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Abstract 

Molecular simulation informed 

viscoelastic constitutive model for 

amorphous polymer and its 

incremental formulation 

Jiwon Jung 

Department of Aerospace Engineering 

The Graduate School 

Seoul National University 
 

This thesis aims to develop a viscoelastic constitutive equation 

of elastomers that reflects the molecular characteristics. In the 

viscoelastic constitutive equation, each polymer characteristic 

variable is obtained from the primitive path analysis, the molecular 

model's initial condition, and the coarse-grained molecular dynamics 

(MD). To compose a coarse-grained model of the elastomer, the 

energy renormalization method was employed. The molecular 

simulation is accelerated through the energy renormalization method, 
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and the same level of precision as the conventional all-atom MD is 

conserved by controlling the interaction parameters between 

molecules according to temperature. However, since the existing 

method did not consider the correlation between the two parameters 

included in the potential, the multi objective optimization algorithm 

was adopted and verified. Furthermore, the viscoelastic properties of 

the elastomer were obtained from the viscoelastic constitutive 

equation. Since the previous literature did not report the incremental 

formulation for the implicit finite element analysis, the incremental 

formulation of the viscoelastic constitutive equation and the tangent 

stiffness matrix's derivation was suggested. Moreover, the study on 

crosslink effect and a parametric study were conducted by 

investigating the effect of the variables included in the viscoelastic 

constitutive equation on the dynamic properties. 
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1. Introduction 

1.1. Background and motivation 

In contemporary cutting-edge industries, composites are a 

widely studied field of research for enhancing performance 

efficiencies. The most commonly used composites for structure 

consist of the reinforcement with high stiffness and the matrix with 

high toughness that holds reinforcements. Due to their high strength 

with light weights, they are utilized in various fields, including 

aerospace, marine, fuel tanks, etc. However, since they show 

anisotropic thermo-mechanical characteristics and unique failure 

modes such as delamination, it makes the analysis of composites 

more difficult. For composites, the simple rule of mixture, failure 

criteria like Tsai-Wu, Tsai-Hill [1], and Mori-Tanaka [2] 

homogenization methods were developed as pioneering researches 

for composites. 

Furthermore, with the discovery of nanoscale reinforcements 

including carbon nano tubes (CNT) and graphenes, more variables 

were considered. Therefore, the importance of the computer 

simulations describing physical phenomena without experiments has 
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been elucidated to reduce economic and temporal resources 

consumed during the classical trial-and-errors.  

     Structural analysis with computer simulations has been mainly 

conducted with macroscale continuum finite element analysis (FEA). 

Expanded from elastic material analysis, several material models to 

depict nonlinearities generated from viscoelasticity and 

hyperelasticity in FEA have been suggested. As the simplest model, 

the Generalized Maxwell Model and the Neo-Hookean model are 

commonly used to analyze viscoelasticity and hyperelasticity, 

respectively. However, the aforementioned models were empirically 

developed, and they contain mathematical parameters that do not 

have any physical meanings. Therefore, to apply such models to FEA, 

experiments should be executed to fit mathematical parameters and 

cannot reflect the effects of the matrix's molecular structures. Thus, 

to study polymer nano-composites with diverse molecular 

srtuctures, the molecular dynamics (MD) simulations were 

developed.  

From MD simulations, material properties are calculated through 

the Newton equation of force fields defined by the interaction 
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between atoms. Force field terms in all-atom scale MD can be 

classified into two categories: (1) non-bond terms, including Van der 

Waals interactions and coulomb forces, (2) and bond terms including 

bond, angle, dihedral, improper, etc., which acts between chemically 

bonded atoms. Since MD simulations predict physical behavior at the 

molecular scale, researches for several phenomena such as phase 

change and interphase properties that were difficult to study in 

experimental scale have been attempted in the MD simulation. 

However, in MD simulation, it has limitations that they are conducted 

at the nano length and time scale, and they have substantial 

discrepancy from macroscales. Therefore, to compensate for 

limitations with nanoscale MD and macroscale FE simulations, 

several researches to bridge between nano and macroscales were 

conducted.  

To study the viscoelasticity of elastomer in MD scale, the 

extensive time to observe time-dependent properties of the polymer 

is consumed. Thus, to reduce computational resources during MD 

simulations, the coarse-grained MD was developed. In coarse-

grained MD, several adjacent atoms were combined into a single bead, 
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and the overall degree of freedom in the molecular system is reduced. 

However, since the computation accuracy is sacrificed, several 

methodologies to find proper coarse-grained MD potential matching 

with all-atom simulations were developed [3-6]. The coarse-

grained MD can be classified into the degree of coarse-graining. At 

the finest level, TraPPE(UA) potential [3] combines a carbon atom 

and adjacent chemically bonded hydrogen atoms, and they were 

called united-atom force fields. In a molecular level of coarse-

graining, the Iterative Boltzmann Inversion (IBI) method [4] is 

commonly adopted, and even several molecules were combined in 

elastomer studies with MD [6]. Even though IBI had the strength to 

describe the structural properties, some results from non-

equilibrium MD simulations such as mechanical moduli and 

thermomechanical properties were not matched since frictions 

between polymer chains were diminished. Therefore, to compensate 

for such effects, the dissipative particle dynamics method (DPD) [7, 

8] was adopted by adding non-conservative forces between beads. 

The temperature-transferable energy renormalization method was 

developed to develop force fields for thermodynamic studies [9, 10]. 
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Even by such efforts to expand MD into the mesoscale, they are 

conducted at the microscales and have a huge discrepancy with 

experimental scale. 

Several constitutive equations were developed in the analysis 

of viscoelasticity and hyperelasticity of elastomers with FEA that can 

directly reflect the molecular structure difference and include 

physical parameters rather than empirically developed mathematical 

parameters. As pioneering research for the elastomer hyperelastic 

model, Arruda-Boyce developed an 8-chain network model for 

crosslinked elastomers [11]. For the viscoelastic constitutive 

equation, the Bergström-Boyce model [12] and microsphere model 

[13] were proposed. Moreover, the expansion of classical FEA into 

multi-scale micro-morphic analysis was also tried to bridge 

between nano and macroscale. Park et al. [14, 15] studied the 

polymer's inhomogeneous deformation by applying SS curves from 

MD at the microscale and experimental results at the macroscale. 

They showed that the size of microscale affects the strain rate at the 

microscale and fast strain rate over  in MD has been 

accomplished. Tang et al. [16] developed 2D model of elastomer 
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where Arruda-Boyce [11] hyperelasticity for crosslinked network 

in macroscale and viscoelasticity for free chain network in microscale 

were adopted. In 2012, Li et al. [17] developed a molecular 

simulation simulation-informed viscoelastic constitutive equation 

with Doi-Edward s model developed based on the tube theory [18, 

19] and where all the parameters have exact physical meanings. In 

the tube theory, motions of each polymer chain in the free chain 

network is assumed to move as moving in the virtual tube by 

constraints from neighborhood chains.  

The viscoelastic model established from the tube theory 

contains parameters oriented from polymer dynamics, polymer 

physics, and polymer chemistry. Parameter from polymer dynamics 

is determined from coarse-grained MD simulation, and parameters 

from polymer chemistry are determined from polymerization 

condition when manufactured. Polymer physics parameters are based 

on tube theory, and it can be obtained from primitive path analysis 

code (Z1 code) developed by M. Kröger [20]. In this paper, we 

performed coarse-grained MD and primitive path analysis with Z1 

code. During the coarse-grained MD, the energy renormalization 
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method was adopted modified with the multi-objective optimization 

algorithm [21]. Then, by plugging parameters from the molecular 

simulations into the viscoelastic constitutive equation, the 

viscoelastic properties of polymer, i.e., dynamic modulus and  

were obtained, and the effects of molecular parameters on them were 

investigated. Moreover, the crosslink effect on the polymer 

viscoelasticity, incremental formulation, and the derivation of tangent 

stiffness to apply the 1D Doi-Edward viscoelastic model on ABAQUS 

user subroutine UMAT was studied in this thesis. Through expansion 

of the formulation to 3D viscoelastic constitutive equation with 

arbitrary deformation gradients, application to general implicit FEA 

is expected.  

 

1.2. Organization of the thesis 

This thesis is organized as follows. In the next section, the 

molecular modeling of the polyisoprene model is described (section 

2.1). A review of the coarse-grained potential with the energy 

renormalization method and an investigation of the correlation effect 

between two renormalization parameters is discussed (section 2.2).  
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In Section 2.3, considering the correlation effect, the multi-objective 

optimized coarse-grained potential is suggested and verified. Then, 

the primitive path analysis is conducted, and the characteristic 

molecular parameters are proposed in Section 2.4. Section 3 explains 

the application of the viscoelastic constitutive equation to FEA. The 

incremental formulation of the viscoelastic Cauchy stress and 

material tangent stiffness is derived in Section 3.1. The verification 

of the formulation by comparison with direct calculation of Cauchy 

stress is discussed in Section 3.2. Then, the parametric study on the 

viscoelastic constitutive equation was conducted and described in 

section 3.3. The conclusions of this thesis and plans for future works 

are suggested in Section 4. 
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2. Molecular simulation methods and analysis 
based on the tube theory 

To compose tube theory-based viscoelastic constitutive 

equations, polymer parameters from molecular simulations with 

coarse-grained MD and PPA should be conducted. From the coarse-

grained MD, the self-diffusivity ( ) is calculated as the polymer 

dynamics oriented parameter. The molecular model for the 

calculation of coarse-grained potential of the polyisoprene (PI) was 

generated through the anionic polymerization algorithm which was 

modified from the previous work of the free radical polymerization 

algorithm [22]. Through the PPA, molecular characteristic 

parameters such as tube diameter (a), tube length (L), Kuhn length, 

are obtained. The parameters from polymer chemistry, the average 

number of monomers in chains (N) and the number of chains in a unit 

volume were determined from the initial condition of the molecular 

models. For the analysis of viscoelastic properties, six molecular 

models were built. Two kinds of molecular models include (1) 20 

chains with 2000 monomers in each chain, and (2) 10 chains with 

4000 monomers in each chain to have an equal number of total 

monomer beads, Each kind of models contain disulfide crosslinkers 
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with a weight percentage of 0%, 1%, 2%. The center of the mass of 

each isoprene molecule was mapped into a single bead coordinate in 

the simulations depicted in Figure 1 while sulfur atoms were 

calculated in all-atom scale. 

Figure 1 (a) Description of the isoprene molecule combined into a single bead in 

the coarse-grained model and (b) an illustration of the single PI chain. 

 

2.1. Molecular modeling of the polyisoprene model for 

coarse-grain MD force field. 

To build a molecular model of PI, the anionic polymerization 

algorithm was adopted. Modified from the free radical polymerization 

algorithm [22], the anionic polymerization algorithm was 

accomplished by removing the termination reaction when two other 

reactive atoms met. Before the polymerization, the initial model had 

2000 isoprene molecules, and ten initiators were included, randomly 
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dispersed. In this thesis, the anionic polymerization algorithm was 

conducted as follows: (1) the initiation step in which initial reactive 

atoms were activated in the initiator, (2) and the propagation step in 

which the chains grew, new monomers were reacted with the chain 

ends. In this algorithm, the propagation step was assumed to progress 

in a head-to-tail direction. The polymerization algorithm was 

conducted with the commercial molecular dynamics software, 

Materials Studio 2017 R2 [23]. The initiation step was represented 

in the simulation by randomly dispersing the initiator with reactive 

atoms within the monomers using the amorphous cell module included 

in the software. Two types of reactive atoms and potential reactive 

atoms were assigned in each molecule to describe the propagation 

steps of the anionic polymerization. The reactive type 1 atoms were 

reactive chain ends, and the reactive type 2 atoms were head atoms 

in each molecule. When two different types of reactive atoms were 

within a certain cutoff distance, they were reacted and form new 

chain ends. Then, the potential reactive atom site located at the tail 

of the molecule was changed into reactive site 1. As the propagation 

step was operated iteratively, the free chain network of the polymer 
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was formed. To compensate the artificial bond formation from the 

propagation step, 2000 steps of the geometry optimization with the 

conjugate gradient method were performed for every ten steps. The 

propagation steps were iteratively done until 95% of the monomers 

were reacted. If any set of different atom types were not found, the 

cutoff distance was increased by  from  to . Then, 2ps of 

NPT ensemble under 1atm, 300K was applied. After the 

polymerization, the PI model of  with 95% of total 

monomers were reacted, was generated. The polymerization 

procedures were operated with COMPASS II force field [24, 25], and 

the overall scheme and the flow chart is shown in Figure 2 and Figure 

3, respectively. 
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Figure 2 Illustration for the propagation step in the anionic polymerization 

algorithm. 
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Figure 3 Flow chart for the anionic polymerization algorithm. 
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2.2. Investigation on the energy renormalization method 

2.2.1. Literature review of the energy renormalization method 

The coarse-grained MD method with the energy 

renormalization method for glass-forming liquids was first proposed 

in 2017 by Xia et al. [9]. Based on the Adam-Gibbs theory, coarse-

grained force field parameters were controlled as functions of the 

temperature. In the energy renormalization method, nonbonded 

interactions between beads were expressed as following Eq. (1). 

 (1) 

where  and  determine the energy well depth and equilibrium 

distance.  is the cutoff distance where non-bond potentials were 

only calculated for pair of beads within , and it was set as . In 

this thesis, 9-6 Lennard Jones form was adopted while 12-6 

Lennard Jones form of the potential was adopted in the literature [9]. 

To control  and , the renormalization parameters  and  was 

multiplied on the initial Lennard Jones parameter  and  which 

were obtained from the Inverse Boltzmann method. The 

renormalization parameters were expressed as functions of the 
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temperature. To obtain , it was found by matching properties from 

coarse-grained properties with all-atom properties in three 

different temperature regimes. In the Arrhenius regime ( ) 

where molecular properties follow the Arrhenius equation,  was 

found by matching the self-diffusivity of the molecular system, 

which was calculated from the mean square displacement (MSD) as 

shown in Eq. (2). 

 (2) 

where  is the coordinate of beads at time t and  is the 

initial coordinate of beads. The Arrhenius temperature  was 

determined as the point where the  was escaped from the linear 

relationship in the Arrhenius plot. In the rubbery regime ( ) 

where the polymer system shows rubbery characteristics,  was 

determined by matching the segmental relaxation time  with all-

atom models. The glass transition temperature  was determined as 

201.1K where the thermal expansion coefficient changes during the 

cooling down simulation [26]. In the glassy regime (  where 

the polymer system shows glassy characteristics,  was determined 

by matching the shear stress curve, since the mobility of the polymer 
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system is restricted. After fitting  with the above procedures,  

was then found by matching density with the all-atom model. As a 

result, the renormalization parameters were reported as Eq. (3) and 

Eq. (4) in the literature [9]. 

 (3) 

 (4) 

where  are  values at the Arrhenius regime and the glassy 

regimes, and k, , a, b are constants. However, there were no 

considerations about correlation effects of  and  even though the 

density of the system can strongly affect MSD and shear stress in 

the literature [9]. Therefore, the multi-objective optimized coarse-

grained potential in the Arrhenius regime is proposed in this thesis. 

Through the multi-objective optimization algorithm, MSD and 

density can be matched simultaneously, considering the correlation 

effect. 
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2.2.2. Correlation effects between renormalization parameters 

In this section, the correlation effect between the renormalization 

parameters was investigated in the Arrhenius regime and the glassy 

regime. Before studying the correlation effect, the initial potential 

values  were obtained, and  were determined to establish 

each temperature regime. 

To obtain  and , the Inverse Boltzmann Method (IBM) [4, 9] was 

conducted in 300K. In the IBM, the non-bond potential is obtained 

from the inverse Boltzmann of the radial distribution function g(r), 

and the bond length distribution between beads d(r) as Eq. (5). 

 (5) 

where  is the Boltzmann constant, and T is the temperature. 

Similarly, the bond potential is obtained from the inverse Boltzmann 

of the bond length distribution between beads. As the bond 

distribution is fitted as the Gaussian distribution, the harmonic 

function form of the bond potential is obtained as Eq. (6) and Eq. (7). 

 (6) 

 (7) 
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where K is the constant for the strength of the bond and  is the 

equilibrium bond distance. The model with 1000 isoprene monomers 

was generated for the calculation of g(r) to remove bond length 

effects. To calculate bond length distribution d(r), the model with 10 

chains which has 100 monomer were polymerized each, was 

generated, The g(r) and d(r) were calculated by averaging 100 

trajectories obtained from 1ns NVT ensemble after 100ps of NPT 

ensemble under 1atm, 300K condition to converge the density. The 

simulations to get trajectories were conducted with the materials 

studio and COMPASS II force field. The Andersen thermostat [27] 

and the Berendsen barostat [28] were applied to control the pressure 

and the temperature. For calculating the bond length, the distance 

between the adjacent centers of carbon-carbon bonds connecting 

between isoprene molecules, and the distribution functions and initial 

potentials from IBM are shown in Figure 4. The initial potential 

parameter  and  were determined as the value at the minimum 

point of the inverse Boltzmann of g(r). 



 

 27 

 
Figure 4 (a) The radial distribution function g(r) and initial non-bond potential 

obtained from the Inverse Boltzmann of g(r). (b) The bond length distribution 

fitted with the Gaussian distribution and the harmonic form of the bond potential. 

To determine ,  was calculated for 450K~1000K 

condition, and the Arrhenius plot was drawn. As expressed in Figure 

5(a), 750K was determined as  where the linear relationship 

between the logarithm of  and reciprocal of the temperature was 

escaped. The MSD in each temperature condition was calculated from 

the 1ns simulation after the 800,000 steps of NPT and 500,000 steps 

of NVT ensemble to converge density and relax the system. 

Moreover, to obtain , the cooling down simulation with 

 was conducted and the relationship between the density and 

the temperature was plotted. As shown in Figure 5(b), 201.1K was 

determined as  where the gradients in the figure changed. 

Molecular simulations under this part including the calculation of 

 was conducted with the molecular dynamics software, 
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LAMMPS [29], and Nose-Hoover thermostat and barostat [30] were 

employed. 

Figure 5 (a) The Arrhenius temperature ( ) determined as a point where the 

linear relationship escaped in the Arrhenius plot of , (b) and the glass transition 

temperature ( ) determined as a point where the thermal expansion coefficient 

changes. 

To investigate the correlation effect between two 

renormalization parameters, the effect of the renormalization 

parameters on each other's fitting variables was investigated in the 

Arrhenius regime and the glassy regime. In the Arrhenius regime 

(850K), the specific volume of the molecular system was calculated 

for varying  under constant , and conversely, the MSD 

was calculated for varying  under constant . As 

shown in Figure 6, the increase of MSD for increasing  and 

decrease of the specific volume for increasing  was observed. 
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Since the mobility calculates MSD, MSD was increased in extensive 

volume conditions led by larger  values.  Moreover, when  and 

the energy well depth were increased, it strengthened the interaction 

forces between molecules, and therefore, the specific volume of the 

molecular system had decreased. 

  
Figure 6 (a) MSD calculated for varying  under constant  condition, (b)  and 

the specific volume calculated for varying  under constant  condition at 850K 

Furthermore, in the glassy regime (160K), the shear stress 

was calculated for varying  under constant . 

Conversely, the specific volume was calculated for varying 

 under constant  condition. The pure shear 

deformation with  of strain rate was applied to obtain 

shear stress of the system. As shown in Figure 7, higher shear stress 

was observed in low  conditions since molecules are more densely 

packed in low specific volumes, and therefore, frictions between 
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polymer chains increase. The calculation of the specific volume 

showed a similar trend with the results in the Arrhenius regime. 

However, the dependency of the specific volume on  was smaller 

than the dependency in the high-temperature condition since the 

molecules are sufficiently condensed each other. 

Figure 7 (a) The shear stress curves calculated for varying  under constant  

condition, (b) and the specific volume calculated for varying  under constant  

condition at 160K 

As discussed above, it was found that two renormalization 

parameters were correlated, and they affect each other s` fitting 

parameters. Therefore, unlike previous literature [9],  and  

should not be found independently but matched simultaneously. To 

match MSD and the density simultaneously in the Arrhenius regime, 

the multi-objective optimization algorithm was adopted. Since the 
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correlation effect was smaller in the glassy regime,  was found by 

matching the shear stress curves, and then  was obtained. 

 

2.3. Multi-objective optimized coarse-grained MD potential  

2.3.1. Optimization results and parameter function 

To obtain a suitable solution for  and  in the Arrhenius regime, a 

multi-objective optimization algorithm was applied to find the set of 

parameters that match the MSD and density simultaneously as the 

results from all-atom simulations. The reference all-atom data was 

calculated from the identical procedure conducted for the 

investigation of the correlation effect. To make reference all-atom 

data more precise, the all-atom simulations were conducted five 

times and three times then, averaged for calculating MSD and shear 

stress, respectively. The non-dominant sort genetic algorithm 

(NSGA-II) [23] was applied for the algorithm that uses two 

coefficients of decision variables ( , ) and two objective functions 

(root-mean-square error and density error between MSD curves. 

The optimization algorithm was operated for 50 generations and 20 
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populations. The mutation parameter was set as 50 to prevent 

solutions from converging into local minima. The boundaries for the 

optimized decision variables were set as  and  

where the simulations were stable. In the Arrhenius regimes, the 

optimization algorithm was operated four times at each temperature 

condition, 750K to 950K with 50K intervals. After the optimization, 

some solutions with large error, 0.03  for density and 100  

for root mean square error for MSD curves were excluded. The 

optimized solutions of  and  are plotted in Figure 8. 
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Figure 8 Multi-objective optimized solutions of  and  in the Arrhenius 

regime found by matching MSD and density with the all-atom results. 

As shown in the graph, the optimized solutions in each temperature 

were expressed as linear sets. Such solutions are compatible with 

the correlation effect that higher  is necessary for higher  

conditions to compensate for increased MSD and density. In the 

constant  condition, higher  values were needed in the higher 

temperature condition since the molecular model has a higher specific 

volume. Therefore, more considerable equilibrium distances between 

beads should be accomplished to match the specific volume. To find 
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 and  as functions of the temperature, a specific point over linear 

sets of solutions should be selected. Since arbitrary points over the 

lines can be solutions, the constant  where the most solutions 

are concentrated was selected in this thesis to compose  as a 

function of the temperature in the form of Eq. (3).  In the glassy 

regime,  was found by matching the shear stress. As expressed in 

Figure 9, a constant value of   found for the glassy regime. 

 
Figure 9  by matching shear stress curves with the all-atom model r

esults in the glassy regime. 
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To determine  values in the rubbery regimes,  was fitted as a 

function of the temperature by substituting  and  into 

Eq. (3). Therefore,  was obtained as a sigmoidal function as 

shown in Figure 10(a). Then, under the condition of  obtained,  

was found by matching the density with the all-atom model. As a 

result,  was found as the form of Eq. (8). The detailed parameter 

values of  and  are listed in Table 1. 

 (8) 

  

Figure 10 (a)  fitted with the sigmoidal function as Eq. (3), (b)  found 

by matching the density with all-atom results under  condition obtained from 

(a). 
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Table 1 Constant value of the renormalization parameters , . Their 

functional forms are shown in Eq. (3) and Eq. (8), respectively. 

Parameter 

Value at the 

glassy regime 

( ) 

Value at the 

Arrhenius 

regime ( ) 

k(/K) 

Transition 

temperature 

( , K) 

 4.5 3.0 0.015 475 

 1.08 1.51 0.0085 690 

 

2.3.2. Verification of the potential 

In section 2.3.1,  in the rubbery regime was fitted with the 

mathematical function, Eq. (3), and should be verified. Therefore, in 

the rubbery regime (250K~700K), MSD was calculated and 

compared with those from all-atom simulations. As expressed in 

Figure 11, the self-diffusivity coefficient  was matched between 

the coarse-grained model and the all-atom model. It implies that the 

coarse-grained potential composed by the procedures in the above 

sections was successfully built to mimic the all-atom simulations. 
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Figure 11 Self-diffusivity coefficient  calculated from MSD compared 

between the coarse-grained model and the all-atom model to verify the coarse-

grained potential. 

 

2.3.3. Coarse-grained potential of the crosslinked elastomer 

For the study of the crosslinked elastomer, the coarse-grained 

potential parameters of the sulfur are necessary. Non-bond 

potentials and the bond potentials of the sulfur-sulfur interactions 

and the isoprene-sulfur interactions were obtained. Since sulfur 

atoms were calculated for each atom in this study, parameters 



 

 38 

associated with sulfur-sulfur interactions were obtained from the 

all-atom parameters in the polymer consistent force field (PCFF) 

[31]. The bond potential's quartic form was adjusted into harmonic 

form to match isoprene molecules' interactions. To obtain 

interactions between sulfur atoms and isoprene molecules, a 

combination rule for different atoms from the PCFF was applied.  

      To build the crosslinked model of the polyisoprene, the models 

with 1%, 2% weight percentage of disulfide crosslinkers randomly 

dispersed, was generated. From the initial model, disulfide and 

adjacent isoprene molecules were bonded by a crosslink algorithm 

with iterations [32]. In the crosslink algorithm, the pair of isoprene 

molecule and sulfur atom was found within a certain value of cutoff 

radius ( ), then bonded. The bond trial was tried iteratively until 

100% of the sulfur atoms were bonded. The figure of the coarse-

grained model of the crosslinked polyisoprene is shown in Figure 12. 
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Figure 12 Illustration of the coarse-grained model of the 100% crosslinked model, 

where blue particles are isoprene molecule, yellow particles are isoprene 

molecules bonded to disulfide crosslinkers, and green particles are sulfur atoms.  

 

 

 

2.4. Primitive path analysis 

The polymer physics-oriented parameters included in the 

Doi-Edward s viscoelastic constitutive equation were obtained from 

the primitive path analysis (PPA). Through PPA, the free chain 

network of the polymer is analyzed based on the tube theory. In the 

tube theory, the movement of the polymer chains are described as in 
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the virtual tube, since the entanglements with adjacent polymer 

chains restrict the movement. The viscoelasticity of the polymer 

system is characterized by properties of the tube such as the tube 

diameter(a), the tube length(L, i.e., the primitive path length), and 

the Kuhn length (b), which are the outputs of the PPA. In this thesis, 

PPA was executed through Z1 code [20, 33], and it was operated as 

following steps: (1) The ends of the polymer chains were fixed, and 

each backbone bond in polymer chains were replaced by 

infinitesimally thin and unable to be crossed lines. (2) Then, their 

paths were iteratively reduced and converged into the final state. 

Finally, the shortest path connecting chain ends restricted by the 

entanglements with adjacent chains, is determined as a primitive path. 

After the PPA is operated on the polymer system's free chain 

network, it was simplified, as illustrated in Figure 13. For the 

crosslinked model, the same PPA parameters as the free chain model 

were used. The difference of the  was considered for the analysis 

of the polymer viscoelasticity. The polymer characteristic 

parameters obtained from the PPA and the coarse-grained MD are 

listed in  
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Table 2.  

 
Figure 13 Illustration of the primitive path analysis: The free chain network of 

the polymer model was simplified as the shortest path connecting fixed chain ends 

constrained by entanglements with nearby polymer chains.  

 

Table 2 Polymer chemistry-oriented parameters from initial condition of the 

molecular model ( ,N), polymer physics-oriented parameters from PPA (L,a,b) and 

polymer dynamics parameter from the coarse-grained MD (Dc). For the crosslinked 

model, the difference of Dc was considered. avalues of the model was taken from [17]. 

 N    
Sulfur 

weight % 
 

 2000 707.29 35.38 3.54 

0  

1  

2  

 4000 1521.7 29.00 3.81 

0  

1  

2  
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a 1882a 1378a 64a 6.7a 0 a 

 

 For the model with the longer chain length, longer Kuhn length 

and smaller tube diameter was observed, since there are more 

entanglements and constraints for the longer-chain model. Moreover, 

in the coarse-grained MD,  was also calculated as a smaller value 

due to the increased restriction for the models. However, more 

considerable Kuhn length, tube diameter, and much small  was 

found in the previous literature [17]. Such discrepancy was occurred 

from the difference of the coarse-grained potential and the initial 

condition of modeling.  
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3. Implementation of the viscoelastic constitutive 
equation on FEA 

3.1. Incremental formulation of the viscoelastic constitutive 

equation 

In this section, the development of the tube theory-based 

viscoelastic constitutive equation by Doi-Edward [19] is introduced, 

and the incremental formulation is proposed. Although the 

implementation of the viscoelastic Cauchy stress in FEA was 

proposed in the former literature [16, 17] with molecular simulations, 

the incremental formulation and the derivation of the material tangent 

stiffness, i.e., Jacobian, which are necessary for implicit FEA, were 

not reported. The incremental formulation and the materials tangent 

stiffness derived in this section were applied to the commercial FEA 

software, ABAQUS user subroutine, and verified by comparing to 

results from the Cauchy's direct calculation stress. 

  The viscoelastic Cauchy stress of the polymer-free chain 

network was calculated by the tensile force applied to each polymer 

chain, averaged for a tangent vector  of chain segment s as Eq. (9). 
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Herein, the probability distribution function  which physically 

implies the probability of the tangent vector  at the segment s at 

time t, was adopted to take the average, as shown in Eq. (10). In Eq. 

(9), <*> is an averaging operator and tensile force on the primitive 

chain is . 

 (9) 

 (10) 

In Eq. (4),  is the probability of the chain segment s would be 

remained in the reference tube at the original configuration at time t, 

and F(t,t ) is the deformation gradient tensor from time t  to t.  

is the Dirac delta function, and the integral is calculated for the unit 

sphere domain to consider every direction of the tangent unit vector, 

 and .  depends on the relaxation time of the polymer 

network, and it was modified to take form as 

 (11) 
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where  is the disentanglement time, and the standard 

Mittag-Leffler function  was introduced in [17] to consider the 

effect of crosslinks or nonuniform distribution of polymer networks' 

molecular weight. For the free chain network of the uniformly 

distributed molecular weight, , and the equation is reduced to 

the Doi-Edward model [34], since . Collecting those 

above equations, viscoelastic Cauchy stress is written as below: 

 (12) 

where 

 (13) 

 
(14) 

 (15) 

In the above equations,  is the second-order identity tensor. Li et 

al. [17] modified Eq. (12) for the particular case of uniaxial 

elongation with a small strain. In this case, the deformation gradient 

F(t,t ) is expressed as Eq. (16). Therefore, the normal viscoelastic 
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Cauchy stress along the loading direction is shown as Eq. (17) and 

(18), as a function of 1-dimensional small strain . 

 (16) 

 (17) 

where  is the tube length at the reference configuration, and 

 
(18) 

In the above equations, they proposed the only formulation of Cauchy 

stress for 1d finite element analysis (FEA). However, there was no 

derivation of the equation's numerical formulation for application to 

the implicit analysis of ABAQUS UMAT. Thus, the development of 

incremental formulation and tangent stiffness will be described 

precisely in this paper.  

Since our molecular models for the PPA had uniform molecular 

weight distribution,  was adopted. Then, the viscoelastic 

Cauchy stress in Eq. (17) can be shown as below 
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(19) 

where,  

Eq. (19) has three terms to calculate; each term was separately 

formulated in this thesis. Since there is no integration in the first term, 

it does not have any step before the incremental formulations. For 

the second term, it can be directly integrated for variable t . 

 (20) 

For the last term, it contains two other functions of t  to integrate. 

Therefore, partial integration was performed. 

 

 

 

(21) 
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In Eq. (20) and (21), the first terms of Eq. (20) and Eq. (21) can be 

canceled out each other. And also, for the second term in Eq. (21), it 

is disappeared since initial strain  equals 0. Thus, only the 

second term in Eq. (20) and integration term in Eq. (21) are left, and 

the arranged form of Cauchy stress is shown below 

 (22) 

In incremental form, the above equation can be shown below Eq. (17) 

for the n+1 increment of a time step. 

 (23) 

Similar to the above steps of Eq. (20),(21), three terms were 

formulated separately. For the first term in Eq. (23), 

 (24) 

For the second term, 

 

 

 

(25) 

For the last term, 
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(26) 

Using the finite difference approach,  can be approximated as 

follows,  

 (27) 

Plugging Eq. (27) into Eq. (26) and directly integrated, 

 

 

(28) 

Combining the above terms, viscoelastic stress  can be expressed 

as Eq. (29) in incremental form 

 

 

(29) 

In the above equation, there are ( j) number of state variables for 

 and  to be updated at each iteration. To apply for the ABAQUS 
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user subroutine UMAT, the material Jacobian, i.e., tangent modulus, 

the stress-strain curve slope should be defined. The Jacobian is 

calculated as  where  is a small increment of Cauchy stress 

and  is a small increment of strain. Therefore, the Jacobian for this 

constitutive equation is defined as below  

 (30) 

 

3.2. Characterization of the viscoelastic constitutive 

equation 

In this section, Cauchy stress and the materials stiffness 

derived from the section 3.1 were applied on ABAQUS UMAT.  The 

characteristic parameters listed in  

Table 2 were substituted into the viscoelastic constitutive 

equation. For the simple 1D model composed of 10 bar elements with 

a total 1m length, a specific sinusoidal form of the strain input was 

imposed, and stress responses were obtained. Then, dynamic moduli 

(the storage modulus G  and the loss modulus G ) and  which 
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are significant properties to characterize the viscoelastic material, 

were calculated by investigating the relationship between the input 

strain and the stress response. The input strain had the functional 

form of  and the stress response was fitted as 

. From the relationship between  and , the G  and 

G  were determined as following Eq. (31).  

 (31) 

The storage modulus G  physically means the elastic property of the 

material (energy storage), it is calculated as the real part, and the 

loss modulus G  means the viscous part of the material (dissipation 

of the energy), it is calculated as the imaginary part of the dynamic 

moduli. The  is a characterizing parameter of the phase 

difference between the input strain and the stress response. The 

amount of viscoelasticity can be characterized by  since it is 

calculated by a ratio of G  to G . In order to verify the incremental 

formulation and the material tangent stiffness derived in section 3.1, 

dynamic moduli and  were compared to those from the direct 

calculation of the Cauchy stress, as expressed in Figure 14. 
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Figure 14 Verification of the incremental formulation and the material tangent 

stiffness by comparing (a) dynamic moduli and (b)  to direct calculation 

of the Cauchy stress. 
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3.3. Invetigation of the crosslink effect and a Parametric 

study of the viscoelastic constitutive equation 

In this section, the effect of the crosslink effect on the polymer's 

viscoelastic properties was studied. The crosslinked elastomer's 

molecular model was generated by the crosslink algorithm [26] from 

the initial model that contains randomly dispersed disulfide 

crosslinkers, the weight percentage of 1,2%. As mentioned in Section 

2.4.1, the difference of  was applied to consider crosslink effects. 

When the crosslink density was increased,  was reduced due to 

the restriction of the polymer chain mobility by the crosslinks. As 

shown in Figure 15, increased dynamic moduli and decreased  

peak was observed in a higher degree of polymerization and more 

crosslinked models. 
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Figure 15 (a) Dynamic moduli, (b)  for varying crosslink density 

(N=2000), (c) Dynamic moduli, (d)  for varying crosslink density 

(N=4000), and (e) Dynamic moduli, (f)  for varying chain length (1% 

crosslinks). 

 

To analyze the above results, the influence of each parameter 

on the viscoelastic constitutive equation, dynamic moduli and  

were calculated for varying primitive path length, L and the self 

diffusivity,  was investigated. Since other parameters (a,b, , L) 
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are only included in , which is multiplied on the Cauchy stress; they 

can only affect the magnitude of the dynamic moduli. Thus, the 

significant parameter which can influence on the intensity of  

peak is  and the length of primitive path L and self diffusivity 

 were only considered as variables which are included in the . 

As reference values, parameters of model 1 in  

Table 2 were adopted where it has  and 

. Dynamic moduli and  for , and 

 are expressed in Figure 16 and Figure 17, respectively. 
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Figure 16 (a) Storage modulus, (b) Loss modulus, (c)  for  and (d) 

 for  obtained at the frequency of  for 

varying tube length L. 
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Figure 17 (a) Storage modulus, (b) Loss modulus, (c)  for  

and (d)  for  calculated at  for 

varying self diffusivity . 

As shown in the graphs, in the condition of large L and reduced 

of  had led to the rise of dynamic moduli values, and the reduction 

of  peak and frequency at the peak. Since the disentanglement 

time  is diminished in such conditions, the value of term  

was increased and affected the magnitude of moduli as can be seen 

in Eq. (8). The reduction of the  peak implies a reduction of the 

dissipated energy, and it was physically compatible that the less 

mobility of a molecular system and longer polymer chain length led 

to the reinforcement of elasticity of the polymer system. 
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4. Conclusions and future works 

4.1. Conclusions 

In this thesis, the incremental formulation of the 1D 

viscoelastic Cauchy stress and the material tangent stiffness was 

derived and verified by comparing dynamic moduli and  with 

those from the direct calculation of the Cauchy stress, which were 

not reported in the previous literature [17]. In the viscoelastic 

constitutive equation, the molecular simulations' parameters were 

substituted that the molecular structure's characteristics can be 

reflected in the macroscopic FEA. In the viscoelastic constitutive 

equation, polymer chemistry parameters ( ,N) determined by the 

initial condition of the molecular model, polymer physic parameters 

(a,b,L) calculated from the PPA, and polymer dynamics parameter 

( ) obtained from the coarse-grained MD is included.  

To compose a proper coarse-grained potential for PI, the 

energy renormalization method was adopted. However, the 

correlation between renormalization parameters ( ) was not 

reported in the previous literature [9, 10]. In the higher  condition, 

higher density and the lower specific volume were observed due to 
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the reinforcement of the beads' interaction forces. Conversely, in the 

higher  condition, lower MSD and shear stress were found due to 

increased average distance between beads. Therefore, to consider 

the correlation effect and find matching  and  simultaneously, the 

multi-objective optimization algorithm [21] was adopted in the 

Arrhenius regime. As a result, the optimized solutions were found as 

linear sets. The optimized solutions were compatible with the 

correlation; higher  was needed to compensate for escalated 

specific volume and MSD in higher  condition.  as a function of 

the temperature was fitted as the sigmoidal function, Eq. (3). Then, 

 was found as Eq. (8) by matching the density, and  

were verified by comparing MSD to the all-atom model. Since the 

optimization algorithm to consider correlation effect was adopted in 

addition to the previous energy renormalization method [9], the 

enhancement of the correctness of the coarse-grained potential is 

expected. 

Comparing PPA and coarse-grained MD results from this 

thesis to those of the previous literature [17], higher viscoelasticity 

was shown due to the difference of . To obtain the smaller value 
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of  under , calculation through the relation of  

[19] should be imposed, rather than the direct coarse-grained MD 

simulations, since it needs huge simulation times and difficult to be 

achieved in current state of nano-scale MD simulations. To 

investigate crosslink effect on the viscoelasticity of the polymer, 

difference in  was considered to obtain dynamic moduli. Owing to 

the restrictions of the polymer chains,  was found as lower value 

in the crosslinked models while other parameters from molecular 

simulations were used same value as the corresponding free chain 

models with the same N. 

From the coarse-grained MD simulation and the PPA, the 

characteristic molecular parameters were obtained and plugged into 

the 1D viscoelastic constitutive equation and the dynamic moduli, 

 were calculated through the relationship between the sinusoidal 

strain input and the stress response. As a result, the models with a 

higher degree of polymerization and crosslink density has a lower 

level of viscoelasticity. Furthermore, the influence of the molecular 

parameters on the viscoelastic constitutive equation was investigated. 

Through the parametric study, strengthen of the dynamic moduli and 
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weakening of the viscoelasticity was found in the longer primitive 

path length L, and smaller  conditions.  

4.2. Future works 

As a subsequent study for the viscoelastic constitutive 

equation [17], the combination of the nonaffine hyperelasticity [35], 

and the Doi-Edward viscoelasticity [19] was conducted in 2016 [36]. 

However, it was conducted for the 2D FEA for a certain case of the 

deformation gradients. Therefore, for future works, the full 

incremental formulation and the derivation of the material tangent 

stiffness matrix of 3D Cauchy stress for general deformation will be 

done. By applying into the implicit FEA and the micro-morphic 

theory [37, 38], a description of the visco-hyperelasticity of the 

elasticity will be studied. While studying the effect of the crosslinks 

on the viscoelastic properties of the polymer, the only effect of  

was considered in this thesis. Therefore, PPA for crosslinked 

networks [33, 36] will be conducted in subsequent studies. 

Furthermore, by applying the optimized energy renormalization 

method on the viscoelastic constitutive equation, the temperature-

dependence of the elastomer's viscoelastic properties and the 
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examination on the time-temperature superposition principle [39, 40] 

are going to be conducted, since viscoelastic studies on frequency 

domains were conducted in the previous literatures [17, 36].  
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