with Z1

code. During the coarse—grained MD, the energy renormalization
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method was adopted modified with the multi—objective optimization
algorithm [21]. Then, by plugging parameters from the molecular
simulations into the viscoelastic constitutive equation, the
viscoelastic properties of polymer, i.e., dynamic modulus and tané
were obtained, and the effects of molecular parameters on them were
investigated. Moreover, the crosslink effect on the polymer
viscoelasticity, incremental formulation, and the derivation of tangent
stiffness to apply the 1D Doi—Edward viscoelastic model on ABAQUS
user subroutine UMAT was studied in this thesis. Through expansion
of the formulation to 3D viscoelastic constitutive equation with
arbitrary deformation gradients, application to general implicit FEA

1s expected.

1.2. Organization of the thesis

This thesis 1s organized as follows. In the next section, the
molecular modeling of the polyisoprene model is described (section
2.1). A review of the coarse—grained potential with the energy
renormalization method and an investigation of the correlation effect

between two renormalization parameters is discussed (section 2.2).

14



In Section 2.3, considering the correlation effect, the multi—objective
optimized coarse—grained potential is suggested and verified. Then,
the primitive path analysis is conducted, and the characteristic
molecular parameters are proposed in Section 2.4. Section 3 explains
the application of the viscoelastic constitutive equation to FEA. The
incremental formulation of the viscoelastic Cauchy stress and
material tangent stiffness is derived in Section 3.1. The verification
of the formulation by comparison with direct calculation of Cauchy
stress is discussed in Section 3.2. Then, the parametric study on the
viscoelastic constitutive equation was conducted and described in
section 3.3. The conclusions of this thesis and plans for future works

are suggested in Section 4.
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2. Molecular simulation methods and analysis
based on the tube theory

To compose tube theory—based viscoelastic constitutive
equations, polymer parameters from molecular simulations with
coarse—grained MD and PPA should be conducted. From the coarse—
grained MD, the self—diffusivity (D,) is calculated as the polymer
dynamics oriented parameter. The molecular model for the
calculation of coarse—grained potential of the polyisoprene (PI) was
generated through the anionic polymerization algorithm which was
modified from the previous work of the free radical polymerization
algorithm [22]. Through the PPA, molecular characteristic
parameters such as tube diameter (a), tube length (L), Kuhn length,
are obtained. The parameters from polymer chemistry, the average
number of monomers in chains (N) and the number of chains in a unit
volume were determined from the initial condition of the molecular
models. For the analysis of viscoelastic properties, six molecular
models were built. Two kinds of molecular models include (1) 20
chains with 2000 monomers in each chain, and (2) 10 chains with
4000 monomers in each chain to have an equal number of total

monomer beads, Each kind of models contain disulfide crosslinkers

16



with a weight percentage of 0%, 1%, 2%. The center of the mass of
each isoprene molecule was mapped into a single bead coordinate in
the simulations depicted in Figure 1 while sulfur atoms were

calculated in all—atom scale.

(@)

Figure 1 (a) Description of the isoprene molecule combined into a single bead in

the coarse-grained model and (b) an illustration of the single PI chain.

2.1. Molecular modeling of the polyisoprene model for

coarse-grain MD force field.

To build a molecular model of PI, the anionic polymerization
algorithm was adopted. Modified from the free radical polymerization
algorithm [22], the anionic polymerization algorithm was
accomplished by removing the termination reaction when two other
reactive atoms met. Before the polymerization, the initial model had

2000 isoprene molecules, and ten initiators were included, randomly

17



dispersed. In this thesis, the anionic polymerization algorithm was
conducted as follows: (1) the initiation step in which initial reactive
atoms were activated in the initiator, (2) and the propagation step in
which the chains grew, new monomers were reacted with the chain
ends. In this algorithm, the propagation step was assumed to progress
in a head—to—tail direction. The polymerization algorithm was
conducted with the commercial molecular dynamics software,
Materials Studio 2017 R2 [23]. The initiation step was represented
in the simulation by randomly dispersing the initiator with reactive
atoms within the monomers using the amorphous cell module included
in the software. Two types of reactive atoms and potential reactive
atoms were assigned in each molecule to describe the propagation
steps of the anionic polymerization. The reactive type 1 atoms were
reactive chain ends, and the reactive type 2 atoms were head atoms
in each molecule. When two different types of reactive atoms were
within a certain cutoff distance, they were reacted and form new
chain ends. Then, the potential reactive atom site located at the tail
of the molecule was changed into reactive site 1. As the propagation

step was operated iteratively, the free chain network of the polymer

18



was formed. To compensate the artificial bond formation from the
propagation step, 2000 steps of the geometry optimization with the
conjugate gradient method were performed for every ten steps. The
propagation steps were iteratively done until 95% of the monomers
were reacted. If any set of different atom types were not found, the
cutoff distance was increased by 0.5A from 7A to 11A. Then, 2ps of
NPT ensemble under latm, 300K was applied. After the
polymerization, the PI model of 0.859g/cm?® with 95% of total
monomers were reacted, was generated. The polymerization
procedures were operated with COMPASS II force field [24, 25], and
the overall scheme and the flow chart is shown in Figure 2 and Figure

3, respectively.
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Potential
reactive atom

Figure 2 Illustration for the propagation step in the anionic polymerization

algorithm.
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Figure 3 Flow chart for the anionic polymerization algorithm.
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2.2. Investigation on the energy renormalization method

2.2.1. Literature review of the energy renormalization method

The coarse—grained MD method with the energy
renormalization method for glass—forming liquids was first proposed
in 2017 by Xia et al. [9]. Based on the Adam—Gibbs theory, coarse—
grained force field parameters were controlled as functions of the
temperature. In the energy renormalization method, nonbonded

interactions between beads were expressed as following Eq. (1).

vo=el2(D) 3@ rex W)
where g, and o, determine the energy well depth and equilibrium
distance. r. is the cutoff distance where non—bond potentials were
only calculated for pair of beads within r¢, and it was set as 15A. In
this thesis, 9—6 Lennard Jones form was adopted while 12—6
Lennard Jones form of the potential was adopted in the literature [9].
To control € and o, the renormalization parameters a and B was
multiplied on the initial Lennard Jones parameter g, and o, which

were obtained from the Inverse Boltzmann method. The

renormalization parameters were expressed as functions of the
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temperature. To obtain a, it was found by matching properties from
coarse—grained properties with all—atom properties in three
different temperature regimes. In the Arrhenius regime (T >T,)
where molecular properties follow the Arrhenius equation, a was
found by matching the self—diffusivity of the molecular system,
which was calculated from the mean square displacement (MSD) as

shown in Eq. (2).

De = Jim == (e (8) = rcy ()2 = Jim == MSD @)
where rcy(t) is the coordinate of beads at time t and rgy(0) is the
initial coordinate of beads. The Arrhenius temperature T, was
determined as the point where the D. was escaped from the linear
relationship in the Arrhenius plot. In the rubbery regime (T, > T > Tg)
where the polymer system shows rubbery characteristics, a was
determined by matching the segmental relaxation time tq with all—
atom models. The glass transition temperature T, was determined as
201.1K where the thermal expansion coefficient changes during the
cooling down simulation [26]. In the glassy regime (T; >T) where

the polymer system shows glassy characteristics, a was determined

by matching the shear stress curve, since the mobility of the polymer

23



system is restricted. After fitting a with the above procedures, B
was then found by matching density with the all—atom model. As a
result, the renormalization parameters were reported as Eq. (3) and

Eq. (4) in the literature [9].

a, — ag

o) = 1+ exp[—k(T — Tr)] T (3)

B(T)=aT +b (4)
where a,, ag are o values at the Arrhenius regime and the glassy
regimes, and k, Ty, a, b are constants. However, there were no
considerations about correlation effects of a and B even though the
density of the system can strongly affect MSD and shear stress in
the literature [9]. Therefore, the multi—objective optimized coarse—
grained potential in the Arrhenius regime is proposed in this thesis.
Through the multi—objective optimization algorithm, MSD and
density can be matched simultaneously, considering the correlation

effect.
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2.2.2. Correlation effects between renormalization parameters

In this section, the correlation effect between the renormalization
parameters was investigated in the Arrhenius regime and the glassy
regime. Before studying the correlation effect, the initial potential
values gy,0p were obtained, and T, T; were determined to establish

each temperature regime.

To obtain g, and gy, the Inverse Boltzmann Method (IBM) [4, 9] was
conducted in 300K. In the IBM, the non—bond potential is obtained
from the inverse Boltzmann of the radial distribution function g(r),

and the bond length distribution between beads d(r) as Eq. (5).

V(r) = —kpTIng(r) (5)

where kg is the Boltzmann constant, and T is the temperature.
Similarly, the bond potential is obtained from the inverse Boltzmann
of the bond length distribution between beads. As the bond
distribution is fitted as the Gaussian distribution, the harmonic

function form of the bond potential is obtained as Eq. (6) and Eq. (7).

K(r — 2
a0 = exp(- 1) ®)
V/(r) = ~kgTInd(r) = K(r = rp)? @)
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where K is the constant for the strength of the bond and ry is the
equilibrium bond distance. The model with 1000 isoprene monomers
was generated for the calculation of g(r) to remove bond length
effects. To calculate bond length distribution d(r), the model with 10
chains which has 100 monomer were polymerized each, was
generated, The g(r) and d(r) were calculated by averaging 100
trajectories obtained from 1ns NVT ensemble after 100ps of NPT
ensemble under latm, 300K condition to converge the density. The
simulations to get trajectories were conducted with the materials
studio and COMPASS 1I force field. The Andersen thermostat [27]
and the Berendsen barostat [28] were applied to control the pressure
and the temperature. For calculating the bond length, the distance
between the adjacent centers of carbon—carbon bonds connecting
between isoprene molecules, and the distribution functions and initial
potentials from IBM are shown in Figure 4. The initial potential
parameter g, and o, were determined as the value at the minimum

point of the inverse Boltzmann of g(r).
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obtained from the Inverse Boltzmann of g(r). (b) The bond length distribution

fitted with the Gaussian distribution and the harmonic form of the bond potential.

To determine T,, D, was calculated for 450K~1000K
condition, and the Arrhenius plot was drawn. As expressed in Figure
5(a), 750K was determined as T, where the linear relationship
between the logarithm of D. and reciprocal of the temperature was
escaped. The MSD in each temperature condition was calculated from
the 1ns simulation after the 800,000 steps of NPT and 500,000 steps
of NVT ensemble to converge density and relax the system.
Moreover, to obtain Ty, the cooling down simulation with 1.0 X
101K /s was conducted and the relationship between the density and
the temperature was plotted. As shown in Figure 5(b), 201.1K was
determined as T, where the gradients in the figure changed.
Molecular simulations under this part including the calculation of

T, Ty was conducted with the molecular dynamics software,
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LAMMPS [29], and Nose—Hoover thermostat and barostat [30] were

employed.
(a) Arrhenius temperature (Ta) (b)1 Glass transition temperature
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Figure 5 (a) The Arrhenius temperature (T,) determined as a point where the
linear relationship escaped in the Arrhenius plot of D, (b) and the glass transition
temperature (Tg) determined as a point where the thermal expansion coefficient

changes.

To investigate the correlation effect between two
renormalization parameters, the effect of the renormalization
parameters on each other's fitting variables was investigated in the
Arrhenius regime and the glassy regime. In the Arrhenius regime
(850K), the specific volume of the molecular system was calculated
for varying a = 2~4 under constant B = 1.3, and conversely, the MSD
was calculated for varying B = 1.1~1.4 under constant a=2. As
shown in Figure 6, the increase of MSD for increasing B and

decrease of the specific volume for increasing o was observed.
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Since the mobility calculates MSD, MSD was increased in extensive
volume conditions led by larger B values. Moreover, when a and
the energy well depth were increased, it strengthened the interaction
forces between molecules, and therefore, the specific volume of the

molecular system had decreased.

MSD for varying (850K, o = 2.0) Specific volume for varying (850K, 3=1.3)
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—12
800 |—1.3 c - A
—14 i
e
= g
“ 600 @
% E, "
o o
£ 400 2
2 A
2
200 o A
A
0 . i i R 18k i i i .
0 200 400 600 800 1000 2 2.5 3 3.5 4
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Figure 6 (a) MSD calculated for varying a under constant B condition, (b) and
the specific volume calculated for varying B under constant o condition at 850K

Furthermore, in the glassy regime (160K), the shear stress
was calculated for varying B =1.0~1.6 under constant o =3.5.
Conversely, the specific volume was calculated for varying a=
3.0~5.0 under constant B=1.6 condition. The pure shear
deformation with 1.0 x 108/s of strain rate was applied to obtain
shear stress of the system. As shown in Figure 7, higher shear stress
was observed in low B conditions since molecules are more densely

packed in low specific volumes, and therefore, frictions between

29



polymer chains increase. The calculation of the specific volume
showed a similar trend with the results in the Arrhenius regime.
However, the dependency of the specific volume on o was smaller
than the dependency in the high—temperature condition since the

molecules are sufficiently condensed each other.

Shear stress for varying 3(160K, a=3.5) Specific volume for varying o (160K, =1.6)
(a) o0ssf — (b)ma
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= ig S 114
% o003} : £
= T
§ :
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=
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2] 2 11 a
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A
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Figure 7 (a) The shear stress curves calculated for varying a under constant 8
condition, (b) and the specific volume calculated for varying B under constant o
condition at 160K

As discussed above, it was found that two renormalization
parameters were correlated, and they affect each other’s fitting
parameters. Therefore, unlike previous literature [9], a and B
should not be found independently but matched simultaneously. To
match MSD and the density simultaneously in the Arrhenius regime,

the multi—objective optimization algorithm was adopted. Since the
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correlation effect was smaller in the glassy regime, a was found by

matching the shear stress curves, and then B was obtained.

2.3. Multi-objective optimized coarse-grained MD potential

2.3.1. Optimization results and parameter function

To obtain a suitable solution for a and B in the Arrhenius regime, a
multi—objective optimization algorithm was applied to find the set of
parameters that match the MSD and density simultaneously as the
results from all—atom simulations. The reference all—atom data was
calculated from the 1identical procedure conducted for the
investigation of the correlation effect. To make reference all—atom
data more precise, the all—atom simulations were conducted five
times and three times then, averaged for calculating MSD and shear
stress, respectively. The non—dominant sort genetic algorithm
(NSGA-1I) [23] was applied for the algorithm that uses two
coefficients of decision variables (a, p) and two objective functions
(root—mean—square error and density error between MSD curves.

The optimization algorithm was operated for 50 generations and 20
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populations. The mutation parameter was set as 50 to prevent
solutions from converging into local minima. The boundaries for the
optimized decision variables were set as a € [2.0,4.0] and B € [0.8,2.5]
where the simulations were stable. In the Arrhenius regimes, the
optimization algorithm was operated four times at each temperature
condition, 750K to 950K with 50K intervals. After the optimization,
some solutions with large error, 0.03g/cm? for density and 10042 /ps
for root mean square error for MSD curves were excluded. The

optimized solutions of a and B are plotted in Figure 8.
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Figure 8 Multi-objective optimized solutions of « and B in the Arrhenius

regime found by matching MSD and density with the all-atom results.

As shown in the graph, the optimized solutions in each temperature

were expressed as linear sets. Such solutions are compatible with

the correlation effect that higher B is necessary for higher «

conditions to compensate for increased MSD and density. In the

constant a condition, higher B values were needed in the higher

temperature condition since the molecular model has a higher specific

volume. Therefore, more considerable equilibrium distances between

beads should be accomplished to match the specific volume. To find
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a and B as functions of the temperature, a specific point over linear
sets of solutions should be selected. Since arbitrary points over the
lines can be solutions, the constant a = 3.0 where the most solutions
are concentrated was selected in this thesis to compose a(T) as a
function of the temperature in the form of Eq. (3). In the glassy
regime, o was found by matching the shear stress. As expressed in

Figure 9, a constant value of a = 4.5 found for the glassy regime.

Shear stress curve(160K)

0.08
= = =All-atom
a=4.2
—4.5
0.06 1
—4.8

Shear stress(GPa)
o
R

o
o
R

A A

0 0.025 0.05 0.075 0.1

Shear strain
Figure 9 a = 4.5 by matching shear stress curves with the all-atom model r

esults in the glassy regime.
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To determine a values in the rubbery regimes, a was fitted as a
function of the temperature by substituting a, = 3.0 and agz = 4.5 into
Eq. (3). Therefore, a(T) was obtained as a sigmoidal function as
shown in Figure 10(a). Then, under the condition of a obtained, P
was found by matching the density with the all—atom model. As a
result, B was found as the form of Eq. (8). The detailed parameter

values of a(T) and B(T) are listed in Table 1.

Ba - Bg
B(T) = +B (8)
1+ exp[-k(T—Tp)] &
a(T) as function of the temperature b i /3(T) as function of the temperature
(QL A Glassy regime ( ) A Glassy regime
A Arrhenius regime A Rubbery regime
451 ML - = —Fitting function of a(T) A ’F:\thr;lus ruegm}? g s &
™ -~ = = = Fitted function of | %
4.2 N 14 e
N A
3.9f 3 = 4
z - = A
3.6 % A,ﬁ’
k 1.2
3.3t gy Pad
so _a
3 S <A At A-A T
27t
1 A i i 4 i i
100 250 400 550 700 850 1000

100 250 400 550 700 850 1000
Temperature(K)

Figure 10 (a) a(T) fitted with the sigmoidal function as Eq. (3), (b) B(T) found

Temperature (K)

by matching the density with all-atom results under a(T) condition obtained from

(a).
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Table 1 Constant value of the renormalization parameters oa(T),B(T). Their

functional forms are shown in Eq. (3) and Eq. (8), respectively.

Value at the Value at the Transition
Parameter glassy regime Arrhenius k(/K) temperature
(g, By) regime (@, Bq) (Tr, K)
a(T) 4.5 3.0 0.015 475
B(T) 1.08 1.51 0.0085 690

2.3.2. Verification of the potential

In section 2.3.1, a(T) in the rubbery regime was fitted with the

mathematical function, Eq. (3), and should be verified. Therefore, in

the rubbery regime (250K~700K), MSD was calculated and

compared with those from all—atom simulations. As expressed In

Figure 11, the self—diffusivity coefficient D, was matched between

the coarse—grained model and the all—atom model. It implies that the

coarse—grained potential composed by the procedures in the above

sections was successfully built to mimic the all—atom simulations.

36



DC in the rubbery regime
-20 T - .
A Coarse-grained
A All-atom

A AR

£, é -

T

Q) A
=
XQ ’24 B A ﬁ g
=
£ A 2
26 F -
-28 : A A
200 350 500 650 800
Temperature(K)

Figure 11 Self-diffusivity coefficient D, calculated from MSD compared
between the coarse-grained model and the all-atom model to verify the coarse-

grained potential.

2.3.3. Coarse-grained potential of the crosslinked elastomer

For the study of the crosslinked elastomer, the coarse—grained
potential parameters of the sulfur are necessary. Non—bond
potentials and the bond potentials of the sulfur—sulfur interactions
and the isoprene—sulfur interactions were obtained. Since sulfur

atoms were calculated for each atom in this study, parameters
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associated with sulfur—sulfur interactions were obtained from the
all—atom parameters in the polymer consistent force field (PCFF)
[31]. The bond potential's quartic form was adjusted into harmonic
form to match isoprene molecules' interactions. To obtain
interactions between sulfur atoms and isoprene molecules, a

combination rule for different atoms from the PCFF was applied.

To build the crosslinked model of the polyisoprene, the models
with 1%, 2% weight percentage of disulfide crosslinkers randomly
dispersed, was generated. From the initial model, disulfide and
adjacent isoprene molecules were bonded by a crosslink algorithm
with iterations [32]. In the crosslink algorithm, the pair of isoprene
molecule and sulfur atom was found within a certain value of cutoff
radius (7A), then bonded. The bond trial was tried iteratively until
100% of the sulfur atoms were bonded. The figure of the coarse—

grained model of the crosslinked polyisoprene is shown in Figure 12.
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Figure 12 Illustration of the coarse-grained model of the 100% crosslinked model,
where blue particles are isoprene molecule, yellow particles are isoprene

molecules bonded to disulfide crosslinkers, and green particles are sulfur atoms.

2.4. Primitive path analysis

The polymer physics—oriented parameters included in the
Doi—Edward’s viscoelastic constitutive equation were obtained from
the primitive path analysis (PPA). Through PPA, the free chain
network of the polymer is analyzed based on the tube theory. In the

tube theory, the movement of the polymer chains are described as in
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the virtual tube, since the entanglements with adjacent polymer
chains restrict the movement. The viscoelasticity of the polymer
system 1s characterized by properties of the tube such as the tube
diameter(a), the tube length(L, i.e., the primitive path length), and
the Kuhn length (b), which are the outputs of the PPA. In this thesis,
PPA was executed through Z1 code [20, 33], and it was operated as
following steps: (1) The ends of the polymer chains were fixed, and
each backbone bond in polymer chains were replaced by
infinitesimally thin and unable to be crossed lines. (2) Then, their
paths were iteratively reduced and converged into the final state.

Finally, the shortest path connecting chain ends restricted by the

entanglements with adjacent chains, is determined as a primitive path.

After the PPA is operated on the polymer system's free chain
network, it was simplified, as illustrated in Figure 13. For the
crosslinked model, the same PPA parameters as the free chain model
were used. The difference of the D. was considered for the analysis
of the polymer viscoelasticity. The polymer characteristic
parameters obtained from the PPA and the coarse—grained MD are

listed in
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Table 2.

Figure 13 Illustration of the primitive path analysis: The free chain network of
the polymer model was simplified as the shortest path connecting fixed chain ends

constrained by entanglements with nearby polymer chains.

Table 2 Polymer chemistry-oriented parameters from initial condition of the
molecular model (ny,N), polymer physics-oriented parameters from PPA (L,a,b) and
polymer dynamics parameter from the coarse-grained MD (D). For the crosslinked

model, the difference of D, was considered. *values of the model was taken from [17].

nem™ N Ly ad) by SEN Dem?s
0 1.20 X 1077
3.96 x 10® 2000 707.29 35.38 3.54 1 9.61 x 1078
2 8.33x 1078
0 112 x 1077
1.98x 10 4000 1521.7 29.00 3.81 1 9.14x 1078
2 9.03x 1078
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3.93 x 108" 1882 13787 64° 6.7° 0 1.6 x 107102

For the model with the longer chain length, longer Kuhn length
and smaller tube diameter was observed, since there are more
entanglements and constraints for the longer—chain model. Moreover,
in the coarse—grained MD, D. was also calculated as a smaller value
due to the increased restriction for the models. However, more
considerable Kuhn length, tube diameter, and much small D. was
found in the previous literature [17]. Such discrepancy was occurred
from the difference of the coarse—grained potential and the initial

condition of modeling.
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3. Implementation of the viscoelastic constitutive
equation on FEA

3.1. Incremental formulation of the viscoelastic constitutive

equation

In this section, the development of the tube theory—based
viscoelastic constitutive equation by Doi—Edward [19] is introduced,
and the incremental formulation 1s proposed. Although the
implementation of the viscoelastic Cauchy stress in FEA was
proposed in the former literature [16, 17] with molecular simulations,
the incremental formulation and the derivation of the material tangent
stiffness, i.e., Jacobian, which are necessary for implicit FEA, were
not reported. The incremental formulation and the materials tangent
stiffness derived in this section were applied to the commercial FEA
software, ABAQUS user subroutine, and verified by comparing to
results from the Cauchy's direct calculation stress.

The viscoelastic Cauchy stress of the polymer—free chain
network was calculated by the tensile force applied to each polymer

chain, averaged for a tangent vector y of chain segment s as Eq. (9).

43



Herein, the probability distribution function f(y,s,t) which physically
implies the probability of the tangent vector y at the segment s at
time t, was adopted to take the average, as shown in Eq. (10). In Eq.
(9), <*> is an averaging operator and tensile force on the primitive

chain is F¢(L) = 3kgT/Nb?.

L L
o¥ = ny ] Fe(L)y ® vds)yy = ny j f Ry ®vi(y,s Ddsdy  (9)
0 0

M(y)
LOW(s,t —t') 1 F(t,t') " vo
f(y, st =J—,dt’ f —8< A . (U )d
(s0 =) —% R U CORATALEE
(1]

In Eq. (4), ¥(s,t) is the probability of the chain segment s would be
remained in the reference tube at the original configuration at time t,
and F(t,t’) is the deformation gradient tensor from time t’ to t. §(x)
i1s the Dirac delta function, and the integral is calculated for the unit
sphere domain to consider every direction of the tangent unit vector,
y and y,. W(s,t) depends on the relaxation time of the polymer
network, and it was modified to take form as

W= Y jinsm("%s)lsa,l [—(f—;)] (11)

j=1,0dd
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and the standard

L2
where 14 = —
c

Mittag—Leffler function Ey;, was introduced in [17] to consider the
effect of crosslinks or nonuniform distribution of polymer networks'
molecular weight. For the free chain network of the uniformly
distributed molecular weight, a =1, and the equation is reduced to
the Doi—Edward model [34], since E;;(x) =e*. Collecting those

above equations, viscoelastic Cauchy stress is written as below:

[ee)

t ) , 3kgT
o' =12 Y [ V(T = T (12)
j=L,0dd " ©
where
Y(]; t,: t, Td) = g(j!t - t,!Td)A(t!t,) (13)
8 d
. _ 12 — — — -
E(,t—t :Td) = TITZTd[ Ix Ea.l( y )]y=j2(_t[_t,) (14)
d
1 F(t,t') - _Ft) "ye 1
M= [vevdr | —6<y —21 (15)
4 [IFCet) - ol 9|| 3=

M(y) M(yo)
In the above equations, I is the second—order identity tensor. Li et

al. [17] modified Eq. (12) for the particular case of uniaxial
elongation with a small strain. In this case, the deformation gradient

F(t,t’) is expressed as Eq. (16). Therefore, the normal viscoelastic

45



Cauchy stress along the loading direction is shown as Eq. (17) and

(18), as a function of 1—dimensional small strain &(t).

1+ e(t) —e(t) 0 0

e(t) —e(t)

F(t',0) = 0 == 0 (16)
t) —e(t’
. . | _E® =)
2
\' =12 N ‘ st ! 3Td

oy, = 2ELj Z f Y; (G, t',t, tg)dt +§7s(t) (17)

j=Lodd -© )

where L, is the tube length at the reference configuration, and

8 1 0 . 3 ,
|y FaaC )]yziz(t_t,)g(e(o —e(t)) 18

Y.1 (]' t’, t, Td) = (T[Z
T4

In the above equations, they proposed the only formulation of Cauchy
stress for 1d finite element analysis (FEA). However, there was no
derivation of the equation's numerical formulation for application to
the implicit analysis of ABAQUS UMAT. Thus, the development of
incremental formulation and tangent stiffness will be described

precisely in this paper.

Since our molecular models for the PPA had uniform molecular
weight distribution, a=1 was adopted. Then, the viscoelastic

Cauchy stress in Eq. (17) can be shown as below
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b 3 t j? t—t' 314
oV, =C z =C, f e T (e®)—et))dt t552 0
0

j=1,0dd
- 3 Tq 3 t ——jz(t_t’) /
= Z [gclj_zs(t)"'g(:lCZf e T g(Ddt (19)
j=1,0dd 0

3 t (=t
- —C1C2 f e Tad S(t,)dt’]
5 0

— =72 __8
where, Cq; =2EL;,C, = o

Eq. (19) has three terms to calculate; each term was separately
formulated in this thesis. Since there is no integration in the first term,
it does not have any step before the incremental formulations. For

the second term, it can be directly integrated for variable t’.

i(t=t) j’t

t
J e Ta e(t)dt’ = :—2d<1 — e_ﬁ> £(t) (20)
0

For the last term, it contains two other functions of t’ to integrate.

Therefore, partial integration was performed.

t o j3(t=t")
fe T g(t)dt’
0
A -t t Pt—t))oet)
= #|(en(-m52) )| [ oo (-F57) 5] e

| 2t t 2(t—t)\oet)
= ]-_zd _(s(t) —exp (— a) s(O)) —J(; exp (— o ) 50 dt ]

t
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In Eq. (20) and (21), the first terms of Eq. (20) and Eq. (21) can be
canceled out each other. And also, for the second term in Eq. (21), it
1s disappeared since initial strain €(0) equals O. Thus, only the
second term in Eq. (20) and integration term in Eq. (21) are left, and

the arranged form of Cauchy stress is shown below

3 d j2t (=) get
o¥, =§cl%j_LZOdd [s(t) C {e Tae(0) + fo = ‘:ff D }] (22)

In incremental form, the above equation can be shown below Eq. (17)

for the n+1 increment of a time step.

_jzt“"'l
vV (+h+1 3 d N n+1 e E(tn+1)
Gll(t ) = Ecl y z E(t ) - Cz th+1 _jz(tn+1—t') Os(t’) (23)
j=Todd + f e T ——=dt’
. at

Similar to the above steps of Eq. (20),(21), three terms were

formulated separately. For the first term in Eq. (23),
3 3 3 T
AN = 5013 L+t = -c1 < (e(t™ + Ae) = AT + gClj—szs (24)

For the second term,

-ztn+1

3 Tq LU
B]-"+1=—§C1C2j—2de Ta g(t"t)

3 T, _2at+Ay
=—§C1C2]_—2de Ta (e(th) + Ae) (25)
j2At T, _iAat+Ay

_Itat 3 I 19}
=e TdB}‘—EClCZ]_—Ze Td As

For the last term,
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3 o+ T Z(tn+1_t ) e (t )
n+l _ 2
vt = 5clczf0 Fe ——dt’
3C c they =) _ ZAtas(t )Gl
= _a T
512f(,iZe A (26)

ftn+1 T, Z(tn+1_t ) e (t )
+ € Td
tn ]2 at,

Using the finite difference approach, (t,) can be approximated as

follows,

oe(t") ) As(t)) ~ lim Ag
ot avso\ A At—0 (At) (27)

Plugging Eq. (27) into Eq. (26) and directly integrated,

chtl = e_jzf%C-n + EC C ftnﬂt—de_jZ(tn:dl_tl)Aedt’
] 5T Ja A2
et 3 2 At (28)
—e W Cn+5C CZA 4<1—exp<—?)>As

Combining the above terms, viscoelastic stress ¢%; can be expressed

as Eq. (29) in incremental form

[ee]

_2at
oV, (t"+1) = Z <A? +e U (Bin + C]“)
j=1,0dd

(29)

3 Tq[t4 _jzinﬂ T4 jzAt
5C1 Z[j——Cz e d +F]_2 1—exp _T_d Ae

In the above equation, there are (2 x j) number of state variables for

Bj and C; to be updated at each iteration. To apply for the ABAQUS
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user subroutine UMAT, the material Jacobian, i.e., tangent modulus,

the stress—strain curve slope should be defined. The Jacobian is

aA . )
calculated as a_A: where Ao 1s a small increment of Cauchy stress

and Ae is a small increment of strain. Therefore, the Jacobian for this

constitutive equation is defined as below

6A0_3C 14 3C o [T _%Jr ] ) j2At

3.2. Characterization of the viscoelastic constitutive

equation

In this section, Cauchy stress and the materials stiffness
derived from the section 3.1 were applied on ABAQUS UMAT. The
characteristic parameters listed in

Table 2 were substituted into the viscoelastic constitutive
equation. For the simple 1D model composed of 10 bar elements with
a total 1m length, a specific sinusoidal form of the strain input was
imposed, and stress responses were obtained. Then, dynamic moduli

(the storage modulus G’ and the loss modulus G”) and tané which
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are significant properties to characterize the viscoelastic material,
were calculated by investigating the relationship between the input
strain and the stress response. The input strain had the functional
form of e(t) = gy sin(wt) and the stress response was fitted as o =
oo sin(wt + §). From the relationship between g(t) and o(t), the G’ and

G” were determined as following Eq. (31).

12

¢ =%coss, 6" =2sins, tans=
—gocos ) _Sosm , tand = (31)

The storage modulus G’ physically means the elastic property of the
material (energy storage), it is calculated as the real part, and the
loss modulus G” means the viscous part of the material (dissipation
of the energy), it is calculated as the imaginary part of the dynamic
moduli. The tand 1s a characterizing parameter of the phase
difference between the input strain and the stress response. The
amount of viscoelasticity can be characterized by tané since it is
calculated by a ratio of G” to G’. In order to verify the incremental
formulation and the material tangent stiffness derived in section 3.1,
dynamic moduli and tand were compared to those from the direct

calculation of the Cauchy stress, as expressed in Figure 14.
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Figure 14 Verification of the incremental formulation and the material tangent

stiffness by comparing (a) dynamic moduli and (b) tan d to direct calculation

of the Cauchy stress.
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3.3. Invetigation of the crosslink effect and a Parametric

study of the viscoelastic constitutive equation

In this section, the effect of the crosslink effect on the polymer's
viscoelastic properties was studied. The crosslinked elastomer's
molecular model was generated by the crosslink algorithm [26] from
the initial model that contains randomly dispersed disulfide
crosslinkers, the weight percentage of 1,2%. As mentioned in Section
2.4.1, the difference of D, was applied to consider crosslink effects.
When the crosslink density was increased, D, was reduced due to
the restriction of the polymer chain mobility by the crosslinks. As
shown in Figure 15, increased dynamic moduli and decreased tané
peak was observed in a higher degree of polymerization and more

crosslinked models.
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Figure 15 (a) Dynamic moduli, (b) tand for varying crosslink density

(N=2000), (c) Dynamic moduli, (d) tané for
(N=4000), and (e¢) Dynamic moduli, (f) tand for varying chain length (1%

crosslinks).

varying crosslink density

To analyze the above results, the influence of each parameter

on the viscoelastic constitutive equation, dynamic moduli and tan§

were calculated for varying primitive path length, L and the self

diffusivity, D, was investigated. Since other parameters (a,b,n,, L)
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are only included in Z, which is multiplied on the Cauchy stress; they
can only affect the magnitude of the dynamic moduli. Thus, the

significant parameter which can influence on the intensity of tané

peakis tq = and the length of primitive path L and self diffusivity

2D,
D, were only considered as variables which are included in the 4.
As reference values, parameters of model 1 in

Table 2 were adopted where it has Ly = 707.294 and D, =
1.20 X 10~7cm?/s . Dynamic moduli and tand for 10'D,,~1073D.,, and

Lo~20L, are expressed in Figure 16 and Figure 17, respectively.
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tand for 5L,~20L, obtained at the frequency of w = 1072~10%rad/s for

varying tube length L.
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varying self diffusivity D..

As shown in the graphs, in the condition of large L and reduced
of D, had led to the rise of dynamic moduli values, and the reduction

of tand peak and frequency at the peak. Since the disentanglement

2
is diminished in such conditions, the value of term €

time tq = 2D,
was increased and affected the magnitude of moduli as can be seen
in Eq. (8). The reduction of the tané peak implies a reduction of the
dissipated energy, and it was physically compatible that the less

mobility of a molecular system and longer polymer chain length led

to the reinforcement of elasticity of the polymer system.
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4. Conclusions and future works

4.1. Conclusions

In this thesis, the incremental formulation of the 1D
viscoelastic Cauchy stress and the material tangent stiffness was
derived and verified by comparing dynamic moduli and tané with
those from the direct calculation of the Cauchy stress, which were
not reported in the previous literature [17]. In the viscoelastic
constitutive equation, the molecular simulations' parameters were
substituted that the molecular structure's characteristics can be
reflected in the macroscopic FEA. In the viscoelastic constitutive
equation, polymer chemistry parameters (n,,N) determined by the
initial condition of the molecular model, polymer physic parameters
(a,b,L) calculated from the PPA, and polymer dynamics parameter
(D) obtained from the coarse—grained MD is included.

To compose a proper coarse—grained potential for PI, the
energy renormalization method was adopted. However, the
correlation between renormalization parameters (a,f) was not
reported in the previous literature [9, 10]. In the higher a condition,

higher density and the lower specific volume were observed due to
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the reinforcement of the beads' interaction forces. Conversely, in the
higher B condition, lower MSD and shear stress were found due to
increased average distance between beads. Therefore, to consider
the correlation effect and find matching a and B simultaneously, the
multi—objective optimization algorithm [21] was adopted in the
Arrhenius regime. As a result, the optimized solutions were found as
linear sets. The optimized solutions were compatible with the
correlation; higher a was needed to compensate for escalated
specific volume and MSD in higher B condition. a(T) as a function of
the temperature was fitted as the sigmoidal function, Eq. (3). Then,
B(T) was found as Eq. (8) by matching the density, and a(T),B(T)
were verified by comparing MSD to the all—atom model. Since the
optimization algorithm to consider correlation effect was adopted in
addition to the previous energy renormalization method [9], the
enhancement of the correctness of the coarse—grained potential is
expected.

Comparing PPA and coarse—grained MD results from this
thesis to those of the previous literature [17], higher viscoelasticity

was shown due to the difference of D.. To obtain the smaller value
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of D. under 10™%c¢m?/s, calculation through the relation of D, « N~?2
[19] should be imposed, rather than the direct coarse—grained MD
simulations, since it needs huge simulation times and difficult to be
achieved in current state of nano—scale MD simulations. To
investigate crosslink effect on the viscoelasticity of the polymer,
difference in D, was considered to obtain dynamic moduli. Owing to
the restrictions of the polymer chains, D, was found as lower value
in the crosslinked models while other parameters from molecular
simulations were used same value as the corresponding free chain
models with the same N.

From the coarse—grained MD simulation and the PPA, the
characteristic molecular parameters were obtained and plugged into
the 1D viscoelastic constitutive equation and the dynamic moduli,
tané were calculated through the relationship between the sinusoidal
strain input and the stress response. As a result, the models with a
higher degree of polymerization and crosslink density has a lower

level of viscoelasticity. Furthermore, the influence of the molecular

parameters on the viscoelastic constitutive equation was investigated.

Through the parametric study, strengthen of the dynamic moduli and
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weakening of the viscoelasticity was found in the longer primitive

path length L, and smaller D, conditions.

4.2. Future works

As a subsequent study for the viscoelastic constitutive

equation [17], the combination of the nonaffine hyperelasticity [35],

and the Doi—Edward viscoelasticity [19] was conducted in 2016 [36].

However, it was conducted for the 2D FEA for a certain case of the
deformation gradients. Therefore, for future works, the full
incremental formulation and the derivation of the material tangent
stiffness matrix of 3D Cauchy stress for general deformation will be
done. By applying into the implicit FEA and the micro—morphic
theory [37, 38], a description of the visco—hyperelasticity of the
elasticity will be studied. While studying the effect of the crosslinks
on the viscoelastic properties of the polymer, the only effect of D.
was considered in this thesis. Therefore, PPA for crosslinked
networks [33, 36] will be conducted in subsequent studies.
Furthermore, by applying the optimized energy renormalization
method on the viscoelastic constitutive equation, the temperature—

dependence of the elastomer's viscoelastic properties and the

61



examination on the time—temperature superposition principle [39, 40]
are going to be conducted, since viscoelastic studies on frequency

domains were conducted in the previous literatures [17, 36].
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