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ABSTRACT

Metabolomic and Genetic Signatures for the

Effects of Weight Loss Interventions on

Severe Obesity in Children and Adolescents

Min Ji Sohn

Department of Clinical Medical Sciences

The Graduate School

Seoul National University

Objective:

Childhood obesity has increased worldwide, and many clinical and

public interventions have attempted to reduce morbidities. However,

there are no reliable biomarkers to identify high-risk groups or good

response groups to specific interventions. This study aimed to

determine the metabolomic and genetic signatures associated with

weight control interventions in obese children.

Methods:

Forty obese children from the "Intervention for Children and

Adolescent Obesity via Activity and Nutrition (ICAAN)" cohort were

selected according to intervention responses. Based on changes in

BMI (body mass index) z-scores, half of the children were

responders (n=20), and the others were non-responders (n=20).



- ii -

Physiological data and blood samples were collected at baseline, and

after 6 and 18 months of intervention. A total of 120 samples were

collected, and the metabolites of serum samples were quantitatively

analyzed using CE-TOFMS (capillary electrophoresis time of-flight

mass spectrometry). We performed a secondary analysis using the

Metaboanalyst™ program to build a relevant metabolite and molecular

genetic network for significant metabolites. For genomic analysis, the

genome list obtained from GWAS (genome-wide association study)

data and a literature review with IPA (ingenuity pathway analysis)

were compared in 123 subjects in the intervention study.

Results:

A total of 194 metabolites in 120 samples were detected based on an

HMT (human metabolome technologies) standard library. Nine

metabolites (1-or 3-Methylhistidine, 3-Hydroxypropionic acid, 8- or

2-Hydroxyoctanoic acid-1, alanine, aspartic acid, cystine,

indole-3-acetic acid, N-acetylalanine, and tyrosine) showed significant

changes at 18 months from baseline in responders and

non-responders (p<0.05). After reanalyzing the data using the

Metaboanalyst program, 13 metabolites (1-Methyl-4-imidazoleacetic

acid, 10-Hydroxydecanoic acid, 3-Indoxylsulfuric acid, 2- or

8-Hydroxyoctanoic acid-2, allo-threonine, azelaic acid, disulfiram,

indole-3-acetic acid, N-Acetyllysine-1 or -2, N-acetylornithine,

succinic acid, and XC0065) showed significant differences between

responders and non-responders at baseline (p<0.05), and six

metabolites (2-oxooctanoic acid, glucose, isocitric acid, lauric acid,

sulfotyrosine, and XC0126) showed significant differences between

baseline and 6months samples in responders and non-responders

(p<0.05). In addition, nine metabolites (1- or 3-Methylhistidine,
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alanine, aspartic acid, cystine, glycocholic acid, homovanillic acid,

piperidine, sulfotyrosine, and tyrosine) showed significant changes

between baseline and 18 months in responders and non-responders

(p<0.05). After 18 months of intervention, 63 metabolites showed

significant differences regardless of response (FDR (false discovery

rate) -adjusted p-value <0.05). Combining the results of the above

analyses, alanine, aspartic acid, and cystine were significantly changed

by the intervention after 18 months. We also selected genomic

indicators by analyzing the key literature and analyzing metabolite

networks. As a result, significant p-values were observed in IRS1

rs2943641 and FAIM2 rs7138803 in the GWAS of the extended 123

intervention study subjects.

Conclusions:

Our study showed significantly different metabolomic profiles for

alanine, aspartic acid, and cystine in responder and non-responder

groups after 18 months, according to the interventions. In addition,

various analytical methods and validations were attempted to select

metabolites showing differences between the two groups at each time

point. We also performed an integrated analysis of metabolomic and

genomic results, and as a result, we found that IRS1 rs2943641 and

FAIM2 rs7138803 were associated with intervention effect in obesity.

This result calls for further research on biomarkers related to specific

treatments or interventions in a larger group of obese children. It can

also be used as a predictor of the effects of obesity interventions.

.........................................................................................................................................
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INTRODUCTION

The prevalence of childhood obesity has increased worldwide1. Child

and adolescent obesity rate in some countries exceeded 30%.

According to statistics published by the Korean Ministry of

Education, the Korean obesity rate in 2018 also reached 25%.

Childhood and adolescent obesity are related to anthropometric and

metabolic changes such as metabolic syndrome, including

dyslipidemia, hypertension, and insulin resistance2. Adolescent obesity

is associated with several cancers and cardiovascular disease in

adulthood3,4. Thus, obesity is a severe health problem, and exacts

social and economic costs.

Obesity is caused by various complex factors, of which genetic and

epigenetic factors are the major causes. These factors affect the

lipiodome, metabolome, and proteome, and various omics studies have

investigated the causes of obesity5. Knowing the cause and risk

factors of obesity is important not only for understanding

pathogenesis but also for finding effective personalized treatment.

Metabolomics is an advanced analysis technique and data processing

tool that uses many metabolites in human tissues or biofluids.

Metabolites are small molecules, substrates, intermediates, and

end-products of cellular regulatory processes, which play important

roles in cellular and physiological energetics, structure, and signaling6.

The concept of the metabotype is based on cluster analysis, where

individuals with similar metabolite patterns are grouped in clusters.

Metabotyping is set to play a key role in the development and

delivery of personalized nutrition7. Therefore, metabotyping of obese



- 2 -

patients will play an essential role in developing a new understanding

and treatment of obesity.

As obesity rates increased, metabolic studies that reveal

metabolomic signatures of obese patients and study metabolic changes

such as inflammation or oxidative stress associated with obesity are

increasing8. However, few studies have investigated childhood obesity,

especially those involving weight loss interventions9-13. The

prepubertal obese children study reported that urine trimethylamine

N-oxide (TMAO) decreased after lifestyle intervention. Of the 32

identified metabolites, xanthosine, 3-hydroxyisovalerate, and

dimethylglycine were altered following intervention14. In the other

overweight adolescent study, after an eight-week exercise program,

the urine concentrations of pantothenic acid, glyceric acid, l-ascorbic,

xanthine, and adenosine were increased compared to the normal

weight group15.

Genetic factor studies in obesity have been performed in various

ethnic groups, ages, and genomic variation associated with

interventional effects16-18. The effect of obesity gene variability on

weight change is only 2.4%, and only 1.6% when correcting for age,

sex, and initial weight19. Thus, obesity is affected by multifactorial

traits and -omics studies that combine genetic and metabolomic

causes are critical. However, no integrated -omics study of weight

loss effects in childhood obesity exists.

This study analyzed metabolites at different intervention intervals

by selecting responders and non-responders and identifying

significantly different metabolites. We confirmed significant genetic

variation between responders and non-responders and considered the

relationship of this variation to metabolites and clinical indicators.
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From this study, metabolomic and genomic information could be used

to identify biomarkers related to childhood obesity and develop future

personalized treatments.



- 4 -

MATERIALS AND METHODS

Study Population

We extracted 40 obese subject (body mass index [BMI]>97th

percentile for age and sex) from 242 patients in the ‘Intervention for

Children and Adolescent Obesity via Activity and Nutrition (ICAAN)

study’ cohort based on intervention responses. This study was

designed as a multidisciplinary intervention test to prevent excessive

weight gain and to improve several health indices in children and

adolescents with obesity in Korea20. Participants were aged from 6 to

17 years old and more than the 95th percentile of age- and

sex-specific BMI according to the 2007 Korean National Growth

Charts. This study is a follow-up for up to 24 months after

interventions, and they were randomly divided into 3 groups and

received interventions, including the usual care, exercise, and nutrition

feedback group. Each group has a similar portion (usual care group

(n=84, 34.7%; exercise group (n=74, 30.6%); nutrition feedback group

(n=84, 34.7%)), and all groups receive five category interventions;

nutrition, physical activity, group activity, parental education, and self

monitoring. The exercise group included the contents of the usual

care group and added weekly exercise class and activity feedback.

The nutrition feedback group received an additional individual

nutrition feedback including the usual care group contents21,22. Patients

with obesity-related hereditary diseases or other underlying disease

were excluded. Of the 242 patients, 163 were followed up 6 months

after weight intervention, and 111 were followed up 18 months later.

A total of 131 participants were dropped out during the intervention,
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mainly due to busy schedule, no response, no willingness, or busy

schedule of parents. A flowchart of the study participants can be

found in the Supplementary data (Fig. 1). We observed follow-up

data at baseline, 6 months, and 18 months after the intervention to

observe the intervention effects trends. When the BMI z-score was

checked after 18 months, participants were selected in two groups

according to the change in BMI z-scores. 20 subjects who presented

significant intervention were assigned to the target group (responder,

n=20). The others were non-responders (n=20) who had minimal

weight loss. The changes in responder BMI z-scores were <-0.45,

and >-0.1 in the non-responder group, respectively. Random sampling

was not possible due to the limitation of the number of samples, so

it was set in consideration of the portion and the number of samples

of each intervention group. The non-responder group was selected

according to the number of responders, and no patients gained weight

due to the intervention, so the patients with the least weight change

were selected. It was confirmed that there were no significant

differences according to sex, age and type of intervention.

Physiological data and blood samples were collected at baseline, and 6

and 18 months after the intervention in responder and non-responder

group, for a total of 120 collected samples. Metabolic and genomic

analyses of the samples were analyzed in two groups.

Sample preparation

The 120 samples were transported from SNU to HMT (Human

Metabolome Technologies, Inc.) via Young-In Frontier Co., Ltd. In

HMT, stored in a deep freezer below -80 ℃. Each 50 μL sample was

mixed with 200 μL of methanol containing internal standards (20 μM).
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Milli-Q water (150 μL) was then added and mixed thoroughly. The

solution (300 μL) was filtered through a 5-kDa cut-off filter

(ULTRAFREE-MC-PHCC, Human Metabolome Technologies,

Yamagata, Japan) remove macromolecules. The filtrate was

centrifugally concentrated and resuspended in 50 μL of ultrapure

water immediately before measurement. The compounds were

measured in the cation and anion modes of CE-TOFMS (capillary

electrophoresis time of-flight mass spectrometry) based on

metabolome analysis equipped with an Agilent CE-TOFMS system

(Agilent Technologies Inc.) and a fused silica capillary i.d. 50 μM ×

80 cm.

Metabolomic data processing and Statistical

Analysis

Peaks detected by CE-TOFMS analysis were extracted using

automatic integration software (MasterHands ver. 2.17.4.19, Keio

University; Tokyo, Japan) to obtain peak information including m/z,

migration time (MT), and peak area. The peak area was then

converted to the relative peak area. The peak detection limit was

determined based on the signal-noise ratio; S/N = 3. Putative

metabolites were then assigned from HMT's standard library and

known-unknown peak library based on m/z and MT. The tolerance

was ±0.5 min for MT and ±10 ppm in m/z. If several peaks were

assigned the same candidate, the candidate was given the branch

number. Hierarchical cluster analysis (HCA) and principal component

analysis (PCA) were performed using statistical analysis software

(developed by HMT). The peak profiles with putative metabolites
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were represented on metabolic pathway maps using VANTED

(Visualization and Analysis of Networks containing Experimental

Data) software23. The pathway map was prepared based on the

metabolic pathways that are known to exist in human cells.

We performed a secondary analysis using the Metaboanalyst

program to build a relevant metabolite and molecular genetic network

for significant metabolites24. The comparative data analysis by HMT

calculated all except 'N.D' (not detected) data and was based on

welch's t-test. To include these missing values, we used the

minimum value imputation method to increase the sample volume.

Any missing values were assumed to be below the detection limits

and could be imputed with the compound minimum data by the kNN

(k‐means nearest neighbor) method25. In addition, MetaMapp 2017

(http://metamapp.fiehnlab.ucdavis.edu/) and Cytoscape version 3.7.2

(https://cytoscape.org/index.html) were used for network analysis

related to metabolic changes by the weight loss intervention.

Genomic Analysis and SNPs selection

For genomic analysis, genomic DNA was extracted from the

subject's peripheral blood samples and genotyping was performed

using the AxiomTM Precision Medicine Research Array (PMRA) chip

(Thermo Fisher Scientific, Waltham, MA, USA). GWAS data of 39

subjects from 40 patients (group 2) were included from the ICAAN

intervention study cohort. A total of 902,560 single nucleotide

polymorphisms (SNPs) was available. The exclusion criteria for

quality control for the imputed data were minor allele frequency <0.0,

missing genotype rate >0.1, the missing rate per person >0.1, and

Hardy-Weinberg equilibrium p-value <0.001 were excluded. In total,
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293,713 SNPs remained in our analysis.

To include more samples, 154 patients with SNP information at 6

months follow-up were selected from the intervention study. Based

on the changes in BMI z-scores, 41 responders and 82

non-responders were selected and GWAS was performed on a total

of 123 subjects (group 1). After the quality control processing

similar to group 1, 281,745 of 902,560 SNPs remained.

To increase the yield of the genomic analysis, a PubMed literature

search was performed to select candidate SNPs and compare them

with the genome list obtained from GWAS data in our group.

Articles published between 2007 and 2019 were included. The

representative search terms used were 'genetics', 'genomics',

'genome' "AND" 'obesity', 'weight loss intervention', 'obesity

intervention', 'BMI change' "AND" 'child', 'children', 'adolescent'.

We reviewed approximately 60 studies and selected the top 13

according to the selection criteria. The selection criteria were scored

to determine studies with a total score of 5 or higher: 1) intervention

study (obesity intervention -3/ obesity observation -2/ other-1), 2)

race (Asia -2/other-1), 3) age (children -2/ adult -1). We excluded

syndromic obesity and the monogenic causes of obesity. Seven final

candidate genes and 12 SNPs were selected considering the study

with the highest score, the top-ranked journal with an impact factor

over 10, and the gene with more than two significant reports. A list

of selected article reviews can be found in the Supplementary data

(Table S1). To further study genomics, we selected more candidate

genes and SNPs by reflecting the molecules obtained through

metabolic network analysis. Finally, we selected 26 candidate SNPs

and 18 genes from the reference review and compared group 1 and
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group 2 subject's GWAS results.

In addition, the relationship between the significant genotype of

SNPs and the change in clinical indicators of the subjects was

confirmed.

Ingenuity Pathway Analysis

IPA (Ingenuity Systems Inc., Redwood City, CA) is a software

platform that offers biological analysis such as an 'Upstream

Regulator Analysis', 'Mechanistic Networks', 'Causal Network

Analysis' and 'Downstream Effects Analysis' using a large number

of biological data26. The IPA is the leading pathway analysis to a

vast amount of biological information regularly updated for all

chemicals modeled as drugs or clinical candidates. IPA can quickly

visualize complex -omics data and perform insightful data analysis

and identify the most significant pathways in various biological

systems. It has been used to reveal the relationship between obesity

and clozapine27. We constructed a network in IPA using metabolite

data significantly analyzed by Metaboanalyst, baseline, and 6 and 18

–month post-intervention intervals in the responder and

non-responder groups. In addition, a genetic literature search related

to obesity was performed using major compounds in this network.
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Figure 1. A flowchart of the study participants.
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RESULTS

Targeted metabolomic analysis by CE-TOFMS

A total of 20 responders, and 20 non-responders were selected after

18 months of intervention based on BMI z-score changes. Samples

were collected before intervention, and 6 months (six time point), and

18 months after intervention (18 time point); thus, a total 120 serum

samples were analyzed. Thirty-nine of 40 patients yielded SNP

information, and Table 1 presents their BMI z-scores and

characteristics. The changes in responder BMI z-scores were < -0.45,

and > -0.1 in the non-responder group. A total of 194 metabolites

were identified using CE-TOFMS by HMT (Table S2). Of the 194

metabolites analyzed, 111 metabolites in cation mode and 83

metabolites in anion mode, and nine metabolites (1- or

3-methylhistidine, 3-hydroxypropionic acid, 8- or 2-hydroxyoctanoic

acid-1, alanine, aspartic acid, cystine, indole-3-acetic acid,

N-acetylalanine, and tyrosine) were significantly different between

responders and non-responders before and 18 months after

intervention (p<0.05) (Table 2). PCA showed no significant

metabolite differences between the two groups, but the HCA showed

a different distribution in 18-month metabolites than the 0 and

6-month time points (Fig. 2). In the pathway map of candidate

metabolites, five out of nine metabolites (alanine, aspartic acid,

cystine, indole-3-acetic acid, and tyrosine) were present in the map;

the detected metabolite pathway maps are shown in Fig. 3.

We performed additional comparative analysis and validation of

HMT data using the Metaboanalyst program. After missing value



- 12 -

imputation using the k-NN (K-nearest neighbor) method, we selected

new putative metabolites, which showed differences from previous

results. Thirteen metabolites (1-methyl-4-imidazoleacetic acid,

10-hydroxydecanoic acid, 3-indoxylsulfuric acid, 2- or

8-hydroxyoctanoic acid-2, allo-threonine, azelaic acid, disulfiram,

indole-3-acetic acid, N-acetyllysine-1 or -2, N-acetylornithine,

succinic acid, and XC0065) showed significant differences between

responders and non-responders at baseline (p<0.05). Six metabolites

(2-oxooctanoic acid, glucose, isocitric acid, lauric acid, sulfotyrosine,

and XC0126) showed significant changes between baseline and

6months post-intervention in responders and non-responders (p<0.05).

In addition, nine metabolites (1- or 3-methylhistidine, alanine, aspartic

acid, cystine, glycocholic acid, homovanillic acid, piperidine,

sulfotyrosine, and tyrosine) also showed significant changes from

baseline after 18months in responders and non-responders (p<0.05)

(Table 3). We performed a spaghetti plot using the relative peak

areas of these putative metabolites, which indicated the trends of

change for each metabolite according to the intervention duration

(Fig. 4).

HMT performed further analysis on metabolites changed by weight

loss interventions regardless of response. Sixty-eight metabolites

were significantly changed from baseline after 18 months, and 63

identified metabolites were selected, including 15 amino acids, 11

carboxylic acids, six fatty acids, four carbohydrates, four nucleotides

and others (FDR-adjusted p <0.05) (Table 4). Metabolic pathway

analysis was performed on these metabolites (Table 5), and network

and quantitative changes were observed using MetaMapp 2017 and
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Cytoscape version 3.7.2 programs (Fig. 5). As a result of pathway

analysis, 36 metabolic pathways were identified, and the top three

pathway with high impact were 1) alanine, aspartate and glutamate

metabolism; 2) phenylalanine, tyrosine and tryptophan biosynthesis;

and 3) D-glutamine and D-glutamate metabolism.

Of the 63 metabolites, 55 were amenable to network analysis, and

four (prostaglandin F2α, L-glutamine, 3-hydroxypropionic acid, and

azelaic acid) showed statistical significance for longitudinal variation,

especially exercise intervention (p <0.05).

In summary, the altered metabolites in all analysis including HMT

analysis, additional analysis by Metaboanalyst, and longitudinal

change analysis were alanine (fold-change (FC) 0.91), aspartic acid

(FC 0.47), and cystine (FC 3.49) (Fig. 6). Alanine tended to decrease

in responders after 18 months of intervention (p-value 0.013, ratio

0.9), and aspartic acid also tended to decrease in both groups

(p-value 0.028, ratio 1.2). However, cystine tended to increase after

18 months of intervention in both groups (p-value 0.021, ratio 1.4)

(Table 2, Fig. 4).
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Table 1. Characteristics of 39 obese study patients who had SNP

information.

Responder group

(n=19)

Non-responder group

(n=20)

Age (years) 11.3 ± 1.9 11.0 ± 2.4

Sex (%)
Male 13 (68.4) 8 (40.0)

Female 6 (31.6) 12 (60.0)

Intervention

type (%)

Exercise +

usual
7 (36.8) 8 (40.0)

Nutrition +

usual
9 (47.4) 6 (30.0)

Usual group 3 (15.8) 6 (30.0)

BMI z-score

0 (baseline) 3.03± 1.12 2.96± 0.92

6 time point 2.8±1.32 2.93± 0.94

18 time point 2.08± 1.36 3.33± 0.94

Difference of

BMI z-score

0_6 time point -0.22 ± 0.43 -0.03± 0.19

6_18 time

point
-0.73± 0.63 0.40 ± 0.36

0_18 time

point
-0.95± 0.44 0.38± 0.32
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Table 2. The relative intensity of putative metabolites and comparative analysis. Putative metabolites from

the HMT standard library; nine metabolites showed significant changes between baseline and 18-month

samples.

Compound name

Relative areaa Comparative analysis

Non-responder Responder Responder vs
non-responder
Baseline (0
month)

Responder vs
non-responder
Intervention
after 18
months (18
month)

0 (month) 18 (month) 0 (month) 18 (month)

Mean S.D. Mean S.D. Mean S.D. Mean S.D.
Ratio
b

p-valu
e c

Ratio
p-valu
e

1-Methylhistidine
3-Methylhistidine

2.6E-03 2.1E-03 1.6E-03 7.4E-04 2.4E-03 2.5E-03 3.0E-03 2.9E-03 0.9 0.798 1.9 0.049

3-Hydroxypropio
nic acid

N.A. N.A. 1.3E-03 2.3E-04 N.A. N.A. 1.0E-03 6.8E-05 N.A. N.A. 0.8 0.018

8-Hydroxyoctano
ic acid

2-Hydroxyoctano
ic acid

1.9E-04 6.5E-05 1.3E-04 2.0E-05 1.6E-04 5.2E-05 2.6E-04 1.8E-05 0.8 0.169 1.9 0.022

Alanine 1.1E-01 1.8E-02 1.1E-01 1.6E-02 1.1E-01 1.5E-02 9.1E-02 2.1E-02 1.0 0.865 0.9 0.013

Aspartic acid 6.4E-03 3.0E-03 2.3E-03 7.3E-04 4.6E-03 2.9E-03 2.9E-03 7.3E-04 0.7 0.069 1.2 0.028

Cystine 3.6E-04 3.0E-04 1.4E-03 8.1E-04 6.2E-04 5.1E-04 2.0E-03 8.1E-04 1.7 0.068 1.4 0.021

Indole-3-acetic
acid

1.5E-04 4.5E-05 1.5E-04 3.7E-05 2.1E-04 1.1E-04 2.0E-04 8.3E-05 1.4 0.066 1.4 0.031
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aRelative Peak Area =Metabolite Peak Area/Internal Standard Peak Area × Sample Amount. bThe ratio is of

computed by using averaged detection values. The latter was used as denominator. cThe p-value is

computed by Welch’s t-test (p <0.05).

Abbreviation: S.D., standard deviation; N.A. (Not Available), The calculation was impossible because of

insufficience of the data.

N-Acetylalanine 2.4E-04 6.2E-05 2.4E-04 3.0E-05 2.3E-04 6.6E-05 2.9E-04 3.9E-05 1.0 0.889 1.2 0.028

Tyrosine 2.3E-02 3.5E-03 2.4E-02 3.1E-03 2.6E-02 4.0E-03 2.2E-02 4.4E-03 1.1 0.057 0.9 0.028
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(A)

(B)

NR-0M R-0M NR-6M R-6M NR-18M R-18M

Figure 2. (A) Principal component analysis of all samples. PC1 and

PC2 show first and second principal components, respectively. The

number in parentheses is the contribution rate, and the plot labels are

non-responder
responder
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sample names. (B) Hierarchical cluster analysis results of all samples.

HCA is performed at peaks, and the distances between peaks are

displayed in tree diagrams (NR: non-responder, R: responder)
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Figure 3. In HMT standard metabolites, detected metabolites in this

study are plotted on the pathway map. The lines represent the

relative areas of each metabolites at 0, 6, 18-month time points for

non-responders (blue), and responders (red), respectively.
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(A)

(B)
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(C)

Figure 4. Spaghetti plot of newly selected significant metabolites

analyzed by Metaboanalyst. (A) Significant metabolites at baseline

between weight loss responders and non-responders; (B) Significant

metabolites at 6 months compared with baseline between intervention

groups; (C) Significant metabolites at 18 months compared with

baseline between intervention groups. (blue, non-responders; red,

responders; *p< 0.05)
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Table 3. New selected metabolites after missing value imputation and

comparative analysis.

Putative metabolites
Comparative analysis (p-value)a

(non-responders vs. responders)

Compound nameb Baseline
Intervention
after 6
months

Intervention
after 18
months

1-Methyl-4-imidazoleacetic
acid

0.033334* 0.63399 0.45285

10-Hydroxydecanoic acid 0.037269* 0.073615 0.9436

3-Indoxylsulfuric acid 0.033219* 0.16402 0.39574

8-Hydroxyoctanoic acid-2
2-Hydroxyoctanoic acid-2

0.00031199* 0.54113

allo-Threonine 0.04382* 0.3242 0.016014*
Azelaic acid 0.031105* 0.18751
Disulfiram 0.0091874* 0.09607 0.78549

Indole-3-acetic acid 0.044537* 0.23846 0.016913*
N-Acetyllysine-1 0.040309* 0.33015
N-Acetyllysine-2 0.0062093*
N-Acetylornithine 0.023157* 0.60341 0.63014
Succinic acid 0.031116* 0.10099 0.70946

2-Oxooctanoic acid 0.917 0.04989*
Glutamic acid 0.16814 0.033127* 0.29025
Isocitric acid 0.76393 0.018274* 0.13955
Lauric acid 0.35806 0.015064* 0.69241
Sulfotyrosine 0.57326 0.024036* 0.014555*

1-Methylhistidine
3-Methylhistidine

0.81297 0.78386 0.048642*

Alanine 0.96193 0.89453 0.013367*
Aspartic acid 0.070155 0.55228 0.029478*
Cystine 0.073209 0.97186 0.020345*

Glycocholic acid 0.39682 0.58489 0.048734*
Homovanillic acid 0.36147 0.36708 0.035362*
Piperidine 0.87267 0.97264 0.014093*
Tyrosine 0.055373 0.83144 0.024063*

aThe p-value was computed by Welch's t-test (*p<0.05).bUnknown

metabolites were excluded.
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Table 4. List of metabolites that changed significantly after 18

months of intervention relative to baseline (FDR-adjusted p-value

<0.05).

nu
mb
er

compound name
FDR-adj
usted
p-value

nu
mb
er

compound name
FDR-ad
justed
p-value

amino acid carnitines　

1 Asparagine 9.65E-19 35 Carnitine 4.69E-07

2 Glutamine 5.55E-16 36 O-Acetylcarnitine 1.36E-11

3 S-Methylcysteine 1.62E-12 37 Octanoylcarnitine 9.96E-04

4 Cystine 1.43E-09 fatty acids

5 Glutamic acid 2.45E-09 38 iso, Valeric acid 2.07E-08

6 Ornithine 3.38E-08 39 8-Hydroxyoctanoic
acid-1 2.07E-08

7 Aspartic acid 4.12E-06 40 Citramalic acid 6.36E-07

8 Lysine 7.47E-06 41 Hexanoic acid 1.33E-04

9 Serine 2.80E-05 42 8-Hydroxyoctanoic
acid-2 7.38E-04

10 Arginine 1.54E-03 43 Azelaic acid 7.27E-03

11 Histidine 2.80E-03 ketoacids

12 Proline 2.43E-02 44 2-Oxoisovaleric acid 1.16E-23

13 Alanine 2.58E-02 45 4-Methyl-2-oxovale
ric acid 1.93E-19

14 Phenylalanine 2.69E-02 46 2-Oxoglutaric acid 4.91E-04

15 Methionine 7.15E-23 nucleotides

carboxylic acids 47 1-Methyladenosine 3.59E-10

16 Methionine
sulfoxide 3.86E-18 48 8-Hydroxy-2'-deox

yguanosine 1.56E-03

17 N-Acetyllysine-1 6.80E-17 49 GMP 2.27E-03

18 4-Guanidinobutyri
c acid 6.52E-10 50 AMP 2.25E-04

19 5-Oxoproline 7.12E-10 cholines
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20 N-Acetyllysine-3 2.25E-04 51 Choline 4.88E-03

21 Sarcosine 3.69E-04 52 Glycerophosphocholi
ne 5.06E-17

22 Symmetric
dimethylarginine 1.22E-03 53 Phosphorylcholine 8.03E-05

23 Isobutyric acid,
Butyric acid 7.38E-04 TCA derivatives

24 N-Acetylornithine 9.63E-03 54 Isocitric acid 2.03E-06

25 Penicillamine 2.42E-02 55 Succinic acid 5.21E-04

26 Creatinine 3.07E-03 organic acids

carbohydrates 56 Lactic acid 2.62E-04

27 Glucosamine 2.89E-06 57 3-Hydroxypropionic
acid 5.18E-03

28 3-Phosphoglyceric
acid 3.92E-05 58 Malic acid 6.56E-04

29 Mucic acid 5.03E-04 sulfinic acid　

30 Threonic acid 4.79E-03 59 Hypotaurine 1.41E-02

organic oxygen　 prostaglandin 　

31 Kynurenine 2.01E-02 60 Prostaglandin F2α 1.35E-02

organic nitrogen　 others

32 N-Methylputresci
ne 1.28E-02 61 Ser-Glu 2.29E-09

xanthines 62 2-Oxooctanoic acid 2.71E-04

33 Uric acid 5.41E-06 63 Tyr-Arg_divalent 1.68E-03

34 Hypoxanthine 4.39E-02 　 　 　
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Table 5. Analysis of metabolic pathways associated with metabolic

changes by weight loss intervention.

Metabolic
pathway

Tot
ala

Expe
cted

Hit
sb

Raw
p-value

c

Holm
adjuste
d

p-value
d

FDR
adjuste
d

p-value
e

Im
pac
tf

Aminoacyl-tRNA
biosynthesis

48 1.55 12 9.52E-09 7.99E-07 7.99E-07 0.17

Arginine
biosynthesis

14 0.45 7 6.85E-08 5.69E-06 2.88E-06 0.25

Alanine, aspartate
and glutamate
metabolism

28 0.90 7 1.67E-05 1.37E-03 4.68E-04 0.58

D-Glutamine and
D-glutamate
metabolism

6 0.19 3 5.91E-04 4.78E-02 1.24E-02 0.50

Glyoxylate and
dicarboxylate
metabolism

32 1.03 5 2.97E-03 2.38E-01 4.44E-02 0.04

Citrate cycle
(TCA cycle)

20 0.65 4 3.17E-03 2.51E-01 4.44E-02 0.18

Arginine and
proline

metabolism
38 1.23 5 6.40E-03 4.99E-01 7.68E-02 0.33

Butanoate
metabolism

15 0.48 3 1.09E-02 8.42E-01 1.15E-01 0

Histidine
metabolism

16 0.52 3 1.32E-02 1.00E+00 1.18E-01 0.22

Nitrogen
metabolism

6 0.19 2 1.41E-02 1 1.18E-01 0

beta-Alanine
metabolism

21 0.68 3 2.79E-02 1 2.13E-01 0

Purine
metabolism

65 2.10 5 5.47E-02 1 3.79E-01 0.15

Glutathione
metabolism

28 0.90 3 5.87E-02 1 3.79E-01 0.03

Cysteine and
methionine
metabolism

33 1.06 3 8.75E-02 1 4.90E-01 0.13

Glycine, serine 33 1.06 3 8.75E-02 1 4.90E-01 0.31
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and threonine
metabolism

Glycerophospholip
id metabolism

36 1.16 3 1.07E-01 1 5.62E-01 0.08

Phenylalanine,
tyrosine and
tryptophan
biosynthesis

4 0.13 1 1.23E-01 1 5.75E-01 0.50

Pantothenate and
CoA biosynthesis

19 0.61 2 1.23E-01 1 5.75E-01 0

Pyruvate
metabolism

22 0.71 2 1.57E-01 1 6.92E-01 0.03

Propanoate
metabolism

23 0.74 2 1.68E-01 1 7.06E-01 0

Valine, leucine
and isoleucine
biosynthesis

8 0.26 1 2.31E-01 1 8.83E-01 0

Taurine and
hypotaurine
metabolism

8 0.26 1 2.31E-01 1 8.83E-01 0.29

Biotin metabolism 10 0.32 1 2.80E-01 1 9.81E-01 0
Phenylalanine
metabolism

10 0.32 1 2.80E-01 1 9.81E-01 0.36

Nicotinate and
nicotinamide
metabolism

15 0.48 1 3.90E-01 1 1 0

Selenocompound
metabolism

20 0.65 1 4.83E-01 1 1 0

Ether lipid
metabolism

20 0.65 1 4.83E-01 1 1 0

Sphingolipid
metabolism

21 0.68 1 5.00E-01 1 1 0

Lysine
degradation

25 0.81 1 5.62E-01 1 1 0

Glycolysis /
Gluconeogenesis

26 0.84 1 5.77E-01 1 1 0

Porphyrin and
chlorophyll
metabolism

30 0.97 1 6.30E-01 1 1 0

Arachidonic acid
metabolism

36 1.16 1 6.97E-01 1 1 0

Amino sugar and 37 1.19 1 7.07E-01 1 1 0
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aTotal is the total number of compounds in the pathway; bthe Hits is

the actually matched number from the user uploaded data; cthe Raw

p is the original p value calculated from the enrichment analysis; dthe

Holm p is the p value adjusted by Holm-Bonferroni method; ethe

FDR p is the p value adjusted using False Discovery Rate; fthe

Impact is the pathway impact value calculated from pathway topology

analysis.

nucleotide sugar
metabolism
Pyrimidine
metabolism

39 1.26 1 7.26E-01 1 1 0

Valine, leucine
and isoleucine
degradation

40 1.29 1 7.35E-01 1 1 0.01

Tryptophan
metabolism

41 1.32 1 7.44E-01 1 1 0.09



- 28 -

Figure 5. Network assay of metabolites changed by the weight loss

intervention. All metabolites have an FDR adjusted p-value <0.05.

(Node size: fold change; node color: red (fold change > 1), blue (fold

change < 1))
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Figure 6. Venn diagram of metabolites selected by HMT analysis, additional analysis by Metaboanalyst,
and longitudinal change analysis. Of 194 metabolites, 63 were significant metabolites after the intervention,
and 13 represented significant changes between responders and non-responders at baseline. Six were
significant at six time points, and 18 were significant at the 18-month time point. Alanine, aspartic acid,
cystine were meaningful in all analyses.
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Genomic analysis

To detect SNPs that were significantly associated with childhood

obesity interventions, GWAS analysis was performed and the

candidate genes and SNPs identified in previous studies involving

obesity were replicated. The genomes of 39 patients with SNP

information were analyzed in 40 study populations (19 were

responders and 20 were non-responders; group 2). Their sex,

intervention type, and BMI z-score were analyzed, and 902,560 SNPs

were identified, but no significance was noted from the SNP list after

quality control. In addition, we performed the same SNP analysis on

a larger sample size, which was 123 out of 242 patients from the

ICAAN intervention study (41 were responders and 82 were

non-responders; group 1), and no significant results were obtained

from GWAS information. They were selected based on the BMI

z-score change between baseline and 6 months after the intervention,

and their characteristics are shown in the Table 6.

For further analysis to replicate obesity intervention associated

gene, candidate genes and SNPs (7 genes, 12 SNPs) were selected

through a reference review considering race, age, obesity intervention,

and impact factor of the journal16-18,28-30. As a result of the analysis in

group 1 and group 2, p-values were detected in FTO, SEC16B, and

TFAP2B gene, but neither the FDR-adjusted p-value nor the p-value

was significant (Table 7, Fig. 7).

Genomic analysis integrating metabolic pathway

analysis by IPA
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Using IPA, a networks can be obtained at each time point for

metabolites data significantly analyzed in Metaboanalyst before and

after intervention in the responders and non-responders groups. In

the baseline predicted network of the biomarkers, nitric oxide, TNF,

BCL2 were main molecules in the network when comparing the

responders and non-responders group. Triacylglycerol, L-glutamic

acid were in network of 6 months after intervention, and IL1B,

CDKN1A, EGFR, hydrogen peroxide were in network of 18 months

after intervention (Fig. 8).

Based on the key molecule information obtained from this network

analysis, a new target gene and SNP list for genome analysis was

established through a PubMed and OMIM literature review

(https://www.ncbi.nlm.nih.gov/omim) 19,29,31-41. A total of 17 genes and

26 SNPs were selected (Table 8), and 123 subjects (group 1) and 39

subjects (group 2) from the childhood obesity intervention study were

identified to match these gene lists. In group 2, 14 out of 26 SNPs

were confirmed in the GWAS analysis results, but no SNPs yielded

significant p-value. However, in group 1, 13 SNPs out of 26 SNPs

were identified, of which IRS1 (rs2943641) and FAIM2 (rs7138803)

showed significance (p <0.05). The OR value of IRS1 (rs2943641)

was 3.075, the OR value of FAIM2 (rs7138803) was 2.038, and the

FDR adjusted p-value was not satisfied. (Table 9).
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Table 6. Baseline characteristics of 123 patients and the list of SNPs

identified in the group.

Table 7. Gene and SNPs list and result from 123 subjects.

Gene name Chromosome SNP p-value FDR

FTO 16 rs1421085 0.8945 0.9353
FTO 16 rs9939609 0.7538 0.9353
FTO 16 rs8050136 0.7538 0.9353
FTO 16 rs17817449 0.8865 0.9353
SEC16B 1 rs543874 0.8863 0.9353
TFAP2B 6 rs987237 0.3829 0.9353
RBSG4 1 rs1027493

RBSG4 1 rs870879

RBSG4 1 rs873822

MIR486/NKX6-3 8 rs6981587

MC4R 18 rs12970134

MC4R 18 rs571312

Responder

group

(n=41)

Non-responder

group

(n=82)

P-value

Age

(years)
11.6 ± 2.2 10.9 ± 1.7 0.05

Sex (%)
Male 29 (70.7) 49 (59.8) 0.23

Female 12 (29.3) 33 (40.2)

Interventi

on type

(%)

Exercise +

usual
20 (48.8) 23 (28.1) 0.05

Nutrition +

usual
13 (31.7) 30 (36.6)

Usual 8 (19.5) 29 (35.4)

BMI_z-s

core

0 (baseline) 3.02± 0.90 2.84± 0.82 0.29

6 time point 2.8±1.32 2.99± 0.90 <0.01*

0-6 time point -0.52± 0.26 0.14± 0.18 <0.01*
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(A)

(B)
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(C)

Figure 7. LocusZoom plot for the FTO, SEC16B, and TFAP2B genes

in 123 subjects with a p-value in genetic analysis. (A) FTO (B)

SEC16B (C) TFAP2B.



- 35 -

Figure 8. Significant metabolite pathways and networks analysis by IPA in pre-intervention responders and

non-responders. (A) baseline (B) 6 months after intervention (C) 18 months after intervention. Molecular

interactions between connected molecules represent direct (solid line) or indirect (dotted line).

(A) (B) (C)
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Table 8. The list of 17 new target genes and 26 SNPs for genetic

analysis.

No.
Candidate

gene (17)
SNPs (26)

1 SH2B1 rs7359397

2 FLJ35779 rs2112347

3 KCTD15 rs29941

4 NRXN3 rs10150332

5 RPL27A rs4929949

6 CADM2 rs13078807

7 BDNF rs10767664

8 BDNF rs6265

9 BDNF rs2030323

10 IRS1 rs2943645

11 IRS1 rs2943641

12 LEP rs7799039

13 FAIM2 rs7138803

14 MRAP2 rs587777046

15 PTEN
Heterozygous c.202T>C; p.(Tyr68His),

Heterozygous c.512A>G; p.(Gln171Arg)
16 ACE I/D

17 VEGF rs833061

18 TNF alpha rs1800629

19 MC4R rs17782313

20 MC4R rs2229616

21 MC4R rs12970134

22 MC4R rs571312

23 FTO rs1421085

24 FTO rs9939609

25 FTO rs8050136

26 FTO rs17817449
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Table 9. Identified gene and SNP list for the replication of candidate

genes in the study group. Thirteen of 26 genes and SNPs in the

analysis of group 1, and 2 were significant (* p<0.05).

Group 2 (subject

n=39)

(responder 19/

non-responder 20)

Group 1 (subject

n=123)

(responder

41/non-responder 82)

Gene SNP OR p-value

FDR

adjust

p-val

ue

OR p-value

FDR

adjust

p-val

ue

SH2B1 rs7359397 0.73 0.713 0.992 0.61 0.313 0.978

RPL27A rs4929949 0.88 0.802 1.000 - - -

BDNF rs6265 1.09 0.866 1.000 1.59 0.116 0.977

BDNF rs2030323 0.95 0.922 1.000 1.49 0.175 0.977

IRS1 rs2943641 2.82 0.388 0.975 3.08 0.03496* 0.977

FAIM2 rs7138803 2.98 0.087 0.975 2.04 0.02218* 0.977

TNF-α rs1800629 0.72 0.685 0.990 0.73 0.538 0.984

MC4R rs17782313 1.50 0.488 0.978 0.78 0.470 0.981

MC4R rs12970134 2.95 0.097 0.975 1.06 0.871 0.996

MC4R rs571312 1.25 0.724 0.994 0.65 0.230 0.977

FTO rs1421085 0.30 0.147 0.975 0.95 0.895 0.997

FTO rs9939609 0.48 0.374 0.975 0.88 0.754 0.992

FTO rs8050136 0.48 0.374 0.975 0.88 0.754 0.992

FTO rs17817449 0.57 0.503 0.979 0.94 0.887 0.997
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The association between IRS1, the FAIM2

genotype, and clinical characteristics

The genotype frequency of IRS1 variant in responders is CC (80.5%),

TC (17.1%), and TT (2.4%), and in non-responders, CC (91.5%) and

TC (8.5%). The minor allele frequency (T-allele) was found to be

0.11 in the responders and 0.043 in the non-responders, which is

higher in the responders. In FAIM2 variant, the genotype frequency

is AA (9.8%), AG (43.9%), and GG (46.3%) in responders, and AA

(7.3%), AG (24.4%), and GG (68.3%) in non-responders. The minor

allele frequency (A-allele) is 0.317 in the responders and 0.195 in the

non-responders, which is also higher in responders.

When analyzing whether there is significant clinical parameters

between genotype, only weight change in responder showed

significant difference between CC and TC genotypes (p=0.006), and

HDL change was 0.051 of p-value at the IRS1 (rs 2943641) locus

(Table 10). The clinical parameters used the difference between

baseline and 6 months after intervention, and included bmi z-score,

weight, insulin, adiponectin, c-reactive protein (CRP), aspartate

aminotransferase (AST), alanine aminotransferase (ALT), fasting

blood sugar (FBS), gamma-glutamyl transferase (GGT), tryglyceride

(TG), high-density lipoprotein cholesterol (HDL), and low-density

lipoprotein cholesterol (LDL). At the FAIM2 (rs7138803) locus, only

the BMI z-score change in responders was found a significant

p-value between AA and GG genotypes (p=0.003), and there were no

other significant phenotype associated with the genotypes in both

responders and non-responders (Table 11).

Table 12 shows the clinical parameters that showed significant
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changes ​​before and after 6 months of intervention within each

genotype of responders and non-responders by paired-test. In

responders, differences in BMI z-score, weight loss, AST, ALT and

adiponectin showed significant changes after intervention in IRS1 CC

type, and BMI z-score, ALT and adiponectin showed significant

changes in FAIM2 AG type. In non-responders, except for BMI

z-score and weight change, only adiponectin change was observed

significant in IRS1 CC type.
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Table 10. Comparison of various phenotypes among the different genotypes at IRS1 rs2943641 in responders

and non-responders.

IRS1 rs2943641
Responder (n=41) Non-responder (n=82)

CC (n=33) TC (n=7) TT (n=1) p-valuea CC (n=75) TC (n=7) p-value

∆BMI z-scoreb -0.557±0.278 -0.389±0.053 -0.3437693 0.094 0.135±0.186 0.216±0.099 0.077

∆weight change

(kg)
-1.782±3.325 0.886±0.951 -2.8 0.019 4.799±2.61 4.471±1.069 0.855

∆FBS (mg/dl) -0.03±14.152 5.143±6.362 13 0.263 1.053±12.942 0.429±9.199 0.797

∆insulin

(μU/ml)
1.333±19.488 -0.086±14.464 0.2 0.943 1.145±18.352 4.457±15.144 0.507

∆CRP (mg/dl) -0.391±2.887 1.726±5.489 -0.33 0.983 0.129±3.096 0.16±2.155 0.875

∆AST (IU/L) -10.788±24.507 -18.714±38.517 3 0.625 -0.613±17.837 3.143±14.427 0.365

∆ALT (IU/L) -25.818±56.01 -36±77.812 1 0.873 -0.933±38.652 8±45.177 0.255

∆GGT (IU/L) -2.97±24.067 -10.143±14.668 -1 0.735 -1.04±20.607 6±15.166 0.232

∆HDL (mg/dl) 1.818±16.417 -12.143±13.946 13 0.051 -0.8±16.673 -1.857±14.645 0.678

∆LDL (mg/dl) 5.121±43.472 -16.286±25.663 -100 0.117 -5.387±31.878 -3.714±24.081 0.765

∆TG (mg/dl) 14.697±76.603 17.714±46.846 -56 0.431 0.653±77.744 -12.429±57.885 0.829

∆Adiponectin

(μg/ml)
3.555±3.125 4.114±4.388 8 0.372 1.168±5.45 -1.5±3.379 0.129

aP-values analyzed using the Kruskal-Wallis test.
bdelta (∆) values are the differences between after 6 months of intervention and baseline.



- 41 -

Table 11. Comparison of various phenotypes among the different genotypes at FAIM2 rs7138803 in

responders and non-responders.

aP-values analyzed using the Kruskal-Wallis test.
bdelta(∆) values are the differences between after 6 months of intervention and baseline.

FAIM2
rs7138803

Responder (n=41) Non-responder (n=82)

GG (n=19) AG (n=18) AA (n=4)
p-va
luea

GG (n=56) AG (n=20) AA (n=6)
p-va
lue

∆BMI
z-scoreb

-0.471±0.292 -0.516±0.194 -0.804±0.22 0.005 0.138±0.192 0.168±0.165 0.094±0.139 0.488

∆weight
change (kg)

-0.826±3.722 -1.411±2.621 -3.575±1.94 0.057 4.829±2.746 4.955±1.78 3.617±2.359 0.332

∆FBS (mg/dl) 0.105±15.502 1.556±11.057 4.5±12.61 0.768 1.214±14.013 2.85±8.074 -7.167±8.886 0.096

∆insulin
(μU/ml)

-0.358±19.473 1.056±18.086 7.85±16.447 0.572 3.652±19.239 -3.175±14.108 -3.983±16.445 0.598

∆CRP (mg/dl) 0.486±4.125 -0.63±2.979 0.24±1.221 0.11 0.252±2.579 -0.26±4.275 0.31±2.003 0.569

∆AST (IU/L) -5.842±18.936 -15.778±31.193 -22.25±37.933 0.739 -0.339±17.282 0.4±20.364 -2.167±10.458 0.432

∆ALT (IU/L) -16.895±51.197 -35.722±63.74 -34.75±78.134 0.779 -0.357±39.121 1.95±44.988 -5.5±9.182 0.215

∆GGT (IU/L) -2.632±26.932 -6.056±18.306 -2.75±20.516 0.891 0.304±21.062 -2.3±20.888 -1.167±8.134 0.964

∆HDL (mg/dl) -0.895±17.188 2.111±15.613 -8.25±20.597 0.746 -1.268±17.648 -2.5±13.805 8±10.77 0.272

∆LDL (mg/dl) -11.579±32.995 5.056±54.009 21±32.609 0.366 -6.482±33.864 -4.3±22.607 3.167±32.811 0.698

∆TG (mg/dl) -6.105±76.47 28.722±69.222 38±42.253 0.187 -1.036±75.904 9.65±76.843 -28.833±80.626 0.697

∆Adiponectin
(μg/ml)

3.405±3.497 4.056±3.457 4.1±2.618 0.818 0.854±5.523 1.565±4.778 -0.333±6.044 0.682
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Table 12. P-value of comparison before and after 6 months of weight intervention in each genotype.

* P-values analyzed using the Wilcoxon pair test.

*p-value

genotype

zsbmi6
-

zsbmi0

weight6
-

weight0

FBS6
-
FBS0

Insulin6
-

Insulin0

CRP6
-
CRP0

AST6
–
AST0

ALT6
–
ALT0

GGT6
-

GGT0

HDL6
-

HDL0

LDL6
-
LDL0

Trigly
ceride6
–

Trigly
ceride0

Adipon
ectin6
-

Adipon
ectin0

responder
IRS1 CC

<0.001 0.007 0.965 0.575 0.893 0.016 0.014 0.137 0.754 0.963 0.581 <0.001

responder
IRS1 TC

0.018 0.063 0.075 0.612 1 0.115 0.176 0.173 0.075 0.128 0.31 0.051

non-responder
IRS1 CC

<0.001 <0.001 0.1 0.886 0.276 0.8 0.942 0.87 0.884 0.159 0.983 0.015

non-responder
IRS1 TC

0.018 0.018 0.671 0.398 0.866 0.31 0.463 0.345 0.735 1 0.933 0.176

responder
FAIM2 AA

0.068 0.068 0.593 0.465 0.465 0.273 0.465 0.854 0.715 0.273 0.068 0.066

responder
FAIM2 AG

<0.001 0.122 0.234 0.983 0.085 0.044 0.029 0.147 0.938 0.636 0.256 <0.001

responder
FAIM2 GG

<0.001 0.777 0.913 0.085 0.344 0.09 0.083 0.091 0.809 0.165 0.546 0.002

non-responder
FAIM2 AA

0.116 0.028 0.116 0.753 0.753 0.916 0.246 0.893 0.173 0.916 0.6 0.917

non-responder
FAIM2 AG

0.001 <0.001 0.259 0.629 0.629 0.344 0.239 0.765 0.408 0.409 0.837 0.167

non-responder
FAIM2 GG

<0.001 <0.001 0.069 0.374 0.127 0.629 0.834 0.996 0.969 0.181 0.987 0.07
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DISCUSSION

In previous studies, metabolites or genomes associated with childhood

obesity or BMI compared to controls were described8,29,31,39. We further

analyzed metabolites showing significant differences according to the

weight intervention responses in severely obese pediatric patients in

various ways and significant genome result was found by

comparisons with a patient's GWAS data.

The metabolomic signature associated with

obesity intervention

This study determined that in children with obesity, alanine, aspartic

acid, and cystine are representative metabolites with significant

differences between the responder and non-responder groups 18

months after weight intervention. We also showed statistically

significant baseline metabolites and metabolic pathway after 18

months of intervention in severely obese children. Alanine, aspartate

and glutamate metabolism pathway showing the highest impact is

related to these three metabolites. Alanine is clustered with central

carbon metabolism, urea cycle related metabolism, and branched-chain

amino acids (BCAA), and the aromatic amino acids pathway. Aspartic

acid is also clustered with central carbon metabolism, urea cycle

related metabolism, and nucleotide metabolism. According to HMT

analysis, cystine is related to urea cycle-related metabolism, lipid and

amino acid metabolism, and metabolism of coenzymes. BCAA is

strongly associated with insulin resistance, type 2 diabetes, and

metabolic diseases, and alanine is one of the byproducts of BCAA
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catabolism42. When glucose is first produced during BCAA catabolism,

it accumulates and increases pyruvate's transamination to alanine.

Zheng et al. (2016) found the amino acid profile change from the

POUND LOST and DIRECT trial, which confirmed metabolite

changes after a diet weight loss intervention of 2 years in adult

obese patients. In both trials, weight loss was directly related to

concurrent reduction of BCAAs (leucine, isoleucine), aromatic AAs

(tyrosine, phenylalanine), and other amino acids (alanine, sarcosine,

hydroxyproline and methionine)43. They showed that alanine

reductions were significantly related to improved insulin resistance,

independent of weight loss, in both trials (both p < 0.05). Another

diet-induced weight-loss intervention study also found that decreased

BCAA levels were associated with reduced BMIs44.

Although the mechanism of BCAA involvement in metabolic

disease is unclear, it is closely related to insulin resistance and

adipose tissue catabolism. A recent study showed an association

between activation of BCAA ketoacid dehydrogenase (BCKD) and

insulin resistance development45. When BCKD expression decreases in

adipose tissue, circulating BCAA increases, along with the uptake of

BCAAs from the muscle that insulin facilitates, increasing insulin

resistance as a result46. Lipids and BCAA play a role in the

development of obesity-related insulin resistance. The rise in

circulating BCAA is driven by an obesity-related decline in their

catabolism in adipose tissue42. Therefore, in our study, the significant

change in alanine in the subjects with greater weight change for

intervention may be related to insulin resistance and mechanistically

associated with BCAA. Considering the BCAA trend in our study,

there was no significant difference between responders and
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non-responders. However, leucine decreased to a ratio of 0.9

compared with baseline and 18 months after intervention in the

responder group and had a significant p-value (p=0.028).

Alanine is one of the 49 BMI-associated metabolites and is also

significantly and positively associated with insulin resistance, and

several amino acids have been linked to BMI47. Alanine and aspartic

acid were also included, and each metabolite was related to BMI 5.3%

and 7.0%, respectively, from 427 unrelated individuals of European

ancestry participating in the Health Nucleus cohort study47. Alanine

and aspartate levels were dramatically elevated in obese versus lean

participants in another study, which showed increased catabolism of

BCAA and correlated with insulin resistance in obese humans48. That

study also found that Insulin Receptor Substrate 1 (IRS1)

phosphorylation at serine 302 in skeletal muscle was increased in

BCAA-fed rats compared with other groups. BCAA contributes to the

development of obesity-associated insulin resistance. It is accompanied

by serine and tyrosine phosphorylation of IRS1, which is related to

the genome analysis results in our study.

Aspartate, like pyruvic acid, is an amino acid associated with the

tricarboxylic acid cycle. Metabolic shift in pyruvic acid decrease after

weight intervention in overweight pre-adolescent and obese

women15,49. Since aspartate is generated from glycolytic intermediates

in the tricarboxylic acid cycle, the low aspartate in the responder

group that is effective in weight loss is considered physically active.

This effect is related to decreased pyruvic acid in a previous study.

In a Japanese obese adult study, obesity was associated with

higher cystine and glutamate levels but lower glycine levels50. In

another study, BCAA and cystine levels increased with obesity or
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type 2 diabetes, and alanine increased with obesity and metabolic

illness. Increased oxidative stress can elevate cystine levels, and

cysteine inhibits tyrosine aminotransferase activity51. A high-cystine

diet in a mouse model increased visceral fat, inhibited metabolic rate,

and decreased glucose tolerance52. High cystine intake promotes

adiposity, suggesting that plasma cystine levels may also be

associated with human obesity. However, it is difficult to explain the

increase in cystine after 18 months in the response group. Another

study showed that cysteine decreases slightly after weight loss53.

Considering why cystine increases after weight intervention, total

cysteine, which contains cystine, increases with age in obese

children54. In addition, after acute exercise, cysteine increased via

gutathione biosynthesis55. However, this change in cystine after

weight loss intervention requires further validation.

When we compared the results of our studies with those of adult

obesity, there are some similarities and differences, which may be

due to pubertal development or differing gut microbiomes or dietary

intake changes. During the pubertal stage, insulin sensitivity

decreases by 50% and can be associated with increased total body

lipolysis and decreased glucose oxidation56. These alterations may

have affected our study's metabolic changes, and other studies have

shown that metabolomics profiles change due to increased adiposity

measures in post-pubertal male groups57. The microbiota contributes

to the biosynthesis of amino acids, meaning that the same foods may

contribute different caloric and nutrient bioavailability to different

people58. Gut microbial profiling of individuals with insulin resistance

and insulin sensitivity is associated with different host dietary

intervention responses and weight changes. Hippurate, a metabolomics



- 47 -

marker, is associated with changes in fasting plasma glucose levels

and insulin secretion, which is also closely related to the gut

microbiome59. Dietary intake may also affect amino acid levels and

obesity. Xu et al. (2018) revealed metabolite differences according to

milk nutritional composition in obese subjects with metabolic

syndrome and found that orotate, leucine, isoleucine and adenine are

significant biomarkers60. In obese adults, a low glycemic diet

increased serine and decreased tyrosine, leucine and valine levels

compared with the high-glycemic-index diet or low fat diet61.

According to a study on grain amino acid composition of

wheat-related species showed that most amino acids for

wheat-related species were lysine (2.74%), threonine (2.83%),

phenylalanine (4.17%), isoleucine (3.42%), valine (3.90%), histidine

(2.81%), glutamic acid (29.96%), proline (9.12%), glycine (3.59%),

alanine (3.37%), and cysteine (1.57%)62. Wheat intake and glycemic

diet are closely related to our dietary culture, so we thought that

there might be differences in metabolites depending on the amount

and type of diet.

Genetic analysis in the weight loss response and

non-response groups

We failed to replicate the obesity-related SNPs in the first analysis

of 39 patients (group 2), but in a further breakdown of 123 patients

(group 1), we found 13 of the 26 SNPs related to obesity. We

observed that rs2943641 in the IRS1 gene (OR 3.08) and rs7138803 in

the FAIM2 gene (OR 2.04) were significantly associated with

childhood obesity intervention responses in the Korean population.
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Thus, considering each odds ratio, IRS1 rs2943641 or FAIM2

rs7138803 genetic variation tended to be improved by 3.08 times and

2.04 times, respectively.

Insulin receptor substrate 1 (IRS 1) is an adipose locus that

increases fasting insulin, plays an important role in activating

phosphatidylinositol 3-kinase (PI 3-kinase)63. IRS1 regulates gene

expression, phosphotyrosine dephosphorylation, protein degradation,

and serine phosphorylation64. The PI 3-kinase pathway activates

long-form receptor (LRb)-associated JAK2 signaling by binding leptin

to LRb and increases phosphorylation of IRS1 through this process65.

Leptin is secreted from adipose tissues and stimulates serine or

tyrosine phosphorylation of IRS1. Therefore, the bio-signal action of

leptin is increased by PI 3-kinase. PI 3-kinase phosphorylates the

plasma membrane phospholipids that subsequently stimulate Akt

(protein kinase B) by promoting phosphorylation at tyrosine and

serine, so IRS/PI 3-kinase/Akt pathway is required for insulin

regulation of glucose homeostasis66. Furthermore, rs2943641 in IRS1 is

a type 2 diabetes susceptibility locus associated with increased fasting

and glucose-stimulated hyperinsulinemia and impaired insulin

sensitivity67. IRS1 rs 2943641 is associated with insulin resistance and

hyperinsulinemia in French, Danish and Finnish population-based

cohorts and reducing IRS1 protein levels and PI3-kinase activity in

skeletal muscle in vivo68. Serine phosphorylation sites of IRS1 are

replaced by alanine, which increases tyrosine autophosphorylation and

insulin signaling, and can be considered to be consistent with the

metabolic analysis results in this study69.

BCAAs induce chronic phosphorylation of mTOR, JNK, and IRS1,

contributing to the development of insulin resistance-related IRS170.
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Huang et al. (2018) suggested a mechanism for the relationship

between IRS1 and insulin resistance. When IRS1 expression

decreases, subcutaneous fat storage decreases, and ectopic fat

deposition increases. Finally, insulin resistance, dyslipidemia increases,

and adiponectin decrease32. As a result, the risk of T2DM and

cardiovascular disease increases71.

Unfortunately, the only clinical parameter that showed a significant

difference between the genotype of the IRS1 variant was the weight

change of the responder, and it is already known that certain

genotypes are associated with obesity. In a population-based cohort

study using European GWAS data, the C allele of rs2943641 of IRS1

increases the risk of T2DM and affects glucose-stimulated

hyperinsulinemia and insulin sensitivity68. In another study, A allele of

FAIM2 rs 7138803 was found to be associated with high obesity and

T2DM risk37,72. Thus, the significant difference in bmi z-score change

between GG and AA type of FAIM2 variant in responder means that

risk allele is associated in the intervention response. However,

large-scale further long-term studies are needed to analyze why

responders with high minor allele frequency (MAF) have better

weight change intervention outcomes.

Fas apoptotic inhibitory molecule 2 (FAIM2) is regulated by the

nutritional state and the methylation levels of the FAIM2 promoter

and is associated with obesity, but the mechanisms are unclear73. In

Qi et al. (2012), the FAIM2 gene interacts with dietary carbohydrates

to increase BMI74,29. FAIM2 is an anti-apoptotic gene that encodes

Apo1, a protein that inhibits apoptotic signals at the Fas receptor,

and is involved in adipocyte apoptosis and appetite control nerve

development75,76.
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Neuronal FAIM2 expression is regulated by the PI3-kinase/Akt

pathway, related to IRS177. FAIM2 also acts as a calcium leak

channel in the endoplasmic reticulum, and the amino acid essential for

this activity is aspartate78. FAIM2 rs 7138803 was first reported to be

associated with obesity in Caucasians, and a polymorphism related to

obesity and type 2 diabetes in Asia, such as China and Japan37,79,80.

Another study showed that SNPs are related to coronary artery

disease and obesity, and we found this polymorphism in our

patients81. Wu et al. (2015) revealed that the methylation level of the

FAIM2 promoter is significantly associated with the degree of

physical activity in obese and lean children73. Finally, FAIM2 rs

7138803 reduces the expression of FAIM2 and induces apoptosis of

more adipocytes, thereby promoting the recruitment of macrophages

in adipose tissue. Increased macrophages cause the production of

cytokines such as TNF-α and IL-6, which may increase inflammation

and insulin resistance, thus increasing the risk of obesity risk78,82.

TNF-α regulates IL-6 production in adipocytes, directly affects the

insulin signaling cascade, and is also an important molecule at the six

month time points in this study. TNF-α and IL-6 are also associated

with IRS1, diminishing tyrosine phosphorylation, and IRS1 expression

in adipose tissue in lean and healthy people compared to obese

patients77. Therefore, these genetic variations can predict obesity, but

it can also be expected that obese children will have an excellent

response to weight control interventions.

This study's was limited by the availability of subjects for

longitudinal studies due to many dropouts from the childhood obesity

intervention cohort. So, there is a limitation of the small number of

samples, and there is a possibility that there is a selection bias in the
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results. Lower family functioning, exercise group, lower initial

attendance rate, and non-self-referral pathways were significantly

associated with 6-month dropouts, and lower family functioning and

lower initial attendance rates were associated with late dropouts in

our cohort study83. Thus, it would be important to focus on these

factors to reduce the dropout rate in further intervention cohort

research. In addition, this study did not analyze the factors related to

adolescent age while observing changes in long-term follow-up

during the intervention. Metabolic changes were most pronounced

after 18 months in the heatmap, but the probability that hormonal

changes and other factors affected the metabolites was not

considered. Therefore, additional studies are required to analyze other

factors, such as social and environmental factors, in addition to

metabolites and genomes. In fact, poor family function was associated

with higher level of depressive symptoms in this childhood obesity

cohort84. Further research is needed on how these factors affect

intervention outcomes in children. Also, within the same intervention

group, the compliance of patients and their parents may have affected

the intervention effect. It is also a limitation that the patient′s

hospital visit time and participation level are not considered in the

study. In addition, factors such as diet could not be limited to

homogenous, which may have influenced metabolite results.

Especially, metabolite is affected by sampling time or whether to eat

at the time of sample, so it will be important to control these factors

and follow the trend of metabolites. Finally, it is necessary to classify

metabolites through metabotyping, and long-term metabolic changes

for weight intervention through continuous follow-up in the obesity

cohort should be examined.
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However, this study may facilitate larger investigations to obtain

more significant metabolites and genomes associated with childhood

obesity intervention in the future. Notably, it is the first study to

analyze metabolites with genomes according to effects in the obesity

intervention in children.

In conclusion, it is clinically meaningful that there are various

metabolic changes after obesity intervention, and it is important that

indicators that vary depending on the intervention effect have been

identified. Our data suggest that differences in insulin resistance and

amino acid metabolism in adipose tissue led to differences in

metabolites and responses to weight loss intervention in obese

children. Our research may ultimately prevent and treat obesity in

children and adolescents by screening genetic indicators for obesity

and monitoring prevention and intervention effects using more precise

indicators. We identified biomarkers related to obesity gene pathway

networks, and the prevention and management of obesity based on

integrated omics information that can serve as indicators for

intervention evaluations. Metabolic and genetic signatures could be

used as clinical tools for understanding obesity pathogenesis and

predicting obesity intervention effects.
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Table S1. A list of top 13 article reviews selected by literature searching for candidate genes and SNPs.

No Authors/Title Journal Contents

interve

ntion/o

bservati

on/othe

r

(3/2/1)

Race

(Asi

a/ot

her)

(2/1)

Child

ren/

Adult

(2/1)

Tota

l

scor

e

1

Valsesia A, Wang QP,

Gheldof N, et al.

Genome-wide gene-based

analyses of weight loss

interventions identify a

potential role for NKX6.3

in metabolism.

Nat

Commu

n

2019;10:

540.

Two loci close to NKX6.3/MIR486 and RBSG4 are

identified in the Canadian discovery cohort (n = 

1166) and replicated in the DiOGenes cohort (n = 

789). Modulation of HGTX (NKX6.3 ortholog)

levels in Drosophila melanogaster leads to

significantly altered triglyceride levels.

3

(weight

loss

intervent

ion)

1 1 5

2

Drabsch T, Holzapfel C. A

Scientific Perspective of

Personalised Gene-Based

Dietary Recommendations

for Weight Management.

Nutrien

ts

2019;11.

* Genetics and Obesity-> FABP2, PPARG, FTO,

TMEM18, MC4R

* Genetics and Weight Loss-> Results of that

meta-analysis showed that people carrying the

FTO risk allele of SNP rs9939609 achieved a

3

(weight

manage

ment)

1 1 5
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similar weight loss compared to non-risk allele

carriers after dietary intervention.

* Genetics and Dietary Intake-> FTO SNP

rs421085, RARB SNP rs7619139 etc.

3

Leon-Mimila P,

Villamil-Ramirez H,

Lopez-Contreras BE, et al.

Low Salivary Amylase

Gene (AMY1) Copy

Number Is Associated

with Obesity and Gut

Prevotella Abundance in

Mexican Children and

Adults.

Nutrien

ts

2018;10.

1q11 CNV(copy number variants) was significantly

associated with obesity in children, but not in

adults. Only AMY1 CNV was significantly

associated with obesity in both age groups.

2 1 2 5

4

Yoo KH, Yim HE, Bae

ES, et al. Genetic

Contributions to Childhood

Obesity: Association of

Candidate Gene

Polymorphisms and

Overweight/Obesity in

Korean Preschool

Children.

J

Korean

Med

Sci

2017;32:

1997-20

04.

* A total of 96 control, 48 overweight, and 46

obese preschool children were genotyped for ACE,

AT2, VEGF, TGF-β1, and TNF-α polymorphisms.

2

2

(Kor

ea)

2 6

5 Wu YY, Lye S, Briollais Int J EXBF acts antagonistically to the FTO rs9939609 2 1 2 5
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L. The role of early life

growth development, the

FTO gene and exclusive

breastfeeding on child

BMI trajectories.

Epidemi

ol

2017;46:

1512-15

22.

risk allele and by the age of 15, the predicted

reduction in BMI after 5 months of EXBF is 0.56 

kg/m2 [95% confidence interval (CI) 0.11-1.01; P 

= 0.003] and 1.14 kg/m2 (95% CI 0.67-1.62; P < 

0.0001) in boys and girls, respectively.

EXBF influences early life growth development and

thus plays a critical role in preventing the risks of

overweight and obesity even when those are

exacerbated by genetic factors.

6

Wang S, Song J, Yang Y,

et al. Rs12970134 near

MC4R is associated with

appetite and beverage

intake in overweight and

obese children: A

family-based association

study in Chinese

population.

PLoS

One

2017;12:

e017798

3.

rs12970134 near MC4R was associated with

appetite and beverage intake, and food

responsiveness could mediate the effect of

rs12970134 on beverage intake in overweight and

obese Chinese children population.

2 2 2 6

7

Song QY, Song JY, Wang

Y, et al. Association

Study of Three Gene

Polymorphisms Recently

Obes

Facts

2017;10:

179-190

* A total of 3,922 children, including 2,191

normal-weight, 873 overweight and 858 obese

children, from three independent studies were

included in the study.

2 2 2 6
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Identified by a

Genome-Wide Association

Study with

Obesity-Related

Phenotypes in Chinese

Children.

.

* The pooled odds ratios of the A-allele of

rs564343 in PACS1 for obesity and severe obesity

were 1.180 (p = 0.03) and 1.312 (p = 0.004),

respectively.

* We showed for the first time that the rs564343

in PACS1 was associated with risk of severe

obesity in a non-European population.

8

Dina C, Meyre D, Gallina

S et al. Variation in FTO

conbtributes to childhood

obesity and severe adult

obesity

Nat

Genet.

2007

Jun;39(

6):724-

6.

French childhood obesity1: rs1421085 (OR = 1.28 ),

rs17817449 (OR = 1.25)

French childhood obesity 2a: rs1421085 (OR =

1.47), rs17817449 (OR = 1.52)

German childhood obesity: rs1421085 (OR = 1.69),

rs17817449 (OR = 1.65)

2 1 2 5

9

Garver WS, Newman SB,

Gonzales-Pacheco DM, et

al. The genetics of

childhood obesity and

interaction with dietary

macronutrients. (Review)

Genes

Nutr.

2013;8(

3):271

–287.

The objective of this article is to provide a review

on the origins, mechanisms, and health

consequences of obesity susceptibility genes and

interaction with dietary macronutrients that

predispose to childhood obesity.

2 1 2 5

10

Monnereau C, Vogelezang

S, Kruithof CJ, et al.

Associations of genetic

risk scores based on adult

BMC

Genet

2016;17:

120.

A genetic risk score based on 97 SNPs related to

adult BMI was associated with peak weight

velocity during infancy and general and abdominal

fat measurements at the age of 6 years.

2 1 2 5
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adiposity pathways with

childhood growth and

adiposity measures.

* For all but one SNPs identified for childhood

BMI, information was available in our dataset. We

used rs3751812 as a proxy for rs1421085 (R 2 = 0.93,

D’ = 0.97)

11

Graff M, North KE,

Richardson AS, et al. BMI

loci and longitudinal BMI

from adolescence to

young adulthood in an

ethnically diverse cohort.

Int J

Obes

(Lond)

2017;41:

759-768

.

* 5,962 European American (EA), 2,080 African

American (AA), and 1,582 Hispanic American (HA)

individuals from the National Longitudinal Study of

Adolescent to Adult Health (Add Health)

* We found SNPs in/near FTO, MC4R, MTCH2,

TFAP2B, SEC16B, and TMEM18 were significantly

associated (p<0.0015 ≈ 0.05/34) with BMI change

in EA and the ancestry-combined meta-analysis.

* No SNPs were significant after Bonferroni

correction in AA or HA, although 5 SNPs in AA

and 4 SNPs in HA were nominally significant

(p<0.05). In EA and the ancestry-combined

meta-analysis, rs3817334 near MTCH2 showed

larger effects in younger respondents, while

rs987237 near TFAP2B, showed larger effects in

older respondents across all Waves.

3

(change

in BMI)

1 2 6
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12

Livingstone KM,

Celis-Morales C,

Papandonatos GD, et al.

FTO genotype and

weight loss: systematic

review and meta-analysis

of 9563 individual

participant data from eight

randomised controlled

trials.

Bmj

2016;35

4:i4707.

* systematic review and meta-analysis (n=9563)

The minor allele for the fat mass and obesity

associated gene (FTO) rs9939609 is linked to

increased risk of obesity.

Carriage of the FTO minor allele has no effect on

the efficacy of lifestyle and drug related weight

loss interventions.

3

(weight

loss

intervent

ion)

1 1 5

13

Song JY, Song QY, Wang

S, et al. Physical Activity

and Sedentary Behaviors

Modify the Association

between Melanocortin 4

Receptor Gene Variant and

Obesity in Chinese

Children and

Adolescents.

PLoS

One

2017;12:

e017006

2.

* Two common variants (rs12970134 and

rs17782313) near MC4R were genotyped in 2179

children and adolescents aged 7–18 years in

Beijing of China.

* we found the significant interaction of rs12970134

and physical activity/sedentary behaviors on BMI

(Pinteraction = 0.043). The rs12970134 was found

to be associated with BMI only in children with

physical activity<1h/d and sedentary behaviors

≥2h/d (BMI: β = 1.27 kg/m2, 95%CI: 0.10–2.45, P

= 0.034).

2 2 2 6
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Table S2. A total of 194 candidate metabolites were comparatively

analyzed by HMT using the CE-TOF MS method.

IDa Compound name Pathway label

Responder

vs

non-respond

er ratiob

(baseline–1

8 time

point)

P-valu

ec(base

line–1

8 time

point)

C_0053
1-Methyl-4-imidazolea

cetic acid
MIA 1< N.A.

C_0117 1-Methyladenosine 1-Methyladenosine 0.9 0.401

C_0077
1-Methylhistidine

3-Methylhistidine

1-Methylhistidine

3-Methylhistidine
1.9 0.049

C_0050 1-Methylnicotinamide 1-Methylnicotinamide 1.0 0.738

A_0053
10-Hydroxydecanoic

acid

10-Hydroxydecanoic

acid
0.8 N.A.

C_0015
2-Aminoisobutyric acid

2-Aminobutyric acid

2-Aminoisobutyric

acid

2-Aminobutyric acid

1.2 0.150

A_0010 2-Hydroxybutyric acid 2-HBA 1.1 0.582

A_0008
2-Hydroxyisobutyric

acid

2-Hydroxyisobutyric

acid
<1 N.A.

A_0018 2-Hydroxyvaleric acid 2-Hydroxyvaleric acid 0.8 0.159

A_0029 2-Oxoglutaric acid 2-OG 0.7 0.105

A_0013 2-Oxoisovaleric acid 2-KIV 0.9 0.319

A_0033 2-Oxooctanoic acid 2-Oxooctanoic acid N.A. N.A.

A_0050 2-Phosphoglyceric acid 2-PG N.A. N.A.

C_0023 3-Amino-2-piperidone 3-Amino-2-piperidone N.A. N.A.

C_0013 3-Aminobutyric acid 3-Aminobutyric acid 1.1 0.446

A_0009 3-Hydroxybutyric acid 3-HBA 3.4 0.224

A_0005
3-Hydroxypropionic

acid
b-Lactate 0.8 0.018

A_0062 3-Indolebutyric acid 3-Indolebutyric acid N.A. N.A.
A_0066 3-Indoxylsulfuric acid 3-Indoxylsulfuric acid 1.2 0.389
A_0032 3-Phenylpropionic acid 3-Phenylpropionic acid N.A. N.A.
A_0051 3-Phosphoglyceric acid 3-PG 3.6 0.217
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C_0057
4-Guanidinobutyric

acid
4-GBA N.A. N.A.

A_0021

4-Methyl-2-oxovaleric

acid

3-Methyl-2-oxovaleric

acid

2-Oxoleucine

2K3MVA
1.0 0.741

C_0073 5-Hydroxylysine 5-Hydroxylysine 1.0 0.845

A_0063
5-Methoxyindoleacetic

acid
5-MIAA 0.9 0.509

A_0020 5-Oxoproline Oxoproline 1.2 0.177

A_0079
6-Phosphogluconic

acid
6-PG N.A. N.A.

C_0118
8-Hydroxy-2'-deoxyg

uanosine

8-Hydroxy-2'-deoxyg

uanosine
1.0 0.518

A_0035

8-Hydroxyoctanoic

acid-1

2-Hydroxyoctanoicacid

-1

8-Hydroxyoctanoic

acid

2-Hydroxyoctanoic

acid

1.9 0.022

A_0036

8-Hydroxyoctanoic

acid-2

2-Hydroxyoctanoicacid

-2

8-Hydroxyoctanoic

acid

2-Hydroxyoctanoic

acid

N.A. N.A.

A_0101 ADP ADP 0.8 0.547

C_0009 Ala Ala 0.9 0.013

C_0084 Alliin Alliin 0.9 0.631

C_0027 allo-Threonine allo-Threonine <1 N.A.

C_0041 Alloisoleucine Alloisoleucine 1.2 0.081

A_0088 AMP AMP 1.3 0.132

C_0051 Anthranilic acid Anthranilic acid N.A. N.A.

C_0080 Arg Arg 1.0 0.938

A_0073 Ascorbate 2-sulfate Ascorbate 2-sulfate 1.2 0.117

C_0044 Asn Asn 1.1 0.482

C_0046 Asp Asp 1.2 0.028

A_0109 ATP ATP 0.7 0.536

A_0052 Azelaic acid Azelaic acid N.A. N.A.

C_0025 Betaine Betaine 1.1 0.279

C_0030
Betaine

aldehyde_+H2O
BTL N.A. N.A.
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C_0068 Betonicine Betonicine 1< N.A.

C_0105 Butyrylcarnitine Butyrylcarnitine 1.1 0.678

C_0094 Caffeine Caffeine <1 N.A.

A_0085 cAMP cAMP 1.0 0.842

C_0072 Carnitine Carnitine 1.0 0.823

A_0099 Cholic acid Cholic acid 1.1 0.787

C_0016 Choline Choline 1.0 0.883

A_0045 cis-Aconitic acid cis-Aconitic acid 1.1 0.420

A_0030 Citramalic acid Citramalic acid N.A. N.A.

A_0056 Citric acid Citric acid 1.0 0.673

C_0082 Citrulline Citrulline 1.0 0.637

C_0040 Creatine Creatine 1.1 0.412

C_0022 Creatinine Creatinine 1.1 0.343

C_0031 Cys Cys 1< N.A.

C_0103 Cystathionine Cystathionine N.A. N.A.

C_0109 Cystine Cystine 1.4 0.021

C_0018 Diethanolamine Diethanolamine 0.8 0.305

C_0122 Disulfiram Disulfiram 1.0 0.614

C_0054 Ectoine Ectoine N.A. N.A.

C_0002 Ethanolamine Ethanolamine 1.0 0.587

A_0027
Ethanolamine

phosphate
EAP 1.0 0.985

C_0012 GABA GABA N.A. N.A.

A_0102 GDP GDP 0.8 N.A.

C_0060 Gln Gln 1.2 0.083

C_0062 Glu Glu 0.9 0.306

C_0085 Glucosamine Glucosamine 1.0 0.779

A_0074 Glucose 1-phosphate G1P N.A. N.A.

A_0075 Glucose 6-phosphate G6P 1.4 N.A.

A_0057
Glucuronic acid

Galacturonic acid

Glucuronic acid

Galacturonic acid
0.8 N.A.

C_0003 Gly Gly 1.1 0.072

A_0011 Glyceric acid Glyceric acid 1.0 0.597

C_0010 Glycerol Glycerol 1.0 0.969
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A_0043 Glycerol 3-phosphate G3P 1.1 N.A.

C_0114 Glycerophosphocholine GPCho 1.1 0.326

A_0103 Glycocholic acid Glycocholic acid 0.5 0.141

A_0092 GMP GMP 0.9 N.A.

C_0081 Guanidinosuccinic acid Guanidinosuccinic acid 1.1 0.784

A_0022 Heptanoic acid Heptanoic acid 1< N.A.

A_0014 Hexanoic acid Hexanoic acid 1.4 N.A.

A_0048 Hippuric acid Hippuric acid 1.3 0.375

C_0066 His His 1.0 0.668

C_0093 Homocitrulline Homocitrulline 0.5 N.A.

A_0049 Homovanillic acid HVA 1.1 0.172

C_0039 Hydroxyproline Hydroxyproline 1.1 0.452

C_0019 Hypotaurine Hypotaurine 1.1 0.431

C_0049 Hypoxanthine Hypoxanthine 1.0 0.915

C_0042 Ile Ile 1.0 0.967

C_0067 Imidazolelactic acid Imidazolelactic acid 1.1 0.356

A_0089 IMP IMP 1.3 0.149

A_0047 Indole-3-acetic acid Indole-3-acetic acid 1.4 0.031

C_0071 Indole-3-ethanol Indole-3-ethanol 1.2 0.551

C_0116 Inosine Inosine 0.3 0.399

A_0019 Isethionic acid Isethionic acid 1.1 0.456

A_0004
Isobutyric acid

Butyricacid

Isobutyric acid

Butyricacid
1< N.A.

A_0055 Isocitric acid Isocitric acid 1.0 0.817

A_0007
Isovaleric acid

Valeric acid

Isovaleric acid

Valeric acid
0.9 N.A.

A_0054 Kynurenic acid Kynurenic acid N.A. N.A.

C_0099 Kynurenine Kynurenine 1.0 0.668

A_0006 Lactic acid Lactic acid 1.2 0.122

A_0060 Lauric acid Lauric acid 1.0 0.628

C_0043 Leu Leu 1.0 0.735

C_0061 Lys Lys 1.0 0.355

A_0025 Malic acid Malic acid 1.1 0.372

C_0107 Melatonin Melatonin N.A. N.A.
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C_0064 Met Met 1.0 0.743

C_0038 Metformin Metformin N.A. N.A.

C_0074 Methionine sulfoxide Methionine sulfoxide 1.0 0.858

A_0064 Mucic acid Mucic acid 1.2 0.284

A_0068 Myristoleic acid Myristoleic acid 1.1 0.908

C_0014 N,N-Dimethylglycine DMG 1.0 0.681

A_0024 N-Acetyl-β-alanine N-Acetyl-b-alanine 1< N.A.

A_0023 N-Acetylalanine N-Acetylalanine 1.2 0.028

A_0046 N-Acetylaspartic acid N-Acetylaspartic acid N.A. N.A.

C_0102

N-Acetylgalactosamine

N-Acetylmannosamine

N-Acetylglucosamine

N-Acetylgalactosamin

e

ManNAc

GlcNAc

<1 N.A.

A_0015 N-Acetylglycine N-Acetylglycine N.A. N.A.

C_0091 N-Acetyllysine-1 N-Acetyllysine N.A. N.A.

C_0092 N-Acetyllysine-2 N-Acetyllysine N.A. N.A.

C_0090 N-Acetyllysine-3 N-Acetyllysine N.A. N.A.

A_0081 N-Acetylmuramic acid N-Acetylmuramic acid 1.4 0.426

C_0078 N-Acetylornithine N-AcOrn 1.1 N.A.

C_0037 N-Methylproline N-Methylproline 1.6 0.175

C_0011 N-Methylputrescine N-Methylputrescine N.A. N.A.

A_0078
N2-Phenylacetylglutam

ine

N2-Phenylacetylgluta

mine
1.0 0.902

C_0079 N5-Ethylglutamine N5-Ethylglutamine 0.9 0.461

C_0069 N6-Methyllysine N6-Methyllysine 1.0 0.975

C_0032 Nicotinamide Nicotinamide 0.9 0.326

C_0097 O-Acetylcarnitine ALCAR 1.1 0.397

C_0070
O-Acetylhomoserine

2-Aminoadipicacid

O-Acetylhomoserine

2-Aminoadipicacid
1.0 0.847

C_0120 Octanoylcarnitine Octanoylcarnitine 1.0 0.868

C_0121 Ophthalmic acid Ophthalmic acid <1 N.A.

C_0045 Ornithine Ornithine 1.1 0.431

A_0067 Pantothenic acid Pantothenic acid 0.8 0.662

C_0087 Paraxanthine Paraxanthine <1 N.A.
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A_0034 Pelargonic acid Pelargonic acid 1.1 0.086

C_0063 Penicillamine Penicillamine N.A. N.A.

A_0038 Perillic acid Perillic acid 1.2 N.A.

C_0075 Phe Phe 1.0 0.871

A_0065 Phosphocreatine Phosphocreatine 1.0 0.911

C_0089 Phosphorylcholine Phosphorylcholine 1.2 0.242

C_0036 Pipecolic acid Pipecolic acid 1.1 0.241

C_0005 Piperidine Piperidine 1.3 0.095

C_0024 Pro Pro 1.0 0.957

A_0090 Prostaglandin E2 Prostaglandin E2 N.A. N.A.

A_0091 Prostaglandin F2α Prostaglandin F2a 1< N.A.

A_0070 Ribulose 5-phosphate Ru5P 0.7 0.656

C_0047 S-Methylcysteine S-Methylcysteine 1.1 0.481

C_0007 Sarcosine Sarcosine 1.0 0.928

C_0095 SDMA SDMA 1.0 0.685

A_0061 Sebacic acid Sebacic acid N.A. N.A.

C_0017 Ser Ser 1.1 0.152

C_0108 Ser-Glu Ser-Glu N.A. N.A.

C_0083 Serotonin Serotonin 0.7 0.447

C_0096 Spermine Spermine N.A. N.A.

C_0056 Stachydrine Stachydrine 1.1 0.823

A_0016 Succinic acid Succinic acid 1.0 0.669

A_0077 Sulfotyrosine Sulfotyrosine 1.1 0.077

A_0031 Tartaric acid Tartaric acid N.A. N.A.

C_0033 Taurine Taurine 1.0 0.823

A_0110 Taurocholic acid Taurocholic acid 0.7 0.459

A_0037 Terephthalic acid Terephthalic acid 1.1 0.085

C_0113 Tetrahydrouridine Tetrahydrouridine N.A. N.A.

C_0086 Theobromine Theobromine 0.8 N.A.

C_0028 Thr Thr 1.0 0.905

A_0026 Threonic acid Threonic acid 1.1 0.272

C_0004
Trimethylamine

N-oxide

Trimethylamine

N-oxide
1.0 0.986

C_0098 Trp Trp 0.9 0.166

C_0088 Tyr Tyr 0.9 0.028
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aID consists of the analysis mode and number. 'C' and 'A' showed

cation and anion modes, respectively. bThe ratio is computed using

averaged detection values, and the latter is used as the denominator.
cThe p-value is computed using Welch's t-test. (*<0.05, **<0.01,

***<0.001)

Abbreviation: N.A. (not available), the calculation was impossible

because of insufficient data.

C_0076 Tyr-Arg_divalent Tyr-Arg_divalent N.A. N.A.

A_0097 UDP UDP <1 N.A.

A_0084 UMP UMP 1< N.A.

C_0001 Urea Urea 1.1 0.385

A_0040 Uric acid Uric acid 1.0 0.799

C_0112 Uridine Uridine 1.0 0.326

C_0026 Val Val 1.0 0.529

A_0028 XA0004 XA0004 1.0 0.915

A_0044 XA0013 XA0013 1.4 0.345

A_0069 XA0027 XA0027 0.8 0.406

A_0072 XA0033 XA0033 1.0 0.914

C_0035 XC0016 XC0016 1.3 0.106

C_0055 XC0029 XC0029 1.1 0.863

C_0100 XC0061 XC0061 1.0 0.902

C_0101 XC0065 XC0065 1.6 N.A.

C_0123 XC0120 XC0120 1.3 0.067

C_0126 XC0126 XC0126 1.0 0.776

C_0127 XC0132 XC0132 1.0 0.876

C_0008 β-Ala b-Ala 1.1 0.082

A_0017
β-Hydroxyisovaleric

acid

b-Hydroxyisovaleric

acid
1.2 0.203

C_0058 γ-Butyrobetaine Actinine 1.0 0.745

C_0106
γ-Glu-2-aminobutyric

acid

g-Glu-2-aminobutyric

acid
1.1 N.A.
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국문초록

연구 목적: 소아 및 청소년기 비만은 전 세계적으로 증가하는 추세이며,

이환율을 줄이기 위해 많은 임상 치료 및 중재가 이루어지고 있다. 그러

나 체중중재에 대해 중재효과가 우수한 반응군 또는 비만 고위험군을 발

굴하기 위한 효과적인 바이오마커는 없는 실정이다. 따라서 본 연구에서

는 아동, 청소년 비만환자에서 중재 효과를 판정 및 예측하는데 필요한

대사체 및 유전체 지표의 발굴을 목표로 한다.

연구 방법: 아동, 청소년 자원을 활용한 비만 대사체 정보를 생산하기

위해 ‘고도비만의 소아청소년 장기추적 중재연구 (ICAAN)’에서 중재 반

응에 따라 총 40명의 대상자가 선정되었다. 추적 18개월까지 BMI

z-score 변화를 기준으로 체중감소가 현저한 대상자 20명 (responder)

과 체중감소가 미미한 대상자 20명 (non-responder)을 선정하였으며, 중

재 기간별 (중재 전, 중재 6개월 후, 중재 18개월 후) 에 해당하는 각각

의 혈청시료와 생리학적 데이터를 수집하였다. 총 40명을 대상으로 120

개의 샘플을 수집하고 CE-TOFMS 방법을 사용해 혈청 시료의 대사체

의 정량분석을 시행하였고, Metaboanalyst 프로그램을 통해 2차 분석을

수행하여 관련 대사체 및 분자유전학적 네트워크를 구축하였다. 또한

IPA 및 문헌검색을 통해 기 확보된 유전체와 대사체 정보를 통합하여

유전체 분석을 시행하였고, 대상 확대를 위해 코호트 내 중재 6개월 후

BMI z-score를 기준으로 선별된 비만 환자 123명 (반응군 41명, 비반응

군 82명)의 대상에서 GWAS 정보를 비교 분석 및 유의미한 SNP의 유

전형을 구분하여 임상지표를 분석 하였다.

연구 결과: 총 120개의 혈청시료를 HMT에 의뢰한 결과 총 194개의 대

사체가 발굴되었다. 9개의 대사체 (1-or 3-Methylhistidine,

3-Hydroxypropionic acid, 8-or 2-Hydroxyoctanoic acid-1, alanine,

aspartic acid, cystine, indole-3-acetic acid, N-Acetylalanine, tyrosine)
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는 체중중재 전과 18개월 후를 비교하였을 때 반응군과 비반응군간 유의

미한 차이를 보였다 (p<0.05). Metaboanalyst 프로그램을 통한 재분석

후, 13개의 대사체 (1-Methyl-4-imidazoleacetic acid,

10-Hydroxydecanoic acid, 3-Indoxylsulfuric acid, 2- or

8-Hydroxyoctanoic acid-2, allo-Threonine, azelaic acid, disulfiram,

indole-3-acetic acid, N-Acetyllysine-1 or -2, N-Acetylornithine,

Succinic acid, XC0065) 가 체중중재 전 반응군과 비반응군간 유의미한

차이를 보였고, 6개의 대사체 (2-oxooctanoic acid, glucose, isocitiric

acid, lauric acid, sulfotyrosine, XC0126) 가 체중중재 전과 6개월 후를

비교하였을 때 반응군과 비반응군간 유의미한 차이를 보였다 (p<0.05).

추가로, 9개의 대사체 (1- or 3-Methylhistidine, alanine, aspartic acid,

cystine, glycocholic acid, homovanillic acid, piperidine, sulfotyrosine,

tyrosine)가 체중중재 전과 18개월 후를 비교하였을 때 두 그룹간 유의

미한 차이를 보였다 (p<0.05). 또한 중재 18개월 후, 총 63개의 대사체가

중재 자체에 의해 유의미한 변화를 보였다 (FDR-adjusted p-value

<0.05). 상기 분석 결과를 종합하였을 때, alanine, aspartic acid, cystine

이 중재 18개월 후 반응군간 유의미한 차이를 보이는 대사체로 선정되었

다. 또한 주요문헌을 검색하고 대사체 네트워크를 통합 분석하여 유전체

분석 지표를 선정하였다. 결과적으로, 코호트 내 123명의 GWAS 정보

분석에서 IRS1 rs2943641 과 FAIM2 rs7138803 이 중재 반응군에서 유

의미한 차이를 보였다 (p<0.05).

결론: 본 연구에서는 체중 중재 18개월 후 반응군 및 비반응군 비교시

alanine, aspartic acid, cystine 이 유의미하게 차이를 보이는 대사체로

발굴되었다. 그리고 각 시점에서 두 그룹간 대사체 차이를 확인하기 위

해 다양한 분석 방법 및 검증이 시도되었다. 또한 대사체 및 유전체 통

합 분석을 통해 연구대상자에서 비만 중재와 관련된 IRS1 rs2943641 와

FAIM2 rs7138803를 확인하였다. 이 결과는 아동, 청소년 비만에서 특정

치료 또는 중재에 대한 평가의 모니터링으로 사용가능한 바이오 마커의
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연구에 사용될 수 있을 것이다. 또한 비만 중재 효과에 대한 예측 지표

발굴에 사용될 수 있을 것으로 기대된다.

주요어 : 대사체, 유전체, 비만, 소아, 청소년, 체중 중재, 비만지표

학 번 : 2017-30190


	Introduction
	Materials and Methods
	Results
	Discussion
	References
	Supplement data
	Abstract in Korean


<startpage>14
Introduction 1
Materials and Methods 4
Results 11
Discussion 43
References 53
Supplement data 64
Abstract in Korean 77
</body>

