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Abstract
Whani Kim

Graduate School of Psychology

Seoul National University

The present study investigated the role of robots’ body language on
perceptions of social qualities and human-likeness in robots. In experiment
1, videos of a robot’s body language varying in expansiveness were used to
evaluate the two aspects. In experiment 2, videos of social interactions
containing the body languages in experiment 1 were used to further examine
the effects of robots’ body language on these aspects. Results suggest that a
robot conveying open body language are evaluated higher on perceptions of
social characteristics and human-likeness compared to a robot with closed
body language. These effects were not found in videos of social interactions
(experiment 2), which suggests that other features play significant roles in
evaluations of a robot. Nonetheless, current research provides evidence of
the importance of robots’ body language in judgments of social
characteristics and human-likeness. While measures of social qualities and
human-likeness favor robots that convey open body language, post-
experiment interviews revealed that participants expect robots to alleviate
feelings of loneliness and empathize with them, which require more diverse

body language in addition to open body language. Thus, robotic designers



are encouraged to develop robots capable of expressing a wider range of
motion. By enabling complex movements, more natural communications
between humans and robots are possible, which allows humans to consider

robots as social partners.
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Chapter 1. Introduction

1.1. Motivation

It is not uncommon to see robots in public spaces like airports to private
areas like living rooms (Tonkin et al., 2018). These robots serve multiple
roles, such as guides, security guards, or personal assistants. They mainly
have served task-oriented jobs (e.g., cleaning, patrolling, and assembling
parts in factories). The main concern of today’s robots is that they do not
form meaningful relationships with humans but rather exist to serve a
specific purpose. This leads humans to regard robots as tools rather than
social partners. However, users’ needs have expanded towards robots that
can continuously interact with humans (i.e., conversations beyond Q&A).
This development of users’ needs necessitates socially appropriate behaviors
from robots. Social interactions demand expressions of emotions, thoughts,
attitudes, and intentions; this requires robots to convey messages through
verbal and nonverbal means of communication. While research on robots’
expressions through the face and voice are more readily available, less is true
for body language. However, body language is essential for robots with
limited facial and voice features.

Body language conveys information that cannot be expressed verbally.
Nearly 70 percent of what we communicate occurs through non-verbal

means, including body language (Barnum & Wolniansky, 1989). Currently,



robots are capable of expressing basic emotions and intentions through body
movements (e.g., expressing excitement by raising arms, pointing at an
object). While these expressions are satisfactory for basic social interactions,
building long-term relationships require robots to display richer social
behaviors (Breazeal, 2004). Robots could benefit from the incorporation of
body language that communicates more stable beliefs and attitudes. Robots
that show rich social behaviors through body language (i.e., eye contact,
synchronizing movements with humans) are perceived as socially intelligent
(Salem et al., 2013). In turn, these robots encourage humans to form intimate
and trusting relationships (Kahn et al., 2015). Furthermore, the consistent
application of body language could endow robots with a personality, which
is implicated in social relationships (Asendorpf & Wilpers, 1998).

The main purpose of this research was to explore how a robots’ body
language affects perceptions of social qualities and human-likeness.
Ultimately, the goal was to contribute to a more natural HRI capable of
nurturing long-term relationships between humans and robots. By applying
body language that is easily interpretable to humans, robots will be beter
perceived as socially intelligent with their own attitudes and beliefs, which
further amplifies human tendency to anthropomorphize non-human beings.
This, in turn, will encourage humans to act in response rather than simply

acknowledging their actions.



1.2.Theoretical Background and Previous Research

Physical Embodiment

Current implementations of artificial intelligent systems via Voice User
Interface (VUI) provide many functions that make daily tasks easier.
However, users’ needs are better met through the physical embodiment of an
agent, henceforth referred to as robots (Baker et al., 2018). Robots can
navigate their surrounding environments through incorporated motors,
actuators, sensors, and cameras, which determines the degree of freedom
(DoF). The sensorimotor capabilities embedded in a robot determine the
level of proficiency and limitations to which the system can sense, navigate,
and interact with its environment (Deng et al., 2019). These robot qualities
enable them to connect with the physical world in more meaningful ways
than non-physically embodied agents (Bainbridge et al., 2011; Wainer et al.,
2006; Kidd & Breazeal, 2004). For example, robots are able to locate certain
objects, interact with objects in its vicinity (i.e., grabbing, moving, passing,
and throwing), and move to its predetermined destination. Furthermore,
robots are afforded with social benefits such as increasing compliance in
people who are requested to carry out an unusual task (i.e., throw a pile of
books in a garbage can) (Bainbridge et al., 2011). In addition, errors (e.g.,
speech recognition) are forgiven more often with robots compared to screen

characters (Bartneck, 2003).



Anthropomorphism

Physical embodiment endows robots with the luxury of incorporating
human-like characteristics. The benefits afforded by incorporating human-
like characteristics can be owed to anthropomorphism, defined as the
tendency to attribute human-like characteristics to non-human objects
(Dufty, 2003). Incorporating human-like characteristics exploits this
tendency, which further facilitates social understanding and impacts
interaction quality (Broadbent et al., 2013; Castro-Gonzalez et al., 2016;
Salem et al., 2013). Similar to anthropomorphism, Computers are Social
Actors (CASA) paradigm, through a set of experiments, posited that humans
mindlessly apply social rules and expectations to computers (Nass & Moon,
2000; Nass et al., 1994). The authors suggested that humans assign gender
stereotypic characteristics to robots, even when gender cues are minimalized
to voices (Nass et al., 1997). Similar results were obtained by Stroessner &
Benitez (2019), where participants evaluated humanoid and non-humanoid’s
physical features that vary in gender typicality (masculine vs. feminine) and
human-likeness. They found that feminine human-like robots were evaluated
as warmer compared to masculine robots. Furthermore, masculine robots
caused more discomfort in participants, which suggests that a robot’s

perceived gender impacts how it is evaluated.



Nevertheless, robotic designers are often faced with the pitfall of the
Uncanny Valley (Mori et al., 2012) (Figure 1), which suggests that humans’
affinity for a robot, as they become human-like, increases until it reaches a
valley where it becomes eerie and grotesque. However, it becomes positive
again when it very closely resembles humans. Research has argued that too
much similarity between a robot and humans triggers concerns because it
blurs the boundaries between humans and robots, and thus a robot’s
appearance should not conflict with the humans’ “need for distinctiveness”
(Ferrari et al., 2016). Similarly, Strait et al. (2017) found that both category
ambiguity (difficulty in determining the category to which an entity belongs)
and feature atypicality (presence of features unusual for a robot’s category)
causes adverse reactions towards robots and discomfort in people.

Figure 1
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It becomes evident that while human-like characteristics in a robot can
positively impact human-robot interaction, however, robot designers are
encouraged to consider a robot’s role and to what degree that agent needs to
be human-like to serve its purpose in order to avoid undesirable responses
from users.

Trust

As with human-human interaction, trust between a robot and a human is

built over time with consistent social interactions (Cassell & Bickmore,

2003). However, errors made by a robot during an interaction will have
detrimental effects on trust (Robinette et al., 2017). In addition, errors that
are made earlier in the interactions cause a more significant drop in trust as
opposed to errors made later in the interactions (Desai et al., 2013). When
users are faced with robot errors, their trust will reduce accordingly to the
severity of the robots’ errors (Lee & Moray, 1992; Muir & Moray, 1996).
However, previous research has shown that anthropomorphic robots have the
ability to mitigate some of the adverse effects of errors compared to non-
anthropomorphic robots in that they are afforded greater trust resilience,
which refers to greater resistance to breakdown in trust (de Visser et al.,
2016). Moreover, anthropomorphic robots have the potential to enhance trust
within humans and towards themselves by showing behaviors of

vulnerability (Sebo et al., 2018; Traeger et al., 2020). While reducing the



number of errors or getting rid of errors altogether seem ideal, it is more
practical for robots to repair any trust broken by any errors.

According to Sebo et al. (2019), there are two types of trust repair
strategies that effectively repair the trust broken by a robot depending on
what type of trust violation framing has occurred: apology and denial. When
an agent violates the trust between the human and the agent through a
competence-based violation, which occurs due to the lack of technical and
interpersonal skill required for a job, apology works better than denial in
repairing trust. In contrast, denial works better than apology in repairing trust
when the trust is broken through an integrity-based violation, which refers to
trust broken intentionally by not adhering to a set of principles. It is noted
that participants who made reciprocal promises to an agent are naturally
more trusting of an agent, which indicates that an individual’s personality
characteristics play a role in whether an agent is trusted (Kim, 2004). Thus,
depending on what kind of errors are made, robots have options to repair the
trust caused by errors.

Basic Dimensions of Social Perception

Warmth and competence compose the two basic dimensions of social
perception put forth by the Stereotype Content Model (SCM; Fiske et al.,
2002). SCM posits that when individuals first meet others, they judge others

based on perceptions of warmth and competence to get a scope of their



intentions and capability. These judgments elicit four distinct emotional
responses resulting from combinations of high vs. low warmth and
competence: admiration (high warmth and competence), contempt (low
warmth and competence), envy (low warmth and high competence), and pity
(high warmth and low competence) (Cuddy et al., 2011; Fiske et al., 2002).
Each emotional response as proposed in the SCM is associated with two
behavioral tendencies, which are proposed in the Behaviors from Intergroup
Affect and Stereotypes (BIAS) map (Cuddy et al., 2007) (Figure 2). The
BIAS map made predictions of behavioral tendencies based on the
judgments of warmth and competence: active facilitation, active harm,
passive facilitation, and passive harm. Active components of the behavioral

tendencies are put along the warmth axis, while passive components are

Figure 2
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aligned along the competence axis. The active and passive components
describe the degree of intent to which an individual is willing to execute
helping behaviors or harming behaviors. The essence of the difference lies in
the explicitness of these behaviors. Active and passive facilitating behaviors
include assisting an individual with a task and merely associating with
someone, respectively. In contrast, active and passive harming behaviors
include verbal harassment and neglect, respectively.

Body Language

Human-Human Interaction (HHI). In social interactions, much of
what we verbally communicate is supported by nonverbal cues (i.e., gestures,
body language, voice tone, facial expressions). Body language, in particular,
acts as an intermediary between an individual’s emotions and the behavioral
outcome providing information about the producer’s emotional state and
their action intentions (Stock et al., 2007). For example, an individual faced
with confrontation assuming a defensive posture (i.e., clenching fists, teeth-
bearing) signals that he/she is angry and is ready to fight. Moreover, body
language facilitates the understanding of other individuals and make lasting
impressions on interpersonal relationships. Numbers of works have shown
that individuals who display open body language (i.e., expansive body
postures) are perceived more positively (e.g., dominant, open, warm, and

competent) in the workplace (Carney et al., 2005), romantic relationships



(Vacharkulksemsuk et al., 2016), and interpersonal relationships (McGinley
et al., 1975). On the other hand, those who display closed body language
(i.e., contractive body postures) are perceived as submissive, non-
empathetic, cold, and incompetent (Carli et al., 1995; Cuddy et al., 2007).
Furthermore, higher-status individuals naturally assume these expansive and
open postures more readily compared to lower-status individuals who adopt
contractive and closed postures (Carney et al., 2005).

Human-Robot Interaction (HRI). Working under the assumptions of
SCM and CASA, a robots’ first impression should also be based on its
perceived warmth and competence. Indeed, Mieczkowski et al. (2019) found
that people formed impressions of warmth and competence solely based on
robots’ physical characteristics. Furthermore, these impressions predicted
behavioral tendencies proposed by the BIAS map even though the
participants were only shown photographs of robots, and no interaction took
place. However, for robots with the limited ability to express emotions and
intentions through facial expressions, bodily expressions become particularly
important. Research has demonstrated that people interpret body language
displayed by robots in a similar manner as body language displayed by
humans (Beck et al., 2012; Johnson & Cuijpers, 2019; McColl & Nejat,
2014; Xu et al., 2014). In addition, past research regarding the use of body

language and gestures in Human-Robot Interaction (HRI) has shown that



using gestures can improve the likeability of a non-human intelligent agent
(Salem et al., 2013), communicate dominance (Li et al., 2019), and affect
judgments of trustworthiness (DeSteno et al., 2012).

Beyond simple gestures, non-human intelligent agents that synchronize
movements of a human interaction partner are perceived as more intelligent.
These effects persisted even when the movements were negatively
synchronized (doing the opposite movement of humans) compared to when
the agent did not move at all, which further demonstrates the importance of
using gestures to improve non-verbal communication (Lehmann et al.,
2015). Moreover, exhibiting these movement behaviors facilitates the human
propensity to ascribe intentions to agents. Furthermore, DeSteno et al. (2012)
showed that the partners’ trustworthiness is judged through non-verbal
signals (e.g., leaning away and crossing arms). Furthermore, the movement
characteristics of a robot influence how likable that robot is. Naturalistic
motion, resembling that of a human, is evaluated more likable than
mechanical motion regardless of the robot’s appearance (Castro-Gonzalez et
al., 2016). Law et al. (2020) showed that perceptions of emotion expressed
by robots through body language are not limited to humanoid robots,
extending results from previous studies to non-humanoid robots. The authors
further suggested that bodily expressions of emotions are related to

movements themselves and not the body morphology.

11



1.3. Purpose of Study

The current study investigated the role of robots’ body language
affects the perceived social qualities and human-likeness of NAO. In
specific, we measured social dimensions (warmth, likeability, perceived
intelligence, competence, discomfort), human-likeness (anthropomorphism,
animacy, and perceived safety). We conducted two online experiments to
investigate this purpose. The goal of the first experiment was to assess
whether body language alone affected the perceptions of social qualities and
human-likeness by manipulating its body expansiveness and contractive-
ness. The goal of the second experiment was to further explore the effect of
robot body language on the perceptions of social qualities and human-

likeness through social interactions.



Chapter 2. Experiment 1
2.1. Objective and Hypotheses
Experiment 1 aimed to explore the effects of body language alone on

the perception of social qualities of NAO. Based on previous research
findings from social psychology that suggest that open body language leads
to higher perceptions of warmth and competence (Carney et al., 2005;
McGinley et al., 1975; Vacharkulksemsuk et al., 2016). It was hypothesized
that robots that convey open body language are perceived as warmer and
more competent compared to robots that convey closed body language.
Given that likeability and perceived intelligence explain similar traits as
warmth and competence and that increasing the amplitude of gestures (i.e.,
spatial extension) leads to higher perceptions of anthropomorphism and
animacy (Deshmukh et al., 2018). It was further hypothesized that open body
language condition would be more anthropomorphized and perceived as
more likeable, animate, and intelligent compared to the closed body language
condition.
2.2 Method

Participants

Fifty-eight individuals (35 female, Muge = 22.02, SDyge= 2.12, range 18-

29) from the undergraduate participant pool from Seoul National University



who willingly agreed to participate were recruited. Participants were
compensated one participation credit for participating in the experiment.

Procedure

Once the participants signed up through the online participation system,
they were given a link to a website that contained a description of the
experiment, an online consent form, and a Google form that had two videos
containing a closed body (contractive) gesturing robot and an open body
(expansive) gesturing robot in random order and questionnaires. Each video
was approximately one minute long, which consisted of eight gestures and a
second pause with a black screen between each gesture: hello, pose,
question, suggestion, one-handed question, exclamation, yes, and no (Table
1). Prior to starting the experiment, participants were instructed to create an
optimal environment by removing any distractions and complete the
experiment in one sitting. Participants were to pay attention to the robot in
the video and were not informed of the true purpose of the study. In the
video, NAO was situated on a table facing forward to simulate a first-person
view. After viewing the video, participants completed the questionnaires that
assessed their perceptions of NAO and were asked post-questionnaire

interview questions.
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Table 1

Keyframes of body gestures in experiment [
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Table 1

Keyframes of body gestures in experiment 1 (Cont.)
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Materials and Measures

Softbank Robotic’s NAO was used in both experiments. NAO is a 58
cm tall bipedal humanoid robot with 25 DoF. It includes two cameras on the
forehead and mouth, four microphones and speakers, four sonar sensors,
seven touch sensors located on the head, hands, and feet (Figure 3). NAO is
one of the most commonly used robots in HRI research, including autism
(Tapus et al., 2012; Shamsuddin et al., 2012), emotional expression
(Alenlijung et al., 2017; Andreasson et al., 2018). The body movements
expressed by NAO were programmed through Softbank Robotics’ software
Choreographe (Softbank Robotics, 2015), a graphical programming tool that

houses a Linux-based operating system (OS) named NAOqi (Figure 4). A
Figure 3

Softbank Robotic's NAO and its specification.
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timeline function was used to enable the programmer to individually map out

specific movements by 25 frames per second (fps) to create gestures.

Figure 4

Choreographe environment

The Godspeed Questionnaire (Bartneck et al., 2009) was used to assess

the human-likeness of NAO. It is one of the most frequently used

questionnaires to assess perceptions of intelligent agents in HRI with over

160 citations as of October 2014 (Weiss & Bartneck, 2015). The 5-point

Likert scale questionnaire consists of 24 items with five subscales (Table 2).

The Korean version of the questionnaire was obtained through the author’s
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website. Also, it is noted that the last two items of the perceived safety were
reverse coded.

The Robotic Social Attributes Scale (RoSAS) (Carpinella et al., 2017)
was used to assess participants’ perceptions of social qualities of NAO.
RoSAS is a recently developed questionnaire with 18 items with three
subscales that measures the two fundamental dimensions in social perception
as posited by SCM and a dimension specific to HRI (Table 3).

Developing the measure considering evidence from social psychology, it
sought to solve and improve upon problematic features identified in the
Godspeed questionnaire. Its aim was “to offer a means to assess the central
attributes implicated in human perception of robots and ultimately, to
provide the robotic community with a tool to determine how perceived
attributes affect the quality of interaction with robots” (Carpinella et al.,
2017; p. 254). Despite recent development, many researchers have validated
and utilized the measure to capture perceptions of robots (Pan et al., 2018;
Sebo et al., 2019; Spatola et al., 2019; Stroessner & Benitez, 2019). To date,
Korean translations for the questionnaire have not been introduced; thus, the
items were translated and shown to the participants alongside the original
English items. Participants were asked to input their responses on a 7-point

Likert scale.



Table 2

Godspeed questionnaire sub-scales and its descriptions

Sub-scale Description

Anthropomorphism The degree to which the robot is attributed human-like

characteristics.
Animacy The degree to which the robot is perceived as being
alive.
Likeability The degree to which the robot is perceived as
pleasant.
Perceived The degree to which the robot and its behavior are
intelligence perceived as intelligent, competent, and smart.
Perceived safety The degree to which the interaction with the robot is

considered safe.

Table 3

Robotic Social Attributes Scale (RoSAS) sub-scales and its descriptions

Sub-scale Description
Warmth The degree to which the robot is perceived as social and
trustworthy.

Competence  The degree to which the robot is perceived as competent
and knowledgeable.

Discomfort The degree to which the robot is perceived as awkward.

20



Both measures, despite the partial overlap, capture unique aspects of
perception of robots and were utilized in the current study. Finally, a
question involving manipulation check judgments regarding the robot’s body

language (1 = Closed to 5 = Open) was included.

2.3. Results

Manipulation Check

Body openness and closed-ness manipulation check item was analyzed
using a within-subjects t-test. The analysis showed that the difference
between open body language (M=3.59, SD =1.03) and closed body language
(M=2.47, SD =1.13) was significant (t(57) = 5.52, p < 0.001, d = .72). This
suggests that the body language of NAO was significantly different between
open body language condition and closed body language condition.

Reliability

Cronbach’s alpha was calculated to measure the internal consistency of
the participants’ responses to both Robotics Social Attributes Scale (RoSAS)
and the Godspeed questionnaire. The 18 items in RoSAS with three
subscales produced sufficient levels of reliability, as well as the Godspeed
Questionnaire with 24 items with five subscales (Table 4). Results showed
that all of the measures, except for perceived safety, were at acceptable

levels.



Table 4

Internal consistency of measures between conditions

Measure Open body language Closed body language
o

Warmth (6 items) .84 .76
Competence (6 items) 78 81
Discomfort (6 items) .87 78
Anthropomorphism .87 81
(5 items)

Animacy (6 items) .83 78
Likeability (5 items) .87 79
Perceived Intelligence .82 .84
(5 items)

Perceived Safety (3 items) .61 75

Social qualities of NAO

To test whether NAO’s body language affected the participants’ social
perception of NAO (i.e., warmth, competence, and discomfort), a within-
subjects t-test was conducted. Consistent with the hypothesis, the results
showed that the NAO with open body language (M = 4.04, SD = 1.19) was
perceived as warmer compared to closed body language (M = 3.33, SD =
1.03), (1(57) =3.59, p <0.001, d = .47). Similar to results of perceived
warmth, open body language (M = 4.17, SD = .97) was perceived as more

1]
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competent compared to closed body language (M = 3.77, SD = .98), (#(57) =
2.81, p=.007, d =.37). However, the result of t-test for discomfort was not
significant (Figure 5).

Human-likeness of NAO

A within-subjects t-test revealed an effect of body language on
anthropomorphism (#57) = 2.83, p = .006, d = .37). Open body language (M
=2.61, SD = .82) was anthropomorphized more than closed body language
(M =2.25,8D =.76). As expected, open body language (M = 3.14, SD = .77)
was evaluated as more animate than closed body language (M = 2.53, SD
=.71) (#(57) =5.45, p <.001, d = .71). As with other results, body language
showed an significant effect on likeability (#57) =2.81, p =.007, d = .37),
with open body language (M = 3.44, SD = .81) being rated higher than closed
body language (M = 3.07, SD = .67) (Figure 6). Table 5 and 6 show that
likeability and warmth are positively correlated which suggests that
likeability subscale in the Godspeed questionnaire is related to one of the
two basic social dimensions measured by RoSAS. In addition, positive
correlations between perceived intelligence and competence suggest that it is

related to the other basic social dimension.



Table 5

Means, standard deviations, and correlations between variables in open

body language condition

Variable M SD 1 2 3 4 5 6 7

1.Anthropom 2.61 .82  —

-orphism

2. Animacy  3.15 .77 797 —

3. Likeability 3.44 .81 21 35" —

4. Perceived 3.06 .59 .20 .19 .19 —

Intelligence

5. Perceived 298 .70 =22 =23 11 39" —

Safety

6. Warmth 404 1.19 .64 68" 59" 13 -24 —

7. Competence 4.18 .97 .52 63" 457 62" 14 577 —

8. Discomfort 3.02 1.3 -.08 - 18 =797 -26°  -25 42" 30"
"p<.05 " p<.0l
Table 6
Means, standard deviations, and correlations between variables in closed
body language condition

Variable M SD 1 2 3 4 5 6 7

1.Anthropom 225 0.78 —

-orphism

2. Animacy 253 071 71 —

3. Likeability 3.07 0.67 32" 52" —

4. Perceived 2.92 0.56 23 25 35" —

Intelligence

5. Perceived 3.18 083 -24 -.19 30" 28" —

Safety

6. Warmth 333 1.03 70" 66" 497 357 .16 @ —

7. Competence 3.77 098 .38 557 567 637 17 577 —

8. Discomfort 2.93 0.95 -42" -51" -15 -.15 -09 -39 .29

"p<.05 " p<.0l.
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Figure 5

Mean scores of social qualities of NAO between body language conditions.
Error bars represent 95% confidence intervals.
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Figure 6

Mean scores of human-likeness of NAO between body language conditions.
Note: AP = Anthropomorphism, AN = Animacy, L = Likeability,

PI = Perceived Intelligence, PS = Perceived Safety. Error bars represent
95% confidence intervals.
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Qualitative results regarding expected functions (experiment 1)

Participants were asked, "what functions do you expect if social robots
were a part of your daily life?” after viewing the video and completing
questionnaires to gather information on whether what kinds of body
language might be required for a robot to successfully carry out a task or
social interaction. Seven participants chose not to give a response to this
question. Three categories were deducted from 51 responses: Service (N =
22), companion (N = 18), and conversational (N =11) (See Table 7 for
summary).

The service category was the most mentioned relative to other categories.
Responses regarding house chores (N = 11), daily schedule (N = 4),
information (N = 4), and other roles relating to service (N =3) were included
in this category. Many participants expected robots to unburden them from
daily activities like “cleaning and alarm functions because sophisticated
movements seem difficult so functions that ask the robot for simple actions.”
However, specific roles have been expected from robots: “Robots seem to be
able to do a given job well, but it will take more time to communicate
effectively compared to human-human interaction. It seems that the lack of
change in facial expressions seems to be both an advantage and a
disadvantage. I think it would be suitable for administrative work. If robots

are able to use more sophisticated language, and if they can express demands
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and expressions like humans, I can expect a function that plays an emotional
role,” and another mentioned “restaurant waiter” as an expected role of
robots.

Responses related to advice (N = 7), emotion (N = 5), friend (N = 4), and
loneliness (N = 2) were included in the companion category. This category
demanded a more intricate role from robots requiring empathy as a core
function. Most participants hoped for an interaction partner that goes beyond
simple conversations; they wanted someone to empathize with them and
have someone to talk to about private matters that they have trouble telling
others. For example, participants reported, “It would be nice to have an
emotional care function. In Korea, where suicide rate is still high, I thought
that if we could provide mental treatment through these robots, it would be
helpful to society as a whole”, “I think it would be good to have a
companion function in your free time or while you eat. It will be especially
good for the elderly. I'd like to have a function that understands my feelings
and make me feel better. For example, robots that know that I’m in a bad
mood or angry and teach me effective ways to calm down”, and “I want it to
be a friend who gives me strength. I hope it feels like a pet that listens to
concerns that I can't easily share with others and comforts me.”

Responses that contained the words “conversational partner” and

“conversation” (N = 7) and responses related to speech characteristics (N
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=4) were included in the conversational category. Apart from simple
conversation-related responses, the conversational category emphasized
natural-ness of speech and fluid and continuous conversations between
robots and humans. Participants expected “robots that take intonations and
accents into consideration while speaking” and stated that “it would be
fascinating if the interaction was so smooth that it made it seem like a real

conversation.”
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Table 7

Post-experiment interview regarding expected functions of robots

Theme N Sub-categories(NV) Example
Service 22 Chores (11) “I think I would make it run
errands when I'm alone.”

Schedule (4) “Wake me up in the
morning, take me home at
night.”

Information (4) “I hope it works in
conjunction with other
programs besides
KakaoTalk or the basic
performance of the robot.”

Other (3) “Waiter at a restaurant.”

Companion 18 Advice (7) “To comfort and sympathize

Emotion (5)

Friend (4)

Loneliness (2)

with me when I talk about
my hardships.”

“Show a variety of
emotional reactions when [
say simple things or show
actions.”

“I would want a robot that
can communicate, share our
daily lives together, and
give me reminders like a
secretary and a friend.”
“Listen to my stories and
respond to me, recommend
songs, and make me feel
like I'm with someone when

I feel really lonely.”
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Table 7

Post-experiment interview regarding expected functions of robots (cont.)

Theme N Sub-categories(NV) Example
Conversational 11  Conversational “I hope it is a robot that
partner (7)

can have daily
conversations and access
various information such
as weather and news.”
Speech (4) “I hope it makes fewer
mechanical sounds, has a
variety of expressions and
can express itself through
text as well. I hope it's
made of cushion material
rather than hard
mechanical material.”
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2.4. Discussion

The results of the experiment suggest that gestures that convey
certain body language alone affect the perception of social qualities and
human-likeness of NAO. Building upon Mieczkowski et al. (2019) research,
the current study provides evidence that people form robots’ impressions of
warmth and competence similar to forming impressions of other individuals.
Another goal of this study was to assess whether the different body language
affected the perception of human-likeness of NAO. While there was a
significant difference between anthropomorphism, animacy, likeability, no
significant difference was observed in perceived intelligence and perceived
safety. Higher animacy scores in the open body condition can be attributed to
the expansiveness of gestures (Deshmukh et al., 2018), and because the
likeability scores are linked to a social dimension; it can be interpreted with
caution that the “inherent quality” of the robot was not affected by the body
language. However, participants tended to anthropomorphize the open body
language condition more, which is not a social dimension. Deshmukh et al.
(2018) suggested that movements in lower amplitude and speed are less
similar to human movements, which caused movements higher in amplitude
and speed to be rated higher on anthropomorphism. Interestingly, despite
positive correlations between competence and perceived intelligence, no

significant difference between body language conditions was found in



perceived intelligence. Through qualitative data, we were able to extract
three categories of robots that people desire in the future when robots are in
daily use. It seems necessary for robots to convey more than just simple
emotions to accomplish a successful HRI in all of those categories. For
example, those who expect robots to act as a companion look for empathy
and complex emotional responses. Robots in the field today are capable of
expressing range of emotions, however, the propensity to create robots that
behave positively due to matching the demand of service roles such as
personal assistants have led to less suitability of robots expressing emotions
that show signs of uncertainty, disapproval, and discomfort. However, those
individuals who are willing to self-disclose personal thoughts and concerns
are often discussing negative matters. If a robot was to show signs of
happiness and excitement, it would not be a proper response to the situation,
which would lead the user to believe that the robot is not socially present or
not able to empathize with the user. A proper response of robots, then, would
be to show signs of discomfort or concern (i.e., arms crossed, leaning
forward). Thus, robots would benefit from being able to express a more
diverse range of body movements.

In experiment 2, we further investigate findings from experiment 1
and explore whether participants’ personality might play a role in the

perception of robots based on robot body language. Lee et al. (2006) found
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complementary attraction effects in HRI; specifically, participants had higher
evaluations of interactions when the robot’s personality was the opposite of
their own personality compared to when they interacted with a robot with a
similar personality. Joosse et al. (2013) found the opposite effect, although
not statistically significant, that extroverted participants tend to trust an
extroverted robot if the robot’s task demands an outgoing personality (i.e.,
tour guide). Their research manipulated the amplitude, speed and frequency
of body movements, pitch and volume of voice, and rate of speech.
However, the participants’ perception of the robot might have been more
biased towards the task context in which they were geared towards a more
functional context rather than in a social context. An individual’s judgments
of a robots’ impression vary depending on the context in which the robot is
situated, and thus differ in social interactions compared to in functional
context and viewing gestures alone (Wang & Krumhuber, 2018). Taking
previous literature into consider, we aimed to further explore our findings

through social interaction in experiment 2.
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Chapter 3. Experiment 2
3.1. Objective and Hypotheses

The main objective of experiment 2 was to replicate the findings
from experiment 1 and applying the same body language to social
interaction. Although gestures conveying a certain body language shows that
it affects the way NAO is perceived, it does not seem fully convincing,
considering that no interaction took place. To further demonstrate that body
language affects perceptions of social qualities and human-likeness, we
applied the gestures from experiment 1 to a more natural social setting.

In experiment 2, the hypothesis was similar to the one’s made in
experiment 1 in that open body language condition would be evaluated
higher in perceptions of warmth, competence, anthropomorphism, animacy,
likeability, and perceived intelligence compared to the closed body language
condition and the static condition. It further was hypothesized that closed
body language condition would be rated higher in perceptions of warmth,
competence, anthropomorphism, likeability, and perceived intelligence
compared to the static condition. In addition, previous research came up with
mixed results on whether users prefer a robot that is similar to one’s own
personality or the opposite (Craenen et al., 2018; Joosse et al., 2013; Lee et
al., 2006). Some have found complementary effects of personality, while

some found the opposite. Craenen et al. (2018) tested whether a robot’s
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gestures have any correlation with the Big-Five Inventory and found both
similarity attraction and complementary attraction applied. However, the
results suggested that the similarity attraction had a stronger correlation. In
line with the previous research, it was hypothesized that participants high in
extraversion would show a preference for NAO with open body language,
and those low in extraversion would show a preference for NAO with closed

body language condition.

3.2 Method

Participants

One-hundred nineteen individuals (52 female, Mage = 20.43, SDage = 1.92,
range 18-26) from the undergraduate participant pool from Seoul National
University who willingly agreed to participate were recruited. Participants
were randomly assigned to either open body language (N = 34), closed body
language (N = 42), or static condition (N = 45). Participants were
compensated one participation credit for participating in the experiment.

Procedure

The procedure for experiment 2 closely mirrored experiment 1 in that
participants were to view a video and then rate their perception of NAO. The
primary difference was the inclusion of no body language condition on top

of closed, and open body language conditions. The videos in experiment 2



entailed a full social interaction between a person and NAO with dialogues.
In addition, participants’ personality was measured before viewing the video
to probe whether participants’ personality correlated with increased
preference for a certain body language. Prior to starting the experiment,
participants were instructed to create an optimal environment by removing
any distractions and complete the experiment in one sitting. Participants
were to pay attention to the robot in the video and were not informed of the
true purpose of the study. In the video, NAO was situated on a low table to
match the eye level of the seated person (Figure 7). In contrast to experiment
1, the legs of NAO were fixed in its natural position in experiment 2 due to
the nature of NAO shifting unwantedly from contracting its legs back and
forth. Thus, the body language was limited to the torso.

The interaction consisted of the following: a game of charades (i.e.,
acting out an elephant, gorilla, and mouse) followed by a question answering
then a picture taking session which resulted in 5-minute videos. During the
question answering portion of the interaction, NAO produced one to two
gestures per question and replied depending on the length of the sentence. In
the picture taking session, NAO posed in an expansive way (i.e., hand raised
above its shoulder and arms positioned apart from its torso) or in a

contractive way (i.e., hand below the shoulder and arms close to its torso).
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After viewing the video, participants completed questionnaires that assessed
their perceptions of NAO.

Figure 5

Experiment 2 video example

Materials and Measures
The questionnaires included the Godspeed questionnaire (Bartneck et
al., 2009) and the Robotic Social Attributes Scale (RoSAS) (Carpinella et al.,
2017). In experiment 2, participants’ personalities were measure by the Big
Five Inventory-Korean Version (BFI-K) (Kim et al., 2010). Seven items
included in the BFI-K were changed due to some items being inappropriately
translated from the original; the changes made in the scale are noted in the

appendix.
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3.3. Results

Manipulation Check

Three body openness and closedness manipulation check items wer
analyzed using a one-way ANOVA. The analysis showed that the difference
between open body language (M = 4.00, SD = .73), closed body language (M
=3.72, 8D = .85), and static (M = 3.55, SD = .68) conditions were significant
(F(2,116) =3.48, p = 0.03). The result suggest that the manipulations of the
body language were successful.

Social qualities of NAO

A one-way between-subjects ANOVA was conducted to compare the
effects of body language on perceptions of social qualities of NAO. Results
revealed no significant differences of social qualities of NAO across body
language conditions: warmth (F(2,116) = .24, p =.79), competence
(F(2,116) = .09, p=.91), likeability (F(2,116) = .49, p =.62), perceived
intelligence (F(2,116) = .55, p =.58), and discomfort (F(2,116) = .28, p
=.76). Results are summarized in table 8 and figure 8. Hypothesis that
NAO’s body language would significantly affect perceptions of social

qualities was not supported.



Human-likeness of NAO

A one-way between-subjects ANOVA was conducted to compare the
effects of body language on perceptions of human-likeness of NAO. Results
revealed no significant differences in perception of human-likeness across
body language conditions: anthropomorphism (£(2,116) = 1.31, p =.28),
animacy (F(2,116) =.09, p =.91), and perceived safety (F(2,116) =2.71, p
=.07). Results are summarized in table 9 and figure 9. The hypothesis that
NAOQO’s body language would significantly affect perceptions of human-

likeness was not supported.
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Table 8

Means, standard deviations, and one-way analyses of variance in social

qualities

Measure Open Closed Static F n?

(2, 116)
M sOb M SD M SD

Warmth 4.04 1.15 4.09 1.15 420 .95 24 .004
Competence  5.38 74 511 1.12 536 .86 .09 .001
Discomfort 2.43 1.01 242 1.06 233 .93 .28 .004
Figure 6

Mean scores of social qualities of NAO across body language conditions. Error

bars represent 95% confidence intervals.
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Table 9

Means, standard deviations, and one-way analyses of variance in human-

likeness
Measure Open Closed Static £ n?
(2, 116)
M SD M SD M SD

Anthropomorphism 2.47 .71 254 .74 272 .79 1.31 .02
Animacy 324 64 320 .75 317 .69 .09 .002
Likeabilty 3.80 .79 3.79 92 395 .64 49 .008
Perceived 352 71 371 86 3.62 .68 0.55  .009
Intelligence

Perceived Safety 381 58 396 .66 3.64 .67 2.71 .04

Figure 7

Mean scores of human-likeness of NAO. Note: AP = Anthropomorphism, AN
= Animacy, L = Likeability, Pl = Perceived Intelligence, PS = Perceived
Safety. Error bars represent 95% confidence intervals.
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Personality

A multiple regression analysis was conducted to test whether
personality traits significantly predicted social qualities of NAO. To test this
hypothesis, warmth, competence, likeability and perceived intelligence
measures were tested separately between conditions. The results for warmth
were not significant across conditions: open body language condition (R?
=.02, F(5,28) = .14, p = n.s.), closed body language conditions (R*> = .11, F
(5,35) = .83, p = n.s.), and static condition (R? = .14, F (5,37)=1.28,p =
n.s.) (Table 10). Regression analysis for competence also showed no
significant across conditions: open body language (R> = .21, F (5,28) = 1.45,
p =n.s.), closed body language (R> = .12, F (5,35) = .95, p = n.s.), and static
(R?=.13,F (5,37)=1.09, p = n.s.) (Table 11).

Regression analysis for likeability also showed no significant across
conditions: open body language (R*> = .14, F (5,28) = .93, p = n.s.), closed
body language (R*> = .14, F (5,35) = 1.12, p = n.s.), and static (R*> = .16, F
(5,37) = 1.45, p =n.s.) (Table 12). Finally, regression analysis for perceived
intelligence showed no significant across conditions: open body language (R*
= .14, F (5,28) = .89, p = n.s.), closed body language (R*> = .09, F (5,35)
=.70, p =n.s.), and static (R*> = .09, F (5,37) = .77, p = n.s.) (Table 13).
Results suggest that personality measures do not predict perceptions of social

qualities of NAO. Hypothesis that participants high in extraversion would



show a preference for NAO with open body language, and those low in

extraversion would show a preference for NAO with closed body language

condition was not supported.

Table 10
Regression analysis for warmth across conditions
Open Closed Static

Measure B SE p » B 7SE p D B SE p P
Extraversion 31 R 5 02 B B8 MU 25 M 14 17
Agreeableness 15 o g1 ug 33 54 158 2 26 27 151 4
Conscientious
-ness 06 37 3 T -04 36 -2 8 -05 26 271 1
Openness to 03 35 -3 19 25 104 31 19 20 117 25
Experience
Neuroticism oM 34 2 ® 26 M8 9B -15 23 -9 34
Table 11
Regression analysis for competence across conditions
Measure Open Closed Static

s SE t p p SE t p p SE t p
Extraversion ) 10 9 49 .19 38 -2 37 31 29 471 10
Agreeableness o o 0 o n 4 157 B3 2 24 10 10
Conscientious
-ness 19 21 104 31 14 31 70 49 14 2 8 &
Openness to 34 164 11 14 2 8 4 B I8 4 o
Experience
Neuroticism 13 7149 0 @ 9 05 20 30 76
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Table 12

Regression analysis for likeability across conditions

Open Closed Static

Measure — .

p SE t p p SE t p p SE t P
Extraversion 23020 123 23 -09 34 45 65 3 2 186
Agreeableness A5 39 4 46 4 109 29 19 18 113 27
Conscientiousness .17 24 8 38 02 29 13 9 -27 17 -l6l 12
Openness to 2 2 5509 04 20 20 &% 25 419 12
Experience
Neuroticism 3 2 67 51 35 21 24 05 -16 16 -14 31

Table 13
Regression analysis of perceived intelligence across conditions
Open Closed Static

Measure — —_— T

p SE ¢t p p SE t p p SE t p
Extraversion 26 18 -140 17 -21 33 -97 34 -21 3 -9 H4
Agreeableness 4 35 71 49 26 4 125 2 26 A4 125 22
Conscientiousness .15 21 a4 16 27 &0 43 16 27 0 A
Openness to B 20 12 o9 B 1 ? A&/ B IO R M
Experience
Neuroticism -7 20 -8 40 05 20 30 J6 05 20 30 76
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Qualitative results regarding expected functions (experiment 2)

Participants were asked, "what functions do you expect if social robots
were a part of your daily life?” after viewing the video and completing
questionnaires to gather information on whether what kinds of body
language might be required for a robot to successfully carry out a task or
social interaction. Seven participants chose not to give a response to this
question. Four categories were deducted from 119 responses: Service (N =
76), companion (N = 9), conversational (N = 32), and other (N = 2) (See
Table 14 for summary).

The majority of the responses were included in the service category.
Responses regarding house chores (N = 14), daily schedule (N = 40), and
information (N = 22) were included in this category. Most participants in this
group expected robots to simplify daily tasks. For example, a participant
mentioned, “I look forward to functions that help people in their daily lives,
such as telling them what they forgot and didn't do.” Most of the functions
mentioned in this category are already available, but participants expected
higher functionality and automation. Participants in this group perceived
robots as tools rather than interaction partners.

Responses related to advice (N = 2), loneliness, and depression (N = 7)
were included in the companion category. Again, this category demanded a

more intricate role from robots requiring empathy as a core function. For



example, a participant reported “I think it can be a friend of the elderly or
children who live alone. It would be more useful for natural interactions than
for information delivery.” Most of the participants expected robots to be a
companion for people who lived alone or were sick.

The conversational category (N = 32) was not divided into smaller
categories because most of the responses fell into a similar category. An
overwhelming number of responses in the conversational category
emphasized natural-ness of conversation. Participants in this category also
expected “casual” conversations with robots. Responses included: “To chat
and play with me when I’m bored”; “I think it could play simple games, tell
a funny story, or have conversations”; “I think small talk to pass the time
when I’'m really bored would be good.”

Two responses were classified into the other category. These two
responses were: “I don't think I can trust robots yet” and “I wish to see more

fluency in their movements and the voices they make while moving.”
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Table 14

Post-experiment interview regarding expected functions from experiment 2

Theme N Sub-categories(N) Example

Service 76 ~ Chores (14) “I can expect simple

physical work based on
voice recognition.
Bringing delivery food
and drinks to me”

Schedule (40) “I expect scheduling and
alarm functions. I don't
think I’1l expect much of
the chat function.”

Information (22) “I'd like to leave business-
related matters to robots.
At least it’ll be more
accurate than me, but I
don't want to talk about
emotional stories, worries,
etc. I don't want to feel
that I'm being recognized
and loved by non-human
beings.”

Companion 9 Advice (2) “I hope it acts as a friend
who tries to go through
worries and problems
together, not just giving
an answer. The robot asks
a lot of questions, so |
think it can come up with
good solutions.”
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Table 14

Post-experiment interview regarding expected functions from experiment 2
(cont.)

Theme N  Sub-categories(N)

Companion 9  Loneliness (7) “I think it can be a friend
for the elderly or children
who live alone. It would
be more useful for natural
interactions than for
information delivery.”

Conversational 32 N/A “Natural and creative
conversations.”

“a casual conversation,
not just positive.”

Other 2 N/A “I don’t think I can trust
robots yet.”

Qualitative results regarding expected roles

When asked, “what roles do you expect if social robots were a part of
your daily life?” 76 participants answered secretary, 30 answered friend or
conversation partner, and 13 mentioned roles such as manager, industry, and
guide (Figure 10). This suggests that participants mostly see robots as a
means to make tasks easier, which corresponds to the responses gathered
from the question regarding expected functions. However, participants also

expect robots to act as social partners that they can share their lives and
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worries with. In particular, participants expect that robots can aid in people
who are living alone and/or feel lonely. As of today, smart speakers are
assuming these roles as friends or social partners. But we expect that
physically embodied robots that convey complex emotions, attitudes, and
intentions through body language will bring more satisfaction to those who

are currently utilizing smart speakers.

Figure 8

Post-experiment interview regarding expected roles of robots
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3.4. Discussion

The effects present in experiment 1 did not carry over to experiment
2, where social interaction took place in the video. This suggests that
other factors other than body language play significant roles in
perceptions of social qualities and human-likeness during social
interactions. Furthermore, while previous research has found evidence
for both similarity attraction and complementary attraction effect, the
present study did not show any patterns for such effects. We raise several
concerns and offer several possible explanations as to why the results
were not significant. In experiment 2, the video consisted of a continuous
interaction that lasted approximately 5-minutes, and because the
contracting motion of the legs in the closed body language movements
caused NAO to shift around unwantedly, which may cause safety hazards
to the robot and the individual in the video, the manipulations were
limited to the torso only. This change in experiment 2, thus, enabled
NAO to convey its movements through arm articulations, which mostly
varied in amplitudes (i.e., raising its arms, contractive gesture through
arms close to the body), which could have affected the results. Also, the
static condition stayed mostly constant throughout the interaction;
however, it also contained the game of charades, which consisted of sets

of highly articulated movements provided by the robot manufacturer.
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Consequently, this could have resulted in participants relying heavily on
judgments based on those movements during the questionnaire portion of
the experiment.

Furthermore, in the post-experiment interview questions, several
participants stated that the interaction seemed scripted and seemed aware
that NAO was pre-programmed to execute what was intended. This could
have caused the perceptions of social qualities and human-likeness to be
similar across conditions because NAO was seen as a robot serving its
purpose rather than a socially intelligent robot. Nonetheless, the
qualitative data provided several insights into what roles and functions
are expected to fill, which yielded valuable information regarding what
sorts of body language should be considered when developing robots.
People still mostly expected robots to take on roles that are more task-
oriented like secretaries or managers. Normally, people who serve these
roles are often perceived as calm and collected. Thus, body language that
conveys excitement or disapproval would not be helpful to robots that
assume these roles. Rather, it would be more socially appropriate for
these robots to convey warmth and competence through a more subtle

body language.
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Chapter 4. Conclusion
In experiment 1, we manipulated the gestures of NAO to either

convey open body language and closed body language. It was hypothesized

that robots that convey open body language are perceived as warmer and
more competent, anthropomorphized, likeable, animate, and intelligent
compared to robots that convey closed body language. Results showed that
the hypothesis was supported. Furthermore, three categories of expected
functions were identified from the qualitative data in experiment 1: Service,
companion, and conversational. Among these categories, service functions
were most expected from participants followed by companion and then
conversational. All three categories seem to encourage robot developers to
recognize a richer range of movements to allow robots to express diverse
attitudes, emotions, and intentions for a better HRI.

In experiment 2, we used the gestures from experiment 1 and applied
it to a social interaction with the addition of a static condition, which did not
convey any body language. It was hypothesized that robots that interact with
open body language are perceived as warmer and more competent,
anthropomorphized, likeable, animate, and intelligent compared to robots
that interact with closed body language. The same was hypothesized for
robots that interacted with closed body language compared to robots that did

not convey any body language. Furthermore, it was hypothesized that
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participants high in extraversion would rate NAO with open body language
higher on social qualities and human-likeness, and those low in extraversion
would rate NAO with closed body language higher on these dimensions. The
hypotheses were not supported. Social qualities perceptions of NAO did not
change between the conditions.

The results of experiment 1 suggest that a robot’s body language
significantly affects social qualities and human-likeness perceptions of a
robot. The qualitative data showed that participants expected robots to take
on more interactive roles, such as a conversational partner, companion, and
service roles. This suggests that empathy is a crucial component in robots,
which implicates a more diverse range of movements to fulfill such signs of
empathy. The results of experiment 2 suggest that body language requires the
incorporation of the whole body to fully exert its effect during social
interactions. Moreover, other factors, such as a robot’s voice play a
significant role in perceptions of social qualities and humanlike-ness in a

robot.
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Chapter 5. General Discussion

The current research explored how a robot’s body language affected
its perceptions of social qualities and human-likeness. It is noted that in
experiment 1, apart from head nodding and shaking, the torso and legs were
manipulated in this study, while only the torso was manipulated in
experiment 2. The results seem to suggest that body language does indeed
play a significant role in perceptions of social qualities and human-likeness.
Experiment 1 confirmed that robots that convey gestures with an open body
language are rated higher on social qualities and human-likeness compared
to robots that convey gestures with a closed body language. However, these
effects were only present when the body language incorporated the body, and
when no social interaction was present. This seems to suggest that other
factors such as voice (Song et al., 2020), eye gaze (Pereira et al., 2014), and
head positions (Knight & Simmons, 2016) might override the effects that
body language may have.

With current technological advancements, robots are expected to
displace 20 million manufacturing jobs by 2030 and further stated that
service robots are gaining popularity and jobs are being automated. (Oxford
Economics, 2019). However, they also stated that it would take some time
for robots to replace humans for occupations that demand compassion,

creativity, and social intelligence. One of the major blockades in this



endeavor is the limited expressiveness of these robots. Endowing robots with
social intelligence may seem far in the future, but recent progress seems to
indicate that it is not so far from the future with researchers introducing
computational methods to predict nonverbal social signals to endow robots
with “social artificial intelligence.” This research seeks to further improve
non-verbal communication between humans and non-human intelligent
agents by introducing new datasets and research tasks (Joo et al., 2019).
Furthermore, past research has already developed affect detection from body
language, which estimates body pose and identify affect from them (McColl,
& Nejat, 2012).

As of now, smart speakers are the most prevalent in the area of
personal assistants with 60 million individuals owning a smart speaker in the
U.S. (NPR & Edison Research, 2020). With advancements in robotics and
trends leaning towards automation, more robots will appear in individuals’
homes carrying out a wider variety of tasks. Single-person households or the
elderly experiencing loneliness could benefit from interacting with robots,
which is afforded greater social presence than the non-physically embodied
artificial intelligent robots. In addition, robots have the potential to make
daily tasks easier for individuals by utilizing the benefits from physical
embodiment. Achieving natural HRI is half-way accomplished with robots

being able to detect and predict emotions and actions from body language.
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Robots could now benefit from how to respond to those stimuli in a socially
appropriate manner. Discovering further insights into how nonverbal
communication methods affect perceptions of compassion, creativity, and
social intelligence will determine how fast and successful the integration of

robots in our daily lives would be.

5.1. Limitations and Future Works

The main limitation of the current study was that experiments were
conducted online. The effects present in the current study may be amplified
or reduced depending on the environment the experiment took place in.
While video-based methods provide easier means of collecting data and are
useful in informing researchers regarding prototyping, testing, and
developing successful HRI (Woods et al., 2006), a number of research have
shown that HRI with physically present robots offer multiple advantages
over video displayed robots. One of the main concerns is regarding the level
of engagement of the participants, Kidd & Breazeal (2004) showed that
participants showed higher levels of engagement and higher evaluations of
robots compared to animated robots. On a similar note, interactions with
physically present robots are rated more positively and afforded greater
social presence, trust, and compliance (Bainbridge et al., 2011; Wainer et al.,
2006). Since the current study employed video-based methods, participants

might not have been fully engaged throughout the 5-minute HRI video in
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experiment 2, which could have impacted the results. Furthermore, post-
experiment interview data seems to indicate that some participants were
aware that NAO was only behaving a certain way because of the
programming. This suggests that video-based methods are not adequate for
evaluating perceptions of robots.

Another point of concern is the inherent limitation of the robot in
expressing and conveying proper body language due to its DoF. NAO
features 21 DoF which controls its range of motion, and it is certainly
sufficient for expressing basic emotions and intentions. However, it is better
suited toward expansive gestures rather than contractive gestures. For
example, it might benefit NAO to show signs of modesty or timidity during
first time interactions and adapt a more closed body language (i.e., legs
together and arms crossed) to show those attitudes. However, NAO is not
able to cross its arms or legs, which limits that ability. Although it is counter-
intuitive to design robots that show negative emotions, it is becoming
important for robots to express their own intentions and emotions for their
own sake (Brsci¢ et al., 2015; Connolly, 2020) as they become more
automated and related robotic technologies become more advanced.

Future works are encouraged to conduct in-person experiments to
further investigate the effects of robots’ body language on perceptions of the

robots in in-person laboratory settings and in-the-wild environments (Jung &
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Hinds, 2018). Moreover, while initial research on applying SCM and BIAS
map to social robots saw promising results (Mieczkowski et al., 2019), future
works exploring the effects that body language has on social perceptions as
proposed by the SCM and the consequent behavioral tendencies predicted by
the BIAS map could provide further insights on whether the models are fully

generalizable to robots.

5.3. Research Implications

Our findings demonstrate the importance of a robot’s body language
in perceptions of social qualities and human-likeness in a robot. These
qualities are relevant as being perceived as socially warm and competent
determines how users will feel and, consequently, behave towards the robot.
Perception of social qualities and human-likeness become particularly
important for first time interactions as initial impressions of a robot
determine the quality of the relationship in the long run. Robots that convey
proper body language in certain social situations will leave impressions of
social intelligence, which encourages humans to build intimate and trusting
relationships with robots. While measures of social qualities and human-
likeness favor robots that convey open body language, users expect robots to
alleviate feelings of loneliness and empathize with them. In these situations,
it is necessary for robots to express feelings of discomfort and sympathy,

which at times require contractive gestures (e.g., arms and legs crossed, head
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down, subtle gestures). Our findings show that one-dimensional gesture
expressions are not sufficient for successful integration of robots. The
current research provides useful evidence that contributes to answering the
question of “how to apply socially appropriate behaviors to robots and how

will that be perceived to users?”

5.2. Design Implications

Robotic technologies provide precise movements, which offer the
benefits of delivering accurate body gestures that leave less room for
misinterpretation. The use of this quality in robots can bring tremendous
benefits to research that seeks to pick apart bodily movements, gestures, and
its effects on perception compared to using human stimuli, which,
admittedly, is harder to manipulate. However, the inherent capabilities of
robots provided by the number of actuators, and sensors, limit the range of
possible movements, which affect the expressivity of intended meaning
behind the movements. With current trends of robots leaning towards roles
that are less task-oriented, its ability to communicate nonverbally is
becoming essential for a more gracious HRI. Robots with higher DoF are
afforded greater capabilities to express emotions and intentions, which utilize
the full potential of the precise movements’ robots offer. Furthermore,

participants are more likely to consider robots with higher DoF a more
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human-like communication partner as evidenced by addressing the robot by
its name more frequently and using understanding checks (Fischer et al.,
2012). By making robots capable of using dynamic range of motion, users
will perceive them as socially intelligent, which will enhance long-term

relationships between humans and robots.
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Appendix
Appendix 1: Robotic Social Attributes Scale (RoSAS) (Carpinella et al., 2017)
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Appendix 2: Godspeed Questionnaire (Bartneck et al., 2009)
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Appendix 3: Big Five Inventory-Korean Version (BFI-K) (Kim et al., 2010)
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