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Abstract

Construction and Online
Adaptation of Nonlinear

Semi-batch Process Model for
Digital Twin Under Limited Data

Jaehan Bae

School of Chemical and Biological Engineering

The Graduate School

Seoul National University

A batch process in the chemical and biological industry can be char-

acterized by its non-stationary operation, tracking certain pre-determined

input trajectories for uniform production. This property of the batch

process causes many difficulties in mathematical modeling proce-

dure, which is an essential step for designing a digital twin of the tar-

get process. For modeling the process, it requires nonlinear models

to simulate the complex system dynamics, and a parameter estima-

tion (PE) problem has to be solved to complete the modeling proce-

dure. Particularly, the PE becomes tricky, owing to limited informa-

tion in the measured data of fixed operating conditions. Regardless

of the amount of given data, the lack of information results in ill-

conditioned PE, and not all model parameters can be estimated un-

der this condition. Furthermore, the completion of the process model

does not always lead to a successful application of model-based tech-

niques to the batch processes. This is because unknown disturbances
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are constantly affecting the actual process, resulting in a model-plant

mismatch. For nonlinear models simulating the batch process, this

problem is further highlighted by the structural uncertainty of the

model itself. These problems occur frequently when modeling pro-

cesses of production-scale and should be resolved to construct a digi-

tal twin. This thesis proposes model-based approaches that can man-

age these characteristics of the industrial batch processes.

First, we present the modeling and dynamic optimization tech-

niques using a dynamic hybrid model that can avoid the ill-conditioned

PE problem. The hybrid models are useful in situations where the

available data is limited, and there is little confidence in the model

structure owing to a lack of prior information about the process. The

first part of this thesis defines a valid domain of dynamic hybrid

model and proposes a method to utilize it as a constraint on dynamic

optimization. It also provides an iterative algorithm to overcome the

limitations of the narrow valid domain.

The second method examines the first-principle model, which

can be used when prior information about the process is available.

Initially, a stochastic model with additive stochastic terms is con-

structed based on the first-principle model. Then, a parameter sub-

set selection (PSS) algorithm, which manages the ill-conditioned PE

problem caused by insufficient data, is suggested for the stochastic

model. A PE method for the stochastic model, estimating both the

model parameters and the magnitudes of additive stochastic terms, is

also suggested to support the PSS algorithm.

Finally, using a nonlinear first-principle model, we present an

optimization-based online state and parameter estimation technique

that can manage the model-plant mismatch. If a large number of pa-
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rameters should be updated online with a limited amount of data, the

online state and parameter estimation also encounters the ill-conditioned

PE problem. To address this problem, we introduce the online PSS

method into a moving horizon estimation, presenting an estimation

algorithm that can solve the ill-conditioning problem of the online

PE problem.

Illustrative examples are included at the end of each chapter to

verify the performance of the proposed methods. Each example uses a

virtual plant simulating a fed-batch bioreactor, which has the charac-

teristics of nonlinear behaviors, non-stationary operation, and limited

information in the measured data.

Keywords: Digital twin, Semi-batch process, Hybrid model, Dy-

namic optimization, Parameter estimation, State estimation

Student Number: 2015-21066
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Chapter 1

Introduction

1.1 Motivation

In manufacturing industries, many processes are managed as a

batch process, despite the recent attention drawn to a highly efficient

batch-to-continuous concept [4, 5]. Higher value-added products, for

example, polymers, semiconductors, and bio-pharmaceutics, are pro-

duced in a batch process to guarantee product quality [4]. A semi-

batch process is one type of batch process that enables the operator to

supply additional materials during the operation. The batch process

often involves complicated phenomena, such as phase equilibria, heat

transfer, reaction equilibria. Another key feature of the batch process

is that it is operated in a non-stationary condition. States of the pro-

cess keep changing throughout the operation, until reaching a specific

condition; by the time that the states attain the target condition, the

operation terminates, and the next batch starts after some prepara-

tion periods. As a consequence, a nonlinear model is often the first

consideration when constructing a digital twin of the batch processes

[4].

A digital twin refers to a digital counterpart of the physical pro-

cesses [6]. The digital twin is formulated with the prior knowledge
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and the measured data of its physical counterpart. It also requires

a constant update with online measurements to reflect the changing

characteristics of the target process. A well-designed digital twin al-

lows simulation of various operational conditions. It also helps in un-

derstanding the effects of user-defined scenarios before performing

further experiments on the real-world process. Moreover, as an accu-

rate model of the target process, it can be used in many model-based

approaches, including optimization, monitoring, and control.

As a primary option for constructing the digital twin of the semi-

batch processes, nonlinear models can be classified by many cri-

teria, including a priori information on the target system, stochas-

tic/deterministic, lumped/distributed parameter, continuous/discrete

[7]. Among them, the availability of a priori information is used as

a criterion throughout this thesis, resulting in two categories: a first-

principle model and an empirical model.

A first-principle model, also called a white-box model, is the best

choice if we have plenty of prior information on the target system [7].

Model structures and parameters of a fully first-principle model are

physically meaningful because all characteristics of the system are

understood and modeled mechanistically. However, as a perfect un-

derstanding of the target system is often unrealistic for real-world

processes, it often uses empirical relations to simulate the complex

dynamics of the target system. Considering the modeling of a com-

mercial fed-batch bioreactor, for example, because not all intra-or

extra-cellular mechanisms are examined, some part of the system dy-

namics, such as cell growth or product formation, are modeled with

the empirical relations, such as the Monod equation or Luedeking-

Piret equation [5, 8, 9, 10]. Based on the selected model structure,
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parameter estimation (PE) is required to fit the first-principle model

to observations [4, 11].

An empirical model, or black-box model, constructs an input-

output relationship using the experimental data [7]. The empirical

modeling is preferred when a priori information on the target sys-

tem is insufficient, because it explains the observed phenomena by

using various functions instead. However, it has some disadvantages;

it requires a large amount of data of sufficient quality, and it is not

reliable to extrapolate outside the explored domain. Frequently used

empirical models are as follows: time series models, such as Non-

linear Auto Regressive Moving Average model with eXogenous in-

puts (NARMAX); Fuzzy models; partial least square (PLS) models

and neural networks models. Contrary to the first-principle models,

model parameters of the empirical models have no physical meaning

in general.

In some literature, a hybrid model, also called a grey-box model,

is used to take the advantages of the first-principle and empirical mod-

els [12, 13, 14, 15]. As it uses multiple models simultaneously, com-

plex systems showing unknown dynamics can be simulated, such as

a slugging phenomenon [16] and oil field operation [17] in the oil

and gas industry, hydraulic fracturing [18], polymerization processes

[19, 20], bioreactors [21, 22, 23], and pressure swing adsorption [24].

Meanwhile, many batch processes are operated under a specific

control policy calculated in advance by an upper-level optimizer or

master controller to manage the product specifications [4]. However,

this open-loop control strategy is disadvantageous in terms of process

modeling, especially for the first-principle model. As it forces the sys-

tem to follow a certain trajectory, it restricts the amount of informa-

3



tion gathered from the operation. Moreover, techniques such as the

design of experiments are often difficult to implement in production-

scale processes. The reason is that they require additional experi-

ments or perturbations, which temporarily deteriorate the product qual-

ity [25]. Owing to these limitations, the modeling of a production-

scale batch process often encounters an ill-conditioned PE problem,

which makes it impossible to estimate all model parameters [26, 27,

28].

It is possible to avoid the ill-conditioned PE by using the hybrid

model, as it does not require PE procedures. If the black-box parts

of the hybrid model are trained with a sufficient amount of data, the

hybrid model can simulate the target system accurately, at least in

the domains explored by the observations [29, 30]. However, a de-

tailed analysis of the domains on which the model is valid should be

preceded before the practical use of the hybrid model [31, 32].

When modeling the target system with the first-principle mod-

els, analyzing estimability or identifiability can be helpful for solving

the ill-conditioned PE problem. Estimability refers to the possibil-

ity of a unique estimation of model parameters using the measured

data [33, 34]. On the contrary, identifiability refers to the possibility

of a unique parameter estimation based only on the model structure

itself, and therefore, it does not require experimental data [35, 36].

Through these analyses, we can determine a set of estimable parame-

ters. By estimating only the selected parameters, it becomes possible

to handle the ill-conditioning problem in the PE process. Then, vari-

ous model-based methods can be applied to the target systems based

on the constructed models.

However, when we want to apply online model-based techniques,
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a model-plant mismatch should be considered owing to unknown dis-

turbances and uncertainties [4]. Among various types of possible dis-

turbances, a state disturbance and measurement noise are considered

the most frequent. For these disturbances, extended Kalman filter

(eKF) and unscented Kalman filter (uKF) have been actively used

for the state estimation of the nonlinear models [37, 38, 39]. Besides

these well-known disturbances, parametric uncertainties have to be

considered when using the nonlinear models, as perfect modeling of

the target system is impossible in general. Since the model structure

does not reflect all possible dynamics of the system, the model pa-

rameters may have drifting values when the system is affected by

the unknown disturbances [40]. Except for a few well-studied pro-

cesses, all the systems simulated with the nonlinear model can have

parametric uncertainties for the same reason. The Kalman filter-based

estimators can cover this problem by augmenting the model parame-

ters to the states. However, its accuracy drops significantly when the

behavior of the drifting parameters is highly nonlinear [41, 42].

Optimization-based estimation methods, such as a moving hori-

zon estimation (MHE), can be a way to address the model-plant mis-

match of the online model-based approaches [43, 44]. Given the mea-

sured data, these methods generate the optimization problem using

the augmented state as the decision variable. Then, the optimization

problem is solved at each time step, and the model parameters are

updated with the optimal solution to capture the parametric drifts.

However, although the optimization-based methods can manage the

parameter drift by the iterative update, it may also suffer from lim-

ited information. For example, as MHE solves the optimization prob-

lem with a moving horizon concept, only the limited number of data
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points in the moving window of fixed size are available for each op-

timization problem, resulting in the ill-conditioned PE problem.

1.2 Scope of the thesis

The main objective of this thesis is to suggest the model-based

approaches for the non-stationary semi-batch process under the lim-

ited data, which is often encountered in real-world problems. Several

types of nonlinear models are tested to handle the ill-conditioning

problem in offline and online applications. Proposed methods for

each problem are verified with illustrative examples of virtual plants.

The summary of the three chapters are below:

• Derivation of the valid domain of dynamic hybrid model and its

application in model-based dynamic optimization.

• Parameter estimation method for a simple SDE model and pa-

rameter subset selection algorithm using the proposed parame-

ter estimation method.

• Algorithm for multi-rate moving horizon state and parameter

estimation, managing the overfitting problem with online pa-

rameter subset selection.

The first work proposes a method to identify the valid domain

of a dynamic hybrid model and suggests its application to a dynamic

optimization problem. The resulting valid domain can be easily in-

troduced into the dynamic optimization problem by reformulating the

valid domain into sets of inequality constraints. As the additional con-

straints restrict the range of exploration by the optimizer, an iterative
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framework of model updates is presented to compensate for the lim-

ited improvements in the objective function.

The second part suggests an algorithm for selecting and esti-

mating a parameter subset of a stochastic model when only a lim-

ited amount of data are available. A target system is represented by

stochastic differential equations (SDE) with additive stochastic terms.

State disturbances and measurement errors are estimated simultane-

ously with the model parameters to reduce the effects of uncertainties

on the PE. Using the suggested PE method, an algorithm for parame-

ter subset selection (PSS) is proposed based on a mean-squared-error-

based PSS method. A virtual fed-batch bioreactor, with 12 model pa-

rameters to be estimated, is selected for a numerical illustration. The

simulation results show that the proposed method effectively man-

ages the overfitting problem owing to the ill-conditioned PE and im-

proves the model prediction accuracy compared to cases where all of

the model parameters are estimated.

The final part is about the online state and parameter estimation

problem, incorporating the ill-conditioned PE owing to the limited

measurements. An MHE formulation combined with the PSS is sug-

gested in this part. For each horizon of MHE, a scaled parametric

sensitivity is calculated online, and a subset of estimable parame-

ters is determined. Then, the selected model parameters are estimated

along with the state variables. The proposed MHE formulation han-

dles multi-rate measurements to use as much information as possi-

ble from the measured data. The proposed method is illustrated by a

virtual fed-batch bioreactor example. The result shows that the pro-

posed method improves the accuracy of model prediction compared

to the conventional MHE while maintaining the state estimation per-

7



formance.

1.3 Outline of the thesis

The remainder of the thesis is organized as follows. In Chapter

2, the backgrounds on parameter and state estimation are introduced,

and the overview of estimability analysis is provided. A valid domain

for the dynamic hybrid model and its usage in dynamic optimization

is suggested in Chapter 3. Chapter 4 proposes an algorithm of PSS

for the SDE model of additive stochastic terms. In Chapter 5, an al-

gorithm for multi-rate MHE combined with PSS is suggested for the

online state and parameter estimation. Finally, concluding remarks

and possible directions for further study are given in Chapter 6.
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Chapter 2

Background and preliminaries

2.1 Parameter and state estimation for nonlinear dy-
namic models

2.1.1 Parameter estimation for nonlinear models

When modeling chemical and biological systems, the target sys-

tem is defined with specific dynamics, being represented by a col-

lection of differential and algebraic equations. Assuming the system

is modeled with a set of ordinary differential equations (ODE), the

model can be written in the form

dx(t)

dt
= f(x(t), u, p, θ), x(t0) = xo (2.1)

y = h(x, u, p, θ) (2.2)

In the above, x ∈ Rnx is the vector of state variables, xo ∈ Rnx is

the vector of initial state conditions, u ∈ Rnu is the vector of input

variables, p ∈ Rnp is the vector of known parameters, θ ∈ Rntheta

is the vector of model parameters to be estimated, and y ∈ Rny is

the vector of output variables, respectively. f and h are nonlinear

functions that determine the model structure. Given this model, the
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vector of measured data at time ti, denoted as ŷi, can be related to the

value obtained from the model of Eq. (2.1) as follows:

ŷi = y(ti) + ϵi, i = 1, 2, . . . , n (2.3)

where n is the number of measuring times and ϵi is the vector of the

measurement error.

When a model structure for the dynamics of the system is se-

lected, model parameters should be calculated to complete the mod-

eling procedure. Parameter estimation (PE) refers to the process of

determining values of the model parameters by matching the model-

calculated outputs to the set of measurements [11]. This problem can

be formulated into an optimization problem, minimizing the differ-

ence between the measured output and calculated output at each mea-

suring time ti. The difference is represented by the residual ei,

ei = ŷi − y(ti) (2.4)

and the objective function of the optimization problem is defined

based on the residuals.

The choice of the objective function is crucial for the result of

PE, as it affects both the accuracy of the estimated parameters and

their statistical properties. When the model output can be expressed

as an explicit function of the variables and parameters, as in Eq. (2.1),

there are three most popular objective functions for the PE problem:

the Least Squares (LS), maximum-likelihood (ML), and determinant

criterion [11].

For 1 data set of n measurements, the objective function for the

10



LS estimation is the weighted sum of squares of the residuals:

CLS =
n∑

i=1

e⊤i Qei (2.5)

where Qi is an ny × ny weighting matrix for the ith measurement.

Selecting a proper Qi matrix affect the accuracy of PE result. If the

covariance matrix of the measured output is available, one can use

Qi = Σ−1
i .

Assuming that the measured output of the ith measurement is

normally distributed and all the experiments are independent, the log-

likelihood function is given as a function of the model parameters

θ and the measurement covariance matrices Σi, conditional on the

measured outputs.

L(θ,Σ1,Σ2, . . .Σn|ŷ1, ŷ2, . . . , ŷn)

= A− 1

2

n∑
i

log det(Σi)−
1

2

n∑
i

e⊤i Σ
−1
i ei (2.6)

whereA is constant. The ML estimation is formulated as an optimiza-

tion problem maximizing the log-likelihood function of Eq. (2.6) over

θ and Σi. When the covariance matrices are known, Eq.(2.6) can be

reduced to be the generalized LS objective function.

CML =
n∑

i=1

e⊤i Σ
−1
i ei (2.7)

Furthermore, assuming Σ1 = Σ2 = . . .Σn = Σ, the ML objec-

tive function can be obtained by minimizing the determinant criterion
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[45],

Cdet = det

(
n∑
i

eie
⊤
i

)
(2.8)

With the selected objective function, the PE problem is formu-

lated into a nonlinear programming (NLP) constrained by the model

equations of Eq. (2.1) and some physical constraints. By solving the

NLP, the estimate of model parameters is obtained, which minimizes

the objective function.

2.1.2 Moving horizon state and parameter estimation

A moving horizon estimation (MHE) is an optimization-based

state estimation method, often utilized to estimate state variables and

model parameters of the system online [46]. Unlike full-information

estimators (FIE), the MHE formulates optimization problems with

a moving horizon assumption, which uses only the measurements

within a moving data window of fixed size [43], as shown in Fig-

ure 2.1. Therefore, this method is free from the typical "curse of di-

mensionality" of the FIE. To implement the estimator, one should

discretize the continuous model with a proper sampling rate (sr),

xk+1 = f(xk, uk, p, θk) + wk, xo = x(to) (2.9a)

yk = h(xk, uk, p, θk) + vk, k = 0, 1, ..., K. (2.9b)

where xk is a state variable, uk is a input k, p is the vector of known

parameters, and thetak is a set of model parameters, respectively. In

Eq. (2.9a), the model parameters are assumed to change over time,
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reflecting the drifting nature of the model parameters. wi and vi are

additive noise terms assumed to follow zero-mean normal distribu-

tions. k is a sampling index, where sr = tk+1 − tk, tK = tf .
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FuturePast

Current time, 𝑡𝑘

k+1 k+2k-1k-2k-𝑁𝑚ℎ𝑒
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Estimated states (𝑥𝑘)

Past inputs (𝑢𝑘)

measurements ( 𝑦𝑘)

Reference trajectory (𝑦𝑟𝑒𝑓)

3

Figure 2.1: Graphical description for moving horizon estimation
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2.1.2.1 Formulation of MHE problem

With the discretized model, the online estimation procedure of

MHE is equivalent to solving a dynamic optimization problem itera-

tively with a moving window strategy. At each time step, the dynamic

optimization problem of the current data window (horizon) is trans-

formed into nonlinear programming (NLP) and solved with various

optimization algorithms [47]. At the kth sampling time, MHE esti-

mating trajectories of the state and model parameters in the current

horizon of the size (N + 1), xk−N :k|k and θk−N :k|k, is formulated into

the NLP as

min
xi,θi,wi,vi

Ck(xi, θi, wi, vi) (2.10a)

s.t. xi+1 = f(xi, ui, p, θi) + wi, (2.10b)

i = L, . . . , k − 1,

yi = h(xi, ui, p, θi) + vi, i = L, . . . , k (2.10c)

g(xi, ui, p, θi) = 0, i = L, . . . , k (2.10d)

xmin
i ≤ xi ≤ xmax

i , θmin
i ≤ θi ≤ θmax

i , (2.10e)

wmin
i ≤ wi ≤ wmax

i , vmin
i ≤ vi ≤ vmax

i . (2.10f)

where subscript {i|k} is simplified to i andL = k−N . In the kth hori-

zon, the sequences of the measurements (YL:k|k) and the known inputs

(UL:k|k) are used to estimate a sequence of the states and parameters.

Since all the state variables in the kth horizon can be calculated with

xL|k, θL:k|k, Eqs. (2.9a), and UL:k|k, the NLP becomes a problem of

estimating xL|k, θL:k|k, vL:k|k, and wL:k|k.

The cost fucntion of MHE at the kth sampling time,Ck(xi, θi, wi, vi)

15



consists of two major cost terms, a stage cost and an arrival cost

[41, 44]. Ck is often written as

Ck(xi, θi, wi, vi) =

∥∥∥∥xL − x̄L
θL − θ̄L

∥∥∥∥2
PL

+
k∑

i=L

∥∥vi∥∥2Qi
+

k−1∑
i=L

∥∥wi

∥∥2
Ri

(2.11)

where the first term in Eq. (2.11) is the arrival cost and the last

two terms are the stage costs. The state costs minimize the errors in

the output and the state transition. Inverse of the covariance matrices

are often used as weighting factors for the quadratic terms in the stage

costs [41]. Meanwhile, the arrival cost summarizes the information of

the decision variables of the past sampling times, i = 0, 1, . . . , k −
N − 1 [41]. This is necessary for the MHE formaultion since it takes

the moving horizon assumption to approximate the full-information

estiator (FIE) [44].

2.1.2.2 Calculating arrival cost

Updating the weighting matrix of the arrival cost (PL) is one of

the major topics of the MHE formulation [48, 49, 50, 44, 51]. Some

studies use the NLP sensitivity, extracting the covariance information

from the linearized KKT conditions of the NLP by using the opti-

mal sensitivity of the solutions [48, 49]. Unscented Kalman filtering

(UKF) can be used to calculate the covariance matrix, considering the

presence of active constraints for choosing the set of sigma points in

the UKF step [50]. An update method for the covariance matrix can

also be derived by approximating an ideal arrival cost and linearizing
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the discrete model to get an analytic expression for the solution of

the DAE consisting of the model [44]. While suggesting an update

method based on sampling-based filters, various updating methods

are summarized in [51].

In this thesis, the covariance term for the arrival cost is updated

via augmented unscented Kalman filtering (aUKF) [50]. Assuming

that the initial covariance matrix for the model parameters is calcu-

lated in the offline parameter estimation procedure, the model pa-

rameters at i = L are augmented to xL as additional states. Then,

the state transition models for the model parameters are assumed to

be θi+1 = θi + wθ,i, and these are put together with the discretized

model of Eqs. (2.9a). A sum of quadratic regulation terms for wθ,i is

appended to the stage cost. With this setting, UKF is used to update

PL at each horizon.

2.2 Estimability analysis

Estimability refers to the possibility of obtaining a unique esti-

mation of model parameters by using the existing data on ODEs, dif-

ferential algebraic equations, algebraic equations, and partial differ-

ential equations [33, 34]. It is also denoted as a practical, quantitative,

or a posteriori identifiability of model parameters. A sensitivity-based

analysis is performed with the measured data, so that an evaluation of

the estimability is performed even when a large number of parameters

and state variables are involved [33, 34]. However, there are several

disadvantages; the performance of the analysis depends severely on

the initial estimates of the parameters, and the computation increases

rapidly as the number of involved parameters increases [34, 52].
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2.2.1 Parameter ranking and subset selection

Parameter ranking (PR) is a technique for evaluating the estima-

bility of model parameters based on measured data [53, 34, 2, 54].

Based on a scaled sensitivity matrix (SSM) [54, 53, 55, 56] or Fisher

information matrix [57, 58], various approaches have been suggested

for determining the priority of the model parameters in estimation

problems. An orthogonalization method applies the Gram-Schmidt

algorithm to an SSM [54, 27], and a principal component analysis

is also applied to prioritize the model parameters [59, 53]. In some

studies, a condition number, also referred to as a collinearity index, is

used to determine the rank [55, 56].

Based on the ranked list of model parameters, the parameter sub-

set selection (PSS) creates a reduced model by estimating only the

estimable parameters, while maintaining the non-selected parame-

ters at their initial values [34, 60, 3, 61]. As a consequence, the PSS

makes it possible to manage the ill-conditioned PE problem origi-

nating from the limited data. Insofar as nonlinear models, various

approaches have been attempted [3, 61, 62, 63, 64, 60, 27]. In some

studies, the optimal parameter subset is selected from the list of ranked

parameters based on the mean-squared error (MSE) and MSE-based

indices [3, 61, 27, 60]. Methods based on singular value decomposi-

tion [62, 63] or QR decomposition [64] first determine an estimable

parameter subset, and then repetitively estimate the model parameters

and check whether the problem is well-posed.
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2.2.2 Sensitivity-based methods

Among the various methods, the sensitivity-based methods is se-

lected in this thesis. These methods use the scaled sensitivity matrix

for assessing the estimability of the model parameters.

2.2.2.1 Scaled sensitivity matrix

A sensitivity matrix, denoted by S, of the output variables over

the model parameters is calculated by

Silm,j =
∂yilm
∂θj

, S ∈ RNdata×p (2.12)

with the measurement (yilm) and model parameter (θj), for i = 1 . . . d

output variables, l = 1 . . . n measurements, m = 1 . . . r data sets,

Ndata = dnr, and j = 1 . . . p parameters [34, 11]. This matrix sum-

marizes the influences of the parameters on the model predictions.

The sensitivity matrix (S) can be calculated using difference approx-

imations with perturbed parameter values [65], or by solving sensi-

tivity equations [66].

Generally, a sensitivity matrix should be normalized with proper

scaling factors to consider differences in orders of magnitude and un-

certainties in both measured outputs and the estimated model param-

eters. In this study, the scaling factors are selected as sy = y and

sθ = stdθo , where stdθo is the standard deviation calculated using the

initial parameter estimate. It makes a scaled sensitivity matrix, Z as

Zilm,j =
∂yilm
∂θj

× sθ,j
sy,ilm

= stdθo ×
∂ ln(yilm)

∂θj
(2.13)
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for θj ̸= 0 and gilm ̸= 0.

The scaled sensitivity matrix is calculated numerically based on

the model, measured data, and initial estimate of the model parame-

ters. As the model structure is assumed to be fixed, the performances

of the methods using the scaled sensitivity matrix depend heavily on

initial parameter estimates However, it is difficult to obtain accurate

initial parameter estimates in general. Therefore, the calibration pro-

cess for initial parameter estimates may be necessary to ensure the

performance of the estimability analysis, such as PR or PSS

2.2.2.2 Orthogonalization based parameter ranking method

An orthogonalization-based parameter ranking method is a heuris-

tic method for prioritizing estimable parameters. It is the most com-

monly used method, owing to its simplicity and applicability [2, 54,

67]. The algorithm calculates the column-wise norm of the scaled

sensitivity matrix obtained using Eq. (2.13) and selects the column

(parameter) with the largest norm. Subsequently, it removes the part

of the scaled sensitivity matrix that is linearly dependent on the se-

lected column. The calculation continues until all the model param-

eters are ranked, or until the matrix norm of the residual matrix is

below a user-defined threshold. The priority between the model pa-

rameters is determined by sequentially selecting the most estimable

parameters and adding them to the ranked parameter list [2, 54]. The

outline of the method is presented in Algorithm .1.
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Algorithm .1: Orthogonalization Algorithm [2]
0. initialize matrices: k = 1, Z1 = Z,X0 = ∅
1. Calculate the Eulclidean norm of each column in the scaled
sensitivity matrix, Zk. Set the parameter corresponses to the
column of the largest value,qk as the first parameter of the ranked
parameter list.

2. Set Xk = [Xk−1, qk]
3. Using Xk, calculate the projection of Zk onto Xk, Ẑk.

Ẑk = Xk(X
⊤
k Xk)X

⊤
k Zk

and calculate the residual matrix, Rk, which implies that remove
Xk all directional elements from Zk.(Rk is now orthogonal to Xk)

Rk = Zk − Ẑk

4. Set Zk+1 = Rk
5. Repeat step 1. to 4. until all parameters are ranked or until
X⊤

k Xk becomes nearly singular which makes its inverse matrix
inaccurate.
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2.2.2.3 MSE-based parameter subset selection

The MSE-based PSS methods calculate the MSEs of the model

predictions while adding parameters to the selected subset one-by-

one based on the list of ranked parameters. Then, the calculated MSEs

are used to derive fitness indices for quantifying the improvements

in the modeling accuracy corresponding to the size of the parameter

subset [60, 3, 61]. The optimal number of parameters is determined

based on these indices. The main procedure of this algorithm is sum-

marized in Algorithm 1.

22



Algorithm .2: Wu’s PSS algorithm [3]
0. A ranked parameter list is calculated from the parameter ranking
procedure. The algorithm initialized with an empty set of selected
parameters.

1. Starting from the top-ranked parameter, the parameters in a
selected subset are estimated by solving a proper PE problem
while setting unselected parameters to their initial estimates.
Parameters are added to the subset one-by-one based on the
ranked list, and the process is repeated until all parameters,
θ ∈ Rp, are estimated.

2. Calculate mean squared error, Jk of the model with the top k
parameters estimated, k = 1, 2, . . . , p, where Jk is

Jk =
∑
j

N∑
n=1

(
yj,n − ŷj,n

syj,n
)2, n = 1, 2, . . . , N = dnr.

3. Compute the critical ratio, rC,k for k = 1, 2, . . . , p− 1.

rC,k = (Jk − Jp)/(p− k)

4. Compute the corrected critical ratio for each k using

rCKub,k = max

(
rC,k − 1,

2

p− k + 2
rC,k

)
and

rCC,k =
p− k

N
(rCKub,k − 1)

5. Select the number of parameters to estimate corresponding to the
lowest value of rCC,k.
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Various studies on MSE-based PSS algorithms cover different

types of models, but most are deterministic models and lack a de-

tailed description of the PE procedure. Therefore, even when using

the existing PSS algorithms, if the target model for the PE contains

stochastic terms, such as SDE models, a proper PE technique should

be adopted to handle the stochastic models in the PSS procedure.
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Chapter 3

Hybrid modeling of semi-batch process and
construction of valid domain constraints 1

3.1 Introduction

In this chapter, a hybrid modeling approach, which models a sys-

tem with multiple types of models simultaneously [14, 68], is used

for modeling the target system under limited data. This type of model

is often called a hybrid semi-parametric model or a grey-box model

because it comprises both a black-box and white-box model (a first-

principles model) [12, 13]. Regarding the hybrid modeling of semi-

batch processes, the kinetics are frequently simulated with the black-

box model because it is often difficult to select the right structures for

the kinetic models owing to various reasons, e.g., cell engineering, in-

volving unknown reactions. Moreover, as the kinetic models involve

many model parameters in general, estimating all the model param-

eters is often unavailable. As the nonlinear equations of unknown or

poorly known kinetics can be replaced with a black-box model, the

hybrid model accurately simulates the target system without an ad-
1This chapter is an adapted version of J. Bae, H. J. Lee, D. H. Jeong, and J. M. Lee,

“Construction of valid domain for hybrid model and its application to dynamic optimization
with controlled exploration," Industrial & Engineering Chemistry Research, vol. 59, no. 37,
pp. 16380-16395, 2020. [32]
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ditional parameter estimation procedure [69, 21, 70, 71]. In addition,

because a user can choose the part to be replaced by the black-box

model, the complexity of the model can be easily adjusted [30, 14].

However, the hybrid model suffers from certain limitations. A re-

liable black-box model cannot be constructed if the amount of data is

insufficient [23, 72, 73, 74, 75]. Another disadvantage of this model

is its limited range where the confidence is acceptable. This range

is defined as a valid domain. The reason why the valid domain of

the hybrid model is limited is that it consists of the white-box model,

which allows extrapolation based on a prior knowledge about the sys-

tem, and the black-box model that depends solely on the data used for

training.

A valid domain analysis is suggested to define and to calculate

the valid domain of the hybrid model with two complementary cri-

teria: convex hull and confidence interval criteria [31]. However, this

method defines and examines the valid domain only for static hybrid

models. Furthermore, it is difficult to apply the method directly to

a dynamic hybrid model because it requires an explicit solution of

dynamic model equations. Moreover, the outputs of the dynamic sys-

tem are often measured using multiple sampling rates. Therefore, the

multi-rate measurement issues should also be addressed to determine

the valid domain for the sampling time at which not all the output

variables are measured.

A method to identify the valid domain of a multivariate dynamic

system with nonlinearity is proposed in the following sections. The

basic concepts of a dynamic hybrid model and the valid domain of a

static hybrid model are described initially. A valid domain is extended

to a dynamic hybrid model, and a transformation method is suggested
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to recast the valid domain as a set of linear constraints that can be

readily used in a dynamic optimization problem. Next, a structure

of a dynamic optimization problem comprising valid domain con-

straints and an iterative modeling-optimization strategy is proposed

in the following section. A fed-batch bioreactor is chosen as an illus-

trative example to demonstrate the efficacy of proposed method. A

fed-batch bioreactor has complex nonlinear kinetics and is character-

ized by changing kinetics as the properties of the microorganisms are

continuously modified for performance enhancement over successive

operations [8, 9, 10]. These characteristics of the fed-batch bioreac-

tor make it suitable for demonstrating the required performance of

the proposed method.

3.2 Hybrid modeling of dynamic system

A hybrid model takes various forms depending on its building

blocks, black-box and white-box models [69, 70, 76, 77], and the

way these components are connected, in serial or parallel [69, 78, 15,

79]. When the process model (white-box model) is well-known and

the prediction performance is limited by the unmodeled effects, the

parallel-type hybrid model is used to improve the biased prediction

of the process model [13]. In this type of a hybrid model, the black-

box and white-box models are uncoupled and calculated in parallel.

On the contrary, the serial-type hybrid model is suitable when no par-

ticular information about the fundamental mechanisms is available

[76]. Instead of establishing a model representation for the unknown

behaviors, the black-box model is trained and used to calculate the

target behaviors in a serial-type hybrid model.
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In this chapter, an embedded hybrid model, which is a serial-

type hybrid model [69], is selected as the target model to simulate

the semi-batch processes. In this type of a hybrid model, the black-

box model also passes its output to the white-box model to compute

the overall output. However, the embedded hybrid model differs from

the conventional serial hybrid model in that the black and white box

models interact in a bidirectional manner. Thus, these models act as a

single combined model. Because the white-box model determines the

main structure of the overall model in general, the black-box model

is considered to be embedded in the white-box model, as illustrated

in Figure 3.1c.
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Figure 3.1: Structures of a serial and an embedded hybrid model. (a) Parallel
type. (b) Serial type. (c) Embedded type.
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Because the black-box model interacts with the white-box model,

an embedded hybrid model can provide better extrapolation capabil-

ities than an individual black-box model and better prediction accu-

racy than an individual white-box model. This study employs a neu-

ral networks (NN) for black-box modeling in the embedded structure,

and the model for the state transition is represented as

dx

dt
= f(x, u, p, B), x(to) = xo (3.1a)

B = NN(xb) = fNN(xb, θ), θ = (W, b) (3.1b)

In Eq. (3.1), x, u, and p represent the vector of state variables, in-

put variables and known parameters of the model, respectively. B is

the output of the black-box model which models unknown or poorly

known parts of the system, and θ is the parameter vector of the black-

box model. xb is the vector of input variables for the black-box model,

which can contain a subset of the state variables or the input variables.

Since a neural networks is used as the structure of the black-box

model, W and b represent the weights and biases of nodes, respec-

tively.

The unknown part of the target system is generally modeled as a

function of the state variables [14, 30]. If the unknown behavior of the

system becomes highly nonlinear, the black-box model needs to have

a significant number of hidden layers [80]. Accordingly, the num-

ber of nodes, layers, and hyperparameters of (deep) neural networks

should also be carefully selected to avoid the overfitting problem [81].

The hybrid model can be trained in various ways. One method

is to directly train the entire hybrid model. With this approach, the

model parameters, i.e., the weights and biases of the black-box model,
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are estimated by solving a parameter estimation problem [18, 80, 82,

69]. It is also possible to train the black-box model separately and

combine it with the white-box model to generate the hybrid model.

Although this is a direct and intuitive approach, it requires pairs of

input-output data of the black-box model. The input variable of the

black-box model are a set of state variables of the system. When the

output of the black-box model is not available, a parameter estima-

tion problem must be first solved to obtain the function values of the

black-box model corresponding to the state variables. Because the

target model has time-varying terms, the parameter estimation prob-

lem transforms into a dynamic optimization problem that minimizes

the model prediction error (ϕ) by adjusting a sequence of the function

values of the target black-box model (Bk = B(xb)|t=tk)). Assuming

that all the state variables are measurable, the parameter estimation

problem can be written as,

min
Bk

ϕ(ỹk, yk) (3.2a)

s.t.
dx(t)

dt
= f(x(t), ũk, p, Bk), x(t0) = x0 (3.2b)

yk = h(xk, ũk, p) + ϵk, ϵk ∼ N(0,Σk) (3.2c)

g(x(t), ũk, Bk) = 0, h(x(t), ũk, Bk) ≤ 0 (3.2d)

xL ≤ xk ≤ xU , k = 0, 1, 2, · · · , K − 1. (3.2e)

where ỹk is the vector of measured outputs, ũk is the vector of mea-

sured values of the input variables, K is the number of sampling

points, and ϕ is the cost function minimizing the difference between

the measured state (x̃) and the predicted state (x) of each sampling

time, respectively.
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3.3 Valid domain for dynamic hybrid model

In this section, the concept of the valid domain for the static hy-

brid models is introduced and extended for the dynamic hybrid mod-

els. With regard to the dynamic hybrid model, managing the model-

plant mismatch is also the main goal of the valid domain constraints.

Two complementary valid domain criteria for the dynamic system,

the convex hull criterion and the confidence interval criterion, are de-

rived based on the measured output data and the discretized dynamic

hybrid model.

Assuming the dynamic hybrid model is discretized as

xk+1 = fd(xk, uk, p, B(xb, θ)), (3.3)

yk = hd(xk, uk, p) + ϵk, ϵk ∼ N(0,Σk) (3.4)

wherexk ∈ Rnx is the vector of state variables, uk ∈ Rnu is the vector

of input variables, yk ∈ Rny is the vector of output variables at the kth

sampling time, and p is a set of known model parameters. B(xb, θ) is

a black-box model, where xb is the vector of input variables of the

black-box model and θ is a set of parameters of the black-box model.

Since the black-box models are used to model unknown dynamics

of the system, e.g., reaction kinetics, xb is often a subset of the state

variables of the overall model. When a neural networks is used as the

black-box model, θ = [W, b], weights and biases of nodes, respec-

tively. ϵk follows i.i.d normal distribution, and Σk is assumed to be

known.
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3.3.1 Valid domain for static hybrid model

Compared to the pure black-box model, a hybrid model is known

to have extrapolation capabilities to a certain degree owing to the use

of the first-principle model [15, 83]. But still, the hybrid model is

unable to simulate all the domain of the target process, and leaving

some valid region in the domain may increase the mismatch between

the model and the real process, as the black-box model in the hybrid

model does not have prior knowledge about the target system. This

makes it necessary to find a valid region of the hybrid model either

in the state space or in the input space. A valid domain analysis for

a static hybrid model consists of two criteria: a convex hull criterion

and a confidence interval criterion [31]. Two complementary criteria

are directly used as valid domain constraints in the form of either

a nonlinear constraint or a Lagrangian penalty in the optimization

problem [31].

3.3.1.1 Convex hull criterion for static system

Because black-box models in a hybrid model are used to simulate

unknown or poorly known kinetics of the overall system, the input

variables of the black-box models are often the state variables of the

overall model. A convex hull criterion can be easily obtained by for-

mulating a convex hull of the measured input variables of the black-

box models [31]. Because a static system only requires a constant

value for each input variable, the convex hull can be constructed by

finding the vertices out of all the points. In addition, the convex hull

can be represented with several half-spaces, which are represented as

a set of linear inequality constraints on the input variables.
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3.3.1.2 Confidence interval for static system

A confidence interval criterion is derived from the concept of

inference region, especially a confidence band, in the parameter es-

timation theory of a hybrid model [26, 31]. It assumes that the mea-

sured data are normally distributed and finds the range of the output

variables that satisfies a specific level of reliability, for example, an

approximate highest posterior density (HPD) band with a significance

of α [84].

Φci,n(u) = s
√
2ν⊤n (u)Ω

−1νn(u)
√
PF (P,N − P ;α) (3.5)

s2 =
ψ(p̂)

N − P
(3.6)

where νn is the gradient of predicted output of the nth data set (yn)

with respect to θ ∈ RP evaluated at θ = θ̂ and it is a function of the

input variable (u). In Eqs. (3.5)-(3.6), P is the number of the model

parameters, and N is the number of measured data set. F (P,N −
P ;α) is the upper α quantile of Fisher’s F distribution with P and

N −P degrees of freedom [85]. Φci,n is a half width of (1−α) HPD

band for the nth expected output of the model with a significance

level of α. Ω is Hessian of the determinant criterion(ϕ) evaluated with

θ = θ̂ and the measured data.

In the optimization problem, Φci,n can be used either as a set of

inequality constraints or as a Lagrangian multiplier, by adding it to

the objective function. When it is used as a nonlinear constraint, it is

recast into a set of nonlinear inequalities as Φci,n − Φ̃ci,n ≤ 0, where

Φ̃ci,n = Φci,n(ũ). The resulting nonlinear inequalities are then added

to the optimization problem.
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3.3.2 Convex hull criterion for dynamic hybrid model

When one static black-box model is used to model each unknown

portion of target dynamics in the dynamic hybrid model, the convex

hull criterion for the dynamic hybrid model is derived using the same

method as in the static hybrid model. Because the black-box models

are static, the convex hull criterion can be formulated using the in-

puts of the black-box models, xb, while disregarding the order of its

sequences over time, as depicted in Figure 3.2a.
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(a) (b)

Figure 3.2: Example for convex hull criterion, where xb = [x1, x2]
⊤ ∈ R2
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If multiple static models are used for a set of target dynamics,

e.g., switching black-box models in the hybrid model, multiple con-

vex hulls are formulated corresponding to each black-box model as in

Figure 3.2b. Then, the convex hulls can be used as a set of constraints

on xb in an alternative manner, while switching the black-box models

in the dynamic hybrid model. Assuming that one target dynamics of

the hybrid model is modeled with J black-box models, the indices of

the sampling points, k = 0, 1, . . . , K, are grouped into a set of in-

dices, Ij, j = 1, 2, . . . , J , based on which black-box model is used at

the kth sampling point.

3.3.3 Confidence interval criterion for dynamic hybrid
model

Unlike static systems, it is impossible to obtain an explicit ex-

pression of the output variables in dynamic systems because they are

modeled using differential equations. Therefore, the confidence in-

terval criterion of the dynamic hybrid model, Φi,k, should be derived

using implicit equations of the model. In this study, it is derived using

the discretized model of Eq. (3.3) and measured data sets.

Assuming that the measurement error is an additive error and

follows a normal distribution with zero mean, one can set the cost

function, ψ(θ), for the model parameter estimation as a least-squares

function weighted by the inverse of the known covariance matrix of
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the measurement error, Σk [26].

ψk(θ) = [Ỹk − Yk(θ)]
⊤Σ−1

k [Ỹk − Yk(θ)], (3.7)

ψ(θ) =
∑
k

ψk(θ), k = 0, 1, . . . , K (3.8)

where Ỹk and Yk ∈ RNk×ny is a matrix of the measured outputs at the

kth sampling time, stacking yk of each data set, and of the output pre-

dicted by the model, respectively. Nk is the number of the measured

data sets at k and ny is the number of the output variables. When the

measurement error is unknown, a determinant criterion can be used

as an alternative cost function for the parameter estimation problem

[26].

ψk(θ) = det
(
[Ỹk − Yk(θ)]

⊤[Ỹk − Yk(θ)]
)

(3.9)

If the scale of the measurements varies, Ỹk and Yk should be

scaled with proper scaling factors. When the measurement error is

assumed to be known, the covariance matrix can be used as a scaling

matrix for the measurements as in Eq. (3.7).

With the cost function of Eq. (3.8), the black-box models in the

hybrid model are trained to get the best fitting model parameters, θ̂ ∈
RNθ , where Nθ is the number of the model parameters. Since the

model parameters to be estimated are the weights and bias of the

nodes in the black-box model, Nθ is determined by the total number

of layers and nodes of the black-box models.
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Nθ =(nin + 1)n0 +
l+1∑
j=0

(nj + 1)nj+1 + (nl+1 + 1)nout (3.10)

where nin is the number of inputs, nout is the number of outputs

of the black-box model, nj is the number of nodes of the jth layer,

and j = 0, . . . , l + 1, where l is the number of hidden layers while

j = 0 is an input layer and j = l + 1 is an output layer, respectively.

With the estimated parameters (θ̂) and the discretized model, the

confidence interval criterion at the kth sampling point is derived as a

function of the state variables (xk−1) and the input variables (uk−1) of

the (k − 1)th sampling point.

Φi,k(xk−1, uk−1, θ̂) (3.11)

= sk

√
2g⊤i,kH

−1
k gi,k

√
NθF (Nθ, Nk −Nθ;α),

sk =
ψk(θ̂)

Nk −Nθ

(3.12)

where gi,k ∈ RNθ is a gradient of the ith output variables of the model,

yi,k(θ), i = 1, . . . , ny, and Hk ∈ RNθ×Nθ is a hessian of ψk with

respect to θ calculated at θ = θ̂, respectively. F is an upper α-quantile

of f-distribution with Nθ and (Nk −Nθ) degree of freedom.

Assuming that yk = hd(xk) + ϵk, gk ∈ Rny×Nθ can be derived
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from the discretized model

gk(xk−1, uk−1, θ̂) =
∂yk(θ)

∂θ

∣∣∣∣
θ=θ̂

=
∂hd
∂xk

∂xk(θ)

∂θ

∣∣∣∣
θ=θ̂

=
∂hd
∂xk

∂fd(xk−1, uk−1, θ)

∂θ

∣∣∣∣
θ=θ̂

(3.13)

while Hk is calculated with the matrix differentiation and the chain

rule as in A.1.

The resulting confidence interval criterion, Φk(θ̂) ∈ Rny , is a

function of xk−1 and uk−1. Since the discretized system is a Markov

process, it is natural that assessing the validity of the current state

(xk) with the last state (xk−1) and input (uk−1) given the estimated

parameters (θ̂). Except for k = 0, Φk is calculated for all the sampling

points, resulting K − 1 nonlinear functions.

The number of parameters increases when a deep neural net-

works with an increased number of hidden layers is used as the black-

box model. Furthermore, the size of the Hessian matrix, Hk, also in-

creases. Consequently, if the a condition number of the matrix be-

comes large, the inverse calculation of the matrix yields inaccurate

results. One way to solve this problem is to find a set of scaling ma-

trices, a left scaling matrix L and a right scaling matrix R, which

minimizes the condition number of the scaled matrix, Hs,k = LHkR.

In this method, L and R of Hk for each data set is formulated as

a linear matrix inequality problem (LMIP), especially a generalized

eigenvalue problem (GEVP), as in A.2 [1]. Using the scaled matrix,

the inverse of Hk can be calculated as H−1
k = RH−1

s,kL.

With a simple modification of the proposed method, the confi-

dence interval criterion of the dynamic system can be derived using
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multi-rate measurements. For simplicity, let us assume that the target

system has two types of measurements: slow-rate and fast-rate. As-

suming that each measurement rate is a multiple of the sampling rate

for the model discretization and considering the sampling rate of the

discretization as a grid, all the measured data can be rearranged as

depicted in Figure 3.3. The sampling points are classified into three

categories based on the measurements available at the time of sam-

pling: both measurements(tSF ), only fast measurement (tF ), and only

slow measurement (tS).
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Figure 3.3: Rearranging multi-rate measurements
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Let Ŷ n
k be a matrix of the rearranged measurement of the kth

sampling time and the nth dataset. If k ∈ tSF , the derivation of the

confidence interval is the same as the system measured with a sin-

gle rate measurement because all the measurements are available. In

contrast, if k ∈ tS ∪ tF , then Ŷ n
k has empty entries depending on the

measurement rate of each output. Because the model is available, it is

possible to estimate the empty entries in Ŷ n
k using Eq. (3.3) and mea-

sured data Ỹ n
k . Then, the confidence interval criterion of the proposed

method is derived using the estimated output (Y n
k ) in the place of the

measured output (Ỹ n
k ). However,Nk should be reduced because some

elements of the measurements in the rearranged measurement matrix

(Ŷ n
k ) are not real measured values but are estimated. Therefore, N̂k is

defined as N̂k = Nk × rk and used in Eq. (3.11) instead of Nk, where

rk is the ratio of the number of true measured data to the number of

all the data entries in Ŷ n
k . It causes the confidence interval to become

wider at k ∈ tS ∪ tF , which means that the predicted output at the

sampling point is less accurate than that of k ∈ tSF . Since the num-

ber of measured datasets at tS or tF should be larger than Nθ, more

datasets are required in this case than the one in which all the output

variables are measured.

3.3.4 Valid domain constraints for dynamic hybrid model

To apply the two valid domain criteria to the dynamic hybrid

model, they are formulated as inequality constraints on xk, k = 0, 1, . . . , K.

The convex hull criterion is explicitly formulated into a set of linear

inequalities on xb by finding half-spaces with facets of the convex

hulls. The facets are determined by the convex hull algorithms, such
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as the Qhull algorithm [86]. Because xb is often a subset of the state

variables of the hybrid model, the resulting linear inequalities become

a set of linear constraints on xk.

Ach,jxb ≤ bch,j ⇔ Ach,jxk ≤ bch,j, k ∈ Ij (3.14)

where k = 0, 1, . . . , K and j = 1, 2, . . . , J . The number of linear in-

equality constraints due to the convex hull criterion grows exponen-

tially with the state variables, which are the input for the black-box

model. If it becomes computationally prohibitive to use all the lin-

ear inequality constraints, a set of linear inequalities at each sampling

time can be approximated by an ellipsoid [1].

Meanwhile, the confidence interval criterion, Φk(xk−1, uk−1, θ̂),

is used as a nonlinear constraint on the state and input variables at

each sampling point,

Φk(xk−1, uk−1, θ̂) ≤ Φ̂k (3.15)

where Φ̂k is a band width of the confidence interval calculated with

the measured data sets. It means that the predicted output (yk) is con-

strained to be in the set YYY k,

YYY k = {yk|yk ∈ ∪([ynk − ϕ̂n
k , y

n
k + ϕ̂n

k ])} (3.16)

⇔ min(YYY k) ≤ yk ≤ max(YYY k) (3.17)

where n denotes the nth dataset. Subsequently, Eq. (3.16) can be

transformed into two linear inequalities on the output variables, as

in Eq. (3.17), adding constraints to the input of the black-box model
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indirectly. Therefore, there are two alternative ways to impose the

confidence interval criterion onto the model: a nonlinear inequality

constraint on the state and input variables at each sampling point, as

in Eq. (3.15), or linear inequality constraints on the output variables

at each sampling point, as in Eq. (3.17).

3.4 Dynamic optimization with valid domain constraints

3.4.1 Problem formulation

A dynamic optimization problem is formulated with the discretized

hybrid model and the two valid domain constraints as

min
uk

C(xk) (3.18a)

s.t. xk+1 = fd(xk, uk, p̂, B(xb, θ̂)), xo = x(t0) (3.18b)

yk = hd(xk, uk, p̂) + ϵk, ϵk ∼ N(0,Σk) (3.18c)

gd(xk, uk, p̂) = 0, ld(xk, uk, p̂) ≤ 0 (3.18d)

xk ∈ Φch,k, (xk−1, uk−1) ∈ Φci,k (3.18e)

xLB ≤ xk ≤ xUB, uLB ≤ uk ≤ uUB. (3.18f)

where gd is an equality constraint and ld is an inequality constraint.

Eq.(3.18e) contains two valid domain constraints, where Φch,k and

Φci,k denote the sets of variables satisfying the convex hull criterion

in Eq. (3.14) and the confidence interval criteria in Eq. (3.15), re-

spectively. As a result, the intersection of the two criteria becomes

the actual valid domain of the dynamic hybrid model.

However, applying the intersection as a hard constraint can limit

the improvement by optimization since the optimizer is only available
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to explore the optimal solution within the small feasible region. To

solve this problem while maintaining the validity of the hybrid model,

two inequality constraints are defined: the intersection and union of

Φch,k and Φci,k.

Φ∩,k = {(xk, uk)|(xk, uk) ∈ Φch,k ∩ Φci,k} (3.19a)

Φ∪,k = {(xk, uk)|(xk, uk) ∈ Φch,k ∪ Φci,k} (3.19b)

Then, Φ∩,k is added to the dynamic optimization problem in Eq.

(3.18) as a soft constraint and Φ∪,k replaces Eq. (3.18e) as a hard

constraint.

min
uk

C ′(xk, uk) = C(xk) +Wk

∑
k

Cvd,k(xk, uk) (3.20a)

s.t. xk+1 = fd(xk, uk, p̂, B(xb, θ̂)), xo = x(t0) (3.20b)

yk = hd(xk, uk, p̂) + ϵk, ϵk ∼ N(0,Σk) (3.20c)

gd(xk, uk, p̂) = 0, ld(xk, uk, p̂) ≤ 0 (3.20d)

(xk, uk) ∈ Φ∪,k (3.20e)

xLB ≤ xk ≤ xUB, uLB ≤ uk ≤ uUB. (3.20f)

where Cvd,k is a cost function of xk and uk, quantifying the violation

of the soft constraint (Φ∩,k). In Eq. (3.20), the optimizer minimizes

the cost function C ′(xk, uk) while satisfying Eq. (3.20e). It allows the

optimal solution to violate the soft constraint, Φ∩,k, but the violation

is also minimized by the optimizer. A trade-off between the cost func-

tion (C(xk)) and the model validity (Cvd,k) is managed by adjusting

Wk.
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3.4.2 Iterative application of overall scheme

If the region defined by Φ∪,k(xk, uk) ≤ 0, which is determined

by the hybrid model and the measured datasets, does not contain the

unknown real optimal operating trajectory of the process, the dy-

namic optimization of Eq. (3.20) cannot find the real optimum. Fur-

thermore, as the batch process is operated repeatedly, disturbances for

which the current model cannot account may change the real optimal

operating trajectory. Thus, it is necessary to consider the restricted

(xk, uk)-domain and the time-varying nature of the actual process

when the process is optimized using the hybrid model.

One way to resolve these difficulties is to update the hybrid model

and perform model-based optimization in an iterative manner. In this

method, the valid domain of each iteration is updated with the newly

collected data based on the last optimization result. Therefore, (xk, uk)-

domains where the past iterations have not been visited can be ex-

plored. Moreover, by updating the hybrid model over the batch-to-

batch operation, the time-varying nature of the target plant can be

considered. Figure 3.4 presents the overall procedure of this method.
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Figure 3.4: A flow diagram of an iterative application of overall scheme
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First, it builds a hybrid model with the data collected from a

real plant (Dataset 1). Subsequently, the valid domain-constrained

dynamic optimization is solved to calculate a new input trajectory.

While applying the calculated input trajectory to the real plant, new

data are collected for the next iteration. Next, the newly collected data

replace the previous dataset from the oldest one. The ratio of the re-

placement is adjusted (Dataset 2) to update the black-box part in the

hybrid model. Since the resulting model is based on a specific dataset

used at each iteration, it is possible to make the hybrid model account

for the changes in the kinetics by updating the black-box models at

each iteration.

3.5 Illustrative example

In this section, a numerical example is presented to demonstrate

the applicability of the proposed method. By imposing the valid do-

main constraints on the hybrid model-based dynamic optimization

problem, the proposed method optimizes the objective function while

guaranteeing the validity of the predicted result. A virtual plant of a

simple fed-batch bioreactor is selected as an example system. This

virtual plant is assumed to have the following characteristics: cell

growth in the target system is inhibited by high cell and product

concentrations, and product generation by the cell is inhibited by a

high substrate concentration. Since the growth of cells affects prod-

uct generation, the concentrations of the cell and product also affect

the production rate in the cell. The target of this example problem is

to maximize the amount of the final product.
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3.5.1 Hybrid model structure and problem statements

The target system is composed of ordinary differential equations

(ODEs) describing the dynamics of state variables of the system:

cell concentration(X[g/L]), substrate concentration (S[g/L]), prod-

uct concentration (P [g/L]), and reactor volume (V [kL]).

dX

dt
= µ(X,S, P )X −DX (3.21a)

dS

dt
= −rsubsX + (Sin − S)D, rsubs = YSXµ+mS (3.21b)

dP

dt
= π(X,S, P )X −DX (3.21c)

dV

dt
= Fin − Fout − Fevap (3.21d)

D = Fin/V (3.21e)

Fevap = Sαevap(exp(2.5T/100)− 1) (3.21f)

where µ is the cell growth kinetics, rsubs is the substrate consumption

rate, and π is the product formation rate, respectively. The system

has two input variables, the inlet and outlet flowrates (Fin[L/hr] and

Fout[L/hr]). Fout is added to the system to manage the volume of the

broth in the reactor. The output model for this system is assumed to

be

yi = xi + ϵi, i = 1, . . . , 4, ϵi ∼ N(0, σ2
i ) (3.22)

where [x1, x2, x3, x4] = [X,S, P, V ].

All the kinetic equations, µ, rsubs, and π, depend nonlinearly on

the state variables: X , S, and P . To test the situation where the kinet-
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ics are partly known, rsubs is assumed to be known as a function of µ

as in Eq. (3.21b). Since the kinetic models for µ and π are unknown,

neural networks (NN) are used to model these kinetics. Therefore,

two NN models are formulated with X , S, and P as the inputs, mod-

eling µ and π as the outputs, respectively. Initial values of the state

variables, known model parameters, σis, and physical constraints on

the input and state variables are listed in Table 3.1.
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Parameter Value[units] Description

Xo 5[g/L] cell initial conc.
So 20[g/L] substrate initial conc.
Po 0[g/L] product initial conc.
Vo 5.8[kL] initial broth volume

FLB 0[L/hr] min. flow rate
FUB
in 400[L/hr] max. flow rate (Fin)

FUB
out 50[L/hr] max. flow rate (Fout)

Vmax 10[kL] max. volume
T 303.15[K] reactor Temp.
Vsp 0.1[L] sample volume
Sin 300[g/L] Subs. conc. in feed stock
YSX 1.85[g S/g X] yield coeff.
mS 0.029 [g/g hr] maintenance (subs.)
αevap 5.24e-4 [L/hr] evaporation constant
sr1 0.2 [hr] sampling rate 1(X,V)
sr2 0.4 [hr] sampling rate 2(S,P)

Tbatch 20 [hr] batch time
h 0.2 [hr] sampling rate of discretization
σX 0.1 [g/L] measurement error (X)
σS 0.1 [g/L] measurement error (S)
σP 0.1 [g/L] measurement error (P )
σV 0.05 [kL] measurement error (V )

Table 3.1: Initial conditions and physical constraints for simulation
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Fifty sets of simulation data are generated with the randomly

perturbed initial states, normally distributed with ± 20% magnitude

of the given initial conditions in Table 3.1. The input trajectories used

for generating the fifty simulation data sets are also randomly created

based on the fixed reference input trajectory, perturbed by 30% of its

magnitude, as shown in Figure 3.5.
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Figure 3.5: Randomly perturbed input trajectories for the data generation
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Using the generated simulation data sets, measured responses for

each data are calculated via the output model of Eq. (3.22). The batch

and sampling times are often different from batch to batch in real

processes, but it is assumed that each batch data has already been

synchronized for this numerical example. X , S, P , and V are as-

sumed to be measured at different sampling rates: X and V are sam-

pled with a fast measurement (sr1) while S and P are sampled with a

slow measurement (sr2). The overall simulation was performed using

MATLAB 2019a.

3.5.2 Formulate discretized dynamic hybrid model of
target system

The first step is to build a discretized dynamic hybrid model of

the target system. In this numerical example, it is assumed that µ and

π are measured together with the output variables at each sampling

time. The assumption on measuring the kinetics of the system, µ and

π in this example, is often unrealistic for the modeling problems in

reality. However, as mentioned in Section 1.1, there are various meth-

ods to directly train the entire hybrid model, not requiring the target

value estimates of the black-box model. Moreover, the trajectories of

µ and π can also be estimated by solving the trajectory optimization

of Eq. (3.2) and used for training the black-box parts of the hybrid

model. In this example, however, the detailed process for modeling

the dynamic hybrid model is omitted to focus on the valid domain

constraints and its application in the dynamic optimization problems.

Seventy percent of the measured data were used as the training

set, and validation was performed with the rest of the data. Two black-
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box models of µ and π are trained as functions of X , S, and P . Two

NN models of 3-layers (one hidden layer) for µ and 4-layer (two

hidden layers) for π were developed. A sigmoid function, f(x) =

1/(1+exp(−x)), was employed as an activation function. The hyper-

parameters used throughout the training steps are listed in Table 3.2.
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Hyper-parameter NN for µ NN for π

# of layers 3(1-1-1) 4(1-2-1)
# of nodes 3-3-1 3-3-2-1

Learning rate, α 0.01 0.02
Activation function ’sigmoid’ ’sigmoid’

Table 3.2: Hyper-parameters of the black-box models
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The number of the model parameters (θ = [W, b]) is determined

by the number of layers and nodes of each model. For this example,

there are 39 parameters of the weights and biases of two black-box

models. 16 parameters are required for the µ model: layer 1 (W1 ∈
R3×3 and b1 ∈ R3, 12 parameters in total), layer 2 (W2 ∈ R3 and

b1 ∈ R1, 4 parameters in total). The π model requires 23 parameters:

12 for layer 1, 8 for layer 2, 3 for layer 3. Figure 3.6 shows the training

results of µ and π model.
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Figure 3.6: Comparision between true value and predicted value. (a) Traning
result - µ, (b) Traning result - π
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The continuous model of Eq. (3.21) is discretized with a sam-

pling rate of h = 0.2 [hr]. A complete dynamic hybrid model can

be achieved with the discretized model and two black-box models.

To verify the prediction performance of the hybrid model, two dif-

ferent cases of randomly generated input trajectories were tested on

the plant model and the hybrid model. The two different cases are:

1) an arbitrary input trajectory inside the convex hull of the training

data set, and 2) an arbitrary input trajectory outside the convex hull

of the given input data. Figure 3.7 shows the simulation results for

both cases. For the first case, the hybrid model accurately predicts

plant dynamics, as seen in Figure 3.7a. However, the hybrid model

shows a poor prediction performance for the second case, as shown

in Figure 3.7b. The normalized root mean-squared error (NRMSE) of

model prediction is 0.0395 in case 1 and 0.3977 in case 2. This re-

sult is due to the extrapolation issue of the black-box models, which

demonstrates the necessity for a valid domain analysis of a hybrid

model.
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Figure 3.7: Hybrid model prediction results. (a) case 1 : Random input in
the convex hull of ID data, (b)case 2 : Random input out of the convex hull
of ID data
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3.5.3 Construction of valid domain for dynamic hy-
brid model

Two valid domain criteria are derived using the dynamic hybrid

model. The confidence interval criterion is calculated at all the sam-

pling points, k = 0, 1, . . . , 50. The calculated convex hull criterion

is shown in Figure 3.8. Because xb is xb = [X,S, P ] ∈ R3 for

both black-box models, the convex hull criterion is plotted in a three-

dimensional graphic as in Figure 3.8a. Figures 3.8 (b-d) are two di-

mensional figures of the convex hull criterion, fixing the X , S, and P

axes, respectively. The green lines in the figures indicate the trajecto-

ries of the measured data.

62



(a) (b)

(c) (d)

Figure 3.8: Calculated convex hull interval criterion. (a) convex hull of
[X ,S,P ], (b) on X axis, (c) on S axis, (d) on P axis
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Unlike the convex hull criterion, the confidence interval criterion

(Φk) is calculated only at k = 1, 2, . . . , 50 since the kth confidence

interval criterion is a function of xk−1 and uk−1. Because the problem

was assumed to have a multi-rate measurement, the same assumption

was considered in the calculation of the confidence interval criterion.

The calculated confidence interval criterion is depicted in Figure 3.9.
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Figure 3.9: Calculated confidence interval criterion for each output vari-
ables. (a) ΦX plot, (b) ΦS plot, (c) ΦP plot, (d) ΦV plot
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The blue lines in Figure 3.9 denote the calculated confidence in-

terval criterion (Φk) and the black dots indicate the measured vari-

ables. The calculated confidence interval of the reactor volume (V ) in

Figure 3.9d shows that it has a very small Φks compared to other state

variables; this is because no black-box model is directly involved in

calculating V in the discretized model.

Comparing Figures 3.9 (a-c), one can find out that Φk of S and

P is wider than that of X . Moreover, Φks, of which sampling points

where S and P were not measured, have a larger values than Φks of

the other sampling points. One reason is that a smaller Nk is used to

calculate Eq. (3.11) and Eq. (3.12) at these points. Moreover, the ac-

tual amount of data used to calculate Hk in Eq. (3.11) is less at these

sampling points because the unmeasured variables are estimated us-

ing the model. This also affects the calculated values of Φk at the

sampling times of sr2.

3.5.4 Dynamic optimization with valid domain constraints

Two valid domain criteria of the dynamic hybrid model can be

formulated as the inequality constraints as in Eq. (3.19). During opti-

mization, the convex hull criterion results in 300 linear inequalities on

X ,S, and P at each sampling point, and a total of 15,300 constraints

are added to the nonlinear programming (NLP). Using the method of

Eq. (3.17), the confidence interval criterion is formulated as eight lin-

ear inequalities at each sampling point except k = 0, thereby result-

ing in 400 linear inequalities. Subsequently, two valid domain con-

straints, Φ∩ and Φ∪, are calculated from the inequalities. A dynamic

optimization problem maximizing the amount of the product is solved
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using the dynamic hybrid model and the valid domain constraints as

in Eq. (3.20).

Dynamic optimization problems are often solved by transform-

ing them into NLP [47]. Among the various methods, a direct multi-

ple shooting method is used in this study [47]. The resulting NLP is

written as

max
xk,uk

PendVend +
∑
k

PkVsp −
∑
k

Cvd,k (3.23a)

s.t. xk+1 − fd(xk, uk, p̂, µ(θ̂), π(θ̂)) = 0, (3.23b)

xo = x(t0) (3.23c)

yi,k = xi,k + ϵi,k, ϵi,k ∼ N(0,Σi,k) (3.23d)

i = x, s, p, v

Φ∪,k(xk, uk) ≤ 0 (3.23e)

xLB ≤ xk ≤ xUB, uLB ≤ uk ≤ uUB (3.23f)

Fin,LB ≤ Fin ≤ Fin,UB, (3.23g)

Fout,LB ≤ Fout ≤ Fout,UB (3.23h)

where Cvd,k = (Φ∩,k − xk)
⊤Wk(Φ∩,k − xk) and Wk is assumed as

Wk = diag([0.1, 0.1, 0.1, 0.05]). The resulting NLP contains 250 de-

cision variables with 16400 inequality constraints, which consist of

15300 convex hull constraints and 400 confidence interval constraints

on yk, 500 upper and lower bounds for decision variables, and 200

continuity constraints for the multiple shooting, respectively. The dy-

namic optimization problem of Eq. (3.23) is solved on matlab-casADi

environment on Matlab 2019a [87], taking 1.9903 sec to be solved
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with Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz.

Figure 3.10 depicts the optimized trajectories of the state vari-

ables compared with the one reference trajectory from the measured

data set.
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Figure 3.10: Optimized state trajectories on the confidence interval criterion
compared with the reference. (a) optimized X [g/L], (b) optimized S [g/L],
(c) optimized P [g/L], (d) optimized V [kL]
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The final weight of product with the optimal trajectory is 401.63

[kg] while that with the reference is 327.85 [kg]. The final volume

in the optimal case is therefore less than that of the reference, which

means that the optimized input trajectory uses less amount of the feed

stock as compared to the reference case. Figure 3.11 depicts the opti-

mal trajectories for the convex hull criterion.
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(a) (b)

(c) (d)

Figure 3.11: Optimal state trajectories on the convex hull criterion compared
with the reference. (a) optimized trajectory, (b) on X axis, (c) on S axis, (d)
on P axis
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Because the constraints of Eq. (3.19a) are added to the opti-

mization problem as a soft constraint, the optimal state trajectory

could slightly escapes the convex hull criterion when P approaches

50 [g/L].

The green dotted lines in Figures 3.10-3.11 represent the state

trajectories optimized using Eq. (3.18). In this formulation, the con-

straint Phi∩,k ≤ 0 is added to the optimization problem as a hard

constraint. Because the optimal solution under this condition cannot

leave the intersection of the convex hull and the confidence interval

criterion, the final weight of product with the optimal trajectory is

365.65 [kg], which is less than that of the optimal trajectory calcu-

lated by the proposed dynamic optimization of Eq. (3.23), i.e. 401.63

[kg].

If the proposed method is effective for managing the model-plant

mismatch while performing the input trajectory optimization, the op-

timized input trajectory, which is calculated with the valid domain

constrained dynamic optimization based on the hybrid model, should

be valid for the plant model, resulting in the same simulation results

in both models. To verify whether the optimized state trajectory of

Eq. (3.23) is valid for the plant model, the hybrid model and the plant

model are simulated using the optimized input trajectories and the

prediction results of the three state variables, X , S, and P , are com-

pared in Figure 3.12.
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Figure 3.12: Checking the validity of the optimized input trajectory : com-
parison of the state trajectories of the hybrid model and the plant model
under the optimized input trajectory
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The simulation result shows that the dynamic hybrid model ac-

curately simulates the target plant of interest, as seen in Figure 3.12.

Therefore, we can conclude that the valid domain-constrained dy-

namic optimization of Eq. (3.23) provides an optimal solution while

maintaining the validity of the dynamic hybrid model.

3.5.5 Iterative model update and dynamic optimiza-
tion

Based on the optimized input trajectory from the first iteration,

a new set of operational data is collected in the same manner for the

next iteration. For this example, we assumed that all the other condi-

tions are the same as in the iteration 1, except for the input trajecto-

ries. The same procedure is applied to the second dataset. The valid

domains for each time interval are also derived similar to iteration

1 and used as the constraints in the optimization problem. Figures

3.13-3.14 shows the optimized state trajectories both for the confi-

dence interval and the convex hull criterion.
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Figure 3.13: Optimized state trajectories on the confidence interval crite-
rion compared with the reference (iteration 2). (a) optimized X [g/L], (b)
optimized S [g/L], (c) optimized P [g/L], (d) optimized V [kL]
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(a) (b)

(c) (d)

Figure 3.14: Optimal state trajectories on the convex hull criterion compared
with the reference (iteration 2). (a) optimized trajectory, (b) on X axis, (c)
on S axis, (d) on P axis
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The final weight of product with the optimal trajectory of itera-

tion 2 is 414.31 [kg]. Even if the amount of improvement in the cost

function by iteration 2 is less than that by iteration 1, the iterative

application of the proposed method improves the target cost while

maintaining the validity of the dynamic hybrid model. Figure 3.15

depicts the accurate simulation of the virtual plant by the dynamic

hybrid model and the validity of the optimized input trajectory of it-

eration 2, similar to iteration 1.
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Figure 3.15: Checking the validity of the optimized input trajectory (iter-
ation 2) : compare the state trajectories of the hybrid model and the plant
model under the optimized input trajectory
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Different results may be obtained when the unknown kinetics of

the system modeled by the black-boxes change due to the repetitive

batch operations. Even in this situation, we can expect an improved,

or at least a similar, performance in a new operation by using the pro-

posed method. Since the model and constraints are updated using the

newly collected datasets in every iteration, the proposed method will

return an improved result if a better solution is found in a newly ex-

plored valid domain defined with the updated model and constraints.

Even in the opposite situation, since the proposed method optimizes

the input trajectories based on the last optimized input trajectories,

it provides a similar result to the last operation. Thus, the proposed

methods can find the improved input trajectories for subsequent oper-

ations under the changing dynamics of the system using the iterative

updates of the hybrid dynamic model and validity constraints.
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Chapter 4

Ranking-based Parameter Subset Selection for
Nonlinear Dynamics with Stochastic
Disturbances under Limited Data 2

4.1 Introduction

When modeling non-stationary batch processes, we often use a

nonlinear model, expecting its capability of simulating complex be-

haviors of the target system. For example, first-principle models of

various systems are nonlinear models, providing a profound analysis

when the target system is well-known. However, there exist several

issues on the usage of the nonlinear model from a practical perspec-

tive; the limited information and difficulty in designing an accurate

model structure.

Besides the well-known problem of an ill-conditioned parame-

ter estimation owing to the limited data, selecting a proper model

is challenging, except for some well-studied systems [89, 90]. If the

selected model structure is not suitable for capturing the characteris-

tics of the system, the model may not simulate the system accurately,
2This chapter is an adapted version of J. Bae, D. H. Jeong, and J. M. Lee, “Ranking-

based Parameter Subset Selection for Nonlinear Dynamics with Stochastic Disturbances
under Limited Data," Industrial & Engineering Chemistry Research, vol. 59, no. 50, pp.
21854-21868, 2020. [88]
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even if the parameters are estimated properly. Moreover, there also

exist uncertainties that are inexplicable by the deterministic model.

To overcome this limitation, some have considered using stochastic

differential equations (SDEs) that can explain the stochastic effects

in the target system [91, 92, 93].

There are many studies on PE methods for the SDE model [92],

including a maximum-likelihood estimation (MLE)-based approach

[94, 95, 96, 97], expectation-maximization (EM)-based approach [98,

99, 100], and Bayesian applications [101, 102]. Both the MLE and

EM-based approaches estimate the model parameters by formulat-

ing a cost function based on a likelihood function, and then solving

optimization problems. The likelihood functions are calculated by in-

tegrating a probability density function (PDF), which depends on the

model of the target system. However, it is difficult to calculate the

likelihood functions, as a multidimensional integration needs to be

performed over the PDF [103, 97]. One way to solve this problem is

to apply a Markov chain Monte Carlo (MCMC)-based method to ap-

proximate the likelihood function by repetitive sampling [104, 105,

102]. This approach is intuitive, but incurs a massive computational

burden.

To avoid this problem, several techniques derive the likelihood

function in a closed-form through appropriate approximations [96,

106, 107, 100, 97]. A closed-form expansion for the log-likelihood

function is derived by using a multivariate Hermite expansion and its

relation to Kolmogorov equations [107]. A quasi-maximum-likelihood

estimator is introduced based on the estimation equation [108], and

compares it to an infeasible MLE. A Laplace approximation (LA)

is used to calculate analytic expressions of the log-likelihood func-
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tions. Using the derived log-likelihood functions, a framework for PE

of stochastic models is suggested, successfully estimating the model

parameters and unknown additive stochastic terms in the model si-

multaneously [106, 100, 97]. However, the PE problem can still be

ill-conditioned depending on the amount and quality of the data, re-

gardless of the suitability of the model structures and corresponding

PE methods.

This chapter suggests a method for deriving a model with re-

duced SDEs by using a ranking-based parameter subset selection

to manage the ill-conditioned PE problem under quantitatively rich,

but qualitatively limited data collected from a production-scale plant.

First, the PE technique for the stochastic models is introduced. The

overall PSS algorithm, including the modified PE method for SDE

models with additive stochastic terms, is presented in the next sec-

tion. Finally, the efficacy of the proposed method is illustrated and

described based on application to a virtual plant representing a fed-

batch bioreactor, followed by concluding remarks in the final section.

4.2 Parameter estimation for SDE models with addi-
tive stochastic terms

4.2.1 System modeled with stochastic differential equa-
tions

A SDE is a differential equation that contains stochastic pro-

cesses; its solution, Xt, is also a stochastic process [91]. SDE models

are directed to systems influenced by stochastic effects.
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A SDE is written as

Xt = x+

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs, (4.1)

or

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, X0 = x. (4.2)

In both equations, Xt is a stochastic process, b and σ are functions of

t and Xt, and Wt is a Wiener process, respectively.

A simple SDE model used in this study takes a constant coeffi-

cient for the Wiener process term, σ(t,Xt) = Q.

dx(t) = f(x(t), u(t), θ)dt+QdWt, x(0) = xo (4.3)

In the above x is the state variable, u is the input variable, θ is the vec-

tor of the model parameters, and Q is the constant covariance matrix

for determining the size of the random state disturbances. Assuming

that the random state disturbances do not affect each other, Q is re-

duced to a diagonal matrix.

As the state variables are stochastic processes, it is impossible to

obtain exact trajectories for the state variables by solving Eq. (4.3)

[91]. Instead, the integrator results in a sample path, i.e., a realization

of the stochastic process. The sample paths can be calculated based

on the theorem shown in A.3 [91].

dx(t)

dt
= f(x(t), u(t), θ) + η(t), (4.4)

E[η(t1)η(t2)] = Qδ(t2 − t1), x(0) = xo (4.5)

83



where η is a zero-mean white-noise process with constant covariance

matrix (Q).

4.2.2 Laplace Approximation Maximum Likelihood Es-
timation (LAMLE)

A MLE requires solving a multidimensional integral to calculate

the cost function,

P (Ym|ξ) =
∫
P (Xq, Ym|ξ)dXq. (4.6)

In the LAMLE, the Laplace approximation (LA) is applied to the

multidimensional integral of Eq. (4.6) to approximate an analytic so-

lution [109, 110] (A.4).

Assuming that the state disturbances of the system follow Eq.

4.5, the measurement model of the target systems is modeled as

Ym = g(X,Um, θ) + ϵm, ϵm ∼ N(0, σ2
j ) (4.7)

where Ym ∈ Rny , Xm ∈ Rnx , and Um ∈ Rnu are the matrices of

measured outputs, state and input variables, respectively. X includes

both measured and unmeasured states. The measurement noise ma-

trix, ϵm, is also assumed to be a diagonal matrix, meaning that all the

measurement noises are independent and identically distributed for

j = 1, . . . , ny.

With these assumptions, the LAMLE algorithm [97] is a MLE-

based estimation technique for SDE models that can simultaneously

estimate the disturbance intensity (Q) in Eq. (4.3), the measurement

noise (Σ) in the output model, and the model parameters (θ). Using an
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analytic expression of the integrand of Eq. (4.6) (P (Xq, Ym|ξ)) sug-

gested in [100], solving Eq. (4.6) with LA results in the cost function

(P (Ym|ξ) = JLAMLE) as a function of [θ, β,Q,Σ].

JLAMLE(θ, β,Q,Σ) =

[Ym − g(X̃m, Um, θ)]
⊤Σ−1[Ym − g(X̃m, Um, θ)]

+ (xm0 − x̃0)
⊤S−1

m0(xm0 − x̃0)

+

∫ tend

t0

[ ˙̃x(t)− f(x̃(t), u(t), θ)]⊤Q−1[ ˙̃x(t)− f(x̃(t), u(t), θ)]dt

+

ny∑
l=1

Nl ln(σ
2
l ) + q ln[det(Q)] + ln[det(HX̃)]

(4.8)

assuming that Nl measurements are available for the lth output vari-

able. In Eq. (4.8), θ is a set of the model parameters, β represents the

B-spline coefficients, σ2
l is the estimated measurement error of the

lth output variable, i.e., the lth diagonal element of Σ, and HX̃ is the

Hessian of JLAMLE with respect to X̃ that is approximated with Eq.

(4.9), respectively. X̃m is a matrix of the measured state variables, and

x̃ is the vector of the state variables. The symbol ∼ over the letters

denotes that the variables are approximated by B-spline curves.

In Eq. (4.8), a closed-form solution is required to calculate JLAMLE ,

as approximated by a b-spline function [111, 103, 97]. Assuming that

the deterministic part of the SDE model has a unique solution, the

calculation is as follows:

x̃i(t) =

ci∑
j=1

βi,jϕi,j(t), for i = 1, . . . , nx (4.9)
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where x̃i(t) is the approximated state trajectory of the ith state vari-

able. For the ith state variable, ci is the number of B-spline basis func-

tions determined by the order of B-spline basis and the number of

knots, βi,j is the jth B-spline coefficient, and ϕi,j is the correspond-

ing B-spline basis function for j = 1, . . . , ci [112]. In a matrix form,

x̃(t) = Φ(t)BBB (4.10)

where Φ is a matrix of the spline basis functions.BBB is a matrix of the

B-spline coefficients, where each column contains βi,j , the B-spline

coefficients for the ith state variable. The number of knots and order

of basis functions need to be selected properly. The hyper-parameters

affect the overall precision of the LAMLE algorithm, as they deter-

mine the accuracy of the approximated state trajectories.

While estimating the model parameters, the LAMLE algorithm

updates Q and Σ iteratively until they satisfy the stopping criterion,

i.e., a mean value of the squared relative difference (ek).

ek =
nx∑
i=1

(
qi,k − qi,k−1

qi,k

)2

+

ny∑
j=1

(
σj,k − σj,k−1

σj,k

)2

(4.11)

The update rules forQ and Σ in the LAMLE algorithm are derived by

taking derivatives of JLAMLE with respect to Q and Σ and equating

them to zero, respectively. Because the iterative update rule does not

guarantee the convergence of Qk and Σk, it might fail to satisfy the

stopping criterion in Eq. (4.11).
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4.3 Ranking-based PSS for simple SDE model under
limited data

A ranking-based PSS method for stochastic models is suggested

in this section. Based on the ranked list of model parameters, the pro-

posed method determines the optimal size of the parameter subset

while simultaneously estimating the selected parameters, intensity of

state disturbances (Q), and measurement errors (Σ).

As the main building block of the proposed PSS method, a PE

method for the stochastic models is also proposed in this section.

Based on the LAMLE algorithm, the proposed PE method relieves

the dependency of the PE algorithm on the b-spline approximation.

It also reduces the effects of the batchwise uncertainties on the es-

timation results and improves the convergence of the algorithm by

adopting a learning rate.

4.3.1 Improvement of initial parameter guesses via sampling-
based optimization

It is difficult to provide accurate initial estimates for the model

parameters in the early stage of the modeling process. As the tech-

niques used in this study, for example PR and PSS, rely heavily on

the initial estimates of model parameters, poor initial estimates dete-

riorate the overall performance. To solve this problem, an additional

PE problem of Eq. (4.12) is suggested and solved to provide the im-

proved initial parameter guesses (θ∗o).

This preliminary PE problem is formulated with the determinis-

tic part of Eq. (4.3) and is solved with a sampling-based optimization
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method, e.g., a genetic algorithm (GA) [113], with a weighted least-

square (WLS) objective function. Rather than simply falling into lo-

cal optima near the initial estimates, the sampling-based optimization

method explores the decision variable domain with guided sampling

strategies to find the optimum (θ∗o) starting from the poor initial pa-

rameter estimates (θoo). The improved initial parameters are also used

as the initial parameter for the main PE algorithm.

θ∗o = argmin
θo

Jθo , s.t. θo ∈ [θo,LB, θo,UB] (4.12)

where the range of θo is determined based on the distribution of θoo,

assuming that θoo is uniformly distributed over predetermined ranges.

Jθo is defined as the WLS of deviations between predictions and mea-

sured output variables from the randomly selected data sets, denoted

by K. The set K is generated based on a user-defined sampling rate

to avoid over-fitting and regulate the computational load.

Jθo =
∑
k∈K

[
ny∑
l=1

(
ykml − ŷkl (θo)

syl

)2
]

(4.13)

where ykml is the measured value of the lth output variable of the kth

dataset and ŷkl (θo) is the predicted output variable using the model

and θo. The additional PE problem solves the optimization problem

in Eq. (4.12) repetitively and collects θ∗os, which are used as the initial

parameter estimates for all of the techniques to be applied later in this

study, including PR and PSS.

As this technique requires an excessive computational load, it is

not suitable as the main PE method for the PSS procedure. Moreover,
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as it tries to estimate all of the model parameters based on the insuffi-

cient information in the limited data, it cannot guarantee the accuracy

of the initial parameter estimates (θ∗o). In the overall algorithm, how-

ever, it plays a significant role, as it narrows down the range of the

initial parameter estimates.

4.3.2 Calculation of scaled sensitivity matrix and ranked
list of parameters

The SDE model in this study is assumed to have a constant co-

efficient for the Wiener process term, that is, the stochastic term of

the model is independent of the model parameters. This assumption

makes it possible to calculate a sensitivity matrix for the model pa-

rameters of the target models in the same way as calculating the sen-

sitivity matrix for the deterministic ODE models. Eq. (4.3) can there-

fore be rewritten as

Xt = Xo +

∫ t

0

f(Xs, θ)ds+

∫ t

0

σdWs (4.14)

If the output model g is assumed as g(Xt, U), then the sensitivity

matrix is calculated as

∂g

∂θ
=

∂g

∂Xt

∂Xt

∂θ
=

∂g

∂Xt

[∫ t

0

∂

∂θ
(f(Xs, Us, θ)) ds+

∫ t

0

∂σ

∂θ
dWs

]
=

∂g

∂Xt

∫ t

0

(
∂f

∂θ
+

∂f

∂Xs

∂Xs

∂θ

)
ds

(4.15)

which is the same as the method used in the deterministic models

[114]. Then, a ranked parameter list, Θ̂ = [θ1, θ2, . . . , θp], is calcu-
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lated by applying the orthogonalization algorithm to Z as described

in Algorithm 1.

4.3.3 Modified LAMLE algorithm for parameter sub-
set selection

As the PE method for the overall PSS algorithm, a modified

LAMLE algorithm is suggested in this section. Based on the LAMLE

framework, the proposed PE algorithm is modified to manage the size

of the optimization problem while considering multiple datasets si-

multaneously. A learning rate is also adopted to improve the conver-

gence of the proposed algorithm numerically.

4.3.3.1 Selecting hyper-parameters of B-spline curves

The hyper-parameters of the B-spline curves, the number of knots

and order of basis functions in the B-spline curves, critically affects

the performance of the PE algorithm. If excessive knots are placed

with high order of basis functions, the b-spline curves will approxi-

mate the state trajectories very accurately [111]. However, the com-

putational burden for solving the LAMLE-based PE problem becomes

intractable, because the number of decision variables of the optimiza-

tion problem increases in proportion to the number of b-spline coeffi-

cients (BBB), which is determined by the number of knots and order of

basis functions [115]. The additional decision variables can be con-

sidered as dummy variables for the optimization problem, as the B-

spline coefficients are not the target of the PE problem. Under this

condition, if the number of B-spline coefficients dominates the num-

ber of real model parameters to be estimated, the optimal solutions
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of the PE problem may fall into the local minima generated by the

dummy variables.

In contrast, if a relatively small number of b-spline coefficients

are used to adjust the size of optimization problem, the B-spline curves

may fail to approximate the state trajectories. If the measured data

are overfitted by the b-spline curves, the algorithm may simulate un-

certainties as if they were real behaviors of the system dynamics, as

shown in the fitting results for 11 and 13 knots in Figure 4.1a.
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Figure 4.1: B-spline curve fitting with de Boor’s algorithm: (a) testing a
various number of knots and orders, (b) testing a variation of the value of
B-spline coefficients.
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When solving the optimization problem, the overfitting issue may

not occur owing to the state transition models that are added to the op-

timization problem as constraints. Nonetheless, the number of knots

and order should be properly determined to ensure the performance

of the PE algorithm and to manage the size of the optimization prob-

lem. To find the best hyper-parameter setting, the number of knots

and order of the basis functions are predetermined using de Boor’s

algorithm [112]. Before starting the PE procedure, various combina-

tions of the hyper-parameters are tested offline for each trajectory, as

the measured data are fitted with B-spline curves by de Boor’s al-

gorithm. While keeping the precision of the fitted curves high, it is

preferable to minimize the number of B-spline coefficients.

Meanwhile, the B-spline coefficients obtained by the de Boor’s

algorithm (B̂BBo) are used as the initial values for the dummy variables,

BBB. As the fitted B-spline curves accurately simulate the real trajecto-

ries, the optima of the dummy variables in LAMLE can be assumed

to be nearly identical to the initial estimates, B̂BBo. Therefore, it is rea-

sonable to set the range of the dummy variables as a narrow interval

centered on B̂BBo, to minimize the effects of the dummy variables on

the optimization problem. As shown in Figure 4.1b, it is possible to

handle the entire range of the measured data, with only a small vari-

ation in B̂BBo.

4.3.3.2 Generalization of Objective functions, JgLAMLE

When using the N datasets to estimate model parameters, the

results can be vulnerable to measurement noise if solving the PE

problem N times only with a single dataset each time. In this case,

93



the algorithm may recognize the batchwise measurement noises as

real process dynamics, deteriorating the PE accuracy. Using multi-

ple datasets for each PE is a simple way to resolve this problem. By

considering the entire collection of datasets as a replay buffer, the

random perturbations owing to the measurement noises cancel out

each other based on a modified objective function, defined with a set

of datasets randomly selected for the PE problem. In this method, the

fluctuations introduced by the B-spline assumption are also repressed,

as they are normalized when multiple data sets are involved in each

PE procedure. Therefore, the parameter estimates are less affected by

the measurement errors and B-spline setting. Consequently, the accu-

racy of the Q and Σ estimates is also improved. Initially, JAMLE and

JLAMLE are re-defined for the kth dataset.

Jk
AMLE =[Y k

m − g(X̃k
m, U

k
m, θ)]

⊤(Σk)−1[Y k
m − g(X̃k

m, U
k
m, θ)]

+ (xkm0 − x̃k0)
⊤(Sk

m0)
−1(xkm0 − x̃k0)

+

∫ tkend

t0

[ ˙̃xk(t)− f(x̃k(t), uk(t), θ)]⊤

(Qk)−1[ ˙̃xk(t)− f(x̃k(t), uk(t), θ)]dt (4.16)
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Jk
LAMLE =[Y k

m − g(X̃k
m, U

k
m, θ)]

⊤(Σk)−1[Y k
m − g(X̃k

m, U
k
m, θ)]

+ (xkm0 − x̃k0)
⊤(Sk

m0)
−1(xkm0 − x̃k0)

+

∫ tkend

t0

[ ˙̃xk(t)− f(x̃k(t), uk(t), θ)]⊤

(Qk)−1[ ˙̃xk(t)− f(x̃k(t), uk(t), θ)]dt

+

nk
y∑

l=1

Nk
l ln((σ

k
l )

2) + qk ln[det(Qk)]

+ ln[det(Hk
X̃
)] (4.17)

where the superscript k indicates that the variables are calculated us-

ing the kth data set.

With Jk
AMLE and Jk

LAMLE of the kth data set in Eq. (4.16) and

Eq. (4.17), i.e., the set-wise objective functions, the suggested gener-

alization of the objective functions of the ith data set is given by

J i
gAMLE = J i

AMLE +
∑
j∈Si

rs

J j
AMLE

∣∣
Qj=Qi,Σj=Σi

= f(BBBi,BBBj1 , . . . ,BBB
j
Ni
rs , θ)

(4.18)

J i
gLAMLE = J i

LAMLE +
∑
j∈Si

rs

J j
LAMLE

∣∣
Qj=Qi,Σj=Σi

= f(BBBi,BBBj1 , . . . ,BBB
j
Ni
rs , θ, Qi,Σi)

(4.19)

where Si
rs is a set of indices of randomly selected data sets, j1, . . . , jN i

rs
∈

Si
rs, not including the ith data set,N i

rs is the size of Si
rs and it is deter-

mined by a user-selected sampling rate.BBBl is the B-spline coefficients

related to the lth data set. The number of overall data sets involved in
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the ith iteration is N i
rs + 1, the ith data set and N i

rs data sets in Si
rs.

The generalized cost functions can be interpreted as a sum of log-

likelihood functions,

JgLAMLE =
∑
Srs

ln p(Xq,k, Ym,k|θ), k = 1, . . . , Nrs (4.20)

where Nrs is the number of randomly selected data sets.

4.3.3.3 Derivation of ĴgAMLE , ĴgLAMLE and Q, Σ up-
date rules

For the ith iteration, however, simply adding the objective func-

tions for all N i
rs + 1 data sets as in Eqs. (4.18) and (4.19) causes

all of the B-spline coefficients, BBBi and BBBj , j ∈ Si
rs, to become de-

cision variables for the PE problem. In other words, the number of

decision variables increases in proportion to N i
rs. This amplifies the

disadvantage of the B-spline approximation-based method, causing

the number of dummy variables to dominate the real model parame-

ters, and potentially resulting in bad local optima. It also makes the

overall computational load grow very quickly.

However, B̂BBk
o , the initial value of the B-spline coefficients of the

kth data set calculated with the de Boor’s algorithm, is assumed to

be very close to the optimal value of the B-spline coefficients of the

kth data set (BBBk
∗). Therefore, it is possible to construct the objective

functions to be a function of only the b-spline coefficients of the ith

data set (BBBi) and the model parameters (θ) by using the assumption.
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AssumingBBBj = B̂BBj
o for ∀j ∈ Si

rs, the objective functions become

Ĵ i
gAMLE = J i

AMLE +
∑
j∈Srs

J j
AMLE

∣∣
BBBj=B̂BB

j
o,Q

j=Qi,Σj=Σi

= f(BBBi, θ)

(4.21)

Ĵ i
gLAMLE = J i

LAMLE +
∑
j∈Srs

J j
LAMLE

∣∣
BBBj=B̂BB

j
o,Q

j=Qi,,Σj=Σi

= f(BBBi, θ, Qi,Σi).

(4.22)

Iterative update rules for Qi
n and Σi

n, where n is the iteration

index for the Q and Σ iteration of the ith data set, are derived by

differentiating Ĵ i
gLAMLE with respect to Qi and Σi and equating them

to zero, respectively.

Qi
n+1 =

(∑
j∈Srs

qj + tr(ΨiH−1
βi Ψ

i⊤)(Σi
n)

−1

)−1

(
J i
Q,inner(BBB

i, θi) +
∑
j∈Srs

J j
Q,inner(B̂BB

j

o, θ
i)

) (4.23)

σi
l,n+1

2 =(N i
l +

∑
j∈Srs

N j
l )

−1

(
J i
Σ,inner(BBB

i, θi)

+
∑
j∈Srs

J i
Σ,inner(B̂BB

j

o, θ
i) + tr(Ψi

lH
−1
βi
l
Ψi

l

⊤
)−1

)∣∣∣∣
n

(4.24)

where σi
l,n+1 is the lth diagonal element of Σi

n. J i
Q,inner and J i

Σ,inner
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in Eqs. (4.23)-(4.24) are defined as

J i
Q,inner(BBB, θ) =

∫ tiend

ti0

(
˙̃xi(t)|BBB − f(x̃i(t)|BBB, ui(t), θ)]⊤

[ ˙̃xi(t)|BBB − f(x̃i(t)|BBB, ui(t), θ)]
)
dt

(4.25)

J i
Σ,inner(BBB, θ) =

N i
l∑

s=1

[yil(t
i
ml,s)− gl(x̃

i(timl,s), u(t
i
ml,s), θ)]

2 (4.26)

As ĴgLAMLE and ĴgAMLE calculate JLAMLE and JAMLE N
i
rs+1

times, the generalization increases the overall computational load in

proportion to the size of the sampled data sets. However, by the as-

sumption of the B-spline coefficients, BBBj = B̂BB
j

o for ∀j ∈ Si
rs, it

is possible to keep the number of decision variables at the original

level, and it is therefore possible to regulate the increasing computa-

tional load while reducing the effects of the batchwise uncertainties

the model parameters.

4.3.3.4 Adopting a learning rate (α) into Q, Σ update
rules

With the existing Q update rule, it occasionally fails to converge

Q, owing to the numerical instability originating from the update rule

itself. In each iteration, the value of Q is directly affected by the op-

timization result. Then, the inverse of the calculated Q is used as

weighting matrices in the objective function, and thus also affects the

optimization result for the next iteration. Consequently, if the update

rule changes the value ofQ significantly in a single iteration, the stop-

ping criterion in Eq. (4.11) may not be satisfied. In this case, simply
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increasing the number of iterations does not guarantee convergence

as the convergence of Qk sequences has not been proven. Figure 4.2

shows examples of the stopping criterion in both converged and failed

cases.
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Figure 4.2: Examples of convergence of Q, Σ iteration in LAMLE algo-
rithm. (a) converged, (b) failed
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The convergence of the stopping criterion can be improved by

adopting a learning rate, α ∈ [0, 1], into the update rules.

Q̃n+1 = Q̃n + α(Qn+1 − Q̃n),

Σ̃n+1 = Σ̃n + α(Σn+1 − Σ̃n), α ∈ (0, 1).
(4.27)

where Qn+1 and Σn+1 are the calculated values of Q and Σ in the nth

iteration, and Q̃n+1 and Σ̃n+1 are the values of Q and Σ that will be

used in the generalized objective functions for the next iteration. This

update rule with the constant learning rate becomes an exponential

recency-weighted average [116] of the calculated Qns and Q̃o. For

example, the Q update rule in Eq. (4.27) can be rewritten as

Q̃n+1 = Q̃n + α(Qn+1 − Q̃n) (4.28a)

= αQn+1 + (1− α)Q̃n (4.28b)

= αQn+1 + (1− α)[αQn + (1− α)Q̃n−1] (4.28c)

= · · ·

= (1− α)nQ̃o +
n∑

i=1

α(1− α)n−iQi+1 (4.28d)

where more weights are given to recent Qis than to past Qis. Mean-

while, introducing α does not affect the value of converged Q and Σ.

For Q, suppose Qn → Q and Q̃n → Q̃ as n→ ∞. Then,

Q̃ = αQ+ (1− α)Q̃ (4.29)

which can be reduced to Q̃ = Q, as α is none zero. The same logic
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can be applied to Σ. Adopting α still does not guarantee convergence

and may slow the convergence rate, but we can manage the numer-

ical instability owing to the rapid changes in Q and Σ. A detailed

description for gLAMLE is illustrated in Algorithm 2.
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Algorithm .3: gLAMLE algorithm

initialize: for all N datasets, i ∈ {1, 2, . . . , N} = S

- Determine the number of knots and order of B-spline

curves and find B̂BBo by using deBoor’s algorithm.

- Set the sample size Nrs, learning rate α, stopping criterion

e∗

- initialize Q̄i
o = Qi

o = Qo and eio
for i = 1, . . . , N do

(0) Set n = 0

(1) Set Si
rs by randomly selecting Nrs datasets from

S − {i}
while en > e∗ do

(2) With Q̄i
n and B̂BB

j

o of j ∈ Si
rs, formulate Ĵ i

gAMLE,n

with Eq. (4.21)

(3) Find θ̂in, B̂BB
i

n by minimizing Ĵ i
gAMLE,n and get Hβi

(4) Calculate Qi
n+1 with θ̂in, B̂BB

i

n, Hβi , and Eq. (4.23)

(5) Update Q̄i
n+1 with Eq.(4.27) and check the

stopping criterion en with Eq.(4.11)
end

end
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4.3.4 MSE-based PSS of SDEs model using gLAMLE

The MSE-based PSS method consists of two steps: 1) solving

PE problems iteratively with the gLAMLE algorithm based on the

ranked list of parameters; and 2) calculating the MSE-based indices.

Let Θ̂ = [θ1, θ2, . . . , θp] be the ranked list calculated using the PR

method. The PE problem for the kthr iteration, where kr = 1, 2, . . . , p,

is solved with the first kr parameters of Θ̂ and the b-spline coefficients

as the decision variables of the optimization problem while fixing the

non-selected parameters to their initial values, θ∗o . Therefore, the kthr
parameter subset is constructed as

Θkr =
[
θ1, θ2, . . . , θkr , θkr+1

o , . . . , θpo
]
. (4.30)

where kr = 1, 2, . . . , p. Through this procedure, the estimated pa-

rameter subset, Θ̂kr =
[
θ̂1, θ̂2, . . . , θ̂kr , θkr+1

o , . . . , θpo

]
, is sequentially

calculated for all kr.Qkr and Σkr are calculated simultaneously using

Qkr−1 and Σkr−1 as the initial values for the kthr iteration.

Jkr is defined as the WLS of deviations between predictions and

true measured outputs and used as a performance criterion to evaluate

the prediction accuracy of the model corresponding to each Θ̂kr .

Jkr =
Ntot∑
k=1

 ny∑
l=1

(
ȳkml − ȳkl (Θ̂kr)

syl

)2
 (4.31)

where Ntot is the total number of data sets. As in Eq. (4.13), a proper

scaling factor, syl , is essential for each state variable, to cancel out the

differences originating from the magnitude of each variable..

With Jkr and Θ̂kr , the indices, rC,kr , rCKub,kr , and, rCC,kr , are
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calculated to conduct the MSE-based PSS. The optimal size of the

parameter subset, r∗k, is determined using the rCC,kr : the optimum of

rk minimizes rCC,kr . Then, Θ̂k∗r , Qk∗r , and Σk∗r are considered as the

optimal estimates of the model parameters, state disturbance inten-

sities, and measurement noises, respectively. Figure 4.3 summarizes

the overall procedure of the proposed PSS method.
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Figure 4.3: Flow-chart for the proposed algorithm
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4.4 Numerical illustration: Modeling a fed-batch biore-
actor under limited data

The proposed method is applied to a virtual plant of a fed-batch

bioreactor to illustrate the efficacy of the proposed parameter sub-

set selection method. The target system is simulated with a simple

SDE model consisting of a deterministic unstructured model part and

stochastic parts of random disturbances on the state variables (Q) and

output variables (Σ). As the target system is a production-scale plant,

the available data are assumed to be obtained from noisy measure-

ments of the virtual plant, as operated with fixed input trajectories

and fixed initial states. For each batch, the input trajectories and initial

states are randomly perturbed from the fixed values with zero-mean

Gaussian errors whose standard deviations are assumed to be 20%

and 10% of the magnitudes, respectively, to simulate the deviations

between the batches. As the datasets are generated based on similar

input trajectories, being slightly perturbed from the fixed input trajec-

tories, the PE problem becomes ill-conditioned due to the insufficient

information in the datasets, even though the quantity of datasets is as-

sumed to be sufficient. Moreover, the initial values of the parameters

(θoo) are assumed to be uniformly distributed over 10−1 to 10 times

the scale of the variables to simulate a situation where relatively little

information regarding the parameter initial guesses is available. For

example, if the true value of θ1 is 0.31, then θo1,o ∈ [0.01, 1].

4.4.1 Description on fed-batch bioreactor model

There are four state variables, cell concentration (X [g/L]), sub-

strate concentration (S [g/L]), broth volume (V [kL]), and tempera-
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ture (T [C]), and there are 12 model parameters to be estimated. The

true values and initial distribution of the model parameters are listed

in Table 4.1.
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# Parameter True value Initial range Unit

1 Cρb 4.2 0.1-10 kJ/kgK

2 Cρs 5.9 0.1-10 kJ/kgK

3 αevap 5.24 · 10−4 10−5-10−3 L/hr

4 UJacket 36 1-100 kWm2/K

5 Yqx 25 1-100 kJ/g

6 Uh 12 1-100 kWm2/K

7 Uc 12 1-100 kWm2/K

8 µmax 180 10-1000 h−1

9 Ks 1.5 0.1-10 g/L

10 Eg 1.488 · 104 103-105 J/mol

11 Yxs 0.54 0.01-1 g/g

12 ms 0.029 10−3-0.1 g/ghr

Table 4.1: Parameters to be estimated: true values and initial range
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The target system is controlled by four inputs, the inlet (Fin)/outlet

(Fout) and hot (Fh)/cold (Fc) feed rates [L/hr], respectively. Fin and

Fout are assumed to follow a certain pattern with ± 20% random per-

turbations. Meanwhile, Fh and Fc are assumed to be controlled by a

PID temperature controller. The SDE model of the target system is

dX(t) = [µgX(t)−DX(t)] dt+ qXdW (4.32)

dS(t) =

[
−
(

1

Yxs
· µ+ms

)
X(t) +D (Sin − S(t))

]
dt+ qSdW

(4.33)

dV (t) = 1/1000 · [Fin − Fout − Fevap] dt+ qV dW (4.34)

dT (t) =

[
1

1000 · V (t)

1

Cρbρb
(FinCρsρf (Ts − T (t))

−∆HevapρwFevap + FhαhUh(Th − T (t))

+ FcαcUc(Tc − T (t)) + UJacketAJacket(Tair − T (t))

+ µX(t)Yqx · 1000 · V (t)

]
dt+ qTdW

(4.35)

µg = µmax
S(t)

S(t) +Ks

exp

(
−Eg

R · (T (t) + 273.15)

)
(4.36)

Fevap = S(t)αevap exp

(
2.5T (t)

100
− 1

)
(4.37)

D =
Fin

1000 · V (t)
(4.38)

where Q = diag[qX , qS, qV , qT ]. Assuming that all the state variables

are measurable with additive measurement noises, the output model

110



is

YX,m1 = Xm1 + ϵX,m1 , YS,m2 = Sm2 + ϵS,m2

YV,m3 = Vm3 + ϵV,m3 , YT,m4 = Tm4 + ϵT,m4

(4.39)

where the subscriptm· indicates a sampling point, ϵ·,m· is a zero-mean

measurement error with a covariance σ2
· , and Σ = diag [σ2

X , σ
2
S, σ

2
V , σ

2
T ].

Tables 4.2, 4.3 list the known parameters and operation conditions of

the target system, respectively.
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# Name Value Unit
1 ∆Hevap 2430.7 kJ/kg

2 ρw 5.9 kg/m3

3 ρs 1.54 · 104 kg/m3

4 R 8.314 J/Kmol

5 AJacket 105 m2

6 αh 2451.8 kJ/m3

7 αc 2451.8 kJ/m3

Table 4.2: Table for known parameters
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# Name Value Unit
1 Sin 200 g/L

2 Th 40 C

3 Tc 20 C

4 Ts 25 C

5 Tair 20 C

6 Tsp 30 C

Table 4.3: Table for operating conditions
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50 data sets were generated using the SDE model. To simulate

a general situation, the sampling rates for the state variables are as-

sumed to be [X,S, V, T ] = [0.2, 0.5, 0.2, 0.2][hr], resulting in multi-

rate measurements.

4.4.2 Parameter Ranking with θ∗o

4.4.2.1 Sampling-based PE to improve initial parame-
ter guesses

Given the parameter initial guesses (θoo) in Table 4.1, θ∗o is calcu-

lated via the sampling-based optimization problem in Eq. (4.12) with

the deterministic part of the model. GA is used as the optimization

method, with 100 generations and 200 populations. Figure 4.4 shows

a boxplot of the resulting θ∗o values calculated for all of the datasets.
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Although it is not effective for all the model parameters, the GA

algorithm improves the initial guesses for three parameters, i.e., θ6,

θ10, and, θ11. The calculated sets of θ∗o are used as the initial estimates

of the model parameters for the rest of the PSS procedure.

4.4.2.2 Applying Orthogonalization algorithm and the
resulting ranked list of the model parameters

The scaled sensitivity matrix in Eq. (4.15) is calculated numeri-

cally, using a difference approximation with perturbed parameter val-

ues. While perturbing the ith column corresponding to the ith model

parameter, the other parameters are fixed at their initial values, θ∗o,j .

Two rank estimations are performed with θoo and θ∗o , to show the ef-

fectiveness of the improved initial parameter estimates, θ∗o , on the PR

result.

As the true values of the model parameters are available for this

numerical example, it is possible to calculate the true rank of the

model parameters. The results of the two rank estimations are rear-

ranged in order of the true rank and plotted into heatmap graphs to

compare the accuracy of each rank estimation. If the rank estimation

is accurate, relatively more data will be located at the diagonal of the

heatmap graph.
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Figure 4.5: Rank estimation results: (a) PR result with θoo, (b) PR result with
θ∗o
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Comparing the two heatmap graphs in Figure 4.5, the rank esti-

mation with θ∗o shows better accuracy than that with θoo. The ranked

list calculated with θ∗o is used in the following PSS step.

4.4.3 MSE-based PSS with gLAMLE subroutine

The hyper-parameters, i.e., the order of basis functions and num-

ber of knots for the B-spline curves, should be determined before

applying the proposed PSS method. Several combinations of the or-

der of the B-spline basis and number of knots for each state variable

are tested by fitting the curves to the data using de Boor’s algorithm

as depicted in Figure 4.1a. For this numerical example, the order of

the basis function and the number of knots are selected for the state

variables [X,S, V, T ] asOrder = [4, 4, 3, 3] andKnots = [8, 8, 7, 7].

The learning rate for the gLAMLE algorithm, α is set to α = 0.15.

Given the hyper-parameters and ranked list of the model parame-

ters, the optimal size of the model parameter subset is determined

by the MSE-based PSS method, while simultaneously estimating the

selected model parameters.

First, a sequence of parameter subsets, each with kr elements,

is determined based on the ranked list, for example, Θ1 = {10} →
Θ2 = {10, 6} → Θ3 = {10, 6, 11} → · · · → Θ12 = {10, 6, 11, . . . , 3, 4}.

With these subsets, gLAMLE algorithm is applied repetitively to es-

timate Θ̂kr for kr = 1, 2, . . . , 12. Using Θ̂kr , the sum of scaled mean-

squared-error (Jkr) and the MSE-indices (rC,kr , rCKub,kr , and, rCC,kr)

are calculated to perform the MSE-based PSS. The calculated MSEs

and the indices are plotted in Figures 4.6-4.7.
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Based on the calculated index, rCC,kr , the optimal size of the sub-

set under the given datasets is determined as k∗r = 5, as shown in Fig-

ure 4.7c. Subsequently, the PE result, solved for Θ5 = {10, 6, 11, 8, 2},

becomes the optimal value of the selected model parameters (Θ∗
5),

while keeping the other parameters at their initial estimated values

(θ∗o). The best estimates for Q and Σ are also obtained while select-

ing and estimating the best parameter subset. However, the result of

PSS, including the ranked list of parameters, k∗r , and estimated Θk∗r ,

Q∗, can be different when the proposed algorithm is performed with

other datasets because the estimability analysis using the sensitivity

matrix depends heavily on the model structure and datasets used for

modeling.

When estimating the model parameters of deterministic models,

the MSE tends to decrease as the number of parameters to be es-

timated increases. This is owing to the fact that more manipulated

variables can be adjusted to explain the given data. In this numerical

example, however, the value of the MSE increases when more than

five parameters are estimated as shown in Figure 4.6a. The increas-

ing MSE can be explained by the results of the PE. Figures 4.8a-4.9b

show the estimation results of Θ̂kr for kr = 3, 5, 7, 12 with boxplots.
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Figure 4.8: Boxplot of the estimated parameters in Θ̂kr (a) kr = 3, (b)
kr = 5
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When the number of selected parameters is five or less, as shown

in Figures 4.8a and 4.8b, the model parameters in Θkr are estimated

accurately except for θ8, the fourth parameter in the ranked list. More-

over, θ10 lose its accuracy even though it is estimated accurately in

Θ̂3, as shown in Figures 4.8b-4.9b. This inaccuracy occurs owing to

the correlation between θ8 and θ10. In Eq. (4.37), θ8 and θ10 are mul-

tiplied together as θ8 × exp(−θ10). Therefore, they become indistin-

guishable when the PE algorithm tries to estimate these two parame-

ters simultaneously.

When estimating more than five parameters, it is impossible to

estimate the 6th to 12th parameters, θ6(12), . . . , θ12(4), as shown in

Figures4.9a and 4.9b. Moreover, when comparing the estimation re-

sults of the third and fifth parameters in Figure 4.8a to 4.9b, we find

that the third and fifth parameters are accurately estimated when kr is

less than five, whereas they lose their accuracy when kr is over six.

This is due to the correlations between the parameters. The parameter

estimates for the lower-ranked parameters are inaccurate as they have

low sensitivity on the objective function and the initial guesses for

these parameters are inaccurate, as shown in Figure 4.4. The poor es-

timates of the lower-ranked parameters affect the accuracy of higher-

ranked parameter estimates through the correlation, resulting in bi-

ases in the parameter estimates. For instance, θ11 and θ12 are cor-

related through Eq. (4.33) in this numerical example. As shown in

Figure 4.9a, the estimate of θ11 is biased when kr = 7 owing to the

inaccuracy in the estimate of θ12, comparing with the θ11 estimate

of kr = 5 in Figure 4.8b. The inaccurate estimates affect the esti-

mates of Q and Σ, and as a result, the overall prediction accuracy is

deteriorated. Consequently, the value of the MSE increases when es-
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timating more parameters than the optimal number, k∗r = 5, as shown

in Figure 4.6a. In other words, estimating all the parameters worsens

the estimation results, and proves that the PSS procedure is necessary

and possible for the ill-conditioned PE problem of the SDE models.

Figure 4.10 shows the estimated state disturbance intensity (Q̂) and

measurement error (Σ̂).
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As shown in Figure 4.10, most of the results estimate the true

values correctly or slightly overestimate them except for
√
q̂2 and

√
q̂4. As the accuracy of the Q and Σ estimation depends on how

the B-spline curve is designed, it can be argued that these inaccurate

estimates are caused by the over-fitted B-spline curves for the second

and fourth state variables (S and T ).

Using Θ̂kr , Q̂, and Σ̂, simulations are performed with additional

20 datasets to validate the PSS results. Figures 4.11-4.14 show one

sample of the simulation results for kr = 3, 5, 7, 12.
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Figure 4.11: Simulation results using one sample out of the validation data
sets, Θ̂kr for kr = 3, Θ̂3 = {θ̂10, θ̂6, θ̂11}
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Figure 4.12: Simulation results using one sample out of the validation data
sets, Θ̂kr for kr = 5, Θ̂5 = {θ̂10, θ̂6, θ̂11, θ̂8, θ̂1}
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Figure 4.13: Simulation results using one sample out of the validation data
sets, Θ̂kr for kr = 7, Θ̂7 = {θ̂10, θ̂6, θ̂11, θ̂8, θ̂1, θ̂12, θ̂9}
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Figure 4.14: Simulation results using one sample out of the validation data
sets, Θ̂kr for kr = 12, Θ̂12 = all model parameters
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When kr = 3, Θ̂3 can accurately estimate the true parameter

values, as in shown Figure 4.8a. However, considering the low pre-

diction accuracy shown in Figure 4.11, it is not sufficient to simulate

the measurement data with only three updated parameters. The sim-

ulation results with Θ̂5-Θ̂12 show a more accurate prediction for the

measurement data, as shown in Figures 4.12-4.14. The normalized

mean squared errors (NMSE) for the testing simulations of Θ̂3, Θ̂5,

Θ̂7, and Θ̂12 are 42.21, 11.26, 18.19, and 16.14, respectively.

The NMSE increases when kr is 6 or more as the selected pa-

rameter subsets overfit the training datasets. The overfitting occurs as

more parameters were involved in the parameter estimation procedure

that can be estimated. The correlation between the model parameters

also affects the NMSE of both training and testing simulations, mak-

ing the values of NMSE increase when kr is more than 5 in both

results as illustrated in Figure 4.15.
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Consequently, the simulation performed with Θ̂7 and Θ̂12 result

in inaccurate predictions for the test data, as shown in Figures 4.13

and 4.14. The validation results in Figures 4.11-4.14 show that the

proposed method successfully selects the optimal parameter subset

while simultaneously estimating the values of the model parameters

in the selected parameter subset, Q, and Σ.
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Chapter 5

Multirate Moving Horizon Estimation
Combined with Parameter Subset Selection 3

5.1 Introduction

Even when the model parameters have been successfully esti-

mated, it is hard to guarantee the accuracy of model-based online

state estimation and prediction due to uncertainties in the model pa-

rameters. The uncertainties in the model parameters arise from var-

ious causes. In some cases, the parametric uncertainties occur due

to the lack of information provided by the available measured data.

When the number of unknown parameters is greater than the num-

ber of estimable parameters, the parameter estimation becomes ill-

conditioned [34, 117]. The model parameters estimated by the ill-

conditioned parameter estimation problem often have large variances,

resulting in an over-fitted model of poor estimation and prediction ac-

curacy.

The drifting nature of the system dynamics also causes uncer-

tainties in the model parameters. As the target system operates, the
3This chapter is an adapted version of J. Bae, Y. Kim, and J. M. Lee, “Multirate Moving

Horizon Estimation Combined with Parameter Subset Selection," Computer & Chemical
Engineering. Accepted
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system dynamics often change. Such alterations may occur within

a single batch or in batch-to-batch operations [40]. Since the sys-

tem dynamics are represented with the model parameters based on

the predetermined model structure, the changes in the dynamics af-

fect the model parameters. Due to these uncertainties, one needs to

implement an estimation technique that can deal with the paramet-

ric uncertainties to achieve more accurate state estimates and model

predictions.

A moving horizon estimation (MHE) is an optimization-based

method that estimates the states and parameters of the system using

a limited number of past measurements [46]. The MHE can estimate

the model parameters together with the state variables by adding the

model parameters to the decision variables of the optimization prob-

lem in each horizon [44, 118]. However, the MHE that estimates both

states and parameters may be vulnerable to systems where the param-

eter uncertainties are caused by both the ill-conditioned parameter

estimation and the parameter drifts. Since it determines all the states

and parameters only with the measured data in the current horizon,

it also becomes ill-conditioned to estimate all the model parameters

online. Then, the accuracy of the online model predictions can be

unsatisfactory even though it estimates the states of the system accu-

rately.

This chapter aims to propose a MHE formulation that can im-

prove model prediction accuracy while maintaining state estimation

performance. To deal with the ill-conditioning problem, the PSS method

is introduced to the online calculation of MHE. Through the PSS

procedure, estimable parameters are determined based on the mea-

sured data in each horizon, and the optimizer of each horizon only
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updates these parameters. To apply the PSS procedure to the online

calculation of the MHE, it has to be solved quickly on each horizon.

Among various methods for the PSS, a heuristic method based on

the parametric sensitivity matrix is used in this study. The heuristic

PSS methods are more preferable for online calculation compared to

optimization-based PSS methods since they require fewer computa-

tions. The proposed MHE is developed based on a multi-rate MHE

formulation to make the best use of the measured data. The efficacy

of the proposed method is demonstrated using simulation studies on

a virtual plant of a fed-batch bioreactor system.

5.2 Multi-rate moving horizon estimation

In practice, many processes have measurements sampled with

multiple sampling rates. When applying MHE to these processes, cal-

culating the stage cost can be confusing since measurements of some

sampling time in the current horizon are missing. It is one solution to

use only the data of the time at which all the outputs are measured,

but it is not desirable since some of the measurements may be omitted

while calculating the stage cost.

To overcome this problem, a concept of multi-rate MHE (MMHE)

is suggested [119, 49, 120]. The key idea of the MMHE formulations

suggested is classifying the time indices into two categories: only the

fast measurement is available (k ∈ F ) and both measurements are

available (k ∈ SF ) as in figure 5.1, under the assumption that the

fast measurement rate is an integer multiple of the slow measurement

rate.
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Figure 5.1: Multi-rate measurements indexed based on their sampling rates

138



Based on the classified indices, they developed NLP including

two output models, one for yk∈F and the other for yk∈SF . However, it

becomes puzzling to classify all the measurements when the system

involves various measurements with different sampling rates or non-

periodic measurements.

5.3 Parameter ranking-based moving horizon estima-
tion

In the MHE formulation in Eqs. (2.10), the model parameters are

updated together with the state variables to improve the state estima-

tion accuracy. However, it can be impossible to estimate all the model

parameters accurately since a limited number of measurements in a

fixed window are used to solve NLP. It results in an ill-conditioned

parameter estimation problem. It becomes more problematic when

only a part of the measurable data is available, as in the system with

multi-rate measurements since the same length of the MHE horizon

contains fewer number of data. Moreover, it affects the accuracy of

the model prediction. Since the model parameters are easily over-

fitted under this condition, the model with the updated parameters

may produce worse predictions than the initial model.

In this section, I propose a modified MHE formulation, intro-

ducing the parameter subset selection method to the multi-rate MHE.

In each horizon, the scaled parametric sensitivity matrix is calcu-

lated with the last estimate of the model parameters, then a subset

of the model parameters is selected via the orthogonalization-based

PSS method. The parameter subset contains the model parameters of

high sensitivity. Then, a multi-rate MHE is formulated, which esti-
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mates the state variables and the selected model parameters simulta-

neously. The proposed MHE formulation involves a reduced number

of decision variables, updating the most sensitive parameters in each

horizon. Since only the estimable parameters are updated, the pro-

posed method is less vulnerable to the over-fitting problem, resulting

in better model prediction while maintaining the state estimation ac-

curacy.

5.3.1 Online parameter subset selection in kth horizon

While estimating all the decision variables in the kth horizon, the

parametric sensitivity matrix of the state variables at each sampling

time can be calculated with the estimated states (X̂Lk:k), model pa-

rameters (θ̂Lk:k), the known input sequence (ULk:k), and analytic ex-

pressions of the parametric sensitivity, where Lk = k −Nmhe. Since

the purpose of the online parameter subset selection is to select a set

of model parameters that have significant effects on the state vari-

ables, the parametric sensitivity matrices are calculated for the state

variables instead of the output variables.

The analytic expression for the parametric sensitivity of the state

variables is derived by differentiating Eqs. (2.9a) with each model

parameters. As the discretized model describes, the i+ 1th states are

affected by the model parameters of the ith sampling time.

Si|k =
∂xi+1

∂θi
=
∂f(xi, ui, p, θi)

θi

∣∣∣∣xi=x̂i|k

θi=θ̂i|k

, (5.1)

Zi|k = σi|k ◦ Si|k, σi|k,lm = smθ,i|k/s
l
y,i|k (5.2)

i = Lk, ..., k − 1, k.
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where Si|k, σi|k ∈ Rnx×np . σi|k is a scaling matrix and its (l,m)th

component is smθ,i|k/s
l
y,i|k, the scaling factor of mth parameter over

the scaling factor of lth state variable. A ◦B implies an element-wise

multiplication between A and B. In this paper, both scaling factors

are set to be standard deviations of the parameters and the state vari-

ables. Both scaling factors are iteratively updated by the estimator

using the covariance matrix calculated while updating the arrival cost

term.

A scaled parametric sensitivity matrix of the kth horizon is then

formulated by stacking the scaled sensitivity matrices of each sam-

pling point in the horizon.

ZZZk = [Z⊤
Lk|k, Z

⊤
Lk+1|k, ..., Z

⊤
k|k]

⊤. (5.3)

where ZZZk ∈ R(nx·(Nmhe+1))×np . With ZZZk calculated, a ranked list of

the model parameters on the current horizon is calculated by using

the orthogonalization algorithm [54],

Θk = [θ1k, θ
2
k, ..., θ

np

k ] (5.4)

where np is the number of the model parameters. Then, the subset

of the model parameters is determined by the residual values, which

are also calculated through the orthogonalization procedure. Given a

threshold, only the first rk parameters are selected with their residual

values are higher than the threshold. The parameter subset can also

be determined by mean-squared error (MSE)-based subset selection

methods [3]. Evaluating the MSE while estimating the model param-

eters in the order of the ranked list, e.g., [θ1] → [θ1, θ2] → [θ1, θ2, θ3]
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→ . . . → Θ, the indices for subset selection are calculated with the

resulting MSE values. The size of the parameter subset is determined

with the indices and the ranked list of the model parameters. Since

the series of the parameter subsets should be estimated by optimiza-

tion during the subset selection procedure, the MSE-based method

requires more computation than the residual-based selection, while it

does not require the user-defined threshold.

As a result, the first rk parameters (Θs
k) become a part of the

decision variables of NLP at the kth horizon together with the state

variables. As a consequence, the number of decision variables at each

sampling time in the kth horizon becomes (nx + rk). A set of non-

selected parameters (Θns
k ) are set to the values that were calculated at

the previous horizon. For the kth horizon, the resulting subsets of the

model parameters are

Θs
i|k = [θ1i|k, ..., θ

rk
i|k], (5.5)

Θns
i|k = [θrk+1

i|k ..., θ
np

i|k] = [θ̂rk+1
i|k−1..., θ̂

np

i|k−1] (5.6)

,where i = Lk, ..., k − 1, k.

5.3.2 Modification of stage cost to consider multi-rate
measurements

To perform the parameter subset selection online on every hori-

zon, the parametric sensitivity matrix should be calculated for each

horizon. It requires to calculate the output variables at every sampling

point in the current horizon. Therefore, a modified MMHE formula-

tion is proposed to handle this problem.
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Let us assume that the sampling interval h for the model dis-

cretization is always shorter than all the measurements, and the sam-

pling intervals of the measurement are integer multiples of h. Then,

the measured data can be aligned along with the sampling points of

the model discretization, as in figure 5.2.
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Figure 5.2: Multi-rate measurements aligned along with the sampling points
of the model discretization
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Let YLk:k be the aligned multi-rate measurements of the kth hori-

zon. To solve NLP of the kth horizon, the stage cost has to be mod-

ified to consider the multi-rate measurements. One can achieve it by

using the structure of YLk:k rather than classifying the measurement

indices. Following the alignment in Figure 5.2, YLk:k only contains

the data where the measurements exist. Let ỸLk:k ∈ Rny×(Nmhe+1) be

a matrix that inherits the structure of YLk:k,

ỸLk:k = [ỹij] ∈ Rny×(Nmhe+1), (5.7)

s.t. ỹij =

{
1 if yij exist

0 otherwise

where yij is the (i, j)th component of YLk:k for i = Lk, ..., k − 1, k

and j = 1, 2, . . . , ny. It implies that its element is 1 if the corre-

sponding element of Yi exist, or 0 otherwise. By simply multiplying

Ỹi|k to the vi = yi − h(xi, ui, p, θi) component-wisely, the multi-rate

measurements can be taken into the MHE formulation since the stage

cost terms become 0 at which no measurements exist. Then, the cost

function of the NLP for the kth horizon becomes,

Ck,modi(xi, θi, wi, vi) =

∥∥∥∥xLk
− x̄Lk

θLk
− θ̄Lk

∥∥∥∥2
PL

+
k∑

i=Lk

∥∥vi ◦ Ỹi|k∥∥2Qi

+
k−1∑
i=Lk

(∥∥wi

∥∥2
Rx

+
∥∥wθ,i

∥∥2
Rθ

)
(5.8)

where vi = yi−h(xi, ui, p, θi) and wθ,i = θi+1−θi for i = Lk, . . . , k.

Except for Ỹi|k, the MHE formulation of the modified MMHE is equal

to that of Eqs. (2.10).
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In MHE-aUKF framework, the covariance matrix of the arrival

cost (PL) is updated by augmented unscented Kalman filter (aUKF),

requiring all the output values and the estimates of the model param-

eters at every sampling point. Since the model is available, it is pos-

sible to estimate the value of the measurements at which the outputs

are not measured. Let us define the modified measurements matrix

ŶLk:k as the matrix YLk:k with the values of the unmeasured output

estimated with the model. With ŶLk:k, the covariance matrix of the ar-

rival cost can be updated by aUKF while using the modified MMHE

formulation. ŶLk:k can also be used for the state and parameter es-

timation via aUKF at k = 0, 1, . . . , Nmhe − 1 until the MHE starts

at k = Nmhe. The part for the model parameters in the updated co-

variance matrix is used to calculate the scaling factor for the model

parameters for the next horizon.

5.3.3 Parameters ranking-based moving horizon state
and parameter estimation

Updating the selected model parameters, it is possible to over-

come the over-fitting problem while maintaining state estimation ac-

curacy. Based on the modified MMHE formulation, a parameter ranking-

based MHE (prMHE) is formulated by introducing the online pa-

rameter subset selection procedure into each horizon of the MHE.

For k = 0, 1, . . . , Nmhe − 1, the kth MHE horizon expands one

by one until k = Nmhe. prMHE of full horizon of Nmhe + 1 sam-

pling points starts from k = Nmhe, containing the sampling points of

k = 0, 1, . . . , Nmhe in the horizon.

In the kth horizon of prMHE, the parametric sensitivity matrix
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ZZZk of Eq. (5.3) is calculated with the kth initial trajectories of the

model parameters Θo
Lk:k|k, the state variables Xo

Lk:k|k, and the known

input trajectories ULk:k. θoLk:k|k and Xo
Lk:k|k are updated from the es-

timated trajectories of the (k − 1)th horizon. Then, the subset of the

model parameters is selected by performing the parameter subset se-

lection. Let us assume the ranked list of the parameters is derived as

in Eq. (5.4) and the first rk parameters are selected as in Eq. (5.5).

Then, the NLP formulation of prMHE at the kth horizon is written as,

min
xi,wi,vi,ΘΘΘs

k

Ck,modi(xi, θi, wi, vi) (5.9a)

s.t. xi+1 = f(xi, ui, p, θi) + wi, (5.9b)

wθ,i = θi+1 − θi, i = Lk, . . . , k − 1, (5.9c)

yi = h(xi, ui, p, θi) + vi, i = Lk, . . . , k (5.9d)

g(xi, ui, p, θi) = 0, i = Lk, . . . , k (5.9e)

xmin
i ≤ xi ≤ xmax

i , vmin
i ≤ vi ≤ vmax

i , (5.9f)

wmin
i ≤ wi ≤ wmax

i , wmin
θ,i ≤ wθ,i ≤ wmax

θ,i , (5.9g)

θj,min
i ≤ θji ≤ θj,max

i , θji ∈ Θs
k (5.9h)

θji = θ̂ji|k−1, θji ∈ Θns
k (5.9i)

where ΘΘΘs
k = [Θs

Lk|k,Θ
s
Lk+1|k, . . . ,Θ

s
k|k] ∈ Rrk×(Nmhe+1) and θji is the

jth model parameter of the ith sampling point in the kth horizon. The

non-selected parameters are set to the values calculated at the previ-

ous horizon. While the NLP of MHE in Eq.(2.10) needs to estimate

(np× (Nmhe+1)) model parameters for each horizon, the NLP of the

proposed method in Eq. (5.9) estimates only (rk× (Nmhe+1)) model
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parameters. If rk is small enough compared to np, which means that

less amount of data is required, it is possible to adjust the size of

window for each horizon.
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Algorithm .4: prMHE algorithm
Result:
initialize: Xo

0 = Xo
o , θo0 = θo, P o

L,0|0 = P o
L

for k = 0, 1, . . . , N do
(1) Get measured data Yk from plant
if k < Nmhe then

Lk = 0, (Expanding horizon)
else

Lk = k −Nmhe, (Moving horizon)
end
(2) Set measurement matrix YLk:k|k and index matrix ỸLk:k|k.
(3) Calculate Zk matrix Zk = [Z⊤

Lk|k, Z⊤
Lk−1|k, . . ., Z⊤

k|k], and
determine Θs

k and Θns
k .

(4) Formulate NLP of Eq. (5.9) with i = 0, 1, . . . , k and solve
NLP with the initial variables: Xo

Lk:k|k, θoLk:k|k, P o
L,Lk|k.

if k < Nmhe then
(Expanding horizon)
(5)’ Update PL matrix using aUKF [X̂0|k, θ̂0|k, P o

L,0|k] →
PL,0|k.

(6)’ Update the matrices of initial variables
Xo

0:k+1=[X̂0:k|k,X̂k|k], θo0:k+1=[θ̂0:k|k,θ̂k|k], P o
L,0|k+1 =

PL,0|k
else

(Moving horizon)
(5) Update PL matrix using aUKF, with [X̂Lk|k, θ̂Lk|k,
P o
L,Lk|k] → PL,Lk+1|k

(6) Update the matrices of initial variables
Xo

Lk+1:k+1=[X̂Lk+1:k|k,X̂k|k], θoLk+1:k+1=[θ̂Lk+1:k|k,θ̂k|k],
P o
L,Lk+1|k+1 = PL,Lk+1|k

end
(7) Return the current estimates for model prediction: X̂k|k, θ̂k|k

end
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It is also possible to fix the model parameters over the kth hori-

zon, as Θs
k = Θs

Lk|k = Θs
Lk+1|k = . . . = Θs

k|k. It reduces the online

computational load since it reduces the number of the decision vari-

ables of the NLP by rk × Nmhe. The prMHE problem with the fixed

model parameters is formulated by the same NLP of Eqs. (5.9) with

the vector, Θs
k, instead of the matrix, ΘΘΘs

k.

If the model parameters fluctuate or drift fast in the horizon,

prMHE of Eq.(5.9) with the free parameters is more suitable than

prMHE with the fixed model parameters since it reflects the behav-

iors of the model parameters at every sampling time in each horizon.

In the opposite case, prMHE with the fixed parameters is preferable

since it involves fewer decision variables, being less vulnerable to the

over-fitting issues, and reducing the computational burden.

5.4 Numerical Example: A fed-batch bioreactor

In this section, the proposed MHE algorithm (prMHE) is applied

to a virtual plant of a fed-batch bioreactor to show its efficacy. A

state estimation and model prediction is performed and the result is

compared with the results of two benchmark MHEs, including MHE

estimating only the states (MHE(x)) and MHE estimating the states

and all the model parameters (MHE(x, θ)), respectively. The overall

simulations are carried out on Matlab 2019a environment. Dynamic

optimizations in each horizon of the MHE problems are transformed

into the NLP by a collocation method [47] with the Legendre collo-

cation points, and they are solved with Matlab-CasADi environment

on Matlab 19a [87].
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5.4.1 Problem statement

A virtual plant of a fed-batch bioreactor is selected as the target

nonlinear system in this example. The plant model of 4 state variables

(X,S, V, T ), 4 input variables (Fin, Fout, Fc, Fh), and 12 model pa-

rameters is assumed to operate for τbatch = 20[hr]. The plant model

equations are

dX

dt
= µ(X,S, T )X −DX + ηX (5.10a)

dS

dt
= −σ(X,S, T )X +D(Sin − S) + ηS (5.10b)

dV

dt
= (Fin− Fout− Fevap)/1000 + ηV (5.10c)

dT

dt
=

1

1000V

1

Cρbρb

(
FinCρsρf (Ts − T ) (5.10d)

−∆HevapρwFevap + UjktAjkt(Tair − T ) (5.10e)

+ FhαhUh(Th − T ) + FcαcUc(Tc − T ) (5.10f)

+ µ(X,S, T )XYqX × 1000V

)
+ ηT (5.10g)

µ(X,S, T ) =
µmaxS

S +Ks

exp

(
−Eg

R(T + 273.15)

)
(5.10h)

σ(X,S, T ) = YsxXµ(X,S, T ) +ms (5.10i)

ρf = (S/1000)ρs + (1− Sin/1000)ρw (5.10j)

ρb = (S/1000)ρs + (1− S/1000)ρw (5.10k)

Fevap = Sαevap

(
exp

(
2.5T

100

)
− 1

)
(5.10l)

D = Fin/(1000V ) (5.10m)

where X[g/L] is a cell concentration, S[g/L] is a substrate concen-

tration, V [kL] is a broth volume, and T [C] is a reactor temperature. ηj
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is an additive state disturbance for j = X,S, V, T , assumed to follow

N(0, ηj). The output model for this system is

yj = xj + ϵj, ϵj ∼ N(0, σ2
j ) (5.11)

where j = X,S, V, T and ϵj is an additive measurement error, as-

sumed to follow N(0, σj). The output variables are measured with

multiple measurement rates: a fast measurement sr1 = 0.2[hr] for

X, V, T and a slow measurement sr2 = 0.5[hr] for S. The temper-

ature is controlled by PI-controller with a set-point, Tsp = 30[C].

The initial state and constants are tabulated in Table 5.1. The model

parameters of the plant are also tabulated in Table 5.2.
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Parameter Value[units] Description
Xo 0.5 [g/L] cell initial conc.
So 5 [g/L] substrate initial conc.
Vo 5.8 [kL] initial broth volume
To 27 [C] initial temperature
Sin 200 [g/L] Feed subs. conc.

Th 40 [C] Heat source temperature
Tc 20 [C] Cooling water temperature
Ts 25 [C] Feed temperature
Tair 20 [C] Air temperature
Tsp 30 [C] T Set-point

ηX 0.5 [g/L] state disturbance (X)
ηS 0.5 [g/L] state disturbance (S)
ηV 0.01 [kL] state disturbance (V )
ηT 0.5 [C] state disturbance (T )

σX 1 [g/L] measurement error (X)
σS 1 [g/L] measurement error (S)
σV 0.05 [kL] measurement error (V )
σT 0.5 [C] measurement error (T )

τbatch 20 [hr] Batch time
h 0.1 [hr] dicretization rate
sr1 0.2 [hr] fast measurement rate
sr2 0.5 [hr] slow measurement rate

∆Hevap 2430.7 [kJ/kg] Heat of evaporation
ρw 1000 [kg/m3] water density
ρs 1540 [kg/m3] substrate density
R 8.314e-03 [kJ/mol K] gas coefficient

Ajkt 0.2 [hr] Jacket surface area
αh 2451.8 [kJ/m3] Heat transfer coeff.
αc 2451.8 [kJ/m3] Heat transfer coeff.

Table 5.1: Initial conditions and process constants for simulation
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Param. Value[units] Description
Cρb 4.2 [kJ/(kg K)] heat cap. of broth
Cρs 5.9 [kJ/(kg K)] heat cap. of subs.
αevap 5.24e-04 [L/hr] evaporation constant
Ujkt 36 [kW m2/K] heat transfer coeff. of jacket
Uh 12 [kW m2/K] heat transfer coeff.
Uc 12 [kW m2/K] heat transfer coeff.

µmax 180 [1/hr] max cell growth coeff.
Ks 1.5 [g/L] subs. coefficient
Eg 14.88 [kJ/mol] energy coeff. of cell growth
Ysx 1.85 [g/g] yield coeff.
ms 0.029 [g/g hr] maintenance (subs.)
Yqx 25 [kJ/g] heat generation coeff. of cell

Table 5.2: Model parameters for virtual plant and nonlinear model for the
MHE
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A nonlinear model for the MHE is assumed to have the same

structure and the model parameters with the plant model and be dis-

cretized with the sampling rate of h = 0.1[hr]. However, parameter

drifts are introduced to the plant model to test the accuracy of state

estimation and model prediction under the parametric uncertainties.

Among the model parameters, Uc (θ7), µmax (θ8), and Eg (θ10) are

assumed to change during the batch time. Uc decreases linearly to be

9.6 (-20%), while Eg increases linearly to be 16.37 (+10%), respec-

tively. To simulate a sudden change in the model parameter, µmax is

assumed to decrease to be 90 (-50%) when the operation time reaches

10 hr. Trajectories of the changing model parameters are shown in

Figure 5.5, drawn with black solid lines.

5.4.2 Benchmark problems: basic moving horizon state
and parameter estimations

Using the cost function of Eq. (5.8), a basic MMHE-aUKF only

estimating the states of the system (MHE(x)) is formulated as

min
xi,wi,vi

∥∥xLk
− x̄Lk

∥∥2
PLk

+
k∑

i=Lk

∥∥vi ◦ Ỹi|k∥∥2Q +
k−1∑
i=Lk

∥∥wi

∥∥2
R

(5.12a)

s.t. xi+1 = f(xi, ui, p, θo) + wi, (5.12b)

i = Lk, . . . , k − 1, (5.12c)

yi = xi + vi, i = Lk, . . . , k (5.12d)

g(xi, ui, p, θo) = 0, i = Lk, . . . , k (5.12e)

xmin
i ≤ xi ≤ xmax

i , vmin
i ≤ vi ≤ vmax

i , (5.12f)

wmin
i ≤ wi ≤ wmax

i , (5.12g)
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where Nmhe = 10, k = 0, 1, . . . , 201, Lk = k − Nmhe, Q = diag([

η2X ,η2S ,η2V ,η2T ])−1, and R = diag([σ2
X , σ

2
S, σ

2
V , σ

2
T ])

−1, respectively.

At several sampling times, t = 0, 5, 10, 15[hr], the future states over

50 steps, 5 hr, are predicted with the estimated states at each sam-

pling time and the nonlinear model. Figure 5.3 shows the estimated

state trajectories and the model prediction results.

156



0 5 10 15 20

time[hr]

0

5

10

15

20

25

30

35

C
o
n
c
[g

/L
]

Cell conc[g/L]

(a) Cell conc. (X[g/L])

0 5 10 15 20

time[hr]

0

5

10

15

20

C
o
n
c
[g

/L
]

Subs conc[g/L]

(b) Subs. conc. (S[g/L])

0 5 10 15 20

time[hr]

5.5

6

6.5

7

7.5

8

V
o
l[
k
L
]

Volume[kL]

(c) Volume (V [kL])

0 5 10 15 20

time[hr]

26

27

28

29

30

31

T
e
m

p
[C

]

Reactor Temp[C]

Plant meas

True state

MHE(x)

Pred

(d) Temp. (T [C])

Figure 5.3: Estimated states and model prediction results of the basic
MMHE-aUKF: Measured outputs (black △ marker), true state of the vir-
tual plant (black solid line), estimated state (red dotted line), predicted state
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As shown in Figures 5.3 (a) and (c-d), the state variables mea-

sured with the fast measurement (sr1), X , V , and T , are estimated

accurately. However, the state estimate of S shows off-sets after t =

10hr, when the sudden change is occurred to θ10, as seen in Figure

5.3 (b). Green ring markers in Figure 5.3 indicate the model predic-

tion results calculated at t = 0, 5, 10, 15[hr]. Since MHE(x) can not

take the parameter drifts into account, the entire model prediction de-

pends on the initial model. As a consequence, the model prediction

becomes inaccurate over the batch time, while the model at the early

stage of the operation (t = 0 to t = 5) predicts the true states ac-

curately, as shown in Figure 5.3 (b). The model predicts V exactly,

since V is less affected by the model parameters.

The accuracy of the state estimations can be improved by es-

timating the states and model parameters simultaneously as in Eqs.

(2.10). The MMHE-aUKF estimating both the states and the model

parameters (MHE(x, θ) is written as

min
xi,wi,vi,θ

C(xi, wi, vi, θ) (5.13a)

s.t. xi+1 = f(xi, ui, p, θ) + wi, (5.13b)

wθ,i = θi+1 − θi, i = Lk, . . . , k − 1, (5.13c)

yi = xi + vi, i = Lk, . . . , k (5.13d)

g(xi, ui, p, θ) = 0, i = Lk, . . . , k (5.13e)

xmin
i ≤ xi ≤ xmax

i , vmin
i ≤ vi ≤ vmax

i , (5.13f)

wmin
i ≤ wi ≤ wmax

i , wmin
θ,i ≤ wθ,i ≤ wmax

θ,i , (5.13g)

θLBk ≤ θi|k ≤ θUB
k . (5.13h)

where Qi in Eq. (5.8) is set to be Qi = Q. In Eq.(5.13), Eq. (5.8)
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is used for the cost function C(xi, wi, vi, θ). The covariance matrix

of the arrival cost, PLk
, is updated by aUKF. The upper and lower

bounds for θi|k are set to be (1 ± a) θ̂i|k−1 for i = Lk, . . . , k − 1

and (1 ± a) θ̂k−1|k−1 for i = k, where θ̂i|k−1 is the estimated model

parameters of the (k − 1)th horizon. a is set to 0.01 for this example,

meaning that 1% variations on the model parameters are allowed for

each MHE horizon. Figure 5.4 shows the estimated state trajectories

and the model prediction results performed at t = 0, 5, 10, 15[hr].
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Figure 5.4: Estimated states and model prediction results of the MMHE-
aUKF estimating the states and the model parameters altogether
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Comparing Figure 5.3 and Figure 5.4, it can be found out that

a simultaneous estimation of the states and the model parameters

improves the accuracy of the state estimation, reflecting the drifting

characteristics of the model parameters. A sum of normalized root

mean-squared-errors (NRMSE) over four state variables for both re-

sults of the state estimation are 0.26 and 0.21, tabulated in Table 5.3.
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Σ NRMSE State Estimation
State Prediction (for 5 hr)

t = 0hr t = 5hr t = 10hr t = 15hr
MHE(x) 0.26 0.06 0.66 0.35 0.13

MHE(x, θ) 0.21 0.06 0.50 0.49 0.23
prMHE 0.18 0.10 0.22 0.31 0.06

Table 5.3: Sum of NRMSE for state estimation and prediction results-
MHE(x), MHE(x, θ), and prMHE
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The state predictions are performed at t = 0, 5, 10, 15[hr] and

plotted in Figure 5.4 with green ring markers. The sums of NRMSE

are also tabulated in Table 5.3. Unlike MHE(x), the model param-

eters are updated at each sampling time and the updated model is

used for the state predictions in this case. Even though the model

parameters have been updated throughout the estimation procedure,

however, the model predictions are not improved and even become

inaccurate at some time horizons. The poor model prediction is due

to the ill-conditioning problem of the model parameter estimation in

MHE(x, θ), resulting in the updated model to over-fit the measured

outputs in each MHE horizon. The trajectories of updated model pa-

rameters are shown in Figure 5.5, together with the true parameter

trajectories.
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Red dotted lines in Figure 5.5 are the trajectories of the model

parameters updated by MHE(x, θ). Compared with the true parame-

ter trajectories (black solid line), it shows that MHE(x, θ) fails to fol-

low the true parameter trajectories while updating the wrong model

parameters, which are not perturbed by the parameter drifts.

5.4.3 Parameter ranking-based moving horizon state
and parameter estimation

The proposed MHE algorithm, prMHE, is able to relieve the

over-fitting problem while maintaining the improved state estimation

accuracy by performing the parameter subset selection in each MHE

horizon. It only updates the model parameters that have a large sensi-

tivity on the state variables, reducing the number of model parameters

to be estimated in each MHE horizon. Applying prMHE to the exam-

ple problem, the resulting NLP for each horizon is

min
xi,wi,vi,ΘΘΘs

k

C(xi, wi, vi, θ) (5.14a)

s.t. xi+1 = f(xi, ui, p, θ) + wi, (5.14b)

wθ,i = θi+1 − θi, i = Lk, . . . , k − 1, (5.14c)

yi = xi + vi, i = Lk, . . . , k (5.14d)

g(xi, ui, p, θ) = 0, i = Lk, . . . , k (5.14e)

xmin
i ≤ xi ≤ xmax

i , vmin
i ≤ vi ≤ vmax

i , (5.14f)

wmin
i ≤ wi ≤ wmax

i , wmin
θ,i ≤ wθ,i ≤ wmax

θ,i , (5.14g)

θLBk ≤ θi|k ≤ θUB
k . (5.14h)
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where Qi, R, Rθ, and the upper and lower bounds for the model pa-

rameters are the same as in Eqs. (5.13). As the orthogonalization

method is used for selecting the parameter subset, it is essential to

supply a proper threshold to the PSS algorithm because it determines

the number of parameters to be updated in each time step. If the

threshold is not selected properly, relatively lower ranked parame-

ters can not be addressed adequately by the prMHE. In this example,

the user-defined threshold for the orthogonalization-based subset se-

lection is set to 0.01. Figure 5.6 shows the number of the selected

parameters at each horizon.
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As shown in Figure 5.6, only one to four model parameters are

selected among the 12 model parameters. The number of selected

model parameters tends to increase over the batch time, reflecting

the growing intensity of the parameter drifts. Even if the parametric

drifts are introduced to both Uc, µmax, and Eg, these model param-

eters may not dominate the parametric sensitivity matrix when the

state variables are not sensitive to these model parameters at some

MHE horizon. In such cases, other model parameters can be updated,

or even none of them are selected at all. The trajectories of the model

parameters updated by prMHE are also shown in Figure 5.5.

As shown in Figure 5.5, prMHE (blue dotted line) is able to

track the true parameter drifts while MHE(x, θ) (red dotted line) suf-

fers from the over-fitting problem. However, prMHE updates non-

perturbed parameters (θ1 and θ9) for some time steps and it is also

unable to track the parameter trajectory of θ7. These improper up-

date problems occur to the lower-ranked parameters, owing to the

improper setting of the threshold in the PSS procedure. Nevertheless,

it is expected to provide better state predictions since prMHE is less

affected by the over-fitting problem. Figure 5.7 shows the estimated

state trajectories and the state prediction results of prMHE. Sums of

NRMSEs for state estimation and prediction are also tabulated in Ta-

ble 5.3.
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Figure 5.7: Estimated states and model prediction results of prMHE
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As shown in Figure 5.7, prMHE maintains the accuracy of the

state estimation, while updating less number of model parameters in

each horizon. It even improves the state estimation accuracy for this

example problem, with the sum of NRMSEs = 0.18. The accuracy of

state predictions is also improved, especially at t = 5[hr], where the

two benchmark problems show poor prediction accuracy. However,

as shown in Figures 5.7 (a) and (b), the accuracy of the model predic-

tion at t = 10[hr] is not improved over the results of two benchmarks.

Since the prMHE updates the model parameters based on the set of

past data, the change in θ8 at t = 10[hr] can not be used for updat-

ing the model parameters at t = 10[hr], resulting in inaccurate state

predictions at t = 10[hr]. Since it is impossible to predict the future

changes in the model parameters, there exists some time lag until the

parametric drifts of the process are captured by the prMHE. Even

though prMHE can not track the true parameter drifts exactly to due

the time lag, it provides improved state estimation and predictions

by suppressing the ill-conditioning problem occurring in the model

parameter estimation procedure of MHE(x, θ).
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Chapter 6

Concluding remarks

When the target system is a non-stationary semi-batch process,

a nonlinear model is often used to simulate the complex dynamics of

the system. If the model parameters are properly estimated, various

model-based methods can be successfully applied to the target sys-

tem, appreciating the prediction performance of the nonlinear mod-

els. However, from a practical point of view, there are several diffi-

culties in using nonlinear models. It is difficult to find an exact model

structure for complex systems. Moreover, the available data are of-

ten limited, making it impossible to estimate all the model param-

eters. The limited data results in an ill-conditioning problem in pa-

rameter estimation (PE), deteriorating the prediction accuracy of the

model. This situation is encountered quite frequently in a real-world

problem. Under this condition, several types of nonlinear models, in-

cluding a hybrid model, deterministic model, and simple stochastic

model, are employed in this thesis to achieve various purposes: pro-

cess modeling, dynamic optimization, and online state estimation.

In the first part of the thesis, we avoided the ill-conditioned PE

problem by using the dynamic hybrid model, instead of using a com-

mon nonlinear model. The model-based dynamic optimization scheme

is suggested for the hybrid model, together with the valid domain
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constraints regulating the range of exploration. Meanwhile, the next

two methods used nonlinear models that require PE to complete the

modeling procedure. In the second part, the target system is modeled

with simple stochastic differential equations (SDE) to manage the

uncertainty in the model structure. We proposed a parameter subset

selection (PSS) method for the stochastic model to resolve the ill-

conditioned PE problem owing to the limited data. In the final chap-

ter, the MHE estimator using the deterministic nonlinear model is

suggested for online state and parameter estimation. PSS is applied to

the basic formulation of the MHE, improving not only the accuracy

of online state estimation but also the model prediction. Numerical

examples are provided to demonstrate the efficacy of each method.

6.1 Summary of the contributions

The detailed summaries of each method are as follows:

In Chapter 3, we defined the valid domain for the dynamic hy-

brid model based on two complementary validity domain criteria of

the static hybrid system; the convex hull criterion and the confidence

interval criterion. Both valid domain criteria are transformed into sets

of inequality constraints for a dynamic optimization problem. The it-

erative strategy for model update and optimization are also proposed

to find improved optimal input trajectories under repetitive batch op-

erations. It is also useful to handle the systems that have changing

dynamics in batch-to-batch operations.

Chapter 4 proposed a ranking-based PSS method for stochastic

models to solve the ill-conditioned PE problem, owing to the lack of

information in the available data. By selecting an SDE model with
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additive stochastic terms as a model form of the target system, the

proposed method determines the optimal size of the parameter subset

while simultaneously estimating the values of the selected parame-

ters, magnitudes of the state disturbances, and measurement errors.

As a key part of the proposed PSS method, the LAMLE-based PE

method (gLAMLE) is proposed for the stochastic models. The pro-

posed PE method manages the effects of batch-wise uncertainties on

the estimation results and improves the convergence of the algorithm

by adopting a learning rate.

The ill-conditioned PE problem also occurs in the online estima-

tion when using MHE, as the MHE estimates all the model parame-

ters and state variables with the limited amount of measurements in

the moving window of fixed size. In Chapter 5, a parameter ranking-

based moving horizon estimation (prMHE) method was suggested to

overcome the ill-conditioning problem in the MHE formulation. At

each time step of prMHE, a ranked list of the parameters is calculated

based on the scaled sensitivity matrix, and the subset of estimable pa-

rameters is determined. In the trajectory optimization of each time

step, only the selected model parameters are updated along with the

state variables. Consequently, it improves the accuracy of state esti-

mation and model prediction by managing the ill-conditioning prob-

lem of online parameter estimation.

6.2 Limitations and Future works

For the successful application of the hybrid model-based meth-

ods, further considerations are required, including 1) when the model

should be updated with the newly collected data, and 2) how much
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data should be replaced at the start of each iteration. Without these

considerations, we cannot expect accurate prediction performance of

the hybrid model.

Throughout the thesis, the ranked list of the model parameters is

determined by an orthogonalization-based method. Besides its sim-

plicity, it has several drawbacks: it requires a user-defined thresh-

old, and cannot consider the correlations between model parameters.

Moreover, this method performs matrix calculation iteratively, mak-

ing the overall algorithm computationally demanding. For example,

Figure 6.1 shows that the size of the online selected parameter subset

differs depending on the level of the pre-defined threshold. In Figures

6.1 (b)-(c), the number of selected parameters is indicated with the

dark green cells, the light green cells indicate the number of ranked

but not selected parameters, and the number of unranked parameters

is drawn as the white cells.
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However, as the proposed methods in the second and third part

of the thesis do not restrict the type of parameter ranking methods,

other parameter ranking methods could be used to improve the per-

formance of the proposed PSS method. One way is to define a se-

lection criterion based on statistical significance [62, 121]. Consider-

ing the characteristics of the target system, a user-defined selection

criterion can be designed by using the parameter estimates and the

estimated standard deviation of the model parameters, which are cal-

culated during the online or offline parameter estimation procedure.

It still requires the user-supplied thresholds on the significance level,

but this method may reduce difficulty in choosing a proper threshold

The overall performance of the PSS procedure can decrease if

the correlations between the model parameters are not negligible. In

the second part, the numerical example shows that the correlation be-

tween the model parameters deteriorates the accuracy of parameter

estimation. One way to resolve the correlation problem before start-

ing the parameter estimation is to simplify the indistinguishable parts

of the model into a single parameter, resulting in a lumped parame-

ter model. First, structurally indistinguishable parameters should be

lumped together with other parameters before performing the param-

eter estimation. After finishing the first parameter estimation, it is

possible to calculate the estimated covariance matrix of the parame-

ters. This matrix can be used to determine the correlations between

parameters, which were not detected before performing the param-

eter estimation. However, simplifying the model structure to resolve

the correlation problem may cause a structural uncertainty in the non-

linear model. It requires an online parameter update for accurate state

estimation or model prediction, which is one of the problems that the
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third part of the thesis tries to address.

For the MHE formulation, the overall performance of estimation

can be improved by applying other methods for updating the covari-

ance matrix of the arrival cost term. An NLP optimality-based method

is one of the possible choices [48, 121]. Through this method, an ex-

act covariance matrix of the model parameters is calculated based

on the optimal KKT system of the formulated NLP. Moreover, the

reduced Hessian matrix can also be used for the online PSS proce-

dure in the prMHE algorithm. As the prMHE is defined with the aug-

mented state, considering the state and model parameters simultane-

ously, the part for the model parameters in the whole reduced Hessian

matrix can be easily separated and used as FIM in PSS procedures.

Therefore, if the reduced Hessian of the augmented state can be ex-

tracted directly from the optimizer, it can be effective not only for

improving the accuracy of state estimation but also for reducing the

online computation of PSS used in the prMHE algorithm, not requir-

ing further calculation for the sensitivity matrix at each time step.
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Chapter A

Appendix

A.1 Calculate Hessian of ψk(θ)

Hk is the Hessian of ψk evaluated at θ = θ̂,

Hk =
∂2ψk

∂θ∂θ⊤

∣∣∣∣
θ=θ̂

. (A.1)

It can be derived by the matrix differentiation and the chain rule

[122]. For k = 1, . . . , K sampling points and n = 1, . . . , Nk data

sets, let, ξk,n ∈ RNk , yk,n ∈ Rny , and xk,n ∈ Rnx where ny = nx

and y = x+ ϵ, respectively. Then, we can assume xk,n = f(ξk,n) and

ξk,n = s(θ) where f : RNk 7→ RNx and s : RNp 7→ RNk . Given this,

gk,n is calculated with

∂yk,n
∂θ

=
∂ξk,n
∂θ

∂f(ξk,n)

∂ξi,n
=
∂ξk,n
∂θ

∂yk,n
∂ξk,n

, (A.2)

∂ξk,n
∂θ

∈ RNθ×Nk
∂f(ξk,n)

∂ξi,n
∈ RNk×Nx

∂yk,n
∂θ

∈ RNθ×Nx . (A.3)

Let Ak = y⊤k yk ∈ Rny×ny , and ψk = detAk ∈ R for simplicity.
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Then, each component of Hk in Eq. (A.1) is calculated by

∂2ψk

∂θp1∂θp2

∣∣∣∣
θ̂

=
∂2 detAk

∂θp1∂θp2

∣∣∣∣
θ̂,ũi

, p1, p2 = 1, . . . , Nθ

= ψ̂k ×
[
tr

(
A−1

k

∂Ak

∂θp1

)
tr

(
A−1

k

∂Ak

∂θp2

)
+tr

(
A−1

k

∂2Ak

∂θp1∂θp2

)
− tr

(
A−1

k

∂Ak

∂θp1
A−1

k

∂Ak

∂θp2

)] ∣∣∣∣
θ̂

.

(A.4)

Let ξ̃k = [ξk,1, ξk,2, . . . , ξk,Nk
] ∈ RK×Nk . The first and second-

order partial derivatives of Ak over θ are calculated by the chain rule

as

∂Ak

∂θp1
=

Ñk∑
q=1

∂Ak

∂ξq

∂ξq
∂θp1

∈ Rny×ny (A.5)

∂2Ak

∂θp1∂θp2
=

Ñk∑
q=1


Ñk∑
t=1

∂2Ak

∂ξq∂ξt

∂ξt
∂θp2

∂ξp
∂θp1

+
∂Ak

∂ξq

∂2ξq
∂θp1∂θp2

 (A.6)

∂Ak

∂ξq
=
∂y⊤k yk
∂ξq

= 2y⊤i
∂yi
∂ξq

∈ RNx×Nx (A.7)

∂2Ak

∂ξq∂ξt
= 2

(
∂yk
∂ξq

⊤∂yk
∂ξt

+ y⊤k
∂2yk
∂ξq∂ξt

)
(A.8)

where ∂ξ/∂θ and ∂2ξ/∂θ2 can be calculated while training the black-

box models.
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A.2 Minimizing condition number of matrix by scal-
ing [1]

For a full-rank matrix H ∈ Rp×q, with p ≤ q, the problem of

minimizing the condition number of H is

min
L,R

κ(LHR) (A.9a)

s.t. L ∈ Rp×p, R ∈ Rq×q (A.9b)

where L andR are the optimization variables, assumed to be diagonal

and nonsingular matrices. This problem can be transformed into a

GEVP,

min
P,Q

γ2 (A.10a)

s.t. P > 0, P ∈ Rp×p, (A.10b)

Q > 0, Q ∈ Rq×q (A.10c)

Q ≤ H⊤PH ≤ γ2Q (A.10d)

where γ > 1, P = L⊤L, and Q = (RR⊤)−1. Since L and R are

diagonal, nonsingular matrices, P and Q as well. Eq. (A.10) can

be solved by LMI solvers, such as CVX [123] or a matlab function

’gevp’ in Robust Control Toolbox. From the solution, L = P 1/2 and

R = Q−1/2, respectively.
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A.3 Simulation of SDE

First of all, one thing to have in mind is that Eq. (4.2) is a con-

vention in notation and does not mean a real differentiation [91].

With Eq. (4.2), let us first assume b and σ are time-independent,

Lipshitz continuous and bounded. And also assume that the initial

condition, X0 is non-random. Then, we can write the ode whose so-

lution is Xn
t ,

d

dt
Xn

t = b(Xn
t ) + σ(Xn

t )ξ
n
t , Xn

0 = X0, (A.11)

,that is driven by an approximated white noise, ξnt , which satisfies

that

sup
t∈[0,T ]

∥Wt −W n
t ∥

n→∞−→ 0 a.s, W n
t =

∫ t

0

ξns ds. (A.12)

Meanwhile, let Xt be the solution of the SDE with the Itô −
correction term

dXt = b̃(Xt)dt+ σ(Xt)dWt (A.13)

b̃i(x) = bi(x) +
1

2

n∑
j=1

m∑
k=1

∂σik(x)

∂xj
σjk(x). (A.14)

For the solution of each equation, Xn
t and Xt is derived by the

Wong-Zakai theorem [91],

E

[
sup

t∈[0,T ]

|Xn
t −Xt|2

]
n→∞−→ 0 (A.15)
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for any T <∞.

Since the form of SDE that is interested in this study is that the

SDE with a constant σ, so let σ(Xt) = σ, then it can be described

with simpler expressions, comparing to Eq. (A.14), as

dXt = b(Xt)dt+ σdWt, sup
t∈[0,T ]

∥Xn
t −Xt∥

n→∞−→ 0 a.s. (A.16)

where the Itô− correction term does not need to be considered.

A SDE model that chosen to model systems takes the form of

Eq. (A.11) with constant σ,

dx(t)

dt
= f(x(t), u(t), θ) + η(t), (A.17)

Eη(t1)η(t2) = Qδ(t2 − t1), x(0) = xo (A.18)

where x is a state variable, u is a input variable, θ is the vector of

model parameters, and η is zero-mean white-noise process with con-

stant covariance matrix (Q). And this equation is rewritten, without

any problem, into

dx(t) = f(x(t), u(t), θ)dt+QdWt, x(0) = xo (A.19)

Stochastic differential equations seldom admit analytical soluiton,

like their non-random counterparts. Therefore, numerical approaches

to simulate such systems are also essential. Meaning of simulation

of SDEs is to simulate (approximate) sample paths of the SDE with

proper distribution. There are a lot of methods to numerically sim-

ulate the SDE, including the Euler-Maruyama method, the Milstein

scheme, the stochastic Runge-Kutta methods, etc. As well as detailed
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description of the SDE, check [91, 90] for further information.

A.4 Laplace approximation

Laplace approximation (LA) is one method of the asymptotic ex-

pansions of integrals, considering the integral of a 1-d random vari-

able x (originally starts from much general integrand in [110], but let

us use following simple integral directly)

∫ b

a

1√
2π

exp{−h(x)}dx

= exp{−h(x0)}
∫ ∞

−∞

x
′
(t)√
2π

exp

(
−t

2

2

)
dt

(A.20)

where x0 is mode of h(x), and writing h(x) − h(x0) =
1
2
t2. By ex-

panding h(x),

1

2
t2 =

1

2
(x− x0)

2h
′′
(x0) +

1

6
(x− x0)

3h(3)(x0) + . . . , (A.21)

and let us assume that selecting only upto first term of Eq. (A.21).

With Eq. (A.20), assumed Eq. (A.21) and let p(x) = −h(x), it is

possible to derive the LA form to approximate the multidimensional

integral,

ln

∫
ep(xxx)dxxx ≈p(x̂xx)− 1

2
ln det

({
−∂2p
∂xxx∂xxx⊤

}
|x̂xx
)

+
1

2
dim(xxx) ln(2π),

(A.22)

where x̂xx is the vector of realizations of random variables that maxi-

mizes p(x).
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[68] J. Řehoř and V. Havlena, “A practical approach to grey-box model

identification,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 10776–

10781, 2011.

[69] M. Von Stosch, R. Oliveira, J. Peres, and S. F. de Azevedo, “Hy-

brid semi-parametric modeling in process systems engineering: Past,

present and future,” Computers & Chemical Engineering, vol. 60,

pp. 86–101, 2014.

191



[70] S. Zendehboudi, N. Rezaei, and A. Lohi, “Applications of hybrid

models in chemical, petroleum, and energy systems: A systematic

review,” Applied energy, vol. 228, pp. 2539–2566, 2018.

[71] R. Bardini, G. Politano, A. Benso, and S. Di Carlo, “Multi-level and

hybrid modelling approaches for systems biology,” Computational

and structural biotechnology journal, vol. 15, pp. 396–402, 2017.

[72] M. von Stosch, “Hybrid models and experimental design,” in Hybrid

Modeling in Process Industries, pp. 37–61, CRC Press, 2018.

[73] D. Kim, H.-S. Oh, and I.-C. Moon, “Black-box modeling for aircraft

maneuver control with bayesian optimization,” International Journal

of Control, Automation and Systems, vol. 17, no. 6, pp. 1558–1568,

2019.

[74] S. Khadraoui and H. Nounou, “A nonparametric approach to design

fixed-order controllers for systems with constrained input,” Interna-

tional Journal of Control, Automation and Systems, vol. 16, no. 6,

pp. 2870–2877, 2018.

[75] H. C. Lv and D. Y. Tian, “Modeling of the phase equilibria of aqueous

two-phase systems using three-dimensional neural network,” Korean

Journal of Chemical Engineering, vol. 34, no. 1, pp. 170–178, 2017.

[76] M. von Stosch, R. Oliveira, J. Peres, and S. F. De Azevedo, “A novel

identification method for hybrid (n) pls dynamical systems with ap-

plication to bioprocesses,” Expert Systems with Applications, vol. 38,

no. 9, pp. 10862–10874, 2011.

[77] R. Romijn, L. Özkan, S. Weiland, J. Ludlage, and W. Marquardt, “A

grey-box modeling approach for the reduction of nonlinear systems,”

Journal of Process Control, vol. 18, no. 9, pp. 906–914, 2008.

[78] D. Solle, B. Hitzmann, C. Herwig, M. Pereira Remelhe, S. Ulonska,

L. Wuerth, A. Prata, and T. Steckenreiter, “Between the poles of data-

192



driven and mechanistic modeling for process operation,” Chemie In-

genieur Technik, vol. 89, no. 5, pp. 542–561, 2017.

[79] M. Agarwal, “Combining neural and conventional paradigms for

modelling, prediction and control,” International Journal of Systems

Science, vol. 28, no. 1, pp. 65–81, 1997.

[80] T. Mrziglod and A. Schuppert, “Hybrid model identification and dis-

crimination with practical examples from the chemical industry,” in

Hybrid Modeling in Process Industries, pp. 63–88, CRC Press, 2018.

[81] O. Kahrs and W. Marquardt, “Incremental identification of hybrid

process models,” Computers & Chemical Engineering, vol. 32, no. 4-

5, pp. 694–705, 2008.

[82] M. von Stosch, J.-M. Hamelink, and R. Oliveira, “Hybrid model-

ing as a qbd/pat tool in process development: an industrial e. coli

case study,” Bioprocess and biosystems engineering, vol. 39, no. 5,

pp. 773–784, 2016.

[83] M. von Stosch, S. Davy, K. Francois, V. Galvanauskas, J.-M.

Hamelink, A. Luebbert, M. Mayer, R. Oliveira, R. O’Kennedy,

P. Rice, et al., “Hybrid modeling for quality by design and pat-

benefits and challenges of applications in biopharmaceutical indus-

try,” Biotechnology journal, vol. 9, no. 6, pp. 719–726, 2014.

[84] D. Bates and D. Watts, Nonlinear Regression Analysis and Its Appli-

cations. John Wiley & Sons Inc, 1988.

[85] G. A. Seber and A. J. Lee, Linear regression analysis, vol. 329. John

Wiley & Sons, 2012.

[86] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull al-

gorithm for convex hulls,” ACM Transactions on Mathematical Soft-

ware (TOMS), vol. 22, no. 4, pp. 469–483, 1996.

193



[87] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,

“CasADi – A software framework for nonlinear optimization and

optimal control,” Mathematical Programming Computation, vol. 11,

no. 1, pp. 1–36, 2019.

[88] J. Bae, D. H. Jeong, and J. M. Lee, “Ranking-based parameter subset

selection for nonlinear dynamics with stochastic disturbances under

limited data,” Industrial & Engineering Chemistry Research, 2020.

[89] H. Verdejo, A. Awerkin, W. Kliemann, and C. Becker, “Modelling

uncertainties in electrical power systems with stochastic differential

equations,” International Journal of Electrical Power & Energy Sys-

tems, vol. 113, pp. 322–332, 2019.

[90] S. Särkkä and A. Solin, Applied stochastic differential equations,

vol. 10. Cambridge University Press, 2019.

[91] B. Oksendal, Stochastic differential equations: an introduction with

applications. Springer Science & Business Media, 2013.

[92] S. Donnet and A. Samson, “A review on estimation of stochastic dif-

ferential equations for pharmacokinetic/pharmacodynamic models,”

Advanced drug delivery reviews, vol. 65, no. 7, pp. 929–939, 2013.

[93] L. Ferrante, S. Bompadre, and L. Leone, “A stochastic compartmental

model with long lasting infusion,” Biometrical Journal: Journal of

Mathematical Methods in Biosciences, vol. 45, no. 2, pp. 182–194,

2003.

[94] R. Kupferman and A. Stuart, “Fitting sde models to nonlinear

kac–zwanzig heat bath models,” Physica D: Nonlinear Phenomena,

vol. 199, no. 3-4, pp. 279–316, 2004.

[95] L. Ferrante, S. Bompadre, and L. Leone, “A stochastic compartmental

model with long lasting infusion,” Biometrical Journal: Journal of

Mathematical Methods in Biosciences, vol. 45, no. 2, pp. 182–194,

2003.

194



[96] J. Timmer, “Parameter estimation in nonlinear stochastic differential

equations,” Chaos, Solitons & Fractals, vol. 11, no. 15, pp. 2571–

2578, 2000.

[97] H. Karimi and K. B. McAuley, “A maximum-likelihood method for

estimating parameters, stochastic disturbance intensities and mea-

surement noise variances in nonlinear dynamic models with process

disturbances,” Computers & Chemical Engineering, vol. 67, pp. 178–

198, 2014.

[98] S. Walker, “An em algorithm for nonlinear random effects models,”

Biometrics, pp. 934–944, 1996.

[99] E. Kuhn and M. Lavielle, “Maximum likelihood estimation in nonlin-

ear mixed effects models,” Computational Statistics & Data Analysis,

vol. 49, no. 4, pp. 1020–1038, 2005.

[100] H. Karimi and K. B. McAuley, “An approximate expectation max-

imisation algorithm for estimating parameters in nonlinear dynamic

models with process disturbances,” The Canadian Journal of Chemi-

cal Engineering, vol. 92, no. 5, pp. 835–850, 2014.

[101] H. Karimi and K. B. McAuley, “Bayesian objective functions for esti-

mating parameters in nonlinear stochastic differential equation mod-

els with limited data,” Industrial & Engineering Chemistry Research,

vol. 57, no. 27, pp. 8946–8961, 2018.

[102] A. Golightly and D. J. Wilkinson, “Bayesian parameter inference for

stochastic biochemical network models using particle markov chain

monte carlo,” Interface focus, vol. 1, no. 6, pp. 807–820, 2011.

[103] M. Varziri, K. McAuley, and P. McLellan, “Parameter and state esti-

mation in nonlinear stochastic continuous-time dynamic models with

unknown disturbance intensity,” The Canadian Journal of Chemical

Engineering, vol. 86, no. 5, pp. 828–837, 2008.

195



[104] A. R. Pedersen, “A new approach to maximum likelihood estimation

for stochastic differential equations based on discrete observations,”

Scandinavian journal of statistics, pp. 55–71, 1995.

[105] A. Golightly and D. J. Wilkinson, “Markov chain monte carlo al-

gorithms for sde parameter estimation,” Learning and Inference for

Computational Systems Biology, pp. 253–276, 2010.

[106] U. Picchini and S. Ditlevsen, “Practical estimation of high dimen-

sional stochastic differential mixed-effects models,” Computational

Statistics & Data Analysis, vol. 55, no. 3, pp. 1426–1444, 2011.

[107] Y. Ait-Sahalia et al., “Closed-form likelihood expansions for multi-

variate diffusions,” The Annals of Statistics, vol. 36, no. 2, pp. 906–

937, 2008.

[108] B. M. Bibby and M. Sørensen, “Martingale estimation functions for

discretely observed diffusion processes,” Bernoulli, pp. 17–39, 1995.

[109] O. E. Barndorff-Nielsen, “Asymptotic techniques; for use in statis-

tics,” tech. rep., 1989.

[110] J. L. Jensen, Saddlepoint approximations. No. 16, Oxford University

Press, 1995.

[111] J. O. Ramsay, G. Hooker, D. Campbell, and J. Cao, “Parameter esti-

mation for differential equations: a generalized smoothing approach,”

Journal of the Royal Statistical Society: Series B (Statistical Method-

ology), vol. 69, no. 5, pp. 741–796, 2007.

[112] C. De Boor, C. De Boor, E.-U. Mathématicien, C. De Boor, and

C. De Boor, A practical guide to splines, vol. 27. springer-verlag

New York, 1978.

[113] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine

learning,” Machine learning, vol. 3, no. 2, pp. 95–99, 1988.

196



[114] T. Turányi, “Sensitivity analysis of complex kinetic systems. tools

and applications,” Journal of mathematical chemistry, vol. 5, no. 3,

pp. 203–248, 1990.

[115] A. Poyton, M. S. Varziri, K. B. McAuley, P. J. McLellan, and J. O.

Ramsay, “Parameter estimation in continuous-time dynamic models

using principal differential analysis,” Computers & chemical engi-

neering, vol. 30, no. 4, pp. 698–708, 2006.

[116] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduc-

tion. MIT press, 2018.

[117] Y. Chu, Z. Huang, and J. Hahn, “Improving prediction capabilities

of complex dynamic models via parameter selection and estimation,”

Chemical Engineering Science, vol. 64, no. 19, pp. 4178–4185, 2009.

[118] A. Küpper, M. Diehl, J. P. Schlöder, H. G. Bock, and S. Engell, “Ef-

ficient moving horizon state and parameter estimation for smb pro-

cesses,” Journal of Process Control, vol. 19, no. 5, pp. 785–802,

2009.

[119] S. Krämer and R. Gesthuisen, “Multirate state estimation using mov-

ing horizon estimation,” IFAC Proceedings Volumes, vol. 38, no. 1,

pp. 1–6, 2005.

[120] A. Liu, W.-A. Zhang, M. Z. Chen, and L. Yu, “Moving horizon es-

timation for mobile robots with multirate sampling,” IEEE Transac-

tions on Industrial Electronics, vol. 64, no. 2, pp. 1457–1467, 2016.

[121] W. Chen and L. T. Biegler, “Reduced hessian based parameter selec-

tion and estimation with simultaneous collocation approach,” AIChE

Journal, p. e16242, 2020.

[122] K. B. Petersen et al., “The matrix cookbook,”

[123] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex

programming, version 2.1.” http://cvxr.com/cvx, Mar. 2014.

197

http://cvxr.com/cvx


초록

산업적으로활용되는회분식공정은균일한제품생산을위하

여사전에결정된입력궤적을따라비정상상태로운전된다는특징

이있다.회분식공정의이러한특성은공정의디지털트윈을설계

하는데필수적인단계인공정의수학적모델링과정에여러어려움

을야기한다.우선,공정의복잡한거동을모사하기위해비선형모

델을사용해야하며,그에해당하는모델매개변수를추정하는과정

이필요하다.이때,고정된입력궤적에따라운전된공정의데이터

에는파라미터추정에사용할정보량이충분하지않기때문에,주어

진데이터의양과별개로파라미터추정에불량조건(ill-condition)

문제가 발생한다. 불량 조건 파라미터 추정 문제가 발생하면, 모든

모델 매개변수를 정확히 추정하는 것은 불가능하다. 더욱이, 완성

된모델기반의기법을공정에곧바로적용할수있는것도아니다.

실제공정은알려지지않은외란에의하여계속해서영향을받으며,

그로인해모델-공정부조화(model-plant mismatch)가발생하기때

문이다. 회분식 공정을 모사하는 비선형 모델의 경우, 모델 구조적

불확실성으로인하여이문제가더욱부각된다.이런문제들은생산

규모의 공정을 모델링할 때 자주 발생하며, 공정의 디지털 트윈을

구축하기 위해서 반드시 해결되어야 한다. 본 논문에서는, 이러한

회분식 공정의 특성을 고려할 수 있는 모델 기반의 접근법을 제안

한다.

첫번째로,동적복합모델(dynamic hybrid model)기반의모델

링및동적최적화기법을제시한다.복합모델은데이터가부족한

상황에서 공정에 대한 사전 정보 또한 불완전하여 공정을 모사할

모델의구조에대한확신이없는상황에서유용하다.본논문의첫

부분은 복합 모델을 사용한 공정 해석이 타당한 영역인 유효 영역
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(valid domain)을정의하고,그것을동적최적화의제약조건으로활

용할수있는방법및좁은유효영역의한계를극복하기위한반복

알고리즘을제안한다.

두 번째 방법론은 제일원칙 모델(first-principle model)을 기반

으로 모델의 불확실성에 대처하기 위하여, 가산적 통계항을 갖는

확률미분방정식(stochastic differential equation)모델을사용한다.

이모델을기반으로하여,부족한데이터로인하여발생한불량조

건매개변수추정문제를다룰수있는매개변수부분집합선택 (pa-

rameter subset selection)알고리즘을제시한다.이과정에서,비선형

모델의모델매개변수뿐만아니라,가산적통계항의크기를함께

추정할수있는매개변수추정기법도함께제시하며이는매개변수

부분집합선택알고리즘내에서반복적으로사용된다.

마지막으로,완성된비선형제일원칙모델을사용하여모델-공

정 부조화를 해결할 수 있는 최적화 기반의 실시간 상태 및 매개

변수 추정 기법을 제시한다. 제한된 양의 데이터를 사용하여 많은

매개변수를실시간으로추정해야한다면,실시간상태및매개변수

추정 기법을 사용하는 과정에서도 불량 조건 문제가 발생한다. 이

문제를 해결하기 위해서, 실시간 매개변수 부분집합 선택 기법을

실시간 추정 기법인 moving horizon estimation에 도입하여 실시간

매개변수추정문제에서발생하는불량조건문제를해결할수있는

알고리즘을제시한다.

제안된기법들의성능을검증하기위하여,각단원의마지막에

예제가수록되어있다.각예제는산업적반회분식생물반응기를

모사하는가상공정을사용하며,이시스템은비선형적거동,비정

상상태운전,그리고측정데이터에포함된제한적정보라는특성을
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모두가진다.

주요어 : 디지털트윈,반회분식공정,하이브리드모델,동적최적

화,파라미터추정,상태추정

학번 : 2015-21066

200


	1. Introduction . . . . . . . . . . . . . . . . . . . . . . .
	1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . .
	1.2 Scope of the thesis . . . . . . . . . . . . . . . . . . .
	1.3 Outline of the thesis . . . . . . . . . . . . . . . . . .

	2. Background and preliminaries . . . . . . . . . . . . .
	2.1 Parameter and state estimation for nonlinear dynamic models . . . . . . . . . . . . . . . . . . . . . . 
	2.1.1 Parameter estimation for nonlinear models . .
	2.1.2 Moving horizon state and parameter estimation

	2.2 Estimability analysis . . . . . . . . . . . . . . . . . .
	2.2.1 Parameter ranking and subset selection . . . .
	2.2.2 Sensitivity-based methods . . . . . . . . . . .


	3. Hybrid modeling of semi-batch process and construction of valid domain constraints . . . . . 
	3.1 Introduction . . . . . . . . . . . . . . . . . . . . . .
	3.2 Hybrid modeling of dynamic system . . . . . . . . .
	3.3 Valid domain for dynamic hybrid model . . . . . . .
	3.3.1 Valid domain for static hybrid model . . . . .
	3.3.2 Convex hull criterion for dynamic hybrid model
	3.3.3 Confidence interval criterion for dynamic hybrid model . . . . . . . . . . . . . . . . . . .
	3.3.4 Valid domain constraints for dynamic hybrid model . . . . . . . . . . . . . . . . . . . . . .

	3.4 Dynamic optimization with valid domain constraints .
	3.4.1 Problem formulation . . . . . . . . . . . . . .
	3.4.2 Iterative application of overall scheme . . . . .

	3.5 Illustrative example . . . . . . . . . . . . . . . . . .
	3.5.1 Hybrid model structure and problem statements
	3.5.2 Formulate discretized dynamic hybrid model of target system . . . . . . . . . . . . . . . .
	3.5.3 Construction of valid domain for dynamic hybrid model . . . . . . . . . . . . . . . . . . .
	3.5.4 Dynamic optimization with valid domain constraints . . . . . . . . . . . . . . . . . . . . .
	3.5.5 Iterative model update and dynamic optimization


	4. Ranking-based Parameter Subset Selection for Nonlinear Dynamics with Stochastic Disturbances under Limited Data . . . . . . . . . . . . . . . . . . . . . . .
	4.1 Introduction . . . . . . . . . . . . . . . . . . . . . .
	4.2 Parameter estimation for SDE models with additive stochastic terms . .. . . . . . . . . . . . . . . .
	4.2.1 System modeled with stochastic differential equations . . . . . . . . . . . . . . . . . . . . . .
	4.2.2 Laplace Approximation Maximum Likelihood Estimation (LAMLE) . . . . . . . . . . . . .

	4.3 Ranking-based PSS for simple SDE model under limited data . . . . . . . . . . . . . . . . . . . . . . .
	4.3.1 Improvement of initial parameter guesses via sampling-based optimization . . . . . . . . . .
	4.3.2 Calculation of scaled sensitivity matrix and ranked list of parameters . . . . . . . . . . . . . . .
	4.3.3 Modified LAMLE algorithm for parameter subset selection . . . . . . . . . . . . . . . . . .
	4.3.4 MSE-based PSS of SDEs model using gLAMLE

	4.4 Numerical illustration: Modeling a fed-batch bioreactor under limited data . . . . . . . . . .
	4.4.1 Description on fed-batch bioreactor model . .
	4.4.2 Parameter Ranking with θ o. . . . . . . . . . .
	4.4.3 MSE-based PSS with gLAMLE subroutine . .


	5. Multirate Moving Horizon Estimation Combined with Parameter Subset Selection . . . . . . .
	5.1 Introduction . . . . . . . . . . . . . . . . . . . . . .
	5.2 Multi-rate moving horizon estimation . . . . . . . . .
	5.3 Parameter ranking-based moving horizon estimation .
	5.3.1 Online parameter subset selection in k th horizon
	5.3.2 Modification of stage cost to consider multirate measurements . . . . . . . . . . . . . . .
	5.3.3 Parameters ranking-based moving horizon state and parameter estimation . . . . .

	5.4 Numerical Example: A fed-batch bioreactor . . . . .
	5.4.1 Problem statement . . . . . . . . . . . . . . .
	5.4.2 Benchmark problems: basic moving horizon state and parameter estimations . . . .. . .
	5.4.3 Parameter ranking-based moving horizon state and parameter estimation . . . . . .. . .


	6. Concluding remarks . . . . . . . . . . . . . . . . . . .
	6.1 Summary of the contributions . . . . . . . . . . . . .
	6.2 Limitations and Future works . . . . . . . . . . . . .

	A. Appendix . . . . . . . . . . . . . . . . . . . . . . . . .
	A.1 Calculate Hessian of ψ k (θ) . . . . . . . . . . . . . .
	A.2 Minimizing condition number of matrix by scaling [1]
	A.3 Simulation of SDE . . . . . . . . . . . . . . . . . . .
	A.4 Laplace approximation . . . . . . . . . . . . . . . . .

	Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . .


<startpage>18
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . 1
 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . 1
 1.2 Scope of the thesis . . . . . . . . . . . . . . . . . . . 6
 1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . 8
2. Background and preliminaries . . . . . . . . . . . . . 9
 2.1 Parameter and state estimation for nonlinear dynamic models . . . . . . . . . . . . . . . . . . . . . .  9
  2.1.1 Parameter estimation for nonlinear models . . 9
  2.1.2 Moving horizon state and parameter estimation 12
 2.2 Estimability analysis . . . . . . . . . . . . . . . . . . 17
  2.2.1 Parameter ranking and subset selection . . . . 18
  2.2.2 Sensitivity-based methods . . . . . . . . . . . 19
3. Hybrid modeling of semi-batch process and construction of valid domain constraints . . . . .  25
 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 25
 3.2 Hybrid modeling of dynamic system . . . . . . . . . 27
 3.3 Valid domain for dynamic hybrid model . . . . . . . 32
  3.3.1 Valid domain for static hybrid model . . . . . 33
  3.3.2 Convex hull criterion for dynamic hybrid model 35
  3.3.3 Confidence interval criterion for dynamic hybrid model . . . . . . . . . . . . . . . . . . . 37
  3.3.4 Valid domain constraints for dynamic hybrid model . . . . . . . . . . . . . . . . . . . . . . 43
 3.4 Dynamic optimization with valid domain constraints . 45
  3.4.1 Problem formulation . . . . . . . . . . . . . . 45
  3.4.2 Iterative application of overall scheme . . . . . 47
 3.5 Illustrative example . . . . . . . . . . . . . . . . . . 49
  3.5.1 Hybrid model structure and problem statements 50
  3.5.2 Formulate discretized dynamic hybrid model of target system . . . . . . . . . . . . . . . . 55
  3.5.3 Construction of valid domain for dynamic hybrid model . . . . . . . . . . . . . . . . . . . 62
  3.5.4 Dynamic optimization with valid domain constraints . . . . . . . . . . . . . . . . . . . . . 66
  3.5.5 Iterative model update and dynamic optimization 74
4. Ranking-based Parameter Subset Selection for Nonlinear Dynamics with Stochastic Disturbances under Limited Data . . . . . . . . . . . . . . . . . . . . . . . 80
 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 80
 4.2 Parameter estimation for SDE models with additive stochastic terms . .. . . . . . . . . . . . . . . . 82
  4.2.1 System modeled with stochastic differential equations . . . . . . . . . . . . . . . . . . . . . . 82
  4.2.2 Laplace Approximation Maximum Likelihood Estimation (LAMLE) . . . . . . . . . . . . . 84
 4.3 Ranking-based PSS for simple SDE model under limited data . . . . . . . . . . . . . . . . . . . . . . . 87
  4.3.1 Improvement of initial parameter guesses via sampling-based optimization . . . . . . . . . . 87
  4.3.2 Calculation of scaled sensitivity matrix and ranked list of parameters . . . . . . . . . . . . . . . 89
  4.3.3 Modified LAMLE algorithm for parameter subset selection . . . . . . . . . . . . . . . . . . 90
  4.3.4 MSE-based PSS of SDEs model using gLAMLE 104
 4.4 Numerical illustration: Modeling a fed-batch bioreactor under limited data . . . . . . . . . . 107
  4.4.1 Description on fed-batch bioreactor model . . 107
  4.4.2 Parameter Ranking with θ o. . . . . . . . . . . 114
  4.4.3 MSE-based PSS with gLAMLE subroutine . . 118
5. Multirate Moving Horizon Estimation Combined with Parameter Subset Selection . . . . . . . 135
 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 135
 5.2 Multi-rate moving horizon estimation . . . . . . . . . 137
 5.3 Parameter ranking-based moving horizon estimation . 139
  5.3.1 Online parameter subset selection in k th horizon 140
  5.3.2 Modification of stage cost to consider multirate measurements . . . . . . . . . . . . . . . 142
  5.3.3 Parameters ranking-based moving horizon state and parameter estimation . . . . . 146
 5.4 Numerical Example: A fed-batch bioreactor . . . . . 150
  5.4.1 Problem statement . . . . . . . . . . . . . . . 151
  5.4.2 Benchmark problems: basic moving horizon state and parameter estimations . . . .. . . 155
  5.4.3 Parameter ranking-based moving horizon state and parameter estimation . . . . . .. . . 165
6. Concluding remarks . . . . . . . . . . . . . . . . . . . 171
 6.1 Summary of the contributions . . . . . . . . . . . . . 172
 6.2 Limitations and Future works . . . . . . . . . . . . . 173
A. Appendix . . . . . . . . . . . . . . . . . . . . . . . . . 178
 A.1 Calculate Hessian of ψ k (θ) . . . . . . . . . . . . . . 178
 A.2 Minimizing condition number of matrix by scaling [1] 180
 A.3 Simulation of SDE . . . . . . . . . . . . . . . . . . . 181
 A.4 Laplace approximation . . . . . . . . . . . . . . . . . 183
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . 184
</body>

