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Abstract 

 

Deep Learning Based Glaucoma 

Diagnosis Support System 
 

Sukkyu Sun 

Interdisciplinary Program in Bioengineering 

The Graduate School 

Seoul National University  
 

 

This paper presents deep learning-based methods for improving glaucoma 

diagnosis support systems. Novel methods were applied to glaucoma clinical 

cases and the results were evaluated.  

In the first study, a deep learning classifier for glaucoma diagnosis based on 

spectral-domain optical coherence tomography (SD-OCT) images was 

proposed and evaluated. Spectral-domain optical coherence tomography (SD-

OCT) is commonly employed as an imaging modality for the evaluation of 

glaucomatous structural damage. The classification model was developed using 

convolutional neural network (CNN) as a base, and was trained with SD-OCT 

retinal nerve fiber layer (RNFL) and macular ganglion cell-inner plexiform 

layer (GCIPL) images. The proposed network architecture, termed Dual-Input 

Convolutional Neural Network (DICNN), showed great potential as an 

effective classification algorithm based on two input images. DICNN was 

trained with both RNFL and GCIPL thickness maps that enabled it to 

discriminate between normal and glaucomatous eyes. The performance of the 

proposed DICNN was evaluated with accuracy and area under the receiver 

operating characteristic curve (AUC), and was compared to other methods 

using these metrics. Compared to other methods, the proposed DICNN model 
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demonstrated high diagnostic ability for the discrimination of early-stage 

glaucoma patients in normal subjects. AUC, sensitivity and specificity was 

0.869, 0.921, 0.756 respectively. 

In the second study, a deep-learning method for increasing the resolution 

and improving the legibility of Optic-disc Photography(ODP) was proposed. 

ODP has been proven to be useful for optic nerve evaluation in glaucoma. But 

in clinical practice, limited patient cooperation, small pupil or media opacities 

can limit the performance of ODP. A model to enhance the resolution of ODP 

images, termed super-resolution, was developed using Super Resolution 

Generative Adversarial Network(SR-GAN). To train this model, high-

resolution original ODP images were transformed into two counterparts: (1) 

down-scaled ‘low-resolution ODPs’, and (2) ‘compensated high-resolution 

ODPs’ with enhanced visibility of the optic disc margin and surrounding retinal 

vessels which were produced using a customized image post-processing 

algorithm. The SR-GAN was trained to learn and recognize the differences 

between these two counterparts. The performance of the network was evaluated 

using Peak Signal to Noise Ratio (PSNR), Structural Similarity (SSIM), and 

Mean Opinion Score (MOS). The proposed study demonstrated that deep 

learning can be applied to create a generative model that is capable of producing 

enhanced ophthalmic images with 4x resolution and with improved structural 

details. The proposed method can be used to enhance ODPs and thereby 

significantly increase the detection accuracy of optic disc pathology. The 

average PSNR, SSIM and MOS was 25.01, 0.75, 4.33 respectively 

In the third study, a deep-learning model was used to classify suspected 

glaucoma and to predict subsequent glaucoma onset-year in glaucoma suspects 

using clinical data and retinal images (ODP & Red-free Fundus RNFL Photo). 

Clinical data contains useful information about glaucoma diagnosis and 

prediction. However, no study has been undertaken to investigate how 

combining different types of clinical information would be helpful for 

predicting the subsequent course of glaucoma in an individual patient. For this 
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study, image features extracted using Convolutional Auto Encoder (CAE) 

along with clinical features were used for glaucoma suspect classification and 

onset-year prediction. The performance of the proposed model was evaluated 

using accuracy and Mean Squared Error (MSE). Combing the CAE extracted 

image features and clinical features improved glaucoma suspect classification 

and on-set year prediction performance as compared to using the image features 

and patient features separately. The average MSE between onset-year and 

predicted onset year was 2.613 

In this study, deep learning methodology was applied to clinical images 

related to glaucoma. DICNN with RNFL and GCIPL images were used for 

classification of glaucoma, SR-GAN with ODP images were used to increase 

detection accuracy of optic disc pathology, and CAE & machine learning 

algorithm with clinical data and retinal images was used for glaucoma suspect 

classification and onset-year predication. The improved glaucoma diagnosis 

performance was validated using both technical and clinical parameters. The 

proposed methods as a whole can significantly improve outcomes of glaucoma 

patients by early detection, prediction and enhancing detection accuracy. 

Keywords: Deep learning, Convolutional neural network, Super resolution, 

Glaucoma diagnosis, Glaucoma onset-year prediction 
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Chapter 1 General Introduction 

 

1.1  Glaucoma  

 

 

Glaucoma, a neurodegenerative disease brought on by progressive retinal 

ganglion cell (RGC) loss, is associated with structural changes of the optic 

nerve head (ONH) and retinal nerve fiber layer (RNFL).[1, 2] As glaucoma 

progression runs its course, structural changes often are detected before 

functional losses become clearly apparent.[3] Therefore, early detection of 

glaucomatous structural damage is essential for proper management and 

maintenance of patients’ vision-related quality of life.[4] The anterior chamber 

angle formed by the cornea and iris remains open, but the outflow resistance 

through the trabecular meshwork is increased. This causes pressure in the eye 

to gradually increase. The pressure induced injury is one of the main 

mechanisms of the optic nerve damage in glaucoma. 

Glaucoma is a leading cause of irreversible blindness worldwide; however, 

the pathophysiology of glaucoma is poorly understood and the exact factors 

leading to its progression are unclear. An estimated 79.6 million persons are 

expected to have glaucoma worldwide by 2020 and 111 million by 2040[5] 
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Figure 1.1 Present method of glaucoma diagnosis 

Current measuring device for glaucoma diagnosis(left), clinical data obtained by measuring devices(middle), process of glaucoma 

detection(right) 
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1.2  Deep Learning for Glaucoma Diagnosis 

 

 

   The application of CNN to various glaucoma related clinical data, such as 

spectral-domain optical coherence tomography (SD-OCT) image optic disc 

photograph (ODP), patient data have been reported. For SD-OCT CNN based 

classification methods have been done using RNFL, ganglion cell-inner 

plexiform layer (GCIPL), super resolution applied to ODPs, machine learning 

based glaucoma classification on patient data have been reported. 

 

 

1.3 Thesis Objectives 

    

 

   The objective of this study is to support glaucoma diagnosis using deep 

learning on clinical data and to validate performance. Performances of designed 

network was validated with clinical and engineering parameters. 

In chapter 2 was to evaluate with spectral-domain optical coherence 

tomography (SD-OCT). The previous studies have reported on SD-OCT using 

convolutional neural networks (CNN), using only scanned image or ensemble 

logit values when RNFL and GCIPL are feeding to CNN respectively, or depth 

wise stacked RNFL GCIPL thickness and deviation map and using as inputs of 

CNN[6]. However, did not yield diagnostic performance that was superior to 
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that of RNFL probability alone. In our study, the deep-learning algorithms 

analyzed by DICNN with combined RNFL and GCIPL features on thickness 

maps showed better diagnostic performance for early-stage glaucoma relative 

to the conventional deep-learning methods. Model was evaluated with accuracy, 

sensitivity, specificity and ROC. 

In chapter 3, was to propose a deep-learning approach for increased 

resolution and improved legibility of Optic-disc Photography(ODP) by contrast, 

color, and brightness compensation. The previous studies have reported on 

Optic-disc super resolution using convolutional neural networks (CNN), solely 

focused only on resolution improvement. (up to x32[7]). Even when high-

resolution ODPs can be obtained, red-colored blood vessels and red-orange-

colored retina sometimes cause indistinct pathologies such as small-sized DH 

to be missed. Heuristic algorithms cannot enhance image universally. (contrast, 

color, and brightness). Model was evaluated with PSNR, SSIM, MOS. 

In chapter 4, was to develop a deep-learning model using clinical data and 

retinal images (ODP & Red-free Fundus RNFL Photo) for classification 

glaucoma suspect and prediction of subsequent glaucoma onset-year in 

glaucoma suspects. The previous studies[8] have reported using glaucoma 

patient data is for diagnosis of glaucoma. No study has been undertaken to 

investigate whether and how combining different types of clinical information 

would be helpful for predicting the subsequent course of glaucoma in an 
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individual patient. Classification model was evaluated with accuracy, 

sensitivity, specificity and ROC. Regression model was evaluated with MSE.  
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Chapter 2  

Dual-Input Convolutional Neural Network for 

Glaucoma Diagnosis using Spectral-Domain 

Optical Coherence Tomography 

 

2.1 Introduction 

 

2.1.1 Background 

 

Figure 2.1 SD-OCT images 

Mapping SD-OCT color image with eye(A), scanned image of SD-OCT(B), 

raw data of SD-OCT(C) 
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Spectral-domain optical coherence tomography (SD-OCT) is 

commonly employed as an imaging modality for evaluation of glaucomatous 

structural damage.[9] Its clinical utility for glaucoma is primarily in the 

evaluation of RNFL parameters for provision of comprehensive assessments of 

RGC axons approaching the ONH.[10, 11] Furthermore, SD-OCT’s enhanced 

performance allows for assessment of macular parameters in glaucoma 

evaluation, which utility is especially valuable, as the macula contains the 

highest RGC concentration in the retina;[12]thus too, RGC loss typically is 

more readily detectable in the macula.[13]  

The most effective and widely used deep-learning algorithm for images 

and videos is convolutional neural network (CNN). CNN allows for both 

extraction of features from image data in the convolutional layers and pooling 

layers and classification based on the fully connected layers’ features.[14] If 

multi-domain feature extraction can be combined with deep learning, sufficient 

information can be provided for the classification task, and better results are 

likely to be achieved.  

 

2.1.2 Related Work 

 

Recently, the Dual-Input Convolutional Neural Network (DICNN) has 

shown great utility as well as potential as a deep-learning algorithm for 

effective classification based on two images used as inputs. Li et al.[15] showed 



8 

 

that a dual-input network structure using both electrocardiogram and 

phonocardiogram signals identified more underlying features inside the signals, 

thereby improving the performance for diagnosing coronary artery disease. 

Likewise, Choi et al.[16] developed a dual-input deep-learning model that 

interprets 2 different radiographs simultaneously for detection of supracondylar 

fracture, showing a diagnostic accuracy comparable to radiologists’. This 

approach is promising, as it mimics how a human clinician interprets images in 

making a diagnosis.   

 

2.2 Methods 

 

2.2.1 Study Design 

 

In this paper, we propose this deep-learning algorithm as an effective and 

efficient means of diagnosing early glaucoma accurately based on two images. 

DICNN was trained with both RNFL and macular ganglion cell-inner plexiform 

layer (GCIPL) thickness maps that enabled it to discriminate between normal 

and glaucomatous eyes. DICNN was evaluated along with other methods for 

accuracy and area under the receiver operating characteristic curve (AUC). 
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2.2.2 Dataset 

Eyes were chosen from a database of subjects examined for glaucoma at the 

Glaucoma Clinic, Seoul National University Hospital, between January 2012 

and January 2019. This study was approved by the Seoul National University 

Hospital Institutional Review Board and adhered to the tenets of the 

Declaration of Helsinki. Informed consent was waived due to the study’s 

retrospective nature. 

All of the study subjects underwent a complete ophthalmic 

examination that included best-corrected visual acuity, refraction, slit-lamp 

biomicroscopy, gonioscopy, Goldmann applanation tonometry (Haag-Streit, 

Koniz, Switzerland), dilated stereoscopic examination of optic disc, digital 

color stereo disc photography (SDP), red-free RNFL photography, Cirrus HD-

OCT, and central 24-2 threshold testing of the Humphrey Visual Field (HVF) 

(HFA II; Humphrey Instruments Inc., Dublin, CA, USA). The patients 

additionally underwent, at the baseline examination, central corneal thickness 

measurement (CCT; Orbscan™ 73 II, Bausch & Lomb Surgical, Rochester, NY, 

USA) and axial-length measurement (IOL Master™ ver. 5, Carl-Zeiss Meditec, 

Dublin, CA, USA).  

For inclusion in the study, glaucoma patients had to satisfy the 

definition of primary open-angle glaucoma (POAG), irrespective of untreated 

intraocular pressure (IOP) level: the presence of certain characteristic changes 

(i.e., localized or diffuse neuroretinal rim thinning/notching) on SDP; RNFL 
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defects in corresponding regions on red-free RNFL photographs with open 

anterior chamber angles. The POAG diagnosis was made regardless of 

glaucomatous visual field (VF) defect presence or absence.  
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Final inclusion or exclusion of patients was determined by an 

experienced ophthalmologist (YKK). Since our outcomes were measured at the 

ocular (eye) level, we tried to minimize problems that could arise from violating 

the assumption made by the majority of statistical tests that each data value is 

independent. In cases where both eyes proved eligible, therefore, one eye was 

selected randomly. Subsequently, the POAG patients were divided into 2 

groups, based on the standard automated perimetry (HVF Analyzer™ 24-2 

SITA-Standard strategy) data: early glaucoma (VF mean deviation [MD] > -6 

dB) and moderate-to-severe glaucoma (VF MD < -6 dB). 

 

Figure 2.2 Representative Images RNFL and GCIPL 

Normal, Early Glaucoma, Moderate to Severe Glaucoma, as glaucoma 

progresses thickness of optic nerve decreases (blue color) 
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The normal eyes in this study were from subjects without any ocular 

abnormalities in either eye, since patients with unilateral glaucoma constitute a 

group at higher risk for future development of glaucoma in the other, normal 

eye.[17] They met the following criteria: (1) baseline IOP less than or equal to 

21 mmHg, with no IOP-elevation history; (2) no glaucomatous optic disc 

changes as detected on SDP; (3) no RNFL defects on red-free fundus images; 

4) normal HVF results. 

All scans were acquired according to the Optic Disc Cube 200×200 protocol 

of Cirrus HD-OCT™, which was designed for cube-scan positioning on the 

ONH, and which is the primarily utilized modality for glaucoma analysis. Once 

the subject was seated and properly aligned, the iris was brought into view by 

means of a mouse-driven alignment system, and the line-scanning 

ophthalmoscopic image was brought into focus with adjustment for refractive 

error. Then, the ONH was centered in the live image, and the centering (Z-offset) 

and enhancement (polarization) were optimized. The laser subsequently 

scanned a 6 mm×6 mm area, thus capturing a data cube consisting of 200 A-

scans from 200 linear B-scans (40,000 points), all in approximately 1.5 seconds 

(at 27,000 A-scans/sec). The ONH parameters were measured automatically 

using a Carl Zeiss Meditec analysis algorithm that had been developed for 

Cirrus HD-OCT (version 6.0). For the macular cube, a 512×128 grid that 

consists of 128 horizontal B-scans each comprising 512 A-scans was used. Only 

high-quality scans (signal strength ≥ 7, with absence of discontinuity or 
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misalignment, involuntary saccade, blinking artifacts, segmentation failure or 

artifacts) were used in the final analysis.  
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Figure 2.3 Gaussian noised added RNFL & GCIPL 

For augmenting original data, Gaussian noise was added (Mean -0, Std-(10~30)), added noise changes from epoch to epoch.
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Right eye images are mirrored to left eye image. Images were augmented 

with Gaussian noise added average 0 standard deviation of 10~30, no geometric 

transformation techniques such as flip, rotation, or inversion applied. 

 

2.2.3 Dual-Input Convolutional Neural Network (DICNN) 

 

Deep-learning-based features were extracted by training CNN on either 

peripapillary RNFL or macular GCIPL thickness map images. The images were 

extracted from the average RNFL thickness and RNFL quadrants, and then 

were used for analysis of glaucoma on the RNFL thickness map.[18-20] For 

medical images with only a small number of datasets, CNN analysis proceeds 

in two ways (learns RNFL and GCIPL separately), given both the 

computational expensiveness of the deep-learning algorithm and the likeliness 

of overfitting of extracted features. However, DICNN can prevent overfitting 

while utilizing the features of both RNFL and GCIPL simultaneously.  

The RNFL thickness map provides a color-coded display of RNFL 

thickness within the 0-370 μm range. In the present study, the value of each 

thickness map pixel was normalized to the RNFL thickness, and that value was 

converted to a value within the 0-255 range for better image representation. 

Images were resized to 224x224x3 for learning by DICNN. Since a large 

number of images must be available for better training of CNN, augmentation, 
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which entailed enlargement of image data by addition of Gaussian noise, was 

performed. Learning was set at 0.01 (gradient descent optimizer[21]). Since the 

last-fully-connected layer must have three classes (i.e., normal, early POAG, 

moderate-to-severe POAG), other fully connected layers had 120, 64, 16 and 

each 16 features from last-fully-connected layer (RNFL and GCIPL) was 

reduced to three nodes (three classes). 
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Figure 2.4 Dual-Input Convolutional Neural Network (DICNN)’s architecture. The kernel size (k), number of feature maps (n), 

and stride (s) correspondingly are indicated for each of the convolutional layers. The extracted features from the convolutional layers in each 

image (i.e., RNFL and GCIPL thickness maps) were flattened and fed to successive fully-connected layers consisting of 120, 64, 16 nodes. The 

features from each convolutional layer were fused at the final layers. Three-layer Multi-Layer Perception (MLP) was adopted as the final 

classification task for reduction to 3 nodes. RNFL, retinal nerve fiber layer; GCIPL, ganglion cell-inner plexiform layer; POAG, primary open-

angle glaucoma 
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DICNN proceeded by extracting features selected for deep learning 

(Figure 2.4). The fully connected layer combines all of the features that were 

extracted from the convolutional and pooling layers and analyzes the 

relationships among features in the neural network architecture. DICNN was 

trained by backpropagating the output logit value simultaneously with the 

training of the weights of the VGG16s. The extracted features from the 

convolutional layers in each image (i.e., RNFL and GCIPL thickness maps) 

were flattened and fed to successive fully-connected layers consisting of 120, 

64, 16 nodes.[22] The features from each convolutional layer were fused at the 

final layers. Three-layer Multi-Layer Perception (MLP) was adopted as the 

final classification task for reduction to 3 nodes. 

 

2.2.4 Training Environment   

Hardware specifications  

 

CPU: Intel core i7-7700 3.60Hz 

GPU: TITAN X (Pascal) 12GB 

RAM: 16GB 

 

Software specifications 

 

Deep learning libraries 
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Tensorflow – 1.14.0 with cuda 10.0 and cudnn 7.6.3 

Python – version 3.6 

 

2.2.5 Statistical Analysis 

 

The demographic data were compared among the 3 groups with the 

Bonferroni post-hoc test by one-way analysis of variance. The categorical data 

were analyzed by χ2 test with Bonferroni correction. We used the AUC with 95% 

confidence intervals (CIs) in the evaluations of the algorithms’ performances. 

95% CIs were calculated by applying, out of each first and second fully 

connected layer of the VGG19, 20% of drop.[23] The sensitivity and specificity 

in the receiver operating characteristic (ROC) curves were obtained by 

thresholding the logit value coming out of the network output.[24] For 

comparison between the 2 groups, the logit values were normalized to make the 

sum of their respective logit values 1. All of the statistical analyses were 

performed with Matlab (The MathWorks Inc, MA, USA). pROC package of R 

software version 2.2.1 (R Project for Statistical Computing, Vienna, Austria) 

was used as a DeLong test for comparison of ROC curves. 
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2.3 Results 

2.3.1 DICNN performance   

 

Figure 2.5 Overall SD-OCT Data Description 

Total 918 SD-OCT was collected, 171 patients was excluded with other ocular pathologies, surgical history and low scan quality. 
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Table 2.1 Comparison of Demographic and Clinical Characteristics Between Primary Open-angle Glaucoma and Normal Subjects 

 

Values are mean ± standard deviation. *One-way analysis of variance, †Bonferroni post hoc test, ‡ chi-square test with Bonferroni correction. 

POAG, primary open-angle glaucoma; D, diopters; IOP, intraocular pressure; CCT, central corneal thickness; VF, visual field; MD, mean 

deviation; PSD, pattern standard deviation. N, normal group; E, early glaucoma group; M, moderate-to-severe glaucoma group 
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Table 2.2 The test accuracy and the area under receiver operating characteristic curve of machine learning algorithms 

distinguishing between normal and glaucoma subjects  

 

Normal  

vs.  

POAG 

Normal  

vs.  

Early POAG 

  Accuracy (%) AUC Accuracy (%) AUC 

DICNN (RNFL/GCIPL) 92.79 0.957 85.19 0.869 

VGG16 (RNFL) 94.59 0.978 80.00  0.850  

VGG16 (GCIPL) 88.29 0.921 72.90  0.767  

POAG, primary open-angle glaucoma; AUC, area under the receiver operating characteristic curve; DICNN, dual-input convolutional 

neural network; RNFL, retinal nerve fiber layer; GCIPL, ganglion cell-inner plexiform layer; VGG, visual geometry group.   
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Table 2.3 The final test accuracy of comparison model trained with 3classs 

 InceptionV3[25] 

(RNFL) 

ResNet50[26] 

(RNFL) 

Inception 

ResNet-

V2[27] 

(RNFL) 

DenseNet121[28] 

(RNFL) 

Xception[29] 

(RNFL) 

DICNN 

(both) 

VGG16 

(GCIPL) 

VGG16 

(RNFL) 

Maximum 

Test 

Accuracy(%) 

0.75 0.7756 0.7756 0.7756 0.7564 0.821 0.718 0.75 
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Table 2.4 The test accuracy and the area under receiver operating characteristic curve of machine learning algorithms distinguishing 

between normal, early and glaucoma subjects (one vs rest) 

 

  Early Normal Severe 

 Test 

Accuracy(3class) 

AUC Specificity Sensitivity AUC Specificity Sensitivity AUC Specificity Sensitivity 

DICNN 

(RNFL/GCIPL) 

0.821 0.85 0.898 0.689 0.92 0.833 0.92 0.94 0.967 0.813 

VGG16 

(RNFL) 

0.750 0.79 0.861 0.533 0.92 0.769 0.905 0.95 0.931 0.750 

VGG16 

(GCIPL) 

0.705 0.75 0.825 0.556 0.84 0.695 0.841 0.89 0.963 0.667 
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An overview of datasets is shown in Figure 2.5 The dataset used in this 

study (training and testing) included 777 eyes of 777 subjects (462 eyes of 462 

subjects with POAG and 315 eyes of 315 normal subjects). Among the 462 

POAG eyes, 219 were early-stage, and 243 were moderate-to-severe stage. For 

the training dataset, 621 image sets in total (252 normal, 174 early POAG, 195 

moderate-to-severe POAG) were used. During the testing, 156 independent 

image sets (63 normal, 45 early glaucoma, 48 moderate-to-severe POAG) were 

assessed by each of the deep-learning algorithms. The subjects’ demographic 

and ocular characteristics are provided Table 2.1.  

 

Figure 2.6 Test accuracy obtained by different optimizers 
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 The validation accuracies obtained by other optimizers (i.e., Adam,[30] 

Adadelta,[31] and Adagrad[31]) are shown in Figure 2.6
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F 

   

 

Figure2.7 Receiver operating characteristic (ROC) curve of DICNN with both retinal nerve fiber layer (RNFL) and ganglion cell-inner 

plexiform layer (GCIPL), CNN with single image (RNFL or GCIPL: (left) distinguishing between normal subjects and glaucoma patients; (right) 

between normal subjects and early-stage glaucoma patients. 
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Figure2.8 Receiver operating characteristic (ROC) curve of DICNN (one vs rest) and with both retinal nerve fiber layer (RNFL) and 

ganglion cell-inner plexiform layer (GCIPL), CNN with single image (RNFL or GCIPL): comparison with one vs rest. 
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Figure2.9 Receiver operating characteristic (ROC) curve of DICNN (macro averaging) and with both retinal nerve fiber layer (RNFL) and 

ganglion cell-inner plexiform layer (GCIPL), CNN with single image (RNFL or GCIPL): comparison with one vs rest (macro averaging each 

class). 
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Figure2.10 Test accuracy for DICNN (black square) and CNN with 

GCIPL (red dot) or RNFL (blue triangle), respectively. 

DICNN converges faster and overall test accuracy shifted to higher region. 
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Figure2.11 Representative cases of DICNN’s misclassification between 

early-stage POAG patients (A-E) and normal subjects (F-J). The first row 

shows the early-stage POAG findings misdiagnosed as normal images by 

DICNN. Inferotemporal optic disc rim narrowing (A) along with RNFL defect 

(B) with corresponding superior visual field defect (E) are shown. On that basis, 

a diagnosis of glaucoma was made. Note that in fact, the inferotemporal RNFL 

defect had a relatively long angular distance from the macula. The second row 

shows the normal subject misclassified as early-stage POAG by DICNN. The 

major temporal blood vessels were more temporally located, thereby causing 

shifting of peaks on the RNFL thickness plot.  

 

The accuracy and AUC calculated for DICNN are shown in Table 2.2, which 

also indicates the results obtained by the trained VGG16 with RNFL or GCIPL, 
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respectively. The ROC curves for all of the analysis algorithms are plotted in 

Figure 2.7 The accuracy and AUC were 92.793% and 0.957 (95% CI, 0.943-

0.966), the sensitivity was 0.896 (95% CI, 0.896-0.917), and the specificity was 

0.952 (95% CI, 0.921-0.952) for DICNN’s distinguishing between normal and 

glaucoma subjects.  

DeLong’s test for two correlated ROC of DICNN and RNFL was Z = -

0.77793, p-value = 0.4366, GCIPL and RNFL was Z = -2.4482, p-value = 

0.01436, DICNN and GCIPL was Z = 1.8963, p-value = 0.05792. All correlated 

ROCs are not significantly different. 

As for VGG16 with RNFL, the accuracy and AUC were 94.595% and 

0.978 (95% CI, 0.954-0.978), the sensitivity was 0.938 (95% CI, 0.771-0.938), 

and the specificity was 0.952 (95% CI, 0.937-0.981); for VGG16 with GCIPL, 

the accuracy and AUC were 88.288% and 0.921 (95% CI, 0.861-0.921), the 

sensitivity was 0.833 (95% CI, 0.614-0.833), and the specificity was 0.921 (95% 

CI, 0.857-0.933). 

For another comparison group in Table 2.3 the final 3calss test accuracy 

of comparison group, Inception V3 with RNFL was 0.75, ResNet50 with RNFL 

was 0.7756, Inception ResNet-V2 with RNFL was 0.7756, DensNet121 with 

RNFL was 0.7756, Xception with RNFL was 0.7564 DICNN with both image 

was 0.821, DICNN outperformed comparison group. 
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For DICNN’s distinguishing between normal and early-stage glaucoma 

subjects, the accuracy and AUC were 85.185% and 0.869 (95% CI,0.825-0.879), 

the sensitivity was 0.921 (95% CI, 0.813-0.905), and the specificity was 0.756 

(95% CI, 0.610-0.790); for VGG16 with RNFL, the accuracy and AUC were 

80.000% and 0.850 (95% CI, 0.739-0.850), the sensitivity was 0.905 (95% CI, 

0.877-0.952), and the specificity was 0.644 (95% CI, 0.356-.644); for VGG16 

with GCIPL, the accuracy and AUC were 72.900% and 0.767 (95% CI,0.721-

0.784), the sensitivity was 0.839 (95% CI, 0.742-0.790), and the specificity was 

0.578 (95% CI, 0.556-0.639). DeLong’s test for two correlated ROC of DICNN 

and RNFL was Z = 0.5141, p-value = 0.6072, GCIPL and RNFL was Z = -

1.5526, p-value = 0.1205, DICNN and GCIPL was Z = 2.424, p-value = 

0.01535. All correlated ROCs are not significantly different except DICNN and 

GCIPL. 

Evaluating DICNN’s performance with one vs rest, Table2.4, with class of 

early, AUC was 0.85, specificity 0.898, sensitivity 0.689 with class of normal 

AUC was 0.92. specificity 0.833, sensitivity 0.92. with class of severe AUC 

was 0.94, specificity 0.967, sensitivity 0.813. DICNN outperformed VGG16 

with RNFL, VGG16 with GCIPL. 
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2.3.2 Grad-CAM for DICNN   

 

Figure2.12 Calculating Grad-CAM for DICNN 
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Grad-CAM was calculated with feature maps of last convolution layer(𝐴1𝑖𝑗
𝑘 ) with output value 𝑦𝑐 representing classification score of 

3class classification 

 

Figure2.13 Grad-CAM for test images. 

Attention is focused on the superior nasal and inferior-temporal region(D)
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  Gradient Class Activation Map(Grad-CAM)[32] was calculated gradient 

between output logit before softmax(𝑦𝑐) and feature map of last convolution 

𝐴1𝑖𝑗
𝑘  (RNFL), and  𝑦𝑐 𝐴1𝑖𝑗

𝑘 (GCIPL). Figure 2.13 shows that attention region 

is located at superior nasal and inferior temporal. 
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2.4 Discussion 

 

2.4.1 Research Significance   

 

In the present study, we determined that DICNN combined with features of 

RNFL and GCIPL thickness was effective in distinguishing glaucomatous from 

normal SD-OCT images. DICNN was developed by combining the features of 

both RNFL and GCIPL those extracted from last-fully-connected layer from 

VGG16. Notably, DICNN differentiated between early-stage glaucoma and 

normal subjects more accurately than did the other methods. 

VGG16 with RNFL or GCIPL, respectively, showed similar results for 

differentiation of glaucoma patients and normal subjects to a certain extent, 

though the data amount and glaucoma-diagnostic criteria differed from the 

previous research.[18-20, 33] Muhammad et al.[34] utilized a hybrid deep-

learning method (HDLM) according to a single wide-field OCT protocol. Their 

combination of RNFL and GCIPL probability images, however, did not yield 

diagnostic performance that was superior to that of RNFL probability alone. 

They suggested that a novel method of combining RNFL with GCIPL 

information could be a feasible means of enhancing diagnostic performance. In 

our study, the deep-learning algorithms analyzed by DICNN with combined 

RNFL and GCIPL features on thickness maps showed better diagnostic 
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performance for early-stage glaucoma relative to the conventional deep-

learning methods.  

Early detection of glaucoma is essential, certainly, but early-onset 

glaucoma is much more challenging to diagnose than is advanced glaucoma, 

since early structural damage sometimes is revealed in one parameter but not 

another. Wang et al.[35] reported that their RNFL thickness evaluation missed 

47 (77%) of the 61 eyes showing abnormal thinning on macular scans. The 

typical analyses of peripapillary RNFL thickness alone can overlook 

glaucomatous macular damage.[13, 36] On the other hand, it is known that 

macular GCIPL parameters are less sensitive in cases where the temporal 

margin of the defect is located far from the fovea.[37] Therefore, in terms of 

detecting subtle early-glaucomatous damage, more combined information is 

needed. In fact, based on our results, the features extracted by both RNFL and 

GCIPL boosted the classification results for early-glaucomatous eyes by an 

average MD -2.83 dB 

The higher accuracy along with the larger AUC of the network trained 

by DICNN compared with VGG16 (Figure 2.7,8,9) was perhaps owed to the 

DICNN’s having more diverse features for analysis of early-glaucoma patients 

and normal subjects. The RNFL and GCIPL thickness maps present ‘related but 

different’ clinical information. DICNN integrated variables from the RNFL and 

GCIPL thickness maps for training in order to identify more underlying features 

inside the images. Since the final output values of the fused nodes were trained 
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through backpropagation with softmax cross-entropy loss, the entire network 

could share variables in both the RNFL and GCIPL thickness maps. The fused 

features in the last 16 fully connected layers (fully connected layer of 120, 64, 

16) of DICNN had the best accuracy and AUC, as shown in Figure 2.10. If there 

were too many last-fully-connected layers (above 16), DICNN would not 

converge. On the other hand, with too few fully connected layers, the trained 

network would show poor classification accuracy. With DICNN, the network 

converges more reliably than with VGG16 trained on either RNFL or GCIPL 

(Figure 2.10). 

Our study has some advantages relative to the previous work. First, we 

used a class-balanced dataset for the early-glaucoma, moderate-to-severe 

glaucoma and normal groups. In that way, we were able to minimize the 

problems incurred from biased training and estimation.[34] Second, we utilized 

both RNFL and GCIPL information for training of the deep-learning model. As 

structural damage sometimes is revealed in only one parameter, not also in the 

other, it is important that in glaucoma diagnostics, information is gathered for 

both the RNFL and GCIPL.[38] Likewise, a deep-learning model that is trained 

with both RNFL and GCIPL images would be expected to offer better 

diagnostic performance.  

 

 

 



40 

 

2.4.2 Limitations 

 

Figure 2.14 Test accuracy obtained by VGG16 and VGG19 as baseline 

model 

Our study has several limitations. First, the training results were based 

on a relatively small amount of data. In the current study, we increased the size 

of the dataset by augmentation (i.e., by adding Gaussian noise), thereby 

improving the network’s diagnostic accuracy for glaucoma.[39] However, 

geometric transformation techniques such as flip, rotation, or inversion were 

not applied. Clinically, the specific location of optic neuropathy is an important 

basis for glaucoma diagnosis, since glaucomatous optic neuropathy generally 

begins in the inferotemporal disc region and then progresses to the 

superotemporal and other regions.[40] We therefore applied only the Gaussian 
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noise, which preserves the spatial dimensions of the images.[41] Further studies 

will validate this algorithm using a larger dataset. Second, the performance of 

our deep-learning algorithm is dependent on the quality of the training images. 

Exclusion of low-quality images from the training set could limit the usefulness 

of the algorithm in actual clinical settings. Third, we used VGG16 as the 

baseline model in order to fuse the fully connected layer, since it showed higher 

accuracy than VGG19’s (Figure 2.14). It has been reported that deeper 

networks usually have better classification performance. The reasons for the 

different results in our study are not clear, but the number of images is one of 

the possible ones, since the improved performance of deeper models might not 

be evident in smaller datasets[42] and FC layer has a lot of parameters 

compared to convolution, so in the future work it is necessary to use Siamese 

Neural Network training[43]or training whole layer with concatenating the 

output of convolution layer[44]. The performance differences of different 

neural network architectures in larger datasets should be evaluated in further 

studies. Fourth, it remained unclear how the deep-learning model discriminated 

cases as either glaucoma or normal. There have been many attempts to visualize 

exactly what a deep-learning network learns, such as by creating heat maps,[45, 

46] which process will certainly be applied in a future clinical study. 
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2.5 Conclusion 

 

In conclusion, we constructed a deep-learning model incorporating 

DICNN as trained by both RNFL and GCIPL thickness map data, and compared 

and validated the high diagnostic ability for discrimination of early-stage 

glaucoma patients from normal subjects. It might be possible to further improve 

the model’s performance by increasing the size as well as diversification of the 

training set.  

 

* Large sections of this chapter were published previously in 

British Journal of Ophthalmology. Sun, S., Ha, A., Kim, Y. K., Yoo, B. W., Kim, 

H. C., & Park, K. H. (2020). Dual-input convolutional neural network for 

glaucoma diagnosis using spectral-domain optical coherence 

tomography. British Journal of Ophthalmology.)  
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Chapter 3  

Deep-learning-based enhanced optic-disc 

photography 

 

3.1 Introduction 

 

3.1.1 Background 

 

 

Figure 3.1 Representative images of Optic Disc Hemorrhage(DH), 

Peripapillary chorioretinal atrophy(PPA), vessel alterations 

 

Optic nerve head (ONH) examination is essential to glaucoma diagnosis and 

progression assessment[2, 47]. Optic-disc photography (ODP) has been proven 
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to be very effective for documentation of optic nerve appearance, as it allows 

for more detailed scrutinization and subsequent comparison for determination 

of progressive change [48-50]. Furthermore, ODP enables clinicians to 

qualitatively assess ONH structures such as detailed neuroretinal rim contours, 

presence of optic disc hemorrhage (DH), parapapillary chorioretinal atrophy 

(PPA) or vessel alterations, which is not possible in optical coherence 

tomography (OCT) [51]. 

  

3.1.2 Needs 

 

 

Figure3.2 Low Quality ODPs 

Out of focus(left), low brightness(middle), high brightness(right) 

In real clinical practice, limited patient cooperation, small pupils, or media 

opacities can limit the performance of ODP[52]. As a result, ODPs can have 

several limitations, such as insufficient resolution, low color contrast, and 

inconsistency of image quality (especially in cases of media opacity due to 

cataracts). Even when high-resolution ODPs can be obtained, red-colored blood 

vessels and red-orange-colored retina sometimes cause indistinct pathologies 
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such as small-sized DH to be missed. ODP-quality improvement techniques 

that can obviate the limitations of the current imaging acquisition devices are 

essential, especially when considering the indispensability of ONH structural 

evaluation in glaucoma treatment.  

 

3.1.3 Related Work 

 

The popularity of deep-learning algorithms offering modeling of high-level 

abstractions in data by means of multiple processing layers has exploded in 

recent years as powerful graphics processing units (GPUs) have become 

available. The very intricate process of high-resolution image estimation from 

a low-resolution counterpart is known as super-resolution (SR) [53, 54]. For 

image SR, generative adversarial network (GAN), which is a deep neural net 

architecture comprising two nets one pitted against the other (hence 

“adversarial”), has shown great utility and potential[55]. 
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3.2 Methods 

 

3.2.1 Study Design 

In this paper, we propose a modified super-resolution generative adversarial 

network (SR-GAN) that is capable not only of up-scaling but also of improving 

ODPs’ details as well as the visibility of the optic disc margin and surrounding 

retinal vessels in computing ‘enhanced’ ODPs. In the present study, we 

performed a quantitative evaluation to assess enhanced ODPs’ clinical utility  

 

3.2.2 Dataset 

 

ODPs were obtained post-pupil-dilation using a digital fundus camera 

system (CF‐60UVi/D60; Canon, Inc., Tokyo, Japan). The images were saved in 

the 384 x 384-pixel digital imaging and communications in medicine format 

and stored in the picture archiving communication system (PACS) of Seoul 

National University Hospital. 
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3.2.2.1 Details on Customized Image Post-Processing Algorithm 

 

Figure 3.3 Customized image post-processing algorithm for maximized visibility of hemorrhage. (A) Original ODP. (B) With Selective 

color tool, red color was replaced by green/blue and (C) yellow was replaced by green/blue. (D) With the Contrast/Brightness tool, the contrast 

level was improved, and with the Smarten sharpen tool, the degree and range of the sharpness was increased. (E) Finally, a compensated high-

resolution ODP could be obtained. 
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The purpose of this type of processing is to generate an improved ODP image 

in terms of both color and spatial contrast. The processing entails the following 

steps: contrast optimization, edge enhancement, spatial and frequency filtering, 

image combining, and noise reduction. Detailed manual adjustment has to be 

applied differently according to each ODP’s image quality. In the present study, 

all of the image post-processing was performed using a commercial image-

processing tool (Adobe Photoshop CS3, version 10.0.1) by a single glaucoma-

image-processing specialist (YKK). In detail, the histogram data of the 

downloaded high-resolution original ODPs (384 x 384 pixels) were evaluated 

to determine whether an image was over- or underexposed, flat (i.e., of little 

contrast), and the tonal range in which image adjustment was required. Then, 

using the Curves tool (specifically by clicking on the image Levels curve and 

dragging on it), the tonal ranges of an image were adjusted to improve its details 

and fine structures. Next, the visibility of retinal vessels or DH was enhanced 

by adjustment of the contrast and brightness between the blood vessels and 

background fundus. With the Selective color tool, red and yellow colors were 

completely replaced by green/blue (i.e., the blood vessel color was changed 

from red to bright red, and conversely, the background retinal color was 

changed from red-orange to light brown in order to maximize the visibility of 

hemorrhage). Then, with the Contrast/Brightness tool, the contrast and level 

were improved, and with the Smarten sharpen tool, the degree and range of the 
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sharpness were increased (Figure 3.3). Finally, the ‘compensated high-

resolution ODP’ could be obtained. 

 

This study was approved by the Seoul National University Hospital 

Institutional Review Board (1805-027-944) and faithfully adhered to the tenets 

of the Declaration of Helsinki. All of the subjects provided their written 

informed consent. Eyes were chosen from subjects examined for glaucoma at 

the Glaucoma Clinic, Seoul National University Hospital, between January and 

December 2018. All of the relevant data are in the manuscript and its 

Supporting Information files. 
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3.2.3 SR-GAN Network 

3.2.3.1 Design of Generative Adversarial Network  

 

An ISR'c' is a super-resolved, compensated image, and an IHR is the high-

resolution original image. The final goal of this study was to obtain ISR'c' (1536 

x 1536 pixels) from an IHR (384 x 384 pixels) for clinical validation (see Figure 

3.4). For that purpose, the differences between the IHRc (384 x 384 pixels) and 

ILR (96 x 96 pixels) were learned directly through a modified SR-GAN. An ILR, 

which is the low-resolution version of the IHR, was obtained by 1/4 resizing of 

the IHR using bicubic interpolation (down-scaled width and height: 1/4W x 1/4H 

x C) [56], the IHRc being the high-resolution image manually customized by a 

post-processing algorithm. The SR-GAN consists of a GAN and a pre-trained 

VGG19 (Visual Geometry Group) network[57] 
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Figure 3.4 Principle of enhanced image formation via super-resolution generative adversarial network (SR-GAN).  
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A modified SR-GAN was used to learn the differences between the low-resolution optic-disc photography (ODP) and the manually compensated 

high-resolution ODP. By inputting the high-resolution original ODP into the algorithm, an X4 up-scaled and overall contrast-, color- and 

brightness-transformed ‘enhanced ODP’ could be obtained. 
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Figure 3.5 Architecture of generator and discriminator network. The corresponding kernel size (k), number of feature maps (n) and stride 

(s) are indicated for each convolutional layer. 
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The GAN includes an additional discriminator for evaluation of the 

generator’s reliability [58]. The discriminator makes a judgement on whether a 

randomly inputted image is a guess of the generator or a high-resolution 

measurement. For optimized discriminator judgement, an adversarial loss is 

created that iteratively optimizes the discriminator for enhanced decision-

making capability. Also, the adversarial loss, together with the content loss, are 

used to optimize the generator in pushing it in the direction in which more 

perceptually realistic outputs can be generated to further fool the discriminator 

[55]. By this process of adversarial training, the quality of images from the 

generator can be improved. The training is terminated once the generator 

produces results that the discriminator cannot distinguish from the high-

resolution images[59]. The generator and discriminator network architecture 

with the corresponding kernel size (k), number of feature maps (n) and stride 

(s) is shown in Figure 3.5 We applied Tensorlayer SubpixelConv2d as a 

PixelShuffle [60]. 

Each original ODP (IHR) was transformed into two counterparts: (1) down-

scaled ‘low-resolution ODPs (ILR, 96 x 96 pixels)’ and (2) ‘compensated high-

resolution ODPs (IHRc, 384 x 384 pixels)’ produced via enhancement of the 

visibility of the optic disc margin and surrounding retinal vessels using a 

customized image post-processing algorithm. Then, the differences between the 

two were directly learned through the modified SR-GAN. Finally, by inputting 

of the high-resolution original ODPs (IHR, 384 x 384 pixels) into the trained SR-
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GAN, 4-times-up-scaled and overall contrast-, color-, and brightness-

transformed ‘enhanced ODPs (ISR'c', 1536 x 1536 pixels)’ could be obtained. 

 

3.2.3.2 Loss Functions 

 

Our ultimate goal was to train a generating function G by training a generator 

network as a feed-forward CNN 𝐺𝜃𝐺
 parametrized by 𝜃𝐺 . Here, 𝜃𝐺 denotes 

the weight and bias of the designed network, and is obtained by optimizing loss 

function 𝑙𝑆𝑅. The sum of loss functions, 𝑙𝑆𝑅, is obtained. For training of image 

𝐼𝑛
𝑂𝑏𝑡𝑎𝑖𝑛𝑒𝑑 with corresponding 𝐼𝑛

𝑇𝑎𝑟𝑔𝑒𝑡
 n = 1, 2, 3 ∙∙∙ N, the following equation 

is solved: 

 

𝜃𝐺̂  =    𝜃𝐺

𝑎𝑟𝑔𝑚𝑖𝑛 1

𝑁
∑ 𝑙𝑆𝑅𝑁

𝑛=1 (𝐺𝜃𝐺
(𝐼𝑛

𝑂𝑏𝑡𝑎𝑖𝑛𝑒𝑑), 𝐼𝑛
𝑇𝑎𝑟𝑔𝑒𝑡

)                   (1) 

 

First, the pixel-wise Mean Squared Error (MSE) loss was calculated as 

follows: 

 

𝐿𝑀𝑆𝐸= 
1

𝑟2𝑊𝐻
∑ ∑ (𝐼𝑥,𝑦

𝑇𝑎𝑟𝑔𝑒𝑡
−  𝐺𝜃𝐺

(𝐼𝑂𝑏𝑡𝑎𝑖𝑛𝑒𝑑)
𝑥,𝑦

)2 
𝐻𝑖,𝑗

𝑦=1  
𝑊𝑖,𝑗

𝑥=1             (2) 

 

where Wi,j, Hi,j are the width and height, respectively, of the feature map. 

MSE loss, widely utilized for image SR, calculates the squared difference in 
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pixels between the obtained and target images during the training process. 

However, MSE optimization results in blurring of the edges of the generated 

image.  

Therefore, we also adopted VGG loss as defined with the pre-trained 

(trained with ImageNet) VGG19 Network. VGG loss was calculated as follows: 

 

𝐿𝑉𝐺𝐺/𝑖.𝑗 =  
1

𝑊𝑖,𝑗𝐻𝑖,𝑗
∑ ∑ (∅𝑖,𝑗(𝐼𝑂𝑏𝑡𝑎𝑖𝑛𝑒𝑑)

𝑥,𝑦
−

𝐻𝑖,𝑗

𝑦=1

𝑊𝑖,𝑗

𝑥=1

 ∅𝑖,𝑗(𝐺𝜃𝐺
(𝐼𝑇𝑎𝑟𝑔𝑒𝑡))𝑥,𝑦)2        (3) 

 

where Øi,j indicates the feature maps of the pre-trained VGG19 Network 

after the jth convolution and before the ith maxpooling layer. In this study, we 

employed feature maps of conv4_3 (j = 4, i = 3, Wi,j = 28, Hi,j = 28). VGG loss 

was used to calculate the squared difference between the feature maps of the 

target and generated images via SR-GAN. By using both MSE and VGG loss, 

the overall resolution and style of the generated image could be improved [61]. 

Finally, the adversarial loss function computes the Sigmoid Cross Entropy 

(SCE) loss by calculating the difference between the output logits of the 

generated image (𝐺𝜃𝐺
(𝐼𝐿𝑅)))  and target image to fool the discriminator, as 

follows:  
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𝐿𝐺𝑒𝑛 =  ∑ − log 𝐷𝜃𝐷
(𝐺𝜃𝐺

(ILR))𝑁
𝑛=1                          (4) 

 

where 𝐷𝜃𝐷
(𝐺𝜃𝐺

(ILR) is the probability of (𝐺𝜃𝐺
(ILR))) to be considered as a 

target image. The generator tries to fool the discriminator by generating higher-

quality images. The final goal of adversarial loss is the minimization 

of − log 𝐷𝜃𝐷
(𝐺𝜃𝐺

(ILR)).  

 

 

 

 

 

 

 

 

3.2.4 Assessment of clinical implications of enhanced ODPs 
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Figure 3.6 Validation results for representative test image sets. The Peak 

Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM) values were 

higher in the upper 3 sets, and the obtained optic-disc photography (ODPs) were 

perceptually similar to the targeted ODPs (A). In the lower image sets, the 

change in background color caused relatively lower PSNR and SSIM values, 

even though those images were perceptually convincing (B). 

 

For the test, 50 high-resolution original ODPs and 50 paired SR-GAN-

enhanced ODPs in two respective datasets were used. Three glaucoma 
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specialists (AH, JL and KHP) independently evaluated the original ODPs of the 

test datasets and confirmed a total of 23 DHs in 23 original ODPs. Then, 12 

general ophthalmologists were asked (1) to assess ODP image quality in 5 

grades (excellent, good, fair, poor or bad), and (2) to note, for each of the 

original ODPs and enhanced ODPs separately at 1-month intervals, any 

abnormal findings including DH. In the process of the image quality grading, 

‘excellent’ was defined as a clearly identified optic disc margin and distinct 

major vessel structures, while ‘bad’ was defined as unidentifiability of the optic 

disc margin. The ranges from good to fair quality and from fair to poor quality 

were determined subjectively by each ophthalmologist. The 5 grades were 

numbered between 1 (‘poor’) and 5 (‘excellent’); then, we performed a mean 

opinion score (MOS) test to compare the qualitative assessments in and among 

the image groups[62]. Figure3.6 each compare an original ODP image with its 

enhanced version.  
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3.2.5 Statistical Analysis 

 

All of the values are presented as means ± standard deviation. Paired t tests 

were used to determine the MOS differences between the two image types. The 

Mann-Whitney test was applied for comparison of the nonparametric data. The 

categorical data were analyzed by χ2 test, and a statistical analysis was 

performed using the SPSS statistical package (SPSS 22.0; Chicago, IL, USA.). 

A 2-sided P-value < 0.05 was considered to be statistically significant.  

 

3.2.6. Hardware Specifications & Software Specifications  

Hardware specifications 

CPU: Intel core i7-7700 3.60Hz x 8 

GPU: TITAN X (Pascal) 12GB 

RAM: 16GB  

Software specifications 

Deep-learning libraries: 

Tensorflow – 1.14.0 with cuda 10.0 and cudnn 7.6.3 

Tensorflow Tensorlayer – 2.1.1 

Python libraries (version - 3.6) 

Numpy – 1.16.4 for model loading and array processing 

Scipy – 1.1.0 for image loading, resizing, saving 

Scikit-image – 0.15.0 for image transformation (augmentation) 

Matplotlib – 3.1.1 for plotting image 

Easydict – 1.9 for dictionary values as attributes 
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Os – for filename load 

Pickle – for vgg19 model loading 

Random – for train data shuffle 

Time – for calculating time for data loading, training, testing time 

Optimizer:  

Generator: AdamOptimizer – learning rate of , 5 × 10−3, beta1 of 0.9 

Discriminator: AdamOptimizer – learning rate of , 5 × 10−3, beta1 of 0.9 
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3.3 Results 

3.3.1 Training Loss of Modified SR-GAN 
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Figure 3.7 Training curve for SR-GAN algorithm with learning rate. The colored line shows the loss of the discriminator, generator, VGG, 

MSE loss over the training course, while each line represents the learning rate of model. As can be seen, the lowest loss was at learning rate of 

5x10−3. 
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Figure 3.8 Training PSNR curve and validation PSNR and SSIM curve for SR-GAN algorithm with learning rate. The colored line shows 

the training PSNR, validation PSNR and SSIM over the training course, while each line represents the learning rate of model. As can be seen, 

the highest PSNR and SSIM was at learning rate of 5x10−3. 

. 
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Learning Rate 𝟏𝟎−𝟐 𝟏𝟎−𝟑 𝟏𝟎−𝟒 𝟏𝟎−𝟓 𝟏𝟎−𝟔 𝟓 × 𝟏𝟎−𝟐 𝟓 × 𝟏𝟎−𝟑 𝟓 × 𝟏𝟎−𝟒 𝟓 × 𝟏𝟎−𝟓 

Max Test 

SSIM(Epoch>850) 

 

0.6839 

 

0.6929 

 

0.6975 

 

0.5587 

 

0.5104 

 

0.5369 

 

0.7063 

 

0.6885 

 

0.5488 

 

Learning Rate 𝟏𝟎−𝟐 𝟏𝟎−𝟑 𝟏𝟎−𝟒 𝟏𝟎−𝟓 𝟏𝟎−𝟔 𝟓 × 𝟏𝟎−𝟐 𝟓 × 𝟏𝟎−𝟑 𝟓 ×  𝟏𝟎−𝟒 𝟓 × 𝟏𝟎−𝟓 

Max Test 

PSNR(Epoch>850) 

 

0.6839 

 

0.6929 

 

0.6975 

 

0.5587 

 

0.5104 

 

0.5369 

 

0.7063 

 

0.6885 

 

0.5488 

 

Table 3.1 Learning rate vs PSNR and SSIM table 

Learning rate of 5x10−3,  PSNR and SSIM was the highest.
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Figure 3.7 depicts the generator and discriminator loss over the course of 

the training set epochs. After 800 epochs, the loss of the discriminator decreased 

and that of the generator increased. Up to the 800th epoch, the discriminator loss 

decreased and the generator loss increased for every 200 epochs, which is ideal 

for adversarial loss. After every 200 epochs, the generator loss abruptly 

decreased and the discriminator loss peaked. This is a characteristic of the 

Adam optimizer[30]. The value of the Adam optimizer soars when gradients 

are smaller and the whole denominator is smaller. Between the 800th and 1400th 

epochs, the loss values were stabilized. Accordingly, we trained our model to 

the 1500th epoch.  

The SR-GAN model was optimized with test PSNR value Adam optimizer 

learning rate of (  10−2, 10−3, 10−4, 10−5, 10−6,  5 × 10−2, 5 × 10−3, 5 ×

10−4, 5 × 10−5 ) Table 3.1. The model with the highest PSNR value was 

selected among the models after epoch 850, where the loss converged. At 

learning rate of 5 × 10−3, The PSNR and SSIM value was the highest. 

3.3.2 Performance of Final Network  

 

We validated the enhanced ODPs according to Structural Similarity (SSIM) and 

Peak Signal-to-Noise Ratio (PSNR) and compared them with other machine-

learning or state-of-the-art deep-learning methods[63]. SSIM is used to 
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calculate the similarity between two images based on three measurements: 

luminance, contrast and structure. 

 

𝐒𝐒𝐈𝐌(𝐱, 𝐲) =  
(𝟐𝝁𝒙𝝁𝒚+ 𝒄𝟏)(𝟐𝝈𝒙𝒚+𝒄𝟐)

(𝝁𝒙
𝟐+ 𝝁𝒚

𝟐+𝒄𝟏)(𝝈𝒙
𝟐+𝝈𝒚

𝟐+𝒄𝟐)
                 (5) 

 

Here, 𝜇𝑥  and 𝜇𝑦 are the averages of x and y, 𝜎𝑥
2,  𝜎𝑦

2 are variances of x 

and y, and 𝜎𝑥𝑦 is the covariance of 𝑥 and 𝑦.  𝑐1 = (𝑘1𝐿)2,  𝑐2 =

(𝑘2𝐿)2 ,  where 𝐿 is the dynamic range of pixel values, 𝑘1 =

0.001 and 𝑘2 = 0.003. 

The optimization target of SR-GAN algorithms commonly is MSE 

minimization between the obtained and the targeted image. This is convenient, 

as minimizing the MSE also maximizes the PSNR, which is a measure 

commonly used to evaluate and compare SR algorithms. 

 

MSE = 
𝟏

𝒎𝒏
 ∑ ∑ [𝑰(𝒊, 𝒋) − 𝒌(𝒊, 𝒋)]𝟐𝒏−𝟏

𝒋=𝟎
𝒎−𝟏
𝒊=𝟎                    (6) 

 

PSNR = 𝟏𝟎𝐥𝐨𝐠𝟏𝟎(
𝑴𝑨𝑿𝑰

𝑴𝑺𝑬
)𝟐                          (7)  
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Here, 𝐼(𝑖, 𝑗), 𝑘(𝑖, 𝑗)  describe the original image and the target image, 

respectively. MAXI is the maximum pixel value of the image, and in the present 

case, the MAXI value was 255. Also, the PSNR is calculated as the ratio 

between the maximum signal power and the noise power.  
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SSIM # 13 # 15 # 16 # 14 # 25 # 26 mean 

Bicubic 0.89  0.90  0.92 0.92 0.90  0.91  0.91  

SRRF 0.90  0.90  0.93 0.91 0.90  0.90  0.91  

NBSRF 0.92  0.93  0.95 0.93 0.92  0.93  0.93  

SRFBN 0.92  0.93  0.95 0.93 0.92  0.93  0.93  

SRResNet 0.90  0.91  0.93 0.91 0.90  0.91  0.91  

Modified SR-GAN 0.91  0.97  0.95 0.78 0.43  0.43  0.75  

Table3.2 Comparison of the SSIM index values for the representative test images. 

SSIM, structural similarity; SRRF, Super-Resolution Forests; NBSRF, Naive Bayes Super-Resolution Forest; SRFBN, Feedback Network 

for Image Super-Resolution; SRResNet, Super-Resolution Residual Network; SR-GAN, Super-Resolution Generative Adversarial Network  
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PSNR (dB) # 13 # 15 # 16 # 14 # 25 # 26 mean 

Bicubic 36.17  36.13  38.06 37.60  36.46  37.47  36.98  

SRRF 33.20  32.22  33.49 34.41  34.77  34.97  33.84  

NBSRF 38.36  38.72  40.81 39.61  37.70  39.02  39.04  

SRFBN 38.72  38.98  41.33 39.99  37.90  39.34  39.38  

SRResNet 36.98  37.13  38.72 88.20  36.79  37.80  37.60  

Modified SR-GAN 27.95  29.81 28.86 20.05 21.69 21.71 25.01  

Table3.3 Comparison of the PSNR values for the representative test image sets. 

PSNR, peak signal-to-noise ratio; SRRF, Super-Resolution Forests; NBSRF, Naive Bayes Super-Resolution Forest; 

SRFBN, Feedback Network for Image Super-Resolution; SRResNet, Super-Resolution Residual Network; SR-GAN, 

Super-Resolution Generative Adversarial Network  
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Figure 3.9 Image mapped PSNR of generated by SR-GAN. 

 The ground truth and generated image (A, E), The PSNR between ground truth and generated image, was mapped as 2D image (B), partially 

cropped (C, D), thresholding PSNR and interpolated value above 20(F), 25(G), 30(H). The high PSNR region distributed in the central part and 

around the blood vessels. 
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Figure 3.10 Representative optic-disc photography (ODP) of eye with optic disc hemorrhage (DH). (A) Magnified image of inferotemporal 

area in original high-resolution ODP, (B) Magnified image of inferotemporal area in deep-learning-based enhanced ODP. The enhanced ODP 

improved the color and spatial contrast between the DH and the background retinal color. 
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MOS # 13 # 15 # 16 # 14 # 25 # 26 mean 

Bicubic 2.87  2.75  2.95 3.05  2.84  3.08  2.92  

SRRF 2.96  3.12  3.56 3.00  2.88  2.94  3.08  

NBSRF 2.98  3.15  3.64  3.25  2.86  2.92  3.13  

SRFBN 3.87  4.05  4.12  3.91  3.75  3.80  4.06  

SRResNet 3.73  3.96  4.02  3.88  3.74  3.61  3.82  

Modified SR-GAN 4.25  4.46  4.52  4.11  4.28  4.33  4.33  

Table3.4 Comparison of the MOS values for the representative test image sets. 

 

MOS, mean opinion score; SRRF, Super-Resolution Forests; NBSRF, Naive Bayes Super-Resolution Forest; SRFBN, Feedback Network for 

Image Super-Resolution; SRResNet, Super-Resolution Residual Network; SR-GAN, Super-Resolution Generative Adversarial Network  
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The Tables 3.2,3 provide validation results for the representative six test 

image sets (all 384 x 384-pixel size). Both the mean SSIM and PSNR values 

were lower by our SR-GAN compared with other methods including Bicubic 

[64], NBSRF (Naive Bayes Super-Resolution Forest)[65], SR-RF (Super-

Resolution Forests)[66], SRResNet (Super Resolution Residual Network)[55], 

and SRFBN (Feedback Network for Image Super-Resolution)[67]. Since our 

modified SR-GAN was designed to generate images to improve not only the 

resolution but also the color and spatial contrast, some of the enhanced images 

had greatly different color composition compared with the reference images 

(Figure 3.6). By our modified SR-GAN method, the SSIM and PSNR values 

were higher in images #13, #15, and #16 than in images #14, #25, and #26. In 

images #13, #15, and #16, the obtained ODPs were similar to the targeted ODPs. 

In images #14, #25, and #26, however, the overall background color of the 

ODPs was transformed from red-orange to green. This might have caused the 

relatively lower SSIM and PSNR values, even though they were perceptually 

convincing images (Figure 3.6). The MOS test showed significant gains in 

perceptual quality using our modified SR-GAN compared with the Bicubic, 

NBSRF, SR-RF, SRResNet, and SRFBN methods (Table 3.4). 

The Figure 3.9, represents the PSNR between ground truth and generated 

image, was mapped as 2D image. It indicates that indirectly check which part 

of the generated image is considered important. PSNR value was thresholded 
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with above 20, 25, 30 respectively. The high PSNR region distributed in the 

central part (neural rim) and around the blood vessels. 
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Figure 3.11 Validation Results for Control Group  

SRRF, Super-Resolution Forests; NBSRF, Naive Bayes Super-Resolution Forest; SRFBN, Feedback Network for Image Super-Resolution; 

SRResNet, Super-Resolution Residual Network; SR-GAN, Super-Resolution Generative Adversarial Network. SRFBN showed best perceptual 

image quality. 
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3.3.3 Clinical Validation of Enhanced ODP by MOS Comparison 

 

Characteristics Values 

   Age (yrs) 57.5 ± 11.9 

   Male, n (%) 46 (46.9) 

   Spherical equivalent (D) -1.4 ± 3.0 

   IOP (mmHg) 14.7 ± 3.4 

   CCT (μm) 541.6 ± 32.4 

   Axial length (mm) 24.5 ± 1.75 

   VF MD (decibels) -4.5 ± 8.6 

Table 3.5 Demographic and Clinical Characteristics of Study Subjects (N = 

98) 

 

Values are mean ± standard deviation.  

D, diopters; IOP, intraocular pressure; CCT, central corneal thickness; VF, visual 

field; MD, mean deviation. 
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Figure 3.12 Scatter plot of delta mean opinion score (Δ MOS) against MOS 

of original optic-disc photography (ODP). The Δ MOS was calculated as the 

difference between the original and enhanced ODP scores. Note that the lower 

the original ODP image quality score, the larger the Δ MOS. 

 

A total of 1200 responses comprising 12 ophthalmologists’ image quality 

assessments of 50 original and 50 enhanced ODPs were analyzed. The subjects’ 

demographic and ocular characteristics are provided in Table 3.5. The image 

quality grades were numbered between 1 and 5 (higher scores indicating better 

quality), and all of the 50 enhanced ODPs were graded as either ‘excellent’ or 

‘good.’ The MOS for the enhanced ODPs was significantly higher than that for 

the original ODPs (4.36 ± 0.38 vs. 3.51 ± 0.88, P < 0.001). The lower the 
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original ODP image quality score, the larger the difference between the original 

and enhanced ODPs’ score (Figure 3.12). 

3.3.4 Comparison of DH-Detection Accuracy 

 

The 12 ophthalmologists’ assessments of the 50 original ODPs and 50 

enhanced ODPs were analyzed. The overall DH-detection accuracy was 76.3% 

with the original ODPs and 90.7% with the enhanced ODPs (P < 0.001). Among 

the misdiagnosed DHs, the rate of false-positive detection was 6.2 and 2.7% in 

the original and enhanced ODPs, respectively (P = 0.003). The rate of false-

negative detection was 17.5 and 6.7% in the original and enhanced ODPs, 

respectively, and the difference was statistically significant (P < 0.001).  

The group with the low original image quality (mean score < 3.0) showed a 

much improved DH-detection rate with the enhanced ODPs. The DH-detection 

accuracy differences between the original and enhanced ODPs were 29.5 ± 17.6 

and 9.0 ± 12.8% in the low- and high-original-image-quality groups, 

respectively (P < 0.001).   
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3.4 Discussion 

 

3.4.1 Research Significance 

 

We have presented herein a novel deep-learning approach to ODP 

enhancement that is capable of (1) 4-times up-scaling and (2) enhancement of 

anatomical details by means of contrast, color, and brightness improvement. 

We found that the resultant enhanced ODPs significantly improved general 

ophthalmologists’ accuracy of DH detection in glaucoma patients. The core 

novelty of our method lies in its clinical robustness in constructing image 

datasets. By applying a customized manual image post-processing algorithm to 

the training dataset, our network could improve both resolution and visibility 

of anatomical details, which compares favorably with other deep-learning 

approaches that focus only on resolution enhancement.   

Recently, general image enhancement has achieved state-of-the-art 

performance, especially with the development of deep-learning techniques[68-

70]. Dai et al. proposed a two-stage denoising method including fourth-order 

partial differential equations (PDEs) and a relaxed median filter for retinal 

image enhancement[71]. Bandara and Giragama applied a spatially adaptive 

contrast-enhancement technique for enhancement of fundus images[71, 72]. 

However, some retinal pathologies (e.g., hemorrhages, microaneurysms, and 

drusen) are mostly only a few pixels wide, causing them to be easily confused 
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with artifacts of noise. Thus, a fundus image enhancement method must be able 

to both suppress the undesired low-quality factors and preserve the pathological 

characteristics simultaneously, which requirement general enhancement 

techniques cannot satisfy [73]. Zhao et al. applied adversarial loss to blurry 

retinal images [74]. However, despite its computational efficiency, this method 

focuses only on generating photo-realistic images, ignoring lesions significant 

to clinical applications. Thus, in our study, we focused on designing an effective 

deep-learning model for robust images suitable to the diagnosis of ophthalmic 

pathologies.  

In this study, 74% of the original ODPs were evaluated as ‘better than fair’ 

image quality sufficient for detection and diagnosis of pathologic change. 

However, on those original ODPs, a large percentage (142/600, 23.7%) of 

images was misdiagnosed by the ophthalmologists. This might have been owed 

to the fact that, even with high-resolution, good-quality ODPs, there is often 

limited detectability of small and indistinct pathologies due to insufficient time, 

fatigue, and/or lack of experience [52]. We demonstrated that by use of 

enhanced ODPs, detection accuracy for ONH pathology can be greatly 

improved.  

We expect that this deep-learning approach for enhanced ODP will see 

wide application for accurate evaluation of ophthalmic pathologies and 

precision assessment of disease progression. Enhanced ODPs, for example, are 

expected to more clearly show vessel alterations or PPA changes associated 
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with glaucomatous damage. Enhanced imaging enables ophthalmologists to 

zoom in on a suspect area and examine it in greater detail, without pixel loss. 

By application of this method to fundus photography, minute retinal 

hemorrhage or subtle enlargement of retinal nerve fiber layer defect can be 

more accurately and consistently detected.  

 

Figure 3.13 Example of fundus photography transferred from another 

institution as printed document. (A) Original document, (B) directly 

extracted fundus image, (C) magnified image of optic disc in original fundus 

photography, (D) deep-learning-based enhanced fundus photography, (E) 

magnified image of optic disc in enhanced fundus photography. The enhanced 

fundus photography improved the structural details of the optic disc, 

neuroretinal rim margin and vessel contours. 
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The clinical utility of deep-learning based image enhancement is 

particularly high in cases of low-quality images having low resolution and/or 

low contrast. In eyes with cataract or corneal opacity, enhanced ODPs can be 

used to improve overall image quality and the accuracy of glaucoma and retinal 

disease diagnostics. Moreover, images showing contrast loss due to poor focus, 

eye movement or insufficient illumination can be up-scaled. Regarding the 

examination results printed on paper in low resolution and transferred from 

other institutions, applying our deep-learning method for enhanced ODPs 

makes possible not only magnification of such images but also improvement of 

their structural details, which in turn allows for more meticulous evaluation 

(Figure 3.13). Additionally, there is growing interest in the value of using 

telemedicine for detection, following, and treatment of ophthalmic diseases [75, 

76]. In cases of tele-ophthalmology requiring transmission of acquired low-

resolution results [77, 78], transformation to enhanced images certainly can 

help to overcome hardware limitations, thereby enabling ophthalmologists to 

more closely analyze suspicious regions.  

 

It has been reported that using GAN for super-resolution imaging can incur 

image artifacts in fine details[55]. Thus, two glaucoma specialists (AH and 

YKK) checked each image for the presence of artifacts, and could confirm that 

there were no such cases in our dataset. The underlying reason for this 

difference in artifact occurrence rate is not yet clear. We speculate that previous 
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GANs are more vulnerable to artifacts because they utilize a variety of images 

as a training dataset, as compared with ours, which consists only of ODPs. 

However, since artifacts in medical applications may affect diagnosis or 

management of patients, caution needs to be exercised in any attempts to utilize 

our network for other image types. 

Single-image SR via deep learning recently has attracted significant 

research attention. In the present study, a modified SR-GAN consisting of a 

GAN and a pre-trained VGG19 network was adopted for image training. A 

network trained for image classification (like VGG) stores, in its feature maps, 

detailed information on the appearance of common objects, thus enabling an 

up-scaled image to be made up, to the extent possible, of objects resembling 

real-world ones. A GAN also has additional merits including non-dependence 

on prior-knowledge, the lack of any need to design hand-engineered features, 

and high effectiveness in capturing image structures. Such underlying 

advantages render SR-GAN a robust platform allowing for multiple 

applications to be followed once well-trained SR artificial intelligence is 

established. In future studies, we will explore this modified SR-GAN’s results 

for different datasets.  

It is known that deep learning generally requires a large dataset for the 

training phase [61]. In the current study however, we demonstrated the ability 

to obtain clinically meaningful results with only 48 pairs of datasets. We 

carefully modeled both the image degradation process for generation of low-
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resolution ODPs and the image customization process for production of 

compensated high-resolution ODPs; in this way, we eliminated the need for 

complicated alignment of high- and low-resolution pairs. These steps simplified 

data processing and improved the modified GAN’s robustness. We believe that 

this example-based method using standardized low- and high-resolution image 

pairs can maximize the time efficiency of the training process.  

 

3.4.2 Limitations 

 

The present study’s findings must be interpreted in light of its limitations. 

First, numerical evaluation of enhanced image quality was unsuitable for some 

of our dataset[79]. Different metrics, such as PSNR, SSIM, and multi-scale 

SSIM, are widely used for quantitative assessment of image restoration quality 

[80]. These metrics measure reconstructed image quality with respect to the 

reference or ground-truth image. Some of our enhanced ODPs had greatly 

different color composition compared with the reference image, due to the fact 

that we had used compensated ODPs with color-contrast customization in the 

training process [81]. With such alterations in color composition, direct 

comparison by numerical evaluation with other deep-learning methods that 

focus only on resolution improvement would be inappropriate[81]. 

Furthermore, none of these metrics are known to be well matched with human 
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visual responses to image quality[61]. For these reasons, we focused on the 

clinical implications of the use of enhanced ODPs for diagnosis of optic disc 

pathology. Further numerical evaluation of enhanced ophthalmic image quality 

with reasonable metrics should be carried out in future studies. Second, we 

applied a customized image post-processing algorithm for optimization of both 

the color and spatial contrast of each ODP. This detailed manual adjustment 

was applied differently according to each ODP’s image quality. Although this 

variability in the image-processing procedure may incur reproducibility issues, 

we believe that the core novelty of our method lies in the customization of 

image-processing procedures. In real-world clinical practice, ODPs can have 

several different limitations other than insufficient resolution, such as low color 

and spatial contrast. Based on the customized image compensation process to 

optimize the visibility of ophthalmic pathology, we enabled GAN to generate 

enhanced ODPs with both higher resolution and improved anatomical details. 

However, different image post-processing methods or training strategies might 

manifest different results. Third, the clinical implications of enhanced ODP 

were not evaluated for other optic-disc characteristics such as neuroretinal rim 

contours. This was due to the fact that the image-compensation process of the 

present study was mainly focused on the enhancement of the visibility of the 

optic disc margin and surrounding retinal vessels, not on the rim contours. 

Therefore, further research is certainly needed to determine the usefulness of 

deep-learning-based enhanced ODP in glaucoma diagnostics. Fourth, our 
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meaningful training results were based on relatively little data. Further studies 

will validate this algorithm using a larger dataset.  
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3.5 Conclusion 

 

   The current study demonstrated that deep learning can be applied to 

create an algorithm that is capable of producing enhanced ophthalmic images 

that are 4-times up-scaled and improved in their structural details. The 

enhanced ODPs thereby obtained significantly increased the detection accuracy 

of optic disc pathology. Further studies exploring the usefulness of this 

algorithm’s deployment in different clinical settings are warranted. 

 

* Large sections of this chapter were published previously in PloS one,(Ha, A., 

Sun, S., Kim, Y. K., Lee, J., Jeoung, J. W., Kim, H. C., & Park, K. H. (2020). 

Deep-learning-based enhanced optic-disc photography. PloS one, 15(10), 

e0239913.)  
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Chapter 4  

Deep Learning Based Prediction of Glaucoma 

Onset Using Retinal Image and Patient Data 

 

4.1 Introduction 

 

4.1.1 Background 

 

In treating glaucoma, timely detection of disease progression is crucial to 

preserve patients’ vision. Structural and functional clinical modalities such as 

optical coherence tomography (OCT) and visual field (VF) test are utilized for 

monitoring glaucoma progression[82, 83]. However, due to the variability of 

these modalities, it can take in many cases several years for confirmation of 

disease progression. To mitigate this problem, guided progression analysis 

(GPA) is performed with event-based analysis or trend-based analysis. GPA 

has been available for VF assessment as well as for OCT scanning of the 

macular ganglion cell-inner plexiform layer (mGCIPL) or retinal nerve fiber 

layer (RNFL). However, it helps clinicians only to monitor disease progression, 

not to predict progression. 
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Convolutional auto encoder(CAE)[84] is a type of unsupervised learning 

method trained without a label. CAE has been used to reconstruct image or 

removing noise of image. For other purposes, CAE can extract the features of 

images. The decision tree based ensemble[85] has recently become popular 

among data scientists due to high efficiency and effectiveness of solving 

classification and regression problem. XGboost[86] and Random forests[87] 

are one of the most powerful decision tree based ensemble method. 

 

4.1.2 Related Work 

 

No study has been undertaken to investigate whether combining different 

types of clinical information would be helpful in predicting the subsequent 

course of glaucoma in individual patients. 

 

4.2 Methods 

 

4.2.1 Study Design 

 

The purpose of this study was to develop a machine-learning model using 

clinical data for prediction of subsequent glaucoma progression in glaucoma 

suspects.  
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4.2.2 Dataset 

Sex Onset-year Age Laterality Family 

History 

Diabetes 

Mellitus 

CCT RNFL 

Thickness 

M=121 

F=99 

1~7 = 15 

Normal = 105 

Mean = 

55.848 

Std = 9.45 

Right = 104 

Left = 106 

O =36 

X = 174 

O = 27 

X=183 

Mean = 

537.04 

Std =29.71 

Mean = 90.99 

Std =3.83 

IOP AXL SE DBP SBP Height Weight BMI 

Mean = 

14.79 

Std =2.89 

Mean = 

23.90 

Std =1.23 

Mean = -1.05 

Std=1.59 

Mean = 

69.18 

Std = 6.18 

Mean=116.69 

Std = 12.97 

Mean = 1.63 

Std = 0.09 

Mean = 63.02 

Std=9.32 

Mean = 

23.612 

Std = 3.18 

Table4.1 Statistical characteristic of 210 total patient 

CCT (Central Corneal Thickness), IOP (Intraocular pressure), AXL (axial length), SE (Spherical Equivalent), DBP (Diastolic Blood Pressure), 

SBP (Systolic Blood Pressure) 
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Figure4.1 t-SNE for Dataset Embedding 

The distance between embedded data was expressed as stochastic probability depends on perplexity, perplexity 2, 5, 10, 30, 100, 200(A, B, C, 

D, E,F)
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Eyes were chosen from subjects examined for glaucoma at the Glaucoma 

Clinic, Seoul National University Hospital. Retinal photos were originally 1872 

x 901-pixel and resized and saved as 448x 448. Red-free retinal nerve fiber 

layer (RNFL) images and optic-disc photographs (ODPs) were obtained for all 

the patients. The patient data included the onset of glaucoma and the onset year. 

There are 15 features such as sex, age, glaucoma laterality, glaucoma family 

history, diabetes mellitus, central corneal thickness (CCT), intraocular pressure 

(IOP), axial length (AXL), spherical equivalent (SE), diastolic blood pressure 

(DBP), and systolic blood pressure (SBP). All the patients were followed up for 

up to seven years for the occurrence of glaucoma; those who did not develop 

glaucoma after seven years were classified as normal groups. The demographic 

features of the subjects are provided in Table4.1 

 

Data visualization was performed with t-SNE[88] with 55 features of the data 

and glaucoma onset year, perplexity of 2, 5, 10, 30, 100, 200 
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4.2.3 Design of Overall System 

 

 

 

Figure4.2 Overall systems of designed classification and regression 

network 

Features from ODP and RNFL image was extracted by convolutional auto 

encoder(left), extracted features were fed into machine learning classifier for 

classifying glaucoma suspect(middle) and for prediction glaucoma onset-

year(right) 

 

The overall system consisted of three steps as shown in Figure 4.2. In the 

first step, the features of the two images (ODP and RNFL) were extracted with 

CAE, and in the next step, the extracted features and demographic features of 

the patient were used to classify whether the patient was suspected of glaucoma. 

In the final stage, the onset year is predicted for the patients with suspected 

glaucoma using a regressor. 
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4.2.4 Design of Convolutional Auto Encoder(CAE) 

 

In general, CAE is used to restore an image entered as an input. CAE is a 

well-known deep-learning unsupervised feature extractor. Because of the lack 

of data to approach the classic deep-learning method, unsupervised learning 

method was adopted. The ODPs and RNFL images were fed into the CAE 

program for feature extraction. Mean squared error (MSE) was used for the loss 

function, and the CAE program was trained to minimize the MSE between the 

input and output images. 

 

𝐿𝑀𝑆𝐸= 
1

𝑟2𝑊𝐻
∑ ∑ (𝐼𝑥,𝑦

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙
−  𝐼𝑥,𝑦

𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑)2 
𝐻𝑖,𝑗

𝑦=1  
𝑊𝑖,𝑗

𝑥=1  

  

As an input of CAE, the original ODPs and RNFL images were resized to 

448 × 448 × 3. By the process of convolution (filter sizes: 4, Strides: 2), the size 

of the feature map was reduced by 1/2.Atfer 3-stacked convolution layer, the 

size of the feature map was reduced to 112 × 112 × 3. The feature map was 

resized to 20 nodes using a multilayer perceptron (MLP) with 20 latent vectors 

as features. During three deconvolutions, 20 latent vectors were reconstructed 

to the size of the original image (448 × 448 × 3). Leaky-ReLU was adopted for 

the activation function, and batch norm was adopted with a batch size of eight. 
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Figure4.3 Architecture of CAE network. 

 The corresponding kernel size (k), number of feature maps (n) and stride (s) are indicated for each convolutional layer. 448x448x3 reduced to 

20 vector after convolution (sky blue) and reconstructed to 448x448x3 after deconvolution(purple). 
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4.2.5 Glaucoma Suspect Classification 

 

40 features for the two input images (ODP and RNFL) were extracted from 

the latent vector of CAE, and 15 features were extracted from the patient 

information. A total of 55 features were used to classify the glaucoma suspects. 

Data from 210 patients (Training: 140; normal-67, glaucoma-73; Test: 70; 

normal-38, glaucoma-32) were used.  

Classification was performed using Random Forest, XGboost, AdaBoost, 

Gradient Boosting, and SVM(RBF) classifiers with four cases: both images and 

demographic features (55 features), ODP and demographic features (35 

features), RNFL with demographic features (35 features), and only 

demographic features (15 features). A five-fold cross validation with random 

and grid search was used for Hyperparameter optimization. To calculate the 

confidence interval, bootstrapping method was used. 

 

4.2.6 Glaucoma Onset-Year Prediction 

 

The features for the two input images (ODP and RNFL) were extracted from 

the latent vector of CAE, and 15 features were extracted from the patient 

information. A total of 55 features were used to classify the prediction for the 

glaucoma onset year. (Training 73 (Glaucoma), Test 34 (Normal-2, Glaucoma-

32)) was used. At the glaucoma suspect classification stage, two normal patients 

were classified as glaucoma suspects. 
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Regression was performed using Random Forest, XGboost, AdaBoost, 

Gradient Boosting, and SVM(RBF) classifiers with four cases: both images and 

demographic features (55 features), ODP and demographic features (35 

features), RNFL with demographic features (35 features), and only 

demographic features (15 features). A five-fold cross validation with random 

and grid search was used for Hyperparameter optimization. The 

Hyperparameter was optimized using root mean squared log error (RMSLE). 

To calculate the confidence interval, bootstrapping method was used. 

 

RMSLE=√
1

𝑛
∑ (log(𝑝𝑖 + 1) − log(𝑎𝑖 + 1))2𝑛

𝑖=1  

(p: prediction, a: ground truth) 
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4.3 Result 

 

4.3.1 Performance of Designed CAE 

 

 

Figure4.4 Reconstructed image while training CAE 

As epoch repeated, sharper images are obtained, from epoch 1000 or higher, 

model reconstruct visually similar to the original image 

 

  

Figure4.5 Training loss curve for CAE 

Training MSE loss (black dot) of model converges after 500 epochs, the test 

loss (red dot) is also converging but unstable 



100 

 

 

Figure4.4 shows the loss of the designed CAE training set epochs. From the 

epoch 1000 started to restore the original image well, the loss graph dropped 

low and was saturated after epoch 2000 both in training and in test. Mean 

squared error was used as the loss function of CAE. Here, 𝐼(𝑖, 𝑗), 𝑘(𝑖, 𝑗) 

represent the original image and the target image, respectively. CAE was 

trained until 4000 epochs with Adam optimizer[89] – learning rate of 10e-4, 

beta1 of 0.9. 
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4.3.2 Performance of Designed Glaucoma Suspect Classification  

 Random Forest 

(both image 

& Patient Feature) 

XGBOOST 

(both image 

& Patient Feature) 

AdaBoost 

(both image 

& Patient Feature) 

Gradient Boosting 

(Patient Feature) 

Training Accuracy(%) 96.429 94.286 95 93.57 

Test Accuracy(%) 95.801(84.607-95.714) 97.14(88.107-98.571) 97.14(87.5-1) 95.71(86.036-97.143) 

AUC 0.998(0.967-0.998) 0.998(0.973-1.) 0.996(0.970-0.998) 0.988(0.956-0.997) 

Sensitivity 0.938(0.875-1) 1(0.906-1.) 1(0.906-1.) 1(1-1) 

Specificity 0.974(0.716-974.) 0.947.(0.868-0.994) 0.947.(0.822-1.) 0.579(0.348-0.579.) 

Table4.2 Glaucoma suspect classification result 
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 IOP RNFL Thickness D_7 D_14 R_2 Age 

Classification Importance 

(Normalized) 

0.123 0.1 0.077 0.077 0.077 0.077 

 

Table4.3 Feature importance of glaucoma suspect classification networks 
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Figure4.6 ROC curve for glaucoma suspect classification networks 

 

XGboost(pink dash), Random Forests(blue dash), Adaboost(green dash), 

Gradient boost(orange dash)



104 

 

 

The accuracy and AUC calculated for designed network are shown in Table 4.2 

Which is also indicated the results obtained by machine learning algorithms. In 

addition, the accuracy and AUC of XGBOOST with both red-free RNFL and 

ODP is highest. The accuracy of training phase was 94.286 and in test phase 

accuracy was 97.14 with (95% CI 88.107-98.571), AUC0.998(0.973-1.) 

, Sensitivity 1(0.906-1.), 0.947. (0.868-0.994). With Random forest training 

accuracy was 96.429, Test accuracy was 95.801(84.607-95.714), AUC 

0.998(0.967-0.998) Sensitivity 0.938(0.875-1), Specificity 0.974(0.716-974.). 

With Adaboost training accuracy was 95, test accuracy was 97.14(87.5-1), 

0.996(0.970-0.998), Sensitivity 1(0.906-1.), Specificity, 0.947. (0.822-1.). 

Gradient Boosting algorithm performed best when using only patient feature in 

training phase the accuracy was 93.57 test accuracy 95.71(86.036-97.143) AUC 

0.988(0.956-0.997) Sensitivity 1(1-1). Specificity 0.579(0.348-0.579.) 

The feature importance of best model XGBOOST was extracted by Scikit-

learn library. IOP, RNFL Thickness, ODP feature 7, 14, red-free RNFL feature2 

and age in order. 
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4.3.3 Performance of Designed Glaucoma Onset-Year Prediction  

 

MSE XGboost 

(both 

image) 

Random 

Forest 

(Disc photo) 

Adaboost 

(W/O 

image) 

Gradient Boost 

(W/O image) 

Train 1.08 1.33 1.79 1.53 

Test 2.613 

(2.316-

3.880) 

3.0588(2.4647-

5.822) 

3.353(2.635-

5.660) 

3.353(2.818-4.398) 

 

Table4.4 Glaucoma onset-year regression result. MSE was calculated 

between onset-year and ground truth  

 

The MSE values calculated for the designed network are listed in Table4.4 

This table also presents the results obtained by the machine learning algorithms. 

The MSE of XGBOOST was the lowest with both red-free RNFL and ODP.  

 

 

 

  Age BMI DBP R_2 D_3 CCT 

Regression 

Importance 
(Normalized) 

0.085 0.064 0.049 0.047 0.047 0.04 

Table4.5 Feature importance of glaucoma suspect classification networks 
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 RNFL 

Thickness 

IOP Age DBP R_8 Family 

History 

Linear 

correlation 

0.69 -0.68 0.66 0.43 0.42 -0.38 

 

Table4.6 Linear correlation glaucoma onset-year vs patient features 

 

The important features of the designed network are shown in Table4.5 The 

lowest MSE (XGBOOST) values were observed for age, BMI, DBP, red-free 

RNFL feature 2, ODP feature 3, and CCT. The glaucoma onset year and patient 

features had a high linear correlation with RNFL thickness, IOP, age, DBP, 

RNFL feature 8, and family history.  

 

 

 



107 

 

 

Figure4.7 Regression result for glaucoma onset-year prediction 

x-axis=patient number, y-axis= onset-year, black line represents predicted on-

set year value of best model (XGboost with Red-free RNFL, ODP, patient 

feature), red line represents ground truth value of onset-year (follow up data) 

 

 

Figure.4.7 shows the onset year as per the actual prediction. Except for a few 

patients, the trend is consistent. Because of the misclassified patients in 

classification system, regression was done with the normal group (two normal 

patients). However, the regression value was predicted high (above five years) 

and classifier was designed to high false positive. The 95% confidence interval 

was calculated by bootstrapping method with 50 iterations. Figure 4.8 shows 
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the upper and lower limits of the 95% confidence interval. The Figure 4.9 shows 

the regression result for 38 normal patients. Except in the case of a few patients, 

the onset years of normal patients were predicted to be higher than five years, 

and the classifier was designed to high false positive. 

 

Figure4.8 95% Confidence interval for regression result (each individual 

patient) 

x-axis – patient number, y-axis – onset year, actual prediction value of best 

model(red line), ground truth(green line), 95% CI of lower prediction 

value(black line) , 95% CI of upper prediction value(blue line) 
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Figure4.9 Onset-year prediction for normal patient 

x-axis – patient number, y-axis – onset year, predicted on-set year value when 

features of normal patient fed into final model 
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4.1 Discussion 

 

4.4.1 Research Significance 

 

In the present study, we observed that the designed system with combined 

use of the features of ODP, red-free RNFL extracted by CAE, and patient 

features was effective in classifying glaucoma suspects and prediction of 

glaucoma onset year. The combined use of both image features and patient 

features showed better performance in glaucoma suspect classification and 

prediction of glaucoma onset year than the use of image features and patient 

features individually. 

 

4.4.2 Limitations 

 

Further study is necessary to improve the accuracy of prediction of glaucoma 

onset year and to validate the results in a larger sample. The availability of such 

data set is scarce, and it takes a long time to collect the data. Additional 

validation is needed if there is no ground truth, and hence it is unclear whether 

a patient will develop glaucoma or not. It is also unclear how the image features 

extracted in the unsupervised learning method will affect the classification and 

regression.  

 

 



111 

 

4.5 Conclusion 

 

We expect that this machine learning approach for the prediction of glaucoma 

onset year will lead to a wide application for the prediction of glaucoma in very 

early glaucoma patients. It is possible to establish a follow-up period and 

provide evidence for starting medication. 

As it is possible to have a relatively accurate prediction of glaucoma onset 

year using only simple patient information, it could be helpful while using it in 

underdeveloped areas. 
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Chapter 5 Summary and Future Works 

 

5.1 Thesis Summary 

 

The goal of this study was to support glaucoma diagnosis using deep learning 

on clinical data and to validate its performance. The performance of the 

designed network was validated with clinical and engineering parameters. 

In the first study, we developed deep-learning algorithms analyzed by 

DICNN with combined RNFL and GCIPL features on thickness maps; they 

showed better diagnostic performance for early stage glaucoma than the 

conventional deep-learning methods. The model was evaluated for accuracy, 

sensitivity, specificity, and ROC. 

In the second study, we developed a deep-learning approach for increased 

resolution and improved legibility of ODPs by a contrast, color, and brightness 

compensation model. The model was evaluated using PSNR, SSIM, and MOS. 

The enhanced ODPs significantly increased the detection accuracy of optic disc 

pathology. 

In the third study, we developed a deep-learning model using clinical data 

and retinal images (ODP & Red-free Fundus RNFL images) for classification 

of glaucoma suspects and prediction of subsequent glaucoma onset year in 

glaucoma suspects. The use of combined image features and patient features 

showed better performance in glaucoma suspect classification and prediction 
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of glaucoma onset year than the use of image features and patient features 

individually. 

In conclusion, this study proved that deep learning on clinical data can be 

effective in improving glaucoma diagnosis, and also showed the possibility of 

replacing previous models or proposing new methods for glaucoma diagnosis 

by presenting new concepts and verifying the performance.  

 

5.2 Limitations and Future works 

 

  The application of the proposed method for glaucoma diagnosis in clinical 

practice has several limitations. In the first study, the Grad-CAM works 

inconsistently, and it remains unclear how the deep-learning model 

discriminates the cases as either glaucoma or normal. Additional validation is 

needed to confirm the actual performance. For generalization, it is necessary to 

apply it to OCT images of other hospitals. In the second study, MOS was 

measured solely on hemorrhage ODP and normal images, and not on 

peripapillary atrophy (PPA) or vessel alteration images. The Image 

compensation process in the present study was focused mainly on enhancement 

of the visibility of the optic disc margin and surrounding retinal vessels, and not 

on the rim contours. It is necessary to collect additional data with PPA and 

vessel alteration. In the third study, further work is necessary to improve the 

accuracy of prediction of glaucoma onset year and to validate the results on a 
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larger sample. The availability of such data set is scarce, and it takes a long time 

to collect the data. Additional validation is needed, but there is no ground truth, 

and hence it is unclear whether a patient will develop glaucoma or not. 

Therefore, additional follow-up data are needed for further study. 
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초    록 

 

본 논문에서는 딥 러닝 기반의 진단 보조 시스템을 제안하였다. 

새로운 방법이 녹내장 데이터에 적용되었고 결과를 평가하였다. 

첫번째 연구에서는 스펙트럼영역 빛간섭단층촬영기(SD-OCT)를 

딥 러닝 분류 기를 이용해 분석하였다. 스펙트럼영역 

빛간섭단층촬영기는 녹내장으로 인한 구조적 손상을 평가하기 위해 

사용하는 장비이다. 분류 알고리즘은 합성 곱 신경망을 이용해 개발 

되었으며, 스펙트럼영역 빛간섭단층촬영기의 

망막신경섬유층(RNFL)과 황반부 신경절세포내망상층 (GCIPL) 

사진을 이용해 학습했다. 제안한 방법은 두개의 이미지를 입력으로 

받는 이중입력합성곱신경망(DICNN)이며, 딥 러닝 분류에서 

효과적인 것으로 알려져 있다. 이중입력합성곱신경망은 

망막신경섬유층 과 신경절세포층 의 두께 지도를 이용하여 학습 

됐으며, 학습된 네트워크는 녹내장과 정상 군을 구분한다. 

이중입력합성곱신경망은 정확도와 수신기동작특성곡선하면적 

(AUC)으로 평가 되었다. 망막신경섬유층과 신경절세포층 두께 

지도로 학습된 설계한 딥 러닝 모델을 조기 녹내장과 정상 군을 

분류하는 성능을 평가하고 비교하였다. 성능평가 결과 

이중입력합성곱신경망은 조기 녹내장을 분류하는데 0.869의 

수신기동작특성곡선의넓이와 0.921의 민감도, 0.756의 특이도를 
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보였다. 

두번째 연구에서는 딥 러닝을 이용해 시신경유두사진의 해상도와 

대비, 색감, 밝기를 보정하는 방법을 제안하였다. 시신경유두사진은 

녹내장을 진단하는데 있어 효과적인 것으로 알려져 있다. 하지만, 

녹내장의 진단에서 환자의 나, 작은 동공, 매체 불투명성 등으로 

인해 평가가 어려운 경우가 있다. 초 해상도와 보정 알고리즘은 초 

해상도 적대적생성신경망을 통해 개발되었다. 원본 고해상도의 

시신경 유두 사진은 저해상도 사진으로 축소되고, 보정된 고해상도 

시신경유두사진으로 보정 되며, 보정된 사진은 시신경여백의 

가시성과 근처 혈관을 잘 보이도록 후처리 알고리즘을 이용한다. 

저해상도이미지를 보정된 고해상도이미지로 복원하는 과정을 

초해상도적대적신경망을 통해 학습한다. 설계한 네트워크는 신호 대 

잡음 비(PSNR)과 구조적유사성(SSIM), 평균평가점(MOS)를 이용해 

평가 되었다. 현재의 연구는 딥 러닝이 안과 이미지를 4배 해상도와 

구조적인 세부 항목이 잘 보이도록 개선할 수 있다는 것을 

보여주었다. 향상된 시신경유두 사진은 시신경의 병리학적인 특성의 

진단 정확도를 명확히 향상시킨다. 성능평가결과 평균 PSNR은 

25.01 SSIM은 0.75 MOS는 4.33으로 나타났다. 

세번째 연구에서는 환자 정보와 안과 영상(시신경유두 사진과 

붉은색이 없는 망막신경섬유층 사진)을 이용해 녹내장 의심 환자를 

분별하고 녹내장 의심 환자의 발병 연수를 예측하는 딥 러닝 

모델을 개발하였다. 임상 데이터들은 녹내장을 진단하거나 



129 

 

예측하는데 유용한 정보들을 가지고 있다. 하지만, 어떻게 다양한 

유형의 임상정보들을 조합하는 것이 각각의 환자들에 대해 

잠재적인 녹내장을 예측하는데 어떤 영향을 주는지에 대한 연구가 

진행 된 적이 없다. 녹내장 의 심자 분류와 발병 년 수 예측은 합성 

곱 자동 인코더(CAE)를 비 지도적 특성 추출 기로 사용하고, 

기계학습 분류 기와 회귀기를 통해 진행하였다. 설계한 모델은 

정확도와 평균제곱오차(MSE)를 통해 평가 되었으며, 이미지 특징과 

환자 특징은 조합했을 때 녹내장 의심 환자 분류와 발병 년 수 

예측의 성능이 이미지 특징과 환자 특징을 각각 썼을 때보다 

성능이 좋았다. 정답과의 MSE는 2.613으로 나타났다. 

본 연구에서는 딥 러닝을 이용해 녹내장 관련 임상 데이터 중 

망막신경섬유층, 신경절세포층 사진을 녹내장 진단에 이용되었고, 

시신경유두 사진은 시신경의 병리학적인 진단 정확도를 높였고, 

환자 정보는 보다 정확한 녹내장 의심 환자 분류와 발병 년 수 

예측에 이용되었다. 향상된 녹내장 진단 성능은 기술적이고 

임상적인 지표들을 통해 검증되었다. 

 

주요어: 딥러닝, 합성곱 신경막, 초해상도, 녹내장 진단, 녹내장 예측 
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졸업 주제에 가장 많은 도움을 주신 안과학 교실의 박기호 교수님, 

김영국 교수님, 하아늘 선생님께 감사 인사를 올립니다. 안과학 

교실 덕분에 제가 가장 활발히 연구 할 수 있었고, 제 연구가 꽃을 

피울 수 있었습니다. 정진욱 교수님, 박은우 선생님, 위서영 

선생님께도 감사합니다. 피부과의 정진호 교수님, 조수익 선생님께 

감사합니다. 좋은 주제를 제안해 주셔서 짧은 기간 동안 좋은 

성과를 낼 수 있었습니다. 아직 진행 중이지만 서대헌 교수님께도 

감사인사를 올립니다. 또한 재난 대응 과제로 많은 도움을 주셨던, 

신상도 교수님, 정주 교수님, 김태한 선생님께 감사드립니다. 

마지막으로 생체 신호에 입문할 수 있도록 도움을 주신 신경외과 

백선하 교수님, 박광현 선생님께 감사 인사를 올립니다. 공동 
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연구를 통해 협업과 소통을 배우고, 임상적 의학적인 관점에 대해 

배울 수 있었던 귀중한 시간이었습니다. 

연구실 생활을 마지막까지 함께 했던, 희진이형, 치헌이형, 장재형, 

희안누나, 승만이, 지은이 그리고 졸업생 분들 중 연구 및 생활에 

가장 도움을 많이 주신 병욱이형, CMI 시절부터 함께 생활하고 

같은 연구를 진행했던 동헌이형 및 모든 졸업생 분들께 감사 

인사를 올립니다. MBDL 의 윤하형, 동아누나, 우상이, 찬훈이, 준희, 

경진이 에게도 감사인사를 올립니다. 

저에게 있어 박사 학위 기간은 새로운 도전의 연속이었습니다. 그 

때마다 항상 응원해주신 어머니, 아버지 그리고 누나에게 

감사합니다. 
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