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Abstract

Computationally Efficient
Multilinear Model-based Control

Combined with Data-driven
Trajectory Optimization

Byungjun Park

School of Chemical and Biological Engineering

The Graduate School

Seoul National University

Model predictive control (MPC) is a widely used advanced control

strategy applied in the process industry due to its capability to han-

dle multivariate systems and constraints. When applied to nonlinear

processes, linear MPC (LMPC) is limited to a relatively small op-

erating region. On the other hand, nonlinear MPC (NMPC) is chal-

lenging due to the need for a nonlinear model with a large domain of

validity and the computational load to solve nonlinear optimization

problems. Multilinear MPC (MLMPC) or linear time-varying MPC

(LTVMPC) complements the limitations, employing multiple linear

models to predict dynamic behavior in a wide operating range. How-

ever, the main issue is obtaining the linear models, which is difficult

to obtain without the nonlinear model and a trajectory from an initial

condition to a set-point. Differential dynamic programming (DDP)

can help to get the linear models and the suboptimal trajectory si-

multaneously. DDP iteratively improves the trajectory with the linear
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models of the previous trajectory, which can be identified by excita-

tion of input around the trajectory.

We propose four novel methodologies in the thesis. First, we

propose a scheme to design MLMPC based on gap metric, which

achieves convergence to LMPC and offset-free tracking. Second, we

propose a switching strategy of MLMPC. It consists of a design of

the subregions from an initial point to a set-point and LMPC for each

subregion. Next, we develop a scheme that combines constrained dif-

ferential dynamic programming (CDDP) and MLMPC, starting with-

out any models. Finally, we developed an algorithm that combines

LTVMPC and LMPC based on the models from CDDP. It exploits

the suboptimal trajectory from CDDP and achieves offset-free track-

ing. We apply developed MPC algorithms to an illustrative example

for validation. It also supports that multiple linear models are appro-

priate to control nonlinear processes with or without the nonlinear

models.

Keywords: Optimal Control, Dynamic Optimization, Differential

Dynamic Programming, Model Predictive Control

Student Number: 2015-21061
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Chapter 1

Introduction

1.1 Motivation and previous work

Model predictive control (MPC) is a kind of advanced process

control (APC) whose control input is the solution of an optimization

problem, considering system dynamics and constraints [1]. MPC has

been widely used in many processes since the computational power

was sufficient in the 1980s. There are two types of MPC, linear and

nonlinear MPC. Nonlinear MPC (NMPC) solves optimization prob-

lems using the nonlinear model of a process. As many processes are

nonlinear and have a wide operating range, NMPC is an appropri-

ate controller. The disadvantage is that the computational time can be

larger than the sampling time if the model is highly nonlinear and the

number of decision variables and constraints are large. Linear MPC,

which uses approximate linear models, can be a solution because the

optimization problem is convex, which is solved much faster than

nonlinear optimization problems. Unknown disturbance term or in-

tegral action is augmented to compensate model-plant mismatch and

achieve offset-free tracking [1, 2]. However, a linear model cannot

control nonlinear processes with a wide operating range because a

linear model is only valid around a linearized point of the process,
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i.e., the origin of the model.

To resolve this issue, there are two approaches of linear MPC

using a set of linear models. The first approach is Multilinear model

predictive control (MLMPC), where several linear models are com-

bined to predict a nonlinear process [3, 4, 5]. MLMPC consists of

a set of local linear MPC controllers, where each controller predicts

the dynamic behavior using a distinct linear model in the set [6, 4, 7].

MLMPC receives the optimal input of each local MPC at each sam-

pling time. Then it gives convex combinations of the inputs as the

control action.

Two methods have been proposed to determine the weights of

the local optimal inputs. The prediction-based method determines the

weights based on the output prediction error of the local models at

each sampling time [6, 8, 4]. Prediction-based MLMPC has been ap-

plied to various processes [9, 10, 11, 12, 13]. The second method cal-

culates the weights based on the gap metric between the model and

local dynamics of the process. A gap metric between two systems is

a measure of the similarity in terms of the stability of the closed-loop

systems where each system employs the same controller. If the con-

troller stabilizes one of the two systems, the other is also stabilized

by the controller if the gap metric between the systems is small [14].

Hence, the gap metric can help to choose a model for stabilization

at an operating condition. Gap metric-based MLMPC has been pro-

posed for nonlinear systems with wide operating ranges [7, 15]. One

limitation of this method is that the dynamics at the state have to be

known at each time, which is hard to satisfy in practical operation. In

addition, MLMPC is vulnerable to an oscillation of inputs caused by

the oscillation of the weights.
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The other approach is linear time-vary MPC (LTVMPC), which

predicts the dynamic behavior using the linear time-varying (LTV)

model. Because it uses one linear model for each prediction step, it

is free for oscillation compared to MLMPC, and its computational

burden decreases compared to NMPC. Many application employs

LTVMPC solving the above practical issues [16, 17, 18, 19, 20].

LTVMPC needs the reference trajectory and the LTV model that de-

scribes the dynamics around the trajectory. Thus, finding a subop-

timal or optimal trajectory and identifying the LTV model around

the trajectory are necessary, which is not easy without the nonlinear

model of the process.

Trajectory optimization techniques can help to obtain suboptimal

trajectories for a process with or without the nonlinear model. These

are classified into shooting methods [21, 22], collocation methods

[23, 24], and differential dynamic programming (DDP) [25, 26]. The

first two methods require the nonlinear model, and the last method

only exploits the first-order derivatives, i.e., local linear model, to op-

timize the trajectory. Thus, DDP is attractive if there is no knowledge

about the nonlinear model of the process. DDP consists of the back-

ward and forward passes. Backward pass reduces the optimization

problem to convex one and solves it at each time step to get a new

control sequence based on the nominal trajectory. The forward pass

applies the control sequence to the plant and gets a new nominal tra-

jectory. It iteratively improves the trajectory until it converges. and

has convergence properties [27]. Constrained DDP (CDDP) has been

proposed to consider constraints on the processes [28, 29]. Most re-

cent works propose DDP with box input constraints [30] and nonlin-

ear constraints [31]. Because a suboptimal trajectory and LTV model
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can be obtained from DDP, LTVMPC can be easily applied if DDP

precedes. However, both DDP and LTVMPC track the nominal tra-

jectory instead of the set-point. It cannot track the set-point until the

trajectory converges.

1.2 Statement of contributions

The main objective of this thesis is to develop the methods for

tracking various steady-state set-points in a wide operating range of

nonlinear processes. Multiple linear models are exploited to describe

the dynamic behavior in the operating range. Trajectory optimization

and identifying the linear models are simultaneously conducted with-

out models. We validate the proposed methods through an illustrative

example. The summary of the four chapters are below:

• A MLMPC design for tracking various set-points in a wide op-

erating range of a nonlinear system.

• A switching MLMPC design for tracking various set-points in

a wide operating range of a nonlinear system.

• A framework based on CDDP and MLMPC to track a set-point

of a nonlinear system.

• A scheme combined with CDDP, LTVMPC, and LMPC for op-

timal control of a nonlinear system.

The first work is to design MLMPC to track various set-points in

a wide operating range of a nonlinear system. To provide local mod-

els that approximate the nonlinear behavior in an operating range,

4



generalized gridding and K-medoids clustering algorithms are pro-

posed based on gap metric. LMPC for each cluster is designed, each

of which stabilizes the system at any equilibrium points in the cor-

responding cluster. We also propose to combine the prediction-based

and gap metric-based approaches to determine the weights for the

LMPC controllers. The overall method is applied to an example of

a nonlinear continuous stirred tank reactor (CSTR). The proposed

MLMPC shows superior to previous MLMPC methods in terms of

set-point tracking, disturbance rejection, and stability.

The second part solves the same problem in the first part in a

different way. We construct a graph of the equilibrium points adjacent

to other clusters and find the optimal path from an initial point to a set-

point by solving the shortest path problem. The cost includes the gap

metric between any two equilibrium points in the graph. Exploiting

the shortest path problem, a switching MLMPC is proposed, in which

an LMPC controller steers from a node of the path to the next node.

The overall method is applied to an example of a nonlinear CSTR.

As a result, the proposed MLMPCs achieve offset-free tracking with

and without disturbance for any pairs of initial points and set-points

in the operating region.

The third part deals with tracking a set-point from an initial con-

dition without models. It can happen if there are no models, or equi-

librium points are not be obtained by model inversion for the non-

linear process. We propose a CDDP algorithm that considers input

constraints when the nonlinear dynamics and nonzero steady-state

input for a set-point are unknown. Obtaining the linear models based

on conditional Gaussian distribution is included. To choose the mod-

els for MLMPC among the models obtained by CDDP, clustering
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of the models based on sampling time and gap metric is proposed.

Then a prediction weighting method for MLMPC is proposed, which

converges to a linear model as the state is close to the set-point. A

nonlinear CSTR is studied to demonstrate the effectiveness of the

proposed scheme. Simulation studies show that the CDDP designed

by the proposed algorithm improves the trajectory over iterations, and

the resulting MLMPC achieves offset-free tracking property regard-

less of an initial point and a set-point in the operating region.

The final part solves the same problem in the third part in a differ-

ent way. The suboptimal trajectories to track a set-point from CDDP

are exploited to design an MPC controller. Concretely, dividing a sub-

optimal trajectory from CDDP in the transient and steady-state re-

gion is proposed. Selecting the linear model in the steady-state region

based on gap metric is also proposed. Subsequently, LTVMPC is em-

ployed to track the suboptimal trajectory in the transient region. Then

LMPC achieves offset-free tracking starting from the state close to

the set-point. We prove that the feasibility of the proposed LTVMPC

in the transient region around the nominal trajectory, and offset-free

tracking property if the gap metric between the selected linear model

and the dynamics at the set-point is small. Simulation studies through

CSTR show that CDDP provides improved trajectories over itera-

tions, and the proposed MPC achieves offset-free tracking and dis-

turbance rejection regardless of an initial point and a set-point in the

operating region.

In summary, All the works deal with the infinite-horizon regu-

latory tracking control problem, where the third and final part deal

with the problem starting without the models, helped by solving the

finite-horizon optimal control problem (FHOC).
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1.3 Outline of the thesis

The remainder of the thesis is organized as follows. In Chapter

2, the background on the formulation of MPC and DDP is provided.

The gap metric and related concepts are also introduced. In Chapter 3,

MLMPC design based on gap metric for set-point tracking in a wide

operating range of a nonlinear system is provided. The same prob-

lem is solved by designing a switching MLMPC followed by the path

design based on gap metric in Chapter 4. Chapter 5 provides a data-

driven MLMPC design using CDDP to solve the problem, starting

without the models. A scheme combined with CDDP, LTVMPC, and

LMPC for optimal control of the nonlinear system is given in Chap-

ter 6. Finally, general concluding remarks and possible directions for

further study are given in Chapter 7.
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Chapter 2

Background and preliminaries

2.1 Offset-free linear model predictive control

Consider a discrete-time nonlinear system,

xk+1 =f(xk, uk),

yk =g(xk),

zk =Hyk,

(2.1)

with constraints
u ∈ U

x ∈ X
(2.2)

where f and g are continuously differentiable functions, xk ∈ Rn,

uk ∈ Rm, and yk ∈ Rp is the state, input, and measured output vector

of the system at kth time step. The controlled variables zk ∈ Rr are

a linear combination of the measured variables for which offset-free

behavior is sought. U and X are constraint sets presented as compact

polyhedral region. Suppose that a linear model which approximates
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the process (2.1) around (xo, uo, yo) is given.

xo(k + 1) = Axo(k) +Buo(k),

yo(k) = Cxo(k),
(2.3)

where xo(k) := xk−xo, uo(k) := uk−uo, yo(k) := yk−yo. In order

to capture the mismatch between (2.1) and (2.3) in steady state, the

disturbance model is augmented to the linear model [1].

[
xo(k + 1)

do(k + 1)

]
=

[
A Bd

0 I

]
︸ ︷︷ ︸

Aa

[
xo(k)

do(k)

]
︸ ︷︷ ︸

xo
a(k)

+

[
B

0

]
︸︷︷︸
Ba

uo(k),

yo(k) =
[
C Cd

]
︸ ︷︷ ︸

Ca

[
xo(k)

do(k)

]
,

(2.4)

where do ∈ Rnd . Bd and Cd is design to satisfying the conditions for

the observability of (2.4), which are given in the following theorem.

Theorem 2.1. [32] The augmented system (2.4) is observable if and

only if (C,A) is observable and

[
A− I Bd

C Cd

]
(2.5)

has full column rank.
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The augmented state estimator is designed as follows:

x̂o
a(k + 1) =Aax̂

o
a(k) +Bau

o(k) +

[
Lx

Ld

]
(Cax̂

o
a(k)− yo(k)),

(2.6)

where Lx ∈ Rn×p and Ld ∈ Rnd×p are estimator gains for state and

disturbance, respectively, chosen to make the estimator stable. The

following lemma is given for the observer (2.6) where nd = p.

Lemma 2.1. [32] Suppose the observer (2.6) is stable and nd = p.

Then the steady state of the observer (2.6) satisfies

[
A− I B

C 0

][
x̂o
∞

uo
∞

]
=

[
−Bdd̂

o
∞

yo∞ − Cdd̂
o
∞

]
(2.7)

where yo∞ := y∞− yo and uo
∞ := u∞−uo, y∞ and u∞ are the steady

state measured output and input of the system (2.1), x̂o
∞ and d̂o∞ are

the state and disturbance estimates from the observer (2.6) at steady

state, respectively.

Thus, there is no offset between the measured output and the

output of the augmented model if the system (2.1) and the observer

(2.6) are in a steady state.

The objective of offset-free linear MPC is to make the controlled

variables z track the reference signal r which is assumed to converge

to a constant, i.e., rk → r∞ as k →∞, with the linear time-invariant

model (2.3) and the observer (2.6). The observer condition (2.7) sug-
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gests that at steady state the MPC should satisfy

[
A− I B

HC 0

][
xo
∞

uo
∞

]
=

[
−Bdd̂

o
∞

ro∞ −HCdd̂
o
∞

]
(2.8)

where xo
∞ is the MPC state at steady-state and ro∞ := r∞ −Hyo. For

xo
∞ and uo

∞ to exist for any d̂o∞ and ro∞, the matrix in left hand side

of (2.8) must has full row rank which implies m ≥ r. The offset-free

MPC controller is designed by

min
u0,··· ,up−1

p−1∑
j=0

∥xj − x̄(k)∥2Q + ∥uj − ū(k)∥2R + ∥xp − x̄(k)∥2QT

s.t. xj+1 = Axj +Buj +Bddj

dj+1 = dj

yj = Cxj

uj ∈ U , xj ∈ X , xp ∈ Xf

x0 = x̂o(k), d0 = d̂o(k)

j = 0, ..., p
(2.9)

where Q ⪰ 0, R ≻ 0, and QT ≻ 0 are the weighting matrices for

the state, the input, and the terminal state, respectively. QT is the

solution of discrete-time algebraic Riccati equation (DARE), which

makes MPC equivalent to LQR in the unconstrained region. Xf is the

terminal constraint to satisfy the recursive feasibility and the stability

of MPC [1]. The target state x̄(k) and the target input ū(k) at kth time
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step are obtained by solving

[
A− I B

HC 0

][
x̄(k)

ū(k)

]
=

[
−Bdd̂

o(k)

ro(k)−HCdd̂
o(k)

]
, (2.10)

where ro(k) := rk −Hyo ∈ Rr. Let U∗(k) = {u∗
0, · · · , u∗

p−1} be the

optimal solution of (2.9) and (2.10) at time k. Then the first sample

of U∗(k) is applied to the system (2.1)

uk = u∗
0 + uo (2.11)

Often in practice, one desires to track all measured outputs with zero

offsets. Thus, we assume nd = p = r in the thesis. The following

theorem is provided for offset-free control when nd = p.

Theorem 2.2. [1] Consider the case nd = p. Assume that for rk →
r∞ as k → ∞, the MPC problem (2.9) and (2.6) is feasible for all

k ∈ N+, unconstrained for k ≥ j with j ∈ N+ and the closed-loop

system (2.1), (2.2), (2.6), (2.9), and (2.10) converges to x̂o
∞, d̂o∞, yo∞.

Then zk → r∞ as k →∞.

2.2 Gap metric and stability margin

In the previous section, we have seen that a linear model can

be exploited for tracking a steady-state set-point even if there is a

mismatch between the plant and the model. In this section, the gap

metric is introduced as being appropriate for the study of uncertainty

in feedback systems, which can be applied to study the model-plant

mismatch of the closed-loop system controlled by linear MPC.
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Before we provide the concept of the gap metric, we introduce

some concepts to define the gap metric.

Definition 2.1. A Banach space is a real or complex normed vector

space that is also a complete metric space with respect to the distance

function induced by the norm.

Definition 2.2. A Hilbert space is a real or complex inner product

space that is also a complete metric space with respect to the distance

function induced by the inner product.

If a vector space is a Hilbert space, it is a Banach space. One

of the most familiar examples of a Hilbert space is the Euclidean

vector space consisting of n-dimensional vectors, denoted by Rn, and

equipped with the dot product. More generally, Cn×m with the inner

product defined as

〈
A,B

〉
:= traceA∗B =

n∑
i=1

m∑
j=1

āijbij, ∀A,B ∈ Cn×m (2.12)

We define a Hilbert space as follows:

Definition 2.3. L2[a, b] is an infinite-dimensional Hilbert space that

consists of all square-integrable and Lebesgue measurable functions

defined on an interval [a, b] with the inner product and the induced

norm defined as

〈
f, g
〉
:=

∫ b

a

f(t)∗g(t)dt (2.13)

∥f∥2 :=
√〈

f, f
〉
<∞ (2.14)
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for f, g ∈ L2[a, b].

The following Hilbert space is defined for the matrix-valued func-

tions on R.

Definition 2.4. L2(R) orL2(−∞,∞) is an infinite-dimensional Hilbert

space which consists of all square-integrable, Lebesgue measurable,

and matrix-valued functions defined on an interval R with the inner

product and the induced norm defined as

〈
f, g
〉
:=

∫ ∞

−∞
trace[f(t)∗g(t)]dt (2.15)

∥f∥2 :=
√〈

f, f
〉
<∞ (2.16)

for f, g ∈ L2(R).

L2+ = L2[0,∞) and L2− = L2(−∞, 0] are defined similarly.

L2+ : subspace of L2(−∞,∞) with functions zero for t < 0. L2− :

subspace of L2(−∞,∞) with functions zero for t > 0.

A Hilbert space of matrix-valued functions on jR is also defined.

Definition 2.5. L2(jR) orL2 is an infinite-dimensional Hilbert space

that consists of all square-integrable, Lebesgue measurable, and matrix-

valued functions defined on an interval R with the inner product and

the induced norm defined as

〈
f, g
〉
:=

1

2π

∫ ∞

−∞
trace[f(jω)∗g(jω)]dω (2.17)

∥f∥2 :=
√〈

f, f
〉
<∞ (2.18)
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for f, g ∈ L2(jR).

Definition 2.6. H2 is a closed subspace of L2(jR) with analytic

matrix-valued function F (s) in Re(s) > 0 (open right-half plane).

The corresponding norm is defined as

∥F∥2 := sup
σ>0

1

2π

∫ ∞

−∞
trace[F (σ + jω)∗F (σ + jω)]dω (2.19)

It can be shown [33] that

∥F∥2 = 1

2π

∫ ∞

−∞
trace[F (jω)∗F (jω)]dω (2.20)

Hence, we can compute the norm for H2 just as we do for L2(jR).
The real rational subspace ofH2, which consists of all strictly proper

and real rational stable transfer matrices, is denoted by RH2. The

state-space representation can be applied for the transfer matrices

in RH2. The L2(jR) in the frequency domain can be related to the

L2(R) defined in the time domain. It can be shown that Laplace and

inverse transform yield an isometric isomorphism between L2(R)
and L2(jR). In addition, there is an isometric isomorphism between

L2[0,∞) andH2.

Other classes of important complex matrix functions used in this

book are those bounded on the imaginary axis.

Definition 2.7. L∞(jR) or L∞ is Banach space of matrix-valued (or

scalar-valued) functions that are (essentially) bounded on jR, with

norm
∥F∥∞ := ess sup

ω∈R
σ̄[F (jω)] (2.21)

The rational subspace of L∞, denoted by RL∞(jR) or simply
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RL∞, consists of all proper and real rational transfer matrices with

no poles on the imaginary axis.

Definition 2.8. H∞ is a (closed) subspace of L∞ with functions that

are analytic and bounded in the open right-half plane. TheH∞ norm

is defined as

∥F∥∞ := sup
Re(s)>0

σ̄[F (s)] = sup
ω∈R

σ̄[F (jω)] (2.22)

The real rational subspace of H∞ is denoted by RH∞, which

consists of all proper and real rational stable transfer matrices, for

which the state-space representation can be applied.

The concept of the coprimeness between two transer functions is

given by the following definition

Definition 2.9. Two matrices M and N in RH∞ are right coprime

overRH∞ if they have the same number of columns and if there exist

matrices Xr and Yr inRH∞ such that

[
Xr Yr

] [M
N

]
= XrM + YrN = I (2.23)

Similarly, two matrices M̃ and Ñ in RH∞ are left coprime over

RH∞ if they have the same number of rows and if there exist ma-

trices Xl and Yl inRH∞ such that

[
M̃ Ñ

] [Xl

Yl

]
= M̃Xl + ÑYl = I (2.24)

Now let P be a proper real rational matrix. A right coprime fac-
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torization (rcf) of P is a factorization P = NM−1, where N and M

are right coprime over RH∞. It is called a normalized right coprime

factorization if M∗M + N∗N = I , where M∗ denotes the complex

conjugate of M . Similarly, a left coprime factorization (lcf) has the

form P = M̃−1Ñ , where Ñ and M̃ are left-coprime overRH∞. It is

called a normalized left coprime factorization if MM∗ +NN∗ = I .

The graph of P is defined as the subspace ofH2 consisting of all pairs

(u, y) such that y = Pu, and denoted by

[
M

N

]
H2 (2.25)

Now we can define a gap between two systems.Let P1 and P2 be

p × m rational transfer matrices, where p and m are the dimension

of input and output, respectively. Let P1 and P2 have the following

normalized right coprime factorizations:

P1 = N1M
−1
1 ,M∗

1M1 +N∗
1N1 = I,

P2 = N2M
−1
2 ,M∗

2M2 +N∗
2N2 = I

The gap between P1 and P2 is defined by

δg(P1,P2) =

∥∥∥∥∥∥∥∥∥∥
ΠM1

N1

H2

− ΠM2

N2

H2

∥∥∥∥∥∥∥∥∥∥
(2.26)
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and can be computed as [34]

δg(P1,P2) = max
{−→
δ g(P1,P2),

−→
δ g(P2,P1)

}
, (2.27)

where
−→
δ g(P1,P2) is the directed gap, and it is obtained by

−→
δ g(P1,P2) = inf

Q∈H∞

∥∥∥∥∥
[
M1

N1

]
−

[
M2

N2

]
Q

∥∥∥∥∥
∞

. (2.28)

The gap between two linear systems is the measure that determines

if each system is stabilized by the same controller. The stability mar-

gin of a linear system P and its stabilizing controller K indicates

robustness to unstructured perturbations of a closed-loop system. It is

defined as [14]

bP,K =

∥∥∥∥∥
[
I

K

]
(I + PK)−1

[
I P
]∥∥∥∥∥

−1

∞

(2.29)

The following theorem can be exploited to design a feedback control

system:

Theorem 2.3. [35] Suppose the feedback system with the pair (P0, K0)

is stable. Let P := {P : δg(P ,P0) < r1} and K := {K : δg(K,K0) <

r2}. Then

(a) The feedback system with the pair (P , K) is also stable for

all P ∈ P and K ∈ K if and only if

sin−1 bP0,K0 ≥ sin−1 r1 + sin−1 r2.

(b) The worst possible performance resulting from these sets of
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plants and controllers is given by

inf
P∈P,K∈K

sin−1 bP,K = sin−1 bP0,K0 − sin−1 r1 − sin−1 r2

If the gap between two systems is close to zero, the controller K0

can also stabilize P . Thus, two linear systems whose gap is close to

zero have one common feedback controller stabilizing both systems.

Remark 2.1. The metric induced by the operator norm cannot mea-

sure the distance between two unstable systems that can be stabilized

in the closed-loop. The gap metric can deal with the problem. Other

metrics such as ν−gap metric, graph metric, chordal metric can also

resolve this problem [36, 37, 38].

2.3 Multilinear model predictive control

If a linear model cannot describe the dynamic behavior of the

process (2.1) in the wide operating range, a set of linear models can be

exploited simultaneously to predict the behavior. Consider the system

(2.1) and constraints (2.2). Suppose that a set of nM linear models

which approximate the process (2.1) in an operating range are given

as
xi(k + 1) = Aixi(k) +Biui(k),

yi(k) = Cixi(k),
(2.30)

where xi(k) = xk − xoi, ui(k) = uk − uoi, and yi(k) = yk − yoi

are deviation variables for the state, input, and, measured output.

Ai, Bi, and Ci are the matrices for the ith model that approximate
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the dynamic behavior of (2.1) around (xoi, uoi). The ith linear MPC

controller at time k is designed by

min
u0,··· ,up−1

p−1∑
j=0

∥rj − zj∥2Qi
+ ∥uj∥2Ri

s.t. xj+1 = Aixj +Biuj

yj = Cixj

zj = Hyj

uj + uoi ∈ U , xj + xoi ∈ X

x0 = x̂i(k), rj = ri(k + j)

j = 0, ..., p

(2.31)

where where Qi and Ri are the weighting matrices of the ith linear

MPC for the state and input, respectively. x̂i(k) is the estimated state

of the ith model at time k, and ri(k) = rk − Hyoi is the deviation

variable for the reference. Let U∗
i (k) = {u∗

i,0, · · · , u∗
i,p−1} be the so-

lution of (2.31) of the ith linear MPC at the time k, and let u∗
i (k) be

the first element of U∗
i (k). Then the input at the time k is determined

by

uk =

nM∑
i=1

ϕi(k)u
∗
i (k) (2.32)

where ϕi is the normalized weights satisfying
∑nM

i=1 ϕi(k) = 1.

There are two approaches to combine the controllers, the switch-

ing and weighting methods [39]. In the switching method, one local

linear MPC controller is chosen in the set of local MPCs by a user-

defined criterion and applied to the plant at each sample time. The

switching method can cause chattering in systems with strong non-
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linearities [5]. Meanwhile, the weighting method gives a weighted

sum of the inputs from several local linear MPC controllers. This ap-

proach can operate the system smoothly unlike the switching method

due to the gradual changes of the weights [7].

Selecting the weights is a key step in the weighting method.

There are two popular methods to select the weights. First, the gap

metric-based weighting method calculates the weights of the local

models based on the gap between a model and the linearized sys-

tem at a point [7]. Generally, the state at the sampling time or the

set-point is chosen. Let sk = (xok, uok, yok) be an equilibrium point

chosen at time k. The linearized model of (2.1) around (xok, uok, yok)

is denoted by P (k), and Pi denotes the ith model (2.30). Then the

gap-metric based weight of the ith linear MPC controller at time k is

defined as

ϕi(k) =
(1− γi(θk))

ke∑nM

j=1(1− γj(θk))ke
, (2.33)

where γi(θk) = δg(Pi, P (k)) is the gap between Pi and P (k), and

ke ≥ 1 is a tuning parameter.

The second method computes the weights using the predicted

output error of each model in the models [4]. Let the residual of the

ith local model at time instant k as

ϵi(k) = yi(k)− ŷi(k), (2.34)

where ŷi(k) is the estimated output from the ith local model (2.30)

and its estimator. The weights are defined based on Bayesian ap-
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proach:

ϕi(k) =
exp(−1

2
ϵi(k)

TΛiϵi(k))ϕi(k − 1)∑nm

j=1 exp(−1
2
ϵj(k)TΛiϵj(k))ϕj(k − 1)

, (2.35)

where Λi is the diagonal scaling matrix for the residuals. For normal-

izing the output, Λi is a set inversely proportional to the output in

general. Once the weight of a model reaches zero, it stays zero un-

til the end of operation as the weight is proportional to the previous

weight. In order to resolve this problem, an artificial lower limit on

the probability is imposed.

pi(k) =
exp(−1

2
ϵi(k)

TΛiϵi(k))φi(k − 1)∑nm

j=1 exp(−1
2
ϵj(k)TΛiϵj(k))φj(k − 1)

,

φi(k) =

pi(k), pi(k) > µ,

µ, pi(k) ≤ µ,

ϕi(k) =


pi(k)/(

∑
pi(k)>µ,1≤i≤nm

pi(k)), pi(k) > µ,

0, pi(k) ≤ µ,

(2.36)

where µ is the lower limit, pi(k) is the ith weight by Bayesian ap-

proach, φi(k) is the ith weight that prevents the zero probability, and

ϕi(k) is the weight applied to the ith controller output.

2.4 Linear time-varying model predictive control

If a trajectory for the system (2.1) and the approximating linear

model at each sampling time are provided, LTV model can be con-

structed as a set of the models, and LTVMPC can be exploited to track
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the trajectory. Suppose that a state and input trajectory from time 0

to N denoted by X̄0 = {x̄0, · · · , x̄N} and Ū0 = {ū0, · · · , ūN−1} are

given. Assume that a LTV models is obtained from linearizing the

nonlinear model (2.1) or system identification and expressed by

xv(k + 1) = Akx
v(k) +Bku

v(k),

yv(k) = Ckx
v(k),

(2.37)

where xv(k) := xk − x̄k, uv(k) := uk − ūk, and yv(k) := yk − ȳk

are the deviation variables for the state, input, and measured out-

put. (Ak, Bk, Ck) is the LTV model at the kth time step. Then the

LTVMPC controller to track the trajectory at the kth time step is de-

signed by

min
uv
0 ,··· ,uv

p−1

p−1∑
j=0

∥∥yvj∥∥2Q +
∥∥uv

j

∥∥2
R
+
∥∥xv

p

∥∥2
Pk+p

s.t. xv
j+1 = Ak+jx

v
j +Bk+ju

v
j , j = 0, ..., N − 1

yvj = Ck+jx
v
j , j = 0, ..., N

uv
j + ūk+j ∈ U , xv

j + x̄k+j ∈ X ,

xv
p ∈ X

f
k+p

x0 = x̂v(k),

(2.38)

where Q ⪰ 0 and R ≻ 0 are the weighting matrices for the state and

the input, respectively. Pk is computed by solving the following finite
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horizon LQR problem for LTV systems.

(xv
k)

TPkx
v
k = min

uk,··· ,uN−1

N−1∑
j=k

∥∥yvj∥∥2Q +
∥∥uv

j

∥∥2
R
+ ∥yvN∥

2
Q

s.t. xj+1 = Ajx
v
j +Bju

v
j ,

j = k, ..., N − 1

(2.39)

Induction backwards in time can be used to obtain Pk at each time.

PN =CT
NQCN

Ki =− (R +BT
i C

T
i+1Pi+1Ci+1Bi)

−1BT
i C

T
i+1Pi+1Ci+1Ai

Pi =CT
i+1QCi+1 +KT

i RKi + (Ai +BiKi)
TCT

i+1Pi+1Ci+1(Ai +BiKi)
(2.40)

Then the LTVMPC (2.38) is equivalent to LQR for LTV systems

(2.39) in the unconstrained region.

2.5 Differential dynamic programming

Consider the discrete-time nonlinear system (2.1) whose mea-

sured output is the state, i.e., the system is fully measured. The system

is expressed as
xk+1 =f(xk, uk),

yk =xk,

zk =Hyk

(2.41)

Assuming that the final time step is N ∈ N, the cost at kth time step is

defined by a sequence of states, Xk = {xk, · · · , xN}, and a sequence
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of inputs, Uk = {uk, · · · , uN−1},

Jk(Xk,Uk) =
N−1∑
j=k

l(xj, uj) + lf (xN), (2.42)

where l(x, u) : Rn×Rm → R is the running cost and lf (x) : Rn → R
is the final cost. The optimal value function at kth time step is defined

by the optimal cost-to-go starting at a given xk

Vk(xk) = min
Uk

Jk(Xk,Uk), (2.43)

The optimal value function has the following recursive nature by

Bellman’s principle of optimality

Vk(xk) = min
uk

l(xk, uk) + Vk+1(f(xk, uk)),

VN(xN) = lf (xN)
(2.44)

DDP is an iterative method to solve the optimal control problem

(2.44). At each iteration, DDP performs a backward pass on the nomi-

nal trajectory to generate a new control sequence, and then a forward-

pass to compute and evaluate a new nominal trajectory. Let Qk be the

variation of l(xk, uk) + Vk+1(f(xk, uk)) around the (xk, uk)

Qk(δxk, δuk) =l(xk + δxk, uk + δuk) + Vk+1(f(xk + δxk, uk + δuk))

(2.45)

In the backward pass, DDP optimizes (2.45) with respect to δuk at

each time step by approximating Qk(δxk, δuk) to the second order
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around the nominal trajectory (X0,U0).

Qk(δxk, δuk) ≈
1

2


1

δxk

δuk


T 

2Qk QT
x,k QT

u,k

Qx,k Qxx,k Qxu,k

Qu,k Qux,k Quu,k




1

δxk

δuk


(2.46)

where the subscripts of Q·,k denotes differentiation at (xk, uk) of the

nominal trajectory in denominator layout. Dropping k for readability

and denoting Vk+1 by V ′, the expansion coefficients are

Qx =lx + fT
x V

′
x,

Qu =lu + fT
u V

′
x,

Qxx =lxx + fT
x V

′
xxfx + V ′

x · fxx,

Quu =luu + fT
u V

′
xxfu + V ′

x · fuu,

Qux =lux + fT
u V

′
xxfx + V ′

x · fux

(2.47)

Then the value function around the nominal trajectory at kth time step

is obtained by optimizing the approximated Q(δx, δu) over δu.

δu∗ = argmin
δu

Q(δx, δu) = −Q−1
uu (Qu +Quxδx) := Kgδx+Kc

(2.48)

Substituting (2.48) to (2.46), the approximated value function is up-

dated as

Vk(x) = Vk(xk) +
1

2
(x− xk)

TVxx,k(x− xk) + V T
x,k(x− xk) + ∆Vk

(2.49)

26



where xk is the state of the nominal trajectory at the kth time step,

and

Vxx,k =Qxx,k +KT
g,kQuu,kKg,k +QT

ux,kKg,k +KT
g,kQux,k,

=Qxx,k −Qxu,kQ
−1
uu,kQux,k,

Vx,k =Qx,k +KT
g,kQuu,kKc,k +QT

ux,kKc,k +KT
g,kQu,k,

=Qx,k −Qxu,kQ
−1
uu,kQu,k,

∆Vk =−QT
u,kQ

−1
uu,kQu,k +

1

2
KT

c,kQuu,kKc,k,

=− 1

2
QT

u,kQ
−1
uu,kQu,k

(2.50)

The hessian Vxx,k and the gradient Vx,k are then passed to the (k−1)th

time step and the backward pass continues until k ≥ 0, starting with

Vxx,N = lfxx and Vx,N = lfx .

In the forward pass, the nominal state-control trajectory is up-

dated using the optimal linear feedback (2.48).

unew
k =uk +Kg,k(x

new
k − xk) +Kc,k,

xnew
k+1 =f(xnew

k , unew
k ), xnew

0 = x0

(2.51)

Then the new nominal trajectories Xnew
0 = {xnew

0 , · · · , xnew
N } and

Unew
0 = {unew

0 , · · · , unew
N } replace X0 and U0, and the backward

pass at the next iteration starts with the updated state-control nominal

trajectory if it does not converge.
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Chapter 3

Offset-free multilinear model predictive control
based on gap metric 1

3.1 Introduction

MPC with multiple models is an alternative to track set-points

in a wide operating range of nonlinear chemical processes, because

multiple models can describe the dynamic behavior of the process

better than a model, and related optimization problems can be solved

faster than those formulated by a nonlinear model. There are three ap-

proaches to use multiple models: the first method constructs a global

nonlinear model by interpolating multiple local models using weight-

ing functions [6, 40, 41, 42]. Then an MPC controller is designed

based on the global model. However, this method is hard to imple-

ment due to the computational load of the nonlinear optimization.

The second approach designs a min-max optimization-based global

MPC using the linear models in a model bank, which is a type of

robust MPC [43, 44, 45]. In this approach, inaccurate process mod-

els are also considered for prediction, and conservative control law
1This chapter is an adapted version of B. Park, D. H. Jung, and J. M. Lee, “Offset-free

Multilinear Model Predictive Control Based on Gap Metric," Journal of Process Control,
Under review
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is obtained. The last method is multilinear model predictive control

(MLMPC), which designs a set of local linear MPC controllers based

on the models in a model bank [6, 4, 7]. The resulting controller is

called a scheduled controller, which prescribes control input as a con-

vex combination of the local MPC actions. In summary, the input of

the first controller is calculated from nonlinear optimization based on

the combination of local nonlinear models. The input of the second

controller is calculated from min-max optimization considering all

local models. The input of the third controller is the combination of

the inputs calculated from quadratic programming (QP) based local

linear models. The last approach is preferred because it requires less

amount of calculation time than the first approach, and yields a less

conservative solution than the second approach.

There are two types of MLMPC to combine the local models: (1)

prediction-based MLMPC and (2) gap metric-based MLMPC. The

first method decides the weights of local MPCs based on the output

prediction error and recursive Bayesian weighting. Dynamic matrix

control (DMC) [6], state-space model based MPC [8], and multiple

disturbance model [4] have been proposed for the prediction-based

MLMPC. Because it is easy to implement in real-time, this approach

has been applied to several applications [9, 10, 11, 12, 13]. The key

step of prediction-based MLMPC is the construction of the local lin-

ear models. These models should describe the whole operating re-

gion, and it commonly depends on prior knowledge, experience, or

trial and error [46]. Since, the model bank, the local MPCs, and the

weighting function, need to be independently designed, it is difficult

to tune the parameters of each component to meet the requirements

for scheduled controllers. In addition, the prediction-based method
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does not guarantee the stability of the closed-loop system.

The other approach exploits the gap metric, which is useful to

compare the closed-loop behavior of two systems [47]. The gap met-

ric between two linear systems is defined as the infimum of the infin-

ity norm of the difference between one system and the other multi-

plied by a transfer function [14]. The gap metric can judge whether

two linear systems can be stabilized by the same controller. It is possi-

ble to quantify the similarity of linear systems in a model bank and the

operating ranges for which a local controller can be used. Thus, gap

metric-based MLMPC can be designed to have the stability property

compared to the first one. There are two kinds of gap metric-based

weighting approaches: the current state-based approach [15] and the

reference-based approach [7]. In the current state-based approach, the

gap metrics of the current state and the models in the model bank are

calculated, and the weights of the models depend on the gap met-

rics. In the reference-based approach, the gap metrics of the refer-

ence and the models are calculated instead of the current state. The

existing gap metric-based MLMPCs have some limitations. First, the

number of the local linear models grows exponentially as the number

of the state and action increases. Thus, it is difficult to extend to a

large scale system. Second, the existing gap metric-based weighting

approaches are not suitable for controlling the systems with a wide

operating range. In the current state-based approach, the gap metric

of the current state and the models in the model bank is calculated

at each sampling time, which is computationally heavy. On the other

hand, the reference-based approach cannot predict the behavior of the

current state if the gap metric between the current state and the set-

point is large because it only considers whether linear models can
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approximate the dynamics at the set-point.

In this chapter, we propose a novel gap metric-based model bank

selection that consists of a generalized gridding algorithm and K-

medoids clustering for a system of an arbitrary dimension. In addi-

tion, we propose to design local controllers and prove that each local

controller has the offset-free tracking property in the corresponding

partition of the operating region. Lastly, a weighting method to design

a scheduled controller is proposed to combine the prediction-based

weighting and gap metric-based approach to compute the weights ef-

ficiently. We show the resulting scheduled controller improves the

prediction performance, and verify the offset-free tracking property

and the stability at any set-points in a designated operating region

through simulations.

3.2 Local linear MPC design

Consider a nonlinear process

ẋ = f(x, u),

y = h(x),

u ∈ U , x ∈ X ,

(3.1)

where f and h are continuously differentiable functions, x ∈ Rn is

the state, u ∈ Rm is the control input, and y ∈ Rp is not only the

measured output, but alos the controlled variables. X and U are the

state and input constraints, respectively.

In order to obtain local linear models, the vector of the schedul-

ing variables θ ∈ Θ ⊂ RNθ , so-called the scheduling vector, needs to
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be defined. We assume the uniqueness and continuity of the equilib-

rium point corresponding to a vector of scheduling variables.

Assumption 3.1. θ ∈ Θ determines the unique equilibrium point and

the equilibrium point satisfies the input and state constraints, where

Θ ⊂ RNθ is a compact set.

Assumption 3.2. A function F : Θ→ Rn×Rm×Rp that associates

a scheduling vector with an equilibrium point of the system (3.1) is

injective and continuous.

The scheduling variables involve a subset of the states, inputs,

outputs, disturbances, references, and model parameters. We also as-

sume that the system is approximated by NM local linear models.

Each local linear model is obtained by linearizing the original system

at the corresponding equilibrium point. Let the triplet of the steady

state, input, and output at θi be (xoi, uoi, yoi) = (xo(θi), uo(θi), yo(θi)),

where θi is a representative component of the ith subregion Θi. The

ith model is obtained by linearizing the nonlinear system at si :=

(xo(θi), uo(θi), yo(θi)) = F (θi) ∈ S , where S is the set of all equi-

librium points corresponding to all scheduling variables in Θ, and si

is the equilibrium point determined by θi. The set of the subregions

{Θi} is assumed to be a partition of Θ:

Assumption 3.3. A scheduling space Θ and its subregion Θi satisfy

∅ ≠ Θi ⊆ Θ,

NM⋃
i=1

Θi = Θ, Θi ∩Θj = ∅ for i ̸= j. (3.2)
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The ith local model Pi at the kth sampling time is discretized:

xi(k + 1) = Aixi(k) +Biui(k),

yi(k) = Cixi(k),
(3.3)

where xi(k) = x(k)−xoi, ui(k) = u(k)−uoi, and yi(k) = y(k)−yoi.
Ai, Bi, and Ci are the linearized and discretized matrices. By As-

sumption 1, each local model is uniquely determined because the

equilibrium point is assumed to be unique for each θi. Linear offset-

free MPC introduced in Chapter 2 is employed for the local con-

trollers. The disturbance model is added to the linearized model:[
xi(k + 1)

di(k + 1)

]
=

[
Ai Bdi

0 I

]
︸ ︷︷ ︸

Aai

[
xi(k)

di(k)

]
︸ ︷︷ ︸

xai(k)

+

[
Bi

0

]
︸ ︷︷ ︸
Bai

ui(k),

yi(k) =
[
Ci Cdi

]
︸ ︷︷ ︸

Cai

[
xi(k)

di(k)

]
,

(3.4)

where di ∈ Rp is unmeasured disturbance. Then the ith linear MPC
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controller at the kth sampling time is designed as

min
u0,··· ,uN−1

N−1∑
j=0

∥xj − x̄k,i∥2Qi
+ ∥uj − ūk,i∥2Ri

+ ∥xN − x̄k,i∥2QT,i

s.t. xj+1 = Aixj +Biuj +Bdidj, j = 0, ..., N − 1

dj+1 = dj,

yj = Cixj, k = 0, ..., N

uj ∈ Ui, xj ∈ Xi,

x0 = x̂i(k), d0 = d̂i(k),
(3.5)

where Qi ⪰ 0, Ri ≻ 0, and QT,i ≻ 0 are the weighting matrices of

the ith local MPC for the state, input, and terminal state, respectively.

Ui and Xi are the boundary conditions for the input and state for the

ith local MPC. Note that xk is the predicted state, not the real state

x(k). The target state x̄k,i and input ūk,i of the ith linear model are

[
Ai − I Bi

Ci 0

][
x̄k,i

ūk,i

]
=

[
−Bdid̂i(k)

ri(k)− Cdid̂i(k)

]
, (3.6)

where ri(k) := r(k) − yoi ∈ Rp is the ith transformed reference

and r(k) is the reference at the kth sampling time. The observer is

designed by

x̂ai(k + 1) =Aaix̂ai(k) +Baiui(k)

+ Lob(Caix̂ai(k)− yi(k)),
(3.7)

where Lob is the observer gain. The observer is necessary for some

reasons: (1) the number of the measurement smaller than that of the
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state, (2) mismatch between the nonlinear process and the lienar model,

and (3) unknown stochastic disturbance and noise. A typical choice is

Kalman filter or Luenberger observer [48]. Kalman filter is preferred

when the third reason is considered.

Remark 3.1. The closed-loop system (3.1), (3.5), (3.6), and (3.7)

achieves the offset-free control if the closed-loop system converges

[32, 49]. If QT,i in (3.5) is the solution of discrete-time algebraic

Riccati equation (DARE), MPC is equivalent to LQR in the uncon-

strained region. Then the gap metric stability margin of bPi,KLQR,i

can be computed, where KLQR,i is the LQR gain obtained by the ith

local linear model, Qi, and Ri.

Remark 3.2. The ith local controller is designed to stabilize any

equilibrium point in the ith subregion Θi. The algorithms proposed

in the next sections will provide the subregions of Θ and local MPCs.

Any equilibrium point in each of the subregions can be stabilized by

one of the local MPCs.

3.3 Gap metric-based multilinear MPC

In this section, we propose a novel gap metric-based multilin-

ear MPC algorithm which can improve the transient performance

and guarantees the stability of the closed-loop system if the proposed

MPC converges to a local MPC. It consists of the algorithms for grid-

ding and clustering of local models, the design of the local MPC con-

trollers, and calculating the weights of the local models.
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3.3.1 Gap metric-based gridding algorithm

Let {θk,nk} (k = 1, ..., Nθ, nk = 1, ..., Nk) be a set for the kth

component of the scheduling vector θ. Then, the set of the initial

scheduling vectors is denoted by Θinit : {θn} := {θ1,n1} × · · · ×
{θNθ,nNθ} (n = 1, ...,

∏Nθ

i=1Ni). Each scheduling vector θi in the ini-

tial grid Θinit has the corresponding equilibrium point si. The lin-

earized system of Eq. (3.1) at si is obtained as (3.8) and denoted by

Pi.

ẋ =
∂f

∂x

∣∣∣∣
xo(θi),uo(θi)

(x− xo(θi)) +
∂f

∂u

∣∣∣∣
xo(θi),uo(θi)

(u− uo(θi)),

y =
∂h

∂x

∣∣∣∣
xo(θi)

(x− xo(θi)) + yo(θi)

(3.8)

The following constraints are assumed for the scheduling space and

grid points.

θk,min ≤ θk,nk ≤ θk,max, k = 1, ..., Nθ, nk = 1, · · · , Nk,

θk,1 = θk,min, k = 1, ..., Nθ,

θk,Nk = θk,max, k = 1, ..., Nθ,

(3.9)

where θk,min and θk,max are the lower and upper bounds of the kth

component of the scheduling vector, respectively. In addition, we de-

fine a normalized scheduling vector as

θnk,nk
=

θk,nk − θk,min

θk,max − θk,min
. (3.10)

Thus, each component of a normalized vector has its upper and lower

bounds as one and zero, respectively. The following Algorithm 1
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guarantees that the gap metric between the linearized systems with

two adjacent grid points is smaller than a designated threshold. nbd,i

is defined as the number of the components of θi whose values are

θk,max or θk,min. Thus a large value of nbd,i means that the point is

close to the boundaries of the grid. Because the proposed algorithm

does not generate a point between the two points whose gap metric is

less than the threshold, it is computationally efficient compared with

the conventional gridding algorithm [46].
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Algorithm 1: Gap metric-based gridding algorithm
Input: Bounds of the scheduling vector θmin, θmax, the components

of the initial grid points {θn}, a threshold of gap γth
Result: A set of the scheduling vector Θgrid

Initialization :
Θgrid = ∅,Θn

grid = ∅,Sgrid = ∅,Pgrid = ∅, Ngrid = 0

Θadd = Θinit, nadd =
∏Nθ

k=1Nk, Calculate Θn
add

while nadd > 0 do
Θn

add,new ← ∅, nadd,new ← 0

Restore Θadd from Θn
add

Θgrid ← Θgrid ∪Θadd,Θ
n
grid ← Θn

grid ∪Θadd

for i← 0 to nadd by 1 do
Obtain the equilibrium point si corresponding to θi ∈ Θadd

Construct Pi := P (θi) from si
Sgrid ← Sgrid ∪ {si}
Pgrid ← Pgrid ∪ {Pi}
Determine the number of the nearest points

nnear,i = 2Nθ − nbd,i,

Calculate the distance dn(i, j) between θi ∈ Θadd and
θj ∈ Θgrid

{Pki} corresponding to the nearest nnear,i points are selected
Calculate δg(Pi, Pki), k = 1, · · · , nnear,i

if δg(Pi, Pki) > γth then
θnnew ← 1

2(θ
n
i + θnki)

Θn
add,new ← Θn

add,new ∪{θnnew} nadd,new ← nadd,new +1

end
end
Θadd ← Θn

grid,new

nadd ← nadd,new

Ngrid ← Ngrid + nadd

end
Save Θgrid,Θ

n
grid,Sgrid,Pgrid, Ngrid
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The obtained grid is assumed to satisfy Assumption 3.4:

Assumption 3.4. Let the convex hull of a set of grid points {θi} be

Conv({θi}). For all Pi := P (θi) from {θi}, any Pj := P (θj) from

θj ∈ Conv({θi}) satisfies

δg(Pi, Pj) < max
θs,θl∈{θi}

δg(Ps, Pl).

Assumption 3.4 is not restrictive because it can be satisfied by

refining the grid. Suppose the gap metric between the linearized sys-

tems of (3.1) at θ1 and θ2 is the maximum of gap metrics between

two points in {θi}. Assumption 3.4 means that if a controller K1 that

stabilizes P1 can stabilize P2, K1 can stabilize any Pk from θk ∈
Conv({θi}). Thus, we can design a local controller that can stabilize

the system (2.1) at any equilibrium point in Conv({θi}). Conv({θi})
is a convex hull of {θi}. It should be checked that all the local models

from the extreme points are stabilized by the controller to be used in

{θi}.

Remark 3.3. The threshold value γth in Algorithm 1 needs to be

small enough so that there exists a local controller K stabilizing an

equilibrium point such that the gap stability margin of the closed-loop

system is larger than γth, i.e., bP,K > γth, where P is the linearized

system at the equilibrium point.

3.3.2 Gap metric-based K-medoids clustering

In order to construct a relevant model bank that represents the

process over the entire operating region, K-medoids clustering algo-
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rithm, one of the unsupervised machine learning algorithms, is cho-

sen for the base algorithm to classify the models in the grid and to

select the representative models [50]. Because K-medoids clustering

is based on the most centrally located object in a cluster, it is less

sensitive to outliers in comparison with the K-means clustering [51].

However, the conventional K-medoids clustering considers only one

metric in evaluating the distance between two objects. In order to

consider both Euclidean metric and gap metric, a gap metric-based

K-medoids clustering algorithm is proposed in Algorithm 2. The in-

puts are the grids from Algorithm 1 and three parameters: kcl is the

number of clusters; ϵtol is the threshold for the change of clusters; ntol

is the maximum number of iterations.
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Algorithm 2: Gap metric-based K-medoids clustering algorithm
Input: Θgrid,Θ

n
grid,Sgrid,Pgrid, Ngrid, kcl, ϵtol, ntol

Result: Sets of clusters {Θi}, {Θn
i }, {Si}, {Pi}

Sets of medoids {θmed,i}, {θnmed,i}, {smed,i}, {Pmed,i}
Initialization : Set flag = 1, it = 1
∆k,j = δg(Pk, Pj), Dn

k,j = d(θnk , θ
n
j ), 1 ≤ k, j ≤ Ngrid

Select initial medoids:
Set vj as vj =

∑Ngrid

k=1
∆k,j∑Ngrid

l=1 ∆k,l

and sort v′js in ascending order

Select kcl indices having the first kcl smallest values for initial
medoids and denote by IDXmed = {idxmed,i}, i = 1, · · · , kcl
Calculate sets of medoids {θitmed,i}, {θ

n,it
med,i}, {s

it
med,i}, {P it

med,i}
while flag do

Clustering:
Obtain the sets of clusters by assigning each object to the
nearest medoid in terms of gap metric and the Euclidean metric:
{Θit

i }, {Θ
n,it
i }, {Siti }, {P it

i }
Calculate the sum of the gap metric from all objects to their
medoids: σit

Calculate medoids:
Find a new medoid of each cluster that minimizes the maximum
of the gap metric to other objects in its cluster:
{θit+1

med,i}, {θ
n,it+1
med,i }, {s

it+1
med,i}, {P

it+1
med,i}, update IDXmed

if it == 1 then
flag ← 1

else if it < ntol or |σit − σit−1|/σit−1 > ϵtol then
flag ← 1

else
flag ← 0

end
it← it+ 1

end
Save
{Θi}, {Θn

i }, {Si}, {Pi}, {θmed,i}, {θnmed,i}, {smed,i}, {Pmed,i, }, IDXmed
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In the proposed method, the weighted sum of the gap metric and

Euclidean metric is used for clustering of linear systems. The gap

metric makes a cluster in which two dynamics at two distinct equilib-

rium points have a small gap metric. The Euclidean metric prevents a

cluster from being disconnected. In addition, the medoid is selected

by the largest gap metric to design a controller that stabilizes the lin-

earized system at a medoid. By Theorem 2.3, the gap stability margin

of a closed-loop system, which consists of a controller and the linear

model at the medoid, has to be larger than the gap metric between

the medoid and any point in the cluster to stabilize all points in the

cluster. If the number of clusters increases, the largest gap metric be-

tween the medoid and all the points in a cluster becomes smaller as

each cluster is reduced. Thus, the feasible set of stabilizing controllers

for a cluster becomes larger. However, the number of local controllers

increases.

3.3.3 MLMPC design

There are no proofs that guarantee the stability at a set-point

given weighting methods for existing MMPC algorithms. Based on

the linear offset-free MPC and local models by the proposed gridding

and clustering algorithms, we propose a scheduled controller to solve

those problems. Theorem 3.1 shows that a linear offset-free MPC can

stabilize an equilibrium point if the gap metric between the linearized

dynamics at the equilibrium point and the local linear model used in

MPC is smaller than the gap stability margin of the pair of the model

and the controller in the MPC.

Theorem 3.1. Suppose Assumption 3.1, 3.2, 3.3, and 3.4 hold and
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the MPC described in (3.7), (3.5), and (3.6) is applied to the system

(3.1) with a linear model Pm and a scheduling vector θ containing the

set-point r. Let sθ and P (θ) be the equilibrium point corresponding

to θ and the linearized model at sθ. Assume that QT,θ is the solution

of DARE for Pm and the weights Qθ and Rθ in (3.5), and Klqr is

the corresponding LQR gain. If bPm,Klqr
> δg(Pm, P (θ)), then the

equilibrium state xθ corresponding to the set-point r in closed-loop

system Eqs. (3.1), (3.5), (3.6), and (3.7) is asymptotically stable.

Proof If the state xk is in the neighborhood of xθ, All the constraints

in the MPC formulation of (3.5) are inactivated. Then, the solution

of the MPC is equivalent to the solution of the LQR [1]:

J∗
∞(δx0) = min

∞∑
k=0

∥δxk∥2Qθ
+ ∥δuk∥2Rθ

= ∥δx0∥2QT,θ

s.t. δxk+1 = Aθδxk +Bθδuk

δx0 = x̂(k)− x̄(k), δu0 = u(k)− ū(k).

(3.11)

Then the closed-loop system between the kth and the (k + 1)th sam-

pling time is

dx

dt
= f(x(t),−Klqrδx0 + ū(k)),

y = h(x).

(3.12)
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The linearized and discretized system of (3.12) at xθ is

δx(k + 1) = Aθδx(k) +Bθδu(k)

= (Aθ −BθKlqr)δx(k),

δy(k) = Cθδx(k),

(3.13)

where δx(k) = x(k) − xθ; δu(k) = u(k) − uθ; δy(k) = y(k) − r;

Aθ, Bθ, and Cθ are the matrices corresponding to P (θ); uθ is the

steady-state input at xθ. Because LQR gain Klqr satisfies Theorem

2.3, the autonomous system (3.13) is asymptotic stable and all the

absolute eigenvalues of (Aθ − BθKlqr) are less than one. Because

the continuous matrix transformed from (Aθ − BθKlqr) is Hurwitz

matrix, (xθ, uθ) in the closed-loop system is asymptotically stable as

the linearized dynamics of the system (3.1) is stabilized. ■

Thus, we can guarantee the stability at all the equilibrium points

in the operating region if Theorem 3.1 is satisfied in each cluster.

In order to find the number of the clusters, Algorithm 3 is proposed.

Note that bP (θmed,i),Klqr,i
should be larger than the threshold γth so that

Algorithm 3 can be terminated. Qi and Ri affect Klqr,i, so these pa-

rameters have to be tuned. Finding Qi, Ri can be time-consuming be-

cause it relies on heuristics. An alternative is to replace bP (θmed,i),Klqr,i

in Algorithm 3 by min(bopt(P (θmed,i)), γmax), where γmax is a thresh-

old for the gap metric between two systems in a cluster. Then we tune

Qi and Ri and check if the corresponding LQR gain can stabilize all

the grid points in the cluster.
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Algorithm 3: Determining the number of clusters

Initialization :
Set the number of cluster : kcl
flag ← 1

while flag do
Run the Algorithm 2
Calculate ∆max,i as

∆max,i = max
θ∈Θi

δg(P (θ), P (θmed,i)), i = 1, ..., kcl

if bP (θmed,i),Klqr,i
≤ ∆max,i for any i then

kcl ← kcl + 1
flag ← 1

else
flag ← 0

end
end
Save {Θi}, {Θn

i }, {Si}, {Pi}
{θmed,i}, {θnmed,i}, {smed,i}, {Pmed,i, }, IDXmed
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The existence of a controller that can track any equilibrium point

in a cluster is guaranteed by Theorem 3.2.

Theorem 3.2. Consider a cluster Θi and its medoid θmed,i of a system

(3.1) obtained by the modified Algorithm 3 in which bP (θmed,i),Klqr,i
is

replaced by min(bopt(P (θmed,i)), γmax)). For all si, sj corresponding

to θi, θj ∈ Θ, there exists a controller that can steer si to sj .

Proof Let a controller K∗
i satisfy the inequality:

bP (θmed,i),K∗ > δg(P (θmed,i), P (θi)) (3.14)

The existence of K∗
i is guaranteed by Algorithm 3, as the LQR gain

Klqr,i satisfies the inequality (3.14). By Theorem 2.3, the equilibrium

point si of any pairs (P (θi), K
∗
i ) is asymptotically stable at the equi-

librium point si. Thus, si of the nonlinear system (3.1) is asymptoti-

cally stable. Let the nonlinear system (3.1) be Pnl. (Pnl, K
∗
i ) has the

region of attraction (ROA) at any si. There is a manifold of equilib-

rium points between arbitrary si and sj by Assumption 3.2. Let a

line on the manifold be s̄ij . Let s1 and K∗
1 be a point on s̄ij and a

controller, respectively such that the ROA of the pair (P (θ1), K1) in-

cludes si. Then K∗
1 can steer si to s1. Considering s1 as the initial

point si, the same procedure produces s2 and K∗
2 such that K∗

2 can

steer s1 to s2. Because s̄2j is shorter than s̄1j , K∗
i (i = 1, 2, · · · ) can

steer si to sj . ■

Note that there is no guarantee that a local MPC satisfies The-

orem 3.2 because MPC formulation involves constraints like (3.5).

Hence, the stability is evaluated by the closed-loop control perfor-

mance of several simulations. In addition, global stability is not guar-
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anteed, which is a limitation of multilinear model control approaches

applied to nonlinear systems [44].

In order to determines the weights of the local MPCs, we con-

sidered both gap metric-based method (2.33) and prediction based

method (2.36). The gap metric-based method is based on the equilib-

rium point corresponding to the scheduling vector. It is advantageous

in that the closed-loop behavior at a set-point can be guaranteed to

be stable with a large gap stability margin of a local controller. How-

ever, there is no guarantee that the controller steers any states to the

set-point. Although the gap metric between the set-point and the lo-

cal model is small, it does not mean that the current state is well

predicted and steered to the set-point because the dynamics of the

current state can be completely different from that of the set-point.

On the other hand, the output prediction-based method chooses the

weights based on the current state. However, it does not guarantee

stability at an equilibrium point. Combining both methods, the gap

metric-based multilinear MPC algorithm is proposed in Algorithm 4.
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Algorithm 4: Gap metric-based multilinear MPC

Initialization :
Obtain {Θi}, {Θn

i }, {Si}, {Pi},
{θmed,i}, {θnmed,i}, {smed,i}, {Pmed,i, }, IDXmed

from Algorithm 1,2,3
flag ← 1, t← 0, wi ← 1/kcl

for k ← 0 to NT by 1 do
Check the reference r(k) corresponding to θ(k)
Measure y(k) and calculate e(k) = r(k)− y(k)
Calculate i∗ = argmax γi(θ(k))
Calculate ϕ1

i (k)
if i == i∗ then

ϕ1
i (k)← 1

else
ϕ1
i (k)← 0

end
Calculate ϕ2

i (k) from (2.36)
Calculate a1 and a2

a1 = exp(−e(k)TΛee(k))

a2 = 1− a1

Calculate wi(k)

wi = a1ϕ
1
i (k) + a2ϕ

2
i (k)

Solve kcl local MPC problems based on {Pmed,i} and obtain
{ui(k)}

Calculate u(k) to the plant

u(k) =

kcl∑
i=1

wiui(k)

Apply u(k) to the plant
end
Save {u(k)}, {y(k)}
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The weights of the proposed multilinear MPC are calculated by

three criteria, the gap metric {γi(θk)}, prediction error {ϵi(k)}, and

error e(k). Its criterion to give the weights is the combination of the

prediction accuracy and the gap metric between models and the lin-

earized system at the set-point. A dual weighting strategy is applied

by the proposed algorithm: (1) when the state is out of the cluster and

the target set-point exists in the cluster, the weights are dominated by

the prediction accuracy; (2) when the output approaches the set-point,

the weights are dominated by the gap metric. Unlike the weights cal-

culated by the existing gap metric-based method, Eq. (2.33), only one

local MPC is selected for the scheduled controller when the error be-

comes small. Thus, the stability property of the local controller can

be exploited.

There is no guarantee of stability if the state is out of the ROA of

the closed-loop system by a local MPC at the reference point. In this

situation, the models whose prediction errors are small should have

high weights. If the output is close to the reference, the current state

is considered to be in the controllable set of a local controller that

stabilizes the dynamics at the reference. Then the state is steered to

the reference with asymptotic stability by Theorem 3.1 and 3.2.

Note that the parameter Λe can be determined by θk. Suppose

the θk is on the cluster whose medoid is θmed,i. ∆ytmax,k and ∆ytk are

defined as
∆ytmax,k = max

θ∈Θi

|yθmed,i,k − yθ,j|,

∆ytk = |yθmed,i,k − yθk,k|
(3.15)

Let the maximum distance between ith component of the steady-state

output in the cluster and that of the output at the medoid be ∆ymax,i.
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Then we can make the ith diagonal component of Λe have a scale of

∆y−2
max,i, so that each component of the error gives a similar effect to

determine the weights.

3.4 Results and discussions

3.4.1 Example 1 (SISO CSTR)

Consider a dimensionless exothermal continuous stirred tank re-

actor (CSTR) [52],

ẋ1 = −x1 +Da(1− x1)exp(− x2

1 + x2/γ
),

ẋ2 = −x2 +BDa(1− x1)exp(− x2

1 + x2/γ
) + η(u− x2),

y = x2,

(3.16)

where x1, x2 and u are the dimensionless conversion, temperature,

and coolant temperature, respectively. Da, γ, B and η are the dimen-

sionless parameters related to the flow rate of the feed, activation en-

ergy of the reaction, heat capacity of the solution, and the heat transfer

coefficient of the tank, respectively. The parameters for the plant and

the controller are shown in Table 3.1. The control objective is to track

a set-point of x2 and to reject the disturbance by manipulating u. The

output is the scheduling vector as it determines the equilibrium point

uniquely.
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Table 3.1: Parameters of Example 1

CSTR Local MPC Global MPC
Da 0.072 Qi 1 ke 2
γ 20 Ri 0.01 µ 0.05
B 8 N 10 Λi 100
η 0.3 Λe 1
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The proposed gridding and clustering algorithms are applied with

the parameters γth = 0.1 and kcl = 4. The clusters and medoids of

the steady-state input-output pair are obtained as shown in Figure 3.1

and Table 1. The system has the output multiplicity when the value

of the steady-state input is between -0.519 and 0.527. Each cluster

is connected and the maximum gap metric of each medoid does not

exceed 0.51. The maximum spectral radius of the closed-loop sys-

tems controlled by the LQR controller in a cluster is less than 1 as

shown in Table 3.1, which means the four local MPCs are set without

stability issue. The controllers are combined into a multilinear MPC

controller (MLMPC I) using the proposed weighting method. In order

to check offset-free tracking, the state and measurement noise are not

added. Luenberger observer is chosen for the filter as it is convenient

to control the response time by changing the poles of the observer.

Set-point tracking control and disturbance rejection are tested for

MLMPC I. Gap metric-based MLMPC (MPMPC II) and prediction-

based MLMPC (MPMPC III) are also tested for comparison and the

results are shown in Figure 3.2, 3.3, 3.4,3.5, and Table 3.2. Subscripts

c, g, and p represent MLMPC I, II, and III, respectively.
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The performance of MLMPC III is the worst for set-point track-

ing, as yp has a high overshoot in the third reference step and os-

cillates in the last reference step. The weights of MLMPC III does

not change at the first 10 sample times at the third reference step,

which means the third local MPC is mainly used for the scheduled

controller. The gap metric between the third medoid and the third ref-

erence is 0.93, which means the MPC using the third model is not

adequate for control the neighborhood of the third reference. In addi-

tion, the gap metric between the third medoid and the last reference

is 0.99, and it causes oscillation. On the other hand, yg and yc track

the reference without oscillation in the whole operating range. In ad-

dition, the performance of a controller is measured by the sum of ab-

solute errors (SAE). The SAE of an output is defined as
∑N

k=1 |e(k)|,
where e(k) is the error of the output at kth sampling time and N is

the number of the samples. Without disturbance, I has the lower SAE

than II. yc tracks the reference faster than yg with the help of the

prediction-based weight.

For disturbance rejection, we inject step input disturbances whose

sizes are 1, -1, and -0.5 at time 30, 150, and 260, respectively. MLMPC

I and MLMPC II show improved performances compared to MLMPC

III in terms of SAE. As shown in Figure 3.4, the integrated MLMPC

controller has a lower SAE than the others for disturbance rejection

control. All controllers have the same weights for their local con-

trollers after the disturbances are injected.
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We also check that the number of the clusters affects the stability

and performance of the proposed controller as shown in Table 3.3.

The second column represents the minimum gap metric between the

last set-point and the models in the clusters. The third column rep-

resents the computation time during the closed-loop simulation. The

last column represents the sum of output errors during the simulation.

The table shows the minimum gap metric decreases as the number of

clusters increases. It implies the stability margin increases with the

number of the clusters. Indeed, we have observed the output oscillates

if the number of clusters is smaller than four, and achieves offset-free

control otherwise. On the other hand, the computation time linearly

increases with respect to the number of the clusters, because the num-

ber of optimization problems to be solved increases. The transient

performance does not seem to be related to the number of clusters.
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Table 3.3: Effects of the number of clusters

# of clusters Gap metric Computation time (s) Sum of errors
1 0.79 24.5 132
2 0.79 38.0 134
3 0.79 53.0 135
4 0.30 66.0 86
5 0.20 77.7 101
6 0.11 91.0 98
7 0.11 109.8 99
8 0.11 120.7 99
9 0.11 135.9 104
10 0.11 148.8 108

61



3.4.2 Example 2 (MIMO CSTR)

Consider a multi-input multi-output continuous stirred tank re-

actor (CSTR) [53]. It consists of an irreversible and exothermic reac-

tion, and the temperature is controlled by a coolant stream.

ĊA(t) =
q

V
[CA0 − CA(t)]− k0CA(t)e−E/RT (t),

Ṫ (t) =
q

V
[T0 − T (t)]− ∆Hk0

ρCp

CA(t)e−E/RT (t)

+
ρcCpc

ρCpV
qc(t)[1− e−

hA
ρcCpcqc(t) ][Tc0 − T (t)],

y(t) =[CA(t) T (t)]T .

(3.17)

The parameters and initial values of the variables in the system are

given in Table 3.4. The measured concentration CA and the temper-

ature T are controlled by manipulating the flow rate of A, q and the

coolant flow rate, qc for set-point tracking and disturbance rejection.

The input constraints are : q ∈ [95, 150] and qc ∈ [60, 110].
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Table 3.4: MIMO CSTR Parameters and Initial Values

Product concentration CA 0.1 mol/L
Coolant flow rate qc 103.41 L min−1

Feed concentration CA0 1 mol/L
Inlet coolant temperature TC0 350 K
Heat transfer term hA 7 × 105 cal/min K
Activation energy term E/R 1 × 104 K
Liquid densities ρ, ρc 1 × 103 g/L

Reactor temperature T 438.51 K
Process flow rate q 100 L min−1

Feed temperature T0 350 K
CSTR volume V 100 L
Heat of reaction ∆H -2 × 10 5 cal/mol
Specific heats Cp, Cpc 1 cal g −1 K −1

Reaction rate constant 1 k0 7.2 × 1010 min −1
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The steady-state input-output relationship is shown in Figure 3.6.

Since the degrees of freedom in (3.17) are two, any two variables

among two inputs and two outputs determine the equilibrium point

uniquely. The manipulated variables are chosen as the scheduling

variables in this example. The proposed gridding and clustering al-

gorithm are applied with the parameters γth = 0.1 and kcl = 4. The

clusters and the medoids with 242 grid points are obtained as shown

in Figure 3.7 and Table 3.5. Each cluster is connected and the maxi-

mum gap metric of each medoid does not exceed 0.36. The parame-

ters for the controller are shown in Table 3.6. The maximum spectral

radius of the closed-loop systems controlled by the LQR controller

in a cluster is less than 1 as shown in Table 3.5. The controllers are

combined into a global multilinear MPC controller (MLMPC I). The

tuning parameters are: ke = 2,Λi =

(
1000 0

0 10

)
, µ = 0.05, and

Λe =

(
400 0

0 0.0025

)
. Set-point tracking control and disturbance re-

jection are tested for MLMPC I, MLMPC II, and MLMPC III. The

results are shown in Figures 3.8 and 3.9 and Table 3.7.
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Figure 3.6: Steady-state input-output map for MIMO CSTR
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Table 3.5: Clustering result of MIMO CSTR

1st 2nd 3rd 4th
θmed (120 ,70) (95 ,100) (120 ,105) (98.75 ,110)
xmed (0.025,473) (0.099,438) (0.073,449) (0.013,432)
δg,max 0.1053 0.2829 0.1747 0.3507
λmax,med 0.21 0.51 0.42 0.49
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Table 3.6: Parameters of Example 2

Local MPC Global MPC

Qi

(
1000 0
0 1

)
ke 2

Ri

(
0.001 0
0 0.001

)
µ 0.05

N 10 Λi

(
1000 0
0 10

)
Λe

(
400 0
0 0.0025

)
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yg has the longest settling time in the second reference step.

MLMPC II uses the last local MPC as the scheduled controller as

shown in Fig 3.10. The gap metric between the last medoid and the

first reference is 0.91. It can be interpreted that the large gap met-

ric between the model and the state makes a slow transient response.

Whereas, both yp and yc track the reference signal fast and accurately

in the whole operating range. The overshoot of MLMPC I is lower

than that of MLMPC III at the second reference step. As shown in

Figure 3.10, MLMPC III is the combination of the second and the last

local MPC. The gap metric between the second medoid and the sec-

ond reference is 0.42, which is bigger than The gap metric between

the last medoid and the second reference, 0.18. whereas, MLMPC

I uses the last local MPC as the global MPC, which results in bet-

ter transient response. For disturbance rejection, we inject step input

disturbances whose sizes are (5,0), (5,5), and (5,-5) at 13 (min), 24

(min), and 32 (min), respectively. All controllers have similar perfor-

mances as shown in Figure 3.9 and Table 3.7. However, MLMPC III

has different weights between the second disturbance injection and

the last disturbance injection. It shows the prediction accuracy of the

third augmented model is similar to that of the first augmented model.

The combination of the first and the third LQR controller stabilizes

the system with the second input disturbance.

In summary, the proposed MLMPC controller outperforms the

other two MLMPC controllers in terms of set-point tracking. The

MLMPC I shows smooth transition compared to MLMPC II, and it

converges to the local MPC that guarantees the stability compared to

MLMPC III. Besides, the robust performance of the proposed con-

troller is verified by the disturbance rejection test.
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Chapter 4

Switching multilinear model predictive control
based on gap metric 2

4.1 Introduction

The prediction-based and gap metric-based approaches are com-

bined to find the weights for local controllers in the previous chapter.

It improves transient responses compared to the gap-metric based ap-

proach and guarantees the offset-free tracking property of transition

in the subset of the operating region, called the subregion. However,

this approach does not guarantee the reachability from one subre-

gion to another subregion where the set-point is located. In this chap-

ter, we propose to design local controllers and prove that each local

controller has the offset-free tracking property if the behavior of the

system is similar to the model. Second, we propose a method for de-

termining the path along with the subregions from an initial point

to a set-point in the operating region. Third, the switching strategy to

design a global controller is proposed, which uses only one local con-

troller at each sampling time. We show the resulting global controller
2This chapter is an adapted version of B. Park, Y. Kim, and J. M. Lee, “Design of

switching multilinear model predictive control using gap metric," Computers & Chemical
Engineering, Under review
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guarantees the offset-free tracking property and the system stability

at any set-point in a designated operating region.

4.2 Shortest path problem

Let V be a set of nodes and A be a set of directed edges between

nodes in V . Given a directed graph D = (V,A), two distinguished

nodes s, t ∈ V , and nonnegative costs cij for (i, j) ∈ A, a minimum

cost of the s−t path is obtained by solving the shortest path problem.

It is formulated as

z =min
∑

(i,j)∈A

cijxij∑
k∈V +(i)

xik −
∑

k∈V −(i)

xki = 1 for i = s,

∑
k∈V +(i)

xik −
∑

k∈V −(i)

xki = 0 for i ∈ V \{s, t},

∑
k∈V +(i)

xik −
∑

k∈V −(i)

xki = −1 for i = t,

V +(i) ={k|(i, k) ∈ A},

V −(i) ={k|(k, i) ∈ A},

xij ∈{0, 1} for (i, j) ∈ A,

(4.1)

where xij = 1 if the directed edge (i, j) is in the shortest s − t path.

Figure 4.1 shows a instance of graph for shortest path problem. The

shortest path problem is known as a well-solved problem in the sense

that there exists an “efficient" algorithm for solving the problem. An

algorithm on a graph G = (V,A) with n nodes and m edges for m ≥
n is said “efficient" if, in the worst case, the algorithm requiresO(mp)
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elementary calculations for some integer p [54]. Some algorithms and

their time complexities to solve this problem for directed graphs with

nonnegative weights are shown in Table 4.1.

Remark 4.1. A global controller can be designed using local con-

trollers and the solution of the shortest path problem. Considering

operating conditions as nodes, we can define a pair of two conditions

as an edge if there exists a local controller such that any of two condi-

tions can be moved to the other. Then, the shortest path problem can

be exploited to determine the path from an initial operating condition

to another condition. The plant is controlled by a local controller un-

til the state is close to a node in the path. If the state reaches near

the node, another controller is used to steer the state to another node

constituting an edge in the path. Thus, the global controller is a set

of local controllers based on a switching strategy.
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Figure 4.1: Shortest path instance

78



Ta
bl

e
4.

1:
Ti

m
e

co
m

pl
ex

ity
to

so
lv

e
th

e
sh

or
te

st
pa

th
pr

ob
le

m
(n
,m

:T
he

nu
m

be
ro

fn
od

es
an

d
ed

ge
s)

A
lg

or
ith

m
Ti

m
e

co
m

pl
ex

ity
A

ut
ho

r
B

el
lm

an
-–

Fo
rd

al
go

ri
th

m
O
(m

n
)

B
el

lm
an

[5
5]

,S
hi

m
be

l[
56

],
M

oo
re

[5
7]

D
ijk

st
ra

’s
al

go
ri

th
m

w
ith

lis
t

O
(n

2
)

D
ijk

st
ra

[5
8]

D
ijk

st
ra

’s
al

go
ri

th
m

w
ith

bi
na

ry
he

ap
O
((
m

+
n
)l

og
n
)

Jo
hn

so
n

[5
9]

D
ijk

st
ra

’s
al

go
ri

th
m

w
ith

Fi
bo

na
cc

ih
ea

p
O
(m

+
n

lo
gn

)
Fr

ed
m

an
&

Ta
rj

an
[6

0]
T

ho
ru

p’
s

al
go

ri
th

m
O
(m

+
n

lo
gl

og
n
)

T
ho

ru
p

[6
1]

79



4.3 Switching Multilinear Model Predictive Control

In this section, we propose a novel switching MLMPC algo-

rithm which can guarantee the stability of the closed-loop system

whose set-point is determined by a scheduling vector, regardless of

the subregion to which it belongs. It consists of the design of the

local MPC controllers, the path to the reference, and the switching

strategy among the local MPC controllers based on gap metric.

4.3.1 Local MPC design

Before designing a local MPC that steers the state to a subre-

gion, define a set of the scheduling vectors in the subregion Θj as a

grid of Θj denoted by Θj
grid := {θi} ⊂ Θj . Accordingly, the grid of

Θ,Θgrid, is defined by
⋃Nm

j=1Θ
j
grid. Denoting the corresponding equi-

librium point F (θi) by si := (xs,i, us,i, ys,i), the linearized system of

Eq. (2.1) at si is obtained as and denoted by P (θi).

ẋ =
∂f

∂x

∣∣∣∣
xs,i,us,i

(x− xs,i) +
∂f

∂u

∣∣∣∣
xs,i,us,i

(u− us,i),

y =
∂h

∂x

∣∣∣∣
xs,i

(x− xs,i) + ys,i

(4.2)

Defining the representative scheduling vector in Θgrid
j as the medoid

of Θj and denoting it by θrj ∈ Θj
grid, the grid Θj

grid is assumed to

satisfy Assumption 4.1:

Assumption 4.1. Let the convex hull of a grid Θj
grid be Conv(Θj

grid)
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and contain Θj . Any P (θi) from θi ∈ Conv(Θj
grid) satisfies

δg(P (θrj ), P (θi)) ≤ max
θs∈Θj

grid

δg(P (θrj ), P (θs)).

Suppose θ1 ∈ Θ1
grid has the maximum gap metric with θr1 ∈

Θ1
grid. Assumption 4.1 means that if a controller K1 that stabilizes

P (θr1) can stabilize P (θ1), K1 can stabilize any P (θk) from θk ∈ Θ1.

That is, we can design a local controller that can stabilize the system

(2.1) at any equilibrium point in a subregion. Assumption 4.1 is not

restrictive because it can be satisfied by refining the grid.

Remark 4.2. To refine the grid, the threshold value γth can be defined

so that the gap metric of any two adjacent equilibrium points is less

than γth. If γth is small enough, there exists a subregion satisfying

Assumption 4.1, because one of the scheduling vectors of its grid can

approximate any the scheduling vector in the subregion.

The following lemma is necessary to determine the stability of

the closed-loop system at an equilibrium point.

Lemma 4.1. [62] Let x = 0 be an equilibrium point for the nonlinear

system

ẋ = f(x),

where f : D → Rn is continuously differentiable and D is a neigh-

borhood of the origin.

A =
∂f

∂x
(x)

∣∣∣∣
x=0

Then,
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1. The origin is asymptotically stable if Re(λi) < 0 for all eigen-

values λi of A.

2. The origin is unstable if Re(λi) > 0 for one or more of the

eigenvalues of A.

The local linear MPC designed in Section 3 can be a local con-

troller for each subregion under some conditions. Theorem 4.1 shows

that (2.6), (2.9), and (2.10) can stabilize an equilibrium point if the

gap metric between the linearized dynamics at the equilibrium point

and the local linear model used in MPC is smaller than the gap sta-

bility margin of the pair of the model and the controller in the MPC.

Theorem 4.1. Suppose the space of scheduling vector Θ and its grid

Θgrid of a nonlienar process (2.1) satisfy Assumptions 3.2, 3.3, and

4.1. For θm ∈ Θgrid and θ ∈ Θ, assume that the MPC described

in (2.6), (2.9), and (2.10) is applied to the system (2.1) with a lin-

ear model Pm := Pθm to stabilize the system at an output r whose

corresponding scheduling vector is θ. Denote F (θ) by sθ and let

P (θ) be the linearized model of (2.1) at sθ. Assume that QT,θ is

the matrix for the cost of LQR with Pm and the weights Qθ and Rθ

in (2.9), and Klqr is the gain of the corresponding LQR controller.

If bPm,Klqr
> δg(Pm, P (θ)), then the closed-loop system Eqs. (2.1),

(2.6), (2.9), and (2.10) at the set-point r is asymptotically stable.

Proof Denote the state at steady-state by xθ. If the state at the kth

sampling time x(k) is in the neighborhood of xθ, all the constraints

in the MPC formulation of (2.9) are inactive. Then, the MPC (2.9) is

82



reduced to the LQR [1]:

J∗
∞(δx0) = min

∞∑
k=0

∥δxk∥2Qθ
+ ∥δuk∥2Rθ

= ∥δx0∥2QT,θ

s.t. δxk+1 = Aθδxk +Bθδuk

δx0 = x̂(k)− x̄(k), δu0 = u(k)− ū(k).

(4.3)

Then the closed-loop system between the kth and the (k + 1)th sam-

pling time is

dx

dt
= f(x(t),−Klqrδx0 + ū(k)),

y = h(x),

(4.4)

where Klqr = (Rθ + BT
θ QT,θBθ)

−1BT
θ QT,θAθ. The linearized and

discretized system of (4.4) at the equilibrium point is

δx(k + 1) = Aθδx(k) +Bθδu(k)

= (Aθ −BθKlqr)δx(k),

δy(k) = Cθδx(k),

(4.5)

where δx(k) = x(k) − xθ; δu(k) = u(k) − uθ; δy(k) = y(k) − r;

Aθ, Bθ, and Cθ are the matrices corresponding to P (θ); uθ is the

steady-state input at xθ. Because LQR gain Klqr satisfies Theorem

2.3, the autonomous system (4.5) is asymptotically stable and all the

absolute eigenvalues of (Aθ − BθKlqr) are less than one. Because

the continuous matrix transformed from (Aθ − BθKlqr) is Hurwitz

matrix, (xθ, uθ) in the closed-loop system is asymptotically stable by

Lemma 4.1. ■
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Thus, we can guarantee the stability at all the equilibrium points

in the operating region corresponding to Θ if Theorem 4.1 is satisfied.

However, if the operating range is large, the MPC satisfying Theorem

4.1 may not exist. Thus, the operating region is partitioned into the

subregions such that there exists a local MPC satisfying Theorem 4.1

for each subregion. Generating subregions based on gap metric have

been proposed for multiple MPC [63, 64, 46]. In this study, grid-

ding and K-medoids clustering algorithms based on gap metric are

exploited to construct the grid and subregions of Θ [65]. Because it

is not guaranteed that the number of linear models increases linearly,

caution must be exercised when the method is applied to high dimen-

sional systems.

Remark 4.3. The switching method may have stability when moving

between two adjacent subregions. Assume that the ith subregion is

adjacent to the jth subregion. If there exists an equilibrium point in

the ith subregion such that the jth local MPC can steer the point to

the jth subregion with stability, and vice versa, the switching method

can construct a global controller that can steer the state to any equi-

librium point corresponding to θ ∈ Θ.

4.3.2 Path design based on gap metric

Even if we construct the subregions and the local MPCs, it is un-

clear how the state is steered from one subregion to another subregion

by the local MPCs. If a local controller in a subregion can steer the

state into other subregions, A global controller can be designed by the

local MPCs as we mentioned in Remark 4.1 and 4.3. To find the equi-

librium points in a subregion that the state in another subregion can
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reach by the local MPC, we first propose to construct the boundary

of a subregion Θi using the grid Θi
grid in Algorithm 5. The algorithm

finds the vertices in the convex hull of the grid of a subregion and the

points on the facets of the convex hull excepting the vertices.
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Algorithm 5: Calculation of the boundaries of subregions

Input :
The set of the subregions of Θ: {Θi

grid}
for i← 1 to |{Θi

grid}| by 1 do
Θi

bd ← ∅
{θtemp

k } ← Θi
grid

Θi
bd ← The set of the vertices of Conv(Θi

grid)

Set {Aj
facet} as the set of nθ × nθ matrices where the columns of

Aj
facet constitute the jth facet of Conv(Θi

grid)

for j ← 1 to |{Aj
facet}| by 1 do

for k ← 1 to |{θtemp
k }| by 1 do

b← (Aj
facet)

−1θtemp
k

if 0 ≤ bi < 1 and
∑nθ

i=1 bi == 1 then
Θi

bd ← Θi
bd ∪ {θ

temp
k }

end
end

end
end
Save {Θi

bd}
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The equilibrium points corresponding to a boundary Θi
bd are the

candidates where the state from another subregion Θj can move by

the local MPC for Θj . We then propose to construct the pairs between

two subregions in Algorithm 6. Each pair of them consists of a point

in the boundary of a subregion and the closest point in the bound-

ary of another subregion. Because the components of the scheduling

vector have different magnitudes, we define a normalized scheduling

vector as

θnk,nk
=

θk,nk − θk,min

θk,max − θk,min
, (4.6)

where θk,min and θk,max are the lower and upper bounds of the kth

component of the scheduling vector, respectively. Thus, the compo-

nents of the scheduling vector are scaled between zero and one. Then,

we define a matrix De whose components are denoted by dei,j , which

is the Euclidean distance between the ith and jth normalized schedul-

ing vector. Similarly, Dg is defined in terms of the gap metric.

Even if the pairs generated by Algorithm 6 can be channels be-

tween two subregions, it is unclear whether a local MPC steers the

state from a point to the other point in a pair. Thus, we propose Algo-

rithm 7 to choose the pairs where each point in a pair is close to the

subregion the other point belongs to in terms of both the gap metric

and Euclidean distance. In addition, we add the condition that each

point in a pair is stabilized by the local MPC for the subregion the

other point belongs to.
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Algorithm 6: Calculation of the pairs between points from boundaries

Input :
The set of the boundaries of {Θi}: {Θi

bd}
The matrix of the Euclidean distance between scheduling vectors:
De

The matrix of the gap metric between the linear systems
corresponding to scheduling vectors: Dg

for i← 1 to |{Θi
bd}| − 1 by 1 do

Θtemp1
bd ← Θi

bd

for j ← i+ 1 to |{Θi
bd}| by 1 do

Θtemp2
bd ← Θj

bd

De
temp ← (de,temp

a,b ), Dg
temp ← (dg,temp

a,b ), where

de,temp
a,b := dea,b, d

g,temp
a,b := dga,b, θa ∈ Θtemp1

bd , θb ∈ Θtemp2
bd

IDXpair1 ← {}, IDXpair2 ← {}
for a← 1 to |Θtemp1

bd | by 1 do
btemp ← argmin

1≤b≤|Θtemp2
bd |d

e,temp
a,b

IDXpair1 ← IDXpair1 ∪ {(a, btemp)}
IDXpair2 ← IDXpair2 ∪ {(btemp, a)}

end
for b← 1 to |Θtemp2

bd | by 1 do
atemp ← argmin

1≤a≤|Θtemp1
bd |d

e,temp
a,b

IDXpair1 ← IDXpair1 ∪ {(atemp, b)}
IDXpair2 ← IDXpair2 ∪ {(b, atemp)}

end
idxi,jp ← IDXpair1

idxj,ip ← IDXpair2

end
end
Save IDXp := {idxi,jp }
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Algorithm 7: Filtering of the pairs between points from boundaries

Input :
{Θi

bd}, De,Dg, IDXp

The threshold for the 2-norm and gap metric : γeth, γ
g
th

The gain of local MPCs in unconstrained regions : {Ki
lqr}

for i← 1 to |{Θi
bd}| − 1 by 1 do

for j ← i+ 1 to |{Θi
bd}| by 1 do

if idxi,jp ̸= ∅ then
idxtemp1

p ← idxi,jp , idxtemp2
p ← idxj,ip

De
temp ← (de,temp

a,b ), Dg
temp ← (dg,temp

a,b ), where

de,temp
a,b := dea,b, d

g,temp
a,b := dga,b, θa ∈ Θi

bd, θb ∈ Θj
bd

for k ← 1 to |idxtemp1
p | by 1 do

Pick the kth element (a, b) in idxtemp1
p

α, β ← True
if (P (θa),K

j
lqr) is asymptotically stable then

α← False
end
if (P (θb),K

i
lqr) is asymptotically stable then

β ← False
end
if de,temp

a,b > γeth or dg,temp
a,b > γgth or α or β then

idxtemp1
p ← idxtemp1

p − {(a, b)}
idxtemp2

p ← idxtemp2
p − {(b, a)}

end
end

end
idxi,jp ← idxtemp1

p , idxj,ip ← idxtemp2
p

end
end
Save IDXp := {idxi,jp }
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According to the sets of the pairs generated by Algorithm 6 and

7, we define the adjacent subregions of a subregion.

Definition 4.1. The adjacent subregions of a subregion Θi is defined

and denoted by

adj(Θi) = {Θj|idxi,j
p ̸= ∅,∀Θj ⊂ Θ} (4.7)

where idxi,j
p is the set of pairs constructed by Algorithms 6 and

7. If Θj is an adjacent subregion of Θi, there exists an equilibrium

point in the ith subregion such that the jth local MPC can steer the

point to the jth subregion with stability, and vice versa. The following

is assumed for the subregions {Θi}:

Assumption 4.2. Assume a set of subregions, the union of which is a

proper subset of Θ. Then, the union of the adjacent subregions of the

subregions is not the same as the union of the subregions.

Assumption 4.2 means that there exists a path between any two

subregions among the adjacent subregions. Thus, the switching method

can construct a global controller that can steer the state to any equi-

librium point corresponding to θ ∈ Θ.

4.3.3 Global MPC design

As we find the channels through which the state in a subre-

gion can be steered to another subregion by a local MPC, the re-

mained problem is how to decide the path between an initial state

and a set-point. Here we propose to determine the path using the

shortest path algorithm. To construct the graph for the shortest path

problem, we propose two methods to decide the nodes, edges, and
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edge costs of a graph and the intermediate equilibrium points be-

tween an initial state and a set-point in Algorithms 8 and 9. In Al-

gorithm 8, a node is defined as each subregion in the operating re-

gion, denoting the set of the nodes by V := {i|∃Θi ⊂ Θ for i}.
An edge is defined as a set of two subregions if one subregion is

an adjacent subregion of the other, denoting the set of the edges by

A := {{i, j}|∃idxi,j
p ⊂ IDXp for i, j ∈ V }. The intermediate equi-

librium points Θpath are chosen among the pairs generated by Algo-

rithms 6 and 7 based on gap metric. It maximizes the gap metric sta-

bility margin of a local MPC at each intermediate equilibrium point

that belongs to an adjacent subregion. In addition, it is independent

of the initial state and set-point. It only depends on the subregions

where they belong to. Thus, the graph can be used regardless of the

initial state and set-point.
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Algorithm 8: Graph construction 1

Input :
{Θi

bd}, De,Dg, IDXp

The medoids where local MPCs are constructed: {θri }
The set of the nodes : V = {i|Θi ⊂ Θ}
The set of the edges : A = {{i, j}|idxi,jp ∈ IDXp for i, j ∈ V }.
for i← 1 to |{Θi

bd}| − 1 by 1 do
for j ← i+ 1 to |{Θi

bd}| by 1 do
if idxi,jp ̸= ∅ then

idxtemp
p ← idxi,jp

for k ← 1 to |idxtemp
p | by 1 do

Pick the kth element (a, b) in idxtemp
p

Calculate for θa ∈ Θi
bd, θb ∈ Θj

bd

ckij ← δg(P (θri ), P (θb)) + δg(P (θrj ), P (θa))

end
end
k∗ ← argmink c

k
ij , cij ← mink c

k
ij

Set cij as the edge cost of {i, j} ∈ A

θpathij ← θb, θ
path
ji ← θa for the kth element (a, b) in idxtemp

p

end
end
Save undirected graph G = (V,A) with cost C := {cij}
Save Θpath := {θpathij }
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Algorithm 9: Graph construction 2

(Offline)
Input : {Θi

bd}, De,Dg, IDXp

The set of the nodes : V0 = {a|(a, b) ∈ idxi,jp ∈ IDXp}
The set of the edges : A0 = {(a1, b2)|(a1, b1) ∈⋃

k ̸=j idx
i,k
p , (a2, b2) ∈ idxi,jp , |adj(Θi)| ≥ 2}.

for (a, b) ∈ A do
cab ← ∥θna − θnb ∥2

end
(Online)
The initial and terminal scheduling vectors : θs ∈ Θi

grid, θt ∈ Θj
grid

Vs ← {a|θa ∈ Θi
grid}, Vt ← {b|θb ∈ Θj

grid}
As ← {(a, b)|θa ∈ Θi

grid or θb ∈ Θi
grid}

At ← {(a, b)|θa ∈ Θj
grid or θb ∈ Θj

grid}
V ← V0 − (Vs ∪ Vt), A← A0 − (As ∪At)
V ← V ∪ {s, t}
for (a, b) ∈

⋃
k idx

i,k
p do

A← A ∪ (s, b), csb ← ∥θns − θnb ∥2
end
for (a, b) ∈

⋃
k idx

k,j
p do

A← A ∪ (a, t), cat ← ∥θna − θnt ∥2
end
Save directed graph G = (V,A) with cost C := {cij}
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Compared to Algorithm 8, Algorithm 9 can reduce the length of

the path in terms of the Euclidean distance between an initial point

and a set-point. Thus, it can be a better suboptimal solution if the

cost function is quadratic with respect to the deviation of the state

from the state at a set-point. The drawback is that the graph is reorga-

nized whenever the set-point changes; however, the time complexity

is O(m), which is negligible compared to that of the shortest path

problem in Table 4.1, where n and m are the number of the nodes

and edges, respectively.

Based on Algorithm 6 or 7, the global controller is proposed in

Algorithm 10. The shortest path problem determines the intermediate

state, which is the path from an initial operating condition to another.

The plant is controlled by a local MPC until the state is close to an

intermediate state in the path. Algorithm 10 considers the state is at

steady-state if there remains 5% of the set-point for each output com-

ponent [66]. If the state reaches the intermediate state, another local

MPC is used to steer the state to another intermediate state constitut-

ing an edge in the path. Thus, the global controller is a set of local

controllers based on the switching strategy.
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Algorithm 10: Switching MMPC
Input : θ0 ∈ Θn0 , θnset ∈ Θset, V, A,C,Ns, nset

Solve the shortest path problem (4.1) from θ0 to θset
Set the intermediate vectors {θ1 ∈ Θn1 , · · · , θt ∈ Θnt} from the
solution of (4.1)
temp← 0, count← 0
Set the reference output r as the output at θtemp+1

for k ← 0 to Ns by 1 do
Measure the output ate the kth sampling time : y(k)
Check {yji (k)}, all the components of the output yi(k), are at
steady-state:

if
∥∥∥yjref,i − yji (k)

∥∥∥ / ∥∥∥yjref,i∥∥∥ ≤ 0.04 then
count← count+ 1

end
if count ≥ nset and temp < t then

temp← temp+ 1, count← 0
if temp == t then

Set the reference output r as the output at θset
else

Set the reference output r as the output at θtemp+1

end
end
Solve the local MPC (2.6), (2.9), (2.10) for the subregion Θntemp

Apply the first input of the solution to the plant (2.1)
u(k)← uopt0 + urs,ntemp

end
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Theorem 4.2. Suppose the space of scheduling vector Θ, its grid

Θgrid, and its subregions {Θi} of a nonlienar process (2.1) satisfy As-

sumptions 3.2, 3.3, 4.1, and 4.2. Assume that the intermediate points

are determined by Algorithms 5, 6, and 7, and the shortest path of the

graph obtained by Algorithm 8 or 9 is decided. Then, the global MPC

of Algorithm 10 can steer the state of (2.1) between two arbitrary

states in the steady-state if the scheduling vectors corresponding to

the states are contained in Θ.

Proof Denote the scheduling vectors and the subregions correspond-

ing to the initial point, the set-point, and the shortest path by θ0 ∈ Θ0,

θn ∈ Θn, and {θi|θi ∈ Θi, i = 1, · · · , n − 1}. The local MPC sat-

isfies Theorem 4.1 for the subregion Θi by Ci. Ci can stabilize θi+1

because Algorithm 7 checks the stability of (P (θi+1), Ci). Thus, θi
can be steered to θi+1 by Ci without offset. Thus, the global MPC can

steer the state from θ0 to θn. ■

4.4 Results and discussions

Consider a multi-input multi-output stirred tank reactor (CSTR)

[53].

ĊA(t) =
q

V
[CA0 − CA(t)]− k0CA(t)e−E/RT (t),

Ṫ (t) =
q

V
[T0 − T (t)]− ∆Hk0

ρCp

CA(t)e−E/RT (t)

+
ρcCpc

ρCpV
qc(t)[1− e−

hA
ρcCpcqc(t) ][Tc0 − T (t)],

y(t) =[CA(t) T (t)]T .

(4.8)
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It consists of an irreversible, exothermic reaction. The concentration

CA and the temperature T are controlled by manipulating the flow

rate of A, q and the coolant flow rate, qc. The parameters and initial

values of the variables in the system are described in Table 4.2.

97



Table 4.2: MIMO CSTR Parameters and Initial Values

Product concentration CA 0.1 mol/L
Coolant flow rate qc 103.41 L min−1

Feed concentration CA0 1 mol/L
Inlet coolant temperature TC0 350 K
Heat transfer term hA 7 × 105 cal/min K
Activation energy term E/R 1 × 104 K
Liquid densities ρ, ρc 1 × 103 g/L
Reactor temperature T 438.51 K
Process flow rate q 100 L min−1

Feed temperature T0 350 K
CSTR volume V 100 L
Heat of reaction ∆H -2 × 10 5 cal/mol
Specific heats Cp, Cpc 1 cal g −1 K −1

Reaction rate constant 1 k0 7.2 × 1010 min −1

Constraints on the flow rate qmin, qmax 95, 150 L min−1

Constraints on the coolant flow rate qc,min, qc,max 60, 110 L min−1

98



The steady-state input-output relationship is shown in Figure 4.2.

The manipulated variables are chosen as the scheduling variables as

they determine the equilibrium point uniquely. The operating region

is divided into four subregions by the gridding and clustering method

in [65]. The clusters and the medoids with 231 grid points are ob-

tained as shown in Figure 4.3 and Table 4.3. Each cluster is connected

and the maximum gap metric of each medoid does not exceed 0.36.

The maximum spectral radius of the closed-loop systems controlled

by the LQR controller in a cluster is less than 1 as shown in Table 4.3.

The candidates for the intermediate equilibrium points are generated

by Algorithms 5, 6, and 7 and are shown Figure 4.4. Setting both γe
th

and γg
th as 0.1 in Algorithm 7, the candidates are close to the adjacent

subregions in terms of the gap metric and Euclidean distance. Figure

4.5 shows the possible paths from an initial point and a set-point. Al-

gorithm 8 leaves only a single path between two adjacent subregions

so that the edges are reduced. On the other hand, Algorithm 9 exploits

all the candidates for the possible paths. To check offset-free tracking,

the state and measurement noises are not added. Luenberger observer

is chosen for the filter as it is convenient to control the response time

by changing the poles of the observer. Also, the performance of a con-

troller is measured by the summation of absolute errors (SAE). The

SAE of an output is defined as
∑N

k=1 |e(k)|, where e(k) is the error

of the output at kth sampling time and N is the number of samples.
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Table 4.3: Clustering result of MIMO CSTR

1st 2nd 3rd 4th
θmed (120 ,70) (95 ,100) (120 ,105) (98.75 ,110)
xmed (0.025,473) (0.099,438) (0.073,449) (0.013,432)
δg,max 0.1053 0.2829 0.1747 0.3507
λmax,med 0.21 0.51 0.42 0.49
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Figure 4.2: Steady-state input-output map for MIMO CSTR
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Figure 4.3: Subregions of steady-state input and output for MIMO CSTR
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Set-point tracking control and disturbance rejection are tested for

the controllers based on Algorithms 6 and 7. The parameters for MPC

are shown in Table 4.4, and the results are shown in Table 4.5 and

Figures 4.6, 4.7, and 4.8.

Denoting the global MPC designed by Algorithms 8 and 9 by

MLMPC I and MLMPC II, respectively, MLMPC I and MLMPC II

track all the references without offset. MLMPC I has the shorter set-

tling time than MLMPC II in the first reference step in Figure 4.6. It

seems that there is no difference after the first reference step. One rea-

son can be small changes of the subregions during the changes of the

references. In the first reference step, all the local MPCs are involved.

However, three, two, and, three local MPCs are involved in the sec-

ond, third, and fourth reference step, respectively. Table 4.5 shows

the mean value of SAE when an initial condition and a set-point are

chosen in the grid of a subregion and another subregion, respectively.

The main difference comes from the transition between Θ1 and Θ2

and that between Θ1 and Θ4. Almost 10% of difference in the temper-

ature is observed, and the mean values of the SAEs of all transitions

in Table 4.5 are (2.23, 970) and (2.29, 1002) for MLMPC I and II, re-

spectively. It shows that MLMPC I is better than MLMPC II in terms

of SAE, especially when the initial state is far from the set-point in

terms of Euclidean distance and gap metric. For disturbance rejec-

tion, we inject step input disturbances whose size are (20,0), (0,15),

and (0,-20) at 10 (min), 24 (min), and 32 (min), respectively. All con-

trollers reject the disturbances immediately.

In summary, MLMPC I shows smooth transition compared to

MLMPC II, considering the gap metric between the medoid and the

reference. In addition, the robust performance of the proposed con-
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troller is verified by the disturbance rejection test. The relationship

between the gap metric and the transient response should be investi-

gated in future research.

Note that it is unclear why MLMPC I is better than MLMPC II in

terms of SAE. One speculation is that MLMPC I can be better subop-

timal than MLMPC II at the intermediate points. To design MLMPC

I, the gap metric between a medoid and an intermediate point is mini-

mized, which means that the LQR controller constructed by a medoid

is close to that constructed by an intermediate point. Thus, the rate of

convergence at an intermediate point can be fast when MLMPC I is

used instead of MLMPC II. Although the distance between an initial

point and a set-point is minimized in MLMPC II, the rate of conver-

gence from an intermediate point to another intermediate point can be

slow because of the suboptimal controller. In this case, the trajectory

of the state does not seem to be a straight line.
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Table 4.4: Parameters of MPC for MIMO CSTR

Local MPC Global MPC

Qi

(
1000 0
0 1

)
nset 5

Ri

(
0.001 0
0 0.001

)
N 10
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Figure 4.6: Set-point tracking for MIMO CSTR

108



0
1

0
2
0

3
0

4
0

5
0

T
im

e
 (

s
)

0

0
.0

5

0
.1

0
.1

5

C
A
 (mol/L)

0
1
0

2
0

3
0

4
0

5
0

T
im

e
 (

s
)

4
0

0

4
2

0

4
4

0

4
6

0

4
8

0

5
0

0

T (K)

R
e

f

1
s
t 

lo
c
a

l 
M

P
C

2
n

d
 l
o

c
a

l 
M

P
C

3
rd

 l
o

c
a

l 
M

P
C

4
th

 l
o

c
a

l 
M

P
C

0
1

0
2
0

3
0

4
0

5
0

T
im

e
 (

s
)

0

0
.0

5

0
.1

0
.1

5

C
A
 (mol/L)

0
1
0

2
0

3
0

4
0

5
0

T
im

e
 (

s
)

4
0

0

4
2

0

4
4

0

4
6

0

4
8

0

5
0

0

T (K)

Fi
gu

re
4.

7:
Se

t-
po

in
tt

ra
ck

in
g

fo
rM

IM
O

C
ST

R
(T

op
:A

lg
or

ith
m

8,
B

ot
to

m
:A

lg
or

ith
m

9)

109



Ta
bl

e
4.

5:
M

ea
n

SA
E

fo
rM

IM
O

C
ST

R

To
Θ

1
Θ

2
Θ

3
Θ

4

Fr
om

M
L

M
PC

I
II

I
II

I
II

I
II

Θ
1

SA
E

C
A

1.
27

1.
27

3.
04

3.
16

4.
84

5.
30

T
91

2
92

3
15

23
16

26
19

28
21

18

Θ
2

SA
E

C
A

0.
77

0.
79

0.
87

0.
80

1.
72

1.
77

T
47

1
46

9
22

8
22

4
38

8
43

1

Θ
3

SA
E

C
A

1.
62

1.
64

1.
15

1.
12

2.
49

2.
52

T
99

3
10

37
59

9
57

3
87

8
88

4

Θ
4

SA
E

C
A

3.
83

4.
01

2.
80

2.
79

2.
32

2.
29

T
18

11
18

45
10

63
10

44
84

4
83

9

110



0 10 20 30 40 50

Time (min)

0

0.05

0.1

C
A
 (

m
o
l/
L
)

Ref

Algorithm 4

Algorithm 5

0 10 20 30 40 50

Time (min)

400

450

500

T
 (

K
)

0 10 20 30 40 50

Time (min)

100

120

140

q
 (

L
/m

in
)

0 10 20 30 40 50

Time (min)

60

80

100

q
c
 (

L
/m

in
)

Figure 4.8: Disturbance rejection for MIMO CSTR
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Chapter 5

Design of data-driven multilinear model
predictive control 3

5.1 Introduction

The methods to design MLMPC in the previous chapters need

the nonlinear model for a process to obtain linear models for MLMPC

and the equilibrium point in a set-point. However, a common issue

for the two methods of MLMPC is that it is hard to design MLMPC

without the nonlinear model of the process because the optimal or

suboptimal trajectories are required to get linear models around the

trajectories, which is difficult to be generated without the nonlinear

model. Trajectory optimization techniques [21, 23, 25] can be ex-

ploited to generate the trajectories. In this chapter, DDP is exploited

to obtain suboptimal trajectories to track a set-point, because DDP

optimizes the trajectory by solving the optimization problem based

on the first-order derivatives of the dynamics around the known fea-

sible trajectory, i.e., local linear model, at each time step [26]. Thus,

it needs only obtaining the local linear models around a known trajec-
3This chapter is an adapted version of B. Park, J. W. Kim, and J. M. Lee, “Data-driven

offset-free multilinear model predictive control using constrained differential dynamic pro-
gramming," Journal of Process Control, Under review
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tory instead of the structure and parameters of the nonlinear model.

DDP consists of backward and forward passes. Backward pass gen-

erates a new control sequence based on the nominal trajectory, and

forward pass generates a new nominal trajectory based on the new

control sequence. It iteratively tries to improve the trajectory until

the nominal trajectory converges. It has been shown to possess con-

vergence properties better than the Newton’s method performed on

the entire control sequence [27]. Because DDP does not consider any

constraints, it is restrictive to apply the processes with constraints for

which MPC is preferred. Constrained DDP (CDDP) has been devel-

oped to consider practical constraints on the processes [28, 29]. Most

recent works on constrained DDP consider box input constraints [30]

and nonlinear constraints [31]. Because DDP gives a set of linear

time-varying (LTV) controllers to track the nominal trajectory instead

of the set-point, it cannot achieve offset-free tracking unless the nom-

inal trajectory achieves offset-free tracking. MPC can achieve offset-

free tracking from the models obtained around a suboptimal trajec-

tory that has offset, as it can remove the offset by including integral

action or unknown disturbance to the model. Consequently, MLMPC

and DDP complement each other if there is no nonlinear model for a

process

In this work, we propose a framework for set-point tracking of

nonlinear systems that considers input constraints when the nonlinear

model and nonzero steady-state input for a set-point are unknown.

It consists of a constrained DDP (CDDP), modeling for CDDP and

MLMPC, and MLMPC. In the proposed scheme, CDDP includes the

tuning parameters for improving the trajectory stably, and the con-

vergence of the proposed CDDP is proved. In order to get the first
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derivatives of the process at the nominal trajectory every iteration, a

procedure to obtain the LTV model is proposed based on the condi-

tional Gaussian process. Then the clustering of the models based on

gap metric is proposed. It is designed to generate a cluster that con-

sists of the models whose time steps are adjacent, which considers

both gap metric and distance between the origins of a model and the

representative model of a cluster. Last, the prediction-based MLMPC

is proposed, because gap metric-based MLMPC requires the dynam-

ics at the set-point, which is impossible without the nonlinear model.

Our strategy makes the weight of a local MPC converge to one, if

the output error and the prediction error of the MPC are less than

designated thresholds. Hence, the proposed MLMPC is equivalent to

linear offset-free MPC around the set-point. We prove that the con-

verged MLMPC has offset-free tracking property if the gap metric

between the converged linear model and the linearized model at the

set-point is small.

5.2 Data-driven trajectory optimization

In this section, we propose a strategy to identify the model around

a trajectory and improve the trajectory alternately without the nonlin-

ear model. we consider input constraints, assume that the value of the

input at a set-point is unknown.

5.2.1 Constrained differential dynamic programming

To solve the optimal control problem, dynamic programming

(DP) requires solving the Bellman equation, which is impossible due

to the curse of dimensionality (COD). Approximate dynamic pro-
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gramming (ADP) or reinforcement learning (RL) try to solve the

equation by approximating the value function from data. However,

the structure of the value function is unknown, and the amount of the

data increases as the sizes of the state and input constraints, and the

complexity of the system increase. If the initial condition is fixed,

DDP is a better choice to solve the Bellman equation in terms of the

amount of data because it only solves the Bellman equation around a

trajectory. However, DDP has limits to apply to the practical nonlin-

ear processes directly. It does not consider constraints, and the feed-

back gain from the backward pass can be large so that the resulting

trajectory changes rapidly and does not converge. In addition, there

are no mathematical models for many processes. In this section, we

propose a strategy to modify DDP for the process, the objective of

which is steering the state to a set-point where the value of the in-

put is unknown, and input constraints exist without any knowledge of

models. We assume that the state is also the measured output and the

controlled variable of the process (2.1). First, we augment the input

to the dynamics of the system (2.1) to choose the increment of the

input as the input of the augmented system.

[
xk+1

uk

]
︸ ︷︷ ︸

zk+1

=

[
f(xk, uk−1 + ak)

uk−1 + ak

]
︸ ︷︷ ︸

g(zk,ak)

(5.1)

where zk := [xT
k u

T
k−1]

T and ak := uk − uk−1. Then the input of the

augmented system is required to be zero, assuming the set-point is

an equilibrium point. Quadratic cost is chosen for the running and
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terminal cost.

Jk(Zk,Ak) =
N−1∑
j=k

(h(zj)− x∗)TQddp(h(zj)− x∗)

+aTj R
ddpaj + (xj − x∗)TPN(xj − x∗)

(5.2)

where x∗ is the set-point of the process, Qddp ⪰ 0 and Rddp ≻ 0

are the weighting matrices for the augmented state and input, respec-

tively. Cx is defined to satisfy h(zj) = Cxzj = [I 0]zj := xj . Sim-

ilarly, Cu is defined to satisfy Cuzj = [0 I]zj := uj−1. The cost

becomes zero when the state is at a set-point. The input constraints

(2.2) are considered again.

umin ≤ uj ≤ umax

∆umin ≤ aj ≤ ∆umax

(5.3)

Then the constrained optimization is conducted in the backward pass.

min
δak

Qk(δzk, δak)

subject to umin ≤ uk−1 + ak + δak ≤ umax

∆umin ≤ ak + δak ≤ ∆umax

(5.4)

where uk−1 is obtained from the trajectory of the previous forward

pass. An active set method is exploited to solve the above quadratic

program (QP) to consider the active constraints to update the opti-

mal gains in the backward pass. Since δzk is unknown during the

backward pass, it is assumed to be zero in (5.3). In addition, box con-
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straints are reduced.

min
δak

1

2
δaTkQaa,kδak +QT

a,kδak

subject to δak ≤ min(umax − uk−1 − ak,∆umax − ak)

δak ≥ max(umin − uk−1 − ak,∆umin − ak)

(5.5)

After the QP is solved, the optimal feedback gain Kc,k is assigned to

the solution δa∗k. To determine Kg,k, we exploit a projected Newton

step using the reduced Hessian in the free sub-space used in [30].

First, the complimentary sets of clamped and free indices c and f are

defined.

c(δak) =

{
j ∈ 1, · · · ,m

∣∣∣∣ δaj,k is active at minimum, λmin
j,k > 0, or

δaj,k is active at maximum, λmax
j,k > 0

}
f(δak) ={j ∈ 1, · · · ,m|j /∈ c}

(5.6)

where δaj,k is the j th component of δak, and λmin
j,k and λmax

j,k are the La-

grange multiplier for the active constraint in (5.5) of δaj,k at minimum

and maximum, respectively. Dropping k for readability, δa, Qaa, and

Qaz are rearranged according to the partition {c, f}.

δa←

[
δaf

δac

]
, Qaz ←

[
Qaz,f

Qaz,c

]
, Qaa ←

[
Qaa,ff Qaa,fc

Qaa,cf Qaa,cc

]
, (5.7)

This decomposition is used to compute the optimal feedback gain

for the free indices Kg,f = −Q−1
aa,fQaz,f . The optimal gain for the

clamped indices becomes zero. Thus, the components of the input in

the clamped indices are feasible in the next forward pass regardless

of the change of the state. However, the quadratic expansions at the
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previous trajectory can be inaccurate at the updated trajectory after

the forward step with the update gains Kg,k and Kc,k, because the

change of the state and input can be accumulated. In order to prevent

a large change of the updated trajectory, we propose to modify the

optimal gain as follows.

δa = αgKgδz + αcKc (0 < αc ≤ 1, 0 ≤ αg ≤ 1) (5.8)

The approximated value function is updated as

Vzz,k =Qzz,k + α2
gK

T
g,kQaa,kKg,k + αgQ

T
az,kKg,k + αgK

T
g,kQaz,k,

Vz,k =Qz,k + αgαcK
T
g,kQaa,kKc,k + αcQ

T
az,kKc,k + αgK

T
g,kQa,k,

∆Vk =− αcQ
T
a,kQ

−1
aa,kQa,k +

1

2
α2
cK

T
c,kQaa,kKc,k,

(5.9)

In unconstrained case, it is expressed as

Vzz,k =Qzz,k + αg(αg − 2)KT
g,kQaa,kKg,k,

Vz,k =Qz,k + (αgαc − αg − αc)K
T
g,kQaa,kKc,k,

∆Vk =
1

2
αc(αc − 2)KT

c,kQaa,kKc,k

(5.10)

αg and αc can change after each forward pass finishes. This modfi-

cation is different from the step size modification generally used in

DDP [67]. It adds the multiplier to make the effect of Kg decrease.

The proposed backward pass of CDDP is summarized in Algorithm

11.
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Algorithm 11: CDDP Backward Pass
Input: Z0, A0

Result: {Kg,k}, {Kc,k}, {Vzz,k}, {Vz,k}, {∆Vk}
Vzz,N ← lfzz, Vz,N ← lfz
for k = N − 1, N − 2, · · · , 0 do

Qz ← lz,k + gTz Vz,k+1

Qa ← la,k + gTa Vz,k+1

Qzz ← lzz,k + gTz Vzz,k+1gz + V T
z,k+1gzz

Qaa ← laa,k + gTa Vzz,k+1ga + V T
z,k+1gaa

Qaz ← laz,k + gTa Vzz,k+1gz + V T
z,k+1gaz

Solve (5.5) and update Kc,k ← δa∗k
Compute the clamped indices c and free indices f in (5.6)
Compute the rows of the optimal gain for f and c
Kg,f ← −Q−1

aa,fQaz,f ,Kg,c ← 0
Compute Kg,k by rearranging Kg,f ,Kg,c

Update Vzz,k, Vz,k, ∆Vk using (5.9)
Kg,k ← αgKg,k, Kc,k ← αcKc,k

end
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In the forward pass, the updated feedback gains are applied to

compute the input. Although the feedback gains take into account the

estimated active constraints, it cannot guarantee that the trajectory

after the forward pass using the feedback gains from the backward

pass, because the variation of the augmented state can cause the vio-

lation of the constraints. As the input constraints are affine, clamping

the input from the feedback can make the input constraints during the

forward pass feasible. After the forward pass is conducted, the cost of

the new trajectory is computed and compared with that of the nominal

trajectory. If the cost is reduced, the nominal trajectory is updated and

αg and αc increase to change the trajectory aggressively. Otherwise,

the new trajectory is discarded and the backward pass is performed

with the same nominal trajectory, decreasing αg and αc. The proposed

forward pass of CDDP is summarized in Algorithm 12.
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Algorithm 12: CDDP Forward Pass
Input: Z0, A0, {Kg,k}, {Kc,k}
Result: Z0, A0

Jint ← J0(Z0,A0), z ← z0
for k = 0, 1, · · · , N − 1 do

δz ← z − zk
ztemp,k ← z, utemp,k ← Cuz
atemp,k ← ak +Kg,kδz +Kc,k

Clamp atemp,k to satisfy
umin ≤ uk−1 + atemp,k ≤ umax

∆umin ≤ atemp,k ≤ ∆umax

z ← g(z, atemp,k)

end
ztemp,N ← z
Jtemp ← J0(Ztemp,0,Atemp,0)
if Jtemp < Jint then

Z0 ← Ztemp,0, A0 ← Atemp,0

αg ← β1αg, αc ← β2αc, β1, β2 > 1

else
αg ← α1αg, αc ← α2αc, 0 < α1, α2 < 1

end
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We give a Theorem for convergence of the modified CDDP.

Theorem 5.1. For any feasible trajectory (Z,A), there exists αg and

αc that improve the nominal trajectory if Q and PN are positive

semidefinite and R is positive definite in (5.2) .

Proof As αc decreases, ∆Vk in (5.9) is close to the first term of RHS,

−αcQ
T
a,kQ

−1
aa,kQa,k as the second term of RHS is proportional to α2

c .

Qaa,k = R + gTa,kVzz,k+1ga,k is positive definite as long as Vzz,k+1 is

positive semidefinite due to positive definite R. ∆Vzz,k+1 in (5.9) is

close to Qzz,k+1 as αg decreases. Qzz,k+1 = Q + gTz,k+1Vzz,k+2gz,k+1

is positive semidefinite as long as Vzz,k+2 is positive semidefinite.

Vzz,N = PN is positive semidefinite. Hence, Qaa,N−1 = R +

gTa,N−1Vzz,Nga,N−1 is positive definite because Vzz,N is positive semidef-

inite and R is positive definite. As αc decreases, ∆VN−1 in (5.9) is

close to the first term of RHS, −αcQ
T
a,N−1Q

−1
aa,N−1Qa,N−1 as the sec-

ond term of RHS is proportion to α2
c . Consequently, ∆VN−1 is nega-

tive if αc is small enough to satisfy

0 < αc <
2λmin(Q

T
a,N−1Q

−1
aa,N−1Qa,N−1)

λmax(KT
c,N−1Qaa,N−1Kc,N−1)

(5.11)

where λmax(·) is the maximum eigenvalue of a matrix. On the other

hand, Qzz,N−1 = Q+ gTz,N−1Vzz,Ngz,N−1 is positive semidefinite due

to positive semidefinite Q and Vzz,N . Because Vzz,N−1 in (5.9) is close

to Qzz,N−1 as αg decreases, it can be positive semidefinite if αg is
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small enough to satisfy

k1α
2
g + 2k2α

2
g + k3 ≥ 0

k1 =λmin(K
T
g,N−1Qaa,N−1Kg,N−1)

k2 =λmin(K
T
g,N−1Qaz,N−1)

k3 =λmin(Qzz,N−1)

(5.12)

0 is the trivial solution of (5.12). Thus, ∆VN−1, · · · ,∆V0 can be neg-

ative with small αg and αc, and the updated trajectory is improved.

■

5.2.2 Model identification around a trajectory

If the dynamics of the original system (2.1) is unknown, the

derivatives of the augmented system (5.1), gz and ga, have to be ob-

tained from data to proceed with the backward pass. We excite the

input around the nominal trajectory and identify the local linear dy-

namics around the nominal trajectory, which is summarized in Algo-

rithm 13. With the perturbation of the nominal input, the trajectories

from nid episodes are collected. Because the dynamics of u is known,

i.e., uk = uk−1 + ak, only the dynamics of x is identified. Dropping

k and Denoting xk+1 by x+, the data at kth time step are

xepi
+ :=


x1
+

...

xnid
+

 , xepi =


x1

...

xnid

 , uepi =


u1

...

unid

 (5.13)

where the superscript denotes the number of the experiments. Assum-

ing that the augmented vector (xT , uT , xT
+)

T is multivariate Gaussian,
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i.e., (xT , uT , xT
+)

T ∼ N (µ,Σ), the distribution of state transition

given a state and an input can be expressed as the condition Gaus-

sian distribution

p(x+|xu) ∼ N (µ̄, Σ̄)

µ̄ =µx+ + Σx+,xuΣ
−1
xu,xu(xu− µxu)

Σ̄ =Σx+,x+ − Σx+,xuΣxu,xuΣx+,xu

(5.14)

where xu := (xT , uT )T . Thus,

x+ ∼ N (fxx+ fu + fc, Σ̄)[
fx

fu

]
=Σx+,xuΣ

−1
xu,xu, fc = −Σx+,xuΣ

−1
xu,xuµxu

(5.15)

Then gz and ga is obtained as

gz =

[
fx fu

0 I

]
, ga =

[
0

I

]
(5.16)

Hence, the backward pass proceeds with a nominal trajectory and gx

and gu obtained around the nominal trajectory. Algorithm 13 summa-

rizes obtaining the local linear dynamics around the nominal trajec-

tory. The proposed model-free CDDP proceeds in the order of iden-

tifying the local linear dynamics, the backward pass, and the forward

pass.
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Algorithm 13: Identifying gz and ga

Input: Z0, A0, {Σak}
Result: {gz,k}, {ga,k}
for i = 1, 2, · · · , nid do

z ← z0
Clamp u0 to satisfy the constraints in Algorithm 12
for k = 0, 1, · · · , N − 1 do

zik ← z
Sample a from N (ak,Σak)
Clamp a to satisfy the constraints in Algorithm 12
z ← g(z, a) (from plant or simulation)
aik ← a

end
ziN ← z

end
for k = 0, 1, · · · , N − 1 do

x+ ← xk+1, x← xk, u← uk
Compute mean and covariance of (xT , uT , xT+)

T and denote by
µ, Σ

Compute the conditional expectation and the augmented linear
dynamics[
fx
fu

]
← Σx+,xuΣ

−1
xu,xu

gz,k ←
[
fx fu
0 I

]
, ga,k ←

[
0
I

]
end
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Remark 5.1. In practice, the convergence of the proposed CDDP

highly depends on the choice of step sizes like αg and αc. The step

sizes increase if the trajectory is improved. On the other hand, the

step sizes decrease if the trajectory is not improved. The variations of

line search methods can be applied [68, 69].

5.3 Data-driven offset-free MLMPC

Although the proposed CDDP improves the trajectory, the num-

ber of the iteration to steer the state to a set-point is unknown. Also,

it is vulnerable to disturbance as a proportional (P) controller is used

at each time step. In this work, we proposed a novel prediction-based

offset-free MLMPC algorithm that exploits the local linear models

from CDDP. We will show the proposed controller achieves offset-

free tracking before the CDDP converges, and rejects disturbance in

the numerical example. It consists of the algorithms for clustering of

local models, selection of the models for MLMPC, the design of the

local MPC controllers, and calculating the weights of the local MPCs.

5.3.1 Gap metric-based clustering algorithm

To choose the clusters and the representative models from local

models of CDDP, we proposed a gap metric-based clustering algo-

rithm. Because CDDP uses a linear model at each time step, each

linear model of CDDP has a time index. Hence, we propose to con-

struct a cluster whose components are adjacent in terms of time index.

This is a different approach to the clustering method in our previous

work [65], where the models are clustered according to the distance

between the states or inputs where the models are constructed. Com-
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pared with clustering based on state or control input, it is free from

the scaling of the state and input because the dimension of time is

always one. Besides, there is a high possibility that the dynamic be-

haviors at adjacent time steps are similar to each other because the

differences of the states and inputs at adjacent time steps are bounded

by the continuous dynamics (2.1) and input constraints (5.3). A model

whose mean of the gaps with other models in a cluster is minimum is

chosen as the representative model, because the controller designed

by the model is the most robust according to Theorem 2.3. The max-

imum gap with other models in a cluster can be another criterion.

However, we observe that the maximum is one, which is the upper

bound of the gap, in many cases. Thus, the chosen model is not guar-

anteed to be the best in terms of gap metric. Increasing the number

of clusters until the maximum becomes smaller than one is another

option, but it causes too many models. A gap metric-based clustering

algorithm 14 is proposed as follows.

Remark 5.2. The number of the constructed clusters ncl can be ar-

bitrarily chosen. If ncl is too small, the dynamic behaviors in a clus-

ter can be very different, and the representative model cannot de-

scribe the dynamic behavior in the cluster. Large ncl means that sev-

eral abrupt changes of the local dynamics of the system are expected

during the operation, which is the case that the initial condition is

far from the set-point. If CDDP gives a trajectory where the state is

steered around the set-point, the last cluster will consist of the states

around the set-point.
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Algorithm 14: Gap metric-based clustering algorithm
Input: {gx,k}, Z0,ncl

Result: Clusters of time indices {CLi}
Time indices for representative models {medi}
Liner models of the trajectory {Pi}

Obtain X0 and U0 from Z0

for i = 0, · · · , N − 1 do
Obtain fx,i and fu,i from gx,i
Ai ← fx,i
Bi ← fu,i
Pi ← state-space model with (Ai, Bi, I, 0)

end
Compute ∆i,j ← δg(Pi, Pj), 0 ≤ i, j ≤ N − 1
CLj , CLex

j ← {},medi ← (2i+ 1)⌊N/(2ncl)⌋, 1 ≤ i ≤ ncl

flag ← 1, it← 1
while flag do

for i = 0, · · · , N − 1 do
icl = Σncl

j=1(i ≥ medj)

if icl == 0 or icl == ncl then
idx← max(icl, 1)

else
idx← argmin(∆i,icl ,∆i,icl+1)

end
CLidx ← CLidx ∪ {i}

end
for j = 1, · · · , ncl do

medj ← argmink∈CLj
(maxi∈CLj ∆i,k)

end
if it > 1 and CLex

i == CLi then
flag ← 0

else
it← it+ 1, CLex

i ← CLi

end
end
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5.3.2 Prediction-based MLMPC

Based on linear offset-free MPC in Chapter 2 and local represen-

tative models of the clusters, we propose to design a prediction-based

MLMPC algorithm that achieves offset-free control. Theorem 3.1 has

shown that a linear offset-free MPC can track a set-point if the ini-

tial point is near the set-point. However, offset-free tracking is not

guaranteed if the initial condition is far from the set-point. To resolve

this issue, a prediction-based MLMPC algorithm is proposed in Algo-

rithm 15. It tries to steer the state to the neighborhood of the set-point

using models whose predictions are accurate. In order to determine

the prediction accuracy of each model, prediction error is defined, i.e.,

ei(k) := yk − ŷi(k|k − 1), where yk is the output at the kth time step

and ŷi(k|k−1) is the predicted output of the ith model at the (k−1)th

time step. Then, local linear offset-free MPC is applied to track the

set-point. The weights of the proposed MLMPC are calculated based

on three criteria, the prediction error {ei(k)}, error ek := rk−yk, and

index iex, where rk and yk is the reference and output at the kth time

step, and iex the indicator to determine what linear offset-free MPC

is employed at the previous time step. First, it calculates base weights

according to the output prediction based method (2.36). When the

output error becomes smaller than the threshold αth and there exist

models whose prediction errors becomes smaller than the threshold

βth, the algorithm chooses the best model in terms of the prediction

error and the corresponding local linear MPC as the controller. In ad-

dition, if a local MPC is only used at the previous time step whose

models has a prediction error lower than βth at the current time step,

the algorithm chooses the local MPC as the controller, preventing os-
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cillation caused by the change of the models whose prediction errors

are low.

The designed weight in Algorithm 15 makes the MLMPC con-

troller converge to a local MPC around the set-point, enjoying the

offset-free tracking property by Theorem 3.1. Thus, there should ex-

ist a model among the model of the MLMPC whose gap metric with

the linearized system at the set-point is small enough to satisfy Theo-

rem 3.1. Because the trajectory from the proposed CDDP converges

to the set-point as the number of iterations increases, we can obtain

improved models in terms of the gap metric with the linearized sys-

tem at the set-point after additional iterations of the proposed CDDP.

The proposed framework for set-point tracking that considers input

constraints without the knowledge of the model and the steady-state

input at the set-point is summarized in Figure 5.1.

Remark 5.3. If the system is stochastic, stochastic DDP can be em-

ployed to solve the stochastic optimal control problem[70]. However,

obtaining the stochastic model is the main issue, because the effects

of input and disturbance are hard to distinguish. Path integral con-

trol provides a way to find the optimal control input by simulating

the uncontrolled system dynamics [71]. However, the number of the

simulation is required to obtain the optimal control input. Thus, the

efficiency of each sample is important. In addition, the probability of

obtaining a low-cost trajectory depends on the variance of the Brow-

nian motion. Thus, an importance sampling method in which both the

mean of the control input and the variance of the Brownian motion

can be adjusted is proposed [72]. Because path integral methods do

not consider the stability during the simulations by uncontrolled sys-

tem dynamics, it is required to develop the path integral methods that
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guarantee stability during all simulations.
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Algorithm 15: Prediction-based MLMPC
Input: {medi}, ncl, {Pi}, Z0, {rk}, αth, βth, pth, Λe

Result: X0,U0

Obtain X0 and U0 from Z0, Xlin ← X0, Ulin ← U0

for i = 1, · · · , ncl do
j ← medi, Construct local linear MPC using Pj

x̂i(0| − 1)← x0 − xlin,j , wi(−1)← 1/ncl, iex ← 0

end
for k = 0, · · · , N − 1 do

Measure xk and estimate x̂i(k|k)
ek ← rk − h(xk), mdg ← {}
for i = 1, · · · , ncl do

j ← medi
ei(k)← yk − h(x̂i(k|k − 1) + xlin,j)
wi(k)← max(wi(k − 1) exp(−ei(k)TΛeei(k)), pth)
if ∥ei(k)∥ < βth then

mdg ← mdg ∪ {i}
end
Solve ncl local MPC problems and obtain ui(k)

end
wi(k)← wi(k)/

∑ncl
i=1wi(k), w∗

i ← 0
if mdg ̸= ∅ and ∥ek∥ < αth then

if iex /∈ mdg then
iex ← argmini ∥ei(k)∥

w∗
iex ← 1

else
w∗
i ← wi(k), iex ← 0

end
Calculate uk to the plant

uk =

ncl∑
i=1

w∗
i (ui(k) + ulin,medi)

Apply uk to plant and local models to get xk+1 and x̂i(k + 1|k)
end
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Figure 5.1: Overall algorithm
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5.4 Results and discussions

Consider a multi-input multi-output (MIMO) continuous stirred

tank reactor (CSTR) [53].

ĊA(t) =
q

V
[CA0 − CA(t)]− k0CA(t)e−E/RT (t),

Ṫ (t) =
q

V
[T0 − T (t)]− ∆Hk0

ρCp

CA(t)e−E/RT (t)

+
ρcCpc

ρCpV
qc(t)[1− e−

hA
ρcCpcqc(t) ][Tc0 − T (t)],

y(t) =[CA(t) T (t)]T .

(5.17)

It consists of an irreversible, exothermic reaction. The concentration

CA and the temperature T are controlled by manipulating the flow

rate of A, q and the coolant flow rate, qc. The parameters and initial

values of the variables in the system are shown in Table 5.1.

The equilibrium point of the process is determined uniquely if

the values of the inputs are given [53]. The steady-state input-output

relationship is shown in Figure 5.2. The goal of the controller is to

drive the state from an equilibrium point to another equilibrium point

within the operating condition depicted in Figure 5.2, assuming that

the system dynamics and the input values at the set-point are un-

known.
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Table 5.1: MIMO CSTR Parameters and Initial Values

Product concentration CA 0.0245 mol/L
Coolant flow rate qc 70 L min−1

Feed concentration CA0 1 mol/L
Inlet coolant temperature TC0 350 K
Heat transfer term hA 7 × 105 cal/min K
Activation energy term E/R 1 × 104 K
Liquid densities ρ, ρc 1 × 103 g/L
Reactor temperature T 473.23 K
Process flow rate q 120 L min−1

Feed temperature T0 350 K
CSTR volume V 100 L
Heat of reaction ∆H -2 × 10 5 cal/mol
Specific heats Cp, Cpc 1 cal g −1 K −1

Reaction rate constant k0 7.2 × 1010 min −1

Constraints on the flow rate qmin, qmax 95, 150 L min−1

Constraints on the coolant flow rate qc,min, qc,max 60, 110 L min−1

Constraints on the flow rate ∆qc,max,∆qmax 5 L min−1

Constraints on the coolant flow rate ∆qc,min,∆qmin -5 L min−1

135



Figure 5.2: Steady-state input-output map for MIMO CSTR
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First, the proposed CDDP is conducted to obtain suboptimal tra-

jectories and models for MLMPC. We adjusted the initial values of

αg and αc in Algorithm 11 and 12 to 0.02, since the feedback gains

Kg and Kc alone were so high that had the trajectory were not im-

proved in terms of the cost of CDDP at the initial time step, i.e.,

J0(Z0,A0). We choose β1, β2 ∼
√
n and α1, α2 ∼ 1/

√
n in Algo-

rithm 12, where n is the number of iterations of CDDP. In order to

obtain the models for CDDP, the standard deviation Σ0.5
ak

to sample

input in Algorithm 13 is chosen as 1% of the upper and lower bound-

aries of inputs, i.e., (∆qmax−∆qmin)
100

and (∆qc,max−∆qc,min)

100
. The param-

eters of CDDP are shown in Table 5.2, and the result of performing

the CDDP is shown in Figures 5.3 and 5.4. The cost of CDDP at the

initial time step, i.e., J0(Z0,A0), decreases and the states are steered

to the set-point as the number of the iterations increases by adjust-

ing αg and αc. However, the number of the iterations as well as the

optimal hyperparameter to achieve offset-free tracking are unknown.

In order to achieve offset-free tracking, the proposed MLMPC is ap-

plied every time CDDP generates an improved trajectory in terms

of the cost of CDDP at the initial time, i.e., J0(Z0,A0). In order to

check offset-free tracking, the state and measurement noise are not

added. Luenberger observer is chosen for the filter as it is convenient

to control the response time by changing the poles of the observer.

137



Table 5.2: Parameters of CDDP for MIMO CSTR

Q 5I
R 0.1I
PN 5I
αg 0.02
αc 0.02
Σak 0.01I
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The parameters of MLMPC is shown in Table 5.3, and the result

is shown in Table 5.4 and Figures 5.5, 5.6, and 5.7. The proposed

MLMPC achieves offset-free tracking using the models from the 17th

trajectory of the CDDP shown in Figure 5.5. Figure 5.6 shows the

locations where the clusters and the representative models are con-

structed at the final iteration. When the MLMPC achieves offset-free

tracking, it converges to linear offset-free MPC as shown in Fig-

ure 5.7. Before achieving offset-free tracking, the trajectories from

MLMPC has oscillation. The gap metrics between the representa-

tive model and the models in a cluster, and the distances between

the linearized points, i.e, the origins, of the models and the set-point

are shown in Table 5.4. It is checked that both the gap metric and

the distance are important to track the set-point. If the distance be-

tween the linearized point of a model and the set-point is large, the

model may not accurately predict the behavior around the set-point

even if the gap metric between the representative model and the mod-

els in a cluster is small. The gap metric just indicates the stability at

the origins of two closed-loop systems controlled by one controller.

Thus, CDDP must generate the trajectory whose states and inputs are

close to the equilibrium point at the set-point. We also verify that

the MLMPC rejects disturbance by injecting step input disturbances

whose magnitudes are 10 for the first input at 5 min and -5 for the

second input at 7 min, respectively. Figure 5.8 shows the controller

rejects all disturbances immediately.

141



Table 5.3: Parameters of MLMPC for MIMO CSTR

ncl 4
αth 0.05
βth 0.1
pth 10−6

Λe 100I
Q I
R 0.1I
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In order to check the offset-free tracking property of the pro-

posed scheme extensively, we applied the proposed CDDP and MLMPC

for the wide range of initial conditions and set-points. We employed

MLMPC with the improved trajectories of CDDP after 4th iteration

of CDDP, because initial trajectories are away from the set-point. Ta-

bles 5.5 and 5.6, and Figure 5.9 show the initial conditions, set-points,

and the number of iterations of CDDP to achieve offset-tracking, re-

spectively. The mean of the iterations for offset-free tracking is 6.13,

which means most of the cases achieve offset-free tracking within

six iterations. The pairs of the initial points and the set-points whose

number of iterations to achieve offset-free tracking larger than 10 is

shown in Figure 5.10. It seems the distance between state affects the

number of iterations to achieve offset-free tracking. Dividing the dif-

ference between the initial points and the set-point by 100 and 0.1 for

the temperature and the concentration, respectively, the correlation

coefficient between the scaled distance between the set-points and

the initial conditions and the number of iterations is calculated, and

the value is 0.103. Hence, the large distance between an initial condi-

tion and a set-point does not guarantee the high number of iterations

to achieve offset-free tracking.
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Table 5.5: Initial conditions

CA(mol/L) T (K)
xinit1 0.026 468.10
xinit2 0.018 484.15
xinit3 0.114 435.69
xinit4 0.086 444.57
xinit5 0.043 461.27
xinit6 0.056 457.96
xinit7 0.041 458.90
xinit8 0.081 443.13
xinit9 0.024 473.22
xinit10 0.030 472.22
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Table 5.6: Set-points

CA(mol/L) T (K)
xset1 0.111 435.89
xset2 0.041 465.91
xset3 0.094 441.22
xset4 0.022 477.63
xset5 0.020 482.18
xset6 0.025 469.73
xset7 0.038 462.66
xset8 0.053 457.98
xset9 0.051 452.79
xset10 0.075 448.19
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Chapter 6

Design of data-driven linear time-varying model
predictive control 4

6.1 Introduction

In the previous chapter, we have introduced a framework for set-

point tracking of nonlinear systems that considers input constraints

without the knowledge of the model using CDDP and MLMPC. How-

ever, MLMPC cannot guarantee stability and feasibility before the

state is located at the neighborhood of the set-point and MLMPC

converges to linear MPC. Thus, we try to exploit LTVMPC until the

state reaches the neighborhood of the set-point, which guarantees the

stability and the feasibility around the nominal trajectory given by

CDDP. In this chapter, we propose data-driven offset-free LTVMPC

based on CDDP to track a set-point from an initial condition that con-

siders box input constraints without the knowledge of the nonlinear

or linear model. In the proposed scheme, CDDP improves the trajec-

tory stably and iteratively, followed by obtaining the first derivatives

of the process at the nominal trajectory. Then the classification of

the trajectory into the transient and steady-state region is proposed,
4This chapter is an adapted version of B. Park, J. W. Kim, and J. M. Lee, “Data-driven

model predictive control design for offset-free tracking of nonlinear systems", In preparation

153



where the regions are controlled by LTVMPC and offset-free MPC,

respectively. The selection of the model for offset-free MPC is also

proposed based on gap metric. LTVMPC to track the trajectory in the

transient region is designed, which includes the proof of the recursive

feasibility. Last, Offset-free MPC to track the trajectory in the steady-

state region is designed, which includes the stability at the set-point

is proven using gap stability margin.

6.2 Design of data-driven linear time-varying model
predictive control

Although the CDDP improves the trajectory, the number of the

iteration to steer the state to a set-point is unknown. Also, it is vulner-

able to disturbance as a proportional (P) controller is used at each time

step. Linear offset-free MPC does not work at a state far from the state

where the model is identified. LTVMPC is exploited to follow a pro-

vided trajectory, which is not the optimal trajectory achieving offset-

free set-point tracking. In this work, we proposed a novel offset-free

LTVMPC algorithm that exploits the LTV models from a suboptimal

trajectory without a nonlinear model. It consists of the algorithms for

determining the neighborhood of the set-point, the model for offset-

free MPC, and calculating of LTVMPC and offset-free MPC.

6.2.1 Gap metric-based model selection

To choose the representative model from LTV models of CDDP,

the neighborhood of a set-point is determined first. We assume that a

suboptimal trajectory to track a set-point satisfies the following: (1)
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At the early stage of the operation, the transient behavior is required

to approach the set-point. (2) Then, the output and input are close to

the set-point and the corresponding steady-state input, which means

the gap metric between dynamics at a point in a part of the trajectory

and the set-point is small enough to satisfy Theorem 2.3. First, we

choose a starting point of an interval from the trajectory that satisfies

min ns

s.t.max
k
|rk − yk| < eth, k = ns, · · · , N

Var(Uns) < Σth

Var(Xns) < Λth

ns ≥ 0

(6.1)

where componentwise inequality is applied. If there does not exist ns

satisfying Eq. (6.1) or ns is too large to reach the set-point before the

operation finishes, we give up to get the model from the trajectory and

an improved suboptimal trajectory is provided by the CDDP. Then,

LTV models from the nth
s to the (N − 1)th step are regarded as N −

ns linear time-invariant (LTI) models. We choose the model whose

maximum gap metric with a model in other N − ns − 1 models is

minimum.

med =arg min
i ̸=j,ns≤i≤N−1

max
ns≤j≤N−1

δg(Pi, Pj)

s.t. max
ns≤j≤N−1

δg(Pi, Pj) < γth
(6.2)

where Pi, is the LTV model (2.37) at the ith time step. The first con-

straint helps to find an interval where the outputs are close to the set-
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point. The second and third constraints are included to find an interval

at steady-state because state and input do not change at steady-state.

The last constraint can be removed if the output is the state because

the first constraint makes the states in the interval have a small vari-

ance. If there does not exist the solution of (6.2), ns increases and

solve the problem again. If ns is too large, we discard the constraint

and obtain the model from (6.2). The Algorithm 16 summarizes de-

termining the steady-state interval and the representative model.
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Algorithm 16: Gap metric-based model selection algorithm
Input: {Pi}, X0, U0

Parameter: eth, Σth, γth, nmin, nmax

Result: Starting point of steady-state ns

Time index for the representative model med
Feasibility of the algorithm flags

if
|rk−yk| < eth(k ≥ nmax)Var(Unmax) < Σth, Var(Xnmax) < Λth

then
flags ← 1, flagm ← flags, ns ← nmax

while flagm do
ns ← ns − 1
if |rk − yk| < eth(k ≥ ns),Var(Uns) < Σth,Var(Xns) <
Λth then

flagm ← 1
else

flagm ← 0
end
if ns < nmin then

break
end

end
ns ← ns + 1
Compute ∆i,j ← δg(Pi, Pj), ns ≤ i, j ≤ N − 1
∆m ← minimaxj ∆i,j , ns ≤ i, j ≤ N − 1
while ∆m > γth do

ns ← ns + 1
∆m ← minimaxj ∆i,j , ns ≤ i, j ≤ N − 1
med← argmini(maxj ∆i,j), ns ≤ i, j ≤ N − 1
if ns > nmax then

break
end

end
else

flags ← 0, ns ← none,med← none
end
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6.2.2 Offset-free linear time-varying model predictive
control

Based on CDDP, offset-free MPC, and LTVMPC, we propose

to design a offset-free LTVMPC algorithm that achieves offset-free

control without the nonlinear model. First, we assume that the CDDP

Algorithms 11, 12, and 13 generates a suboptimal trajectory for MPC

in finite iterations.

Assumption 6.1. There exists the number of iterations ncddp such

that CDDP Algorithms 11, 12, and 13 generate the nth
cddp trajectory

Z0 and A0 and LTV models {Pi} for which Algorithm 16 is feasible.

Once a suboptimal trajectory from CDDP satisfies Assumption

6.1, X0 and U0 from Z0 is a feasible trajectory of the system (2.1).

Trajectory following of LTVMPC (2.38) can be guaranteed with some

assumptions and the computation of the terminal constraint Xf .

Assumption 6.2. There is no model mismatch between the prediction

model and the plant, i.e.,

Ak =
∂f

∂x

∣∣∣∣
xk,uk

, Bk =
∂f

∂u

∣∣∣∣
xk,uk

(6.3)

In order to compute Xf , consider the system (2.1) controlled

by time-varying feedback control law to track a reference trajectory

uv(k) = Kkx
v(k), i.e., the autonomous system:

xk+1 = fa(xk) := f(xk, Kk(xk − x̄k) + ūk) (6.4)

where {x̄k} and {ūk} are the reference trajectory, and xv and uv are

the deviation variables defined in (2.37). Then one-step controllable
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set, N-step controllable set, positive invariant set, and maximal posi-

tive invariant set are defined.

Definition 6.1. For the system (2.1) and the reference trajectory {x̄k},
{ūk}, the one-step controllable set to the set S at the kth time step is

defined as

Prek(S) = {xv(k) ∈ Rn|∃uv(k) ∈ Uv
k , f(xk, uk)− f(x̄k, ūk) ∈ S}

(6.5)

where Uv
k is the set for the input constraints in (2.1).

Definition 6.2. For a given target set S, the N-step controllable set

Kk
N(S) of system (2.1) and the reference trajectory {x̄k}, {ūk} at the

kth time step is defined recursively

Kk
j (S) = Prek(Kk+1

j−1 (S)), K
k+j
0 (S) = S (6.6)

Definition 6.3. PrekLQR(S) is defined as the one-step controllable set

to the set S at the kth time step, where time-varying LQR gain (2.40)

is applied.

PrekLQR(S) = {xv(k) ∈ Rn|Kkx
v(k) ∈ Uv

k , f(xk, uk)− f(x̄k, ūk) ∈ S}
(6.7)

Definition 6.4. Kk
LQR,N(S) of system (2.1) and the reference trajec-

tory {x̄k}, {ūk} at the kth time step is defined recursively

Kk
LQR,j(S) = PrekLQR(Kk+1

LQR,j−1(S)), K
k+j
LQR,0(S) = S (6.8)

Then the recursive feasiblity of LTVMPC (2.38) is ensured by
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computing the terminal constraint X f
k+p.

Theorem 6.1. LTVMPC (2.38) for the system (2.1) is feasible for all

0 ≤ k ≤ N and the terminal constraint X f
N if p is chosen such that

Pk+p is calculated by (2.40), X f
k+p = Kk+p

LQR,N−k−p(X
f
N) for 0 ∈

X f
N = KN

LQR,0, and if xv(k) ∈ Kk
p(X

f
k+p).

Proof If xv(k) ∈ Kk
p(X

f
k+p), then the system is feasible at t = k. By

definition of Kk+p
LQR,N−k−p, there exists a sequence of inactive input by

which the state is steered to KN
LQR,0 at the final time step. Thus, the

system (2.1) is feasible for all k ≤ t ≤ N . ■

We define the optimal predicted cost of the trajectory at the kth

time step to evaluate the predicted trajectory by LTVMPC (2.38).

J∗
k (xk) :=

k−1∑
i=0

∥yv(i)∥2Q + ∥uv(i)∥2R +
N−1∑
j=k

∥∥yvj|k∥∥2Q +
∥∥uv

j|k
∥∥2
R
+
∥∥yvN |k

∥∥2
Q

(6.9)

where uj|k is the optimal input at time j obtained by solving LTVMPC

(2.38) at time k, and xj|k is the predicted state at time j by applying

{uj|k}

Theorem 6.2. Consider the system (2.1), the LTV models (2.37),

the LTVMPC (2.38), and the terminal constraint 0 ∈ X f
N to track

X0 and U0. Let Assumptions 6.1 and 6.2 hold. Suppose that there

exists the prediction horizon p0 at the 0th time step for LTVMPC

(2.38) such that there exists the terminal constraint at the 0th time

step, X f
p0

= Kp0
LQR,N−p0

, and xv(0) ∈ K0
p0
(X f

p0
). Then LTVMPC

at time k is always feasible by reducing the prediction horizon, i.e,

0 ≤ pk ≤ pk−1. In addition, the optimal predicted cost of the trajec-

tory at the kth time step, J∗
k , does not increase as k increases.
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Proof Let p be the prediction horizon at time k. Consider the state

of the process (2.1) at kth time step that satisfies xv(k) ∈ Kk
p(X

f
k+p).

Let U∗
k,p = {u∗

k|k, · · · , u∗
k+p−1|k}, be the optimal input sequence of

LTVMPC (2.38) and X∗
k,p = {x∗

k|k, · · · , x∗
k+p|k} be the corresponding

optimal state. Let J∗
k (xk) be the optimal predicted cost of (2.38) when

applying U∗
k,p to the system state xk.

Suppose that LTVMPC at the (k+1)th time step is feasible for the

prediction horizon p > 0. The upper bound of J∗
k+1(xk+1) can be ob-

tained by applying Uk+1,p = {u∗
k+1|k, · · · , u∗

k+p−1|k, Kk+p(x
∗
k+p|k −

x̄k+p) + ūk+p}. The resulting sequence of the state is

Xk+1,p = {x∗
k+1|k, · · · , x∗

k+p|k, (Ak+p +Bk+pKk+p)(x
∗
k+p|k − x̄k+p) + x̄k+p+1}

(6.10)

Let Jk+1(xk+1) be the predicted cost of (2.38) when applying Uk+1,p

to the system state xk+1. Then

Jk+1(xk+1) = J∗
k (xk)− (

∥∥yvk|k∥∥2Q +
∥∥uv

k|k
∥∥2
R
+
∥∥xv

k+p|k
∥∥2
Pk+p

)

+
∥∥yvk+p|k+1

∥∥2
Q
+
∥∥uv

k+p|k+1

∥∥2
R
+
∥∥xv

k+p+1|k+1

∥∥2
Pk+p+1

= J∗
k (xk)− (

∥∥yvk|k∥∥2Q +
∥∥uv

k|k
∥∥2
R
+
∥∥xv

k+p|k
∥∥2
Pk+p

)

+ (xv
k+p|k+1)

T (CT
k+p+1QCk+p+1 +KT

k+pRKk+p

+ (Ak+p +Bk+pKk+p)
TCT

k+p+1Pk+p+1Ck+p+1(Ak+p +Bk+pKk+p))x
v
k+p|k+1

= J∗
k (xk)− (

∥∥yvk|k∥∥2Q +
∥∥uv

k|k
∥∥2
R
)

(6.11)

The last equality in (6.11) comes from (2.40). Thus,

J∗
k+1(xk+1)− J∗

k (xk) ≤ Jk+1(xk+1)− J∗
k (xk) =− (

∥∥yvk|k∥∥2Q +
∥∥uv

k|k
∥∥2
R
)

(6.12)
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Because R is positive definite and Q is positive semidefinite, the cost

decrease if the xk is not located at the reference x̄k.

Suppose that LTVMPC at the (k+1)th time step is infeasible for

the prediction horizon p > 0. As LTVMPC at time k is feasible and

Assumption 6.2 is satisfied, xv(k + 1) ∈ Kk+1
p−1(X

f
k+p). If we choose

the prediction horizon as p − 1, there exists the terminal cost and

constraint, i.e., Pk+1+p−1 = Pk+p, X f
k+1+p−1 = X f

k+p. In addition,

xv(k + 1) ∈ Kk+1
p−1(X

f
(k+1)+(p−1)). Hence, LTVMPC at time (k + 1) is

feasible because it satisfies the conditions in Theorem 6.1. The cost

does not change because the terminal state and weight is equal to

those of LTVMPC at time k.

If p = 0 at time k, it means that xv(k) ∈ Kk
LQR,N−k and LQR so-

lution is applied for input, i.e., uv(k) = Kkx
v(k). Because Assump-

tion 6.2 is satisfied, xv(k + 1) ∈ Kk
LQR,N−k−1. Then p = 0 makes

LTVMPC at time (k + 1) feasible. The cost does not change due to

the relation (2.40).

Hence, LTVMPC at time k is always feasible by reducing the

prediction horizon, and the cost of the trajectory J∗
k does not increase

as k increases. ■

Hence, the initial deviation xv
0 and the terminal constraint X f

N

determines the feasibility of tracking the reference trajectory. If it is

feasible and the final state of the resulting trajectory is close to the set-

point, Offset-free MPC can be exploited to track the set-point, where

the final state of LTVMPC is the initial state of offset-free MPC. The

following theorem shows that a linear offset-free MPC can track a

set-point if the initial point is near the set-point, and the gap metric

between the model and the dynamics at the set-point is small.
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Theorem 6.3. Suppose MPC (2.9), (2.10), and (2.6) is applied to

the system (2.1) given a linear model Pm and a set-point r. Assume

that QT is the solution of DARE for Pm and the weights Q and R in

(2.31) and Klqr is the corresponding LQR gain. Let (xr, ur) and Pr

be the equilibrium point corresponding to r and the linearized system

at (xr, ur). If bPm,Klqr
> δg(Pm, Pr), then the equilibrium state xr

corresponding to the set-point r in closed-loop system (2.1), (2.9),

and (2.10), and (2.6) is asymptotically stable.

Proof If the state x(k) is in the neighborhood of xr in which the

solution of the MPC problem (2.9) equivalent to that of the uncon-

strained case, the solution is equivalent to the solution of the follow-

ing LQR [1]:

J∗
∞(δx0) = min

∞∑
j=0

∥δxj∥2Q + ∥δuj∥2R = ∥δx0∥2QT

s.t. δxj+1 = Aδxj +Bδuj

δx0 = x̂(k)− x̄(k), δu0 = u(k)− ū(k).

(6.13)

Then the closed-loop system is

x(k + 1) = f(x(k),−Klqrδx+ ū(k)),

y(k) = h(x(k)).
(6.14)
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The linearized and discretized system of (6.14) at xθ is

δx(k + 1) = Arδx(k) +Brδu(k)

= (Ar −BrKlqr)δx(k),

δy(k) = Crδx(k),

(6.15)

where k is the sampling instant; δx(k) = x(k)−xr; δu(k) = u(k)−
ur; δy(k) = y(k) − r; (Ar, Br, Cr) is the matrices corresponding

to Pr; Because LQR gain Klqr satisfies Theorem 2.3, the autonomous

system (6.15) is asymptotic stable and the eigenvalues of (Ar−BrKlqr)

are inside the unit circle, which is hurwitz. Hence, (xr, ur) in the

closed-loop system is asymptotically stable. ■

Hence, the overall scheme of model-free offset-free LTVMPC

starting with a suboptimal trajectory is proposed as follows. First,

Algorithm 13 identifies LTV models around the suboptimal trajec-

tory. CDDP is conducted by the model and Algorithm 11 and 12 until

the resulting trajectory is improved. Then, Algorithm 16 classifies

the trajectory into the transient and steady-state region, and select

a model for offset-free MPC among the models in the steady-state

region. Then Offset-free LTVMPC is applied to the system. First,

LTVMPC tries to follow the nominal trajectory in the transient re-

gion, and offset-free MPC is applied in the steady-state region and

tries to track the set-point, not the trajectory in the steady-state re-

gion. Algorithm 17 summarizes the overall scheme.

Remark 6.1. For LTVMPC in the transient region, Assumption 6.2 is

difficult to satisfy, because identified models and the dynamics away

from the nominal trajectory can be different from the dynamics at

the nominal trajectory. Thus, the proposed scheme implicitly assumes
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that the gap metric between the identified LTV models and the dy-

namics at the nominal trajectory is small, and the state controlled

by LTVMPC is close to the nominal trajectory. Even if the state at

the switching time is far from the nominal state due to model-plant

mismatch and LMPC does not achieve offset-free control, we can

optimize the trajectory, obtain the models, and apply the proposed

LTVMPC and LMPC by running CDDP.

Remark 6.2. For offset-free MPC in the steady-state region, The gap

metric between the model of the offset-free MPC and the linearized

system at the set-point should be small enough to satisfy Theorem

3.1. Because the trajectory from CDDP converges to the set-point

as the number of iterations increases, we can obtain an improved

model in terms of the gap metric with the linearized system at the

set-point after additional iterations of the proposed CDDP. However,

we do not know when the state reaches the set-point. Thus, Algorithm

16 determines the steady-state region according to the output error

and variance of input. In addition, it chooses the model for offset-

free MPC according to the gap metric among other models in the

steady-state region, because we do not know the dynamics and the

steady-state input at the set-point.
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Algorithm 17: Data-driven offset-free LTVMPC
Input: Z0, A0, {rk}
Parameter: nf , Jth, X f

ns

Result: XMPC
0 ,UMPC

0

flag ← 1
while flag do

flags ← 0, get LTV Models {gz,k} and {ga,k} from Algorithm
13

while ∼ flags do
Get the optimal gains {Kg,k} and {Kc,k} from Algorithm 11
Update Z0, A0 from Algorithm 12
Get LTV Models {gz,k} and {ga,k} from Algorithm 13
Get flags, ns, med from Algorithm 16

end
Get LTV Models {(Ak, Bk, Ck)} from {gz,k}
Get the reference trajectory X̄0 and Ū0 from Z0, A0

Set LTVMPC (2.38) for final step ns and prediction horizon p
Set offset-free MPC (2.9) using {(Amed, Bmed, Cmed)}
Set xv(0) ∈ K0

p(X
f
p )

for k = 0, 1, · · · , N − 1 do
if k < ns then

if LTVMPC (2.38) is infeasible then
p← p− 1

end
Apply u∗k by solving LTVMPC (2.38)

else
Apply u∗k by solving offset-free MPC (2.9)

end
end
Get XMPC

0 = {x0, · · · , xN} and UMPC
0 = {u0, · · · , uN−1}

Get ZMPC
0 and AMPC

0 from ZMPC
0 and AMPC

0

Calculate the cost of CDDP, Jnf (ZMPC
nf ,AMPC

nf )

flag ← Jnf (Z
MPC
nf ,AMPC

nf ) < Jth
end
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6.3 Results and discussions

Consider a multi-input multi-output (MIMO) continuous stirred

tank reactor (CSTR) [53].

ĊA(t) =
q

V
[CA0 − CA(t)]− k0CA(t)e−E/RT (t),

Ṫ (t) =
q

V
[T0 − T (t)]− ∆Hk0

ρCp

CA(t)e−E/RT (t)

+
ρcCpc

ρCpV
qc(t)[1− e−

hA
ρcCpcqc(t) ][Tc0 − T (t)],

y(t) =[CA(t) T (t)]T .

(6.16)

It consists of an irreversible, exothermic reaction. The concentration

CA and the temperature T are controlled by manipulating the flow

rate of A, q and the coolant flow rate, qc. The parameters and initial

values of the variables in the system are shown in Table 6.1.

The equilibrium point of the process is determined uniquely if

the values of the inputs are given. Considering the magnitude con-

straint of the inputs, the steady-state input-output relationship is shown

in Figure 6.1. The goal of the controller is steering the state from an

equilibrium point to another equilibrium point in Figure 6.1, assum-

ing that the system dynamics and the input values at the set-point are

unknown.
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Table 6.1: MIMO CSTR Parameters and Initial Values

Product concentration CA 0.0245 mol/L
Coolant flow rate qc 70 L min−1

Feed concentration CA0 1 mol/L
Inlet coolant temperature TC0 350 K
Heat transfer term hA 7 × 105 cal/min K
Activation energy term E/R 1 × 104 K
Liquid densities ρ, ρc 1 × 103 g/L
Reactor temperature T 473.23 K
Process flow rate q 120 L min−1

Feed temperature T0 350 K
CSTR volume V 100 L
Heat of reaction ∆H -2 × 10 5 cal/mol
Specific heats Cp, Cpc 1 cal g −1 K −1

Reaction rate constant k0 7.2 × 1010 min −1

Constraints on the flow rate qmin, qmax 95, 150 L min−1

Constraints on the coolant flow rate qc,min, qc,max 60, 110 L min−1

Constraints on the flow rate ∆qc,max,∆qmax 5 L min−1

Constraints on the coolant flow rate ∆qc,min,∆qmin -5 L min−1
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Figure 6.1: Steady-state input-output map for MIMO CSTR
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First, we assume that the optimal input sequences can steer the

initial state to the set-point in finite time steps and decide the ter-

minal time step N = 100. Then CDDP is conducted to obtain sub-

optimal trajectories and models for MPC. The initial values for αg

and αc in Algorithm 11 and 12 are 0.02 and 0.02, respectively. We

choose β1, β2 ∼
√
n and α1, α2 ∼ 1/

√
n in Algorithm 12, where

n is the number of iterations of CDDP. In order to obtain the mod-

els for CDDP, the standard deviation Σ0.5
ak

to sample input in Al-

gorithm 13 is chosen as 1% of the maximum difference of inputs,

i.e., (∆qmax−∆qmin)
100

and (∆qc,max−∆qc,min)

100
. The parameters of CDDP is

shown in Table 6.2, and the result is shown in Figure 6.2 and 6.3. The

cost, i.e., J0(Z0,A0), decreases and the states steers to the set-point

as the number of the iterations increases by adjusting αg and αc.
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Table 6.2: Parameters of CDDP for MIMO CSTR

Q 5I
R 0.1I
PN 5I
αg 0.02
αc 0.02
Σak 0.01I
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To achieve offset-free tracking, the proposed offset-free LTVMPC

is applied every time CDDP generates an improved trajectory in terms

of the cost, the steady-state region exists, and the model for the steady-

state region obtained accord to the condition for gap metric. The pa-

rameters of Algorithms 16 and 17 are shown in Table 6.3 and 6.4, re-

spectively. To check offset-free tracking, the state and measurement

noise are not added. Kalman filter is chosen for the observer of MPC

as it is convenient to control the weight between the model and the

measurement. The result is shown in Figure 6.4. The proposed MPC

achieves offset-free tracking using the models from the 21st trajectory

of the CDDP. The steady-state region starts at 7 (min) in all iterations

where offset-free LTVMPC is applied. The MPC track the subop-

timal trajectory in the transient region. However, the trajectories in

the steady-state region have oscillation before it achieves offset-free

tracking. The maximum gap metric between the model of offset-free

MPC and the models in the steady-state region and the distance be-

tween the set-point and the linearized point are shown in Table 6.5.

Because we do not know the dynamics at the set-point, we assume

that the maximum gap metric is larger than the gap metric between

the model and the dynamics at the set-point. The gap metrics in all

iterations are close or equal to one, which does not enjoy stability

result from Theorem 3.1. It is checked that the distance is also im-

portant to track the set-point. If the distance between the linearized

point of a model and the set-point is large, the model may not ac-

curately predict the behavior around the set-point because the model

is valid around the linearized point. In this case, it does not achieve

offset-free tracking the value if the distance of the first input ∆q is

larger than 3. Thus, CDDP is required to provide the trajectory whose
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states and inputs are close to the equilibrium point at the set-point.

We also verify that the proposed MPC rejects disturbance by inject-

ing step input disturbances whose magnitudes are -10 for the first

input at 7 min and 5 for the second input at 15 min, respectively. Fig-

ure 6.5 shows the proposed MPC rejects the disturbances effectively.

The disturbance is injected after the state reaches the steady-state re-

gion because LTVMPC in the transient region is designed to track the

nominal input and state trajectories, which conflicts with tracking the

input that compensates the disturbance.
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Table 6.3: Parameters of gap metric-based model selection for MIMO CSTR

eth [0.02 10]T

Σth [7 7]T

γth 0.9
nmin 30
nmax 70
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Table 6.4: Parameters of offset-free LTVMPC for MIMO CSTR

nf 10
Jth 1610
X f
ns {0}

Q I
R 0.1I
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Table 6.5: Gap metric between model and steady-state region and distance
between model and set-point

∆m |∆CA|(mol/L) |∆T |(K) |∆q| (L/min) |∆qc| (L/min)
0.97 0.0081 2.61 7.19 3.96
0.9 0.0111 3.11 7.16 7.24
1 0.0141 3.61 4.39 2.56
1 0.0141 1.11 2.96 5.14
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We applied the proposed scheme for various initial conditions

and set-points to check the tracking property extensively. We apply

the MPC with the improved trajectories of the CDDP after 4th itera-

tion of CDDP, because initial trajectories are away from the set-point.

Tables 6.6, 6.7, 6.8 and 6.9 show the initial conditions, set-points, the

number of iterations of CDDP and offset-free LTVMPC to achieve

offset-free tracking, and the maximum gap metric between the model

of offset-free MPC and the models in the steady-state region, respec-

tively. The means of the iterations to achieve offset-free tracking is

6.65 and 1.62 for CDDP and MPC, respectively. It means most of

the cases have a suboptimal trajectory with a steady-state region be-

fore the 6th iteration of CDDP and achieve offset-free tracking in two

iterations of MPC. Note that the proposed scheme achieves offset-

tracking fast if the maximum gap metric between the model for offset-

free MPC and the models in the steady-state region is small. For the

cases whose maximum gap is less than 0.7, The mean of the iterations

to achieve offset-free tracking is 5.14 and 1.03 for CDDP and MPC,

respectively. Otherwise, The means are 11.7 and 3.61. Thus, reduc-

ing the maximum gap metric can be helpful to achieve fast offset-free

tracking. It can be accomplished in two ways. First, the state and in-

put in the steady-state region have to be close to not only each other

but also the set-point. It is achieved by improving the trajectory by

CDDP. Second, the model-plant mismatch between the models and

the dynamics at the trajectory in the steady-state region should be

minimized, which can be attained by adjusting the parameter for in-

put excitation Σa in Algorithm 13. The models from some episodes of

Algorithm 16 can be compared in terms of gap metric. Σa is reduced

if the gap metric is too large. Practically, Σa can be reduced until
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the difference of the output can be distinguished by the measurement

noise.
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Table 6.6: Initial conditions

CA(mol/L) T (K)
xinit1 0.026 468.10
xinit2 0.018 484.15
xinit3 0.114 435.69
xinit4 0.086 444.57
xinit5 0.043 461.27
xinit6 0.056 457.96
xinit7 0.041 458.90
xinit8 0.081 443.13
xinit9 0.024 473.22
xinit10 0.030 472.22
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Table 6.7: Set-points

CA(mol/L) T (K)
xset1 0.111 435.89
xset2 0.041 465.91
xset3 0.094 441.22
xset4 0.022 477.63
xset5 0.020 482.18
xset6 0.025 469.73
xset7 0.038 462.66
xset8 0.053 457.98
xset9 0.051 452.79
xset10 0.075 448.19
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Table 6.9: The maximum gap metric between the model for offset-free MPC
and models in the steady-state region

xset1 xset2 xset3 xset4 xset5 xset6 xset7 xset8 xset9 xset10

xinit1 1 1 1 1 0.94 0.99 0.99 1 0.98 0.98
xinit2 0.3 0.19 0.38 0.24 0.28 0.28 0.33 0.31 0.27 0.31
xinit3 1 1 1 0.96 1 0.57 1 0.77 1 1
xinit4 0.34 0.21 0.27 0.24 0.23 0.3 0.34 0.26 0.2 0.19
xinit5 0.29 0.22 0.29 0.19 0.18 0.36 0.31 0.17 0.19 0.23
xinit6 0.18 0.41 0.29 0.37 0.28 0.18 0.19 0.27 0.2 0.25
xinit7 0.31 0.19 0.45 0.28 0.28 0.25 0.34 0.34 0.35 0.32
xinit8 0.44 0.27 0.36 0.21 0.29 0.3 0.4 0.38 0.23 0.39
xinit9 0.6 0.24 0.41 0.43 0.33 0.6 0.36 0.47 0.41 0.39
xinit10 0.52 0.76 0.63 0.52 0.68 0.91 0.99 0.46 0.75 0.41
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Chapter 7

Conclusions and future works

7.1 Conclusions

Set-point tracking of a nonlinear continuous chemical process is

crucial for uniform production. Wide operating ranges and short sam-

pling time limit employing both linear MPC and NMPC. In order to

address these issues, many MPC algorithms based on multiple linear

models have been developed. In this thesis, we propose MLMPC and

LTVMPC algorithms based on gap metric that can be applied with

and without the knowledge of the linear or nonlinear models of pro-

cesses. The first part is about offset-free multilinear model predictive

control based on gap metric. Three systematic algorithms are devel-

oped based on the gap metric and the stability margin: (1) the gridding

algorithm, (2) the clustering algorithm, (3) the combination of the lo-

cal MPCs. Compared with the conventional MMPC algorithms, The

proposed gridding and clustering algorithms systematically construct

a model bank regardless of the dimension of the scheduling vector.

In addition, the proposed weighting method combines a prediction-

based and a gap metric-based method, which improves the prediction

performance and shows the stability at several set-points. A multi-

linear model predictive control based on gap metric and switching
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strategy is proposed in the second chapter. The algorithms to design

MLMPC are developed: (1)selecting boundaries, (2) graph construc-

tion, and (3) switching strategy. Two novel algorithms are proposed

to construct the graph. The MLMPCs designed by the algorithms ex-

ploit a series of linear MPC to steer the state to a set-point through

a series of subregions, in each of which a linear MPC is employed

to guarantee stability in the subregion. In the third part, a framework

is proposed for set-point tracking of nonlinear systems that consid-

ers input constraints when the nonlinear model and the steady-state

input at the set-point are unknown. It consists of a constrained DDP

(CDDP), modeling for CDDP and MLMPC, and MLMPC. Closed-

loop simulations demonstrate that the CDDP generates improved tra-

jectory, reaching a set-point, as the number of iterations increases.

MLMPC performs well in both set-point tracking and disturbance re-

jection control if CDDP provides a trajectory around the set-point, the

resulting model is constructed around the set-point, and the gap met-

ric between the model and the dynamics at the set-point is small. The

last part proposes offset-free LTVMPC based on model-free CDDP. It

tracks a suboptimal trajectory from CDDP using LTVMPC until the

state reaches the neighborhood of the set-point. Then, linear offset-

free MPC is employed to track the set-point and reject disturbance.

7.2 Future works

There are several directions for further work based on the sug-

gested framework in this thesis. They include:

• In order to achieve offset-free track from an initial point to a set-

point, the approaches in the thesis should design a controller. A
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global controller, which achieves offset-free tracking from a set

of initial points to a set of set-points, can be designed by learn-

ing the controllers, each of which is designed for a pair of an

initial point and a set-point. Guided policy search (GPS) [73],

which learns the controllers designed by iterative LQR [26] can

be a ingredient. However, GPS does not consider that the reward

changes according to the set-point change. Contextual policy

search [74] aims to provide the function that maps the objec-

tive into the optimal controller. Combining GPS and contextual

policy search can be an answer.

• Trajectory optimization and modeling by DDP that considers

state constraints: In many continuous processes, state constraints

are imposed for safety or profitability. The CDDP used in the

thesis only considers input constraints. There exist research about

CDDP with nonlinear constraints [31], but it cannot contain

pure state constraints. To consider general state and input con-

straints, DDP combined with a primal-dual interior-point method,

called interior-point DDP (IPDDP), has been proposed [75].

The variation of the value function is expressed with respect

to not only state and input, but also dual variable. Combining it

with MPC can be more general and practical to apply for set-

point tracking of nonlinear processes.
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초록

모델예측제어 (model predictive control) 는 산업에서 널리 쓰

이는고급공정제어기법으로,다변수시스템의동역학과제약조

건을고려하여실시간으로현재상태에대해최적해를도출해낸다.

선형 모델을 이용하는 선형 모델예측제어 (linear model predictive

control)가가장간단하고많은이론들이정립되어있으나,실제비

선형 공정에서는 선형 모델이 근사할 수 있는 좁은 운전 조건에서

만사용할수있다는한계가있다.비선형모델예측제어 (nonlinear

model predictive control) 는 비선형 모델을 이용하여 넓은 운전 조

건에서도최적해를제공할수있지만,비선형최적화문제를실시간

으로풀어야하기때문에샘플링타임이작을경우,적용하기어렵

다는한계가있다.다중선형모델예측제어 (multilinear model pre-

dictive control) 또는 선형 시변 모델예측제어 (linear time-varying

model predictive control) 는 여러 개의 선형 모델을 이용하여 넓은

운전범위에서공정의거동을표현하고최적에가까운해를제공할

수있기때문에앞선두가지제어기법의한계를보완할수있다.모

델예측제어기법을실제비선형공정에적용하기에또다른어려운

점은 실제 공정의 비선형 모델을 얻기가 힘들다는 것이다. 미분동

적계획법 (differential dynamic programming) 은 이러한 상황에서

현재 공정 운전 데이터에 기반해 동적 최적화 (dynamic optimiza-

tion)를수행하여초기조건에서설정점까지의최적에가까운경로

를찾아모델예측제어기법을적용할수있도록도움을줄수있다.

구체적으로,미분동적계획법은현재공정운전데이터를이용해운

전데이터근처의거동을묘사하는선형모델들을얻고,이를이용

하여반복적으로다음운전에서의최적해를제공하여운전궤적을

개선한다.
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본 학위 논문에서는 넓은 운전 범위를 가진 공정에서 운전 조

건을 변경하기에 적합한 다중 선형 모델예측제어와 선형 시변 모

델예측제어 전략을 제시한다. 첫번째로, gap metric을 이용하여 설

정점에서 모델예측제어를 적용한 시스템의 안정성을 보장하고 잔

류 편차를 제거하는 다중 선형 모델예측제어 기법을 제시한다. 두

번째로, 다중 선형 모델예측제어기의 진동 가능성을 막기 위해, 초

기 조건에서 설정점까지의 구간을 gap metric에 기반하여 나누고,

각각의구간에서의하위설정점들을정하여초기조건에서설정점

까지의 경로를 하위 설정점들의 그래프로 표현하고, 각 하위 설정

점까지 각각 배정된 선형 모델예측제어기를 이용하여 설정점까지

도달하게 하는 제어 전략을 제시한다. 다음으로는 공정의 모델이

없을 때, 공정의 입력 제약 조건을 고려하는 미분동적계획법을 이

용하여 최적에 가까운 개루프 (open-loop) 제어 입력과 해당 운전

데이터 근방을 근사하는 선형 모델들을 얻어, 다중 선형 모델예측

제어를적용하여설정점까지도달하고잔류편차를제거하는제어

전략을제시한다.마지막으로,미분동적계획법이제공하는준최적

(suboptimal) 운전 데이터를 활용하기 위해, 선형 시변 모델예측제

어기법과잔류편차-제거모델예측제어기법을이어서사용하는전

략이 제시되었다. 구체적으로, 제공된 준최적 운전데이터를 과도

응답 (transient response) 과 정상 상태 응답 (steady-state response)

이 나타나는 구간으로 나누고, 선형 시변 모델예측제어를 통해 과

도 응답에서의 준최적 궤적을 추적하고 상태 변수가 정상 상태에

가까워지면 잔류편차-제거 모델예측제어를 적용해 설정점에 도달

하도록 한다. 제안된 기법들을 공정 예제에 적용하여 공정의 모델

유무와관계없이선형모델들을이용한모델예측제어기법이넓은

운전 조건을 가진 비선형 공정의 공정 조건을 이동하기에 적합한
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방법론임을검증하였다.

주요어 : 최적제어,동적최적화,미분동적계획법,모델예측제어

학번 : 2015-21061
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