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Abstract

Computationally Efficient
Multilinear Model-based Control
Combined with Data-driven
Trajectory Optimization

Byungjun Park
School of Chemical and Biological Engineering
The Graduate School

Seoul National University

Model predictive control (MPC) is a widely used advanced control
strategy applied in the process industry due to its capability to han-
dle multivariate systems and constraints. When applied to nonlinear
processes, linear MPC (LMPC) is limited to a relatively small op-
erating region. On the other hand, nonlinear MPC (NMPC) is chal-
lenging due to the need for a nonlinear model with a large domain of
validity and the computational load to solve nonlinear optimization
problems. Multilinear MPC (MLMPC) or linear time-varying MPC
(LTVMPC) complements the limitations, employing multiple linear
models to predict dynamic behavior in a wide operating range. How-
ever, the main issue is obtaining the linear models, which is difficult
to obtain without the nonlinear model and a trajectory from an initial
condition to a set-point. Differential dynamic programming (DDP)
can help to get the linear models and the suboptimal trajectory si-

multaneously. DDP iteratively improves the trajectory with the linear
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models of the previous trajectory, which can be identified by excita-
tion of input around the trajectory.

We propose four novel methodologies in the thesis. First, we
propose a scheme to design MLMPC based on gap metric, which
achieves convergence to LMPC and offset-free tracking. Second, we
propose a switching strategy of MLMPC. It consists of a design of
the subregions from an initial point to a set-point and LMPC for each
subregion. Next, we develop a scheme that combines constrained dif-
ferential dynamic programming (CDDP) and MLMPC, starting with-
out any models. Finally, we developed an algorithm that combines
LTVMPC and LMPC based on the models from CDDP. It exploits
the suboptimal trajectory from CDDP and achieves offset-free track-
ing. We apply developed MPC algorithms to an illustrative example
for validation. It also supports that multiple linear models are appro-
priate to control nonlinear processes with or without the nonlinear

models.

Keywords: Optimal Control, Dynamic Optimization, Differential
Dynamic Programming, Model Predictive Control
Student Number: 2015-21061
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Chapter 1

Introduction

1.1 Motivation and previous work

Model predictive control (MPC) is a kind of advanced process
control (APC) whose control input is the solution of an optimization
problem, considering system dynamics and constraints [1]]. MPC has
been widely used in many processes since the computational power
was sufficient in the 1980s. There are two types of MPC, linear and
nonlinear MPC. Nonlinear MPC (NMPC) solves optimization prob-
lems using the nonlinear model of a process. As many processes are
nonlinear and have a wide operating range, NMPC is an appropri-
ate controller. The disadvantage is that the computational time can be
larger than the sampling time if the model is highly nonlinear and the
number of decision variables and constraints are large. Linear MPC,
which uses approximate linear models, can be a solution because the
optimization problem is convex, which is solved much faster than
nonlinear optimization problems. Unknown disturbance term or in-
tegral action is augmented to compensate model-plant mismatch and
achieve offset-free tracking [1, 2. However, a linear model cannot
control nonlinear processes with a wide operating range because a

linear model is only valid around a linearized point of the process,



1.e., the origin of the model.

To resolve this issue, there are two approaches of linear MPC
using a set of linear models. The first approach is Multilinear model
predictive control (MLMPC), where several linear models are com-
bined to predict a nonlinear process [3} 4, 5]. MLMPC consists of
a set of local linear MPC controllers, where each controller predicts
the dynamic behavior using a distinct linear model in the set [6, 4. 7]].
MLMPC receives the optimal input of each local MPC at each sam-
pling time. Then it gives convex combinations of the inputs as the
control action.

Two methods have been proposed to determine the weights of
the local optimal inputs. The prediction-based method determines the
weights based on the output prediction error of the local models at
each sampling time [6, 18, 4]. Prediction-based MLMPC has been ap-
plied to various processes [9, 10, [11} 112} 13]]. The second method cal-
culates the weights based on the gap metric between the model and
local dynamics of the process. A gap metric between two systems is
a measure of the similarity in terms of the stability of the closed-loop
systems where each system employs the same controller. If the con-
troller stabilizes one of the two systems, the other is also stabilized
by the controller if the gap metric between the systems is small [[14].
Hence, the gap metric can help to choose a model for stabilization
at an operating condition. Gap metric-based MLMPC has been pro-
posed for nonlinear systems with wide operating ranges [7, [15]. One
limitation of this method is that the dynamics at the state have to be
known at each time, which is hard to satisfy in practical operation. In
addition, MLMPC is vulnerable to an oscillation of inputs caused by

the oscillation of the weights.



The other approach is linear time-vary MPC (LTVMPC), which
predicts the dynamic behavior using the linear time-varying (LTV)
model. Because it uses one linear model for each prediction step, it
is free for oscillation compared to MLMPC, and its computational
burden decreases compared to NMPC. Many application employs
LTVMPC solving the above practical issues [16, 17, 18, [19, 20].
LTVMPC needs the reference trajectory and the LTV model that de-
scribes the dynamics around the trajectory. Thus, finding a subop-
timal or optimal trajectory and identifying the LTV model around
the trajectory are necessary, which is not easy without the nonlinear
model of the process.

Trajectory optimization techniques can help to obtain suboptimal
trajectories for a process with or without the nonlinear model. These
are classified into shooting methods [21} 22], collocation methods
(23, 24], and differential dynamic programming (DDP) [25, [26]. The
first two methods require the nonlinear model, and the last method
only exploits the first-order derivatives, i.e., local linear model, to op-
timize the trajectory. Thus, DDP is attractive if there is no knowledge
about the nonlinear model of the process. DDP consists of the back-
ward and forward passes. Backward pass reduces the optimization
problem to convex one and solves it at each time step to get a new
control sequence based on the nominal trajectory. The forward pass
applies the control sequence to the plant and gets a new nominal tra-
jectory. It iteratively improves the trajectory until it converges. and
has convergence properties [27]. Constrained DDP (CDDP) has been
proposed to consider constraints on the processes [28, 29]. Most re-
cent works propose DDP with box input constraints [30] and nonlin-

ear constraints [31]. Because a suboptimal trajectory and LTV model



can be obtained from DDP, LTVMPC can be easily applied if DDP
precedes. However, both DDP and LTVMPC track the nominal tra-
jectory instead of the set-point. It cannot track the set-point until the

trajectory converges.

1.2 Statement of contributions

The main objective of this thesis is to develop the methods for
tracking various steady-state set-points in a wide operating range of
nonlinear processes. Multiple linear models are exploited to describe
the dynamic behavior in the operating range. Trajectory optimization
and identifying the linear models are simultaneously conducted with-
out models. We validate the proposed methods through an illustrative

example. The summary of the four chapters are below:

A MLMPC design for tracking various set-points in a wide op-

erating range of a nonlinear system.

* A switching MLMPC design for tracking various set-points in

a wide operating range of a nonlinear system.

* A framework based on CDDP and MLMPC to track a set-point

of a nonlinear system.

* A scheme combined with CDDP, LTVMPC, and LMPC for op-

timal control of a nonlinear system.

The first work is to design MLMPC to track various set-points in
a wide operating range of a nonlinear system. To provide local mod-

els that approximate the nonlinear behavior in an operating range,



generalized gridding and K-medoids clustering algorithms are pro-
posed based on gap metric. LMPC for each cluster is designed, each
of which stabilizes the system at any equilibrium points in the cor-
responding cluster. We also propose to combine the prediction-based
and gap metric-based approaches to determine the weights for the
LMPC controllers. The overall method is applied to an example of
a nonlinear continuous stirred tank reactor (CSTR). The proposed
MLMPC shows superior to previous MLMPC methods in terms of
set-point tracking, disturbance rejection, and stability.

The second part solves the same problem in the first part in a
different way. We construct a graph of the equilibrium points adjacent
to other clusters and find the optimal path from an initial point to a set-
point by solving the shortest path problem. The cost includes the gap
metric between any two equilibrium points in the graph. Exploiting
the shortest path problem, a switching MLMPC is proposed, in which
an LMPC controller steers from a node of the path to the next node.
The overall method is applied to an example of a nonlinear CSTR.
As a result, the proposed MLMPCs achieve offset-free tracking with
and without disturbance for any pairs of initial points and set-points
in the operating region.

The third part deals with tracking a set-point from an initial con-
dition without models. It can happen if there are no models, or equi-
librium points are not be obtained by model inversion for the non-
linear process. We propose a CDDP algorithm that considers input
constraints when the nonlinear dynamics and nonzero steady-state
input for a set-point are unknown. Obtaining the linear models based
on conditional Gaussian distribution is included. To choose the mod-
els for MLMPC among the models obtained by CDDP, clustering



of the models based on sampling time and gap metric is proposed.
Then a prediction weighting method for MLMPC is proposed, which
converges to a linear model as the state is close to the set-point. A
nonlinear CSTR is studied to demonstrate the effectiveness of the
proposed scheme. Simulation studies show that the CDDP designed
by the proposed algorithm improves the trajectory over iterations, and
the resulting MLMPC achieves offset-free tracking property regard-
less of an initial point and a set-point in the operating region.

The final part solves the same problem in the third part in a differ-
ent way. The suboptimal trajectories to track a set-point from CDDP
are exploited to design an MPC controller. Concretely, dividing a sub-
optimal trajectory from CDDP in the transient and steady-state re-
gion is proposed. Selecting the linear model in the steady-state region
based on gap metric is also proposed. Subsequently, LTVMPC is em-
ployed to track the suboptimal trajectory in the transient region. Then
LMPC achieves offset-free tracking starting from the state close to
the set-point. We prove that the feasibility of the proposed LTVMPC
in the transient region around the nominal trajectory, and offset-free
tracking property if the gap metric between the selected linear model
and the dynamics at the set-point is small. Simulation studies through
CSTR show that CDDP provides improved trajectories over itera-
tions, and the proposed MPC achieves offset-free tracking and dis-
turbance rejection regardless of an initial point and a set-point in the
operating region.

In summary, All the works deal with the infinite-horizon regu-
latory tracking control problem, where the third and final part deal
with the problem starting without the models, helped by solving the
finite-horizon optimal control problem (FHOC).



1.3 Outline of the thesis

The remainder of the thesis is organized as follows. In Chapter
2, the background on the formulation of MPC and DDP is provided.
The gap metric and related concepts are also introduced. In Chapter 3,
MLMPC design based on gap metric for set-point tracking in a wide
operating range of a nonlinear system is provided. The same prob-
lem is solved by designing a switching MLMPC followed by the path
design based on gap metric in Chapter 4. Chapter 5 provides a data-
driven MLMPC design using CDDP to solve the problem, starting
without the models. A scheme combined with CDDP, LTVMPC, and
LMPC for optimal control of the nonlinear system is given in Chap-
ter 6. Finally, general concluding remarks and possible directions for

further study are given in Chapter 7.



Chapter 2

Background and preliminaries

2.1 Offset-free linear model predictive control

Consider a discrete-time nonlinear system,

Thp1 =[f (T, k),

Ye =9(Tr), 2.1
2k :Hyka
with constraints
uelu
(2.2)
reX

where f and g are continuously differentiable functions, x; € R",
ur € R™, and y;, € RP? is the state, input, and measured output vector
of the system at k' time step. The controlled variables z;, € R" are
a linear combination of the measured variables for which offset-free
behavior is sought. i/ and X are constraint sets presented as compact

polyhedral region. Suppose that a linear model which approximates



the process (2.1) around (x,, u,, ¥,) is given.

2°(k+1) = Az°(k) + Bu®(k), 23)

where 2°(k) := xp — x,, u®(k) := ugp — uy, y°(k) := yr — yo. In order
to capture the mismatch between (2.1]) and (2.3)) in steady state, the

disturbance model is augmented to the linear model [1].

2°(k + 1) A By [x"(k:) B
= u’(k),
do(k + 1) 0 1] |d(k) 0
N e N e N~
Aa Ig(k/‘) Ba (24)
[2°(k)
y’(k)=|CC ]

where d° € R". By and C; is design to satisfying the conditions for

the observability of (2.4)), which are given in the following theorem.

Theorem 2.1. [32]] The augmented system (2.4) is observable if and
only if (C, A) is observable and

A—1 By

2.5
¢ c (2.5)

has full column rank.



The augmented state estimator is designed as follows:

L,

Tk +1) =Au3(k) + Bou(k) + (Caig(k) —y°(k)),

(2.6)

where L, € R™? and L; € R™*P are estimator gains for state and

Lq

disturbance, respectively, chosen to make the estimator stable. The

following lemma is given for the observer where ng = p.

Lemma 2.1. [32)] Suppose the observer is stable and ng = p.
Then the steady state of the observer (2.0)) satisfies

2.0

xm] B
o

Uoo

where Yo, 1= Yoo — Yo and U, := Uoo — Uy, Yoo and U, are the steady

A-1 B

2.7
oo 2.7

—Byd®,
Y2, — Cadd,

state measured output and input of the system (2.1)), %, and d°, are
the state and disturbance estimates from the observer at steady

state, respectively.

Thus, there is no offset between the measured output and the
output of the augmented model if the system and the observer
(2.6) are in a steady state.

The objective of offset-free linear MPC is to make the controlled
variables z track the reference signal r which is assumed to converge
to a constant, i.e., r, — 7, as k — 00, with the linear time-invariant
model and the observer (2.6)). The observer condition (2.7) sug-

10



gests that at steady state the MPC should satisfy

o

xm] B
o

Uso

where 27 is the MPC state at steady-state and rJ, := ro, — Hy,. For

A-1 B
HC 0

—Byd?,

. (2.8)
Tgo — HC’ddgo

22 and uZ to exist for any cZgo and rZ_, the matrix in left hand side
of (2.8)) must has full row rank which implies m > r. The offset-free
MPC controller is designed by

p—1
. _ 2 — 2 = 2
min Sy = 2L + g — (k) + ey — 212,
k) yYp— j:o

s.t. xj41 = Axj + Buj + Bgd,

dj1 = d;

y; = Cu;

uj €U, r; € X,x, € Xy

zo = 2°(k), doy = d°(k)

7=0,...,p

(2.9)

where Q = 0, R > 0, and Q7 > 0 are the weighting matrices for
the state, the input, and the terminal state, respectively. () is the
solution of discrete-time algebraic Riccati equation (DARE), which
makes MPC equivalent to LQR in the unconstrained region. X’ is the
terminal constraint to satisfy the recursive feasibility and the stability

of MPC []]. The target state z(k) and the target input (k) at k' time

11



step are obtained by solving

A-1 B

(2.10)
HC 0

(k) ro(k) — HCydo (k)

f(k)] _ [ —Bud*(F) ]

where 7°(k) := 1), — Hy, € R". Let U*(k) = {ug, - ,u;_,} be the
optimal solution of (2.9) and (2.10) at time k. Then the first sample
of U*(k) is applied to the system (2.1])

= ugy + U, (2.11)

Often in practice, one desires to track all measured outputs with zero
offsets. Thus, we assume ny; = p = r in the thesis. The following

theorem is provided for offset-free control when ny = p.

Theorem 2.2. [\I|] Consider the case ng = p. Assume that for r, —
Too as k — 00, the MPC problem (2.9) and (2.0)) is feasible for all
k € N., unconstrained for k > j with j € N and the closed-loop

system @0), 22), @6), @9), and @-10) converges to &2, d°., y°..

Then z;, — 7o as k — oo.

2.2 Gap metric and stability margin

In the previous section, we have seen that a linear model can
be exploited for tracking a steady-state set-point even if there is a
mismatch between the plant and the model. In this section, the gap
metric is introduced as being appropriate for the study of uncertainty
in feedback systems, which can be applied to study the model-plant

mismatch of the closed-loop system controlled by linear MPC.

12



Before we provide the concept of the gap metric, we introduce

some concepts to define the gap metric.

Definition 2.1. A Banach space is a real or complex normed vector
space that is also a complete metric space with respect to the distance

function induced by the norm.

Definition 2.2. A Hilbert space is a real or complex inner product
space that is also a complete metric space with respect to the distance

function induced by the inner product.

If a vector space is a Hilbert space, it is a Banach space. One
of the most familiar examples of a Hilbert space is the Euclidean
vector space consisting of n-dimensional vectors, denoted by R"”, and
equipped with the dot product. More generally, C"*™ with the inner
product defined as

<A, B> = traceA"B =Y > a;b;, VA, B€C™™  (2.12)
i=1 j=1
We define a Hilbert space as follows:

Definition 2.3. L[a, b] is an infinite-dimensional Hilbert space that
consists of all square-integrable and Lebesgue measurable functions
defined on an interval [a, b] with the inner product and the induced

norm defined as

(r.0):= [ syt @13

1flly =1/ <f, f> < 00 (2.14)

13 -
1



for f,g € Ls]a,b.

The following Hilbert space is defined for the matrix-valued func-

tions on R.
Definition 2.4. £5(R) or Lo(—00, 00) is an infinite-dimensional Hilbert
space which consists of all square-integrable, Lebesgue measurable,

and matrix-valued functions defined on an interval R with the inner
product and the induced norm defined as
oo

(f.9) = / tracelf(1)"g(#)]dt 2.15)

—00

1l =4/ (F.1) <o (2.16)

fO}" fag € ‘CQ(R)
Loy = L5]0,00) and Lo = Lo(—00, 0] are defined similarly.

Lo : subspace of L5(—00, 00) with functions zero for ¢t < 0. £, :

subspace of L4(—00, 00) with functions zero for ¢ > 0.
A Hilbert space of matrix-valued functions on ;R is also defined.

Definition 2.5. £5(jR) or L, is an infinite-dimensional Hilbert space
that consists of all square-integrable, Lebesgue measurable, and matrix-
valued functions defined on an interval R with the inner product and

the induced norm defined as

<f79> = % - trace[f(jw)"g(jw)]dw (2.17)
71l =/ (. £) < o0 @.18)
14



for f.g € Lo(jR).

Definition 2.6. H, is a closed subspace of Lo(jR) with analytic
matrix-valued function F'(s) in Re(s) > 0 (open right-half plane).

The corresponding norm is defined as

[e.9]

1
||F||2 = sup By trace[F (o + jw)" F(o + jw)ldw  (2.19)

o>0 —00

It can be shown [33]] that

|E||° = % /OO trace[F (jw)* F(jw)]dw (2.20)
Hence, we can compute the norm for 75 just as we do for £o(jR).
The real rational subspace of 5, which consists of all strictly proper
and real rational stable transfer matrices, is denoted by RH,. The
state-space representation can be applied for the transfer matrices
in R’Hs. The L£5(jR) in the frequency domain can be related to the
L5(R) defined in the time domain. It can be shown that Laplace and
inverse transform yield an isometric isomorphism between L5(R)
and L-(jR). In addition, there is an isometric isomorphism between
L5]0, 00) and Ho.

Other classes of important complex matrix functions used in this

book are those bounded on the imaginary axis.

Definition 2.7. L., (jR) or L, is Banach space of matrix-valued (or
scalar-valued) functions that are (essentially) bounded on jR, with
norm

1Fllog := esssupalF(jw)] (2.21)
we
The rational subspace of L., denoted by RL,(jR) or simply
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R L, consists of all proper and real rational transfer matrices with

no poles on the imaginary axis.

Definition 2.8. H ., is a (closed) subspace of L., with functions that

are analytic and bounded in the open right-half plane. The H ., norm
is defined as

||l == sup &[F(s)] = supa[F(jw)] (2.22)
Re(s)>0 w€eR
The real rational subspace of H, is denoted by RH .., which
consists of all proper and real rational stable transfer matrices, for
which the state-space representation can be applied.
The concept of the coprimeness between two transer functions is

given by the following definition

Definition 2.9. Two matrices M and N in R'H ., are right coprime
over RH if they have the same number of columns and if there exist

matrices X, and Y, in RH ., such that

]

M
N] =X M+YN=1 (2.23)

Similarly, two matrices M and N in RH are left coprime over
RH if they have the same number of rows and if there exist ma-
trices X; and Y; in R H o such that

[M J\?} [);l] — MX, + NY, =1 (2.24)
l

Now let P be a proper real rational matrix. A right coprime fac-
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torization (rcf) of P is a factorization P = NM ', where N and M
are right coprime over RH .. It is called a normalized right coprime
factorization if M*M + N*N = I, where M* denotes the complex
conjugate of M. Similarly, a left coprime factorization (Icf) has the
form P = M !N, where N and M are left-coprime over RH... It is
called a normalized left coprime factorization if M M* + NN* = I.
The graph of P is defined as the subspace of H, consisting of all pairs
(u, y) such that y = Pu, and denoted by

[M]
H, (2.25)
N

Now we can define a gap between two systems.Let P; and P, be
p X m rational transfer matrices, where p and m are the dimension
of input and output, respectively. Let P; and P, have the following

normalized right coprime factorizations:

Pl - Nlel,Mile +NikN1 == [,
Py = NoMy ' MyMy + NjNy =1

The gap between P; and Ps is defined by

5.(PL.Py) = |ITI | 2.26
g( 1 2) M, M, ( )
Ho Ho
Ny Ny
17



and can be computed as [34]]
0,(Pr,Pe) =max {3 o(Py, P2), 3 (PP}, @27)
where ?9(791, P, ) is the directed gap, and it is obtained by
M, B M, 0
N, Ny

The gap between two linear systems is the measure that determines

?g(lph PQ) = inf

QEHw

(2.28)

o

if each system is stabilized by the same controller. The stability mar-
gin of a linear system P and its stabilizing controller /K indicates
robustness to unstructured perturbations of a closed-loop system. It is
defined as [[14]

b B I
K %

The following theorem can be exploited to design a feedback control

-1

(1+PK)" 1P| (2.29)

o0

system:

Theorem 2.3. [35] Suppose the feedback system with the pair (Py, K)
is stable. Let P := {P : §,(P,Py) <} andK :={K : §,(K, Ky) <
ro}. Then

(a) The feedback system with the pair (P, K) is also stable for
all’ P € Pand K € K if and only if

sin~! bp, Ky = sin™t 7y + sint 7o

(b) The worst possible performance resulting from these sets of
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plants and controllers is given by

inf sin"'bp g = sin" bp, g, —sin"'ry —sin "y
PeP,KeK ’ ’

If the gap between two systems is close to zero, the controller K,
can also stabilize P. Thus, two linear systems whose gap is close to

zero have one common feedback controller stabilizing both systems.

Remark 2.1. The metric induced by the operator norm cannot mea-
sure the distance between two unstable systems that can be stabilized
in the closed-loop. The gap metric can deal with the problem. Other

metrics such as v—gap metric, graph metric, chordal metric can also

resolve this problem [36] 37, 38]].

2.3 Multilinear model predictive control

If a linear model cannot describe the dynamic behavior of the
process in the wide operating range, a set of linear models can be
exploited simultaneously to predict the behavior. Consider the system
(2.1) and constraints (2.2). Suppose that a set of n,, linear models
which approximate the process (2.1) in an operating range are given
as

zi(k +1) = Ajz; (k) + Byui(k),
yi(k) = Cizi(k),

(2.30)

where z;(k) = xp — T, ui(k) = up — o, and y;(k) = yr — Yoi
are deviation variables for the state, input, and, measured output.

A;, B;, and C; are the matrices for the i model that approximate
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the dynamic behavior of (2.1)) around (z,;, u;). The i** linear MPC

controller at time £ is designed by

p—1

min Y |lr; — 2
7=0

g, Up—1 4

2 2
o, + iy,

s.t. Tjt1 = AiiL’j + Bi'LLj
’ ’ 2.31)
zj = Hy;
Uj + Uy EU,Tj + 25 €X
xo = Zi(k), rj = ri(k + j)

j=0,.p

where where (); and R; are the weighting matrices of the i*" linear
MPC for the state and input, respectively. Z;(k) is the estimated state
of the i*" model at time k, and r;(k) = r, — Hy,; is the deviation
variable for the reference. Let U (k) = {u;g,--- ,u;j, ;} be the so-
lution of (2.31) of the ™" linear MPC at the time k, and let u} (k) be
the first element of U; (k). Then the input at the time % is determined
by

s

up =Y du(k)u (k) (2.32)

i=1
where ¢, is the normalized weights satisfying » """ ¢;(k) = 1.
There are two approaches to combine the controllers, the switch-
ing and weighting methods [39]]. In the switching method, one local
linear MPC controller is chosen in the set of local MPCs by a user-
defined criterion and applied to the plant at each sample time. The

switching method can cause chattering in systems with strong non-
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linearities [5]. Meanwhile, the weighting method gives a weighted
sum of the inputs from several local linear MPC controllers. This ap-
proach can operate the system smoothly unlike the switching method
due to the gradual changes of the weights [[7].

Selecting the weights is a key step in the weighting method.
There are two popular methods to select the weights. First, the gap
metric-based weighting method calculates the weights of the local
models based on the gap between a model and the linearized sys-
tem at a point [7]. Generally, the state at the sampling time or the
set-point is chosen. Let s = (Zok, Uok, Yo ) be an equilibrium point
chosen at time k. The linearized model of (2.1]) around (o, tok, Yor.)
is denoted by P(k), and P; denotes the i'* model (2.30). Then the
gap-metric based weight of the i linear MPC controller at time k is

defined as .

(1 —i(Ok))"
D52 (L= (On))Fe
where 7;(0;) = 04(P;, P(k)) is the gap between P; and P(k), and

ke > 1 is a tuning parameter.

¢i(k) = (2.33)

The second method computes the weights using the predicted
output error of each model in the models [4]. Let the residual of the

it" local model at time instant k as

eilk) = k) — (k). (2.34)

where (k) is the estimated output from the i** local model (2.30)

and its estimator. The weights are defined based on Bayesian ap-
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proach:

exp(—gei(k)"A'ei(k))¢i(k — 1)

2

o5 exp(— 5 (k)T A e (k)¢ (k — 1)

¢i(k) = (2.35)
where A’ is the diagonal scaling matrix for the residuals. For normal-
izing the output, A’ is a set inversely proportional to the output in
general. Once the weight of a model reaches zero, it stays zero un-
til the end of operation as the weight is proportional to the previous
weight. In order to resolve this problem, an artificial lower limit on

the probability is imposed.

exp(—gei(k)"A'ei(k))pi(k — 1)

PilR) = S p(— ey (R () gy (k — 1)

(k) = pi(k), pi(k) > p,
wo k) <, (2.36)
pB/C S pE). plk) >

i(k) = pilk)>1oT i<
0, pi(k) < p,

where 1 is the lower limit, p;(k) is the i weight by Bayesian ap-
proach, ¢;(k) is the i*" weight that prevents the zero probability, and
¢;(k) is the weight applied to the i** controller output.

2.4 Linear time-varying model predictive control

If a trajectory for the system (2.1]) and the approximating linear
model at each sampling time are provided, LTV model can be con-

structed as a set of the models, and LTVMPC can be exploited to track
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the trajectory. Suppose that a state and input trajectory from time 0
to N denoted by Xy = {Zo,--- ,Zn} and Uy = {ig, -+ ,un_1} are
given. Assume that a LTV models is obtained from linearizing the

nonlinear model (2.1]) or system identification and expressed by

(k4 1) = Agz®(k) + Bru®(k),
y'(k) = Cyz"(k),

(2.37)

where 2V (k) 1= zp — Ty, u’(k) := up — Uy, and y* (k) = yr, — U
are the deviation variables for the state, input, and measured out-
put. (Ay, By, Cy) is the LTV model at the k% time step. Then the
LTVMPC controller to track the trajectory at the £*" time step is de-

signed by
p—1
. 2 o2 o112
min > ly5]lg + 51l + [l
UGy Uy g =0 y] Q@ JUR Pl Pyyp

sit.xl = Apxi + Bryjuy, j=0,..,N —1

y; = Cryjxy, j=0,.., N (2.38)
WY+ Ty € Ul + Tpyj € X,

T, € X,j;p

xo = 2°(k),

where () > 0 and R > 0 are the weighting matrices for the state and

the input, respectively. P} is computed by solving the following finite
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horizon LQR problem for LTV systems.

N-1
(@) Peap = min Yl lo + [l + il
=k

Uk, UN—1 <

(2.39)
s.t. Tjy1 = A]ZE;) + Bju;?,

j=k,...N—1
Induction backwards in time can be used to obtain P, at each time.

Py =C{QCy
K; = — (R+ B] C}, | Pi1Ciy1Bi) ' B C, | Pi1Cin A

P; :CZHQCZ'JA + K/ RK; + (A; + BiKi)TCZ-THPiHCiH(Ai + B, K;)
(2.40)
Then the LTVMPC (2.38)) is equivalent to LQR for LTV systems

in the unconstrained region.

2.5 Differential dynamic programming

Consider the discrete-time nonlinear system (2.1)) whose mea-
sured output is the state, i.e., the system is fully measured. The system
is expressed as

T =f (e, wr),

Y =T, (2.41)

2z, =Hy

Assuming that the final time step is N € N, the cost at k" time step is

defined by a sequence of states, X;, = {z,- -+ , 2y}, and a sequence
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of inputs, U = {ug, -+ ,un_1},

Jk<Xk,Uk) = l(xj,uj) -+ lf(;EN), (242)

J

=

Il
B

where [(z,u) : R" xR™ — R is the running cost and [/ () : R* — R
is the final cost. The optimal value function at k*" time step is defined

by the optimal cost-to-go starting at a given x,
Vi(w) = min Jy (X, Ug), (2.43)
k

The optimal value function has the following recursive nature by

Bellman’s principle of optimality

Vi(zr) = minl(@g, up) + Vi (f (2r, ur)),
Uk (2.44)

VN(mN) = lf(l’N)

DDP is an iterative method to solve the optimal control problem
(2.44). At each iteration, DDP performs a backward pass on the nomi-
nal trajectory to generate a new control sequence, and then a forward-
pass to compute and evaluate a new nominal trajectory. Let (). be the

variation of [(x, ug) + Vi1 (f(xg, ug)) around the (xy, uy)

Qr(0xk, dug) =l(z) + Sk, up, + dug) + Vier (f(zx + 0k, ugp + dug))
(2.45)
In the backward pass, DDP optimizes (2.45]) with respect to Ju; at

each time step by approximating Q. (dxy, duy) to the second order
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around the nominal trajectory (X, Up).

T
5$k Qm,kz Qa::c,k qu,k 59316
6uk Qu,k Qur,k Quu,k 5uk

N | —

(2.46)
where the subscripts of )., denotes differentiation at (xy, uy) of the
nominal trajectory in denominator layout. Dropping k for readability

and denoting V.1 by V’, the expansion coefficients are

Qu =l + fIV,

Qu =l + [V},
Quz =lox + fi Vipfe + Vi - fow, (2.47)
Quu =l + fa VigFu + Vi fuus
Qua =luw + fu Viefo + Vi - fua

Then the value function around the nominal trajectory at k" time step

is obtained by optimizing the approximated Q(dx, du) over Ju.

ou* = arg I%in Q(0z,6u) = Q1 (Qu + Quadr) := K b1 + K,
(2.48)
Substituting (2.48)) to (2.46)), the approximated value function is up-
dated as

1
Vk(l’) = Vk(xk) + 5(33 — IL’k)TVka(iL‘ — .Ik) + Vx:{jk(l’ — l'k) + AVk
(2.49)
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where 1z, is the state of the nominal trajectory at the k" time step,

and

Viwk =Quak + ngkQuu,ng,k + ng,ng,k + KgT,kqu,ka
=Quzk — Qm,kQJikQum,m
Vi =Qz + ngijuu,ch,k + sz,ch,k + ngQu,ku
=Quk — Quu @y, Quks

_ 1
AV = — Qf,k@uwikQu,k + éKg:kQuu,ch,ka

1

T -1
= - §Qu,kQuu7kQu,k

(2.50)

The hessian V,, . and the gradient V, ;. are then passed to the (k— 1)“’
time step and the backward pass continues until £ > 0, starting with
Vieen =15, and V, x = 17,

In the forward pass, the nominal state-control trajectory is up-
dated using the optimal linear feedback (2.48).

new new
up =ug + K (™ — xp) + Ko,

(2.51)
new __ new new new __
wpy =f(@l ™ ug™), g™ = xo
Then the new nominal trajectories Xg¢ = {z{¢,--- %"} and
Uge = {uge,--- ,uf™} replace X, and Uy, and the backward

pass at the next iteration starts with the updated state-control nominal

trajectory if it does not converge.
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Chapter 3

Offset-free multilinear model predictive control

based on gap metric !

3.1 Introduction

MPC with multiple models is an alternative to track set-points
in a wide operating range of nonlinear chemical processes, because
multiple models can describe the dynamic behavior of the process
better than a model, and related optimization problems can be solved
faster than those formulated by a nonlinear model. There are three ap-
proaches to use multiple models: the first method constructs a global
nonlinear model by interpolating multiple local models using weight-
ing functions [6, 40, 41, 42]. Then an MPC controller is designed
based on the global model. However, this method is hard to imple-
ment due to the computational load of the nonlinear optimization.
The second approach designs a min-max optimization-based global
MPC using the linear models in a model bank, which is a type of
robust MPC [43| 144, 45]]. In this approach, inaccurate process mod-

els are also considered for prediction, and conservative control law

!This chapter is an adapted version of B. Park, D. H. Jung, and J. M. Lee, “Offset-free
Multilinear Model Predictive Control Based on Gap Metric," Journal of Process Control,
Under review
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is obtained. The last method is multilinear model predictive control
(MLMPC), which designs a set of local linear MPC controllers based
on the models in a model bank [6} 4} [7]]. The resulting controller is
called a scheduled controller, which prescribes control input as a con-
vex combination of the local MPC actions. In summary, the input of
the first controller is calculated from nonlinear optimization based on
the combination of local nonlinear models. The input of the second
controller is calculated from min-max optimization considering all
local models. The input of the third controller is the combination of
the inputs calculated from quadratic programming (QP) based local
linear models. The last approach is preferred because it requires less
amount of calculation time than the first approach, and yields a less
conservative solution than the second approach.

There are two types of MLMPC to combine the local models: (1)
prediction-based MLMPC and (2) gap metric-based MLMPC. The
first method decides the weights of local MPCs based on the output
prediction error and recursive Bayesian weighting. Dynamic matrix
control (DMC) [6]], state-space model based MPC [8]], and multiple
disturbance model [4] have been proposed for the prediction-based
MLMPC. Because it is easy to implement in real-time, this approach
has been applied to several applications [9, [10, [11} [12} [13]. The key
step of prediction-based MLMPC is the construction of the local lin-
ear models. These models should describe the whole operating re-
gion, and it commonly depends on prior knowledge, experience, or
trial and error [46]. Since, the model bank, the local MPCs, and the
weighting function, need to be independently designed, it is difficult
to tune the parameters of each component to meet the requirements

for scheduled controllers. In addition, the prediction-based method
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does not guarantee the stability of the closed-loop system.

The other approach exploits the gap metric, which is useful to
compare the closed-loop behavior of two systems [47]. The gap met-
ric between two linear systems is defined as the infimum of the infin-
ity norm of the difference between one system and the other multi-
plied by a transfer function [[14]]. The gap metric can judge whether
two linear systems can be stabilized by the same controller. It is possi-
ble to quantify the similarity of linear systems in a model bank and the
operating ranges for which a local controller can be used. Thus, gap
metric-based MLMPC can be designed to have the stability property
compared to the first one. There are two kinds of gap metric-based
weighting approaches: the current state-based approach [[15] and the
reference-based approach [7]]. In the current state-based approach, the
gap metrics of the current state and the models in the model bank are
calculated, and the weights of the models depend on the gap met-
rics. In the reference-based approach, the gap metrics of the refer-
ence and the models are calculated instead of the current state. The
existing gap metric-based MLMPCs have some limitations. First, the
number of the local linear models grows exponentially as the number
of the state and action increases. Thus, it is difficult to extend to a
large scale system. Second, the existing gap metric-based weighting
approaches are not suitable for controlling the systems with a wide
operating range. In the current state-based approach, the gap metric
of the current state and the models in the model bank is calculated
at each sampling time, which is computationally heavy. On the other
hand, the reference-based approach cannot predict the behavior of the
current state if the gap metric between the current state and the set-

point is large because it only considers whether linear models can
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approximate the dynamics at the set-point.

In this chapter, we propose a novel gap metric-based model bank
selection that consists of a generalized gridding algorithm and K-
medoids clustering for a system of an arbitrary dimension. In addi-
tion, we propose to design local controllers and prove that each local
controller has the offset-free tracking property in the corresponding
partition of the operating region. Lastly, a weighting method to design
a scheduled controller is proposed to combine the prediction-based
weighting and gap metric-based approach to compute the weights ef-
ficiently. We show the resulting scheduled controller improves the
prediction performance, and verify the offset-free tracking property
and the stability at any set-points in a designated operating region

through simulations.

3.2 Local linear MPC design

Consider a nonlinear process

&= f(z,u),
y = h(x), (3.1
ueld,r e X,

where f and h are continuously differentiable functions, x € R" is
the state, u € R™ is the control input, and y € RP is not only the
measured output, but alos the controlled variables. X and U/ are the
state and input constraints, respectively.

In order to obtain local linear models, the vector of the schedul-

ing variables § € © C R™?, so-called the scheduling vector, needs to
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be defined. We assume the uniqueness and continuity of the equilib-

rium point corresponding to a vector of scheduling variables.

Assumption 3.1. § € O determines the unique equilibrium point and
the equilibrium point satisfies the input and state constraints, where

© C R is a compact set.

Assumption 3.2. A function F' : © — R" x R™ x RP? that associates
a scheduling vector with an equilibrium point of the system (3.1)) is

injective and continuous.

The scheduling variables involve a subset of the states, inputs,
outputs, disturbances, references, and model parameters. We also as-
sume that the system is approximated by N;; local linear models.
Each local linear model is obtained by linearizing the original system
at the corresponding equilibrium point. Let the triplet of the steady
state, input, and output at 0; be (s, Uoi, Yoi) = (To(6;), Uo(0;), Yo(6;)),
where 0; is a representative component of the i** subregion ©,. The
i" model is obtained by linearizing the nonlinear system at s; :=
(6(0:),uo(6;),y5(0;)) = F(0;) € S, where S is the set of all equi-
librium points corresponding to all scheduling variables in ©, and s;
is the equilibrium point determined by 6;. The set of the subregions

{©;,} is assumed to be a partition of ©:
Assumption 3.3. A scheduling space © and its subregion ©; satisfy
Nu

0£6,c0,|)6,=0,0,n0,=0fri#] (3.2)

=1
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The i*" local model P; at the k" sampling time is discretized:

zi(k+ 1) = Ajzi(k) + Biui(k),
vi(k) = Cizi(k),

(3.3)

where z;(k) = x(k)—x o, ui(k) = u(k)—uo;, and y;(k) = y(k)—yoi-
A;, B;, and C; are the linearized and discretized matrices. By As-
sumption 1, each local model is uniquely determined because the
equilibrium point is assumed to be unique for each 6;. Linear offset-
free MPC introduced in Chapter [2] is employed for the local con-

trollers. The disturbance model is added to the linearized model:

dik+1)] o 1| |dk)] |0
———— —— N~
Agi ) Bai (3.4)
I i (k)
yi(k) = |C; Cdii| ] )

where d; € R? is unmeasured disturbance. Then the ** linear MPC
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controller at the k" sampling time is designed as

N-1
min Y [lz; — Trallg, + ey — Gl
U0, UN-1 S

s.t. Tjr1 = Ail’j + BiU,j + Bdidja ] = O, PN N-—-1
dj+1 = djv
Y; = CZ'ZL‘]‘, k= O, ,N

2 — 2
R, T lzn — xk’iHQT,i

U]‘ c Z/{Z', $j c Xi,

To = fi"z(k‘), dy = di(]f),
3.5

where (); = 0, R; > 0, and Q)7; > 0 are the weighting matrices of
the i*" local MPC for the state, input, and terminal state, respectively.
U; and X are the boundary conditions for the input and state for the
ith local MPC. Note that x, is the predicted state, not the real state

z(k). The target state Ty ; and input u ; of the i*" linear model are

Ai =T Bi| Tk —Baid; (k)
= 5 ; (3.6)
Ci 0 ’EL]m Tl(k') — Cdldl(l{)
where 7;(k) = r(k) — y,; € RP is the i'" transformed reference

and r(k) is the reference at the k' sampling time. The observer is

designed by

Tqi(k + 1) =Agi%ai (k) + Baiui(k)
+ Lop(Caiai (k) — yi(k)),

3.7

where L, is the observer gain. The observer is necessary for some

reasons: (1) the number of the measurement smaller than that of the
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state, (2) mismatch between the nonlinear process and the lienar model,
and (3) unknown stochastic disturbance and noise. A typical choice is
Kalman filter or Luenberger observer [48]]. Kalman filter is preferred

when the third reason is considered.

Remark 3.1. The closed-loop system (3.1), (3.5), (3.6), and (3.7)

achieves the offset-free control if the closed-loop system converges
[32, 49]. If Qr,; in (B.5) is the solution of discrete-time algebraic
Riccati equation (DARE), MPC is equivalent to LOR in the uncon-
strained region. Then the gap metric stability margin of bp, K, op .
can be computed, where Kyor; is the LOR gain obtained by the i'"

local linear model, ();, and R;.

Remark 3.2. The i'" local controller is designed to stabilize any
equilibrium point in the i'" subregion ©;. The algorithms proposed
in the next sections will provide the subregions of © and local MPCs.
Any equilibrium point in each of the subregions can be stabilized by
one of the local MPCs.

3.3 Gap metric-based multilinear MPC

In this section, we propose a novel gap metric-based multilin-
ear MPC algorithm which can improve the transient performance
and guarantees the stability of the closed-loop system if the proposed
MPC converges to a local MPC. It consists of the algorithms for grid-
ding and clustering of local models, the design of the local MPC con-

trollers, and calculating the weights of the local models.
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3.3.1 Gap metric-based gridding algorithm

Let {0} (k = 1,...,Ng,np = 1,..., Ni) be a set for the k"
component of the scheduling vector 6. Then, the set of the initial
scheduling vectors is denoted by O, : {0,} = {0} x .-+ x
{oNomNe} (n =1, ..., Hfigl N;). Each scheduling vector ¢; in the ini-
tial grid ©;,;; has the corresponding equilibrium point s;. The lin-
earized system of Eq. (3.1) at s; is obtained as (3.8)) and denoted by
P,

.0 0
p=9t (o0 + 92 (= s(8),
X xo(ei)yuo(ei) U :ro(@i),uo(ei)
oh
y=7- (&= xo(0i)) + yo(0s)
ax $o(0i)
(3.8)
The following constraints are assumed for the scheduling space and
grid points.
ghmin < ghne < ghmaz . — 1 Ny np=1,---, Ny,
ek,l — ek’,min’ k= 1’ .“7N0’ (39)

0]@]\],C _ ek’,ma:c7 k — 1’ ...,NB,

where 6% and §%™ are the lower and upper bounds of the k"
component of the scheduling vector, respectively. In addition, we de-
fine a normalized scheduling vector as

kn, _ pk,min
wo_ 00 (3.10)

kg Qk.maz _ Qkmin’

Thus, each component of a normalized vector has its upper and lower

bounds as one and zero, respectively. The following Algorithm [I]
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guarantees that the gap metric between the linearized systems with
two adjacent grid points is smaller than a designated threshold. n;;
is defined as the number of the components of ¢; whose values are
gFmaz or gkmin Thus a large value of ny,; means that the point is
close to the boundaries of the grid. Because the proposed algorithm
does not generate a point between the two points whose gap metric is
less than the threshold, it is computationally efficient compared with

the conventional gridding algorithm [46].
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Algorithm 1: Gap metric-based gridding algorithm

Input: Bounds of the scheduling vector 6,51, @maz, the components
of the initial grid points {6,, }, a threshold of gap 1,
Result: A set of the scheduling vector © ;4
Initialization :
@gm'd = (2)7 @Z”‘d = (2)7 Sgrid = ®7 Pgrid = ®7 Ngm’d =0
Oudd = Oinits Nada = [ 1%y Ny, Calculate O,
while n,4; > 0 do
@de,new — @, Nadd,new < 0
Restore ©,44 from OF
@grid — ®grid U Gadda @Zm‘d — @Zrid U Oudd
for i <+ 0 tonyqyq by 1 do
Obtain the equilibrium point s; corresponding to 6; € 444
Construct P; := P(6;) from s;
ng’d — Sgrid U {Sz}
Pg’rid < Pgrid U {Pz}
Determine the number of the nearest points

Npear,i = 2N0 — Npd,is

Calculate the distance d,, (7, j) between 6; € ©,4q and
ej € ®grid
{ Py, } corresponding to the nearest Npear,; POINts are selected
Calculate 04(F;, Py, ), k=1, , Npear
if 5g<Pi; sz> > v, then
O ¢ 567 + 07
© = @de,new U {HZew} Nadd,new <~ Nadd,new +1
end

n
add,new

end
@add «— Q"

grid,new
Nadd < Nadd,new

Ngrid < Ngrid + Nadd

end
Save @gm’d> @Zm'da Sgrida Pgrida Ngrid
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The obtained grid is assumed to satisfy Assumption [3.4}

Assumption 3.4. Let the convex hull of a set of grid points {6} be
Conv({6;}). For all P; :== P(9;) from {6,}, any P; := P(;) from
6, € Conv({0;}) satisfies

0,(P;. P; 0,(Ps. P).
(B, J) <95££25i} 9(Ps, P))

Assumption [3.4] is not restrictive because it can be satisfied by
refining the grid. Suppose the gap metric between the linearized sys-
tems of (3.1) at 6; and 6, is the maximum of gap metrics between
two points in {6;}. Assumption[3.4/ means that if a controller K that
stabilizes P, can stabilize P, K can stabilize any P, from 6, €
Conv({0;}). Thus, we can design a local controller that can stabilize
the system (2.1) at any equilibrium point in Conv({6;}). Conv({0;})
is a convex hull of {6, }. It should be checked that all the local models
from the extreme points are stabilized by the controller to be used in
{0}

Remark 3.3. The threshold value ~y,;, in Algorithm |I| needs to be
small enough so that there exists a local controller K stabilizing an
equilibrium point such that the gap stability margin of the closed-loop
system is larger than v, i.e., bpx > Y, where P is the linearized

system at the equilibrium point.

3.3.2 Gap metric-based K-medoids clustering

In order to construct a relevant model bank that represents the

process over the entire operating region, K-medoids clustering algo-

39



rithm, one of the unsupervised machine learning algorithms, is cho-
sen for the base algorithm to classify the models in the grid and to
select the representative models [50]. Because K-medoids clustering
is based on the most centrally located object in a cluster, it is less
sensitive to outliers in comparison with the K-means clustering [S1]].
However, the conventional K-medoids clustering considers only one
metric in evaluating the distance between two objects. In order to
consider both Euclidean metric and gap metric, a gap metric-based
K-medoids clustering algorithm is proposed in Algorithm [2| The in-
puts are the grids from Algorithm [I| and three parameters: k. is the
number of clusters; €, is the threshold for the change of clusters; n;;

1s the maximum number of iterations.
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Algorithm 2: Gap metric-based K-medoids clustering algorithm

Input: G)gm'dy @Zm‘da Sgrida Pgrida Ngridv ket €tors Mol
Result: Sets of clusters {©;}, {07}, {S;}, {Pi}
Sets of medoids {64, }, {aned7i}, {Smed.i}> { Pmedi}
Initialization : Set flag = 1,it = 1
Ak,j = 5g(P/€a Pj)’ Dg] = d(0279]n)’ 1< k)] < Ngrid
Select initial medoids:
Setv; as v; = ]kV:“’T‘i Nﬁ% and sort U;-S in ascending order
Select k,; indices having ltﬁle ﬁrstylk:cl smallest values for initial
medoids and denote by IDX,,,cq = {idTmeqi}t, i =1,--- kg
Calculate sets of medoids {67}, {9%2;2}, {stheait {Pheqi}
while flag do
Clustering:
Obtain the sets of clusters by assigning each object to the
nearest medoid in terms of gap metric and the Euclidean metric:
CRCASRCERrA
Calculate the sum of the gap metric from all objects to their
medoids: o
Calculate medoids:
Find a new medoid of each cluster that minimizes the maximum
of the gap metric to other objects in its cluster:
{1 A ity Lt A L pittl Y update ID X eq

med,i med,i med,i med,i
if it == 1 then
| flag + 1
else if it < Niol OF ’Uit — Uit—l’/Uit—l > €tol then
| flag + 1
else
| flag <0

end
it it+1

end
Save

{61}7 {6?}3 {Sz}a {P’L}7 {emed,i}a {eﬁedﬂ-}’ {Smed,i}7 {Pmed,ia }7 IDXmed
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In the proposed method, the weighted sum of the gap metric and
Euclidean metric is used for clustering of linear systems. The gap
metric makes a cluster in which two dynamics at two distinct equilib-
rium points have a small gap metric. The Euclidean metric prevents a
cluster from being disconnected. In addition, the medoid is selected
by the largest gap metric to design a controller that stabilizes the lin-
earized system at a medoid. By Theorem[2.3] the gap stability margin
of a closed-loop system, which consists of a controller and the linear
model at the medoid, has to be larger than the gap metric between
the medoid and any point in the cluster to stabilize all points in the
cluster. If the number of clusters increases, the largest gap metric be-
tween the medoid and all the points in a cluster becomes smaller as
each cluster is reduced. Thus, the feasible set of stabilizing controllers
for a cluster becomes larger. However, the number of local controllers

increases.

3.3.3 MLMPC design

There are no proofs that guarantee the stability at a set-point
given weighting methods for existing MMPC algorithms. Based on
the linear offset-free MPC and local models by the proposed gridding
and clustering algorithms, we propose a scheduled controller to solve
those problems. Theorem [3.|shows that a linear offset-free MPC can
stabilize an equilibrium point if the gap metric between the linearized
dynamics at the equilibrium point and the local linear model used in
MPC is smaller than the gap stability margin of the pair of the model
and the controller in the MPC.

Theorem 3.1. Suppose Assumption and 3.4) hold and
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the MPC described in (3.7), (3.3), and (3.6) is applied to the system
(3.1) with a linear model P,, and a scheduling vector 6 containing the
set-point r. Let sg and P(0) be the equilibrium point corresponding
to 0 and the linearized model at sy. Assume that Q)7 is the solution
of DARE for P,, and the weights Qy and Ry in (3.5), and K, is
the corresponding LQR gain. If bp, . > 0g(Ppn, P(0)), then the

equilibrium state xy corresponding to the set-point r in closed-loop

system Egs. (3.1), 3.3), (3.6), and (3.7) is asymptotically stable.

Proof [Ifthe state xy, is in the neighborhood of xy, All the constraints
in the MPC formulation of (3.9) are inactivated. Then, the solution
of the MPC is equivalent to the solution of the LOR [1)]:

oo
* : 2 2 2
T (80) = min Y _ [|6zkllg, + Iullz, = 820llo,,
k=0

s.t. 5l‘k+1 = Ag(Sl'k + Bgéuk
Sxo = @(k) — z(k), Sug = u(k) — u(k).

(3.11)

Then the closed-loop system between the k'™ and the (k + 1) sam-

pling time is

dx u
= - (x(t), —Kigroxo + u(k)), (3.12)
y = h(x).
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The linearized and discretized system of (3.12) at xy is

oz (k + 1) = Agdx (k) + Bodu(k)
= (Ag — BoKgr)0x(k), (3.13)
dy(k) = Cyox(k),

where 0x(k) = x(k) — xo; du(k) = u(k) — ug; dy(k) = y(k) —r;
Ag, By, and Cy are the matrices corresponding to P(0); ugy is the
steady-state input at xy. Because LOR gain K, satisfies Theorem
2.3] the autonomous system (3.13)) is asymptotic stable and all the
absolute eigenvalues of (Ay — ByK,,) are less than one. Because
the continuous matrix transformed from (Ag — BgK,,) is Hurwitz
matrix, (xg,uy) in the closed-loop system is asymptotically stable as

the linearized dynamics of the system (3.1)) is stabilized. [

Thus, we can guarantee the stability at all the equilibrium points
in the operating region if Theorem [3.1] is satisfied in each cluster.
In order to find the number of the clusters, Algorithm [3|is proposed.

Note that bp(g - should be larger than the threshold ~;;, so that

med,i) Kigri
Algorithm [3| can be terminated. (); and R; affect K, ;, so these pa-
rameters have to be tuned. Finding ();, R; can be time-consuming be-
cause it relies on heuristics. An alternative is to replace bp(,,., ). K,
in Algorithmby min (bopt (P (Omed,i))s Ymaz)» Where Yp,q, is a thresh-
old for the gap metric between two systems in a cluster. Then we tune
Q; and R; and check if the corresponding LQR gain can stabilize all

the grid points in the cluster.
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Algorithm 3: Determining the number of clusters

Initialization :
Set the number of cluster : k.
flag + 1
while flag do
Run the Algorithm 2]
Calculate A,q4; as

Amam,i == 19%%}5 59(P(9), P(9m5d7z‘)), 1= 1, ceey kcl

0P (0,,00.:), K1gni < Dmaa,i for any i then
ko < kg +1
flag + 1
else
| flag <0
end

end
Save {©;},{01},{S;}, {P:}
{Hmed,i}a {nged,i}v {Smed,i}7 {Pmed,i; }’ IDXmed
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The existence of a controller that can track any equilibrium point

in a cluster is guaranteed by Theorem [3.2]

Theorem 3.2. Consider a cluster ©; and its medoid 0,,.q; of a system
(3.1) obtained by the modified Algorithm 3|in which bp,,., )1y, IS
replaced by min(bopi (P (Omed,i)), Ymaz))- For all s;, sj corresponding

to 0;,0; € O, there exists a controller that can steer s; to s;.

Proof Let a controller K satisfy the inequality:

bp(9med,i),K* > 59(P(9med,i)7 P(ez)) (3.14)

The existence of K is guaranteed by Algorithm 3| as the LOR gain
Kigr,i satisfies the inequality (3.14). By Theorem[2.3] the equilibrium
point s; of any pairs (P(0;), K}) is asymptotically stable at the equi-
librium point s;. Thus, s; of the nonlinear system (3.1)) is asymptoti-
cally stable. Let the nonlinear system (3.1)) be P,;. (P,;, K}) has the
region of attraction (ROA) at any s;. There is a manifold of equilib-
rium points between arbitrary s; and s; by Assumption [3.2] Let a
line on the manifold be s;;. Let s; and K7 be a point on 5;; and a
controller, respectively such that the ROA of the pair (P(60,), K1) in-
cludes s;. Then K7 can steer s; to si. Considering s, as the initial
point s;, the same procedure produces s and K5 such that K35 can
steer sy to so. Because 5y; is shorter than 55, K (i = 1,2,---) can

steer s; 1o s;. n

Note that there is no guarantee that a local MPC satisfies The-
orem [3.2] because MPC formulation involves constraints like (3.5)).
Hence, the stability is evaluated by the closed-loop control perfor-

mance of several simulations. In addition, global stability is not guar-
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anteed, which is a limitation of multilinear model control approaches
applied to nonlinear systems [44]].

In order to determines the weights of the local MPCs, we con-
sidered both gap metric-based method and prediction based
method (2.36). The gap metric-based method is based on the equilib-
rium point corresponding to the scheduling vector. It is advantageous
in that the closed-loop behavior at a set-point can be guaranteed to
be stable with a large gap stability margin of a local controller. How-
ever, there is no guarantee that the controller steers any states to the
set-point. Although the gap metric between the set-point and the lo-
cal model is small, it does not mean that the current state is well
predicted and steered to the set-point because the dynamics of the
current state can be completely different from that of the set-point.
On the other hand, the output prediction-based method chooses the
weights based on the current state. However, it does not guarantee
stability at an equilibrium point. Combining both methods, the gap
metric-based multilinear MPC algorithm is proposed in Algorithm [4]

47 ;



Algorithm 4: Gap metric-based multilinear MPC

Initialization :
Obtain {6:}, {67}, {Si}, [P},
{emed,i}v {egwii}a {Smed,i}u {Pmed,iv }7 IDXmed
from Algorithm
flag < 1,t < 0,w; + 1/kg
for k <~ 0 to N7 by 1 do
Check the reference 7 (k) corresponding to 0(k)
Measure y(k) and calculate e(k) = r(k) — y(k)
Calculate i* = arg max ;(6(k))
Calculate ¢} (k)
if i == ¢* then
ok 1
else
AGE
end

Calculate ¢? (k) from (2.36)
Calculate a1 and ay

ay = exp(—e(k)T Ace(k))

as=1—aq
Calculate w; (k)

w; = a16; (k) + az¢97 (k)
Solve k¢ local MPC problems based on { P,,¢q,; } and obtain
{ui(k)}

Calculate u(k) to the plant

kel
u(k) = wiui(k)
=1

Apply u(k) to the plant
end

Save {u(k)}, {y(k)}
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The weights of the proposed multilinear MPC are calculated by
three criteria, the gap metric {7;(0x)}, prediction error {¢;(k)}, and
error e(k). Its criterion to give the weights is the combination of the
prediction accuracy and the gap metric between models and the lin-
earized system at the set-point. A dual weighting strategy is applied
by the proposed algorithm: (1) when the state is out of the cluster and
the target set-point exists in the cluster, the weights are dominated by
the prediction accuracy; (2) when the output approaches the set-point,
the weights are dominated by the gap metric. Unlike the weights cal-
culated by the existing gap metric-based method, Eq. (2.33)), only one
local MPC is selected for the scheduled controller when the error be-
comes small. Thus, the stability property of the local controller can
be exploited.

There is no guarantee of stability if the state is out of the ROA of
the closed-loop system by a local MPC at the reference point. In this
situation, the models whose prediction errors are small should have
high weights. If the output is close to the reference, the current state
is considered to be in the controllable set of a local controller that
stabilizes the dynamics at the reference. Then the state is steered to
the reference with asymptotic stability by Theorem [3.Tjand [3.2]

Note that the parameter A, can be determined by ;. Suppose
the 0}, is on the cluster whose medoid is 0y,c4i- A, and Ay;, are
defined as

t —
Ayma:mk - Ean ’yarned,ivk - ye:]”

0 (3.15)

Ay = Yomeaik — Yokl

h

Let the maximum distance between ' component of the steady-state

output in the cluster and that of the output at the medoid be Ay,;,44..
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Then we can make the i*" diagonal component of A, have a scale of
_92 . .
AY,az.» SO that each component of the error gives a similar effect to

determine the weights.

3.4 Results and discussions

3.4.1 Example 1 (SISO CSTR)

Consider a dimensionless exothermal continuous stirred tank re-
actor (CSTR) [52],

. )
— 4+ D,(1— T2
Zy Z1 ( z1)exp( 1+ @/7)
. X
Tog = —To + BDa<1 — xl)exp(—ﬁ) + n(u — .23'2)7 (316)
2

Y =T,

where x1, x5 and u are the dimensionless conversion, temperature,
and coolant temperature, respectively. D,,~y, B and n are the dimen-
sionless parameters related to the flow rate of the feed, activation en-
ergy of the reaction, heat capacity of the solution, and the heat transfer
coefficient of the tank, respectively. The parameters for the plant and
the controller are shown in Table[3.1] The control objective is to track
a set-point of x5 and to reject the disturbance by manipulating u. The
output is the scheduling vector as it determines the equilibrium point

uniquely.
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Table 3.1: Parameters of Example 1

CSTR
Dy

S e

Local MPC Global MPC
0.072 Q; 1 ke
20 R; 0.01 I
8 N 10 A
0.3 A,

2
0.05
100
1
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The proposed gridding and clustering algorithms are applied with
the parameters v;, = 0.1 and k., = 4. The clusters and medoids of
the steady-state input-output pair are obtained as shown in Figure[3.]]
and Table 1. The system has the output multiplicity when the value
of the steady-state input is between -0.519 and 0.527. Each cluster
is connected and the maximum gap metric of each medoid does not
exceed 0.51. The maximum spectral radius of the closed-loop sys-
tems controlled by the LQR controller in a cluster is less than 1 as
shown in Table which means the four local MPCs are set without
stability issue. The controllers are combined into a multilinear MPC
controller MLMPCI) using the proposed weighting method. In order
to check offset-free tracking, the state and measurement noise are not
added. Luenberger observer is chosen for the filter as it is convenient
to control the response time by changing the poles of the observer.
Set-point tracking control and disturbance rejection are tested for
MLMPC I. Gap metric-based MLMPC (MPMPC II) and prediction-
based MLMPC (MPMPC III) are also tested for comparison and the

results are shown in Figure[3.2] [3.3] [3.4]3.5] and Table[3.2] Subscripts
¢, g, and p represent MLMPC [, 11, and III, respectively.
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The performance of MLMPC I1I is the worst for set-point track-
ing, as y, has a high overshoot in the third reference step and os-
cillates in the last reference step. The weights of MLMPC III does
not change at the first 10 sample times at the third reference step,
which means the third local MPC is mainly used for the scheduled
controller. The gap metric between the third medoid and the third ref-
erence is 0.93, which means the MPC using the third model is not
adequate for control the neighborhood of the third reference. In addi-
tion, the gap metric between the third medoid and the last reference
is 0.99, and it causes oscillation. On the other hand, y, and y. track
the reference without oscillation in the whole operating range. In ad-
dition, the performance of a controller is measured by the sum of ab-
solute errors (SAE). The SAE of an output is defined as S_~ | |e(k)],
where e(k) is the error of the output at ¥ sampling time and N is
the number of the samples. Without disturbance, I has the lower SAE
than II. y. tracks the reference faster than y, with the help of the
prediction-based weight.

For disturbance rejection, we inject step input disturbances whose
sizes are 1, -1, and -0.5 at time 30, 150, and 260, respectively. MLMPC
I and MLMPC II show improved performances compared to MLMPC
III in terms of SAE. As shown in Figure [3.4] the integrated MLMPC
controller has a lower SAE than the others for disturbance rejection
control. All controllers have the same weights for their local con-

trollers after the disturbances are injected.
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We also check that the number of the clusters affects the stability
and performance of the proposed controller as shown in Table [3.3]
The second column represents the minimum gap metric between the
last set-point and the models in the clusters. The third column rep-
resents the computation time during the closed-loop simulation. The
last column represents the sum of output errors during the simulation.
The table shows the minimum gap metric decreases as the number of
clusters increases. It implies the stability margin increases with the
number of the clusters. Indeed, we have observed the output oscillates
if the number of clusters is smaller than four, and achieves offset-free
control otherwise. On the other hand, the computation time linearly
increases with respect to the number of the clusters, because the num-
ber of optimization problems to be solved increases. The transient

performance does not seem to be related to the number of clusters.
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Table 3.3: Effects of the number of clusters

# of clusters Gap metric Computation time (s) Sum of errors

1 0.79 24.5 132
2 0.79 38.0 134
3 0.79 53.0 135
4 0.30 66.0 86
5 0.20 77.7 101
6 0.11 91.0 98
7 0.1 109.8 99
8 0.1 120.7 99
9 0.11 135.9 104
10 0.11 148.8 108
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3.4.2 Example 2 (MIMO CSTR)

Consider a multi-input multi-output continuous stirred tank re-
actor (CSTR) [53]]. It consists of an irreversible and exothermic reac-

tion, and the temperature is controlled by a coolant stream.

Calt) 2%[0,40 — Cu(t)] = koCa(t)e E/RT®),
T(t) =111 - T(t)] - Altko ., A (£)e BRI
' oCr (3.17)
pCCpc 71—"714 :
pC L)l —e O[T = T(t)],
p

y(t) =[Calt) T()]".

The parameters and initial values of the variables in the system are
given in Table The measured concentration C'4 and the temper-
ature 7" are controlled by manipulating the flow rate of A, ¢ and the
coolant flow rate, q. for set-point tracking and disturbance rejection.

The input constraints are : ¢ € [95,150] and ¢, € [60, 110].
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Table 3.4: MIMO CSTR Parameters and Initial Values

Product concentration Cy 0.1 mol/LL
Coolant flow rate e 103.41 L min—!
Feed concentration Cao 1 mol/LL
Inlet coolant temperature Tco 350K
Heat transfer term ha 7 x 10° cal/min K
Activation energy term E/R 1 x 10K
Liquid densities P, Pe 1 x 10% g/L
Reactor temperature T 438.51 K
Process flow rate q 100 L min—!
Feed temperature Th 350K
CSTR volume \% 100 L
Heat of reaction AH -2 x 10 ® cal/mol
Specific heats Cp,Cpc  lcalg 1K™!
Reaction rate constant 1 ko 7.2 x 1010 min ~!
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The steady-state input-output relationship is shown in Figure[3.6]
Since the degrees of freedom in are two, any two variables
among two inputs and two outputs determine the equilibrium point
uniquely. The manipulated variables are chosen as the scheduling
variables in this example. The proposed gridding and clustering al-
gorithm are applied with the parameters v, = 0.1 and k., = 4. The
clusters and the medoids with 242 grid points are obtained as shown
in Figure [3.7) and Table [3.5] Each cluster is connected and the maxi-
mum gap metric of each medoid does not exceed 0.36. The parame-
ters for the controller are shown in Table[3.6] The maximum spectral
radius of the closed-loop systems controlled by the LQR controller
in a cluster is less than 1 as shown in Table The controllers are

combined into a global multilinear MPC controller (MLMPC 1). The

1000 O
, = 0.05, and

tuning parameters are: k, = 2, A\’ =
0 10

0 0.0025
jection are tested for MLMPC I, MLMPC II, and MLMPC III. The

results are shown in Figures [3.8]and[3.9]and Table

400 0
A, = ( > . Set-point tracking control and disturbance re-
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Table 3.5: Clustering result of MIMO CSTR

Ist 2nd 3rd 4th
Ored (120,70) (95 ,100) (120,105) (98.75,110)
Tmed (0.025,473) (0.099,438) (0.073,449) (0.013,432)
0g,max 0.1053 0.2829 0.1747 0.3507
Amaz,med 0.21 0.51 0.42 0.49
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Table 3.6: Parameters of Example 2

Local MPC Global MPC
0: (10000 (1)> ke )
i <O.(())Ol 0.(?01) H 0.05
N 10 Ad <10000 100>
Ae <480 0.0%25)
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Y, has the longest settling time in the second reference step.
MLMPC I uses the last local MPC as the scheduled controller as
shown in Fig[3.10] The gap metric between the last medoid and the
first reference is 0.91. It can be interpreted that the large gap met-
ric between the model and the state makes a slow transient response.
Whereas, both y,, and y. track the reference signal fast and accurately
in the whole operating range. The overshoot of MLMPC I is lower
than that of MLMPC III at the second reference step. As shown in
Figure[3.10f MLMPC III is the combination of the second and the last
local MPC. The gap metric between the second medoid and the sec-
ond reference is 0.42, which is bigger than The gap metric between
the last medoid and the second reference, 0.18. whereas, MLMPC
I uses the last local MPC as the global MPC, which results in bet-
ter transient response. For disturbance rejection, we inject step input
disturbances whose sizes are (5,0), (5,5), and (5,-5) at 13 (min), 24
(min), and 32 (min), respectively. All controllers have similar perfor-
mances as shown in Figure @] and Table However, MLMPC III
has different weights between the second disturbance injection and
the last disturbance injection. It shows the prediction accuracy of the
third augmented model is similar to that of the first augmented model.
The combination of the first and the third LQR controller stabilizes
the system with the second input disturbance.

In summary, the proposed MLMPC controller outperforms the
other two MLMPC controllers in terms of set-point tracking. The
MLMPC I shows smooth transition compared to MLMPC 1I, and it
converges to the local MPC that guarantees the stability compared to
MLMPC III. Besides, the robust performance of the proposed con-

troller is verified by the disturbance rejection test.

69 :



0 10 20 30 40 50
Time (min)

Figure 3.8: Set-point tracking for MIMO CSTR

70

1)) 31 7

5292



3 0047 " = " Ref
6 .......... y
g P
~ 002 1 |77 yg
<
_yC
0 1 1 1 1
0 10 20 30 40 50
500
<480 1
= J M
460 1
0 10 20 30 40 50
E 140 B P up
S N T N ) u
2120 - ] g
o Ue
100 Il Il Il Il
0 10 20 30 40 50
120
< ]
g 100
=
o 80 7
o
60 Il Il Il Il
10 20 30 40 50
Time (min)
Figure 3.9: Disturbance rejection for MIMO CSTR
71 :
-t} ©



_ 1 ‘i \i i \!. .......... yp
=031 i 5 i if i Y
0 C \'- 1 I ‘Tl i | _yc
0 10 20 30 40 50
1 =
2ost
0
0
1 =
e
So05F
0
0
1 =
So05F
0
0
Time (min)
Figure 3.10: Weights of local controllers for tracking of MIMO CSTR
72 A 1%
¥ - - —
A= s w



B

RICTTITTTTTTTITr

0 10

20

30 40

0 10

20

30 40

.....

4th
o
o

..................

0 10

20

Time (min)

50

Figure 3.11: Weights of local controllers for disturbance rejection of MIMO

CSTR

73

’ -"{--] -I‘Ll::r H ]_-.

&+



8°90¢C 8°90¢ 0°L0C €L

uondalfaa dueqan)st
I1S1€°0 0S1¢0 ¢SI1e0 Me) (totoo! a P) AVS
wooe

pasodoag poseq der)y paseq uondIPAIJ

ALSD ONTIA 10§ 10112 9IN[osqe [eITU] /"¢ J[qe],

74



Chapter 4

Switching multilinear model predictive control

based on gap metric >

4.1 Introduction

The prediction-based and gap metric-based approaches are com-
bined to find the weights for local controllers in the previous chapter.
It improves transient responses compared to the gap-metric based ap-
proach and guarantees the offset-free tracking property of transition
in the subset of the operating region, called the subregion. However,
this approach does not guarantee the reachability from one subre-
gion to another subregion where the set-point is located. In this chap-
ter, we propose to design local controllers and prove that each local
controller has the offset-free tracking property if the behavior of the
system is similar to the model. Second, we propose a method for de-
termining the path along with the subregions from an initial point
to a set-point in the operating region. Third, the switching strategy to
design a global controller is proposed, which uses only one local con-

troller at each sampling time. We show the resulting global controller

This chapter is an adapted version of B. Park, Y. Kim, and J. M. Lee, “Design of
switching multilinear model predictive control using gap metric," Computers & Chemical
Engineering, Under review

75



guarantees the offset-free tracking property and the system stability

at any set-point in a designated operating region.

4.2 Shortest path problem

Let V' be a set of nodes and A be a set of directed edges between
nodes in V. Given a directed graph D = (V, A), two distinguished
nodes s,¢ € V/, and nonnegative costs ¢;; for (i,j) € A, a minimum
cost of the s —¢ path is obtained by solving the shortest path problem.

It is formulated as

Z =min g CijTij

(4,4)€A
Z :L’Zk— Z Ty = 1fore = s,
keV+(i keV—(3)
Z Tike — Z xp = 0fori € V\{s,t},
keV+(i) keV—(7) (4 1)
Z Tik — Z Tri = —1 fori = t,
keV+(7) keV—(7)

V(i) ={k|(i, k) € A},
V(i) ={k[(k,i) € A},
Tij 6{0, 1} for (Z,j) c A,

where z;; = 1 if the directed edge (¢, j) is in the shortest s — ¢ path.
Figure [4.1] shows a instance of graph for shortest path problem. The
shortest path problem is known as a well-solved problem in the sense
that there exists an “efficient” algorithm for solving the problem. An
algorithm on a graph G = (V, A) with n nodes and m edges for m >

n is said “efficient" if, in the worst case, the algorithm requires O (m?)
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elementary calculations for some integer p [54]]. Some algorithms and
their time complexities to solve this problem for directed graphs with

nonnegative weights are shown in Table @.1]

Remark 4.1. A global controller can be designed using local con-
trollers and the solution of the shortest path problem. Considering
operating conditions as nodes, we can define a pair of two conditions
as an edge if there exists a local controller such that any of two condi-
tions can be moved to the other. Then, the shortest path problem can
be exploited to determine the path from an initial operating condition
to another condition. The plant is controlled by a local controller un-
til the state is close to a node in the path. If the state reaches near
the node, another controller is used to steer the state to another node
constituting an edge in the path. Thus, the global controller is a set

of local controllers based on a switching strategy.
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Figure 4.1: Shortest path instance
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4.3 Switching Multilinear Model Predictive Control

In this section, we propose a novel switching MLMPC algo-
rithm which can guarantee the stability of the closed-loop system
whose set-point is determined by a scheduling vector, regardless of
the subregion to which it belongs. It consists of the design of the
local MPC controllers, the path to the reference, and the switching

strategy among the local MPC controllers based on gap metric.

4.3.1 Local MPC design

Before designing a local MPC that steers the state to a subre-
gion, define a set of the scheduling vectors in the subregion ©; as a
grid of ©; denoted by © ,, := {6;} C ©;. Accordingly, the grid of
O, ©4,iq, is defined by Ujvz’"l @gm. ;- Denoting the corresponding equi-
librium point F'(6;) by s; := (25, s, Ys.i), the linearized system of
Eq. (2.1) at s; is obtained as and denoted by P(6;).

of of
o % Ts i»usi('r - l‘S’Z) + % xsiyusi<u - US7Z)7 4 2
y - 81’ 5,1 ys,z

Ts,i

Defining the representative scheduling vector in @?”d as the medoid

of ©; and denoting it by 0} € e’

grid> the grid @md 1s assumed to

satisfy Assumption 4.1}

Assumption 4.1. Let the convex hull of a grid @;,_id be Conv(@grid)
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and contain © ;. Any P(0;) from 0; € C’onv(@gmd) satisfies

0q(P(07), P(0;)) < max ,(P(65), P(6s)).

J
Os eggrid

1
grid

@;nd. Assumption means that if a controller K that stabilizes
P(07) can stabilize P(6;), K; can stabilize any P(6y) from 0, € ©;.

That is, we can design a local controller that can stabilize the system

Suppose 0; € O, ., has the maximum gap metric with 0] €

(2.1) at any equilibrium point in a subregion. Assumption [4.1]is not

restrictive because it can be satisfied by refining the grid.

Remark 4.2. To refine the grid, the threshold value vy, can be defined
so that the gap metric of any two adjacent equilibrium points is less
than v,. If v, is small enough, there exists a subregion satisfying
Assumption because one of the scheduling vectors of its grid can

approximate any the scheduling vector in the subregion.

The following lemma is necessary to determine the stability of

the closed-loop system at an equilibrium point.

Lemma 4.1. [62)] Let © = 0 be an equilibrium point for the nonlinear

system
&= f(z),

where f : D — R"™ is continuously differentiable and D is a neigh-
borhood of the origin.

af

A=—

ox (z) =0

Then,
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1. The origin is asymptotically stable if Re()\;) < 0 for all eigen-
values \; of A.
2. The origin is unstable if Re(\;) > 0 for one or more of the

eigenvalues of A.

The local linear MPC designed in Section 3 can be a local con-
troller for each subregion under some conditions. Theorem4.1|shows
that (2.6), (2.9), and (2.10) can stabilize an equilibrium point if the
gap metric between the linearized dynamics at the equilibrium point
and the local linear model used in MPC is smaller than the gap sta-

bility margin of the pair of the model and the controller in the MPC.

Theorem 4.1. Suppose the space of scheduling vector © and its grid

Ogria of a nonlienar process (2.1) satisfy Assumptions 3.2} 3.3} and
For 0,, € Oy and § € O, assume that the MPC described

in 2.6), 2.9), and 2.10) is applied to the system (2.1)) with a lin-
ear model P,, := P,  to stabilize the system at an output v whose
corresponding scheduling vector is 0. Denote F(0) by sy and let
P(0) be the linearized model of 2.1) at so. Assume that Qryp is
the matrix for the cost of LOR with P,, and the weights ()y and Ry
in 2.9), and Ky, is the gain of the corresponding LOR controller.
If bp,, Kk, > Og(Pm, P(0)), then the closed-loop system Egs. 2.1,
(2.6), 2.9), and at the set-point r is asymptotically stable.

Proof Denote the state at steady-state by xy. If the state at the k'

sampling time x(k) is in the neighborhood of x4, all the constraints
in the MPC formulation of (2.9) are inactive. Then, the MPC (2.9) is
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reduced to the LOR [1)]:

T (620) = min Y _ 624 ]lg, + [ldunlz, = 1620l
k=0
(4.3)
s.t. 537k:+1 = A95$k + BQ(SUk

dxg = (k) — z(k), dup = u(k) — u(k).
Then the closed-loop system between the k' and the (k + 1) sam-
pling time is

dx
= [(a(t), =Ky dzo + u(k)),

y = h(z),

4.4)

where K, = (Rg + Bl QroBg) ' Bj QroAy. The linearized and
discretized system of (d.4)) at the equilibrium point is

dx(k+ 1) = Agdz (k) + Bydu(k)
= (Ap — BpKy)0(k), 4.5)
dy(k) = Cyox(k),

where dx(k) = x(k) — xp; ou(k) = u(k) — ug; dy(k) = y(k) —r;
Ay, By, and Cy are the matrices corresponding to P(0); ug is the
steady-state input at xg. Because LOR gain K, satisfies Theorem
2.3] the autonomous system ({.5) is asymptotically stable and all the
absolute eigenvalues of (A9 — ByK),-) are less than one. Because
the continuous matrix transformed from (Ay — BgKqu) is Hurwitz

matrix, (xg,ug) in the closed-loop system is asymptotically stable by
Lemma [
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Thus, we can guarantee the stability at all the equilibrium points
in the operating region corresponding to © if Theorem[.1]is satisfied.
However, if the operating range is large, the MPC satisfying Theorem
may not exist. Thus, the operating region is partitioned into the
subregions such that there exists a local MPC satisfying Theorem [.T]
for each subregion. Generating subregions based on gap metric have
been proposed for multiple MPC [63, 164, 46]. In this study, grid-
ding and K-medoids clustering algorithms based on gap metric are
exploited to construct the grid and subregions of © [65]. Because it
is not guaranteed that the number of linear models increases linearly,
caution must be exercised when the method is applied to high dimen-

sional systems.

Remark 4.3. The switching method may have stability when moving
between two adjacent subregions. Assume that the i'" subregion is
adjacent to the ;' subregion. If there exists an equilibrium point in
the i'" subregion such that the ;' local MPC can steer the point to
the j*" subregion with stability, and vice versa, the switching method
can construct a global controller that can steer the state to any equi-

librium point corresponding to 0 € ©.

4.3.2 Path design based on gap metric

Even if we construct the subregions and the local MPCs, it is un-
clear how the state is steered from one subregion to another subregion
by the local MPCs. If a local controller in a subregion can steer the
state into other subregions, A global controller can be designed by the
local MPCs as we mentioned in Remark #.T|and 4.3] To find the equi-

librium points in a subregion that the state in another subregion can
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reach by the local MPC, we first propose to construct the boundary
of a subregion O; using the grid @gm-d in Algorithm The algorithm

finds the vertices in the convex hull of the grid of a subregion and the

points on the facets of the convex hull excepting the vertices.
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Algorithm 5: Calculation of the boundaries of subregions

Input :
The set of the subregions of ©: {©}, .}

fori <« 1to \{@;”-d}] by 1 do

@’L
7

{0 p} - G)gmd

O}, < The set of the vertices of Conv (0%,

Set {A’ Facer) @8 the set of ng x ng matrices where the columns of
A;acet constitute the j'* facet of Conv(©), ;)

for j «+ 1to \{A'acet}\ by 1 do
for k < 1 to \{Gtemp}\ by 1 do
b (A% o) 71O
if0<b; <land) ' b, ==1then
| O}y« 65, U{™}
end
end

end

end
Save {©! ,}
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The equilibrium points corresponding to a boundary © ; are the
candidates where the state from another subregion ©; can move by
the local MPC for © ;. We then propose to construct the pairs between
two subregions in Algorithm|[6] Each pair of them consists of a point
in the boundary of a subregion and the closest point in the bound-
ary of another subregion. Because the components of the scheduling
vector have different magnitudes, we define a normalized scheduling
vector as

ek,nk - ek,min

oy (4.6)

kg — Qkmaz _ gkmin’

where 0% and 6% are the lower and upper bounds of the k"
component of the scheduling vector, respectively. Thus, the compo-
nents of the scheduling vector are scaled between zero and one. Then,
we define a matrix D whose components are denoted by d ;, which
is the Euclidean distance between the i*" and j*" normalized schedul-
ing vector. Similarly, DY is defined in terms of the gap metric.

Even if the pairs generated by Algorithm [6| can be channels be-
tween two subregions, it is unclear whether a local MPC steers the
state from a point to the other point in a pair. Thus, we propose Algo-
rithm [/| to choose the pairs where each point in a pair is close to the
subregion the other point belongs to in terms of both the gap metric
and Euclidean distance. In addition, we add the condition that each
point in a pair is stabilized by the local MPC for the subregion the

other point belongs to.
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Algorithm 6: Calculation of the pairs between points from boundaries

Input :
The set of the boundaries of {©;}: {0} ,}

The matrix of the Euclidean distance between scheduling vectors:

De

The matrix of the gap metric between the linear systems

corresponding to scheduling vectors: DY

for i + 1to |{©},}| — 1 by 1do

o ol

for j :mzz—k 1to |{©},}| by 1 do

Ol Oy

Doy 4= (™), Diyy, 4 (dir™), where

T = g A2 =

IDXpairl < {}, IDXpm‘TQ < {}

for a < 1t0 |05 | by 1 do
btemp argmin, <b §|@Zjlmp2|dzv’zemp
IDXpairl — IDXpairl U {(a7 btemp)}
IDXpairZ — IDXpairQ U {(btempa a)}

end

for b < 1to |05 | by 1 do
Qtemp < argmin1§a§|®§,§mm|d2”§]€mp
IDXpairl — IDXpairl U {(atem;m b)}
IDXpairQ A IDXpairQ U {(b7 atemp)}

end

iz’ — IDXpairt

idal’ — IDX paira

end

end
Save IDX, := {idx}’}
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Algorithm 7: Filtering of the pairs between points from boundaries

Input :

{e;,}. D¢, DI, IDX,,
The threshold for the 2-norm and gap metric : {7},
The gain of local MPCs in unconstrained regions : { K} }

for i + 1to |{©},}| — 1 by 1do

end
end

lqr

for j < i+ 1to[{©],}| by 1 do

if idz,;’ # () then

end

i, i,
tdxy” < idxy " idxy < tdxy

i temen . i
iday " idxy? idz, T — ida!

e e,temp g g,temp
Dtempe(da,b ),Dtempe(davb ), where

oy =gy, A9 = dY 0, € O}, 0, € O],
for k < 1to |idzly™""| by 1 do
Pick the k" element (a, b) in idz'c""!
a, B < True
if (P(0.), K], o) 1s asymptotically stable then
| « < False
end
if (P(0y), K. liqr) is asymptotically stable then
| B« False
end
if dzzzemp > v, Or dgzzemp > ~f, or ccor 3 then
idaly™ — idzl™ — {(a,b)}
idzl™P? o ida k¥ — {(b,a)}
end

end

templ temp2

Save IDX, := {idz}’}
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According to the sets of the pairs generated by Algorithm [6]and

we define the adjacent subregions of a subregion.

Definition 4.1. The adjacent subregions of a subregion O; is defined
and denoted by

where z‘dxj;j is the set of pairs constructed by Algorithms @ and
If ©; is an adjacent subregion of ©;, there exists an equilibrium
point in the i** subregion such that the j** local MPC can steer the
point to the ;" subregion with stability, and vice versa. The following

is assumed for the subregions {O, }:

Assumption 4.2. Assume a set of subregions, the union of which is a
proper subset of ©. Then, the union of the adjacent subregions of the

subregions is not the same as the union of the subregions.

Assumption 4.2 means that there exists a path between any two
subregions among the adjacent subregions. Thus, the switching method
can construct a global controller that can steer the state to any equi-

librium point corresponding to f € O.

4.3.3 Global MPC design

As we find the channels through which the state in a subre-
gion can be steered to another subregion by a local MPC, the re-
mained problem is how to decide the path between an initial state
and a set-point. Here we propose to determine the path using the
shortest path algorithm. To construct the graph for the shortest path

problem, we propose two methods to decide the nodes, edges, and
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edge costs of a graph and the intermediate equilibrium points be-
tween an initial state and a set-point in Algorithms [§ and 0] In Al-
gorithm [8] a node is defined as each subregion in the operating re-
gion, denoting the set of the nodes by V := {i|30; C © fori}.
An edge is defined as a set of two subregions if one subregion is
an adjacent subregion of the other, denoting the set of the edges by
A = {{i,j}|Fidz}’ C IDX), fori,j € V}. The intermediate equi-
librium points ©P%" are chosen among the pairs generated by Algo-
rithms [6] and [7] based on gap metric. It maximizes the gap metric sta-
bility margin of a local MPC at each intermediate equilibrium point
that belongs to an adjacent subregion. In addition, it is independent
of the initial state and set-point. It only depends on the subregions
where they belong to. Thus, the graph can be used regardless of the

initial state and set-point.
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Algorithm 8: Graph construction 1

Input :
{ei,}, D*.DI,IDX,
The medoids where local MPCs are constructed: {6} }
The set of the nodes : V' = {i|©; C O}
The set of the edges : A = {{i,j}|idzy’ € IDX,, fori,j € V}.
for i + 1to |{©},}| — 1 by 1do
for j < i+ 1to|{O!,}| by 1do
if idac;,’j # () then
id:cﬁ,emp — idwi{j
for k « 1 to |idzi’™"| by 1 do
Pick the k' element (a, b) in idzy ™"
Calculate for 6, € @id, 0, € @l];d
cfj = 8g(P(0F), P(6h)) + 05(P(0]), P(6a))
end

end
k* + arg ming cfj, Cij < miny cfj
Set ¢;; as the edge cost of {i,j} € A
ath ath th . -1 tem
07" < 0y, 05" < 0, for the k' element (a, b) in iday ™"

end

end
Save undirected graph G = (V, A) with cost C' := {c¢;;}

Save QPuth .= {ijath}
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Algorithm 9: Graph construction 2

(Offline)
Input : {©},}, D*.D9,IDX,
The set of the nodes : Vo = {a|(a,b) € idz}’ € IDX,}
The set of the edges : Ag = {(a1,b2)|(a1,b1) €
Uz iday”, (az, bo) € iday’, |adj(©;)] > 2}.
for (a,b) € Ado
| cab < (165 — 07l
end
(Online)
The initial and terminal scheduling vectors : 05 € @;Tid7 0, € 6);”. d
Vs« {alfa € ©) ;4}, Vi < {bl6h € © .}
As + {(a,b)|0, € @;m-d orf, € @;Md}
A+ {(a,b)|0, € @;Md or by € @ém.d}
VeVo—(VsuW), A+ Ay — (AsU Ay)
V< VU{st}
for (a,b) € U, idzs" do
| A AU(s,b),cq < 07 — 07|,
end
for (a,b) € U, idw’;’j do
| A+ AU (a,t),ca < ||0F — 075
end
Save directed graph G = (V, A) with cost C' := {c¢;; }
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Compared to Algorithm 8 Algorithm [9]can reduce the length of
the path in terms of the Euclidean distance between an initial point
and a set-point. Thus, it can be a better suboptimal solution if the
cost function is quadratic with respect to the deviation of the state
from the state at a set-point. The drawback is that the graph is reorga-
nized whenever the set-point changes; however, the time complexity
is O(m), which is negligible compared to that of the shortest path
problem in Table {.1| where n and m are the number of the nodes
and edges, respectively.

Based on Algorithm [6] or [7] the global controller is proposed in
Algorithm[I0] The shortest path problem determines the intermediate
state, which is the path from an initial operating condition to another.
The plant is controlled by a local MPC until the state is close to an
intermediate state in the path. Algorithm [10| considers the state is at
steady-state if there remains 5% of the set-point for each output com-
ponent [66]. If the state reaches the intermediate state, another local
MPC is used to steer the state to another intermediate state constitut-
ing an edge in the path. Thus, the global controller is a set of local

controllers based on the switching strategy.
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Algorithm 10: Switching MMPC

Input : 0y € Oy, On..; € Oset, V, A, C, Ng, Nger

Solve the shortest path problem (@.1)) from 60 to O,

Set the intermediate vectors {1 € ©,,,,--- ,0; € Oy, } from the
solution of (4.1))

temp < 0, count < 0

Set the reference output r as the output at Ocy,pt1

for k < 0 to N by 1 do

Measure the output ate the k" sampling time : y(k)

Check {y] (k)}, all the components of the output y;(k), are at
steady-state:

lf‘yrefl yz H/’

count < count + 1
end

if count > nger and temp < t then
temp < temp + 1, count < 0

if temp ==t then

| Set the reference output r as the output at 0.
else

| Set the reference output r as the output at Osemp11
end

< 0.04 then

yref i

end
Solve the local MPC (2.6), (2.9), (2.10) for the subregion O
Apply the first input of the solution to the plant (2.1)

u(k)  ul’ +ul

Ntemp

S,Ntemp

end
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Theorem 4.2. Suppose the space of scheduling vector O, its grid
O grid, and its subregions {O©;} of a nonlienar process (2.1)) satisfy As-
sumptions 3.2} B.3] and[{.2] Assume that the intermediate points
are determined by Algorithms[3] [6] and[7} and the shortest path of the
graph obtained by Algorithm[8|or[9is decided. Then, the global MPC
of Algorithm [0 can steer the state of ([2.1)) between two arbitrary
states in the steady-state if the scheduling vectors corresponding to

the states are contained in ©.

Proof Denote the scheduling vectors and the subregions correspond-
ing to the initial point, the set-point, and the shortest path by 6, € O,
0, € ©,, and {0;|0; € ©;,i = 1,--- ;n — 1}. The local MPC sat-
isfies Theorem 4. 1| for the subregion ©; by C;. C; can stabilize 0,1
because Algorithm [7] checks the stability of (P(0;41), C;). Thus, 6;
can be steered to 0,1 by C; without offset. Thus, the global MPC can
steer the state from 0 to 0,,. |

4.4 Results and discussions

Consider a multi-input multi-output stirred tank reactor (CSTR)
[53]].

Cal(t) 2%[@10 — CA(t)] = koCa(t)e E/HT®)
i) =Lim, — 7)) — 2R 6 (e-ErmT
' oG 4.8)
h
+ PeCle Ge(t)[1 — e 7w [Thy — T(1))],

pCV
y(t) =[Cat) T(H)]".
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It consists of an irreversible, exothermic reaction. The concentration
C'4 and the temperature 7' are controlled by manipulating the flow
rate of A, ¢ and the coolant flow rate, q.. The parameters and initial

values of the variables in the system are described in Table
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Table 4.2: MIMO CSTR Parameters and Initial Values

Product concentration
Coolant flow rate

Feed concentration

Inlet coolant temperature
Heat transfer term
Activation energy term
Liquid densities

Reactor temperature
Process flow rate

Feed temperature

CSTR volume

Heat of reaction

Specific heats

Reaction rate constant 1
Constraints on the flow rate
Constraints on the coolant flow rate

Ca

AH
Cp, Cpe
ko
dmin, 9maz

e, mins e,max

0.1 mol/L
103.41 L min—!
1 mol/L
350 K
7 x 10° cal/min K
1 x 10*K
1 x 103 g/L
438.51 K
100 L min—!
350 K
100L
-2 x 105 cal/mol
lcalg 'K~!
7.2 x 1019 min —!
95, 150 L min—!
60, 110 L min—!
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The steady-state input-output relationship is shown in Figure[d.2]
The manipulated variables are chosen as the scheduling variables as
they determine the equilibrium point uniquely. The operating region
is divided into four subregions by the gridding and clustering method
in [65]. The clusters and the medoids with 231 grid points are ob-
tained as shown in Figure4.3]and Table[d.3] Each cluster is connected
and the maximum gap metric of each medoid does not exceed 0.36.
The maximum spectral radius of the closed-loop systems controlled
by the LQR controller in a cluster is less than 1 as shown in Table[d.3]
The candidates for the intermediate equilibrium points are generated
by Algorithms[5} [6, and[7|and are shown Figure .4 Setting both v,
and ~}, as 0.1 in Algorithm|7} the candidates are close to the adjacent
subregions in terms of the gap metric and Euclidean distance. Figure
shows the possible paths from an initial point and a set-point. Al-
gorithm [§]leaves only a single path between two adjacent subregions
so that the edges are reduced. On the other hand, Algorithm [0]exploits
all the candidates for the possible paths. To check offset-free tracking,
the state and measurement noises are not added. Luenberger observer
is chosen for the filter as it is convenient to control the response time
by changing the poles of the observer. Also, the performance of a con-
troller is measured by the summation of absolute errors (SAE). The
SAE of an output is defined as ", |e(k)

of the output at k" sampling time and N is the number of samples.

, where e(k) is the error
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Table 4.3: Clustering result of MIMO CSTR

Ist 2nd 3rd 4th
Ored (120,70) (95 ,100) (120,105) (98.75,110)
Tmed (0.025,473) (0.099,438) (0.073,449) (0.013,432)
0g,max 0.1053 0.2829 0.1747 0.3507
Amaz,med 0.21 0.51 0.42 0.49
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Figure 4.2: Steady-state input-output map for MIMO CSTR
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Figure 4.3: Subregions of steady-state input and output for MIMO CSTR
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Figure 4.4: Candidates of the intermediate points for MIMO CSTR
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Figure 4.5: Possible paths from an initial point and the set-point for MIMO
CSTR (Top: Algorithm |§|, Bottom: Algorithm E[)
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Set-point tracking control and disturbance rejection are tested for
the controllers based on Algorithms[6|and[7} The parameters for MPC
are shown in Table 4.4] and the results are shown in Table {4.5] and
Figures [4.6] and

Denoting the global MPC designed by Algorithms [§] and [9] by
MLMPC I and MLMPC 11, respectively, MLMPC I and MLMPC II
track all the references without offset. MLMPC I has the shorter set-
tling time than MLMPC II in the first reference step in Figure 4.6] It
seems that there is no difference after the first reference step. One rea-
son can be small changes of the subregions during the changes of the
references. In the first reference step, all the local MPCs are involved.
Howeyver, three, two, and, three local MPCs are involved in the sec-
ond, third, and fourth reference step, respectively. Table [4.5] shows
the mean value of SAE when an initial condition and a set-point are
chosen in the grid of a subregion and another subregion, respectively.
The main difference comes from the transition between ©; and O,
and that between ©; and ©4. Almost 10% of difference in the temper-
ature is observed, and the mean values of the SAEs of all transitions
in Table[4.5]are (2.23,970) and (2.29, 1002) for MLMPC I and II, re-
spectively. It shows that MLMPC I is better than MLMPC II in terms
of SAE, especially when the initial state is far from the set-point in
terms of Euclidean distance and gap metric. For disturbance rejec-
tion, we inject step input disturbances whose size are (20,0), (0,15),
and (0,-20) at 10 (min), 24 (min), and 32 (min), respectively. All con-
trollers reject the disturbances immediately.

In summary, MLMPC I shows smooth transition compared to
MLMPC II, considering the gap metric between the medoid and the

reference. In addition, the robust performance of the proposed con-
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troller is verified by the disturbance rejection test. The relationship
between the gap metric and the transient response should be investi-
gated in future research.

Note that it is unclear why MLMPC 1 is better than MLMPC II in
terms of SAE. One speculation is that MLMPC I can be better subop-
timal than MLMPC II at the intermediate points. To design MLMPC
I, the gap metric between a medoid and an intermediate point is mini-
mized, which means that the LQR controller constructed by a medoid
is close to that constructed by an intermediate point. Thus, the rate of
convergence at an intermediate point can be fast when MLMPC 1 is
used instead of MLMPC II. Although the distance between an initial
point and a set-point is minimized in MLMPC II, the rate of conver-
gence from an intermediate point to another intermediate point can be
slow because of the suboptimal controller. In this case, the trajectory

of the state does not seem to be a straight line.
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Table 4.4: Parameters of MPC for MIMO CSTR

Local MPC
Qi

R;

N

1000 0
(5" 1)
0.001 0
<0 0.001

10

)

Global MPC

Nset
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Figure 4.6: Set-point tracking for MIMO CSTR

108

S e ki



@Eaﬁomd« zwonog mﬁﬁtowﬁdﬂ :dol) Y.LSO ONIIN 10§ Suryoen jurod-19g :/ 4 9InS1

(s) swny
0S ov 0] 0c ol 0

(s) swny
05 oy 0e 02 OF 0

OdIN [B30] Uiy ——
OdIN [B90] PIE ——
OdIN [Bd0] PUG e
OdIN [B90] IS | ——

- - -

00¥

| ozy
Tovy
logp S

[ 08Y

005

00¥

| oz
Tovh
logy S

[ 08Y

005

(s) swiy

0S ov 0¢ 0c [0]8
(s) swiy

0S

oy 0€ 0¢c (0]3

G110

S0

T
i

&5

.'!--l-
7 =

A -

109



6¢8  ¥¥8 | ¥¥OI €901 | S¥81 1181 | L avs e 2
67T TET | 6LT 08T | 10V €8¢ | VD -

788  8L3 €LS 665 | LEOT €66 | L e

ST 6V CI'T SI'T | ¥91T 291 | VD avs ©

ey 88¢ | ¥CC  8TC 69v ILv | L z

LLT TLT | 080 L8O 6L0 LLO | VD qvs ©

8I1C 8C6I | 9¢91 ¢€CS1 | €6 Cl6 L I

0cS ¥8v | 9I't v0€ | LTI LTI VO avs ©

11 | 11 I 11 I 11 I AdIN'TIN ~ Wwodj
{C) e ¢ 'e OL

ALSO ONIIN 10 V'S U9\ -S" S[qBL



5 0.1
S - = =Ref
\E, oot o X T Algorithm 4
< — Algorithm 5
(©]
O L L I}
0 10 20 30 40 50

Time (min)

400 : : :
0 10 20 30 40 50
Time (min)
1401
£
=
Q120
(o
100+ ‘ )
0 10 20 30 40 50
Time (min)
< 100
£
— 80
(8]
(o
60 :
0 10 20 30 40 50

Time (min)

Figure 4.8: Disturbance rejection for MIMO CSTR

! 2 A2 tsky



Chapter 5

Design of data-driven multilinear model

predictive control °

5.1 Introduction

The methods to design MLMPC in the previous chapters need
the nonlinear model for a process to obtain linear models for MLMPC
and the equilibrium point in a set-point. However, a common issue
for the two methods of MLMPC is that it is hard to design MLMPC
without the nonlinear model of the process because the optimal or
suboptimal trajectories are required to get linear models around the
trajectories, which is difficult to be generated without the nonlinear
model. Trajectory optimization techniques [21, 23, 25] can be ex-
ploited to generate the trajectories. In this chapter, DDP is exploited
to obtain suboptimal trajectories to track a set-point, because DDP
optimizes the trajectory by solving the optimization problem based
on the first-order derivatives of the dynamics around the known fea-
sible trajectory, i.e., local linear model, at each time step [26]. Thus,

it needs only obtaining the local linear models around a known trajec-

3This chapter is an adapted version of B. Park, J. W. Kim, and J. M. Lee, “Data-driven
offset-free multilinear model predictive control using constrained differential dynamic pro-
gramming," Journal of Process Control, Under review
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tory instead of the structure and parameters of the nonlinear model.
DDP consists of backward and forward passes. Backward pass gen-
erates a new control sequence based on the nominal trajectory, and
forward pass generates a new nominal trajectory based on the new
control sequence. It iteratively tries to improve the trajectory until
the nominal trajectory converges. It has been shown to possess con-
vergence properties better than the Newton’s method performed on
the entire control sequence [27]]. Because DDP does not consider any
constraints, it is restrictive to apply the processes with constraints for
which MPC is preferred. Constrained DDP (CDDP) has been devel-
oped to consider practical constraints on the processes [28, [29]]. Most
recent works on constrained DDP consider box input constraints [30]
and nonlinear constraints [31]. Because DDP gives a set of linear
time-varying (LTV) controllers to track the nominal trajectory instead
of the set-point, it cannot achieve offset-free tracking unless the nom-
inal trajectory achieves offset-free tracking. MPC can achieve offset-
free tracking from the models obtained around a suboptimal trajec-
tory that has offset, as it can remove the offset by including integral
action or unknown disturbance to the model. Consequently, MLMPC
and DDP complement each other if there is no nonlinear model for a
process

In this work, we propose a framework for set-point tracking of
nonlinear systems that considers input constraints when the nonlinear
model and nonzero steady-state input for a set-point are unknown.
It consists of a constrained DDP (CDDP), modeling for CDDP and
MLMPC, and MLMPC. In the proposed scheme, CDDP includes the
tuning parameters for improving the trajectory stably, and the con-

vergence of the proposed CDDP is proved. In order to get the first
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derivatives of the process at the nominal trajectory every iteration, a
procedure to obtain the LTV model is proposed based on the condi-
tional Gaussian process. Then the clustering of the models based on
gap metric is proposed. It is designed to generate a cluster that con-
sists of the models whose time steps are adjacent, which considers
both gap metric and distance between the origins of a model and the
representative model of a cluster. Last, the prediction-based MLMPC
is proposed, because gap metric-based MLMPC requires the dynam-
ics at the set-point, which is impossible without the nonlinear model.
Our strategy makes the weight of a local MPC converge to one, if
the output error and the prediction error of the MPC are less than
designated thresholds. Hence, the proposed MLMPC is equivalent to
linear offset-free MPC around the set-point. We prove that the con-
verged MLMPC has offset-free tracking property if the gap metric
between the converged linear model and the linearized model at the

set-point is small.

5.2 Data-driven trajectory optimization

In this section, we propose a strategy to identify the model around
a trajectory and improve the trajectory alternately without the nonlin-
ear model. we consider input constraints, assume that the value of the

input at a set-point is unknown.

5.2.1 Constrained differential dynamic programming

To solve the optimal control problem, dynamic programming
(DP) requires solving the Bellman equation, which is impossible due

to the curse of dimensionality (COD). Approximate dynamic pro-
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gramming (ADP) or reinforcement learning (RL) try to solve the
equation by approximating the value function from data. However,
the structure of the value function is unknown, and the amount of the
data increases as the sizes of the state and input constraints, and the
complexity of the system increase. If the initial condition is fixed,
DDP is a better choice to solve the Bellman equation in terms of the
amount of data because it only solves the Bellman equation around a
trajectory. However, DDP has limits to apply to the practical nonlin-
ear processes directly. It does not consider constraints, and the feed-
back gain from the backward pass can be large so that the resulting
trajectory changes rapidly and does not converge. In addition, there
are no mathematical models for many processes. In this section, we
propose a strategy to modify DDP for the process, the objective of
which is steering the state to a set-point where the value of the in-
put is unknown, and input constraints exist without any knowledge of
models. We assume that the state is also the measured output and the
controlled variable of the process (2.1)). First, we augment the input
to the dynamics of the system (2.1)) to choose the increment of the

input as the input of the augmented system.

Trr1 | | f(@k ug—1 + ag)
Uk Up_1 + ap (5.1
N 7 N ~~ >4
Zk41 9(zk,ar)
where 2, := [z} ul |]T and aj, := uy — ug_1. Then the input of the

augmented system is required to be zero, assuming the set-point is

an equilibrium point. Quadratic cost is chosen for the running and
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terminal cost.

Ji(Zg, Ag) = z;) — )T QP (h(z;) — z*)
Z; 2 ’ (5.2)

+G?Rddpaj + (ZEj — ZE*)TPN([L‘]' — I'*>

where z* is the set-point of the process, Q% = (0 and R » (
are the weighting matrices for the augmented state and input, respec-
tively. C,, is defined to satisfy h(z;) = C,z; = [I 0]z; := ;. Sim-
ilarly, C,, is defined to satisfy C,z; = [0 I|z; := w;_1. The cost
becomes zero when the state is at a set-point. The input constraints

(2.2) are considered again.

Umin S uj é Umaz
(5.3)
Aumin S aj S Aumagv

Then the constrained optimization is conducted in the backward pass.

min Qk(dzk, §ak)
day

subject t0 Ui, < Up—1 + ax + day < Umaz 5.4)

Aumin S ag + 5ak S Aumaw

where uy_; is obtained from the trajectory of the previous forward
pass. An active set method is exploited to solve the above quadratic
program (QP) to consider the active constraints to update the opti-
mal gains in the backward pass. Since 2z is unknown during the

backward pass, it is assumed to be zero in (5.3)). In addition, box con-
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straints are reduced.

1
min §5a£Qaa7k5ak + QL bar

ag
(5.5)

subject to dax < min(tyee — Ug—1 — A, Alipar — ax)

da > max(Umin — Ug—1 — Ay Dlppin, — Q)

After the QP is solved, the optimal feedback gain K, is assigned to
the solution daj. To determine K, we exploit a projected Newton
step using the reduced Hessian in the free sub-space used in [30]].

First, the complimentary sets of clamped and free indices c and f are
defined.

c(5ak):{j€1,-~- ,m

dajy, is active at minimum, %" > 0, or
dajx is active at maximum, A7 > 0
f(dar) ={j € 1,--- ,mlj ¢ c}

(5.6)
where da; . is the 7" component of daj, and A7} and A7'* are the La-
grange multiplier for the active constraint in (5.5)) of da; , at minimum
and maximum, respectively. Dropping & for readability, da, (.., and

(). are rearranged according to the partition {c, f}.

(5 az aa aa,’c
6ae[“f],czaze [Q ’f],Qaae [Q 9 ’f], (5.7)
6(1(: Qaz,c Qaa,cf Qaa,cc

This decomposition is used to compute the optimal feedback gain
for the free indices K ¢ = —Q;ianZ,f. The optimal gain for the
clamped indices becomes zero. Thus, the components of the input in
the clamped indices are feasible in the next forward pass regardless

of the change of the state. However, the quadratic expansions at the
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previous trajectory can be inaccurate at the updated trajectory after
the forward step with the update gains K, and K., because the
change of the state and input can be accumulated. In order to prevent
a large change of the updated trajectory, we propose to modify the

optimal gain as follows.
da=a,K0z+a. K. (0<a.<1,0<a,<1) (5.8)
The approximated value function is updated as

271-T T T
Viek =Quzk + 0y Ky 1 Quap Kok + gQu 1 Kok + g Ky 1 Qaz iy
T T T
‘/;:,k :Qz,k + Oégach’kQaa,ch,k + acQaz7ch,k + O‘gKg,kQa,ky

_ 1
AVy = — OécQ:‘;kQaal,kQa,k + _aZngQaa,ch,ka

(5.9)
In unconstrained case, it is expressed as
‘/zz,k: :sz,k + ag(ag - 2)Kg:k;Qaa,kK ks
‘/z,k :Qz,k + (agac - Qg — ac)Kg:kQaa,ch,ka (510)

1
AVk :Qac(ac - 2)Kg:kQaa,ch,k

a, and o can change after each forward pass finishes. This modfi-
cation is different from the step size modification generally used in
DDP [67]. It adds the multiplier to make the effect of K, decrease.
The proposed backward pass of CDDP is summarized in Algorithm

[l
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Algorithm 11: CDDP Backward Pass

Input: Zg, Ag

Result: {Kg,k}, {Kc,k}’ {sz,k}s {szk}, {AVk}
Veen < 1, Vo < 1
fork=N—-1,N—-2---,0do

Qs+ Lgp+ 9 Varm

Qo < la,k + g?;‘/z,k—f—l

Q.2 lzz,k + gz‘/;z,k+1gz + ‘/ijk_;_lgzz

Qaa laa,k + gg‘/zz,k+lga + szjk+1gaa

Qaz < laz,k + gszz,ngz + ‘é?k+1gaz

Solve (5.5)) and update K., < daj,

Compute the clamped indices ¢ and free indices f in (5.6)
Compute the rows of the optimal gain for f and c
Kg,f — _anl,anz,fa Kg,c +0

Compute K ;. by rearranging K¢, Ky ¢

Update sz,kza szk, AV}, using @I)

Kng — agKg,k, Kc,k — Ochc,k

end
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In the forward pass, the updated feedback gains are applied to
compute the input. Although the feedback gains take into account the
estimated active constraints, it cannot guarantee that the trajectory
after the forward pass using the feedback gains from the backward
pass, because the variation of the augmented state can cause the vio-
lation of the constraints. As the input constraints are affine, clamping
the input from the feedback can make the input constraints during the
forward pass feasible. After the forward pass is conducted, the cost of
the new trajectory is computed and compared with that of the nominal
trajectory. If the cost is reduced, the nominal trajectory is updated and
oy, and «. increase to change the trajectory aggressively. Otherwise,
the new trajectory is discarded and the backward pass is performed
with the same nominal trajectory, decreasing o, and .. The proposed
forward pass of CDDP is summarized in Algorithm
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Algorithm 12: CDDP Forward Pass

Input: Zo, Ao, {Kg}, {Kcr}
Result: Zj, Ag

Jint JO(Z07AO)’ Z4 20
fOl‘k:O,ly"' 7]\f—ldO

0z 2z — zg

Ztemp,k < %5 Utemp,k < Cuz
Utemp,k = @k + Kg g0z + K
Clamp aemp, i to satisfy

Umin < Ug—1 + Atemp,k < Umag
AUmin < Qtemp,k < Aumafﬂ

Z Q(Z, atemp,k)

end
Ztemp,N < 2
Jtemp — JO(Ztemp,Oa Atemp,O)
if Jtemp < Jint then
ZO — Ztemp,O’ AO — Atemp,O
ag < Brag, ac < Pae, B1,82 > 1
else
| g < arayg, ae <= agae, 0 <ap,az <1
end
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We give a Theorem for convergence of the modified CDDP.

Theorem 5.1. For any feasible trajectory (Z, A), there exists o, and
«. that improve the nominal trajectory if () and Py are positive

semidefinite and R is positive definite in (5.2)) .

Proof As o decreases, AV} in (5.9) is close to the first term of RHS,
—ochaT’kQ;a{ wQa i as the second term of RHS is proportional to o2.
Qaar = R+ ggk‘/zz7k+1ga’k is positive definite as long as V., j41 is
positive semidefinite due to positive definite R. AV, ;11 in (5.9) is
close to Q.. 1+1 as ay decreases. Q.. 11 = Q + gz:k;+1‘/zz,k+2.gz,k+1
is positive semidefinite as long as V., 12 is positive semidefinite.

V...v = Py is positive semidefinite. Hence, Quon—1 = R +

9L Ny_1V.2.NGa.N—1 is positive definite because V., x is positive semidef-

inite and R is positive definite. As o, decreases, AVy_1 in (3.9) is
close to the first term of RHS, —a.QL y_ Q.. n_1Qa,n—1 as the sec-
ond term of RHS is proportion to o. Consequently, AVy_, is nega-

tive if o, is small enough to satisfy

QAmin(QaN—lQ;;N—lQa,N—l)

(5.11)
/\maa:<Kg:N_1Qaa,N—1Kc,N—1)

0<a. <

where A\pa.(+) is the maximum eigenvalue of a matrix. On the other
hand, Q.. -1 = Q + g% n_ V.. Nz N_1 IS positive semidefinite due
to positive semidefinite () and V., n. Because V., y_1 in (5.9) is close

to Q.. n—1 as oy decreases, it can be positive semidefinite if o is
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small enough to satisfy

k;lozz + 2]{;204; + k3 >0

3} :Amin(Kg:N_1Qaa,N—1Kg,N—1)
ks =Amin(KT 1 Quen 1)

ks =Amin(Qzz,n-1)

(5.12)

0 is the trivial solution of (5.12)). Thus, AVy_1,--- , AV} can be neg-
ative with small oy and o, and the updated trajectory is improved.

5.2.2 Model identification around a trajectory

If the dynamics of the original system (2.1)) is unknown, the
derivatives of the augmented system (5.1)), g, and g,, have to be ob-
tained from data to proceed with the backward pass. We excite the
input around the nominal trajectory and identify the local linear dy-
namics around the nominal trajectory, which is summarized in Algo-
rithm [I3] With the perturbation of the nominal input, the trajectories
from n,4 episodes are collected. Because the dynamics of u is known,
i.e., up = ug_1 + ag, only the dynamics of x is identified. Dropping

k and Denoting x;. 1 by =, the data at k™ time step are

ept . . epi __ . epi __ .
Ty = : ,ZL’p = : ,up = : (513)

x"_’t’,d q:nid unid

where the superscript denotes the number of the experiments. Assum-

ing that the augmented vector (27, u”, 2%)” is multivariate Gaussian,
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ie., (7, ul,2)T ~ N(u, X), the distribution of state transition
given a state and an input can be expressed as the condition Gaus-

sian distribution

plas|zu) ~ N (1,5)
TR S i TR T (5.14)

M
I

ZCE+ T Ez+ ,zuzxu,xu2x+ ,TU

where zu = (27, u”)". Thus,

T4 NN(fxm‘{'fu_‘_fcai)
[ﬁ] (5.15)

~1 1
f :Ex‘f‘yxuzxu,mu? fC = _ZCC-FJUE;ru,xu:uCUu
u

Then g, and g, is obtained as

fz fu 0
. Ga = 5.16
g L ]]g [J (5.16)

Hence, the backward pass proceeds with a nominal trajectory and g,
and g, obtained around the nominal trajectory. Algorithm [I3]summa-
rizes obtaining the local linear dynamics around the nominal trajec-
tory. The proposed model-free CDDP proceeds in the order of iden-
tifying the local linear dynamics, the backward pass, and the forward

pass.
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Algorithm 13: Identifying g, and g,

Input: Zo, Ay, {2, }

Result: {g. 1.}, {gar}
fori =1,2,--- n;;do
Z < 20

Clamp uy to satisfy the constraints in Algorithm[12]
fork=0,1,--- ,N—1do
2 2
Sample a from N (ag, Xg,.)
Clamp a to satisfy the constraints in Algorithm[I2]
z < g(z,a) (from plant or simulation)
al < a
end
2 2

end

fork=0,1,--- ,N —1do
Ty <~ Thy1, T < Th, U < UL

s 2
dynamics

|:fx:| — E:L"Jr,:puz_l

f TU,TU
u

9z.k < |:{)x ,];u:| yGak <~ |:?:|

end
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Compute mean and covariance of (z7, u’, mi)T and denote by

Compute the conditional expectation and the augmented linear



Remark 5.1. In practice, the convergence of the proposed CDDP
highly depends on the choice of step sizes like o, and o.. The step
sizes increase if the trajectory is improved. On the other hand, the
step sizes decrease if the trajectory is not improved. The variations of

line search methods can be applied [68, 169].

5.3 Data-driven offset-free MLMPC

Although the proposed CDDP improves the trajectory, the num-
ber of the iteration to steer the state to a set-point is unknown. Also,
it is vulnerable to disturbance as a proportional (P) controller is used
at each time step. In this work, we proposed a novel prediction-based
offset-free MLMPC algorithm that exploits the local linear models
from CDDP. We will show the proposed controller achieves offset-
free tracking before the CDDP converges, and rejects disturbance in
the numerical example. It consists of the algorithms for clustering of
local models, selection of the models for MLMPC, the design of the
local MPC controllers, and calculating the weights of the local MPCs.

5.3.1 Gap metric-based clustering algorithm

To choose the clusters and the representative models from local
models of CDDP, we proposed a gap metric-based clustering algo-
rithm. Because CDDP uses a linear model at each time step, each
linear model of CDDP has a time index. Hence, we propose to con-
struct a cluster whose components are adjacent in terms of time index.
This is a different approach to the clustering method in our previous
work [65]], where the models are clustered according to the distance

between the states or inputs where the models are constructed. Com-
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pared with clustering based on state or control input, it is free from
the scaling of the state and input because the dimension of time is
always one. Besides, there is a high possibility that the dynamic be-
haviors at adjacent time steps are similar to each other because the
differences of the states and inputs at adjacent time steps are bounded
by the continuous dynamics (2.1]) and input constraints (5.3). A model
whose mean of the gaps with other models in a cluster is minimum is
chosen as the representative model, because the controller designed
by the model is the most robust according to Theorem [2.3] The max-
imum gap with other models in a cluster can be another criterion.
However, we observe that the maximum is one, which is the upper
bound of the gap, in many cases. Thus, the chosen model is not guar-
anteed to be the best in terms of gap metric. Increasing the number
of clusters until the maximum becomes smaller than one is another
option, but it causes too many models. A gap metric-based clustering

algorithm [14]is proposed as follows.

Remark 5.2. The number of the constructed clusters n. can be ar-
bitrarily chosen. If n. is too small, the dynamic behaviors in a clus-
ter can be very different, and the representative model cannot de-
scribe the dynamic behavior in the cluster. Large n. means that sev-
eral abrupt changes of the local dynamics of the system are expected
during the operation, which is the case that the initial condition is
far from the set-point. If CDDP gives a trajectory where the state is
steered around the set-point, the last cluster will consist of the states

around the set-point.
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Algorithm 14: Gap metric-based clustering algorithm

Input: {gx’k}, Zo,ncl
Result: Clusters of time indices {C'L;}
Time indices for representative models {med; }
Liner models of the trajectory { P;}

Obtain X and Uy from Zg
fori=0,---,N—1do

Obtain f,; and f, ; from g, ;

Ai  foi

Bi — fu,i

P; + state-space model with (A;, B;, I,0)
end
Compute A; j < 04(F;, Pj), 0<4,j <N -1
CLj, CLS® <= {},med; < (2i + 1)[N/(2ng)], 1 <i<ng
flag <+ 1,it + 1
while flag do
fori=0,---,N—1do
i = 252 (1 > med;)
if icl ==(0or icl == Ng¢| then

| didx + max(ig, 1)
else
‘ idr arqg miH(Ai’icl, Ai,icﬁ»l)

end
CLigy < CLjg, U {i}

end
forj=1,--- ,nydo
| med; < argmingecr, (maxiecr; Aik)

end
if it > 1 and CL{* == CL; then
| flag <0
else
| it it + 1, CL§* < CL;
end
end

128



5.3.2 Prediction-based MLMPC

Based on linear offset-free MPC in Chapter [2]and local represen-
tative models of the clusters, we propose to design a prediction-based
MLMPC algorithm that achieves offset-free control. Theorem 3.1 has
shown that a linear offset-free MPC can track a set-point if the ini-
tial point is near the set-point. However, offset-free tracking is not
guaranteed if the initial condition is far from the set-point. To resolve
this issue, a prediction-based MLMPC algorithm is proposed in Algo-
rithm[T5] It tries to steer the state to the neighborhood of the set-point
using models whose predictions are accurate. In order to determine
the prediction accuracy of each model, prediction error is defined, i.e.,
ei(k) := yx — 9;(k|k — 1), where yj, is the output at the k™ time step
and §J;(k|k — 1) is the predicted output of the i model at the (k —1)®
time step. Then, local linear offset-free MPC is applied to track the
set-point. The weights of the proposed MLMPC are calculated based
on three criteria, the prediction error {¢;(k)}, error e := 71, — y, and
index i°®, where r;, and y, is the reference and output at the k" time
step, and ¢** the indicator to determine what linear offset-free MPC
is employed at the previous time step. First, it calculates base weights
according to the output prediction based method (2.36). When the
output error becomes smaller than the threshold oy, and there exist
models whose prediction errors becomes smaller than the threshold
B, the algorithm chooses the best model in terms of the prediction
error and the corresponding local linear MPC as the controller. In ad-
dition, if a local MPC is only used at the previous time step whose
models has a prediction error lower than 3y, at the current time step,

the algorithm chooses the local MPC as the controller, preventing os-
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cillation caused by the change of the models whose prediction errors
are low.

The designed weight in Algorithm [I5] makes the MLMPC con-
troller converge to a local MPC around the set-point, enjoying the
offset-free tracking property by Theorem [3.1] Thus, there should ex-
ist a model among the model of the MLMPC whose gap metric with
the linearized system at the set-point is small enough to satisfy Theo-
rem [3.1] Because the trajectory from the proposed CDDP converges
to the set-point as the number of iterations increases, we can obtain
improved models in terms of the gap metric with the linearized sys-
tem at the set-point after additional iterations of the proposed CDDP.
The proposed framework for set-point tracking that considers input
constraints without the knowledge of the model and the steady-state

input at the set-point is summarized in Figure

Remark 5.3. If the system is stochastic, stochastic DDP can be em-
ployed to solve the stochastic optimal control problem[70]. However,
obtaining the stochastic model is the main issue, because the effects
of input and disturbance are hard to distinguish. Path integral con-
trol provides a way to find the optimal control input by simulating
the uncontrolled system dynamics [71|]. However, the number of the
simulation is required to obtain the optimal control input. Thus, the
efficiency of each sample is important. In addition, the probability of
obtaining a low-cost trajectory depends on the variance of the Brow-
nian motion. Thus, an importance sampling method in which both the
mean of the control input and the variance of the Brownian motion
can be adjusted is proposed [|72l]. Because path integral methods do
not consider the stability during the simulations by uncontrolled sys-

tem dynamics, it is required to develop the path integral methods that
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guarantee stability during all simulations.
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Algorithm 15: Prediction-based MLMPC

Input: {med;}, n, {Pi}, Zo, {7k} Qs Bins P> Ae
Result: X,Uy
Obtain X and Ug from Zg, X, — Xo, Ui — U
fori=1,--- ,nydo
J < med;, Construct local linear MPC using P;
JAIZ(0| — 1) <~ 0 — Tlin,j» wi(—l) — 1/ncl, 1T« 0
end
fork=0,---,N—1do
Measure xj, and estimate &;(k|k)
ey < i — h(zg), mdg + {}
fori=1,--- ,nygdo
j < med;
ez(k) — Yk — h(.ﬁ%l(k}‘k — 1) + .Z’lm,j)
w;(k) + max(w;(k — 1) exp(—e;i(k)" Acei(k)), pen)
if |[e;(k)|| < S then
| mdy < mdy U {i}
end
Solve n; local MPC problems and obtain w; (k)

end
wik) = wi(k)/ S0 wilk), w0
if md, # 0 and |leg|| < o, then

if iex ¢ md, then

| %" <+ argmin; |le; (k)|

Wiez 1

else
| w) < wi(k), i «0

end
Calculate uy to the plant

Nel

U = Z wf (ul(k) + Ulm,medi)

Apply uy to plant and local models to get x4 1 and Z;(k + 1|k)
end
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5.4 Results and discussions

Consider a multi-input multi-output (MIMO) continuous stirred
tank reactor (CSTR) [53]].
CA(t) =—=[Cao — Cu(t)] — kDCA(t)e_E/RT(t),

_ AHkg

CA (t)e_E/RT(t)
pCyp

4
V
T(t) =3 (T — T (1)
(5.17)
+

PcCpe g (t)[1 — G_Wch(t)][TCo —T(t)],

pC,V°
y(t) =[Ca(t) T

It consists of an irreversible, exothermic reaction. The concentration
C4 and the temperature 7' are controlled by manipulating the flow
rate of A, ¢ and the coolant flow rate, ¢.. The parameters and initial
values of the variables in the system are shown in Table [5.1]

The equilibrium point of the process is determined uniquely if
the values of the inputs are given [S3]]. The steady-state input-output
relationship is shown in Figure [5.2] The goal of the controller is to
drive the state from an equilibrium point to another equilibrium point
within the operating condition depicted in Figure [5.2] assuming that
the system dynamics and the input values at the set-point are un-

known.
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Table 5.1: MIMO CSTR Parameters and Initial Values

Product concentration

Coolant flow rate

Feed concentration

Inlet coolant temperature

Heat transfer term

Activation energy term

Liquid densities

Reactor temperature

Process flow rate

Feed temperature

CSTR volume

Heat of reaction

Specific heats

Reaction rate constant

Constraints on the flow rate
Constraints on the coolant flow rate
Constraints on the flow rate
Constraints on the coolant flow rate

Ca

AH
Cp, Cpe
ko
dmins 9mazx
QC,minv QC,max
AQC,maz; AQmar
AQC,minv AQmin

0.0245 mol/L
70 L min—!
1 mol/L
350 K
7 x 10° cal/min K
1 x 10*K
1 x 10% g/L
473.23 K
120 L min—!
350K
100L
-2 x 105 cal/mol
lcalg 'K~!
7.2 x 1019 min ~!
95, 150 L min~—*
60, 110 L min—*
5L min!
-5Lmin~!
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Figure 5.2: Steady-state input-output map for MIMO CSTR
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First, the proposed CDDP is conducted to obtain suboptimal tra-
jectories and models for MLMPC. We adjusted the initial values of
g and a. in Algorithm [TT)and [T2]to 0.02, since the feedback gains
K, and K, alone were so high that had the trajectory were not im-
proved in terms of the cost of CDDP at the initial time step, i.e.,
Jo(Zg, Ag). We choose 31, 32 ~ /n and oy, an ~ 1/4/n in Algo-
rithm where 7 is the number of iterations of CDDP. In order to
obtain the models for CDDP, the standard deviation ng to sample

input in Algorithm|13]is chosen as 1% of the upper and lower bound-

(AQMaz_Aqmin) (A(IC,maz_AQC,min)
100 and 100

aries of inputs, i.e., . The param-
eters of CDDP are shown in Table [5.2] and the result of performing
the CDDP is shown in Figures [5.3]and [5.4] The cost of CDDP at the
initial time step, i.e., Jo(Zo, Ao), decreases and the states are steered
to the set-point as the number of the iterations increases by adjust-
ing o, and o.. However, the number of the iterations as well as the
optimal hyperparameter to achieve offset-free tracking are unknown.
In order to achieve offset-free tracking, the proposed MLMPC is ap-
plied every time CDDP generates an improved trajectory in terms
of the cost of CDDP at the initial time, i.e., Jy(Zo, Ag). In order to
check offset-free tracking, the state and measurement noise are not

added. Luenberger observer is chosen for the filter as it is convenient

to control the response time by changing the poles of the observer.
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Table 5.2: Parameters of CDDP for MIMO CSTR

Q

ol
0.11
ol
0.02
0.02
0.011
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---------- All iterations
— Improved Iterations

100 \

80 -

Cost

40 1

20 -

Iteration

Figure 5.4: Cost of CDDP (red line: the iterations that improves the cost of
all previous iterations, black dash-dot line: all iterations)

140

S =g kg



The parameters of MLMPC is shown in Table [5.3] and the result
is shown in Table [5.4] and Figures [5.5] 5.6l and The proposed
MLMPC achieves offset-free tracking using the models from the 17®
trajectory of the CDDP shown in Figure [5.5] Figure [5.6] shows the
locations where the clusters and the representative models are con-
structed at the final iteration. When the MLMPC achieves offset-free
tracking, it converges to linear offset-free MPC as shown in Fig-
ure Before achieving offset-free tracking, the trajectories from
MLMPC has oscillation. The gap metrics between the representa-
tive model and the models in a cluster, and the distances between
the linearized points, i.e, the origins, of the models and the set-point
are shown in Table [5.4] It is checked that both the gap metric and
the distance are important to track the set-point. If the distance be-
tween the linearized point of a model and the set-point is large, the
model may not accurately predict the behavior around the set-point
even if the gap metric between the representative model and the mod-
els in a cluster is small. The gap metric just indicates the stability at
the origins of two closed-loop systems controlled by one controller.
Thus, CDDP must generate the trajectory whose states and inputs are
close to the equilibrium point at the set-point. We also verify that
the MLMPC rejects disturbance by injecting step input disturbances
whose magnitudes are 10 for the first input at 5 min and -5 for the
second input at 7 min, respectively. Figure [5.§ shows the controller

rejects all disturbances immediately.
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Table 5.3: Parameters of MLMPC for MIMO CSTR

el
Qth
Btn
Pth
Ae

Q
R

4
0.05
0.1
1076
1001
I
0.11
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Figure 5.6: Clusters and multiple models for MLMPC from the trajectory of
CDDP at the final iteration
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In order to check the offset-free tracking property of the pro-
posed scheme extensively, we applied the proposed CDDP and MLMPC
for the wide range of initial conditions and set-points. We employed
MLMPC with the improved trajectories of CDDP after 4" iteration
of CDDP, because initial trajectories are away from the set-point. Ta-
bles[5.5|and[5.6] and Figure[5.9[show the initial conditions, set-points,
and the number of iterations of CDDP to achieve offset-tracking, re-
spectively. The mean of the iterations for offset-free tracking is 6.13,
which means most of the cases achieve offset-free tracking within
six iterations. The pairs of the initial points and the set-points whose
number of iterations to achieve offset-free tracking larger than 10 is
shown in Figure It seems the distance between state affects the
number of iterations to achieve offset-free tracking. Dividing the dif-
ference between the initial points and the set-point by 100 and 0.1 for
the temperature and the concentration, respectively, the correlation
coefficient between the scaled distance between the set-points and
the initial conditions and the number of iterations is calculated, and
the value is 0.103. Hence, the large distance between an initial condi-
tion and a set-point does not guarantee the high number of iterations

to achieve offset-free tracking.
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Table 5.5: Initial conditions

Ca(mol/L) T(K)
it 0.026 468.10
piit 0.018 484.15
zinit 0.114 435.69
zit 0.086 444.57
zinit 0.043 461.27
zinit 0.056 457.96
pinit 0.041 458.90
zinit 0.081 443.13
zinit 0.024 473.22
zigt 0.030 472.22
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Table 5.6: Set-points

Ca(mol/L) T(K)
0.111 435.89
0.041 465.91
0.094 441.22
0.022 477.63
0.020 482.18
0.025 469.73
0.038 462.66
0.053 457.98
0.051 452.79
0.075 448.19
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Figure 5.9: The number of iterations of CDDP at offset-free tracking of
MLMPC
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Chapter 6

Design of data-driven linear time-varying model

predictive control *

6.1 Introduction

In the previous chapter, we have introduced a framework for set-
point tracking of nonlinear systems that considers input constraints
without the knowledge of the model using CDDP and MLMPC. How-
ever, MLMPC cannot guarantee stability and feasibility before the
state is located at the neighborhood of the set-point and MLMPC
converges to linear MPC. Thus, we try to exploit LTVMPC until the
state reaches the neighborhood of the set-point, which guarantees the
stability and the feasibility around the nominal trajectory given by
CDDP. In this chapter, we propose data-driven offset-free LTVMPC
based on CDDP to track a set-point from an initial condition that con-
siders box input constraints without the knowledge of the nonlinear
or linear model. In the proposed scheme, CDDP improves the trajec-
tory stably and iteratively, followed by obtaining the first derivatives
of the process at the nominal trajectory. Then the classification of

the trajectory into the transient and steady-state region is proposed,

“This chapter is an adapted version of B. Park, J. W. Kim, and J. M. Lee, “Data-driven
model predictive control design for offset-free tracking of nonlinear systems", In preparation
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where the regions are controlled by LTVMPC and offset-free MPC,
respectively. The selection of the model for offset-free MPC is also
proposed based on gap metric. LTVMPC to track the trajectory in the
transient region is designed, which includes the proof of the recursive
feasibility. Last, Offset-free MPC to track the trajectory in the steady-
state region is designed, which includes the stability at the set-point

is proven using gap stability margin.

6.2 Design of data-driven linear time-varying model

predictive control

Although the CDDP improves the trajectory, the number of the
iteration to steer the state to a set-point is unknown. Also, it is vulner-
able to disturbance as a proportional (P) controller is used at each time
step. Linear offset-free MPC does not work at a state far from the state
where the model is identified. LTVMPC is exploited to follow a pro-
vided trajectory, which is not the optimal trajectory achieving offset-
free set-point tracking. In this work, we proposed a novel offset-free
LTVMPC algorithm that exploits the LTV models from a suboptimal
trajectory without a nonlinear model. It consists of the algorithms for
determining the neighborhood of the set-point, the model for offset-
free MPC, and calculating of LTVMPC and offset-free MPC.

6.2.1 Gap metric-based model selection

To choose the representative model from LTV models of CDDP,
the neighborhood of a set-point is determined first. We assume that a

suboptimal trajectory to track a set-point satisfies the following: (1)
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At the early stage of the operation, the transient behavior is required
to approach the set-point. (2) Then, the output and input are close to
the set-point and the corresponding steady-state input, which means
the gap metric between dynamics at a point in a part of the trajectory
and the set-point is small enough to satisfy Theorem [2.3] First, we

choose a starting point of an interval from the trajectory that satisfies

min ng
s.t.mgx]rk —yk| < e, k=ng -, N
Var(U,,.) < Xy, (6.1)

Var(X,,,) < Ay,

S

ng > 0

where componentwise inequality is applied. If there does not exist 74
satisfying Eq. (6.1) or n; is too large to reach the set-point before the
operation finishes, we give up to get the model from the trajectory and
an improved suboptimal trajectory is provided by the CDDP. Then,
LTV models from the n'" to the (N — 1) step are regarded as N —
n, linear time-invariant (LTI) models. We choose the model whose
maximum gap metric with a model in other N — n, — 1 models is
minimum.
med =arg ~ min max  ,(5;, P))

i£jns<i<N—1ns<j<N—1

(6.2)
st. max  0,(P;, P) < v

ns<j<N-1

where P;, is the LTV model (2.37) at the i** time step. The first con-

straint helps to find an interval where the outputs are close to the set-
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point. The second and third constraints are included to find an interval
at steady-state because state and input do not change at steady-state.
The last constraint can be removed if the output is the state because
the first constraint makes the states in the interval have a small vari-
ance. If there does not exist the solution of (6.2)), n, increases and
solve the problem again. If n is too large, we discard the constraint
and obtain the model from (6.2). The Algorithm [I6] summarizes de-

termining the steady-state interval and the representative model.
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Algorithm 16: Gap metric-based model selection algorithm

Input: {P;}, X, Uy
Parameter: e, 2th, Vth»> Mmins Mmag
Result: Starting point of steady-state n

if

|7"k_yk| < eth(k 2 nm(ll’)var(Unmaz‘) < Zth? Va‘r(Xnmaz) < Ath

th

else

end

Time index for the representative model med
Feasibility of the algorithm flags

en

flags «— 1, flagm — flags’ Ns < Nmaz
while flag,, do

Ng < Ng — 1

Ay, then
| flagm <1
else
| flagm <0
end
if ng < nypin then
| break
end

end
ng < Ng+ 1
Compute A; j < 04(F;, Pj), ns <i,j <N —1
A™ — min; max; A; ;, ng <i,j <N -1
while A" > ~;;, do
ng < ng +1
A™ ¢ min; max; A; j, ng <i,j <N —1
med < argmin;(max; A; ;), ns <i,j <N -1
if ng > nynq. then

| break
end

end

flags < 0,ns < none, med < none

157

if |71 — yi| < em(k > ns), Var(Uy,) < X, Var(X,,) <



6.2.2 Offset-free linear time-varying model predictive

control

Based on CDDP, offset-free MPC, and LTVMPC, we propose
to design a offset-free LTVMPC algorithm that achieves offset-free
control without the nonlinear model. First, we assume that the CDDP
Algorithms|[TT] [T2] and [[3]generates a suboptimal trajectory for MPC

in finite iterations.

Assumption 6.1. There exists the number of iterations n.qa, such

that CDDP Algorithms and |13| generate the ngjldp trajectory
Zy and A and LTV models { P;} for which Algorithm[I6]is feasible.

Once a suboptimal trajectory from CDDP satisfies Assumption
Xy and U, from Z is a feasible trajectory of the system (2.1)).
Trajectory following of LTVMPC (2.38) can be guaranteed with some

assumptions and the computation of the terminal constraint X’;.

Assumption 6.2. There is no model mismatch between the prediction

model and the plant, i.e.,

_of
- Ox

of

k= A
’ ou

T, Uk

Ay (6.3)

T, Uk

In order to compute X, consider the system (2.1) controlled
by time-varying feedback control law to track a reference trajectory

u’(k) = Kyz"(k), i.e., the autonomous system:

Tpy1 = falor) = fop, Kp(zp — Tr) + ) (6.4)

where {7} and {u;} are the reference trajectory, and x¥ and " are
the deviation variables defined in (2.37). Then one-step controllable
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set, N-step controllable set, positive invariant set, and maximal posi-

tive invariant set are defined.

Definition 6.1. For the system (2.1)) and the reference trajectory {z },
{@iy,}, the one-step controllable set to the set S at the k'™ time step is
defined as

Pref(S) = {z¥(k) € R*|3u’(k) € U, f(xn, ur) — f(Tp, W) € S}
(6.5)
where U] is the set for the input constraints in (2.1)).

Definition 6.2. For a given target set S, the N-step controllable set
K%(S) of system [2.1) and the reference trajectory {T.}, {uy} at the

k" time step is defined recursively
KE(S) = Pref(KM1(S)), K§H(S) =8 (6.6)

Definition 6.3. Pref ,,(S) is defined as the one-step controllable set
to the set S at the k' time step, where time-varying LOR gain (2.40)
is applied.

Prejop(S) = {2"(k) € R*| Ko (k) € Uy, f(an, ur) — f(Tk, W) € S}

6.7)

Definition 6.4. K v (S) of system 2.1)) and the reference trajec-
tory {Z}, {uy} at the k™ time step is defined recursively

Kioni(S) = Prefor(Kigr;1(S)), Kigro(S) =8 (6.8

Then the recursive feasiblity of LTVMPC (2.38)) is ensured by

159 -



computing the terminal constraint & ,f p

Theorem 6.1. LTVMPC (2.38)) for the system (2.1)) is feasible for all
0 < k < N and the terminal constmint X ]{, if p is chosen such that

Py, is calculated by [2.40), X, k+p = lCIZEEN_k_p(XJ{,) for 0 €
XJ{f = ICLQR,O’ and if 2° (k) € ’Ck( k—i—p)

Proof If z'(k) € K} ( k+p) then the system is feasible at t = k. By
definition of KChE LQ R.N_k_p there exists a sequence of inactive input by

which the state is steered t0 K1 p o at the final time step. Thus, the
system [2.1) is feasible for all k <t < N. [ |

We define the optimal predicted cost of the trajectory at the k"
time step to evaluate the predicted trajectory by LTVMPC (2.38).

N-1

T (a) - Zuy G + N @17+ D logelly, + el + vl

j=k

(6.9)
where w |, is the optimal input at time j obtained by solving LTVMPC
(2.38) at time k, and ;. is the predicted state at time j by applying
{wjie}

Theorem 6.2. Consider the system [2.1)), the LTV models (2.37),
the LTVMPC 2.38)), and the terminal constraint 0 € X ]{; to track
Xo and Uy. Let Assumptions and hold. Suppose that there
exists the prediction horizon p, at the 0 time step for LTVMPC
([2.38)) such that there exists the terminal constraint at the 0" time
step, X = Kippn_py and 1°(0) € K (X]). Then LTVMPC
at time k is always feasible by reducing the prediction horizon, i.e,
0 < px < pr—1. In addition, the optimal predicted cost of the trajec-

tory at the k" time step, J;;, does not increase as k increases.
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Proof Let p be the prediction horizon at time k. Consider the state
of the process 21)) at k™ time step that satisfies x* (k) € K} (X} +p)
Let Uy , = {UZW e ,uzﬂ;_”k}, be the optimal input sequence of
LTVMPC 2.38) and X}, , = {x};. - -+ , @} .} be the corresponding
optimal state. Let J; (xy) be the optimal predicted cost of (2.38) when
applying Uy, , to the system state xy.

Suppose that LTVMPC at the (k+1)™" time step is feasible for the
prediction horizon p > 0. The upper bound of J};_|(xy11) can be ob-
tained by applying Upi1p = {0 1 s Uy e Koetp(Thp —

Thtp) + Uksp}- The resulting sequence of the state is

Xk—i-l,p = {szrl\k? T 7'I;;+p|k7 (Ak—i—p + Bk+pKk+p)(IZ+p|k - jf’c—i—p) + j/’f—HTH-l}
(6.10)

Let Jy11(xx41) be the predicted cost of (2.38) when applying Uj1,

to the system state vy 1. Then

i1 (Trg1) = Jp(an) — Hyk\kH + ||uk|kH + kaﬂa\kaH
+ Hyker\k+1H |k e + ||5’5k+p+1|k+1”pk+ »
= Jy (k) — Hymk” - [l I, + ||xk+P|k||Pk+

+ (cm+p|k+1) (Clip1QChipi1 + K ) RK sy
+ (Aktp + BerpKiip) Ol it Protpr1Crogprr (Aipp + BripKrtp)) T4 plis1

= Ji () = (lyall?, + il 2)

(6.11)
The last equality in (6.11) comes from ([2.40). Thus,
Jg+1(xk+1) — Jp(wr) < Jeg1(@pg1) — Jp (o) = Hyk\kH + Huk|kl|
(6.12)
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Because R is positive definite and () is positive semidefinite, the cost
decrease if the xy, is not located at the reference xy.

Suppose that LTVMPC at the (k + 1) time step is infeasible for
the prediction horizon p > 0. As LTVMPC at time k is feasible and
Assumption [6.2| is satisfied, z°(k + 1) € IC’“H(X,J +p)- If we choose
the prediction horizon as p — 1, there exists the terminal cost and
constraint, i.e., Pyi11p-1 = Piyp, X,f+1+p_1 = X,irp. In addition,
' (k+1) € IC’““(X’;H)HP \y)- Hence, LTVMPC at time (k + 1) is
feasible because it satisfies the conditions in Theorem The cost
does not change because the terminal state and weight is equal to
those of LTVMPC at time k.

If p = 0 at time k, it means that x (k) € KﬁQR,N_k and LOR so-
lution is applied for input, i.e., u’(k) = Kyaz"(k). Because Assump-
tion 6.2|is satisfied, z"(k + 1) € Kjopy_r_1- Then p = 0 makes
LTVMPC at time (k + 1) feasible. The cost does not change due to
the relation (2.40).

Hence, LTVMPC at time k is always feasible by reducing the
prediction horizon, and the cost of the trajectory J|; does not increase

as k increases. [ |

Hence, the initial deviation z and the terminal constraint X’ ](,
determines the feasibility of tracking the reference trajectory. If it is
feasible and the final state of the resulting trajectory is close to the set-
point, Offset-free MPC can be exploited to track the set-point, where
the final state of LTVMPC is the initial state of offset-free MPC. The
following theorem shows that a linear offset-free MPC can track a
set-point if the initial point is near the set-point, and the gap metric

between the model and the dynamics at the set-point is small.
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Theorem 6.3. Suppose MPC (2.9), (2.10), and [2.6) is applied to
the system (2.1)) given a linear model P,, and a set-point r. Assume
that Qr is the solution of DARE for P,, and the weights () and R in
(2.31) and K,,, is the corresponding LOR gain. Let (z,,u,) and P,
be the equilibrium point corresponding to r and the linearized system
at (z,,uy). If bp,, K, > 04(Pm, P,), then the equilibrium state 1,
corresponding to the set-point r in closed-loop system 2.1), 2.9),
and (2.10), and (2.6)) is asymprotically stable.

Proof If the state x(k) is in the neighborhood of x, in which the
solution of the MPC problem (2.9) equivalent to that of the uncon-

strained case, the solution is equivalent to the solution of the follow-

ing LOR [1]]:

T (820) = min Y _ {16258 + w117, = 16205,

Jj=0

(6.13)
s.t. 5$j+1 = A(Sl'] —|— B(SUJ
oxg = x(k) — 2(k), dup = u(k) — u(k).
Then the closed-loop system is
x(k+1) = f(x(k), — K00 +u(k)),
(k+1) = fz(k), =Ky (k) 6.14)

y(k) = h(z(k)).
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The linearized and discretized system of (6.14) at xy is

6x(k + 1) = A 6x(k) + B,6u(k)
= (A, — By K )0z (k), (6.15)
dy(k) = Crox(k),

where k is the sampling instant; dz(k) = x(k) — z,; ou(k) = u(k) —
ur; 0y(k) = y(k) —r; (A, B, C,) is the matrices corresponding
to P,; Because LOR gain K, satisfies Theorem@ the autonomous
system (6.13)) is asymptotic stable and the eigenvalues of (A, — B, K,,)
are inside the unit circle, which is hurwitz. Hence, (x,,u,) in the

closed-loop system is asymptotically stable. |

Hence, the overall scheme of model-free offset-free LTVMPC
starting with a suboptimal trajectory is proposed as follows. First,
Algorithm [13] identifies LTV models around the suboptimal trajec-
tory. CDDP is conducted by the model and Algorithm I T]and[I2]until
the resulting trajectory is improved. Then, Algorithm [16] classifies
the trajectory into the transient and steady-state region, and select
a model for offset-free MPC among the models in the steady-state
region. Then Offset-free LTVMPC is applied to the system. First,
LTVMPC tries to follow the nominal trajectory in the transient re-
gion, and offset-free MPC is applied in the steady-state region and
tries to track the set-point, not the trajectory in the steady-state re-

gion. Algorithm [I7]summarizes the overall scheme.

Remark 6.1. For LTVMPC in the transient region, Assumption|6.2]is
difficult to satisfy, because identified models and the dynamics away
from the nominal trajectory can be different from the dynamics at

the nominal trajectory. Thus, the proposed scheme implicitly assumes
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that the gap metric between the identified LTV models and the dy-
namics at the nominal trajectory is small, and the state controlled
by LTVMPC is close to the nominal trajectory. Even if the state at
the switching time is far from the nominal state due to model-plant
mismatch and LMPC does not achieve offset-free control, we can
optimize the trajectory, obtain the models, and apply the proposed
LTVMPC and LMPC by running CDDP.

Remark 6.2. For offset-free MPC in the steady-state region, The gap
metric between the model of the offset-free MPC and the linearized
system at the set-point should be small enough to satisfy Theorem
3.1l Because the trajectory from CDDP converges to the set-point
as the number of iterations increases, we can obtain an improved
model in terms of the gap metric with the linearized system at the
set-point after additional iterations of the proposed CDDP. However,
we do not know when the state reaches the set-point. Thus, Algorithm
[16] determines the steady-state region according to the output error
and variance of input. In addition, it chooses the model for offset-
free MPC according to the gap metric among other models in the
steady-state region, because we do not know the dynamics and the

steady-state input at the set-point.
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Algorithm 17: Data-driven offset-free LTVMPC

Input: Zg, Ao, {ry}
Parameter: nf, Ji, Xﬂ;
Result: X)PC yMre
flag + 1
while flag do
flags < 0, get LTV Models {g. 1.} and {gq 1 } from Algorithm
13l
while ~ flag,; do
Get the optimal gains { K 1.} and { K} from Algorithm 11]
Update Zo, A from Algorithm[12]
Get LTV Models {g. 1} and {g, } from Algorithm|[13]
Get flags, ns, med from Algorithm [16]
end
Get LTV Models {(Ak, By, Ck)} from {gz,kz}
Get the reference trajectory X, and Uy from Zg, Ao
Set LTVMPC (2.38)) for final step ns and prediction horizon p
Set offset-free MPC (2.9) using { (A eds Bmeds Crmed) }
Set z°(0) € K9(x])
fork=0,1,--- ,N—1do
if £ < ngs then
if LTVMPC (2.38) is infeasible then
| pp—1
end
Apply uj, by solving LTVMPC
else
| Apply u; by solving offset-free MPC (2.9)
end

end

Get XéWPC = {:Eo, oo ,IN} and UéMPC = {U(), <o ,uNfl}
Get ZYFC and AYFC from Z)FC and AYFC

Calculate the cost of CDDP, J,, f(Z%cP = A%cp )

flag  Jnp(Z)FC, ANMFC) < Ty,

end
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6.3 Results and discussions

Consider a multi-input multi-output (MIMO) continuous stirred
tank reactor (CSTR) [53]].
CA(t) =—=[Cao — Cu(t)] — kDCA(t)e_E/RT(t),

_ AHkg

CA (t)e_E/RT(t)
pCyp

4
V
T(t) =3 (T — T (1)
(6.16)
+

PcCpe g (t)[1 — G_Wch(t)][TCo —T(t)],

pC,V°
y(t) =[Ca(t) T

It consists of an irreversible, exothermic reaction. The concentration
C4 and the temperature 7' are controlled by manipulating the flow
rate of A, ¢ and the coolant flow rate, ¢.. The parameters and initial
values of the variables in the system are shown in Table [6.1]

The equilibrium point of the process is determined uniquely if
the values of the inputs are given. Considering the magnitude con-
straint of the inputs, the steady-state input-output relationship is shown
in Figure [6.1] The goal of the controller is steering the state from an
equilibrium point to another equilibrium point in Figure [6.1] assum-
ing that the system dynamics and the input values at the set-point are

unknown.
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Table 6.1: MIMO CSTR Parameters and Initial Values

Product concentration

Coolant flow rate

Feed concentration

Inlet coolant temperature

Heat transfer term

Activation energy term

Liquid densities

Reactor temperature

Process flow rate

Feed temperature

CSTR volume

Heat of reaction

Specific heats

Reaction rate constant

Constraints on the flow rate
Constraints on the coolant flow rate
Constraints on the flow rate
Constraints on the coolant flow rate

Ca

AH
Cp, Cpe
ko
dmins 9max
QC,minv QC,max
AQC,maz; AQmar
AQC,minv AQmin

0.0245 mol/L
70 L min—!
1 mol/L
350 K
7 x 10° cal/min K
1 x 10*K
1 x 10% g/L
473.23 K
120 L min—!
350K
100L
-2 x 105 cal/mol
lcalg 'K~!
7.2 x 1019 min ~!
95, 150 L min—*
60, 110 L min—*
5L min!
5L min~!
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Figure 6.1: Steady-state input-output map for MIMO CSTR
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First, we assume that the optimal input sequences can steer the
initial state to the set-point in finite time steps and decide the ter-
minal time step N = 100. Then CDDP is conducted to obtain sub-
optimal trajectories and models for MPC. The initial values for «y
and «. in Algorithm [TT] and [T2] are 0.02 and 0.02, respectively. We
choose 31,3 ~ y/n and ay,ay ~ 1/y/n in Algorithm [12] where
n 1s the number of iterations of CDDP. In order to obtain the mod-
els for CDDP, the standard deviation Y- to sample input in Al-
gorithm [13] is chosen as 1% of the maximum difference of inputs,
ie., (Aq’"“ﬁaf"’"i“) and (ch’m‘”lgOA demin) The parameters of CDDP is

shown in Table [6.2] and the result is shown in Figure[6.2]and [6.3] The

cost, i.e., Jo(Zo, Ap), decreases and the states steers to the set-point

as the number of the iterations increases by adjusting o, and a.
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Table 6.2: Parameters of CDDP for MIMO CSTR

Q

ol
0.11
ol
0.02
0.02
0.011
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To achieve offset-free tracking, the proposed offset-free LTVMPC
is applied every time CDDP generates an improved trajectory in terms
of the cost, the steady-state region exists, and the model for the steady-
state region obtained accord to the condition for gap metric. The pa-
rameters of Algorithms [[6and[I7]are shown in Table [6.3]and [6.4] re-
spectively. To check offset-free tracking, the state and measurement
noise are not added. Kalman filter is chosen for the observer of MPC
as it is convenient to control the weight between the model and the
measurement. The result is shown in Figure The proposed MPC
achieves offset-free tracking using the models from the 21st trajectory
of the CDDP. The steady-state region starts at 7 (min) in all iterations
where offset-free LTVMPC is applied. The MPC track the subop-
timal trajectory in the transient region. However, the trajectories in
the steady-state region have oscillation before it achieves offset-free
tracking. The maximum gap metric between the model of offset-free
MPC and the models in the steady-state region and the distance be-
tween the set-point and the linearized point are shown in Table [6.5]
Because we do not know the dynamics at the set-point, we assume
that the maximum gap metric is larger than the gap metric between
the model and the dynamics at the set-point. The gap metrics in all
iterations are close or equal to one, which does not enjoy stability
result from Theorem [3.1] It is checked that the distance is also im-
portant to track the set-point. If the distance between the linearized
point of a model and the set-point is large, the model may not ac-
curately predict the behavior around the set-point because the model
is valid around the linearized point. In this case, it does not achieve
offset-free tracking the value if the distance of the first input Aq is
larger than 3. Thus, CDDP is required to provide the trajectory whose
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states and inputs are close to the equilibrium point at the set-point.
We also verify that the proposed MPC rejects disturbance by inject-
ing step input disturbances whose magnitudes are -10 for the first
input at 7 min and 5 for the second input at 15 min, respectively. Fig-
ure [6.5] shows the proposed MPC rejects the disturbances effectively.
The disturbance is injected after the state reaches the steady-state re-
gion because LTVMPC in the transient region is designed to track the
nominal input and state trajectories, which conflicts with tracking the

input that compensates the disturbance.
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Table 6.3: Parameters of gap metric-based model selection for MIMO CSTR

ety [0.0210]7

Sin 777

Vth 0.9

Nimin 30

Nmax 70
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Table 6.4: Parameters of offset-free LTVMPC for MIMO CSTR

nf 10

Jy 1610

Xl {0}

Q I

R 011
177

AL
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Table 6.5: Gap metric between model and steady-state region and distance
between model and set-point

A™ JACy4|(mol/L) |AT|(K) |Ag|(L/min) |Ag.| (L/min)

0.97 0.0081 2.61 7.19 3.96

0.9 0.0111 3.11 7.16 7.24

1 0.0141 3.61 4.39 2.56

1 0.0141 1.11 2.96 5.14
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We applied the proposed scheme for various initial conditions
and set-points to check the tracking property extensively. We apply
the MPC with the improved trajectories of the CDDP after 4'" itera-
tion of CDDP, because initial trajectories are away from the set-point.
Tables [6.6] [6.8]and [6.9] show the initial conditions, set-points, the
number of iterations of CDDP and offset-free LTVMPC to achieve
offset-free tracking, and the maximum gap metric between the model
of offset-free MPC and the models in the steady-state region, respec-
tively. The means of the iterations to achieve offset-free tracking is
6.65 and 1.62 for CDDP and MPC, respectively. It means most of
the cases have a suboptimal trajectory with a steady-state region be-
fore the 6th iteration of CDDP and achieve offset-free tracking in two
iterations of MPC. Note that the proposed scheme achieves offset-
tracking fast if the maximum gap metric between the model for offset-
free MPC and the models in the steady-state region is small. For the
cases whose maximum gap is less than 0.7, The mean of the iterations
to achieve offset-free tracking is 5.14 and 1.03 for CDDP and MPC,
respectively. Otherwise, The means are 11.7 and 3.61. Thus, reduc-
ing the maximum gap metric can be helpful to achieve fast offset-free
tracking. It can be accomplished in two ways. First, the state and in-
put in the steady-state region have to be close to not only each other
but also the set-point. It is achieved by improving the trajectory by
CDDP. Second, the model-plant mismatch between the models and
the dynamics at the trajectory in the steady-state region should be
minimized, which can be attained by adjusting the parameter for in-
put excitation ¥, in Algorithm[I3] The models from some episodes of
Algorithm [16|can be compared in terms of gap metric. Y., is reduced

if the gap metric is too large. Practically, >, can be reduced until
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the difference of the output can be distinguished by the measurement

noise.
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Table 6.6: Initial conditions

Ca(mol/L) T(K)
it 0.026 468.10
piit 0.018 484.15
zinit 0.114 435.69
zit 0.086 444.57
zinit 0.043 461.27
zinit 0.056 457.96
pinit 0.041 458.90
zinit 0.081 443.13
zinit 0.024 473.22
zigt 0.030 472.22
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Table 6.7: Set-points

Ca(mol/L) T(K)
0.111 435.89
0.041 465.91
0.094 441.22
0.022 477.63
0.020 482.18
0.025 469.73
0.038 462.66
0.053 457.98
0.051 452.79
0.075 448.19
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Table 6.9: The maximum gap metric between the model for offset-free MPC
and models in the steady-state region

set

set

set

set

set

set

set

set

TR T B S L A S I
| 1 1 1 09 099 099 1 098 0.98
9 0.3 019 038 024 028 028 033 031 027 031
it ] 1 1 09% 1 057 1 077 1 1
034 021 027 024 023 03 034 026 02 0.19
gt 029 022 029 019 0.18 036 031 0.17 0.19 023
it 0.18 041 029 037 028 0.8 0.19 027 02 025
031 019 045 028 028 025 034 034 035 032
Mt 044 027 036 021 029 03 04 038 023 039
it 0.6 024 041 043 033 06 036 047 041 039
052 076 0.63 0.52 0.68 091 099 046 0.75 0.41
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Chapter 7

Conclusions and future works

7.1 Conclusions

Set-point tracking of a nonlinear continuous chemical process is
crucial for uniform production. Wide operating ranges and short sam-
pling time limit employing both linear MPC and NMPC. In order to
address these issues, many MPC algorithms based on multiple linear
models have been developed. In this thesis, we propose MLMPC and
LTVMPC algorithms based on gap metric that can be applied with
and without the knowledge of the linear or nonlinear models of pro-
cesses. The first part is about offset-free multilinear model predictive
control based on gap metric. Three systematic algorithms are devel-
oped based on the gap metric and the stability margin: (1) the gridding
algorithm, (2) the clustering algorithm, (3) the combination of the lo-
cal MPCs. Compared with the conventional MMPC algorithms, The
proposed gridding and clustering algorithms systematically construct
a model bank regardless of the dimension of the scheduling vector.
In addition, the proposed weighting method combines a prediction-
based and a gap metric-based method, which improves the prediction
performance and shows the stability at several set-points. A multi-

linear model predictive control based on gap metric and switching
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strategy is proposed in the second chapter. The algorithms to design
MLMPC are developed: (1)selecting boundaries, (2) graph construc-
tion, and (3) switching strategy. Two novel algorithms are proposed
to construct the graph. The MLMPCs designed by the algorithms ex-
ploit a series of linear MPC to steer the state to a set-point through
a series of subregions, in each of which a linear MPC is employed
to guarantee stability in the subregion. In the third part, a framework
is proposed for set-point tracking of nonlinear systems that consid-
ers input constraints when the nonlinear model and the steady-state
input at the set-point are unknown. It consists of a constrained DDP
(CDDP), modeling for CDDP and MLMPC, and MLMPC. Closed-
loop simulations demonstrate that the CDDP generates improved tra-
jectory, reaching a set-point, as the number of iterations increases.
MLMPC performs well in both set-point tracking and disturbance re-
jection control if CDDP provides a trajectory around the set-point, the
resulting model is constructed around the set-point, and the gap met-
ric between the model and the dynamics at the set-point is small. The
last part proposes offset-free LTVMPC based on model-free CDDP. It
tracks a suboptimal trajectory from CDDP using LTVMPC until the
state reaches the neighborhood of the set-point. Then, linear offset-

free MPC is employed to track the set-point and reject disturbance.

7.2 Future works

There are several directions for further work based on the sug-

gested framework in this thesis. They include:

* In order to achieve offset-free track from an initial point to a set-

point, the approaches in the thesis should design a controller. A
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global controller, which achieves offset-free tracking from a set
of initial points to a set of set-points, can be designed by learn-
ing the controllers, each of which is designed for a pair of an
initial point and a set-point. Guided policy search (GPS) [[73],
which learns the controllers designed by iterative LQR [26]] can
be a ingredient. However, GPS does not consider that the reward
changes according to the set-point change. Contextual policy
search [74] aims to provide the function that maps the objec-
tive into the optimal controller. Combining GPS and contextual

policy search can be an answer.

Trajectory optimization and modeling by DDP that considers
state constraints: In many continuous processes, state constraints
are imposed for safety or profitability. The CDDP used in the
thesis only considers input constraints. There exist research about
CDDP with nonlinear constraints [31], but it cannot contain
pure state constraints. To consider general state and input con-
straints, DDP combined with a primal-dual interior-point method,
called interior-point DDP (IPDDP), has been proposed [75].
The variation of the value function is expressed with respect
to not only state and input, but also dual variable. Combining it
with MPC can be more general and practical to apply for set-

point tracking of nonlinear processes.
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